Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / kernel / power / swap.c
1 /*
2  * linux/kernel/power/swap.c
3  *
4  * This file provides functions for reading the suspend image from
5  * and writing it to a swap partition.
6  *
7  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
10  *
11  * This file is released under the GPLv2.
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33 #include <linux/ktime.h>
34
35 #include "power.h"
36
37 #define HIBERNATE_SIG   "S1SUSPEND"
38
39 /*
40  * When reading an {un,}compressed image, we may restore pages in place,
41  * in which case some architectures need these pages cleaning before they
42  * can be executed. We don't know which pages these may be, so clean the lot.
43  */
44 static bool clean_pages_on_read;
45 static bool clean_pages_on_decompress;
46
47 /*
48  *      The swap map is a data structure used for keeping track of each page
49  *      written to a swap partition.  It consists of many swap_map_page
50  *      structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
51  *      These structures are stored on the swap and linked together with the
52  *      help of the .next_swap member.
53  *
54  *      The swap map is created during suspend.  The swap map pages are
55  *      allocated and populated one at a time, so we only need one memory
56  *      page to set up the entire structure.
57  *
58  *      During resume we pick up all swap_map_page structures into a list.
59  */
60
61 #define MAP_PAGE_ENTRIES        (PAGE_SIZE / sizeof(sector_t) - 1)
62
63 /*
64  * Number of free pages that are not high.
65  */
66 static inline unsigned long low_free_pages(void)
67 {
68         return nr_free_pages() - nr_free_highpages();
69 }
70
71 /*
72  * Number of pages required to be kept free while writing the image. Always
73  * half of all available low pages before the writing starts.
74  */
75 static inline unsigned long reqd_free_pages(void)
76 {
77         return low_free_pages() / 2;
78 }
79
80 struct swap_map_page {
81         sector_t entries[MAP_PAGE_ENTRIES];
82         sector_t next_swap;
83 };
84
85 struct swap_map_page_list {
86         struct swap_map_page *map;
87         struct swap_map_page_list *next;
88 };
89
90 /**
91  *      The swap_map_handle structure is used for handling swap in
92  *      a file-alike way
93  */
94
95 struct swap_map_handle {
96         struct swap_map_page *cur;
97         struct swap_map_page_list *maps;
98         sector_t cur_swap;
99         sector_t first_sector;
100         unsigned int k;
101         unsigned long reqd_free_pages;
102         u32 crc32;
103 };
104
105 struct swsusp_header {
106         char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
107                       sizeof(u32)];
108         u32     crc32;
109         sector_t image;
110         unsigned int flags;     /* Flags to pass to the "boot" kernel */
111         char    orig_sig[10];
112         char    sig[10];
113 } __packed;
114
115 static struct swsusp_header *swsusp_header;
116
117 /**
118  *      The following functions are used for tracing the allocated
119  *      swap pages, so that they can be freed in case of an error.
120  */
121
122 struct swsusp_extent {
123         struct rb_node node;
124         unsigned long start;
125         unsigned long end;
126 };
127
128 static struct rb_root swsusp_extents = RB_ROOT;
129
130 static int swsusp_extents_insert(unsigned long swap_offset)
131 {
132         struct rb_node **new = &(swsusp_extents.rb_node);
133         struct rb_node *parent = NULL;
134         struct swsusp_extent *ext;
135
136         /* Figure out where to put the new node */
137         while (*new) {
138                 ext = rb_entry(*new, struct swsusp_extent, node);
139                 parent = *new;
140                 if (swap_offset < ext->start) {
141                         /* Try to merge */
142                         if (swap_offset == ext->start - 1) {
143                                 ext->start--;
144                                 return 0;
145                         }
146                         new = &((*new)->rb_left);
147                 } else if (swap_offset > ext->end) {
148                         /* Try to merge */
149                         if (swap_offset == ext->end + 1) {
150                                 ext->end++;
151                                 return 0;
152                         }
153                         new = &((*new)->rb_right);
154                 } else {
155                         /* It already is in the tree */
156                         return -EINVAL;
157                 }
158         }
159         /* Add the new node and rebalance the tree. */
160         ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
161         if (!ext)
162                 return -ENOMEM;
163
164         ext->start = swap_offset;
165         ext->end = swap_offset;
166         rb_link_node(&ext->node, parent, new);
167         rb_insert_color(&ext->node, &swsusp_extents);
168         return 0;
169 }
170
171 /**
172  *      alloc_swapdev_block - allocate a swap page and register that it has
173  *      been allocated, so that it can be freed in case of an error.
174  */
175
176 sector_t alloc_swapdev_block(int swap)
177 {
178         unsigned long offset;
179
180         offset = swp_offset(get_swap_page_of_type(swap));
181         if (offset) {
182                 if (swsusp_extents_insert(offset))
183                         swap_free(swp_entry(swap, offset));
184                 else
185                         return swapdev_block(swap, offset);
186         }
187         return 0;
188 }
189
190 /**
191  *      free_all_swap_pages - free swap pages allocated for saving image data.
192  *      It also frees the extents used to register which swap entries had been
193  *      allocated.
194  */
195
196 void free_all_swap_pages(int swap)
197 {
198         struct rb_node *node;
199
200         while ((node = swsusp_extents.rb_node)) {
201                 struct swsusp_extent *ext;
202                 unsigned long offset;
203
204                 ext = container_of(node, struct swsusp_extent, node);
205                 rb_erase(node, &swsusp_extents);
206                 for (offset = ext->start; offset <= ext->end; offset++)
207                         swap_free(swp_entry(swap, offset));
208
209                 kfree(ext);
210         }
211 }
212
213 int swsusp_swap_in_use(void)
214 {
215         return (swsusp_extents.rb_node != NULL);
216 }
217
218 /*
219  * General things
220  */
221
222 static unsigned short root_swap = 0xffff;
223 static struct block_device *hib_resume_bdev;
224
225 struct hib_bio_batch {
226         atomic_t                count;
227         wait_queue_head_t       wait;
228         int                     error;
229 };
230
231 static void hib_init_batch(struct hib_bio_batch *hb)
232 {
233         atomic_set(&hb->count, 0);
234         init_waitqueue_head(&hb->wait);
235         hb->error = 0;
236 }
237
238 static void hib_end_io(struct bio *bio)
239 {
240         struct hib_bio_batch *hb = bio->bi_private;
241         struct page *page = bio->bi_io_vec[0].bv_page;
242
243         if (bio->bi_error) {
244                 printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
245                                 imajor(bio->bi_bdev->bd_inode),
246                                 iminor(bio->bi_bdev->bd_inode),
247                                 (unsigned long long)bio->bi_iter.bi_sector);
248         }
249
250         if (bio_data_dir(bio) == WRITE)
251                 put_page(page);
252         else if (clean_pages_on_read)
253                 flush_icache_range((unsigned long)page_address(page),
254                                    (unsigned long)page_address(page) + PAGE_SIZE);
255
256         if (bio->bi_error && !hb->error)
257                 hb->error = bio->bi_error;
258         if (atomic_dec_and_test(&hb->count))
259                 wake_up(&hb->wait);
260
261         bio_put(bio);
262 }
263
264 static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
265                 struct hib_bio_batch *hb)
266 {
267         struct page *page = virt_to_page(addr);
268         struct bio *bio;
269         int error = 0;
270
271         bio = bio_alloc(__GFP_RECLAIM | __GFP_HIGH, 1);
272         bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
273         bio->bi_bdev = hib_resume_bdev;
274         bio_set_op_attrs(bio, op, op_flags);
275
276         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
277                 printk(KERN_ERR "PM: Adding page to bio failed at %llu\n",
278                         (unsigned long long)bio->bi_iter.bi_sector);
279                 bio_put(bio);
280                 return -EFAULT;
281         }
282
283         if (hb) {
284                 bio->bi_end_io = hib_end_io;
285                 bio->bi_private = hb;
286                 atomic_inc(&hb->count);
287                 submit_bio(bio);
288         } else {
289                 error = submit_bio_wait(bio);
290                 bio_put(bio);
291         }
292
293         return error;
294 }
295
296 static int hib_wait_io(struct hib_bio_batch *hb)
297 {
298         wait_event(hb->wait, atomic_read(&hb->count) == 0);
299         return hb->error;
300 }
301
302 /*
303  * Saving part
304  */
305
306 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
307 {
308         int error;
309
310         hib_submit_io(REQ_OP_READ, READ_SYNC, swsusp_resume_block,
311                       swsusp_header, NULL);
312         if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
313             !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
314                 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
315                 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
316                 swsusp_header->image = handle->first_sector;
317                 swsusp_header->flags = flags;
318                 if (flags & SF_CRC32_MODE)
319                         swsusp_header->crc32 = handle->crc32;
320                 error = hib_submit_io(REQ_OP_WRITE, WRITE_SYNC,
321                                       swsusp_resume_block, swsusp_header, NULL);
322         } else {
323                 printk(KERN_ERR "PM: Swap header not found!\n");
324                 error = -ENODEV;
325         }
326         return error;
327 }
328
329 /**
330  *      swsusp_swap_check - check if the resume device is a swap device
331  *      and get its index (if so)
332  *
333  *      This is called before saving image
334  */
335 static int swsusp_swap_check(void)
336 {
337         int res;
338
339         res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
340                         &hib_resume_bdev);
341         if (res < 0)
342                 return res;
343
344         root_swap = res;
345         res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
346         if (res)
347                 return res;
348
349         res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
350         if (res < 0)
351                 blkdev_put(hib_resume_bdev, FMODE_WRITE);
352
353         /*
354          * Update the resume device to the one actually used,
355          * so the test_resume mode can use it in case it is
356          * invoked from hibernate() to test the snapshot.
357          */
358         swsusp_resume_device = hib_resume_bdev->bd_dev;
359         return res;
360 }
361
362 /**
363  *      write_page - Write one page to given swap location.
364  *      @buf:           Address we're writing.
365  *      @offset:        Offset of the swap page we're writing to.
366  *      @hb:            bio completion batch
367  */
368
369 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
370 {
371         void *src;
372         int ret;
373
374         if (!offset)
375                 return -ENOSPC;
376
377         if (hb) {
378                 src = (void *)__get_free_page(__GFP_RECLAIM | __GFP_NOWARN |
379                                               __GFP_NORETRY);
380                 if (src) {
381                         copy_page(src, buf);
382                 } else {
383                         ret = hib_wait_io(hb); /* Free pages */
384                         if (ret)
385                                 return ret;
386                         src = (void *)__get_free_page(__GFP_RECLAIM |
387                                                       __GFP_NOWARN |
388                                                       __GFP_NORETRY);
389                         if (src) {
390                                 copy_page(src, buf);
391                         } else {
392                                 WARN_ON_ONCE(1);
393                                 hb = NULL;      /* Go synchronous */
394                                 src = buf;
395                         }
396                 }
397         } else {
398                 src = buf;
399         }
400         return hib_submit_io(REQ_OP_WRITE, WRITE_SYNC, offset, src, hb);
401 }
402
403 static void release_swap_writer(struct swap_map_handle *handle)
404 {
405         if (handle->cur)
406                 free_page((unsigned long)handle->cur);
407         handle->cur = NULL;
408 }
409
410 static int get_swap_writer(struct swap_map_handle *handle)
411 {
412         int ret;
413
414         ret = swsusp_swap_check();
415         if (ret) {
416                 if (ret != -ENOSPC)
417                         printk(KERN_ERR "PM: Cannot find swap device, try "
418                                         "swapon -a.\n");
419                 return ret;
420         }
421         handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
422         if (!handle->cur) {
423                 ret = -ENOMEM;
424                 goto err_close;
425         }
426         handle->cur_swap = alloc_swapdev_block(root_swap);
427         if (!handle->cur_swap) {
428                 ret = -ENOSPC;
429                 goto err_rel;
430         }
431         handle->k = 0;
432         handle->reqd_free_pages = reqd_free_pages();
433         handle->first_sector = handle->cur_swap;
434         return 0;
435 err_rel:
436         release_swap_writer(handle);
437 err_close:
438         swsusp_close(FMODE_WRITE);
439         return ret;
440 }
441
442 static int swap_write_page(struct swap_map_handle *handle, void *buf,
443                 struct hib_bio_batch *hb)
444 {
445         int error = 0;
446         sector_t offset;
447
448         if (!handle->cur)
449                 return -EINVAL;
450         offset = alloc_swapdev_block(root_swap);
451         error = write_page(buf, offset, hb);
452         if (error)
453                 return error;
454         handle->cur->entries[handle->k++] = offset;
455         if (handle->k >= MAP_PAGE_ENTRIES) {
456                 offset = alloc_swapdev_block(root_swap);
457                 if (!offset)
458                         return -ENOSPC;
459                 handle->cur->next_swap = offset;
460                 error = write_page(handle->cur, handle->cur_swap, hb);
461                 if (error)
462                         goto out;
463                 clear_page(handle->cur);
464                 handle->cur_swap = offset;
465                 handle->k = 0;
466
467                 if (hb && low_free_pages() <= handle->reqd_free_pages) {
468                         error = hib_wait_io(hb);
469                         if (error)
470                                 goto out;
471                         /*
472                          * Recalculate the number of required free pages, to
473                          * make sure we never take more than half.
474                          */
475                         handle->reqd_free_pages = reqd_free_pages();
476                 }
477         }
478  out:
479         return error;
480 }
481
482 static int flush_swap_writer(struct swap_map_handle *handle)
483 {
484         if (handle->cur && handle->cur_swap)
485                 return write_page(handle->cur, handle->cur_swap, NULL);
486         else
487                 return -EINVAL;
488 }
489
490 static int swap_writer_finish(struct swap_map_handle *handle,
491                 unsigned int flags, int error)
492 {
493         if (!error) {
494                 flush_swap_writer(handle);
495                 printk(KERN_INFO "PM: S");
496                 error = mark_swapfiles(handle, flags);
497                 printk("|\n");
498         }
499
500         if (error)
501                 free_all_swap_pages(root_swap);
502         release_swap_writer(handle);
503         swsusp_close(FMODE_WRITE);
504
505         return error;
506 }
507
508 /* We need to remember how much compressed data we need to read. */
509 #define LZO_HEADER      sizeof(size_t)
510
511 /* Number of pages/bytes we'll compress at one time. */
512 #define LZO_UNC_PAGES   32
513 #define LZO_UNC_SIZE    (LZO_UNC_PAGES * PAGE_SIZE)
514
515 /* Number of pages/bytes we need for compressed data (worst case). */
516 #define LZO_CMP_PAGES   DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
517                                      LZO_HEADER, PAGE_SIZE)
518 #define LZO_CMP_SIZE    (LZO_CMP_PAGES * PAGE_SIZE)
519
520 /* Maximum number of threads for compression/decompression. */
521 #define LZO_THREADS     3
522
523 /* Minimum/maximum number of pages for read buffering. */
524 #define LZO_MIN_RD_PAGES        1024
525 #define LZO_MAX_RD_PAGES        8192
526
527
528 /**
529  *      save_image - save the suspend image data
530  */
531
532 static int save_image(struct swap_map_handle *handle,
533                       struct snapshot_handle *snapshot,
534                       unsigned int nr_to_write)
535 {
536         unsigned int m;
537         int ret;
538         int nr_pages;
539         int err2;
540         struct hib_bio_batch hb;
541         ktime_t start;
542         ktime_t stop;
543
544         hib_init_batch(&hb);
545
546         printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
547                 nr_to_write);
548         m = nr_to_write / 10;
549         if (!m)
550                 m = 1;
551         nr_pages = 0;
552         start = ktime_get();
553         while (1) {
554                 ret = snapshot_read_next(snapshot);
555                 if (ret <= 0)
556                         break;
557                 ret = swap_write_page(handle, data_of(*snapshot), &hb);
558                 if (ret)
559                         break;
560                 if (!(nr_pages % m))
561                         printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
562                                nr_pages / m * 10);
563                 nr_pages++;
564         }
565         err2 = hib_wait_io(&hb);
566         stop = ktime_get();
567         if (!ret)
568                 ret = err2;
569         if (!ret)
570                 printk(KERN_INFO "PM: Image saving done.\n");
571         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
572         return ret;
573 }
574
575 /**
576  * Structure used for CRC32.
577  */
578 struct crc_data {
579         struct task_struct *thr;                  /* thread */
580         atomic_t ready;                           /* ready to start flag */
581         atomic_t stop;                            /* ready to stop flag */
582         unsigned run_threads;                     /* nr current threads */
583         wait_queue_head_t go;                     /* start crc update */
584         wait_queue_head_t done;                   /* crc update done */
585         u32 *crc32;                               /* points to handle's crc32 */
586         size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
587         unsigned char *unc[LZO_THREADS];          /* uncompressed data */
588 };
589
590 /**
591  * CRC32 update function that runs in its own thread.
592  */
593 static int crc32_threadfn(void *data)
594 {
595         struct crc_data *d = data;
596         unsigned i;
597
598         while (1) {
599                 wait_event(d->go, atomic_read(&d->ready) ||
600                                   kthread_should_stop());
601                 if (kthread_should_stop()) {
602                         d->thr = NULL;
603                         atomic_set(&d->stop, 1);
604                         wake_up(&d->done);
605                         break;
606                 }
607                 atomic_set(&d->ready, 0);
608
609                 for (i = 0; i < d->run_threads; i++)
610                         *d->crc32 = crc32_le(*d->crc32,
611                                              d->unc[i], *d->unc_len[i]);
612                 atomic_set(&d->stop, 1);
613                 wake_up(&d->done);
614         }
615         return 0;
616 }
617 /**
618  * Structure used for LZO data compression.
619  */
620 struct cmp_data {
621         struct task_struct *thr;                  /* thread */
622         atomic_t ready;                           /* ready to start flag */
623         atomic_t stop;                            /* ready to stop flag */
624         int ret;                                  /* return code */
625         wait_queue_head_t go;                     /* start compression */
626         wait_queue_head_t done;                   /* compression done */
627         size_t unc_len;                           /* uncompressed length */
628         size_t cmp_len;                           /* compressed length */
629         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
630         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
631         unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
632 };
633
634 /**
635  * Compression function that runs in its own thread.
636  */
637 static int lzo_compress_threadfn(void *data)
638 {
639         struct cmp_data *d = data;
640
641         while (1) {
642                 wait_event(d->go, atomic_read(&d->ready) ||
643                                   kthread_should_stop());
644                 if (kthread_should_stop()) {
645                         d->thr = NULL;
646                         d->ret = -1;
647                         atomic_set(&d->stop, 1);
648                         wake_up(&d->done);
649                         break;
650                 }
651                 atomic_set(&d->ready, 0);
652
653                 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
654                                           d->cmp + LZO_HEADER, &d->cmp_len,
655                                           d->wrk);
656                 atomic_set(&d->stop, 1);
657                 wake_up(&d->done);
658         }
659         return 0;
660 }
661
662 /**
663  * save_image_lzo - Save the suspend image data compressed with LZO.
664  * @handle: Swap map handle to use for saving the image.
665  * @snapshot: Image to read data from.
666  * @nr_to_write: Number of pages to save.
667  */
668 static int save_image_lzo(struct swap_map_handle *handle,
669                           struct snapshot_handle *snapshot,
670                           unsigned int nr_to_write)
671 {
672         unsigned int m;
673         int ret = 0;
674         int nr_pages;
675         int err2;
676         struct hib_bio_batch hb;
677         ktime_t start;
678         ktime_t stop;
679         size_t off;
680         unsigned thr, run_threads, nr_threads;
681         unsigned char *page = NULL;
682         struct cmp_data *data = NULL;
683         struct crc_data *crc = NULL;
684
685         hib_init_batch(&hb);
686
687         /*
688          * We'll limit the number of threads for compression to limit memory
689          * footprint.
690          */
691         nr_threads = num_online_cpus() - 1;
692         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
693
694         page = (void *)__get_free_page(__GFP_RECLAIM | __GFP_HIGH);
695         if (!page) {
696                 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
697                 ret = -ENOMEM;
698                 goto out_clean;
699         }
700
701         data = vmalloc(sizeof(*data) * nr_threads);
702         if (!data) {
703                 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
704                 ret = -ENOMEM;
705                 goto out_clean;
706         }
707         for (thr = 0; thr < nr_threads; thr++)
708                 memset(&data[thr], 0, offsetof(struct cmp_data, go));
709
710         crc = kmalloc(sizeof(*crc), GFP_KERNEL);
711         if (!crc) {
712                 printk(KERN_ERR "PM: Failed to allocate crc\n");
713                 ret = -ENOMEM;
714                 goto out_clean;
715         }
716         memset(crc, 0, offsetof(struct crc_data, go));
717
718         /*
719          * Start the compression threads.
720          */
721         for (thr = 0; thr < nr_threads; thr++) {
722                 init_waitqueue_head(&data[thr].go);
723                 init_waitqueue_head(&data[thr].done);
724
725                 data[thr].thr = kthread_run(lzo_compress_threadfn,
726                                             &data[thr],
727                                             "image_compress/%u", thr);
728                 if (IS_ERR(data[thr].thr)) {
729                         data[thr].thr = NULL;
730                         printk(KERN_ERR
731                                "PM: Cannot start compression threads\n");
732                         ret = -ENOMEM;
733                         goto out_clean;
734                 }
735         }
736
737         /*
738          * Start the CRC32 thread.
739          */
740         init_waitqueue_head(&crc->go);
741         init_waitqueue_head(&crc->done);
742
743         handle->crc32 = 0;
744         crc->crc32 = &handle->crc32;
745         for (thr = 0; thr < nr_threads; thr++) {
746                 crc->unc[thr] = data[thr].unc;
747                 crc->unc_len[thr] = &data[thr].unc_len;
748         }
749
750         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
751         if (IS_ERR(crc->thr)) {
752                 crc->thr = NULL;
753                 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
754                 ret = -ENOMEM;
755                 goto out_clean;
756         }
757
758         /*
759          * Adjust the number of required free pages after all allocations have
760          * been done. We don't want to run out of pages when writing.
761          */
762         handle->reqd_free_pages = reqd_free_pages();
763
764         printk(KERN_INFO
765                 "PM: Using %u thread(s) for compression.\n"
766                 "PM: Compressing and saving image data (%u pages)...\n",
767                 nr_threads, nr_to_write);
768         m = nr_to_write / 10;
769         if (!m)
770                 m = 1;
771         nr_pages = 0;
772         start = ktime_get();
773         for (;;) {
774                 for (thr = 0; thr < nr_threads; thr++) {
775                         for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
776                                 ret = snapshot_read_next(snapshot);
777                                 if (ret < 0)
778                                         goto out_finish;
779
780                                 if (!ret)
781                                         break;
782
783                                 memcpy(data[thr].unc + off,
784                                        data_of(*snapshot), PAGE_SIZE);
785
786                                 if (!(nr_pages % m))
787                                         printk(KERN_INFO
788                                                "PM: Image saving progress: "
789                                                "%3d%%\n",
790                                                nr_pages / m * 10);
791                                 nr_pages++;
792                         }
793                         if (!off)
794                                 break;
795
796                         data[thr].unc_len = off;
797
798                         atomic_set(&data[thr].ready, 1);
799                         wake_up(&data[thr].go);
800                 }
801
802                 if (!thr)
803                         break;
804
805                 crc->run_threads = thr;
806                 atomic_set(&crc->ready, 1);
807                 wake_up(&crc->go);
808
809                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
810                         wait_event(data[thr].done,
811                                    atomic_read(&data[thr].stop));
812                         atomic_set(&data[thr].stop, 0);
813
814                         ret = data[thr].ret;
815
816                         if (ret < 0) {
817                                 printk(KERN_ERR "PM: LZO compression failed\n");
818                                 goto out_finish;
819                         }
820
821                         if (unlikely(!data[thr].cmp_len ||
822                                      data[thr].cmp_len >
823                                      lzo1x_worst_compress(data[thr].unc_len))) {
824                                 printk(KERN_ERR
825                                        "PM: Invalid LZO compressed length\n");
826                                 ret = -1;
827                                 goto out_finish;
828                         }
829
830                         *(size_t *)data[thr].cmp = data[thr].cmp_len;
831
832                         /*
833                          * Given we are writing one page at a time to disk, we
834                          * copy that much from the buffer, although the last
835                          * bit will likely be smaller than full page. This is
836                          * OK - we saved the length of the compressed data, so
837                          * any garbage at the end will be discarded when we
838                          * read it.
839                          */
840                         for (off = 0;
841                              off < LZO_HEADER + data[thr].cmp_len;
842                              off += PAGE_SIZE) {
843                                 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
844
845                                 ret = swap_write_page(handle, page, &hb);
846                                 if (ret)
847                                         goto out_finish;
848                         }
849                 }
850
851                 wait_event(crc->done, atomic_read(&crc->stop));
852                 atomic_set(&crc->stop, 0);
853         }
854
855 out_finish:
856         err2 = hib_wait_io(&hb);
857         stop = ktime_get();
858         if (!ret)
859                 ret = err2;
860         if (!ret)
861                 printk(KERN_INFO "PM: Image saving done.\n");
862         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
863 out_clean:
864         if (crc) {
865                 if (crc->thr)
866                         kthread_stop(crc->thr);
867                 kfree(crc);
868         }
869         if (data) {
870                 for (thr = 0; thr < nr_threads; thr++)
871                         if (data[thr].thr)
872                                 kthread_stop(data[thr].thr);
873                 vfree(data);
874         }
875         if (page) free_page((unsigned long)page);
876
877         return ret;
878 }
879
880 /**
881  *      enough_swap - Make sure we have enough swap to save the image.
882  *
883  *      Returns TRUE or FALSE after checking the total amount of swap
884  *      space avaiable from the resume partition.
885  */
886
887 static int enough_swap(unsigned int nr_pages, unsigned int flags)
888 {
889         unsigned int free_swap = count_swap_pages(root_swap, 1);
890         unsigned int required;
891
892         pr_debug("PM: Free swap pages: %u\n", free_swap);
893
894         required = PAGES_FOR_IO + nr_pages;
895         return free_swap > required;
896 }
897
898 /**
899  *      swsusp_write - Write entire image and metadata.
900  *      @flags: flags to pass to the "boot" kernel in the image header
901  *
902  *      It is important _NOT_ to umount filesystems at this point. We want
903  *      them synced (in case something goes wrong) but we DO not want to mark
904  *      filesystem clean: it is not. (And it does not matter, if we resume
905  *      correctly, we'll mark system clean, anyway.)
906  */
907
908 int swsusp_write(unsigned int flags)
909 {
910         struct swap_map_handle handle;
911         struct snapshot_handle snapshot;
912         struct swsusp_info *header;
913         unsigned long pages;
914         int error;
915
916         pages = snapshot_get_image_size();
917         error = get_swap_writer(&handle);
918         if (error) {
919                 printk(KERN_ERR "PM: Cannot get swap writer\n");
920                 return error;
921         }
922         if (flags & SF_NOCOMPRESS_MODE) {
923                 if (!enough_swap(pages, flags)) {
924                         printk(KERN_ERR "PM: Not enough free swap\n");
925                         error = -ENOSPC;
926                         goto out_finish;
927                 }
928         }
929         memset(&snapshot, 0, sizeof(struct snapshot_handle));
930         error = snapshot_read_next(&snapshot);
931         if (error < PAGE_SIZE) {
932                 if (error >= 0)
933                         error = -EFAULT;
934
935                 goto out_finish;
936         }
937         header = (struct swsusp_info *)data_of(snapshot);
938         error = swap_write_page(&handle, header, NULL);
939         if (!error) {
940                 error = (flags & SF_NOCOMPRESS_MODE) ?
941                         save_image(&handle, &snapshot, pages - 1) :
942                         save_image_lzo(&handle, &snapshot, pages - 1);
943         }
944 out_finish:
945         error = swap_writer_finish(&handle, flags, error);
946         return error;
947 }
948
949 /**
950  *      The following functions allow us to read data using a swap map
951  *      in a file-alike way
952  */
953
954 static void release_swap_reader(struct swap_map_handle *handle)
955 {
956         struct swap_map_page_list *tmp;
957
958         while (handle->maps) {
959                 if (handle->maps->map)
960                         free_page((unsigned long)handle->maps->map);
961                 tmp = handle->maps;
962                 handle->maps = handle->maps->next;
963                 kfree(tmp);
964         }
965         handle->cur = NULL;
966 }
967
968 static int get_swap_reader(struct swap_map_handle *handle,
969                 unsigned int *flags_p)
970 {
971         int error;
972         struct swap_map_page_list *tmp, *last;
973         sector_t offset;
974
975         *flags_p = swsusp_header->flags;
976
977         if (!swsusp_header->image) /* how can this happen? */
978                 return -EINVAL;
979
980         handle->cur = NULL;
981         last = handle->maps = NULL;
982         offset = swsusp_header->image;
983         while (offset) {
984                 tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
985                 if (!tmp) {
986                         release_swap_reader(handle);
987                         return -ENOMEM;
988                 }
989                 memset(tmp, 0, sizeof(*tmp));
990                 if (!handle->maps)
991                         handle->maps = tmp;
992                 if (last)
993                         last->next = tmp;
994                 last = tmp;
995
996                 tmp->map = (struct swap_map_page *)
997                            __get_free_page(__GFP_RECLAIM | __GFP_HIGH);
998                 if (!tmp->map) {
999                         release_swap_reader(handle);
1000                         return -ENOMEM;
1001                 }
1002
1003                 error = hib_submit_io(REQ_OP_READ, READ_SYNC, offset,
1004                                       tmp->map, NULL);
1005                 if (error) {
1006                         release_swap_reader(handle);
1007                         return error;
1008                 }
1009                 offset = tmp->map->next_swap;
1010         }
1011         handle->k = 0;
1012         handle->cur = handle->maps->map;
1013         return 0;
1014 }
1015
1016 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1017                 struct hib_bio_batch *hb)
1018 {
1019         sector_t offset;
1020         int error;
1021         struct swap_map_page_list *tmp;
1022
1023         if (!handle->cur)
1024                 return -EINVAL;
1025         offset = handle->cur->entries[handle->k];
1026         if (!offset)
1027                 return -EFAULT;
1028         error = hib_submit_io(REQ_OP_READ, READ_SYNC, offset, buf, hb);
1029         if (error)
1030                 return error;
1031         if (++handle->k >= MAP_PAGE_ENTRIES) {
1032                 handle->k = 0;
1033                 free_page((unsigned long)handle->maps->map);
1034                 tmp = handle->maps;
1035                 handle->maps = handle->maps->next;
1036                 kfree(tmp);
1037                 if (!handle->maps)
1038                         release_swap_reader(handle);
1039                 else
1040                         handle->cur = handle->maps->map;
1041         }
1042         return error;
1043 }
1044
1045 static int swap_reader_finish(struct swap_map_handle *handle)
1046 {
1047         release_swap_reader(handle);
1048
1049         return 0;
1050 }
1051
1052 /**
1053  *      load_image - load the image using the swap map handle
1054  *      @handle and the snapshot handle @snapshot
1055  *      (assume there are @nr_pages pages to load)
1056  */
1057
1058 static int load_image(struct swap_map_handle *handle,
1059                       struct snapshot_handle *snapshot,
1060                       unsigned int nr_to_read)
1061 {
1062         unsigned int m;
1063         int ret = 0;
1064         ktime_t start;
1065         ktime_t stop;
1066         struct hib_bio_batch hb;
1067         int err2;
1068         unsigned nr_pages;
1069
1070         hib_init_batch(&hb);
1071
1072         clean_pages_on_read = true;
1073         printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
1074                 nr_to_read);
1075         m = nr_to_read / 10;
1076         if (!m)
1077                 m = 1;
1078         nr_pages = 0;
1079         start = ktime_get();
1080         for ( ; ; ) {
1081                 ret = snapshot_write_next(snapshot);
1082                 if (ret <= 0)
1083                         break;
1084                 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1085                 if (ret)
1086                         break;
1087                 if (snapshot->sync_read)
1088                         ret = hib_wait_io(&hb);
1089                 if (ret)
1090                         break;
1091                 if (!(nr_pages % m))
1092                         printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
1093                                nr_pages / m * 10);
1094                 nr_pages++;
1095         }
1096         err2 = hib_wait_io(&hb);
1097         stop = ktime_get();
1098         if (!ret)
1099                 ret = err2;
1100         if (!ret) {
1101                 printk(KERN_INFO "PM: Image loading done.\n");
1102                 snapshot_write_finalize(snapshot);
1103                 if (!snapshot_image_loaded(snapshot))
1104                         ret = -ENODATA;
1105         }
1106         swsusp_show_speed(start, stop, nr_to_read, "Read");
1107         return ret;
1108 }
1109
1110 /**
1111  * Structure used for LZO data decompression.
1112  */
1113 struct dec_data {
1114         struct task_struct *thr;                  /* thread */
1115         atomic_t ready;                           /* ready to start flag */
1116         atomic_t stop;                            /* ready to stop flag */
1117         int ret;                                  /* return code */
1118         wait_queue_head_t go;                     /* start decompression */
1119         wait_queue_head_t done;                   /* decompression done */
1120         size_t unc_len;                           /* uncompressed length */
1121         size_t cmp_len;                           /* compressed length */
1122         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1123         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1124 };
1125
1126 /**
1127  * Deompression function that runs in its own thread.
1128  */
1129 static int lzo_decompress_threadfn(void *data)
1130 {
1131         struct dec_data *d = data;
1132
1133         while (1) {
1134                 wait_event(d->go, atomic_read(&d->ready) ||
1135                                   kthread_should_stop());
1136                 if (kthread_should_stop()) {
1137                         d->thr = NULL;
1138                         d->ret = -1;
1139                         atomic_set(&d->stop, 1);
1140                         wake_up(&d->done);
1141                         break;
1142                 }
1143                 atomic_set(&d->ready, 0);
1144
1145                 d->unc_len = LZO_UNC_SIZE;
1146                 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1147                                                d->unc, &d->unc_len);
1148                 if (clean_pages_on_decompress)
1149                         flush_icache_range((unsigned long)d->unc,
1150                                            (unsigned long)d->unc + d->unc_len);
1151
1152                 atomic_set(&d->stop, 1);
1153                 wake_up(&d->done);
1154         }
1155         return 0;
1156 }
1157
1158 /**
1159  * load_image_lzo - Load compressed image data and decompress them with LZO.
1160  * @handle: Swap map handle to use for loading data.
1161  * @snapshot: Image to copy uncompressed data into.
1162  * @nr_to_read: Number of pages to load.
1163  */
1164 static int load_image_lzo(struct swap_map_handle *handle,
1165                           struct snapshot_handle *snapshot,
1166                           unsigned int nr_to_read)
1167 {
1168         unsigned int m;
1169         int ret = 0;
1170         int eof = 0;
1171         struct hib_bio_batch hb;
1172         ktime_t start;
1173         ktime_t stop;
1174         unsigned nr_pages;
1175         size_t off;
1176         unsigned i, thr, run_threads, nr_threads;
1177         unsigned ring = 0, pg = 0, ring_size = 0,
1178                  have = 0, want, need, asked = 0;
1179         unsigned long read_pages = 0;
1180         unsigned char **page = NULL;
1181         struct dec_data *data = NULL;
1182         struct crc_data *crc = NULL;
1183
1184         hib_init_batch(&hb);
1185
1186         /*
1187          * We'll limit the number of threads for decompression to limit memory
1188          * footprint.
1189          */
1190         nr_threads = num_online_cpus() - 1;
1191         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1192
1193         page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1194         if (!page) {
1195                 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1196                 ret = -ENOMEM;
1197                 goto out_clean;
1198         }
1199
1200         data = vmalloc(sizeof(*data) * nr_threads);
1201         if (!data) {
1202                 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1203                 ret = -ENOMEM;
1204                 goto out_clean;
1205         }
1206         for (thr = 0; thr < nr_threads; thr++)
1207                 memset(&data[thr], 0, offsetof(struct dec_data, go));
1208
1209         crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1210         if (!crc) {
1211                 printk(KERN_ERR "PM: Failed to allocate crc\n");
1212                 ret = -ENOMEM;
1213                 goto out_clean;
1214         }
1215         memset(crc, 0, offsetof(struct crc_data, go));
1216
1217         clean_pages_on_decompress = true;
1218
1219         /*
1220          * Start the decompression threads.
1221          */
1222         for (thr = 0; thr < nr_threads; thr++) {
1223                 init_waitqueue_head(&data[thr].go);
1224                 init_waitqueue_head(&data[thr].done);
1225
1226                 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1227                                             &data[thr],
1228                                             "image_decompress/%u", thr);
1229                 if (IS_ERR(data[thr].thr)) {
1230                         data[thr].thr = NULL;
1231                         printk(KERN_ERR
1232                                "PM: Cannot start decompression threads\n");
1233                         ret = -ENOMEM;
1234                         goto out_clean;
1235                 }
1236         }
1237
1238         /*
1239          * Start the CRC32 thread.
1240          */
1241         init_waitqueue_head(&crc->go);
1242         init_waitqueue_head(&crc->done);
1243
1244         handle->crc32 = 0;
1245         crc->crc32 = &handle->crc32;
1246         for (thr = 0; thr < nr_threads; thr++) {
1247                 crc->unc[thr] = data[thr].unc;
1248                 crc->unc_len[thr] = &data[thr].unc_len;
1249         }
1250
1251         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1252         if (IS_ERR(crc->thr)) {
1253                 crc->thr = NULL;
1254                 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1255                 ret = -ENOMEM;
1256                 goto out_clean;
1257         }
1258
1259         /*
1260          * Set the number of pages for read buffering.
1261          * This is complete guesswork, because we'll only know the real
1262          * picture once prepare_image() is called, which is much later on
1263          * during the image load phase. We'll assume the worst case and
1264          * say that none of the image pages are from high memory.
1265          */
1266         if (low_free_pages() > snapshot_get_image_size())
1267                 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1268         read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1269
1270         for (i = 0; i < read_pages; i++) {
1271                 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1272                                                   __GFP_RECLAIM | __GFP_HIGH :
1273                                                   __GFP_RECLAIM | __GFP_NOWARN |
1274                                                   __GFP_NORETRY);
1275
1276                 if (!page[i]) {
1277                         if (i < LZO_CMP_PAGES) {
1278                                 ring_size = i;
1279                                 printk(KERN_ERR
1280                                        "PM: Failed to allocate LZO pages\n");
1281                                 ret = -ENOMEM;
1282                                 goto out_clean;
1283                         } else {
1284                                 break;
1285                         }
1286                 }
1287         }
1288         want = ring_size = i;
1289
1290         printk(KERN_INFO
1291                 "PM: Using %u thread(s) for decompression.\n"
1292                 "PM: Loading and decompressing image data (%u pages)...\n",
1293                 nr_threads, nr_to_read);
1294         m = nr_to_read / 10;
1295         if (!m)
1296                 m = 1;
1297         nr_pages = 0;
1298         start = ktime_get();
1299
1300         ret = snapshot_write_next(snapshot);
1301         if (ret <= 0)
1302                 goto out_finish;
1303
1304         for(;;) {
1305                 for (i = 0; !eof && i < want; i++) {
1306                         ret = swap_read_page(handle, page[ring], &hb);
1307                         if (ret) {
1308                                 /*
1309                                  * On real read error, finish. On end of data,
1310                                  * set EOF flag and just exit the read loop.
1311                                  */
1312                                 if (handle->cur &&
1313                                     handle->cur->entries[handle->k]) {
1314                                         goto out_finish;
1315                                 } else {
1316                                         eof = 1;
1317                                         break;
1318                                 }
1319                         }
1320                         if (++ring >= ring_size)
1321                                 ring = 0;
1322                 }
1323                 asked += i;
1324                 want -= i;
1325
1326                 /*
1327                  * We are out of data, wait for some more.
1328                  */
1329                 if (!have) {
1330                         if (!asked)
1331                                 break;
1332
1333                         ret = hib_wait_io(&hb);
1334                         if (ret)
1335                                 goto out_finish;
1336                         have += asked;
1337                         asked = 0;
1338                         if (eof)
1339                                 eof = 2;
1340                 }
1341
1342                 if (crc->run_threads) {
1343                         wait_event(crc->done, atomic_read(&crc->stop));
1344                         atomic_set(&crc->stop, 0);
1345                         crc->run_threads = 0;
1346                 }
1347
1348                 for (thr = 0; have && thr < nr_threads; thr++) {
1349                         data[thr].cmp_len = *(size_t *)page[pg];
1350                         if (unlikely(!data[thr].cmp_len ||
1351                                      data[thr].cmp_len >
1352                                      lzo1x_worst_compress(LZO_UNC_SIZE))) {
1353                                 printk(KERN_ERR
1354                                        "PM: Invalid LZO compressed length\n");
1355                                 ret = -1;
1356                                 goto out_finish;
1357                         }
1358
1359                         need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1360                                             PAGE_SIZE);
1361                         if (need > have) {
1362                                 if (eof > 1) {
1363                                         ret = -1;
1364                                         goto out_finish;
1365                                 }
1366                                 break;
1367                         }
1368
1369                         for (off = 0;
1370                              off < LZO_HEADER + data[thr].cmp_len;
1371                              off += PAGE_SIZE) {
1372                                 memcpy(data[thr].cmp + off,
1373                                        page[pg], PAGE_SIZE);
1374                                 have--;
1375                                 want++;
1376                                 if (++pg >= ring_size)
1377                                         pg = 0;
1378                         }
1379
1380                         atomic_set(&data[thr].ready, 1);
1381                         wake_up(&data[thr].go);
1382                 }
1383
1384                 /*
1385                  * Wait for more data while we are decompressing.
1386                  */
1387                 if (have < LZO_CMP_PAGES && asked) {
1388                         ret = hib_wait_io(&hb);
1389                         if (ret)
1390                                 goto out_finish;
1391                         have += asked;
1392                         asked = 0;
1393                         if (eof)
1394                                 eof = 2;
1395                 }
1396
1397                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1398                         wait_event(data[thr].done,
1399                                    atomic_read(&data[thr].stop));
1400                         atomic_set(&data[thr].stop, 0);
1401
1402                         ret = data[thr].ret;
1403
1404                         if (ret < 0) {
1405                                 printk(KERN_ERR
1406                                        "PM: LZO decompression failed\n");
1407                                 goto out_finish;
1408                         }
1409
1410                         if (unlikely(!data[thr].unc_len ||
1411                                      data[thr].unc_len > LZO_UNC_SIZE ||
1412                                      data[thr].unc_len & (PAGE_SIZE - 1))) {
1413                                 printk(KERN_ERR
1414                                        "PM: Invalid LZO uncompressed length\n");
1415                                 ret = -1;
1416                                 goto out_finish;
1417                         }
1418
1419                         for (off = 0;
1420                              off < data[thr].unc_len; off += PAGE_SIZE) {
1421                                 memcpy(data_of(*snapshot),
1422                                        data[thr].unc + off, PAGE_SIZE);
1423
1424                                 if (!(nr_pages % m))
1425                                         printk(KERN_INFO
1426                                                "PM: Image loading progress: "
1427                                                "%3d%%\n",
1428                                                nr_pages / m * 10);
1429                                 nr_pages++;
1430
1431                                 ret = snapshot_write_next(snapshot);
1432                                 if (ret <= 0) {
1433                                         crc->run_threads = thr + 1;
1434                                         atomic_set(&crc->ready, 1);
1435                                         wake_up(&crc->go);
1436                                         goto out_finish;
1437                                 }
1438                         }
1439                 }
1440
1441                 crc->run_threads = thr;
1442                 atomic_set(&crc->ready, 1);
1443                 wake_up(&crc->go);
1444         }
1445
1446 out_finish:
1447         if (crc->run_threads) {
1448                 wait_event(crc->done, atomic_read(&crc->stop));
1449                 atomic_set(&crc->stop, 0);
1450         }
1451         stop = ktime_get();
1452         if (!ret) {
1453                 printk(KERN_INFO "PM: Image loading done.\n");
1454                 snapshot_write_finalize(snapshot);
1455                 if (!snapshot_image_loaded(snapshot))
1456                         ret = -ENODATA;
1457                 if (!ret) {
1458                         if (swsusp_header->flags & SF_CRC32_MODE) {
1459                                 if(handle->crc32 != swsusp_header->crc32) {
1460                                         printk(KERN_ERR
1461                                                "PM: Invalid image CRC32!\n");
1462                                         ret = -ENODATA;
1463                                 }
1464                         }
1465                 }
1466         }
1467         swsusp_show_speed(start, stop, nr_to_read, "Read");
1468 out_clean:
1469         for (i = 0; i < ring_size; i++)
1470                 free_page((unsigned long)page[i]);
1471         if (crc) {
1472                 if (crc->thr)
1473                         kthread_stop(crc->thr);
1474                 kfree(crc);
1475         }
1476         if (data) {
1477                 for (thr = 0; thr < nr_threads; thr++)
1478                         if (data[thr].thr)
1479                                 kthread_stop(data[thr].thr);
1480                 vfree(data);
1481         }
1482         vfree(page);
1483
1484         return ret;
1485 }
1486
1487 /**
1488  *      swsusp_read - read the hibernation image.
1489  *      @flags_p: flags passed by the "frozen" kernel in the image header should
1490  *                be written into this memory location
1491  */
1492
1493 int swsusp_read(unsigned int *flags_p)
1494 {
1495         int error;
1496         struct swap_map_handle handle;
1497         struct snapshot_handle snapshot;
1498         struct swsusp_info *header;
1499
1500         memset(&snapshot, 0, sizeof(struct snapshot_handle));
1501         error = snapshot_write_next(&snapshot);
1502         if (error < PAGE_SIZE)
1503                 return error < 0 ? error : -EFAULT;
1504         header = (struct swsusp_info *)data_of(snapshot);
1505         error = get_swap_reader(&handle, flags_p);
1506         if (error)
1507                 goto end;
1508         if (!error)
1509                 error = swap_read_page(&handle, header, NULL);
1510         if (!error) {
1511                 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1512                         load_image(&handle, &snapshot, header->pages - 1) :
1513                         load_image_lzo(&handle, &snapshot, header->pages - 1);
1514         }
1515         swap_reader_finish(&handle);
1516 end:
1517         if (!error)
1518                 pr_debug("PM: Image successfully loaded\n");
1519         else
1520                 pr_debug("PM: Error %d resuming\n", error);
1521         return error;
1522 }
1523
1524 /**
1525  *      swsusp_check - Check for swsusp signature in the resume device
1526  */
1527
1528 int swsusp_check(void)
1529 {
1530         int error;
1531
1532         hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1533                                             FMODE_READ, NULL);
1534         if (!IS_ERR(hib_resume_bdev)) {
1535                 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1536                 clear_page(swsusp_header);
1537                 error = hib_submit_io(REQ_OP_READ, READ_SYNC,
1538                                         swsusp_resume_block,
1539                                         swsusp_header, NULL);
1540                 if (error)
1541                         goto put;
1542
1543                 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1544                         memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1545                         /* Reset swap signature now */
1546                         error = hib_submit_io(REQ_OP_WRITE, WRITE_SYNC,
1547                                                 swsusp_resume_block,
1548                                                 swsusp_header, NULL);
1549                 } else {
1550                         error = -EINVAL;
1551                 }
1552
1553 put:
1554                 if (error)
1555                         blkdev_put(hib_resume_bdev, FMODE_READ);
1556                 else
1557                         pr_debug("PM: Image signature found, resuming\n");
1558         } else {
1559                 error = PTR_ERR(hib_resume_bdev);
1560         }
1561
1562         if (error)
1563                 pr_debug("PM: Image not found (code %d)\n", error);
1564
1565         return error;
1566 }
1567
1568 /**
1569  *      swsusp_close - close swap device.
1570  */
1571
1572 void swsusp_close(fmode_t mode)
1573 {
1574         if (IS_ERR(hib_resume_bdev)) {
1575                 pr_debug("PM: Image device not initialised\n");
1576                 return;
1577         }
1578
1579         blkdev_put(hib_resume_bdev, mode);
1580 }
1581
1582 /**
1583  *      swsusp_unmark - Unmark swsusp signature in the resume device
1584  */
1585
1586 #ifdef CONFIG_SUSPEND
1587 int swsusp_unmark(void)
1588 {
1589         int error;
1590
1591         hib_submit_io(REQ_OP_READ, READ_SYNC, swsusp_resume_block,
1592                       swsusp_header, NULL);
1593         if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1594                 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1595                 error = hib_submit_io(REQ_OP_WRITE, WRITE_SYNC,
1596                                         swsusp_resume_block,
1597                                         swsusp_header, NULL);
1598         } else {
1599                 printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
1600                 error = -ENODEV;
1601         }
1602
1603         /*
1604          * We just returned from suspend, we don't need the image any more.
1605          */
1606         free_all_swap_pages(root_swap);
1607
1608         return error;
1609 }
1610 #endif
1611
1612 static int swsusp_header_init(void)
1613 {
1614         swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1615         if (!swsusp_header)
1616                 panic("Could not allocate memory for swsusp_header\n");
1617         return 0;
1618 }
1619
1620 core_initcall(swsusp_header_init);