Merge branch 'genetlink_mcast'
[cascardo/linux.git] / kernel / power / snapshot.c
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <asm/io.h>
36
37 #include "power.h"
38
39 static int swsusp_page_is_free(struct page *);
40 static void swsusp_set_page_forbidden(struct page *);
41 static void swsusp_unset_page_forbidden(struct page *);
42
43 /*
44  * Number of bytes to reserve for memory allocations made by device drivers
45  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
46  * cause image creation to fail (tunable via /sys/power/reserved_size).
47  */
48 unsigned long reserved_size;
49
50 void __init hibernate_reserved_size_init(void)
51 {
52         reserved_size = SPARE_PAGES * PAGE_SIZE;
53 }
54
55 /*
56  * Preferred image size in bytes (tunable via /sys/power/image_size).
57  * When it is set to N, swsusp will do its best to ensure the image
58  * size will not exceed N bytes, but if that is impossible, it will
59  * try to create the smallest image possible.
60  */
61 unsigned long image_size;
62
63 void __init hibernate_image_size_init(void)
64 {
65         image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
66 }
67
68 /* List of PBEs needed for restoring the pages that were allocated before
69  * the suspend and included in the suspend image, but have also been
70  * allocated by the "resume" kernel, so their contents cannot be written
71  * directly to their "original" page frames.
72  */
73 struct pbe *restore_pblist;
74
75 /* Pointer to an auxiliary buffer (1 page) */
76 static void *buffer;
77
78 /**
79  *      @safe_needed - on resume, for storing the PBE list and the image,
80  *      we can only use memory pages that do not conflict with the pages
81  *      used before suspend.  The unsafe pages have PageNosaveFree set
82  *      and we count them using unsafe_pages.
83  *
84  *      Each allocated image page is marked as PageNosave and PageNosaveFree
85  *      so that swsusp_free() can release it.
86  */
87
88 #define PG_ANY          0
89 #define PG_SAFE         1
90 #define PG_UNSAFE_CLEAR 1
91 #define PG_UNSAFE_KEEP  0
92
93 static unsigned int allocated_unsafe_pages;
94
95 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
96 {
97         void *res;
98
99         res = (void *)get_zeroed_page(gfp_mask);
100         if (safe_needed)
101                 while (res && swsusp_page_is_free(virt_to_page(res))) {
102                         /* The page is unsafe, mark it for swsusp_free() */
103                         swsusp_set_page_forbidden(virt_to_page(res));
104                         allocated_unsafe_pages++;
105                         res = (void *)get_zeroed_page(gfp_mask);
106                 }
107         if (res) {
108                 swsusp_set_page_forbidden(virt_to_page(res));
109                 swsusp_set_page_free(virt_to_page(res));
110         }
111         return res;
112 }
113
114 unsigned long get_safe_page(gfp_t gfp_mask)
115 {
116         return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
117 }
118
119 static struct page *alloc_image_page(gfp_t gfp_mask)
120 {
121         struct page *page;
122
123         page = alloc_page(gfp_mask);
124         if (page) {
125                 swsusp_set_page_forbidden(page);
126                 swsusp_set_page_free(page);
127         }
128         return page;
129 }
130
131 /**
132  *      free_image_page - free page represented by @addr, allocated with
133  *      get_image_page (page flags set by it must be cleared)
134  */
135
136 static inline void free_image_page(void *addr, int clear_nosave_free)
137 {
138         struct page *page;
139
140         BUG_ON(!virt_addr_valid(addr));
141
142         page = virt_to_page(addr);
143
144         swsusp_unset_page_forbidden(page);
145         if (clear_nosave_free)
146                 swsusp_unset_page_free(page);
147
148         __free_page(page);
149 }
150
151 /* struct linked_page is used to build chains of pages */
152
153 #define LINKED_PAGE_DATA_SIZE   (PAGE_SIZE - sizeof(void *))
154
155 struct linked_page {
156         struct linked_page *next;
157         char data[LINKED_PAGE_DATA_SIZE];
158 } __attribute__((packed));
159
160 static inline void
161 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
162 {
163         while (list) {
164                 struct linked_page *lp = list->next;
165
166                 free_image_page(list, clear_page_nosave);
167                 list = lp;
168         }
169 }
170
171 /**
172   *     struct chain_allocator is used for allocating small objects out of
173   *     a linked list of pages called 'the chain'.
174   *
175   *     The chain grows each time when there is no room for a new object in
176   *     the current page.  The allocated objects cannot be freed individually.
177   *     It is only possible to free them all at once, by freeing the entire
178   *     chain.
179   *
180   *     NOTE: The chain allocator may be inefficient if the allocated objects
181   *     are not much smaller than PAGE_SIZE.
182   */
183
184 struct chain_allocator {
185         struct linked_page *chain;      /* the chain */
186         unsigned int used_space;        /* total size of objects allocated out
187                                          * of the current page
188                                          */
189         gfp_t gfp_mask;         /* mask for allocating pages */
190         int safe_needed;        /* if set, only "safe" pages are allocated */
191 };
192
193 static void
194 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
195 {
196         ca->chain = NULL;
197         ca->used_space = LINKED_PAGE_DATA_SIZE;
198         ca->gfp_mask = gfp_mask;
199         ca->safe_needed = safe_needed;
200 }
201
202 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
203 {
204         void *ret;
205
206         if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
207                 struct linked_page *lp;
208
209                 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
210                 if (!lp)
211                         return NULL;
212
213                 lp->next = ca->chain;
214                 ca->chain = lp;
215                 ca->used_space = 0;
216         }
217         ret = ca->chain->data + ca->used_space;
218         ca->used_space += size;
219         return ret;
220 }
221
222 /**
223  *      Data types related to memory bitmaps.
224  *
225  *      Memory bitmap is a structure consiting of many linked lists of
226  *      objects.  The main list's elements are of type struct zone_bitmap
227  *      and each of them corresonds to one zone.  For each zone bitmap
228  *      object there is a list of objects of type struct bm_block that
229  *      represent each blocks of bitmap in which information is stored.
230  *
231  *      struct memory_bitmap contains a pointer to the main list of zone
232  *      bitmap objects, a struct bm_position used for browsing the bitmap,
233  *      and a pointer to the list of pages used for allocating all of the
234  *      zone bitmap objects and bitmap block objects.
235  *
236  *      NOTE: It has to be possible to lay out the bitmap in memory
237  *      using only allocations of order 0.  Additionally, the bitmap is
238  *      designed to work with arbitrary number of zones (this is over the
239  *      top for now, but let's avoid making unnecessary assumptions ;-).
240  *
241  *      struct zone_bitmap contains a pointer to a list of bitmap block
242  *      objects and a pointer to the bitmap block object that has been
243  *      most recently used for setting bits.  Additionally, it contains the
244  *      pfns that correspond to the start and end of the represented zone.
245  *
246  *      struct bm_block contains a pointer to the memory page in which
247  *      information is stored (in the form of a block of bitmap)
248  *      It also contains the pfns that correspond to the start and end of
249  *      the represented memory area.
250  */
251
252 #define BM_END_OF_MAP   (~0UL)
253
254 #define BM_BITS_PER_BLOCK       (PAGE_SIZE * BITS_PER_BYTE)
255
256 struct bm_block {
257         struct list_head hook;  /* hook into a list of bitmap blocks */
258         unsigned long start_pfn;        /* pfn represented by the first bit */
259         unsigned long end_pfn;  /* pfn represented by the last bit plus 1 */
260         unsigned long *data;    /* bitmap representing pages */
261 };
262
263 static inline unsigned long bm_block_bits(struct bm_block *bb)
264 {
265         return bb->end_pfn - bb->start_pfn;
266 }
267
268 /* strcut bm_position is used for browsing memory bitmaps */
269
270 struct bm_position {
271         struct bm_block *block;
272         int bit;
273 };
274
275 struct memory_bitmap {
276         struct list_head blocks;        /* list of bitmap blocks */
277         struct linked_page *p_list;     /* list of pages used to store zone
278                                          * bitmap objects and bitmap block
279                                          * objects
280                                          */
281         struct bm_position cur; /* most recently used bit position */
282 };
283
284 /* Functions that operate on memory bitmaps */
285
286 static void memory_bm_position_reset(struct memory_bitmap *bm)
287 {
288         bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
289         bm->cur.bit = 0;
290 }
291
292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293
294 /**
295  *      create_bm_block_list - create a list of block bitmap objects
296  *      @pages - number of pages to track
297  *      @list - list to put the allocated blocks into
298  *      @ca - chain allocator to be used for allocating memory
299  */
300 static int create_bm_block_list(unsigned long pages,
301                                 struct list_head *list,
302                                 struct chain_allocator *ca)
303 {
304         unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
305
306         while (nr_blocks-- > 0) {
307                 struct bm_block *bb;
308
309                 bb = chain_alloc(ca, sizeof(struct bm_block));
310                 if (!bb)
311                         return -ENOMEM;
312                 list_add(&bb->hook, list);
313         }
314
315         return 0;
316 }
317
318 struct mem_extent {
319         struct list_head hook;
320         unsigned long start;
321         unsigned long end;
322 };
323
324 /**
325  *      free_mem_extents - free a list of memory extents
326  *      @list - list of extents to empty
327  */
328 static void free_mem_extents(struct list_head *list)
329 {
330         struct mem_extent *ext, *aux;
331
332         list_for_each_entry_safe(ext, aux, list, hook) {
333                 list_del(&ext->hook);
334                 kfree(ext);
335         }
336 }
337
338 /**
339  *      create_mem_extents - create a list of memory extents representing
340  *                           contiguous ranges of PFNs
341  *      @list - list to put the extents into
342  *      @gfp_mask - mask to use for memory allocations
343  */
344 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
345 {
346         struct zone *zone;
347
348         INIT_LIST_HEAD(list);
349
350         for_each_populated_zone(zone) {
351                 unsigned long zone_start, zone_end;
352                 struct mem_extent *ext, *cur, *aux;
353
354                 zone_start = zone->zone_start_pfn;
355                 zone_end = zone_end_pfn(zone);
356
357                 list_for_each_entry(ext, list, hook)
358                         if (zone_start <= ext->end)
359                                 break;
360
361                 if (&ext->hook == list || zone_end < ext->start) {
362                         /* New extent is necessary */
363                         struct mem_extent *new_ext;
364
365                         new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
366                         if (!new_ext) {
367                                 free_mem_extents(list);
368                                 return -ENOMEM;
369                         }
370                         new_ext->start = zone_start;
371                         new_ext->end = zone_end;
372                         list_add_tail(&new_ext->hook, &ext->hook);
373                         continue;
374                 }
375
376                 /* Merge this zone's range of PFNs with the existing one */
377                 if (zone_start < ext->start)
378                         ext->start = zone_start;
379                 if (zone_end > ext->end)
380                         ext->end = zone_end;
381
382                 /* More merging may be possible */
383                 cur = ext;
384                 list_for_each_entry_safe_continue(cur, aux, list, hook) {
385                         if (zone_end < cur->start)
386                                 break;
387                         if (zone_end < cur->end)
388                                 ext->end = cur->end;
389                         list_del(&cur->hook);
390                         kfree(cur);
391                 }
392         }
393
394         return 0;
395 }
396
397 /**
398   *     memory_bm_create - allocate memory for a memory bitmap
399   */
400 static int
401 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
402 {
403         struct chain_allocator ca;
404         struct list_head mem_extents;
405         struct mem_extent *ext;
406         int error;
407
408         chain_init(&ca, gfp_mask, safe_needed);
409         INIT_LIST_HEAD(&bm->blocks);
410
411         error = create_mem_extents(&mem_extents, gfp_mask);
412         if (error)
413                 return error;
414
415         list_for_each_entry(ext, &mem_extents, hook) {
416                 struct bm_block *bb;
417                 unsigned long pfn = ext->start;
418                 unsigned long pages = ext->end - ext->start;
419
420                 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
421
422                 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
423                 if (error)
424                         goto Error;
425
426                 list_for_each_entry_continue(bb, &bm->blocks, hook) {
427                         bb->data = get_image_page(gfp_mask, safe_needed);
428                         if (!bb->data) {
429                                 error = -ENOMEM;
430                                 goto Error;
431                         }
432
433                         bb->start_pfn = pfn;
434                         if (pages >= BM_BITS_PER_BLOCK) {
435                                 pfn += BM_BITS_PER_BLOCK;
436                                 pages -= BM_BITS_PER_BLOCK;
437                         } else {
438                                 /* This is executed only once in the loop */
439                                 pfn += pages;
440                         }
441                         bb->end_pfn = pfn;
442                 }
443         }
444
445         bm->p_list = ca.chain;
446         memory_bm_position_reset(bm);
447  Exit:
448         free_mem_extents(&mem_extents);
449         return error;
450
451  Error:
452         bm->p_list = ca.chain;
453         memory_bm_free(bm, PG_UNSAFE_CLEAR);
454         goto Exit;
455 }
456
457 /**
458   *     memory_bm_free - free memory occupied by the memory bitmap @bm
459   */
460 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
461 {
462         struct bm_block *bb;
463
464         list_for_each_entry(bb, &bm->blocks, hook)
465                 if (bb->data)
466                         free_image_page(bb->data, clear_nosave_free);
467
468         free_list_of_pages(bm->p_list, clear_nosave_free);
469
470         INIT_LIST_HEAD(&bm->blocks);
471 }
472
473 /**
474  *      memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
475  *      to given pfn.  The cur_zone_bm member of @bm and the cur_block member
476  *      of @bm->cur_zone_bm are updated.
477  */
478 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
479                                 void **addr, unsigned int *bit_nr)
480 {
481         struct bm_block *bb;
482
483         /*
484          * Check if the pfn corresponds to the current bitmap block and find
485          * the block where it fits if this is not the case.
486          */
487         bb = bm->cur.block;
488         if (pfn < bb->start_pfn)
489                 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
490                         if (pfn >= bb->start_pfn)
491                                 break;
492
493         if (pfn >= bb->end_pfn)
494                 list_for_each_entry_continue(bb, &bm->blocks, hook)
495                         if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
496                                 break;
497
498         if (&bb->hook == &bm->blocks)
499                 return -EFAULT;
500
501         /* The block has been found */
502         bm->cur.block = bb;
503         pfn -= bb->start_pfn;
504         bm->cur.bit = pfn + 1;
505         *bit_nr = pfn;
506         *addr = bb->data;
507         return 0;
508 }
509
510 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
511 {
512         void *addr;
513         unsigned int bit;
514         int error;
515
516         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
517         BUG_ON(error);
518         set_bit(bit, addr);
519 }
520
521 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
522 {
523         void *addr;
524         unsigned int bit;
525         int error;
526
527         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528         if (!error)
529                 set_bit(bit, addr);
530         return error;
531 }
532
533 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
534 {
535         void *addr;
536         unsigned int bit;
537         int error;
538
539         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
540         BUG_ON(error);
541         clear_bit(bit, addr);
542 }
543
544 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
545 {
546         void *addr;
547         unsigned int bit;
548         int error;
549
550         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
551         BUG_ON(error);
552         return test_bit(bit, addr);
553 }
554
555 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
556 {
557         void *addr;
558         unsigned int bit;
559
560         return !memory_bm_find_bit(bm, pfn, &addr, &bit);
561 }
562
563 /**
564  *      memory_bm_next_pfn - find the pfn that corresponds to the next set bit
565  *      in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
566  *      returned.
567  *
568  *      It is required to run memory_bm_position_reset() before the first call to
569  *      this function.
570  */
571
572 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
573 {
574         struct bm_block *bb;
575         int bit;
576
577         bb = bm->cur.block;
578         do {
579                 bit = bm->cur.bit;
580                 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
581                 if (bit < bm_block_bits(bb))
582                         goto Return_pfn;
583
584                 bb = list_entry(bb->hook.next, struct bm_block, hook);
585                 bm->cur.block = bb;
586                 bm->cur.bit = 0;
587         } while (&bb->hook != &bm->blocks);
588
589         memory_bm_position_reset(bm);
590         return BM_END_OF_MAP;
591
592  Return_pfn:
593         bm->cur.bit = bit + 1;
594         return bb->start_pfn + bit;
595 }
596
597 /**
598  *      This structure represents a range of page frames the contents of which
599  *      should not be saved during the suspend.
600  */
601
602 struct nosave_region {
603         struct list_head list;
604         unsigned long start_pfn;
605         unsigned long end_pfn;
606 };
607
608 static LIST_HEAD(nosave_regions);
609
610 /**
611  *      register_nosave_region - register a range of page frames the contents
612  *      of which should not be saved during the suspend (to be used in the early
613  *      initialization code)
614  */
615
616 void __init
617 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
618                          int use_kmalloc)
619 {
620         struct nosave_region *region;
621
622         if (start_pfn >= end_pfn)
623                 return;
624
625         if (!list_empty(&nosave_regions)) {
626                 /* Try to extend the previous region (they should be sorted) */
627                 region = list_entry(nosave_regions.prev,
628                                         struct nosave_region, list);
629                 if (region->end_pfn == start_pfn) {
630                         region->end_pfn = end_pfn;
631                         goto Report;
632                 }
633         }
634         if (use_kmalloc) {
635                 /* during init, this shouldn't fail */
636                 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
637                 BUG_ON(!region);
638         } else
639                 /* This allocation cannot fail */
640                 region = alloc_bootmem(sizeof(struct nosave_region));
641         region->start_pfn = start_pfn;
642         region->end_pfn = end_pfn;
643         list_add_tail(&region->list, &nosave_regions);
644  Report:
645         printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
646                 (unsigned long long) start_pfn << PAGE_SHIFT,
647                 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
648 }
649
650 /*
651  * Set bits in this map correspond to the page frames the contents of which
652  * should not be saved during the suspend.
653  */
654 static struct memory_bitmap *forbidden_pages_map;
655
656 /* Set bits in this map correspond to free page frames. */
657 static struct memory_bitmap *free_pages_map;
658
659 /*
660  * Each page frame allocated for creating the image is marked by setting the
661  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
662  */
663
664 void swsusp_set_page_free(struct page *page)
665 {
666         if (free_pages_map)
667                 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
668 }
669
670 static int swsusp_page_is_free(struct page *page)
671 {
672         return free_pages_map ?
673                 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
674 }
675
676 void swsusp_unset_page_free(struct page *page)
677 {
678         if (free_pages_map)
679                 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
680 }
681
682 static void swsusp_set_page_forbidden(struct page *page)
683 {
684         if (forbidden_pages_map)
685                 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
686 }
687
688 int swsusp_page_is_forbidden(struct page *page)
689 {
690         return forbidden_pages_map ?
691                 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
692 }
693
694 static void swsusp_unset_page_forbidden(struct page *page)
695 {
696         if (forbidden_pages_map)
697                 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
698 }
699
700 /**
701  *      mark_nosave_pages - set bits corresponding to the page frames the
702  *      contents of which should not be saved in a given bitmap.
703  */
704
705 static void mark_nosave_pages(struct memory_bitmap *bm)
706 {
707         struct nosave_region *region;
708
709         if (list_empty(&nosave_regions))
710                 return;
711
712         list_for_each_entry(region, &nosave_regions, list) {
713                 unsigned long pfn;
714
715                 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
716                          (unsigned long long) region->start_pfn << PAGE_SHIFT,
717                          ((unsigned long long) region->end_pfn << PAGE_SHIFT)
718                                 - 1);
719
720                 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
721                         if (pfn_valid(pfn)) {
722                                 /*
723                                  * It is safe to ignore the result of
724                                  * mem_bm_set_bit_check() here, since we won't
725                                  * touch the PFNs for which the error is
726                                  * returned anyway.
727                                  */
728                                 mem_bm_set_bit_check(bm, pfn);
729                         }
730         }
731 }
732
733 /**
734  *      create_basic_memory_bitmaps - create bitmaps needed for marking page
735  *      frames that should not be saved and free page frames.  The pointers
736  *      forbidden_pages_map and free_pages_map are only modified if everything
737  *      goes well, because we don't want the bits to be used before both bitmaps
738  *      are set up.
739  */
740
741 int create_basic_memory_bitmaps(void)
742 {
743         struct memory_bitmap *bm1, *bm2;
744         int error = 0;
745
746         if (forbidden_pages_map && free_pages_map)
747                 return 0;
748         else
749                 BUG_ON(forbidden_pages_map || free_pages_map);
750
751         bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
752         if (!bm1)
753                 return -ENOMEM;
754
755         error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
756         if (error)
757                 goto Free_first_object;
758
759         bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
760         if (!bm2)
761                 goto Free_first_bitmap;
762
763         error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
764         if (error)
765                 goto Free_second_object;
766
767         forbidden_pages_map = bm1;
768         free_pages_map = bm2;
769         mark_nosave_pages(forbidden_pages_map);
770
771         pr_debug("PM: Basic memory bitmaps created\n");
772
773         return 0;
774
775  Free_second_object:
776         kfree(bm2);
777  Free_first_bitmap:
778         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
779  Free_first_object:
780         kfree(bm1);
781         return -ENOMEM;
782 }
783
784 /**
785  *      free_basic_memory_bitmaps - free memory bitmaps allocated by
786  *      create_basic_memory_bitmaps().  The auxiliary pointers are necessary
787  *      so that the bitmaps themselves are not referred to while they are being
788  *      freed.
789  */
790
791 void free_basic_memory_bitmaps(void)
792 {
793         struct memory_bitmap *bm1, *bm2;
794
795         BUG_ON(!(forbidden_pages_map && free_pages_map));
796
797         bm1 = forbidden_pages_map;
798         bm2 = free_pages_map;
799         forbidden_pages_map = NULL;
800         free_pages_map = NULL;
801         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
802         kfree(bm1);
803         memory_bm_free(bm2, PG_UNSAFE_CLEAR);
804         kfree(bm2);
805
806         pr_debug("PM: Basic memory bitmaps freed\n");
807 }
808
809 /**
810  *      snapshot_additional_pages - estimate the number of additional pages
811  *      be needed for setting up the suspend image data structures for given
812  *      zone (usually the returned value is greater than the exact number)
813  */
814
815 unsigned int snapshot_additional_pages(struct zone *zone)
816 {
817         unsigned int res;
818
819         res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
820         res += DIV_ROUND_UP(res * sizeof(struct bm_block),
821                             LINKED_PAGE_DATA_SIZE);
822         return 2 * res;
823 }
824
825 #ifdef CONFIG_HIGHMEM
826 /**
827  *      count_free_highmem_pages - compute the total number of free highmem
828  *      pages, system-wide.
829  */
830
831 static unsigned int count_free_highmem_pages(void)
832 {
833         struct zone *zone;
834         unsigned int cnt = 0;
835
836         for_each_populated_zone(zone)
837                 if (is_highmem(zone))
838                         cnt += zone_page_state(zone, NR_FREE_PAGES);
839
840         return cnt;
841 }
842
843 /**
844  *      saveable_highmem_page - Determine whether a highmem page should be
845  *      included in the suspend image.
846  *
847  *      We should save the page if it isn't Nosave or NosaveFree, or Reserved,
848  *      and it isn't a part of a free chunk of pages.
849  */
850 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
851 {
852         struct page *page;
853
854         if (!pfn_valid(pfn))
855                 return NULL;
856
857         page = pfn_to_page(pfn);
858         if (page_zone(page) != zone)
859                 return NULL;
860
861         BUG_ON(!PageHighMem(page));
862
863         if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
864             PageReserved(page))
865                 return NULL;
866
867         if (page_is_guard(page))
868                 return NULL;
869
870         return page;
871 }
872
873 /**
874  *      count_highmem_pages - compute the total number of saveable highmem
875  *      pages.
876  */
877
878 static unsigned int count_highmem_pages(void)
879 {
880         struct zone *zone;
881         unsigned int n = 0;
882
883         for_each_populated_zone(zone) {
884                 unsigned long pfn, max_zone_pfn;
885
886                 if (!is_highmem(zone))
887                         continue;
888
889                 mark_free_pages(zone);
890                 max_zone_pfn = zone_end_pfn(zone);
891                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
892                         if (saveable_highmem_page(zone, pfn))
893                                 n++;
894         }
895         return n;
896 }
897 #else
898 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
899 {
900         return NULL;
901 }
902 #endif /* CONFIG_HIGHMEM */
903
904 /**
905  *      saveable_page - Determine whether a non-highmem page should be included
906  *      in the suspend image.
907  *
908  *      We should save the page if it isn't Nosave, and is not in the range
909  *      of pages statically defined as 'unsaveable', and it isn't a part of
910  *      a free chunk of pages.
911  */
912 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
913 {
914         struct page *page;
915
916         if (!pfn_valid(pfn))
917                 return NULL;
918
919         page = pfn_to_page(pfn);
920         if (page_zone(page) != zone)
921                 return NULL;
922
923         BUG_ON(PageHighMem(page));
924
925         if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
926                 return NULL;
927
928         if (PageReserved(page)
929             && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
930                 return NULL;
931
932         if (page_is_guard(page))
933                 return NULL;
934
935         return page;
936 }
937
938 /**
939  *      count_data_pages - compute the total number of saveable non-highmem
940  *      pages.
941  */
942
943 static unsigned int count_data_pages(void)
944 {
945         struct zone *zone;
946         unsigned long pfn, max_zone_pfn;
947         unsigned int n = 0;
948
949         for_each_populated_zone(zone) {
950                 if (is_highmem(zone))
951                         continue;
952
953                 mark_free_pages(zone);
954                 max_zone_pfn = zone_end_pfn(zone);
955                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
956                         if (saveable_page(zone, pfn))
957                                 n++;
958         }
959         return n;
960 }
961
962 /* This is needed, because copy_page and memcpy are not usable for copying
963  * task structs.
964  */
965 static inline void do_copy_page(long *dst, long *src)
966 {
967         int n;
968
969         for (n = PAGE_SIZE / sizeof(long); n; n--)
970                 *dst++ = *src++;
971 }
972
973
974 /**
975  *      safe_copy_page - check if the page we are going to copy is marked as
976  *              present in the kernel page tables (this always is the case if
977  *              CONFIG_DEBUG_PAGEALLOC is not set and in that case
978  *              kernel_page_present() always returns 'true').
979  */
980 static void safe_copy_page(void *dst, struct page *s_page)
981 {
982         if (kernel_page_present(s_page)) {
983                 do_copy_page(dst, page_address(s_page));
984         } else {
985                 kernel_map_pages(s_page, 1, 1);
986                 do_copy_page(dst, page_address(s_page));
987                 kernel_map_pages(s_page, 1, 0);
988         }
989 }
990
991
992 #ifdef CONFIG_HIGHMEM
993 static inline struct page *
994 page_is_saveable(struct zone *zone, unsigned long pfn)
995 {
996         return is_highmem(zone) ?
997                 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
998 }
999
1000 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1001 {
1002         struct page *s_page, *d_page;
1003         void *src, *dst;
1004
1005         s_page = pfn_to_page(src_pfn);
1006         d_page = pfn_to_page(dst_pfn);
1007         if (PageHighMem(s_page)) {
1008                 src = kmap_atomic(s_page);
1009                 dst = kmap_atomic(d_page);
1010                 do_copy_page(dst, src);
1011                 kunmap_atomic(dst);
1012                 kunmap_atomic(src);
1013         } else {
1014                 if (PageHighMem(d_page)) {
1015                         /* Page pointed to by src may contain some kernel
1016                          * data modified by kmap_atomic()
1017                          */
1018                         safe_copy_page(buffer, s_page);
1019                         dst = kmap_atomic(d_page);
1020                         copy_page(dst, buffer);
1021                         kunmap_atomic(dst);
1022                 } else {
1023                         safe_copy_page(page_address(d_page), s_page);
1024                 }
1025         }
1026 }
1027 #else
1028 #define page_is_saveable(zone, pfn)     saveable_page(zone, pfn)
1029
1030 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1031 {
1032         safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1033                                 pfn_to_page(src_pfn));
1034 }
1035 #endif /* CONFIG_HIGHMEM */
1036
1037 static void
1038 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1039 {
1040         struct zone *zone;
1041         unsigned long pfn;
1042
1043         for_each_populated_zone(zone) {
1044                 unsigned long max_zone_pfn;
1045
1046                 mark_free_pages(zone);
1047                 max_zone_pfn = zone_end_pfn(zone);
1048                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1049                         if (page_is_saveable(zone, pfn))
1050                                 memory_bm_set_bit(orig_bm, pfn);
1051         }
1052         memory_bm_position_reset(orig_bm);
1053         memory_bm_position_reset(copy_bm);
1054         for(;;) {
1055                 pfn = memory_bm_next_pfn(orig_bm);
1056                 if (unlikely(pfn == BM_END_OF_MAP))
1057                         break;
1058                 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1059         }
1060 }
1061
1062 /* Total number of image pages */
1063 static unsigned int nr_copy_pages;
1064 /* Number of pages needed for saving the original pfns of the image pages */
1065 static unsigned int nr_meta_pages;
1066 /*
1067  * Numbers of normal and highmem page frames allocated for hibernation image
1068  * before suspending devices.
1069  */
1070 unsigned int alloc_normal, alloc_highmem;
1071 /*
1072  * Memory bitmap used for marking saveable pages (during hibernation) or
1073  * hibernation image pages (during restore)
1074  */
1075 static struct memory_bitmap orig_bm;
1076 /*
1077  * Memory bitmap used during hibernation for marking allocated page frames that
1078  * will contain copies of saveable pages.  During restore it is initially used
1079  * for marking hibernation image pages, but then the set bits from it are
1080  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1081  * used for marking "safe" highmem pages, but it has to be reinitialized for
1082  * this purpose.
1083  */
1084 static struct memory_bitmap copy_bm;
1085
1086 /**
1087  *      swsusp_free - free pages allocated for the suspend.
1088  *
1089  *      Suspend pages are alocated before the atomic copy is made, so we
1090  *      need to release them after the resume.
1091  */
1092
1093 void swsusp_free(void)
1094 {
1095         struct zone *zone;
1096         unsigned long pfn, max_zone_pfn;
1097
1098         for_each_populated_zone(zone) {
1099                 max_zone_pfn = zone_end_pfn(zone);
1100                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1101                         if (pfn_valid(pfn)) {
1102                                 struct page *page = pfn_to_page(pfn);
1103
1104                                 if (swsusp_page_is_forbidden(page) &&
1105                                     swsusp_page_is_free(page)) {
1106                                         swsusp_unset_page_forbidden(page);
1107                                         swsusp_unset_page_free(page);
1108                                         __free_page(page);
1109                                 }
1110                         }
1111         }
1112         nr_copy_pages = 0;
1113         nr_meta_pages = 0;
1114         restore_pblist = NULL;
1115         buffer = NULL;
1116         alloc_normal = 0;
1117         alloc_highmem = 0;
1118 }
1119
1120 /* Helper functions used for the shrinking of memory. */
1121
1122 #define GFP_IMAGE       (GFP_KERNEL | __GFP_NOWARN)
1123
1124 /**
1125  * preallocate_image_pages - Allocate a number of pages for hibernation image
1126  * @nr_pages: Number of page frames to allocate.
1127  * @mask: GFP flags to use for the allocation.
1128  *
1129  * Return value: Number of page frames actually allocated
1130  */
1131 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1132 {
1133         unsigned long nr_alloc = 0;
1134
1135         while (nr_pages > 0) {
1136                 struct page *page;
1137
1138                 page = alloc_image_page(mask);
1139                 if (!page)
1140                         break;
1141                 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1142                 if (PageHighMem(page))
1143                         alloc_highmem++;
1144                 else
1145                         alloc_normal++;
1146                 nr_pages--;
1147                 nr_alloc++;
1148         }
1149
1150         return nr_alloc;
1151 }
1152
1153 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1154                                               unsigned long avail_normal)
1155 {
1156         unsigned long alloc;
1157
1158         if (avail_normal <= alloc_normal)
1159                 return 0;
1160
1161         alloc = avail_normal - alloc_normal;
1162         if (nr_pages < alloc)
1163                 alloc = nr_pages;
1164
1165         return preallocate_image_pages(alloc, GFP_IMAGE);
1166 }
1167
1168 #ifdef CONFIG_HIGHMEM
1169 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1170 {
1171         return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1172 }
1173
1174 /**
1175  *  __fraction - Compute (an approximation of) x * (multiplier / base)
1176  */
1177 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1178 {
1179         x *= multiplier;
1180         do_div(x, base);
1181         return (unsigned long)x;
1182 }
1183
1184 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1185                                                 unsigned long highmem,
1186                                                 unsigned long total)
1187 {
1188         unsigned long alloc = __fraction(nr_pages, highmem, total);
1189
1190         return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1191 }
1192 #else /* CONFIG_HIGHMEM */
1193 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1194 {
1195         return 0;
1196 }
1197
1198 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1199                                                 unsigned long highmem,
1200                                                 unsigned long total)
1201 {
1202         return 0;
1203 }
1204 #endif /* CONFIG_HIGHMEM */
1205
1206 /**
1207  * free_unnecessary_pages - Release preallocated pages not needed for the image
1208  */
1209 static void free_unnecessary_pages(void)
1210 {
1211         unsigned long save, to_free_normal, to_free_highmem;
1212
1213         save = count_data_pages();
1214         if (alloc_normal >= save) {
1215                 to_free_normal = alloc_normal - save;
1216                 save = 0;
1217         } else {
1218                 to_free_normal = 0;
1219                 save -= alloc_normal;
1220         }
1221         save += count_highmem_pages();
1222         if (alloc_highmem >= save) {
1223                 to_free_highmem = alloc_highmem - save;
1224         } else {
1225                 to_free_highmem = 0;
1226                 save -= alloc_highmem;
1227                 if (to_free_normal > save)
1228                         to_free_normal -= save;
1229                 else
1230                         to_free_normal = 0;
1231         }
1232
1233         memory_bm_position_reset(&copy_bm);
1234
1235         while (to_free_normal > 0 || to_free_highmem > 0) {
1236                 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1237                 struct page *page = pfn_to_page(pfn);
1238
1239                 if (PageHighMem(page)) {
1240                         if (!to_free_highmem)
1241                                 continue;
1242                         to_free_highmem--;
1243                         alloc_highmem--;
1244                 } else {
1245                         if (!to_free_normal)
1246                                 continue;
1247                         to_free_normal--;
1248                         alloc_normal--;
1249                 }
1250                 memory_bm_clear_bit(&copy_bm, pfn);
1251                 swsusp_unset_page_forbidden(page);
1252                 swsusp_unset_page_free(page);
1253                 __free_page(page);
1254         }
1255 }
1256
1257 /**
1258  * minimum_image_size - Estimate the minimum acceptable size of an image
1259  * @saveable: Number of saveable pages in the system.
1260  *
1261  * We want to avoid attempting to free too much memory too hard, so estimate the
1262  * minimum acceptable size of a hibernation image to use as the lower limit for
1263  * preallocating memory.
1264  *
1265  * We assume that the minimum image size should be proportional to
1266  *
1267  * [number of saveable pages] - [number of pages that can be freed in theory]
1268  *
1269  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1270  * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1271  * minus mapped file pages.
1272  */
1273 static unsigned long minimum_image_size(unsigned long saveable)
1274 {
1275         unsigned long size;
1276
1277         size = global_page_state(NR_SLAB_RECLAIMABLE)
1278                 + global_page_state(NR_ACTIVE_ANON)
1279                 + global_page_state(NR_INACTIVE_ANON)
1280                 + global_page_state(NR_ACTIVE_FILE)
1281                 + global_page_state(NR_INACTIVE_FILE)
1282                 - global_page_state(NR_FILE_MAPPED);
1283
1284         return saveable <= size ? 0 : saveable - size;
1285 }
1286
1287 /**
1288  * hibernate_preallocate_memory - Preallocate memory for hibernation image
1289  *
1290  * To create a hibernation image it is necessary to make a copy of every page
1291  * frame in use.  We also need a number of page frames to be free during
1292  * hibernation for allocations made while saving the image and for device
1293  * drivers, in case they need to allocate memory from their hibernation
1294  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1295  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1296  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1297  * total number of available page frames and allocate at least
1298  *
1299  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1300  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1301  *
1302  * of them, which corresponds to the maximum size of a hibernation image.
1303  *
1304  * If image_size is set below the number following from the above formula,
1305  * the preallocation of memory is continued until the total number of saveable
1306  * pages in the system is below the requested image size or the minimum
1307  * acceptable image size returned by minimum_image_size(), whichever is greater.
1308  */
1309 int hibernate_preallocate_memory(void)
1310 {
1311         struct zone *zone;
1312         unsigned long saveable, size, max_size, count, highmem, pages = 0;
1313         unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1314         struct timeval start, stop;
1315         int error;
1316
1317         printk(KERN_INFO "PM: Preallocating image memory... ");
1318         do_gettimeofday(&start);
1319
1320         error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1321         if (error)
1322                 goto err_out;
1323
1324         error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1325         if (error)
1326                 goto err_out;
1327
1328         alloc_normal = 0;
1329         alloc_highmem = 0;
1330
1331         /* Count the number of saveable data pages. */
1332         save_highmem = count_highmem_pages();
1333         saveable = count_data_pages();
1334
1335         /*
1336          * Compute the total number of page frames we can use (count) and the
1337          * number of pages needed for image metadata (size).
1338          */
1339         count = saveable;
1340         saveable += save_highmem;
1341         highmem = save_highmem;
1342         size = 0;
1343         for_each_populated_zone(zone) {
1344                 size += snapshot_additional_pages(zone);
1345                 if (is_highmem(zone))
1346                         highmem += zone_page_state(zone, NR_FREE_PAGES);
1347                 else
1348                         count += zone_page_state(zone, NR_FREE_PAGES);
1349         }
1350         avail_normal = count;
1351         count += highmem;
1352         count -= totalreserve_pages;
1353
1354         /* Add number of pages required for page keys (s390 only). */
1355         size += page_key_additional_pages(saveable);
1356
1357         /* Compute the maximum number of saveable pages to leave in memory. */
1358         max_size = (count - (size + PAGES_FOR_IO)) / 2
1359                         - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1360         /* Compute the desired number of image pages specified by image_size. */
1361         size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1362         if (size > max_size)
1363                 size = max_size;
1364         /*
1365          * If the desired number of image pages is at least as large as the
1366          * current number of saveable pages in memory, allocate page frames for
1367          * the image and we're done.
1368          */
1369         if (size >= saveable) {
1370                 pages = preallocate_image_highmem(save_highmem);
1371                 pages += preallocate_image_memory(saveable - pages, avail_normal);
1372                 goto out;
1373         }
1374
1375         /* Estimate the minimum size of the image. */
1376         pages = minimum_image_size(saveable);
1377         /*
1378          * To avoid excessive pressure on the normal zone, leave room in it to
1379          * accommodate an image of the minimum size (unless it's already too
1380          * small, in which case don't preallocate pages from it at all).
1381          */
1382         if (avail_normal > pages)
1383                 avail_normal -= pages;
1384         else
1385                 avail_normal = 0;
1386         if (size < pages)
1387                 size = min_t(unsigned long, pages, max_size);
1388
1389         /*
1390          * Let the memory management subsystem know that we're going to need a
1391          * large number of page frames to allocate and make it free some memory.
1392          * NOTE: If this is not done, performance will be hurt badly in some
1393          * test cases.
1394          */
1395         shrink_all_memory(saveable - size);
1396
1397         /*
1398          * The number of saveable pages in memory was too high, so apply some
1399          * pressure to decrease it.  First, make room for the largest possible
1400          * image and fail if that doesn't work.  Next, try to decrease the size
1401          * of the image as much as indicated by 'size' using allocations from
1402          * highmem and non-highmem zones separately.
1403          */
1404         pages_highmem = preallocate_image_highmem(highmem / 2);
1405         alloc = (count - max_size) - pages_highmem;
1406         pages = preallocate_image_memory(alloc, avail_normal);
1407         if (pages < alloc) {
1408                 /* We have exhausted non-highmem pages, try highmem. */
1409                 alloc -= pages;
1410                 pages += pages_highmem;
1411                 pages_highmem = preallocate_image_highmem(alloc);
1412                 if (pages_highmem < alloc)
1413                         goto err_out;
1414                 pages += pages_highmem;
1415                 /*
1416                  * size is the desired number of saveable pages to leave in
1417                  * memory, so try to preallocate (all memory - size) pages.
1418                  */
1419                 alloc = (count - pages) - size;
1420                 pages += preallocate_image_highmem(alloc);
1421         } else {
1422                 /*
1423                  * There are approximately max_size saveable pages at this point
1424                  * and we want to reduce this number down to size.
1425                  */
1426                 alloc = max_size - size;
1427                 size = preallocate_highmem_fraction(alloc, highmem, count);
1428                 pages_highmem += size;
1429                 alloc -= size;
1430                 size = preallocate_image_memory(alloc, avail_normal);
1431                 pages_highmem += preallocate_image_highmem(alloc - size);
1432                 pages += pages_highmem + size;
1433         }
1434
1435         /*
1436          * We only need as many page frames for the image as there are saveable
1437          * pages in memory, but we have allocated more.  Release the excessive
1438          * ones now.
1439          */
1440         free_unnecessary_pages();
1441
1442  out:
1443         do_gettimeofday(&stop);
1444         printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1445         swsusp_show_speed(&start, &stop, pages, "Allocated");
1446
1447         return 0;
1448
1449  err_out:
1450         printk(KERN_CONT "\n");
1451         swsusp_free();
1452         return -ENOMEM;
1453 }
1454
1455 #ifdef CONFIG_HIGHMEM
1456 /**
1457   *     count_pages_for_highmem - compute the number of non-highmem pages
1458   *     that will be necessary for creating copies of highmem pages.
1459   */
1460
1461 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1462 {
1463         unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1464
1465         if (free_highmem >= nr_highmem)
1466                 nr_highmem = 0;
1467         else
1468                 nr_highmem -= free_highmem;
1469
1470         return nr_highmem;
1471 }
1472 #else
1473 static unsigned int
1474 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1475 #endif /* CONFIG_HIGHMEM */
1476
1477 /**
1478  *      enough_free_mem - Make sure we have enough free memory for the
1479  *      snapshot image.
1480  */
1481
1482 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1483 {
1484         struct zone *zone;
1485         unsigned int free = alloc_normal;
1486
1487         for_each_populated_zone(zone)
1488                 if (!is_highmem(zone))
1489                         free += zone_page_state(zone, NR_FREE_PAGES);
1490
1491         nr_pages += count_pages_for_highmem(nr_highmem);
1492         pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1493                 nr_pages, PAGES_FOR_IO, free);
1494
1495         return free > nr_pages + PAGES_FOR_IO;
1496 }
1497
1498 #ifdef CONFIG_HIGHMEM
1499 /**
1500  *      get_highmem_buffer - if there are some highmem pages in the suspend
1501  *      image, we may need the buffer to copy them and/or load their data.
1502  */
1503
1504 static inline int get_highmem_buffer(int safe_needed)
1505 {
1506         buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1507         return buffer ? 0 : -ENOMEM;
1508 }
1509
1510 /**
1511  *      alloc_highmem_image_pages - allocate some highmem pages for the image.
1512  *      Try to allocate as many pages as needed, but if the number of free
1513  *      highmem pages is lesser than that, allocate them all.
1514  */
1515
1516 static inline unsigned int
1517 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1518 {
1519         unsigned int to_alloc = count_free_highmem_pages();
1520
1521         if (to_alloc > nr_highmem)
1522                 to_alloc = nr_highmem;
1523
1524         nr_highmem -= to_alloc;
1525         while (to_alloc-- > 0) {
1526                 struct page *page;
1527
1528                 page = alloc_image_page(__GFP_HIGHMEM);
1529                 memory_bm_set_bit(bm, page_to_pfn(page));
1530         }
1531         return nr_highmem;
1532 }
1533 #else
1534 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1535
1536 static inline unsigned int
1537 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1538 #endif /* CONFIG_HIGHMEM */
1539
1540 /**
1541  *      swsusp_alloc - allocate memory for the suspend image
1542  *
1543  *      We first try to allocate as many highmem pages as there are
1544  *      saveable highmem pages in the system.  If that fails, we allocate
1545  *      non-highmem pages for the copies of the remaining highmem ones.
1546  *
1547  *      In this approach it is likely that the copies of highmem pages will
1548  *      also be located in the high memory, because of the way in which
1549  *      copy_data_pages() works.
1550  */
1551
1552 static int
1553 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1554                 unsigned int nr_pages, unsigned int nr_highmem)
1555 {
1556         if (nr_highmem > 0) {
1557                 if (get_highmem_buffer(PG_ANY))
1558                         goto err_out;
1559                 if (nr_highmem > alloc_highmem) {
1560                         nr_highmem -= alloc_highmem;
1561                         nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1562                 }
1563         }
1564         if (nr_pages > alloc_normal) {
1565                 nr_pages -= alloc_normal;
1566                 while (nr_pages-- > 0) {
1567                         struct page *page;
1568
1569                         page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1570                         if (!page)
1571                                 goto err_out;
1572                         memory_bm_set_bit(copy_bm, page_to_pfn(page));
1573                 }
1574         }
1575
1576         return 0;
1577
1578  err_out:
1579         swsusp_free();
1580         return -ENOMEM;
1581 }
1582
1583 asmlinkage int swsusp_save(void)
1584 {
1585         unsigned int nr_pages, nr_highmem;
1586
1587         printk(KERN_INFO "PM: Creating hibernation image:\n");
1588
1589         drain_local_pages(NULL);
1590         nr_pages = count_data_pages();
1591         nr_highmem = count_highmem_pages();
1592         printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1593
1594         if (!enough_free_mem(nr_pages, nr_highmem)) {
1595                 printk(KERN_ERR "PM: Not enough free memory\n");
1596                 return -ENOMEM;
1597         }
1598
1599         if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1600                 printk(KERN_ERR "PM: Memory allocation failed\n");
1601                 return -ENOMEM;
1602         }
1603
1604         /* During allocating of suspend pagedir, new cold pages may appear.
1605          * Kill them.
1606          */
1607         drain_local_pages(NULL);
1608         copy_data_pages(&copy_bm, &orig_bm);
1609
1610         /*
1611          * End of critical section. From now on, we can write to memory,
1612          * but we should not touch disk. This specially means we must _not_
1613          * touch swap space! Except we must write out our image of course.
1614          */
1615
1616         nr_pages += nr_highmem;
1617         nr_copy_pages = nr_pages;
1618         nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1619
1620         printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1621                 nr_pages);
1622
1623         return 0;
1624 }
1625
1626 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1627 static int init_header_complete(struct swsusp_info *info)
1628 {
1629         memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1630         info->version_code = LINUX_VERSION_CODE;
1631         return 0;
1632 }
1633
1634 static char *check_image_kernel(struct swsusp_info *info)
1635 {
1636         if (info->version_code != LINUX_VERSION_CODE)
1637                 return "kernel version";
1638         if (strcmp(info->uts.sysname,init_utsname()->sysname))
1639                 return "system type";
1640         if (strcmp(info->uts.release,init_utsname()->release))
1641                 return "kernel release";
1642         if (strcmp(info->uts.version,init_utsname()->version))
1643                 return "version";
1644         if (strcmp(info->uts.machine,init_utsname()->machine))
1645                 return "machine";
1646         return NULL;
1647 }
1648 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1649
1650 unsigned long snapshot_get_image_size(void)
1651 {
1652         return nr_copy_pages + nr_meta_pages + 1;
1653 }
1654
1655 static int init_header(struct swsusp_info *info)
1656 {
1657         memset(info, 0, sizeof(struct swsusp_info));
1658         info->num_physpages = get_num_physpages();
1659         info->image_pages = nr_copy_pages;
1660         info->pages = snapshot_get_image_size();
1661         info->size = info->pages;
1662         info->size <<= PAGE_SHIFT;
1663         return init_header_complete(info);
1664 }
1665
1666 /**
1667  *      pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1668  *      are stored in the array @buf[] (1 page at a time)
1669  */
1670
1671 static inline void
1672 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1673 {
1674         int j;
1675
1676         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1677                 buf[j] = memory_bm_next_pfn(bm);
1678                 if (unlikely(buf[j] == BM_END_OF_MAP))
1679                         break;
1680                 /* Save page key for data page (s390 only). */
1681                 page_key_read(buf + j);
1682         }
1683 }
1684
1685 /**
1686  *      snapshot_read_next - used for reading the system memory snapshot.
1687  *
1688  *      On the first call to it @handle should point to a zeroed
1689  *      snapshot_handle structure.  The structure gets updated and a pointer
1690  *      to it should be passed to this function every next time.
1691  *
1692  *      On success the function returns a positive number.  Then, the caller
1693  *      is allowed to read up to the returned number of bytes from the memory
1694  *      location computed by the data_of() macro.
1695  *
1696  *      The function returns 0 to indicate the end of data stream condition,
1697  *      and a negative number is returned on error.  In such cases the
1698  *      structure pointed to by @handle is not updated and should not be used
1699  *      any more.
1700  */
1701
1702 int snapshot_read_next(struct snapshot_handle *handle)
1703 {
1704         if (handle->cur > nr_meta_pages + nr_copy_pages)
1705                 return 0;
1706
1707         if (!buffer) {
1708                 /* This makes the buffer be freed by swsusp_free() */
1709                 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1710                 if (!buffer)
1711                         return -ENOMEM;
1712         }
1713         if (!handle->cur) {
1714                 int error;
1715
1716                 error = init_header((struct swsusp_info *)buffer);
1717                 if (error)
1718                         return error;
1719                 handle->buffer = buffer;
1720                 memory_bm_position_reset(&orig_bm);
1721                 memory_bm_position_reset(&copy_bm);
1722         } else if (handle->cur <= nr_meta_pages) {
1723                 clear_page(buffer);
1724                 pack_pfns(buffer, &orig_bm);
1725         } else {
1726                 struct page *page;
1727
1728                 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1729                 if (PageHighMem(page)) {
1730                         /* Highmem pages are copied to the buffer,
1731                          * because we can't return with a kmapped
1732                          * highmem page (we may not be called again).
1733                          */
1734                         void *kaddr;
1735
1736                         kaddr = kmap_atomic(page);
1737                         copy_page(buffer, kaddr);
1738                         kunmap_atomic(kaddr);
1739                         handle->buffer = buffer;
1740                 } else {
1741                         handle->buffer = page_address(page);
1742                 }
1743         }
1744         handle->cur++;
1745         return PAGE_SIZE;
1746 }
1747
1748 /**
1749  *      mark_unsafe_pages - mark the pages that cannot be used for storing
1750  *      the image during resume, because they conflict with the pages that
1751  *      had been used before suspend
1752  */
1753
1754 static int mark_unsafe_pages(struct memory_bitmap *bm)
1755 {
1756         struct zone *zone;
1757         unsigned long pfn, max_zone_pfn;
1758
1759         /* Clear page flags */
1760         for_each_populated_zone(zone) {
1761                 max_zone_pfn = zone_end_pfn(zone);
1762                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1763                         if (pfn_valid(pfn))
1764                                 swsusp_unset_page_free(pfn_to_page(pfn));
1765         }
1766
1767         /* Mark pages that correspond to the "original" pfns as "unsafe" */
1768         memory_bm_position_reset(bm);
1769         do {
1770                 pfn = memory_bm_next_pfn(bm);
1771                 if (likely(pfn != BM_END_OF_MAP)) {
1772                         if (likely(pfn_valid(pfn)))
1773                                 swsusp_set_page_free(pfn_to_page(pfn));
1774                         else
1775                                 return -EFAULT;
1776                 }
1777         } while (pfn != BM_END_OF_MAP);
1778
1779         allocated_unsafe_pages = 0;
1780
1781         return 0;
1782 }
1783
1784 static void
1785 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1786 {
1787         unsigned long pfn;
1788
1789         memory_bm_position_reset(src);
1790         pfn = memory_bm_next_pfn(src);
1791         while (pfn != BM_END_OF_MAP) {
1792                 memory_bm_set_bit(dst, pfn);
1793                 pfn = memory_bm_next_pfn(src);
1794         }
1795 }
1796
1797 static int check_header(struct swsusp_info *info)
1798 {
1799         char *reason;
1800
1801         reason = check_image_kernel(info);
1802         if (!reason && info->num_physpages != get_num_physpages())
1803                 reason = "memory size";
1804         if (reason) {
1805                 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1806                 return -EPERM;
1807         }
1808         return 0;
1809 }
1810
1811 /**
1812  *      load header - check the image header and copy data from it
1813  */
1814
1815 static int
1816 load_header(struct swsusp_info *info)
1817 {
1818         int error;
1819
1820         restore_pblist = NULL;
1821         error = check_header(info);
1822         if (!error) {
1823                 nr_copy_pages = info->image_pages;
1824                 nr_meta_pages = info->pages - info->image_pages - 1;
1825         }
1826         return error;
1827 }
1828
1829 /**
1830  *      unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1831  *      the corresponding bit in the memory bitmap @bm
1832  */
1833 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1834 {
1835         int j;
1836
1837         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1838                 if (unlikely(buf[j] == BM_END_OF_MAP))
1839                         break;
1840
1841                 /* Extract and buffer page key for data page (s390 only). */
1842                 page_key_memorize(buf + j);
1843
1844                 if (memory_bm_pfn_present(bm, buf[j]))
1845                         memory_bm_set_bit(bm, buf[j]);
1846                 else
1847                         return -EFAULT;
1848         }
1849
1850         return 0;
1851 }
1852
1853 /* List of "safe" pages that may be used to store data loaded from the suspend
1854  * image
1855  */
1856 static struct linked_page *safe_pages_list;
1857
1858 #ifdef CONFIG_HIGHMEM
1859 /* struct highmem_pbe is used for creating the list of highmem pages that
1860  * should be restored atomically during the resume from disk, because the page
1861  * frames they have occupied before the suspend are in use.
1862  */
1863 struct highmem_pbe {
1864         struct page *copy_page; /* data is here now */
1865         struct page *orig_page; /* data was here before the suspend */
1866         struct highmem_pbe *next;
1867 };
1868
1869 /* List of highmem PBEs needed for restoring the highmem pages that were
1870  * allocated before the suspend and included in the suspend image, but have
1871  * also been allocated by the "resume" kernel, so their contents cannot be
1872  * written directly to their "original" page frames.
1873  */
1874 static struct highmem_pbe *highmem_pblist;
1875
1876 /**
1877  *      count_highmem_image_pages - compute the number of highmem pages in the
1878  *      suspend image.  The bits in the memory bitmap @bm that correspond to the
1879  *      image pages are assumed to be set.
1880  */
1881
1882 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1883 {
1884         unsigned long pfn;
1885         unsigned int cnt = 0;
1886
1887         memory_bm_position_reset(bm);
1888         pfn = memory_bm_next_pfn(bm);
1889         while (pfn != BM_END_OF_MAP) {
1890                 if (PageHighMem(pfn_to_page(pfn)))
1891                         cnt++;
1892
1893                 pfn = memory_bm_next_pfn(bm);
1894         }
1895         return cnt;
1896 }
1897
1898 /**
1899  *      prepare_highmem_image - try to allocate as many highmem pages as
1900  *      there are highmem image pages (@nr_highmem_p points to the variable
1901  *      containing the number of highmem image pages).  The pages that are
1902  *      "safe" (ie. will not be overwritten when the suspend image is
1903  *      restored) have the corresponding bits set in @bm (it must be
1904  *      unitialized).
1905  *
1906  *      NOTE: This function should not be called if there are no highmem
1907  *      image pages.
1908  */
1909
1910 static unsigned int safe_highmem_pages;
1911
1912 static struct memory_bitmap *safe_highmem_bm;
1913
1914 static int
1915 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1916 {
1917         unsigned int to_alloc;
1918
1919         if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1920                 return -ENOMEM;
1921
1922         if (get_highmem_buffer(PG_SAFE))
1923                 return -ENOMEM;
1924
1925         to_alloc = count_free_highmem_pages();
1926         if (to_alloc > *nr_highmem_p)
1927                 to_alloc = *nr_highmem_p;
1928         else
1929                 *nr_highmem_p = to_alloc;
1930
1931         safe_highmem_pages = 0;
1932         while (to_alloc-- > 0) {
1933                 struct page *page;
1934
1935                 page = alloc_page(__GFP_HIGHMEM);
1936                 if (!swsusp_page_is_free(page)) {
1937                         /* The page is "safe", set its bit the bitmap */
1938                         memory_bm_set_bit(bm, page_to_pfn(page));
1939                         safe_highmem_pages++;
1940                 }
1941                 /* Mark the page as allocated */
1942                 swsusp_set_page_forbidden(page);
1943                 swsusp_set_page_free(page);
1944         }
1945         memory_bm_position_reset(bm);
1946         safe_highmem_bm = bm;
1947         return 0;
1948 }
1949
1950 /**
1951  *      get_highmem_page_buffer - for given highmem image page find the buffer
1952  *      that suspend_write_next() should set for its caller to write to.
1953  *
1954  *      If the page is to be saved to its "original" page frame or a copy of
1955  *      the page is to be made in the highmem, @buffer is returned.  Otherwise,
1956  *      the copy of the page is to be made in normal memory, so the address of
1957  *      the copy is returned.
1958  *
1959  *      If @buffer is returned, the caller of suspend_write_next() will write
1960  *      the page's contents to @buffer, so they will have to be copied to the
1961  *      right location on the next call to suspend_write_next() and it is done
1962  *      with the help of copy_last_highmem_page().  For this purpose, if
1963  *      @buffer is returned, @last_highmem page is set to the page to which
1964  *      the data will have to be copied from @buffer.
1965  */
1966
1967 static struct page *last_highmem_page;
1968
1969 static void *
1970 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1971 {
1972         struct highmem_pbe *pbe;
1973         void *kaddr;
1974
1975         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1976                 /* We have allocated the "original" page frame and we can
1977                  * use it directly to store the loaded page.
1978                  */
1979                 last_highmem_page = page;
1980                 return buffer;
1981         }
1982         /* The "original" page frame has not been allocated and we have to
1983          * use a "safe" page frame to store the loaded page.
1984          */
1985         pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1986         if (!pbe) {
1987                 swsusp_free();
1988                 return ERR_PTR(-ENOMEM);
1989         }
1990         pbe->orig_page = page;
1991         if (safe_highmem_pages > 0) {
1992                 struct page *tmp;
1993
1994                 /* Copy of the page will be stored in high memory */
1995                 kaddr = buffer;
1996                 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1997                 safe_highmem_pages--;
1998                 last_highmem_page = tmp;
1999                 pbe->copy_page = tmp;
2000         } else {
2001                 /* Copy of the page will be stored in normal memory */
2002                 kaddr = safe_pages_list;
2003                 safe_pages_list = safe_pages_list->next;
2004                 pbe->copy_page = virt_to_page(kaddr);
2005         }
2006         pbe->next = highmem_pblist;
2007         highmem_pblist = pbe;
2008         return kaddr;
2009 }
2010
2011 /**
2012  *      copy_last_highmem_page - copy the contents of a highmem image from
2013  *      @buffer, where the caller of snapshot_write_next() has place them,
2014  *      to the right location represented by @last_highmem_page .
2015  */
2016
2017 static void copy_last_highmem_page(void)
2018 {
2019         if (last_highmem_page) {
2020                 void *dst;
2021
2022                 dst = kmap_atomic(last_highmem_page);
2023                 copy_page(dst, buffer);
2024                 kunmap_atomic(dst);
2025                 last_highmem_page = NULL;
2026         }
2027 }
2028
2029 static inline int last_highmem_page_copied(void)
2030 {
2031         return !last_highmem_page;
2032 }
2033
2034 static inline void free_highmem_data(void)
2035 {
2036         if (safe_highmem_bm)
2037                 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2038
2039         if (buffer)
2040                 free_image_page(buffer, PG_UNSAFE_CLEAR);
2041 }
2042 #else
2043 static inline int get_safe_write_buffer(void) { return 0; }
2044
2045 static unsigned int
2046 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2047
2048 static inline int
2049 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2050 {
2051         return 0;
2052 }
2053
2054 static inline void *
2055 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2056 {
2057         return ERR_PTR(-EINVAL);
2058 }
2059
2060 static inline void copy_last_highmem_page(void) {}
2061 static inline int last_highmem_page_copied(void) { return 1; }
2062 static inline void free_highmem_data(void) {}
2063 #endif /* CONFIG_HIGHMEM */
2064
2065 /**
2066  *      prepare_image - use the memory bitmap @bm to mark the pages that will
2067  *      be overwritten in the process of restoring the system memory state
2068  *      from the suspend image ("unsafe" pages) and allocate memory for the
2069  *      image.
2070  *
2071  *      The idea is to allocate a new memory bitmap first and then allocate
2072  *      as many pages as needed for the image data, but not to assign these
2073  *      pages to specific tasks initially.  Instead, we just mark them as
2074  *      allocated and create a lists of "safe" pages that will be used
2075  *      later.  On systems with high memory a list of "safe" highmem pages is
2076  *      also created.
2077  */
2078
2079 #define PBES_PER_LINKED_PAGE    (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2080
2081 static int
2082 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2083 {
2084         unsigned int nr_pages, nr_highmem;
2085         struct linked_page *sp_list, *lp;
2086         int error;
2087
2088         /* If there is no highmem, the buffer will not be necessary */
2089         free_image_page(buffer, PG_UNSAFE_CLEAR);
2090         buffer = NULL;
2091
2092         nr_highmem = count_highmem_image_pages(bm);
2093         error = mark_unsafe_pages(bm);
2094         if (error)
2095                 goto Free;
2096
2097         error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2098         if (error)
2099                 goto Free;
2100
2101         duplicate_memory_bitmap(new_bm, bm);
2102         memory_bm_free(bm, PG_UNSAFE_KEEP);
2103         if (nr_highmem > 0) {
2104                 error = prepare_highmem_image(bm, &nr_highmem);
2105                 if (error)
2106                         goto Free;
2107         }
2108         /* Reserve some safe pages for potential later use.
2109          *
2110          * NOTE: This way we make sure there will be enough safe pages for the
2111          * chain_alloc() in get_buffer().  It is a bit wasteful, but
2112          * nr_copy_pages cannot be greater than 50% of the memory anyway.
2113          */
2114         sp_list = NULL;
2115         /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2116         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2117         nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2118         while (nr_pages > 0) {
2119                 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2120                 if (!lp) {
2121                         error = -ENOMEM;
2122                         goto Free;
2123                 }
2124                 lp->next = sp_list;
2125                 sp_list = lp;
2126                 nr_pages--;
2127         }
2128         /* Preallocate memory for the image */
2129         safe_pages_list = NULL;
2130         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2131         while (nr_pages > 0) {
2132                 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2133                 if (!lp) {
2134                         error = -ENOMEM;
2135                         goto Free;
2136                 }
2137                 if (!swsusp_page_is_free(virt_to_page(lp))) {
2138                         /* The page is "safe", add it to the list */
2139                         lp->next = safe_pages_list;
2140                         safe_pages_list = lp;
2141                 }
2142                 /* Mark the page as allocated */
2143                 swsusp_set_page_forbidden(virt_to_page(lp));
2144                 swsusp_set_page_free(virt_to_page(lp));
2145                 nr_pages--;
2146         }
2147         /* Free the reserved safe pages so that chain_alloc() can use them */
2148         while (sp_list) {
2149                 lp = sp_list->next;
2150                 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2151                 sp_list = lp;
2152         }
2153         return 0;
2154
2155  Free:
2156         swsusp_free();
2157         return error;
2158 }
2159
2160 /**
2161  *      get_buffer - compute the address that snapshot_write_next() should
2162  *      set for its caller to write to.
2163  */
2164
2165 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2166 {
2167         struct pbe *pbe;
2168         struct page *page;
2169         unsigned long pfn = memory_bm_next_pfn(bm);
2170
2171         if (pfn == BM_END_OF_MAP)
2172                 return ERR_PTR(-EFAULT);
2173
2174         page = pfn_to_page(pfn);
2175         if (PageHighMem(page))
2176                 return get_highmem_page_buffer(page, ca);
2177
2178         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2179                 /* We have allocated the "original" page frame and we can
2180                  * use it directly to store the loaded page.
2181                  */
2182                 return page_address(page);
2183
2184         /* The "original" page frame has not been allocated and we have to
2185          * use a "safe" page frame to store the loaded page.
2186          */
2187         pbe = chain_alloc(ca, sizeof(struct pbe));
2188         if (!pbe) {
2189                 swsusp_free();
2190                 return ERR_PTR(-ENOMEM);
2191         }
2192         pbe->orig_address = page_address(page);
2193         pbe->address = safe_pages_list;
2194         safe_pages_list = safe_pages_list->next;
2195         pbe->next = restore_pblist;
2196         restore_pblist = pbe;
2197         return pbe->address;
2198 }
2199
2200 /**
2201  *      snapshot_write_next - used for writing the system memory snapshot.
2202  *
2203  *      On the first call to it @handle should point to a zeroed
2204  *      snapshot_handle structure.  The structure gets updated and a pointer
2205  *      to it should be passed to this function every next time.
2206  *
2207  *      On success the function returns a positive number.  Then, the caller
2208  *      is allowed to write up to the returned number of bytes to the memory
2209  *      location computed by the data_of() macro.
2210  *
2211  *      The function returns 0 to indicate the "end of file" condition,
2212  *      and a negative number is returned on error.  In such cases the
2213  *      structure pointed to by @handle is not updated and should not be used
2214  *      any more.
2215  */
2216
2217 int snapshot_write_next(struct snapshot_handle *handle)
2218 {
2219         static struct chain_allocator ca;
2220         int error = 0;
2221
2222         /* Check if we have already loaded the entire image */
2223         if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2224                 return 0;
2225
2226         handle->sync_read = 1;
2227
2228         if (!handle->cur) {
2229                 if (!buffer)
2230                         /* This makes the buffer be freed by swsusp_free() */
2231                         buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2232
2233                 if (!buffer)
2234                         return -ENOMEM;
2235
2236                 handle->buffer = buffer;
2237         } else if (handle->cur == 1) {
2238                 error = load_header(buffer);
2239                 if (error)
2240                         return error;
2241
2242                 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2243                 if (error)
2244                         return error;
2245
2246                 /* Allocate buffer for page keys. */
2247                 error = page_key_alloc(nr_copy_pages);
2248                 if (error)
2249                         return error;
2250
2251         } else if (handle->cur <= nr_meta_pages + 1) {
2252                 error = unpack_orig_pfns(buffer, &copy_bm);
2253                 if (error)
2254                         return error;
2255
2256                 if (handle->cur == nr_meta_pages + 1) {
2257                         error = prepare_image(&orig_bm, &copy_bm);
2258                         if (error)
2259                                 return error;
2260
2261                         chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2262                         memory_bm_position_reset(&orig_bm);
2263                         restore_pblist = NULL;
2264                         handle->buffer = get_buffer(&orig_bm, &ca);
2265                         handle->sync_read = 0;
2266                         if (IS_ERR(handle->buffer))
2267                                 return PTR_ERR(handle->buffer);
2268                 }
2269         } else {
2270                 copy_last_highmem_page();
2271                 /* Restore page key for data page (s390 only). */
2272                 page_key_write(handle->buffer);
2273                 handle->buffer = get_buffer(&orig_bm, &ca);
2274                 if (IS_ERR(handle->buffer))
2275                         return PTR_ERR(handle->buffer);
2276                 if (handle->buffer != buffer)
2277                         handle->sync_read = 0;
2278         }
2279         handle->cur++;
2280         return PAGE_SIZE;
2281 }
2282
2283 /**
2284  *      snapshot_write_finalize - must be called after the last call to
2285  *      snapshot_write_next() in case the last page in the image happens
2286  *      to be a highmem page and its contents should be stored in the
2287  *      highmem.  Additionally, it releases the memory that will not be
2288  *      used any more.
2289  */
2290
2291 void snapshot_write_finalize(struct snapshot_handle *handle)
2292 {
2293         copy_last_highmem_page();
2294         /* Restore page key for data page (s390 only). */
2295         page_key_write(handle->buffer);
2296         page_key_free();
2297         /* Free only if we have loaded the image entirely */
2298         if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2299                 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2300                 free_highmem_data();
2301         }
2302 }
2303
2304 int snapshot_image_loaded(struct snapshot_handle *handle)
2305 {
2306         return !(!nr_copy_pages || !last_highmem_page_copied() ||
2307                         handle->cur <= nr_meta_pages + nr_copy_pages);
2308 }
2309
2310 #ifdef CONFIG_HIGHMEM
2311 /* Assumes that @buf is ready and points to a "safe" page */
2312 static inline void
2313 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2314 {
2315         void *kaddr1, *kaddr2;
2316
2317         kaddr1 = kmap_atomic(p1);
2318         kaddr2 = kmap_atomic(p2);
2319         copy_page(buf, kaddr1);
2320         copy_page(kaddr1, kaddr2);
2321         copy_page(kaddr2, buf);
2322         kunmap_atomic(kaddr2);
2323         kunmap_atomic(kaddr1);
2324 }
2325
2326 /**
2327  *      restore_highmem - for each highmem page that was allocated before
2328  *      the suspend and included in the suspend image, and also has been
2329  *      allocated by the "resume" kernel swap its current (ie. "before
2330  *      resume") contents with the previous (ie. "before suspend") one.
2331  *
2332  *      If the resume eventually fails, we can call this function once
2333  *      again and restore the "before resume" highmem state.
2334  */
2335
2336 int restore_highmem(void)
2337 {
2338         struct highmem_pbe *pbe = highmem_pblist;
2339         void *buf;
2340
2341         if (!pbe)
2342                 return 0;
2343
2344         buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2345         if (!buf)
2346                 return -ENOMEM;
2347
2348         while (pbe) {
2349                 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2350                 pbe = pbe->next;
2351         }
2352         free_image_page(buf, PG_UNSAFE_CLEAR);
2353         return 0;
2354 }
2355 #endif /* CONFIG_HIGHMEM */