0409ba34a05c292ffca5babf5b559303201c8334
[cascardo/linux.git] / kernel / rcu / tree_plugin.h
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *         Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #define RCU_KTHREAD_PRIO 1
34
35 #ifdef CONFIG_RCU_BOOST
36 #include "../locking/rtmutex_common.h"
37 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
38 #else
39 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
40 #endif
41
42 #ifdef CONFIG_RCU_NOCB_CPU
43 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
44 static bool have_rcu_nocb_mask;     /* Was rcu_nocb_mask allocated? */
45 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
46 static char __initdata nocb_buf[NR_CPUS * 5];
47 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
48
49 /*
50  * Check the RCU kernel configuration parameters and print informative
51  * messages about anything out of the ordinary.  If you like #ifdef, you
52  * will love this function.
53  */
54 static void __init rcu_bootup_announce_oddness(void)
55 {
56 #ifdef CONFIG_RCU_TRACE
57         pr_info("\tRCU debugfs-based tracing is enabled.\n");
58 #endif
59 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
60         pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
61                CONFIG_RCU_FANOUT);
62 #endif
63 #ifdef CONFIG_RCU_FANOUT_EXACT
64         pr_info("\tHierarchical RCU autobalancing is disabled.\n");
65 #endif
66 #ifdef CONFIG_RCU_FAST_NO_HZ
67         pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
68 #endif
69 #ifdef CONFIG_PROVE_RCU
70         pr_info("\tRCU lockdep checking is enabled.\n");
71 #endif
72 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
73         pr_info("\tRCU torture testing starts during boot.\n");
74 #endif
75 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
76         pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
77 #endif
78 #if defined(CONFIG_RCU_CPU_STALL_INFO)
79         pr_info("\tAdditional per-CPU info printed with stalls.\n");
80 #endif
81 #if NUM_RCU_LVL_4 != 0
82         pr_info("\tFour-level hierarchy is enabled.\n");
83 #endif
84         if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
85                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
86         if (nr_cpu_ids != NR_CPUS)
87                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
88 #ifdef CONFIG_RCU_NOCB_CPU
89 #ifndef CONFIG_RCU_NOCB_CPU_NONE
90         if (!have_rcu_nocb_mask) {
91                 zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
92                 have_rcu_nocb_mask = true;
93         }
94 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
95         pr_info("\tOffload RCU callbacks from CPU 0\n");
96         cpumask_set_cpu(0, rcu_nocb_mask);
97 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
98 #ifdef CONFIG_RCU_NOCB_CPU_ALL
99         pr_info("\tOffload RCU callbacks from all CPUs\n");
100         cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
101 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
102 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
103         if (have_rcu_nocb_mask) {
104                 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
105                         pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
106                         cpumask_and(rcu_nocb_mask, cpu_possible_mask,
107                                     rcu_nocb_mask);
108                 }
109                 cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
110                 pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
111                 if (rcu_nocb_poll)
112                         pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
113         }
114 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
115 }
116
117 #ifdef CONFIG_TREE_PREEMPT_RCU
118
119 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
120 static struct rcu_state *rcu_state_p = &rcu_preempt_state;
121
122 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
123
124 /*
125  * Tell them what RCU they are running.
126  */
127 static void __init rcu_bootup_announce(void)
128 {
129         pr_info("Preemptible hierarchical RCU implementation.\n");
130         rcu_bootup_announce_oddness();
131 }
132
133 /*
134  * Return the number of RCU-preempt batches processed thus far
135  * for debug and statistics.
136  */
137 long rcu_batches_completed_preempt(void)
138 {
139         return rcu_preempt_state.completed;
140 }
141 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
142
143 /*
144  * Return the number of RCU batches processed thus far for debug & stats.
145  */
146 long rcu_batches_completed(void)
147 {
148         return rcu_batches_completed_preempt();
149 }
150 EXPORT_SYMBOL_GPL(rcu_batches_completed);
151
152 /*
153  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
154  * that this just means that the task currently running on the CPU is
155  * not in a quiescent state.  There might be any number of tasks blocked
156  * while in an RCU read-side critical section.
157  *
158  * Unlike the other rcu_*_qs() functions, callers to this function
159  * must disable irqs in order to protect the assignment to
160  * ->rcu_read_unlock_special.
161  */
162 static void rcu_preempt_qs(int cpu)
163 {
164         struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
165
166         if (rdp->passed_quiesce == 0)
167                 trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
168         rdp->passed_quiesce = 1;
169         current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
170 }
171
172 /*
173  * We have entered the scheduler, and the current task might soon be
174  * context-switched away from.  If this task is in an RCU read-side
175  * critical section, we will no longer be able to rely on the CPU to
176  * record that fact, so we enqueue the task on the blkd_tasks list.
177  * The task will dequeue itself when it exits the outermost enclosing
178  * RCU read-side critical section.  Therefore, the current grace period
179  * cannot be permitted to complete until the blkd_tasks list entries
180  * predating the current grace period drain, in other words, until
181  * rnp->gp_tasks becomes NULL.
182  *
183  * Caller must disable preemption.
184  */
185 static void rcu_preempt_note_context_switch(int cpu)
186 {
187         struct task_struct *t = current;
188         unsigned long flags;
189         struct rcu_data *rdp;
190         struct rcu_node *rnp;
191
192         if (t->rcu_read_lock_nesting > 0 &&
193             (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
194
195                 /* Possibly blocking in an RCU read-side critical section. */
196                 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
197                 rnp = rdp->mynode;
198                 raw_spin_lock_irqsave(&rnp->lock, flags);
199                 smp_mb__after_unlock_lock();
200                 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
201                 t->rcu_blocked_node = rnp;
202
203                 /*
204                  * If this CPU has already checked in, then this task
205                  * will hold up the next grace period rather than the
206                  * current grace period.  Queue the task accordingly.
207                  * If the task is queued for the current grace period
208                  * (i.e., this CPU has not yet passed through a quiescent
209                  * state for the current grace period), then as long
210                  * as that task remains queued, the current grace period
211                  * cannot end.  Note that there is some uncertainty as
212                  * to exactly when the current grace period started.
213                  * We take a conservative approach, which can result
214                  * in unnecessarily waiting on tasks that started very
215                  * slightly after the current grace period began.  C'est
216                  * la vie!!!
217                  *
218                  * But first, note that the current CPU must still be
219                  * on line!
220                  */
221                 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
222                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
223                 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
224                         list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
225                         rnp->gp_tasks = &t->rcu_node_entry;
226 #ifdef CONFIG_RCU_BOOST
227                         if (rnp->boost_tasks != NULL)
228                                 rnp->boost_tasks = rnp->gp_tasks;
229 #endif /* #ifdef CONFIG_RCU_BOOST */
230                 } else {
231                         list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
232                         if (rnp->qsmask & rdp->grpmask)
233                                 rnp->gp_tasks = &t->rcu_node_entry;
234                 }
235                 trace_rcu_preempt_task(rdp->rsp->name,
236                                        t->pid,
237                                        (rnp->qsmask & rdp->grpmask)
238                                        ? rnp->gpnum
239                                        : rnp->gpnum + 1);
240                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
241         } else if (t->rcu_read_lock_nesting < 0 &&
242                    t->rcu_read_unlock_special) {
243
244                 /*
245                  * Complete exit from RCU read-side critical section on
246                  * behalf of preempted instance of __rcu_read_unlock().
247                  */
248                 rcu_read_unlock_special(t);
249         }
250
251         /*
252          * Either we were not in an RCU read-side critical section to
253          * begin with, or we have now recorded that critical section
254          * globally.  Either way, we can now note a quiescent state
255          * for this CPU.  Again, if we were in an RCU read-side critical
256          * section, and if that critical section was blocking the current
257          * grace period, then the fact that the task has been enqueued
258          * means that we continue to block the current grace period.
259          */
260         local_irq_save(flags);
261         rcu_preempt_qs(cpu);
262         local_irq_restore(flags);
263 }
264
265 /*
266  * Check for preempted RCU readers blocking the current grace period
267  * for the specified rcu_node structure.  If the caller needs a reliable
268  * answer, it must hold the rcu_node's ->lock.
269  */
270 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
271 {
272         return rnp->gp_tasks != NULL;
273 }
274
275 /*
276  * Record a quiescent state for all tasks that were previously queued
277  * on the specified rcu_node structure and that were blocking the current
278  * RCU grace period.  The caller must hold the specified rnp->lock with
279  * irqs disabled, and this lock is released upon return, but irqs remain
280  * disabled.
281  */
282 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
283         __releases(rnp->lock)
284 {
285         unsigned long mask;
286         struct rcu_node *rnp_p;
287
288         if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
289                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
290                 return;  /* Still need more quiescent states! */
291         }
292
293         rnp_p = rnp->parent;
294         if (rnp_p == NULL) {
295                 /*
296                  * Either there is only one rcu_node in the tree,
297                  * or tasks were kicked up to root rcu_node due to
298                  * CPUs going offline.
299                  */
300                 rcu_report_qs_rsp(&rcu_preempt_state, flags);
301                 return;
302         }
303
304         /* Report up the rest of the hierarchy. */
305         mask = rnp->grpmask;
306         raw_spin_unlock(&rnp->lock);    /* irqs remain disabled. */
307         raw_spin_lock(&rnp_p->lock);    /* irqs already disabled. */
308         smp_mb__after_unlock_lock();
309         rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
310 }
311
312 /*
313  * Advance a ->blkd_tasks-list pointer to the next entry, instead
314  * returning NULL if at the end of the list.
315  */
316 static struct list_head *rcu_next_node_entry(struct task_struct *t,
317                                              struct rcu_node *rnp)
318 {
319         struct list_head *np;
320
321         np = t->rcu_node_entry.next;
322         if (np == &rnp->blkd_tasks)
323                 np = NULL;
324         return np;
325 }
326
327 /*
328  * Handle special cases during rcu_read_unlock(), such as needing to
329  * notify RCU core processing or task having blocked during the RCU
330  * read-side critical section.
331  */
332 void rcu_read_unlock_special(struct task_struct *t)
333 {
334         int empty;
335         int empty_exp;
336         int empty_exp_now;
337         unsigned long flags;
338         struct list_head *np;
339 #ifdef CONFIG_RCU_BOOST
340         bool drop_boost_mutex = false;
341 #endif /* #ifdef CONFIG_RCU_BOOST */
342         struct rcu_node *rnp;
343         int special;
344
345         /* NMI handlers cannot block and cannot safely manipulate state. */
346         if (in_nmi())
347                 return;
348
349         local_irq_save(flags);
350
351         /*
352          * If RCU core is waiting for this CPU to exit critical section,
353          * let it know that we have done so.
354          */
355         special = t->rcu_read_unlock_special;
356         if (special & RCU_READ_UNLOCK_NEED_QS) {
357                 rcu_preempt_qs(smp_processor_id());
358                 if (!t->rcu_read_unlock_special) {
359                         local_irq_restore(flags);
360                         return;
361                 }
362         }
363
364         /* Hardware IRQ handlers cannot block, complain if they get here. */
365         if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
366                 local_irq_restore(flags);
367                 return;
368         }
369
370         /* Clean up if blocked during RCU read-side critical section. */
371         if (special & RCU_READ_UNLOCK_BLOCKED) {
372                 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
373
374                 /*
375                  * Remove this task from the list it blocked on.  The
376                  * task can migrate while we acquire the lock, but at
377                  * most one time.  So at most two passes through loop.
378                  */
379                 for (;;) {
380                         rnp = t->rcu_blocked_node;
381                         raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
382                         smp_mb__after_unlock_lock();
383                         if (rnp == t->rcu_blocked_node)
384                                 break;
385                         raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
386                 }
387                 empty = !rcu_preempt_blocked_readers_cgp(rnp);
388                 empty_exp = !rcu_preempted_readers_exp(rnp);
389                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
390                 np = rcu_next_node_entry(t, rnp);
391                 list_del_init(&t->rcu_node_entry);
392                 t->rcu_blocked_node = NULL;
393                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
394                                                 rnp->gpnum, t->pid);
395                 if (&t->rcu_node_entry == rnp->gp_tasks)
396                         rnp->gp_tasks = np;
397                 if (&t->rcu_node_entry == rnp->exp_tasks)
398                         rnp->exp_tasks = np;
399 #ifdef CONFIG_RCU_BOOST
400                 if (&t->rcu_node_entry == rnp->boost_tasks)
401                         rnp->boost_tasks = np;
402                 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
403                 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
404 #endif /* #ifdef CONFIG_RCU_BOOST */
405
406                 /*
407                  * If this was the last task on the current list, and if
408                  * we aren't waiting on any CPUs, report the quiescent state.
409                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
410                  * so we must take a snapshot of the expedited state.
411                  */
412                 empty_exp_now = !rcu_preempted_readers_exp(rnp);
413                 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
414                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
415                                                          rnp->gpnum,
416                                                          0, rnp->qsmask,
417                                                          rnp->level,
418                                                          rnp->grplo,
419                                                          rnp->grphi,
420                                                          !!rnp->gp_tasks);
421                         rcu_report_unblock_qs_rnp(rnp, flags);
422                 } else {
423                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
424                 }
425
426 #ifdef CONFIG_RCU_BOOST
427                 /* Unboost if we were boosted. */
428                 if (drop_boost_mutex) {
429                         rt_mutex_unlock(&rnp->boost_mtx);
430                         complete(&rnp->boost_completion);
431                 }
432 #endif /* #ifdef CONFIG_RCU_BOOST */
433
434                 /*
435                  * If this was the last task on the expedited lists,
436                  * then we need to report up the rcu_node hierarchy.
437                  */
438                 if (!empty_exp && empty_exp_now)
439                         rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
440         } else {
441                 local_irq_restore(flags);
442         }
443 }
444
445 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
446
447 /*
448  * Dump detailed information for all tasks blocking the current RCU
449  * grace period on the specified rcu_node structure.
450  */
451 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
452 {
453         unsigned long flags;
454         struct task_struct *t;
455
456         raw_spin_lock_irqsave(&rnp->lock, flags);
457         if (!rcu_preempt_blocked_readers_cgp(rnp)) {
458                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
459                 return;
460         }
461         t = list_entry(rnp->gp_tasks,
462                        struct task_struct, rcu_node_entry);
463         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
464                 sched_show_task(t);
465         raw_spin_unlock_irqrestore(&rnp->lock, flags);
466 }
467
468 /*
469  * Dump detailed information for all tasks blocking the current RCU
470  * grace period.
471  */
472 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
473 {
474         struct rcu_node *rnp = rcu_get_root(rsp);
475
476         rcu_print_detail_task_stall_rnp(rnp);
477         rcu_for_each_leaf_node(rsp, rnp)
478                 rcu_print_detail_task_stall_rnp(rnp);
479 }
480
481 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
482
483 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
484 {
485 }
486
487 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
488
489 #ifdef CONFIG_RCU_CPU_STALL_INFO
490
491 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
492 {
493         pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
494                rnp->level, rnp->grplo, rnp->grphi);
495 }
496
497 static void rcu_print_task_stall_end(void)
498 {
499         pr_cont("\n");
500 }
501
502 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
503
504 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
505 {
506 }
507
508 static void rcu_print_task_stall_end(void)
509 {
510 }
511
512 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
513
514 /*
515  * Scan the current list of tasks blocked within RCU read-side critical
516  * sections, printing out the tid of each.
517  */
518 static int rcu_print_task_stall(struct rcu_node *rnp)
519 {
520         struct task_struct *t;
521         int ndetected = 0;
522
523         if (!rcu_preempt_blocked_readers_cgp(rnp))
524                 return 0;
525         rcu_print_task_stall_begin(rnp);
526         t = list_entry(rnp->gp_tasks,
527                        struct task_struct, rcu_node_entry);
528         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
529                 pr_cont(" P%d", t->pid);
530                 ndetected++;
531         }
532         rcu_print_task_stall_end();
533         return ndetected;
534 }
535
536 /*
537  * Check that the list of blocked tasks for the newly completed grace
538  * period is in fact empty.  It is a serious bug to complete a grace
539  * period that still has RCU readers blocked!  This function must be
540  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
541  * must be held by the caller.
542  *
543  * Also, if there are blocked tasks on the list, they automatically
544  * block the newly created grace period, so set up ->gp_tasks accordingly.
545  */
546 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
547 {
548         WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
549         if (!list_empty(&rnp->blkd_tasks))
550                 rnp->gp_tasks = rnp->blkd_tasks.next;
551         WARN_ON_ONCE(rnp->qsmask);
552 }
553
554 #ifdef CONFIG_HOTPLUG_CPU
555
556 /*
557  * Handle tasklist migration for case in which all CPUs covered by the
558  * specified rcu_node have gone offline.  Move them up to the root
559  * rcu_node.  The reason for not just moving them to the immediate
560  * parent is to remove the need for rcu_read_unlock_special() to
561  * make more than two attempts to acquire the target rcu_node's lock.
562  * Returns true if there were tasks blocking the current RCU grace
563  * period.
564  *
565  * Returns 1 if there was previously a task blocking the current grace
566  * period on the specified rcu_node structure.
567  *
568  * The caller must hold rnp->lock with irqs disabled.
569  */
570 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
571                                      struct rcu_node *rnp,
572                                      struct rcu_data *rdp)
573 {
574         struct list_head *lp;
575         struct list_head *lp_root;
576         int retval = 0;
577         struct rcu_node *rnp_root = rcu_get_root(rsp);
578         struct task_struct *t;
579
580         if (rnp == rnp_root) {
581                 WARN_ONCE(1, "Last CPU thought to be offlined?");
582                 return 0;  /* Shouldn't happen: at least one CPU online. */
583         }
584
585         /* If we are on an internal node, complain bitterly. */
586         WARN_ON_ONCE(rnp != rdp->mynode);
587
588         /*
589          * Move tasks up to root rcu_node.  Don't try to get fancy for
590          * this corner-case operation -- just put this node's tasks
591          * at the head of the root node's list, and update the root node's
592          * ->gp_tasks and ->exp_tasks pointers to those of this node's,
593          * if non-NULL.  This might result in waiting for more tasks than
594          * absolutely necessary, but this is a good performance/complexity
595          * tradeoff.
596          */
597         if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
598                 retval |= RCU_OFL_TASKS_NORM_GP;
599         if (rcu_preempted_readers_exp(rnp))
600                 retval |= RCU_OFL_TASKS_EXP_GP;
601         lp = &rnp->blkd_tasks;
602         lp_root = &rnp_root->blkd_tasks;
603         while (!list_empty(lp)) {
604                 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
605                 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
606                 smp_mb__after_unlock_lock();
607                 list_del(&t->rcu_node_entry);
608                 t->rcu_blocked_node = rnp_root;
609                 list_add(&t->rcu_node_entry, lp_root);
610                 if (&t->rcu_node_entry == rnp->gp_tasks)
611                         rnp_root->gp_tasks = rnp->gp_tasks;
612                 if (&t->rcu_node_entry == rnp->exp_tasks)
613                         rnp_root->exp_tasks = rnp->exp_tasks;
614 #ifdef CONFIG_RCU_BOOST
615                 if (&t->rcu_node_entry == rnp->boost_tasks)
616                         rnp_root->boost_tasks = rnp->boost_tasks;
617 #endif /* #ifdef CONFIG_RCU_BOOST */
618                 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
619         }
620
621         rnp->gp_tasks = NULL;
622         rnp->exp_tasks = NULL;
623 #ifdef CONFIG_RCU_BOOST
624         rnp->boost_tasks = NULL;
625         /*
626          * In case root is being boosted and leaf was not.  Make sure
627          * that we boost the tasks blocking the current grace period
628          * in this case.
629          */
630         raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
631         smp_mb__after_unlock_lock();
632         if (rnp_root->boost_tasks != NULL &&
633             rnp_root->boost_tasks != rnp_root->gp_tasks &&
634             rnp_root->boost_tasks != rnp_root->exp_tasks)
635                 rnp_root->boost_tasks = rnp_root->gp_tasks;
636         raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
637 #endif /* #ifdef CONFIG_RCU_BOOST */
638
639         return retval;
640 }
641
642 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
643
644 /*
645  * Check for a quiescent state from the current CPU.  When a task blocks,
646  * the task is recorded in the corresponding CPU's rcu_node structure,
647  * which is checked elsewhere.
648  *
649  * Caller must disable hard irqs.
650  */
651 static void rcu_preempt_check_callbacks(int cpu)
652 {
653         struct task_struct *t = current;
654
655         if (t->rcu_read_lock_nesting == 0) {
656                 rcu_preempt_qs(cpu);
657                 return;
658         }
659         if (t->rcu_read_lock_nesting > 0 &&
660             per_cpu(rcu_preempt_data, cpu).qs_pending)
661                 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
662 }
663
664 #ifdef CONFIG_RCU_BOOST
665
666 static void rcu_preempt_do_callbacks(void)
667 {
668         rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
669 }
670
671 #endif /* #ifdef CONFIG_RCU_BOOST */
672
673 /*
674  * Queue a preemptible-RCU callback for invocation after a grace period.
675  */
676 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
677 {
678         __call_rcu(head, func, &rcu_preempt_state, -1, 0);
679 }
680 EXPORT_SYMBOL_GPL(call_rcu);
681
682 /**
683  * synchronize_rcu - wait until a grace period has elapsed.
684  *
685  * Control will return to the caller some time after a full grace
686  * period has elapsed, in other words after all currently executing RCU
687  * read-side critical sections have completed.  Note, however, that
688  * upon return from synchronize_rcu(), the caller might well be executing
689  * concurrently with new RCU read-side critical sections that began while
690  * synchronize_rcu() was waiting.  RCU read-side critical sections are
691  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
692  *
693  * See the description of synchronize_sched() for more detailed information
694  * on memory ordering guarantees.
695  */
696 void synchronize_rcu(void)
697 {
698         rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
699                            !lock_is_held(&rcu_lock_map) &&
700                            !lock_is_held(&rcu_sched_lock_map),
701                            "Illegal synchronize_rcu() in RCU read-side critical section");
702         if (!rcu_scheduler_active)
703                 return;
704         if (rcu_expedited)
705                 synchronize_rcu_expedited();
706         else
707                 wait_rcu_gp(call_rcu);
708 }
709 EXPORT_SYMBOL_GPL(synchronize_rcu);
710
711 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
712 static unsigned long sync_rcu_preempt_exp_count;
713 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
714
715 /*
716  * Return non-zero if there are any tasks in RCU read-side critical
717  * sections blocking the current preemptible-RCU expedited grace period.
718  * If there is no preemptible-RCU expedited grace period currently in
719  * progress, returns zero unconditionally.
720  */
721 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
722 {
723         return rnp->exp_tasks != NULL;
724 }
725
726 /*
727  * return non-zero if there is no RCU expedited grace period in progress
728  * for the specified rcu_node structure, in other words, if all CPUs and
729  * tasks covered by the specified rcu_node structure have done their bit
730  * for the current expedited grace period.  Works only for preemptible
731  * RCU -- other RCU implementation use other means.
732  *
733  * Caller must hold sync_rcu_preempt_exp_mutex.
734  */
735 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
736 {
737         return !rcu_preempted_readers_exp(rnp) &&
738                ACCESS_ONCE(rnp->expmask) == 0;
739 }
740
741 /*
742  * Report the exit from RCU read-side critical section for the last task
743  * that queued itself during or before the current expedited preemptible-RCU
744  * grace period.  This event is reported either to the rcu_node structure on
745  * which the task was queued or to one of that rcu_node structure's ancestors,
746  * recursively up the tree.  (Calm down, calm down, we do the recursion
747  * iteratively!)
748  *
749  * Most callers will set the "wake" flag, but the task initiating the
750  * expedited grace period need not wake itself.
751  *
752  * Caller must hold sync_rcu_preempt_exp_mutex.
753  */
754 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
755                                bool wake)
756 {
757         unsigned long flags;
758         unsigned long mask;
759
760         raw_spin_lock_irqsave(&rnp->lock, flags);
761         smp_mb__after_unlock_lock();
762         for (;;) {
763                 if (!sync_rcu_preempt_exp_done(rnp)) {
764                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
765                         break;
766                 }
767                 if (rnp->parent == NULL) {
768                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
769                         if (wake) {
770                                 smp_mb(); /* EGP done before wake_up(). */
771                                 wake_up(&sync_rcu_preempt_exp_wq);
772                         }
773                         break;
774                 }
775                 mask = rnp->grpmask;
776                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
777                 rnp = rnp->parent;
778                 raw_spin_lock(&rnp->lock); /* irqs already disabled */
779                 smp_mb__after_unlock_lock();
780                 rnp->expmask &= ~mask;
781         }
782 }
783
784 /*
785  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
786  * grace period for the specified rcu_node structure.  If there are no such
787  * tasks, report it up the rcu_node hierarchy.
788  *
789  * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
790  * CPU hotplug operations.
791  */
792 static void
793 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
794 {
795         unsigned long flags;
796         int must_wait = 0;
797
798         raw_spin_lock_irqsave(&rnp->lock, flags);
799         smp_mb__after_unlock_lock();
800         if (list_empty(&rnp->blkd_tasks)) {
801                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
802         } else {
803                 rnp->exp_tasks = rnp->blkd_tasks.next;
804                 rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
805                 must_wait = 1;
806         }
807         if (!must_wait)
808                 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
809 }
810
811 /**
812  * synchronize_rcu_expedited - Brute-force RCU grace period
813  *
814  * Wait for an RCU-preempt grace period, but expedite it.  The basic
815  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
816  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
817  * significant time on all CPUs and is unfriendly to real-time workloads,
818  * so is thus not recommended for any sort of common-case code.
819  * In fact, if you are using synchronize_rcu_expedited() in a loop,
820  * please restructure your code to batch your updates, and then Use a
821  * single synchronize_rcu() instead.
822  *
823  * Note that it is illegal to call this function while holding any lock
824  * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
825  * to call this function from a CPU-hotplug notifier.  Failing to observe
826  * these restriction will result in deadlock.
827  */
828 void synchronize_rcu_expedited(void)
829 {
830         unsigned long flags;
831         struct rcu_node *rnp;
832         struct rcu_state *rsp = &rcu_preempt_state;
833         unsigned long snap;
834         int trycount = 0;
835
836         smp_mb(); /* Caller's modifications seen first by other CPUs. */
837         snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
838         smp_mb(); /* Above access cannot bleed into critical section. */
839
840         /*
841          * Block CPU-hotplug operations.  This means that any CPU-hotplug
842          * operation that finds an rcu_node structure with tasks in the
843          * process of being boosted will know that all tasks blocking
844          * this expedited grace period will already be in the process of
845          * being boosted.  This simplifies the process of moving tasks
846          * from leaf to root rcu_node structures.
847          */
848         get_online_cpus();
849
850         /*
851          * Acquire lock, falling back to synchronize_rcu() if too many
852          * lock-acquisition failures.  Of course, if someone does the
853          * expedited grace period for us, just leave.
854          */
855         while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
856                 if (ULONG_CMP_LT(snap,
857                     ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
858                         put_online_cpus();
859                         goto mb_ret; /* Others did our work for us. */
860                 }
861                 if (trycount++ < 10) {
862                         udelay(trycount * num_online_cpus());
863                 } else {
864                         put_online_cpus();
865                         wait_rcu_gp(call_rcu);
866                         return;
867                 }
868         }
869         if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
870                 put_online_cpus();
871                 goto unlock_mb_ret; /* Others did our work for us. */
872         }
873
874         /* force all RCU readers onto ->blkd_tasks lists. */
875         synchronize_sched_expedited();
876
877         /* Initialize ->expmask for all non-leaf rcu_node structures. */
878         rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
879                 raw_spin_lock_irqsave(&rnp->lock, flags);
880                 smp_mb__after_unlock_lock();
881                 rnp->expmask = rnp->qsmaskinit;
882                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
883         }
884
885         /* Snapshot current state of ->blkd_tasks lists. */
886         rcu_for_each_leaf_node(rsp, rnp)
887                 sync_rcu_preempt_exp_init(rsp, rnp);
888         if (NUM_RCU_NODES > 1)
889                 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
890
891         put_online_cpus();
892
893         /* Wait for snapshotted ->blkd_tasks lists to drain. */
894         rnp = rcu_get_root(rsp);
895         wait_event(sync_rcu_preempt_exp_wq,
896                    sync_rcu_preempt_exp_done(rnp));
897
898         /* Clean up and exit. */
899         smp_mb(); /* ensure expedited GP seen before counter increment. */
900         ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
901 unlock_mb_ret:
902         mutex_unlock(&sync_rcu_preempt_exp_mutex);
903 mb_ret:
904         smp_mb(); /* ensure subsequent action seen after grace period. */
905 }
906 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
907
908 /**
909  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
910  *
911  * Note that this primitive does not necessarily wait for an RCU grace period
912  * to complete.  For example, if there are no RCU callbacks queued anywhere
913  * in the system, then rcu_barrier() is within its rights to return
914  * immediately, without waiting for anything, much less an RCU grace period.
915  */
916 void rcu_barrier(void)
917 {
918         _rcu_barrier(&rcu_preempt_state);
919 }
920 EXPORT_SYMBOL_GPL(rcu_barrier);
921
922 /*
923  * Initialize preemptible RCU's state structures.
924  */
925 static void __init __rcu_init_preempt(void)
926 {
927         rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
928 }
929
930 /*
931  * Check for a task exiting while in a preemptible-RCU read-side
932  * critical section, clean up if so.  No need to issue warnings,
933  * as debug_check_no_locks_held() already does this if lockdep
934  * is enabled.
935  */
936 void exit_rcu(void)
937 {
938         struct task_struct *t = current;
939
940         if (likely(list_empty(&current->rcu_node_entry)))
941                 return;
942         t->rcu_read_lock_nesting = 1;
943         barrier();
944         t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
945         __rcu_read_unlock();
946 }
947
948 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
949
950 static struct rcu_state *rcu_state_p = &rcu_sched_state;
951
952 /*
953  * Tell them what RCU they are running.
954  */
955 static void __init rcu_bootup_announce(void)
956 {
957         pr_info("Hierarchical RCU implementation.\n");
958         rcu_bootup_announce_oddness();
959 }
960
961 /*
962  * Return the number of RCU batches processed thus far for debug & stats.
963  */
964 long rcu_batches_completed(void)
965 {
966         return rcu_batches_completed_sched();
967 }
968 EXPORT_SYMBOL_GPL(rcu_batches_completed);
969
970 /*
971  * Because preemptible RCU does not exist, we never have to check for
972  * CPUs being in quiescent states.
973  */
974 static void rcu_preempt_note_context_switch(int cpu)
975 {
976 }
977
978 /*
979  * Because preemptible RCU does not exist, there are never any preempted
980  * RCU readers.
981  */
982 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
983 {
984         return 0;
985 }
986
987 #ifdef CONFIG_HOTPLUG_CPU
988
989 /* Because preemptible RCU does not exist, no quieting of tasks. */
990 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
991 {
992         raw_spin_unlock_irqrestore(&rnp->lock, flags);
993 }
994
995 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
996
997 /*
998  * Because preemptible RCU does not exist, we never have to check for
999  * tasks blocked within RCU read-side critical sections.
1000  */
1001 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1002 {
1003 }
1004
1005 /*
1006  * Because preemptible RCU does not exist, we never have to check for
1007  * tasks blocked within RCU read-side critical sections.
1008  */
1009 static int rcu_print_task_stall(struct rcu_node *rnp)
1010 {
1011         return 0;
1012 }
1013
1014 /*
1015  * Because there is no preemptible RCU, there can be no readers blocked,
1016  * so there is no need to check for blocked tasks.  So check only for
1017  * bogus qsmask values.
1018  */
1019 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1020 {
1021         WARN_ON_ONCE(rnp->qsmask);
1022 }
1023
1024 #ifdef CONFIG_HOTPLUG_CPU
1025
1026 /*
1027  * Because preemptible RCU does not exist, it never needs to migrate
1028  * tasks that were blocked within RCU read-side critical sections, and
1029  * such non-existent tasks cannot possibly have been blocking the current
1030  * grace period.
1031  */
1032 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1033                                      struct rcu_node *rnp,
1034                                      struct rcu_data *rdp)
1035 {
1036         return 0;
1037 }
1038
1039 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1040
1041 /*
1042  * Because preemptible RCU does not exist, it never has any callbacks
1043  * to check.
1044  */
1045 static void rcu_preempt_check_callbacks(int cpu)
1046 {
1047 }
1048
1049 /*
1050  * Wait for an rcu-preempt grace period, but make it happen quickly.
1051  * But because preemptible RCU does not exist, map to rcu-sched.
1052  */
1053 void synchronize_rcu_expedited(void)
1054 {
1055         synchronize_sched_expedited();
1056 }
1057 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1058
1059 #ifdef CONFIG_HOTPLUG_CPU
1060
1061 /*
1062  * Because preemptible RCU does not exist, there is never any need to
1063  * report on tasks preempted in RCU read-side critical sections during
1064  * expedited RCU grace periods.
1065  */
1066 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1067                                bool wake)
1068 {
1069 }
1070
1071 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1072
1073 /*
1074  * Because preemptible RCU does not exist, rcu_barrier() is just
1075  * another name for rcu_barrier_sched().
1076  */
1077 void rcu_barrier(void)
1078 {
1079         rcu_barrier_sched();
1080 }
1081 EXPORT_SYMBOL_GPL(rcu_barrier);
1082
1083 /*
1084  * Because preemptible RCU does not exist, it need not be initialized.
1085  */
1086 static void __init __rcu_init_preempt(void)
1087 {
1088 }
1089
1090 /*
1091  * Because preemptible RCU does not exist, tasks cannot possibly exit
1092  * while in preemptible RCU read-side critical sections.
1093  */
1094 void exit_rcu(void)
1095 {
1096 }
1097
1098 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1099
1100 #ifdef CONFIG_RCU_BOOST
1101
1102 #include "../locking/rtmutex_common.h"
1103
1104 #ifdef CONFIG_RCU_TRACE
1105
1106 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1107 {
1108         if (list_empty(&rnp->blkd_tasks))
1109                 rnp->n_balk_blkd_tasks++;
1110         else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1111                 rnp->n_balk_exp_gp_tasks++;
1112         else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1113                 rnp->n_balk_boost_tasks++;
1114         else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1115                 rnp->n_balk_notblocked++;
1116         else if (rnp->gp_tasks != NULL &&
1117                  ULONG_CMP_LT(jiffies, rnp->boost_time))
1118                 rnp->n_balk_notyet++;
1119         else
1120                 rnp->n_balk_nos++;
1121 }
1122
1123 #else /* #ifdef CONFIG_RCU_TRACE */
1124
1125 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1126 {
1127 }
1128
1129 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1130
1131 static void rcu_wake_cond(struct task_struct *t, int status)
1132 {
1133         /*
1134          * If the thread is yielding, only wake it when this
1135          * is invoked from idle
1136          */
1137         if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1138                 wake_up_process(t);
1139 }
1140
1141 /*
1142  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1143  * or ->boost_tasks, advancing the pointer to the next task in the
1144  * ->blkd_tasks list.
1145  *
1146  * Note that irqs must be enabled: boosting the task can block.
1147  * Returns 1 if there are more tasks needing to be boosted.
1148  */
1149 static int rcu_boost(struct rcu_node *rnp)
1150 {
1151         unsigned long flags;
1152         struct task_struct *t;
1153         struct list_head *tb;
1154
1155         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1156                 return 0;  /* Nothing left to boost. */
1157
1158         raw_spin_lock_irqsave(&rnp->lock, flags);
1159         smp_mb__after_unlock_lock();
1160
1161         /*
1162          * Recheck under the lock: all tasks in need of boosting
1163          * might exit their RCU read-side critical sections on their own.
1164          */
1165         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1166                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1167                 return 0;
1168         }
1169
1170         /*
1171          * Preferentially boost tasks blocking expedited grace periods.
1172          * This cannot starve the normal grace periods because a second
1173          * expedited grace period must boost all blocked tasks, including
1174          * those blocking the pre-existing normal grace period.
1175          */
1176         if (rnp->exp_tasks != NULL) {
1177                 tb = rnp->exp_tasks;
1178                 rnp->n_exp_boosts++;
1179         } else {
1180                 tb = rnp->boost_tasks;
1181                 rnp->n_normal_boosts++;
1182         }
1183         rnp->n_tasks_boosted++;
1184
1185         /*
1186          * We boost task t by manufacturing an rt_mutex that appears to
1187          * be held by task t.  We leave a pointer to that rt_mutex where
1188          * task t can find it, and task t will release the mutex when it
1189          * exits its outermost RCU read-side critical section.  Then
1190          * simply acquiring this artificial rt_mutex will boost task
1191          * t's priority.  (Thanks to tglx for suggesting this approach!)
1192          *
1193          * Note that task t must acquire rnp->lock to remove itself from
1194          * the ->blkd_tasks list, which it will do from exit() if from
1195          * nowhere else.  We therefore are guaranteed that task t will
1196          * stay around at least until we drop rnp->lock.  Note that
1197          * rnp->lock also resolves races between our priority boosting
1198          * and task t's exiting its outermost RCU read-side critical
1199          * section.
1200          */
1201         t = container_of(tb, struct task_struct, rcu_node_entry);
1202         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1203         init_completion(&rnp->boost_completion);
1204         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1205         /* Lock only for side effect: boosts task t's priority. */
1206         rt_mutex_lock(&rnp->boost_mtx);
1207         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1208
1209         /* Wait for boostee to be done w/boost_mtx before reinitializing. */
1210         wait_for_completion(&rnp->boost_completion);
1211
1212         return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1213                ACCESS_ONCE(rnp->boost_tasks) != NULL;
1214 }
1215
1216 /*
1217  * Priority-boosting kthread.  One per leaf rcu_node and one for the
1218  * root rcu_node.
1219  */
1220 static int rcu_boost_kthread(void *arg)
1221 {
1222         struct rcu_node *rnp = (struct rcu_node *)arg;
1223         int spincnt = 0;
1224         int more2boost;
1225
1226         trace_rcu_utilization(TPS("Start boost kthread@init"));
1227         for (;;) {
1228                 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1229                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1230                 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1231                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1232                 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1233                 more2boost = rcu_boost(rnp);
1234                 if (more2boost)
1235                         spincnt++;
1236                 else
1237                         spincnt = 0;
1238                 if (spincnt > 10) {
1239                         rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1240                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1241                         schedule_timeout_interruptible(2);
1242                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1243                         spincnt = 0;
1244                 }
1245         }
1246         /* NOTREACHED */
1247         trace_rcu_utilization(TPS("End boost kthread@notreached"));
1248         return 0;
1249 }
1250
1251 /*
1252  * Check to see if it is time to start boosting RCU readers that are
1253  * blocking the current grace period, and, if so, tell the per-rcu_node
1254  * kthread to start boosting them.  If there is an expedited grace
1255  * period in progress, it is always time to boost.
1256  *
1257  * The caller must hold rnp->lock, which this function releases.
1258  * The ->boost_kthread_task is immortal, so we don't need to worry
1259  * about it going away.
1260  */
1261 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1262         __releases(rnp->lock)
1263 {
1264         struct task_struct *t;
1265
1266         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1267                 rnp->n_balk_exp_gp_tasks++;
1268                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1269                 return;
1270         }
1271         if (rnp->exp_tasks != NULL ||
1272             (rnp->gp_tasks != NULL &&
1273              rnp->boost_tasks == NULL &&
1274              rnp->qsmask == 0 &&
1275              ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1276                 if (rnp->exp_tasks == NULL)
1277                         rnp->boost_tasks = rnp->gp_tasks;
1278                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1279                 t = rnp->boost_kthread_task;
1280                 if (t)
1281                         rcu_wake_cond(t, rnp->boost_kthread_status);
1282         } else {
1283                 rcu_initiate_boost_trace(rnp);
1284                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1285         }
1286 }
1287
1288 /*
1289  * Wake up the per-CPU kthread to invoke RCU callbacks.
1290  */
1291 static void invoke_rcu_callbacks_kthread(void)
1292 {
1293         unsigned long flags;
1294
1295         local_irq_save(flags);
1296         __this_cpu_write(rcu_cpu_has_work, 1);
1297         if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1298             current != __this_cpu_read(rcu_cpu_kthread_task)) {
1299                 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1300                               __this_cpu_read(rcu_cpu_kthread_status));
1301         }
1302         local_irq_restore(flags);
1303 }
1304
1305 /*
1306  * Is the current CPU running the RCU-callbacks kthread?
1307  * Caller must have preemption disabled.
1308  */
1309 static bool rcu_is_callbacks_kthread(void)
1310 {
1311         return __this_cpu_read(rcu_cpu_kthread_task) == current;
1312 }
1313
1314 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1315
1316 /*
1317  * Do priority-boost accounting for the start of a new grace period.
1318  */
1319 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1320 {
1321         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1322 }
1323
1324 /*
1325  * Create an RCU-boost kthread for the specified node if one does not
1326  * already exist.  We only create this kthread for preemptible RCU.
1327  * Returns zero if all is well, a negated errno otherwise.
1328  */
1329 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1330                                                  struct rcu_node *rnp)
1331 {
1332         int rnp_index = rnp - &rsp->node[0];
1333         unsigned long flags;
1334         struct sched_param sp;
1335         struct task_struct *t;
1336
1337         if (&rcu_preempt_state != rsp)
1338                 return 0;
1339
1340         if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1341                 return 0;
1342
1343         rsp->boost = 1;
1344         if (rnp->boost_kthread_task != NULL)
1345                 return 0;
1346         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1347                            "rcub/%d", rnp_index);
1348         if (IS_ERR(t))
1349                 return PTR_ERR(t);
1350         raw_spin_lock_irqsave(&rnp->lock, flags);
1351         smp_mb__after_unlock_lock();
1352         rnp->boost_kthread_task = t;
1353         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1354         sp.sched_priority = RCU_BOOST_PRIO;
1355         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1356         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1357         return 0;
1358 }
1359
1360 static void rcu_kthread_do_work(void)
1361 {
1362         rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1363         rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1364         rcu_preempt_do_callbacks();
1365 }
1366
1367 static void rcu_cpu_kthread_setup(unsigned int cpu)
1368 {
1369         struct sched_param sp;
1370
1371         sp.sched_priority = RCU_KTHREAD_PRIO;
1372         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1373 }
1374
1375 static void rcu_cpu_kthread_park(unsigned int cpu)
1376 {
1377         per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1378 }
1379
1380 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1381 {
1382         return __this_cpu_read(rcu_cpu_has_work);
1383 }
1384
1385 /*
1386  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1387  * RCU softirq used in flavors and configurations of RCU that do not
1388  * support RCU priority boosting.
1389  */
1390 static void rcu_cpu_kthread(unsigned int cpu)
1391 {
1392         unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1393         char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1394         int spincnt;
1395
1396         for (spincnt = 0; spincnt < 10; spincnt++) {
1397                 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1398                 local_bh_disable();
1399                 *statusp = RCU_KTHREAD_RUNNING;
1400                 this_cpu_inc(rcu_cpu_kthread_loops);
1401                 local_irq_disable();
1402                 work = *workp;
1403                 *workp = 0;
1404                 local_irq_enable();
1405                 if (work)
1406                         rcu_kthread_do_work();
1407                 local_bh_enable();
1408                 if (*workp == 0) {
1409                         trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1410                         *statusp = RCU_KTHREAD_WAITING;
1411                         return;
1412                 }
1413         }
1414         *statusp = RCU_KTHREAD_YIELDING;
1415         trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1416         schedule_timeout_interruptible(2);
1417         trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1418         *statusp = RCU_KTHREAD_WAITING;
1419 }
1420
1421 /*
1422  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1423  * served by the rcu_node in question.  The CPU hotplug lock is still
1424  * held, so the value of rnp->qsmaskinit will be stable.
1425  *
1426  * We don't include outgoingcpu in the affinity set, use -1 if there is
1427  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1428  * this function allows the kthread to execute on any CPU.
1429  */
1430 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1431 {
1432         struct task_struct *t = rnp->boost_kthread_task;
1433         unsigned long mask = rnp->qsmaskinit;
1434         cpumask_var_t cm;
1435         int cpu;
1436
1437         if (!t)
1438                 return;
1439         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1440                 return;
1441         for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1442                 if ((mask & 0x1) && cpu != outgoingcpu)
1443                         cpumask_set_cpu(cpu, cm);
1444         if (cpumask_weight(cm) == 0) {
1445                 cpumask_setall(cm);
1446                 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1447                         cpumask_clear_cpu(cpu, cm);
1448                 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1449         }
1450         set_cpus_allowed_ptr(t, cm);
1451         free_cpumask_var(cm);
1452 }
1453
1454 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1455         .store                  = &rcu_cpu_kthread_task,
1456         .thread_should_run      = rcu_cpu_kthread_should_run,
1457         .thread_fn              = rcu_cpu_kthread,
1458         .thread_comm            = "rcuc/%u",
1459         .setup                  = rcu_cpu_kthread_setup,
1460         .park                   = rcu_cpu_kthread_park,
1461 };
1462
1463 /*
1464  * Spawn all kthreads -- called as soon as the scheduler is running.
1465  */
1466 static int __init rcu_spawn_kthreads(void)
1467 {
1468         struct rcu_node *rnp;
1469         int cpu;
1470
1471         rcu_scheduler_fully_active = 1;
1472         for_each_possible_cpu(cpu)
1473                 per_cpu(rcu_cpu_has_work, cpu) = 0;
1474         BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1475         rnp = rcu_get_root(rcu_state_p);
1476         (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1477         if (NUM_RCU_NODES > 1) {
1478                 rcu_for_each_leaf_node(rcu_state_p, rnp)
1479                         (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1480         }
1481         return 0;
1482 }
1483 early_initcall(rcu_spawn_kthreads);
1484
1485 static void rcu_prepare_kthreads(int cpu)
1486 {
1487         struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1488         struct rcu_node *rnp = rdp->mynode;
1489
1490         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1491         if (rcu_scheduler_fully_active)
1492                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1493 }
1494
1495 #else /* #ifdef CONFIG_RCU_BOOST */
1496
1497 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1498         __releases(rnp->lock)
1499 {
1500         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1501 }
1502
1503 static void invoke_rcu_callbacks_kthread(void)
1504 {
1505         WARN_ON_ONCE(1);
1506 }
1507
1508 static bool rcu_is_callbacks_kthread(void)
1509 {
1510         return false;
1511 }
1512
1513 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1514 {
1515 }
1516
1517 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1518 {
1519 }
1520
1521 static int __init rcu_scheduler_really_started(void)
1522 {
1523         rcu_scheduler_fully_active = 1;
1524         return 0;
1525 }
1526 early_initcall(rcu_scheduler_really_started);
1527
1528 static void rcu_prepare_kthreads(int cpu)
1529 {
1530 }
1531
1532 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1533
1534 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1535
1536 /*
1537  * Check to see if any future RCU-related work will need to be done
1538  * by the current CPU, even if none need be done immediately, returning
1539  * 1 if so.  This function is part of the RCU implementation; it is -not-
1540  * an exported member of the RCU API.
1541  *
1542  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1543  * any flavor of RCU.
1544  */
1545 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1546 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1547 {
1548         *delta_jiffies = ULONG_MAX;
1549         return rcu_cpu_has_callbacks(cpu, NULL);
1550 }
1551 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1552
1553 /*
1554  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1555  * after it.
1556  */
1557 static void rcu_cleanup_after_idle(int cpu)
1558 {
1559 }
1560
1561 /*
1562  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1563  * is nothing.
1564  */
1565 static void rcu_prepare_for_idle(int cpu)
1566 {
1567 }
1568
1569 /*
1570  * Don't bother keeping a running count of the number of RCU callbacks
1571  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1572  */
1573 static void rcu_idle_count_callbacks_posted(void)
1574 {
1575 }
1576
1577 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1578
1579 /*
1580  * This code is invoked when a CPU goes idle, at which point we want
1581  * to have the CPU do everything required for RCU so that it can enter
1582  * the energy-efficient dyntick-idle mode.  This is handled by a
1583  * state machine implemented by rcu_prepare_for_idle() below.
1584  *
1585  * The following three proprocessor symbols control this state machine:
1586  *
1587  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1588  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1589  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1590  *      benchmarkers who might otherwise be tempted to set this to a large
1591  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1592  *      system.  And if you are -that- concerned about energy efficiency,
1593  *      just power the system down and be done with it!
1594  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1595  *      permitted to sleep in dyntick-idle mode with only lazy RCU
1596  *      callbacks pending.  Setting this too high can OOM your system.
1597  *
1598  * The values below work well in practice.  If future workloads require
1599  * adjustment, they can be converted into kernel config parameters, though
1600  * making the state machine smarter might be a better option.
1601  */
1602 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1603 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1604
1605 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1606 module_param(rcu_idle_gp_delay, int, 0644);
1607 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1608 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1609
1610 extern int tick_nohz_active;
1611
1612 /*
1613  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1614  * only if it has been awhile since the last time we did so.  Afterwards,
1615  * if there are any callbacks ready for immediate invocation, return true.
1616  */
1617 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1618 {
1619         bool cbs_ready = false;
1620         struct rcu_data *rdp;
1621         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1622         struct rcu_node *rnp;
1623         struct rcu_state *rsp;
1624
1625         /* Exit early if we advanced recently. */
1626         if (jiffies == rdtp->last_advance_all)
1627                 return 0;
1628         rdtp->last_advance_all = jiffies;
1629
1630         for_each_rcu_flavor(rsp) {
1631                 rdp = this_cpu_ptr(rsp->rda);
1632                 rnp = rdp->mynode;
1633
1634                 /*
1635                  * Don't bother checking unless a grace period has
1636                  * completed since we last checked and there are
1637                  * callbacks not yet ready to invoke.
1638                  */
1639                 if (rdp->completed != rnp->completed &&
1640                     rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1641                         note_gp_changes(rsp, rdp);
1642
1643                 if (cpu_has_callbacks_ready_to_invoke(rdp))
1644                         cbs_ready = true;
1645         }
1646         return cbs_ready;
1647 }
1648
1649 /*
1650  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1651  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1652  * caller to set the timeout based on whether or not there are non-lazy
1653  * callbacks.
1654  *
1655  * The caller must have disabled interrupts.
1656  */
1657 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1658 int rcu_needs_cpu(int cpu, unsigned long *dj)
1659 {
1660         struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1661
1662         /* Snapshot to detect later posting of non-lazy callback. */
1663         rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1664
1665         /* If no callbacks, RCU doesn't need the CPU. */
1666         if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1667                 *dj = ULONG_MAX;
1668                 return 0;
1669         }
1670
1671         /* Attempt to advance callbacks. */
1672         if (rcu_try_advance_all_cbs()) {
1673                 /* Some ready to invoke, so initiate later invocation. */
1674                 invoke_rcu_core();
1675                 return 1;
1676         }
1677         rdtp->last_accelerate = jiffies;
1678
1679         /* Request timer delay depending on laziness, and round. */
1680         if (!rdtp->all_lazy) {
1681                 *dj = round_up(rcu_idle_gp_delay + jiffies,
1682                                rcu_idle_gp_delay) - jiffies;
1683         } else {
1684                 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1685         }
1686         return 0;
1687 }
1688 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1689
1690 /*
1691  * Prepare a CPU for idle from an RCU perspective.  The first major task
1692  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1693  * The second major task is to check to see if a non-lazy callback has
1694  * arrived at a CPU that previously had only lazy callbacks.  The third
1695  * major task is to accelerate (that is, assign grace-period numbers to)
1696  * any recently arrived callbacks.
1697  *
1698  * The caller must have disabled interrupts.
1699  */
1700 static void rcu_prepare_for_idle(int cpu)
1701 {
1702 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1703         bool needwake;
1704         struct rcu_data *rdp;
1705         struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1706         struct rcu_node *rnp;
1707         struct rcu_state *rsp;
1708         int tne;
1709
1710         /* Handle nohz enablement switches conservatively. */
1711         tne = ACCESS_ONCE(tick_nohz_active);
1712         if (tne != rdtp->tick_nohz_enabled_snap) {
1713                 if (rcu_cpu_has_callbacks(cpu, NULL))
1714                         invoke_rcu_core(); /* force nohz to see update. */
1715                 rdtp->tick_nohz_enabled_snap = tne;
1716                 return;
1717         }
1718         if (!tne)
1719                 return;
1720
1721         /* If this is a no-CBs CPU, no callbacks, just return. */
1722         if (rcu_is_nocb_cpu(cpu))
1723                 return;
1724
1725         /*
1726          * If a non-lazy callback arrived at a CPU having only lazy
1727          * callbacks, invoke RCU core for the side-effect of recalculating
1728          * idle duration on re-entry to idle.
1729          */
1730         if (rdtp->all_lazy &&
1731             rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1732                 rdtp->all_lazy = false;
1733                 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1734                 invoke_rcu_core();
1735                 return;
1736         }
1737
1738         /*
1739          * If we have not yet accelerated this jiffy, accelerate all
1740          * callbacks on this CPU.
1741          */
1742         if (rdtp->last_accelerate == jiffies)
1743                 return;
1744         rdtp->last_accelerate = jiffies;
1745         for_each_rcu_flavor(rsp) {
1746                 rdp = per_cpu_ptr(rsp->rda, cpu);
1747                 if (!*rdp->nxttail[RCU_DONE_TAIL])
1748                         continue;
1749                 rnp = rdp->mynode;
1750                 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1751                 smp_mb__after_unlock_lock();
1752                 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1753                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1754                 if (needwake)
1755                         rcu_gp_kthread_wake(rsp);
1756         }
1757 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1758 }
1759
1760 /*
1761  * Clean up for exit from idle.  Attempt to advance callbacks based on
1762  * any grace periods that elapsed while the CPU was idle, and if any
1763  * callbacks are now ready to invoke, initiate invocation.
1764  */
1765 static void rcu_cleanup_after_idle(int cpu)
1766 {
1767 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1768         if (rcu_is_nocb_cpu(cpu))
1769                 return;
1770         if (rcu_try_advance_all_cbs())
1771                 invoke_rcu_core();
1772 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1773 }
1774
1775 /*
1776  * Keep a running count of the number of non-lazy callbacks posted
1777  * on this CPU.  This running counter (which is never decremented) allows
1778  * rcu_prepare_for_idle() to detect when something out of the idle loop
1779  * posts a callback, even if an equal number of callbacks are invoked.
1780  * Of course, callbacks should only be posted from within a trace event
1781  * designed to be called from idle or from within RCU_NONIDLE().
1782  */
1783 static void rcu_idle_count_callbacks_posted(void)
1784 {
1785         __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1786 }
1787
1788 /*
1789  * Data for flushing lazy RCU callbacks at OOM time.
1790  */
1791 static atomic_t oom_callback_count;
1792 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1793
1794 /*
1795  * RCU OOM callback -- decrement the outstanding count and deliver the
1796  * wake-up if we are the last one.
1797  */
1798 static void rcu_oom_callback(struct rcu_head *rhp)
1799 {
1800         if (atomic_dec_and_test(&oom_callback_count))
1801                 wake_up(&oom_callback_wq);
1802 }
1803
1804 /*
1805  * Post an rcu_oom_notify callback on the current CPU if it has at
1806  * least one lazy callback.  This will unnecessarily post callbacks
1807  * to CPUs that already have a non-lazy callback at the end of their
1808  * callback list, but this is an infrequent operation, so accept some
1809  * extra overhead to keep things simple.
1810  */
1811 static void rcu_oom_notify_cpu(void *unused)
1812 {
1813         struct rcu_state *rsp;
1814         struct rcu_data *rdp;
1815
1816         for_each_rcu_flavor(rsp) {
1817                 rdp = raw_cpu_ptr(rsp->rda);
1818                 if (rdp->qlen_lazy != 0) {
1819                         atomic_inc(&oom_callback_count);
1820                         rsp->call(&rdp->oom_head, rcu_oom_callback);
1821                 }
1822         }
1823 }
1824
1825 /*
1826  * If low on memory, ensure that each CPU has a non-lazy callback.
1827  * This will wake up CPUs that have only lazy callbacks, in turn
1828  * ensuring that they free up the corresponding memory in a timely manner.
1829  * Because an uncertain amount of memory will be freed in some uncertain
1830  * timeframe, we do not claim to have freed anything.
1831  */
1832 static int rcu_oom_notify(struct notifier_block *self,
1833                           unsigned long notused, void *nfreed)
1834 {
1835         int cpu;
1836
1837         /* Wait for callbacks from earlier instance to complete. */
1838         wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1839         smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1840
1841         /*
1842          * Prevent premature wakeup: ensure that all increments happen
1843          * before there is a chance of the counter reaching zero.
1844          */
1845         atomic_set(&oom_callback_count, 1);
1846
1847         get_online_cpus();
1848         for_each_online_cpu(cpu) {
1849                 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1850                 cond_resched();
1851         }
1852         put_online_cpus();
1853
1854         /* Unconditionally decrement: no need to wake ourselves up. */
1855         atomic_dec(&oom_callback_count);
1856
1857         return NOTIFY_OK;
1858 }
1859
1860 static struct notifier_block rcu_oom_nb = {
1861         .notifier_call = rcu_oom_notify
1862 };
1863
1864 static int __init rcu_register_oom_notifier(void)
1865 {
1866         register_oom_notifier(&rcu_oom_nb);
1867         return 0;
1868 }
1869 early_initcall(rcu_register_oom_notifier);
1870
1871 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1872
1873 #ifdef CONFIG_RCU_CPU_STALL_INFO
1874
1875 #ifdef CONFIG_RCU_FAST_NO_HZ
1876
1877 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1878 {
1879         struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1880         unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1881
1882         sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1883                 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1884                 ulong2long(nlpd),
1885                 rdtp->all_lazy ? 'L' : '.',
1886                 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1887 }
1888
1889 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1890
1891 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1892 {
1893         *cp = '\0';
1894 }
1895
1896 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1897
1898 /* Initiate the stall-info list. */
1899 static void print_cpu_stall_info_begin(void)
1900 {
1901         pr_cont("\n");
1902 }
1903
1904 /*
1905  * Print out diagnostic information for the specified stalled CPU.
1906  *
1907  * If the specified CPU is aware of the current RCU grace period
1908  * (flavor specified by rsp), then print the number of scheduling
1909  * clock interrupts the CPU has taken during the time that it has
1910  * been aware.  Otherwise, print the number of RCU grace periods
1911  * that this CPU is ignorant of, for example, "1" if the CPU was
1912  * aware of the previous grace period.
1913  *
1914  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1915  */
1916 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1917 {
1918         char fast_no_hz[72];
1919         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1920         struct rcu_dynticks *rdtp = rdp->dynticks;
1921         char *ticks_title;
1922         unsigned long ticks_value;
1923
1924         if (rsp->gpnum == rdp->gpnum) {
1925                 ticks_title = "ticks this GP";
1926                 ticks_value = rdp->ticks_this_gp;
1927         } else {
1928                 ticks_title = "GPs behind";
1929                 ticks_value = rsp->gpnum - rdp->gpnum;
1930         }
1931         print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1932         pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1933                cpu, ticks_value, ticks_title,
1934                atomic_read(&rdtp->dynticks) & 0xfff,
1935                rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1936                rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1937                fast_no_hz);
1938 }
1939
1940 /* Terminate the stall-info list. */
1941 static void print_cpu_stall_info_end(void)
1942 {
1943         pr_err("\t");
1944 }
1945
1946 /* Zero ->ticks_this_gp for all flavors of RCU. */
1947 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1948 {
1949         rdp->ticks_this_gp = 0;
1950         rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1951 }
1952
1953 /* Increment ->ticks_this_gp for all flavors of RCU. */
1954 static void increment_cpu_stall_ticks(void)
1955 {
1956         struct rcu_state *rsp;
1957
1958         for_each_rcu_flavor(rsp)
1959                 raw_cpu_inc(rsp->rda->ticks_this_gp);
1960 }
1961
1962 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1963
1964 static void print_cpu_stall_info_begin(void)
1965 {
1966         pr_cont(" {");
1967 }
1968
1969 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1970 {
1971         pr_cont(" %d", cpu);
1972 }
1973
1974 static void print_cpu_stall_info_end(void)
1975 {
1976         pr_cont("} ");
1977 }
1978
1979 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1980 {
1981 }
1982
1983 static void increment_cpu_stall_ticks(void)
1984 {
1985 }
1986
1987 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1988
1989 #ifdef CONFIG_RCU_NOCB_CPU
1990
1991 /*
1992  * Offload callback processing from the boot-time-specified set of CPUs
1993  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1994  * kthread created that pulls the callbacks from the corresponding CPU,
1995  * waits for a grace period to elapse, and invokes the callbacks.
1996  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1997  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1998  * has been specified, in which case each kthread actively polls its
1999  * CPU.  (Which isn't so great for energy efficiency, but which does
2000  * reduce RCU's overhead on that CPU.)
2001  *
2002  * This is intended to be used in conjunction with Frederic Weisbecker's
2003  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2004  * running CPU-bound user-mode computations.
2005  *
2006  * Offloading of callback processing could also in theory be used as
2007  * an energy-efficiency measure because CPUs with no RCU callbacks
2008  * queued are more aggressive about entering dyntick-idle mode.
2009  */
2010
2011
2012 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2013 static int __init rcu_nocb_setup(char *str)
2014 {
2015         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
2016         have_rcu_nocb_mask = true;
2017         cpulist_parse(str, rcu_nocb_mask);
2018         return 1;
2019 }
2020 __setup("rcu_nocbs=", rcu_nocb_setup);
2021
2022 static int __init parse_rcu_nocb_poll(char *arg)
2023 {
2024         rcu_nocb_poll = 1;
2025         return 0;
2026 }
2027 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2028
2029 /*
2030  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2031  * grace period.
2032  */
2033 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2034 {
2035         wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2036 }
2037
2038 /*
2039  * Set the root rcu_node structure's ->need_future_gp field
2040  * based on the sum of those of all rcu_node structures.  This does
2041  * double-count the root rcu_node structure's requests, but this
2042  * is necessary to handle the possibility of a rcu_nocb_kthread()
2043  * having awakened during the time that the rcu_node structures
2044  * were being updated for the end of the previous grace period.
2045  */
2046 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2047 {
2048         rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2049 }
2050
2051 static void rcu_init_one_nocb(struct rcu_node *rnp)
2052 {
2053         init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2054         init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2055 }
2056
2057 #ifndef CONFIG_RCU_NOCB_CPU_ALL
2058 /* Is the specified CPU a no-CBs CPU? */
2059 bool rcu_is_nocb_cpu(int cpu)
2060 {
2061         if (have_rcu_nocb_mask)
2062                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
2063         return false;
2064 }
2065 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
2066
2067 /*
2068  * Enqueue the specified string of rcu_head structures onto the specified
2069  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
2070  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
2071  * counts are supplied by rhcount and rhcount_lazy.
2072  *
2073  * If warranted, also wake up the kthread servicing this CPUs queues.
2074  */
2075 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2076                                     struct rcu_head *rhp,
2077                                     struct rcu_head **rhtp,
2078                                     int rhcount, int rhcount_lazy,
2079                                     unsigned long flags)
2080 {
2081         int len;
2082         struct rcu_head **old_rhpp;
2083         struct task_struct *t;
2084
2085         /* Enqueue the callback on the nocb list and update counts. */
2086         old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2087         ACCESS_ONCE(*old_rhpp) = rhp;
2088         atomic_long_add(rhcount, &rdp->nocb_q_count);
2089         atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2090
2091         /* If we are not being polled and there is a kthread, awaken it ... */
2092         t = ACCESS_ONCE(rdp->nocb_kthread);
2093         if (rcu_nocb_poll || !t) {
2094                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2095                                     TPS("WakeNotPoll"));
2096                 return;
2097         }
2098         len = atomic_long_read(&rdp->nocb_q_count);
2099         if (old_rhpp == &rdp->nocb_head) {
2100                 if (!irqs_disabled_flags(flags)) {
2101                         wake_up(&rdp->nocb_wq); /* ... if queue was empty ... */
2102                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2103                                             TPS("WakeEmpty"));
2104                 } else {
2105                         rdp->nocb_defer_wakeup = true;
2106                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2107                                             TPS("WakeEmptyIsDeferred"));
2108                 }
2109                 rdp->qlen_last_fqs_check = 0;
2110         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2111                 wake_up_process(t); /* ... or if many callbacks queued. */
2112                 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2113                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
2114         } else {
2115                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2116         }
2117         return;
2118 }
2119
2120 /*
2121  * This is a helper for __call_rcu(), which invokes this when the normal
2122  * callback queue is inoperable.  If this is not a no-CBs CPU, this
2123  * function returns failure back to __call_rcu(), which can complain
2124  * appropriately.
2125  *
2126  * Otherwise, this function queues the callback where the corresponding
2127  * "rcuo" kthread can find it.
2128  */
2129 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2130                             bool lazy, unsigned long flags)
2131 {
2132
2133         if (!rcu_is_nocb_cpu(rdp->cpu))
2134                 return 0;
2135         __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2136         if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2137                 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2138                                          (unsigned long)rhp->func,
2139                                          -atomic_long_read(&rdp->nocb_q_count_lazy),
2140                                          -atomic_long_read(&rdp->nocb_q_count));
2141         else
2142                 trace_rcu_callback(rdp->rsp->name, rhp,
2143                                    -atomic_long_read(&rdp->nocb_q_count_lazy),
2144                                    -atomic_long_read(&rdp->nocb_q_count));
2145         return 1;
2146 }
2147
2148 /*
2149  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2150  * not a no-CBs CPU.
2151  */
2152 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2153                                                      struct rcu_data *rdp,
2154                                                      unsigned long flags)
2155 {
2156         long ql = rsp->qlen;
2157         long qll = rsp->qlen_lazy;
2158
2159         /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2160         if (!rcu_is_nocb_cpu(smp_processor_id()))
2161                 return 0;
2162         rsp->qlen = 0;
2163         rsp->qlen_lazy = 0;
2164
2165         /* First, enqueue the donelist, if any.  This preserves CB ordering. */
2166         if (rsp->orphan_donelist != NULL) {
2167                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2168                                         rsp->orphan_donetail, ql, qll, flags);
2169                 ql = qll = 0;
2170                 rsp->orphan_donelist = NULL;
2171                 rsp->orphan_donetail = &rsp->orphan_donelist;
2172         }
2173         if (rsp->orphan_nxtlist != NULL) {
2174                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2175                                         rsp->orphan_nxttail, ql, qll, flags);
2176                 ql = qll = 0;
2177                 rsp->orphan_nxtlist = NULL;
2178                 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2179         }
2180         return 1;
2181 }
2182
2183 /*
2184  * If necessary, kick off a new grace period, and either way wait
2185  * for a subsequent grace period to complete.
2186  */
2187 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2188 {
2189         unsigned long c;
2190         bool d;
2191         unsigned long flags;
2192         bool needwake;
2193         struct rcu_node *rnp = rdp->mynode;
2194
2195         raw_spin_lock_irqsave(&rnp->lock, flags);
2196         smp_mb__after_unlock_lock();
2197         needwake = rcu_start_future_gp(rnp, rdp, &c);
2198         raw_spin_unlock_irqrestore(&rnp->lock, flags);
2199         if (needwake)
2200                 rcu_gp_kthread_wake(rdp->rsp);
2201
2202         /*
2203          * Wait for the grace period.  Do so interruptibly to avoid messing
2204          * up the load average.
2205          */
2206         trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2207         for (;;) {
2208                 wait_event_interruptible(
2209                         rnp->nocb_gp_wq[c & 0x1],
2210                         (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2211                 if (likely(d))
2212                         break;
2213                 flush_signals(current);
2214                 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2215         }
2216         trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2217         smp_mb(); /* Ensure that CB invocation happens after GP end. */
2218 }
2219
2220 /*
2221  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2222  * callbacks queued by the corresponding no-CBs CPU.
2223  */
2224 static int rcu_nocb_kthread(void *arg)
2225 {
2226         int c, cl;
2227         bool firsttime = 1;
2228         struct rcu_head *list;
2229         struct rcu_head *next;
2230         struct rcu_head **tail;
2231         struct rcu_data *rdp = arg;
2232
2233         /* Each pass through this loop invokes one batch of callbacks */
2234         for (;;) {
2235                 /* If not polling, wait for next batch of callbacks. */
2236                 if (!rcu_nocb_poll) {
2237                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2238                                             TPS("Sleep"));
2239                         wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head);
2240                         /* Memory barrier provide by xchg() below. */
2241                 } else if (firsttime) {
2242                         firsttime = 0;
2243                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2244                                             TPS("Poll"));
2245                 }
2246                 list = ACCESS_ONCE(rdp->nocb_head);
2247                 if (!list) {
2248                         if (!rcu_nocb_poll)
2249                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2250                                                     TPS("WokeEmpty"));
2251                         schedule_timeout_interruptible(1);
2252                         flush_signals(current);
2253                         continue;
2254                 }
2255                 firsttime = 1;
2256                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2257                                     TPS("WokeNonEmpty"));
2258
2259                 /*
2260                  * Extract queued callbacks, update counts, and wait
2261                  * for a grace period to elapse.
2262                  */
2263                 ACCESS_ONCE(rdp->nocb_head) = NULL;
2264                 tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2265                 c = atomic_long_xchg(&rdp->nocb_q_count, 0);
2266                 cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2267                 ACCESS_ONCE(rdp->nocb_p_count) += c;
2268                 ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
2269                 rcu_nocb_wait_gp(rdp);
2270
2271                 /* Each pass through the following loop invokes a callback. */
2272                 trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2273                 c = cl = 0;
2274                 while (list) {
2275                         next = list->next;
2276                         /* Wait for enqueuing to complete, if needed. */
2277                         while (next == NULL && &list->next != tail) {
2278                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2279                                                     TPS("WaitQueue"));
2280                                 schedule_timeout_interruptible(1);
2281                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2282                                                     TPS("WokeQueue"));
2283                                 next = list->next;
2284                         }
2285                         debug_rcu_head_unqueue(list);
2286                         local_bh_disable();
2287                         if (__rcu_reclaim(rdp->rsp->name, list))
2288                                 cl++;
2289                         c++;
2290                         local_bh_enable();
2291                         list = next;
2292                 }
2293                 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2294                 ACCESS_ONCE(rdp->nocb_p_count) -= c;
2295                 ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
2296                 rdp->n_nocbs_invoked += c;
2297         }
2298         return 0;
2299 }
2300
2301 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2302 static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2303 {
2304         return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2305 }
2306
2307 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2308 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2309 {
2310         if (!rcu_nocb_need_deferred_wakeup(rdp))
2311                 return;
2312         ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
2313         wake_up(&rdp->nocb_wq);
2314         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
2315 }
2316
2317 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2318 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2319 {
2320         rdp->nocb_tail = &rdp->nocb_head;
2321         init_waitqueue_head(&rdp->nocb_wq);
2322 }
2323
2324 /* Create a kthread for each RCU flavor for each no-CBs CPU. */
2325 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2326 {
2327         int cpu;
2328         struct rcu_data *rdp;
2329         struct task_struct *t;
2330
2331         if (rcu_nocb_mask == NULL)
2332                 return;
2333         for_each_cpu(cpu, rcu_nocb_mask) {
2334                 rdp = per_cpu_ptr(rsp->rda, cpu);
2335                 t = kthread_run(rcu_nocb_kthread, rdp,
2336                                 "rcuo%c/%d", rsp->abbr, cpu);
2337                 BUG_ON(IS_ERR(t));
2338                 ACCESS_ONCE(rdp->nocb_kthread) = t;
2339         }
2340 }
2341
2342 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2343 static bool init_nocb_callback_list(struct rcu_data *rdp)
2344 {
2345         if (rcu_nocb_mask == NULL ||
2346             !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
2347                 return false;
2348         rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2349         return true;
2350 }
2351
2352 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2353
2354 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2355 {
2356 }
2357
2358 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2359 {
2360 }
2361
2362 static void rcu_init_one_nocb(struct rcu_node *rnp)
2363 {
2364 }
2365
2366 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2367                             bool lazy, unsigned long flags)
2368 {
2369         return 0;
2370 }
2371
2372 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2373                                                      struct rcu_data *rdp,
2374                                                      unsigned long flags)
2375 {
2376         return 0;
2377 }
2378
2379 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2380 {
2381 }
2382
2383 static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2384 {
2385         return false;
2386 }
2387
2388 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2389 {
2390 }
2391
2392 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2393 {
2394 }
2395
2396 static bool init_nocb_callback_list(struct rcu_data *rdp)
2397 {
2398         return false;
2399 }
2400
2401 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2402
2403 /*
2404  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2405  * arbitrarily long period of time with the scheduling-clock tick turned
2406  * off.  RCU will be paying attention to this CPU because it is in the
2407  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2408  * machine because the scheduling-clock tick has been disabled.  Therefore,
2409  * if an adaptive-ticks CPU is failing to respond to the current grace
2410  * period and has not be idle from an RCU perspective, kick it.
2411  */
2412 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2413 {
2414 #ifdef CONFIG_NO_HZ_FULL
2415         if (tick_nohz_full_cpu(cpu))
2416                 smp_send_reschedule(cpu);
2417 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2418 }
2419
2420
2421 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2422
2423 /*
2424  * Define RCU flavor that holds sysidle state.  This needs to be the
2425  * most active flavor of RCU.
2426  */
2427 #ifdef CONFIG_PREEMPT_RCU
2428 static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
2429 #else /* #ifdef CONFIG_PREEMPT_RCU */
2430 static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
2431 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2432
2433 static int full_sysidle_state;          /* Current system-idle state. */
2434 #define RCU_SYSIDLE_NOT         0       /* Some CPU is not idle. */
2435 #define RCU_SYSIDLE_SHORT       1       /* All CPUs idle for brief period. */
2436 #define RCU_SYSIDLE_LONG        2       /* All CPUs idle for long enough. */
2437 #define RCU_SYSIDLE_FULL        3       /* All CPUs idle, ready for sysidle. */
2438 #define RCU_SYSIDLE_FULL_NOTED  4       /* Actually entered sysidle state. */
2439
2440 /*
2441  * Invoked to note exit from irq or task transition to idle.  Note that
2442  * usermode execution does -not- count as idle here!  After all, we want
2443  * to detect full-system idle states, not RCU quiescent states and grace
2444  * periods.  The caller must have disabled interrupts.
2445  */
2446 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2447 {
2448         unsigned long j;
2449
2450         /* Adjust nesting, check for fully idle. */
2451         if (irq) {
2452                 rdtp->dynticks_idle_nesting--;
2453                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2454                 if (rdtp->dynticks_idle_nesting != 0)
2455                         return;  /* Still not fully idle. */
2456         } else {
2457                 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2458                     DYNTICK_TASK_NEST_VALUE) {
2459                         rdtp->dynticks_idle_nesting = 0;
2460                 } else {
2461                         rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2462                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2463                         return;  /* Still not fully idle. */
2464                 }
2465         }
2466
2467         /* Record start of fully idle period. */
2468         j = jiffies;
2469         ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2470         smp_mb__before_atomic();
2471         atomic_inc(&rdtp->dynticks_idle);
2472         smp_mb__after_atomic();
2473         WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2474 }
2475
2476 /*
2477  * Unconditionally force exit from full system-idle state.  This is
2478  * invoked when a normal CPU exits idle, but must be called separately
2479  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2480  * is that the timekeeping CPU is permitted to take scheduling-clock
2481  * interrupts while the system is in system-idle state, and of course
2482  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2483  * interrupt from any other type of interrupt.
2484  */
2485 void rcu_sysidle_force_exit(void)
2486 {
2487         int oldstate = ACCESS_ONCE(full_sysidle_state);
2488         int newoldstate;
2489
2490         /*
2491          * Each pass through the following loop attempts to exit full
2492          * system-idle state.  If contention proves to be a problem,
2493          * a trylock-based contention tree could be used here.
2494          */
2495         while (oldstate > RCU_SYSIDLE_SHORT) {
2496                 newoldstate = cmpxchg(&full_sysidle_state,
2497                                       oldstate, RCU_SYSIDLE_NOT);
2498                 if (oldstate == newoldstate &&
2499                     oldstate == RCU_SYSIDLE_FULL_NOTED) {
2500                         rcu_kick_nohz_cpu(tick_do_timer_cpu);
2501                         return; /* We cleared it, done! */
2502                 }
2503                 oldstate = newoldstate;
2504         }
2505         smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2506 }
2507
2508 /*
2509  * Invoked to note entry to irq or task transition from idle.  Note that
2510  * usermode execution does -not- count as idle here!  The caller must
2511  * have disabled interrupts.
2512  */
2513 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2514 {
2515         /* Adjust nesting, check for already non-idle. */
2516         if (irq) {
2517                 rdtp->dynticks_idle_nesting++;
2518                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2519                 if (rdtp->dynticks_idle_nesting != 1)
2520                         return; /* Already non-idle. */
2521         } else {
2522                 /*
2523                  * Allow for irq misnesting.  Yes, it really is possible
2524                  * to enter an irq handler then never leave it, and maybe
2525                  * also vice versa.  Handle both possibilities.
2526                  */
2527                 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2528                         rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2529                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2530                         return; /* Already non-idle. */
2531                 } else {
2532                         rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2533                 }
2534         }
2535
2536         /* Record end of idle period. */
2537         smp_mb__before_atomic();
2538         atomic_inc(&rdtp->dynticks_idle);
2539         smp_mb__after_atomic();
2540         WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2541
2542         /*
2543          * If we are the timekeeping CPU, we are permitted to be non-idle
2544          * during a system-idle state.  This must be the case, because
2545          * the timekeeping CPU has to take scheduling-clock interrupts
2546          * during the time that the system is transitioning to full
2547          * system-idle state.  This means that the timekeeping CPU must
2548          * invoke rcu_sysidle_force_exit() directly if it does anything
2549          * more than take a scheduling-clock interrupt.
2550          */
2551         if (smp_processor_id() == tick_do_timer_cpu)
2552                 return;
2553
2554         /* Update system-idle state: We are clearly no longer fully idle! */
2555         rcu_sysidle_force_exit();
2556 }
2557
2558 /*
2559  * Check to see if the current CPU is idle.  Note that usermode execution
2560  * does not count as idle.  The caller must have disabled interrupts.
2561  */
2562 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2563                                   unsigned long *maxj)
2564 {
2565         int cur;
2566         unsigned long j;
2567         struct rcu_dynticks *rdtp = rdp->dynticks;
2568
2569         /*
2570          * If some other CPU has already reported non-idle, if this is
2571          * not the flavor of RCU that tracks sysidle state, or if this
2572          * is an offline or the timekeeping CPU, nothing to do.
2573          */
2574         if (!*isidle || rdp->rsp != rcu_sysidle_state ||
2575             cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2576                 return;
2577         if (rcu_gp_in_progress(rdp->rsp))
2578                 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2579
2580         /* Pick up current idle and NMI-nesting counter and check. */
2581         cur = atomic_read(&rdtp->dynticks_idle);
2582         if (cur & 0x1) {
2583                 *isidle = false; /* We are not idle! */
2584                 return;
2585         }
2586         smp_mb(); /* Read counters before timestamps. */
2587
2588         /* Pick up timestamps. */
2589         j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2590         /* If this CPU entered idle more recently, update maxj timestamp. */
2591         if (ULONG_CMP_LT(*maxj, j))
2592                 *maxj = j;
2593 }
2594
2595 /*
2596  * Is this the flavor of RCU that is handling full-system idle?
2597  */
2598 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2599 {
2600         return rsp == rcu_sysidle_state;
2601 }
2602
2603 /*
2604  * Return a delay in jiffies based on the number of CPUs, rcu_node
2605  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2606  * systems more time to transition to full-idle state in order to
2607  * avoid the cache thrashing that otherwise occur on the state variable.
2608  * Really small systems (less than a couple of tens of CPUs) should
2609  * instead use a single global atomically incremented counter, and later
2610  * versions of this will automatically reconfigure themselves accordingly.
2611  */
2612 static unsigned long rcu_sysidle_delay(void)
2613 {
2614         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2615                 return 0;
2616         return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2617 }
2618
2619 /*
2620  * Advance the full-system-idle state.  This is invoked when all of
2621  * the non-timekeeping CPUs are idle.
2622  */
2623 static void rcu_sysidle(unsigned long j)
2624 {
2625         /* Check the current state. */
2626         switch (ACCESS_ONCE(full_sysidle_state)) {
2627         case RCU_SYSIDLE_NOT:
2628
2629                 /* First time all are idle, so note a short idle period. */
2630                 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2631                 break;
2632
2633         case RCU_SYSIDLE_SHORT:
2634
2635                 /*
2636                  * Idle for a bit, time to advance to next state?
2637                  * cmpxchg failure means race with non-idle, let them win.
2638                  */
2639                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2640                         (void)cmpxchg(&full_sysidle_state,
2641                                       RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2642                 break;
2643
2644         case RCU_SYSIDLE_LONG:
2645
2646                 /*
2647                  * Do an additional check pass before advancing to full.
2648                  * cmpxchg failure means race with non-idle, let them win.
2649                  */
2650                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2651                         (void)cmpxchg(&full_sysidle_state,
2652                                       RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2653                 break;
2654
2655         default:
2656                 break;
2657         }
2658 }
2659
2660 /*
2661  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2662  * back to the beginning.
2663  */
2664 static void rcu_sysidle_cancel(void)
2665 {
2666         smp_mb();
2667         if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2668                 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2669 }
2670
2671 /*
2672  * Update the sysidle state based on the results of a force-quiescent-state
2673  * scan of the CPUs' dyntick-idle state.
2674  */
2675 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2676                                unsigned long maxj, bool gpkt)
2677 {
2678         if (rsp != rcu_sysidle_state)
2679                 return;  /* Wrong flavor, ignore. */
2680         if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2681                 return;  /* Running state machine from timekeeping CPU. */
2682         if (isidle)
2683                 rcu_sysidle(maxj);    /* More idle! */
2684         else
2685                 rcu_sysidle_cancel(); /* Idle is over. */
2686 }
2687
2688 /*
2689  * Wrapper for rcu_sysidle_report() when called from the grace-period
2690  * kthread's context.
2691  */
2692 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2693                                   unsigned long maxj)
2694 {
2695         rcu_sysidle_report(rsp, isidle, maxj, true);
2696 }
2697
2698 /* Callback and function for forcing an RCU grace period. */
2699 struct rcu_sysidle_head {
2700         struct rcu_head rh;
2701         int inuse;
2702 };
2703
2704 static void rcu_sysidle_cb(struct rcu_head *rhp)
2705 {
2706         struct rcu_sysidle_head *rshp;
2707
2708         /*
2709          * The following memory barrier is needed to replace the
2710          * memory barriers that would normally be in the memory
2711          * allocator.
2712          */
2713         smp_mb();  /* grace period precedes setting inuse. */
2714
2715         rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2716         ACCESS_ONCE(rshp->inuse) = 0;
2717 }
2718
2719 /*
2720  * Check to see if the system is fully idle, other than the timekeeping CPU.
2721  * The caller must have disabled interrupts.
2722  */
2723 bool rcu_sys_is_idle(void)
2724 {
2725         static struct rcu_sysidle_head rsh;
2726         int rss = ACCESS_ONCE(full_sysidle_state);
2727
2728         if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2729                 return false;
2730
2731         /* Handle small-system case by doing a full scan of CPUs. */
2732         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2733                 int oldrss = rss - 1;
2734
2735                 /*
2736                  * One pass to advance to each state up to _FULL.
2737                  * Give up if any pass fails to advance the state.
2738                  */
2739                 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2740                         int cpu;
2741                         bool isidle = true;
2742                         unsigned long maxj = jiffies - ULONG_MAX / 4;
2743                         struct rcu_data *rdp;
2744
2745                         /* Scan all the CPUs looking for nonidle CPUs. */
2746                         for_each_possible_cpu(cpu) {
2747                                 rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
2748                                 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2749                                 if (!isidle)
2750                                         break;
2751                         }
2752                         rcu_sysidle_report(rcu_sysidle_state,
2753                                            isidle, maxj, false);
2754                         oldrss = rss;
2755                         rss = ACCESS_ONCE(full_sysidle_state);
2756                 }
2757         }
2758
2759         /* If this is the first observation of an idle period, record it. */
2760         if (rss == RCU_SYSIDLE_FULL) {
2761                 rss = cmpxchg(&full_sysidle_state,
2762                               RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2763                 return rss == RCU_SYSIDLE_FULL;
2764         }
2765
2766         smp_mb(); /* ensure rss load happens before later caller actions. */
2767
2768         /* If already fully idle, tell the caller (in case of races). */
2769         if (rss == RCU_SYSIDLE_FULL_NOTED)
2770                 return true;
2771
2772         /*
2773          * If we aren't there yet, and a grace period is not in flight,
2774          * initiate a grace period.  Either way, tell the caller that
2775          * we are not there yet.  We use an xchg() rather than an assignment
2776          * to make up for the memory barriers that would otherwise be
2777          * provided by the memory allocator.
2778          */
2779         if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2780             !rcu_gp_in_progress(rcu_sysidle_state) &&
2781             !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2782                 call_rcu(&rsh.rh, rcu_sysidle_cb);
2783         return false;
2784 }
2785
2786 /*
2787  * Initialize dynticks sysidle state for CPUs coming online.
2788  */
2789 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2790 {
2791         rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2792 }
2793
2794 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2795
2796 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2797 {
2798 }
2799
2800 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2801 {
2802 }
2803
2804 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2805                                   unsigned long *maxj)
2806 {
2807 }
2808
2809 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2810 {
2811         return false;
2812 }
2813
2814 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2815                                   unsigned long maxj)
2816 {
2817 }
2818
2819 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2820 {
2821 }
2822
2823 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2824
2825 /*
2826  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2827  * grace-period kthread will do force_quiescent_state() processing?
2828  * The idea is to avoid waking up RCU core processing on such a
2829  * CPU unless the grace period has extended for too long.
2830  *
2831  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2832  * CONFIG_RCU_NOCB_CPU CPUs.
2833  */
2834 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2835 {
2836 #ifdef CONFIG_NO_HZ_FULL
2837         if (tick_nohz_full_cpu(smp_processor_id()) &&
2838             (!rcu_gp_in_progress(rsp) ||
2839              ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
2840                 return 1;
2841 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2842         return 0;
2843 }
2844
2845 /*
2846  * Bind the grace-period kthread for the sysidle flavor of RCU to the
2847  * timekeeping CPU.
2848  */
2849 static void rcu_bind_gp_kthread(void)
2850 {
2851         int __maybe_unused cpu;
2852
2853         if (!tick_nohz_full_enabled())
2854                 return;
2855 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2856         cpu = tick_do_timer_cpu;
2857         if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
2858                 set_cpus_allowed_ptr(current, cpumask_of(cpu));
2859 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2860         if (!is_housekeeping_cpu(raw_smp_processor_id()))
2861                 housekeeping_affine(current);
2862 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2863 }