ARM: shmobile: Remove FSF address from copyright headers
[cascardo/linux.git] / kernel / rcu / tree_plugin.h
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *         Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #define RCU_KTHREAD_PRIO 1
34
35 #ifdef CONFIG_RCU_BOOST
36 #include "../locking/rtmutex_common.h"
37 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
38 #else
39 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
40 #endif
41
42 #ifdef CONFIG_RCU_NOCB_CPU
43 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
44 static bool have_rcu_nocb_mask;     /* Was rcu_nocb_mask allocated? */
45 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
46 static char __initdata nocb_buf[NR_CPUS * 5];
47 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
48
49 /*
50  * Check the RCU kernel configuration parameters and print informative
51  * messages about anything out of the ordinary.  If you like #ifdef, you
52  * will love this function.
53  */
54 static void __init rcu_bootup_announce_oddness(void)
55 {
56 #ifdef CONFIG_RCU_TRACE
57         pr_info("\tRCU debugfs-based tracing is enabled.\n");
58 #endif
59 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
60         pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
61                CONFIG_RCU_FANOUT);
62 #endif
63 #ifdef CONFIG_RCU_FANOUT_EXACT
64         pr_info("\tHierarchical RCU autobalancing is disabled.\n");
65 #endif
66 #ifdef CONFIG_RCU_FAST_NO_HZ
67         pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
68 #endif
69 #ifdef CONFIG_PROVE_RCU
70         pr_info("\tRCU lockdep checking is enabled.\n");
71 #endif
72 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
73         pr_info("\tRCU torture testing starts during boot.\n");
74 #endif
75 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
76         pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
77 #endif
78 #if defined(CONFIG_RCU_CPU_STALL_INFO)
79         pr_info("\tAdditional per-CPU info printed with stalls.\n");
80 #endif
81 #if NUM_RCU_LVL_4 != 0
82         pr_info("\tFour-level hierarchy is enabled.\n");
83 #endif
84         if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
85                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
86         if (nr_cpu_ids != NR_CPUS)
87                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
88 }
89
90 #ifdef CONFIG_TREE_PREEMPT_RCU
91
92 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
93 static struct rcu_state *rcu_state_p = &rcu_preempt_state;
94
95 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
96
97 /*
98  * Tell them what RCU they are running.
99  */
100 static void __init rcu_bootup_announce(void)
101 {
102         pr_info("Preemptible hierarchical RCU implementation.\n");
103         rcu_bootup_announce_oddness();
104 }
105
106 /*
107  * Return the number of RCU-preempt batches processed thus far
108  * for debug and statistics.
109  */
110 static long rcu_batches_completed_preempt(void)
111 {
112         return rcu_preempt_state.completed;
113 }
114 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
115
116 /*
117  * Return the number of RCU batches processed thus far for debug & stats.
118  */
119 long rcu_batches_completed(void)
120 {
121         return rcu_batches_completed_preempt();
122 }
123 EXPORT_SYMBOL_GPL(rcu_batches_completed);
124
125 /*
126  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
127  * that this just means that the task currently running on the CPU is
128  * not in a quiescent state.  There might be any number of tasks blocked
129  * while in an RCU read-side critical section.
130  *
131  * As with the other rcu_*_qs() functions, callers to this function
132  * must disable preemption.
133  */
134 static void rcu_preempt_qs(void)
135 {
136         if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
137                 trace_rcu_grace_period(TPS("rcu_preempt"),
138                                        __this_cpu_read(rcu_preempt_data.gpnum),
139                                        TPS("cpuqs"));
140                 __this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
141                 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
142                 current->rcu_read_unlock_special.b.need_qs = false;
143         }
144 }
145
146 /*
147  * We have entered the scheduler, and the current task might soon be
148  * context-switched away from.  If this task is in an RCU read-side
149  * critical section, we will no longer be able to rely on the CPU to
150  * record that fact, so we enqueue the task on the blkd_tasks list.
151  * The task will dequeue itself when it exits the outermost enclosing
152  * RCU read-side critical section.  Therefore, the current grace period
153  * cannot be permitted to complete until the blkd_tasks list entries
154  * predating the current grace period drain, in other words, until
155  * rnp->gp_tasks becomes NULL.
156  *
157  * Caller must disable preemption.
158  */
159 static void rcu_preempt_note_context_switch(int cpu)
160 {
161         struct task_struct *t = current;
162         unsigned long flags;
163         struct rcu_data *rdp;
164         struct rcu_node *rnp;
165
166         if (t->rcu_read_lock_nesting > 0 &&
167             !t->rcu_read_unlock_special.b.blocked) {
168
169                 /* Possibly blocking in an RCU read-side critical section. */
170                 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
171                 rnp = rdp->mynode;
172                 raw_spin_lock_irqsave(&rnp->lock, flags);
173                 smp_mb__after_unlock_lock();
174                 t->rcu_read_unlock_special.b.blocked = true;
175                 t->rcu_blocked_node = rnp;
176
177                 /*
178                  * If this CPU has already checked in, then this task
179                  * will hold up the next grace period rather than the
180                  * current grace period.  Queue the task accordingly.
181                  * If the task is queued for the current grace period
182                  * (i.e., this CPU has not yet passed through a quiescent
183                  * state for the current grace period), then as long
184                  * as that task remains queued, the current grace period
185                  * cannot end.  Note that there is some uncertainty as
186                  * to exactly when the current grace period started.
187                  * We take a conservative approach, which can result
188                  * in unnecessarily waiting on tasks that started very
189                  * slightly after the current grace period began.  C'est
190                  * la vie!!!
191                  *
192                  * But first, note that the current CPU must still be
193                  * on line!
194                  */
195                 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
196                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
197                 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
198                         list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
199                         rnp->gp_tasks = &t->rcu_node_entry;
200 #ifdef CONFIG_RCU_BOOST
201                         if (rnp->boost_tasks != NULL)
202                                 rnp->boost_tasks = rnp->gp_tasks;
203 #endif /* #ifdef CONFIG_RCU_BOOST */
204                 } else {
205                         list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
206                         if (rnp->qsmask & rdp->grpmask)
207                                 rnp->gp_tasks = &t->rcu_node_entry;
208                 }
209                 trace_rcu_preempt_task(rdp->rsp->name,
210                                        t->pid,
211                                        (rnp->qsmask & rdp->grpmask)
212                                        ? rnp->gpnum
213                                        : rnp->gpnum + 1);
214                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
215         } else if (t->rcu_read_lock_nesting < 0 &&
216                    t->rcu_read_unlock_special.s) {
217
218                 /*
219                  * Complete exit from RCU read-side critical section on
220                  * behalf of preempted instance of __rcu_read_unlock().
221                  */
222                 rcu_read_unlock_special(t);
223         }
224
225         /*
226          * Either we were not in an RCU read-side critical section to
227          * begin with, or we have now recorded that critical section
228          * globally.  Either way, we can now note a quiescent state
229          * for this CPU.  Again, if we were in an RCU read-side critical
230          * section, and if that critical section was blocking the current
231          * grace period, then the fact that the task has been enqueued
232          * means that we continue to block the current grace period.
233          */
234         rcu_preempt_qs();
235 }
236
237 /*
238  * Check for preempted RCU readers blocking the current grace period
239  * for the specified rcu_node structure.  If the caller needs a reliable
240  * answer, it must hold the rcu_node's ->lock.
241  */
242 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
243 {
244         return rnp->gp_tasks != NULL;
245 }
246
247 /*
248  * Record a quiescent state for all tasks that were previously queued
249  * on the specified rcu_node structure and that were blocking the current
250  * RCU grace period.  The caller must hold the specified rnp->lock with
251  * irqs disabled, and this lock is released upon return, but irqs remain
252  * disabled.
253  */
254 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
255         __releases(rnp->lock)
256 {
257         unsigned long mask;
258         struct rcu_node *rnp_p;
259
260         if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
261                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
262                 return;  /* Still need more quiescent states! */
263         }
264
265         rnp_p = rnp->parent;
266         if (rnp_p == NULL) {
267                 /*
268                  * Either there is only one rcu_node in the tree,
269                  * or tasks were kicked up to root rcu_node due to
270                  * CPUs going offline.
271                  */
272                 rcu_report_qs_rsp(&rcu_preempt_state, flags);
273                 return;
274         }
275
276         /* Report up the rest of the hierarchy. */
277         mask = rnp->grpmask;
278         raw_spin_unlock(&rnp->lock);    /* irqs remain disabled. */
279         raw_spin_lock(&rnp_p->lock);    /* irqs already disabled. */
280         smp_mb__after_unlock_lock();
281         rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
282 }
283
284 /*
285  * Advance a ->blkd_tasks-list pointer to the next entry, instead
286  * returning NULL if at the end of the list.
287  */
288 static struct list_head *rcu_next_node_entry(struct task_struct *t,
289                                              struct rcu_node *rnp)
290 {
291         struct list_head *np;
292
293         np = t->rcu_node_entry.next;
294         if (np == &rnp->blkd_tasks)
295                 np = NULL;
296         return np;
297 }
298
299 /*
300  * Handle special cases during rcu_read_unlock(), such as needing to
301  * notify RCU core processing or task having blocked during the RCU
302  * read-side critical section.
303  */
304 void rcu_read_unlock_special(struct task_struct *t)
305 {
306         int empty;
307         int empty_exp;
308         int empty_exp_now;
309         unsigned long flags;
310         struct list_head *np;
311 #ifdef CONFIG_RCU_BOOST
312         bool drop_boost_mutex = false;
313 #endif /* #ifdef CONFIG_RCU_BOOST */
314         struct rcu_node *rnp;
315         union rcu_special special;
316
317         /* NMI handlers cannot block and cannot safely manipulate state. */
318         if (in_nmi())
319                 return;
320
321         local_irq_save(flags);
322
323         /*
324          * If RCU core is waiting for this CPU to exit critical section,
325          * let it know that we have done so.  Because irqs are disabled,
326          * t->rcu_read_unlock_special cannot change.
327          */
328         special = t->rcu_read_unlock_special;
329         if (special.b.need_qs) {
330                 rcu_preempt_qs();
331                 if (!t->rcu_read_unlock_special.s) {
332                         local_irq_restore(flags);
333                         return;
334                 }
335         }
336
337         /* Hardware IRQ handlers cannot block, complain if they get here. */
338         if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
339                 local_irq_restore(flags);
340                 return;
341         }
342
343         /* Clean up if blocked during RCU read-side critical section. */
344         if (special.b.blocked) {
345                 t->rcu_read_unlock_special.b.blocked = false;
346
347                 /*
348                  * Remove this task from the list it blocked on.  The
349                  * task can migrate while we acquire the lock, but at
350                  * most one time.  So at most two passes through loop.
351                  */
352                 for (;;) {
353                         rnp = t->rcu_blocked_node;
354                         raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
355                         smp_mb__after_unlock_lock();
356                         if (rnp == t->rcu_blocked_node)
357                                 break;
358                         raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
359                 }
360                 empty = !rcu_preempt_blocked_readers_cgp(rnp);
361                 empty_exp = !rcu_preempted_readers_exp(rnp);
362                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
363                 np = rcu_next_node_entry(t, rnp);
364                 list_del_init(&t->rcu_node_entry);
365                 t->rcu_blocked_node = NULL;
366                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
367                                                 rnp->gpnum, t->pid);
368                 if (&t->rcu_node_entry == rnp->gp_tasks)
369                         rnp->gp_tasks = np;
370                 if (&t->rcu_node_entry == rnp->exp_tasks)
371                         rnp->exp_tasks = np;
372 #ifdef CONFIG_RCU_BOOST
373                 if (&t->rcu_node_entry == rnp->boost_tasks)
374                         rnp->boost_tasks = np;
375                 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
376                 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
377 #endif /* #ifdef CONFIG_RCU_BOOST */
378
379                 /*
380                  * If this was the last task on the current list, and if
381                  * we aren't waiting on any CPUs, report the quiescent state.
382                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
383                  * so we must take a snapshot of the expedited state.
384                  */
385                 empty_exp_now = !rcu_preempted_readers_exp(rnp);
386                 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
387                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
388                                                          rnp->gpnum,
389                                                          0, rnp->qsmask,
390                                                          rnp->level,
391                                                          rnp->grplo,
392                                                          rnp->grphi,
393                                                          !!rnp->gp_tasks);
394                         rcu_report_unblock_qs_rnp(rnp, flags);
395                 } else {
396                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
397                 }
398
399 #ifdef CONFIG_RCU_BOOST
400                 /* Unboost if we were boosted. */
401                 if (drop_boost_mutex) {
402                         rt_mutex_unlock(&rnp->boost_mtx);
403                         complete(&rnp->boost_completion);
404                 }
405 #endif /* #ifdef CONFIG_RCU_BOOST */
406
407                 /*
408                  * If this was the last task on the expedited lists,
409                  * then we need to report up the rcu_node hierarchy.
410                  */
411                 if (!empty_exp && empty_exp_now)
412                         rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
413         } else {
414                 local_irq_restore(flags);
415         }
416 }
417
418 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
419
420 /*
421  * Dump detailed information for all tasks blocking the current RCU
422  * grace period on the specified rcu_node structure.
423  */
424 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
425 {
426         unsigned long flags;
427         struct task_struct *t;
428
429         raw_spin_lock_irqsave(&rnp->lock, flags);
430         if (!rcu_preempt_blocked_readers_cgp(rnp)) {
431                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
432                 return;
433         }
434         t = list_entry(rnp->gp_tasks,
435                        struct task_struct, rcu_node_entry);
436         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
437                 sched_show_task(t);
438         raw_spin_unlock_irqrestore(&rnp->lock, flags);
439 }
440
441 /*
442  * Dump detailed information for all tasks blocking the current RCU
443  * grace period.
444  */
445 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
446 {
447         struct rcu_node *rnp = rcu_get_root(rsp);
448
449         rcu_print_detail_task_stall_rnp(rnp);
450         rcu_for_each_leaf_node(rsp, rnp)
451                 rcu_print_detail_task_stall_rnp(rnp);
452 }
453
454 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
455
456 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
457 {
458 }
459
460 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
461
462 #ifdef CONFIG_RCU_CPU_STALL_INFO
463
464 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
465 {
466         pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
467                rnp->level, rnp->grplo, rnp->grphi);
468 }
469
470 static void rcu_print_task_stall_end(void)
471 {
472         pr_cont("\n");
473 }
474
475 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
476
477 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
478 {
479 }
480
481 static void rcu_print_task_stall_end(void)
482 {
483 }
484
485 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
486
487 /*
488  * Scan the current list of tasks blocked within RCU read-side critical
489  * sections, printing out the tid of each.
490  */
491 static int rcu_print_task_stall(struct rcu_node *rnp)
492 {
493         struct task_struct *t;
494         int ndetected = 0;
495
496         if (!rcu_preempt_blocked_readers_cgp(rnp))
497                 return 0;
498         rcu_print_task_stall_begin(rnp);
499         t = list_entry(rnp->gp_tasks,
500                        struct task_struct, rcu_node_entry);
501         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
502                 pr_cont(" P%d", t->pid);
503                 ndetected++;
504         }
505         rcu_print_task_stall_end();
506         return ndetected;
507 }
508
509 /*
510  * Check that the list of blocked tasks for the newly completed grace
511  * period is in fact empty.  It is a serious bug to complete a grace
512  * period that still has RCU readers blocked!  This function must be
513  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
514  * must be held by the caller.
515  *
516  * Also, if there are blocked tasks on the list, they automatically
517  * block the newly created grace period, so set up ->gp_tasks accordingly.
518  */
519 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
520 {
521         WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
522         if (!list_empty(&rnp->blkd_tasks))
523                 rnp->gp_tasks = rnp->blkd_tasks.next;
524         WARN_ON_ONCE(rnp->qsmask);
525 }
526
527 #ifdef CONFIG_HOTPLUG_CPU
528
529 /*
530  * Handle tasklist migration for case in which all CPUs covered by the
531  * specified rcu_node have gone offline.  Move them up to the root
532  * rcu_node.  The reason for not just moving them to the immediate
533  * parent is to remove the need for rcu_read_unlock_special() to
534  * make more than two attempts to acquire the target rcu_node's lock.
535  * Returns true if there were tasks blocking the current RCU grace
536  * period.
537  *
538  * Returns 1 if there was previously a task blocking the current grace
539  * period on the specified rcu_node structure.
540  *
541  * The caller must hold rnp->lock with irqs disabled.
542  */
543 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
544                                      struct rcu_node *rnp,
545                                      struct rcu_data *rdp)
546 {
547         struct list_head *lp;
548         struct list_head *lp_root;
549         int retval = 0;
550         struct rcu_node *rnp_root = rcu_get_root(rsp);
551         struct task_struct *t;
552
553         if (rnp == rnp_root) {
554                 WARN_ONCE(1, "Last CPU thought to be offlined?");
555                 return 0;  /* Shouldn't happen: at least one CPU online. */
556         }
557
558         /* If we are on an internal node, complain bitterly. */
559         WARN_ON_ONCE(rnp != rdp->mynode);
560
561         /*
562          * Move tasks up to root rcu_node.  Don't try to get fancy for
563          * this corner-case operation -- just put this node's tasks
564          * at the head of the root node's list, and update the root node's
565          * ->gp_tasks and ->exp_tasks pointers to those of this node's,
566          * if non-NULL.  This might result in waiting for more tasks than
567          * absolutely necessary, but this is a good performance/complexity
568          * tradeoff.
569          */
570         if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
571                 retval |= RCU_OFL_TASKS_NORM_GP;
572         if (rcu_preempted_readers_exp(rnp))
573                 retval |= RCU_OFL_TASKS_EXP_GP;
574         lp = &rnp->blkd_tasks;
575         lp_root = &rnp_root->blkd_tasks;
576         while (!list_empty(lp)) {
577                 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
578                 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
579                 smp_mb__after_unlock_lock();
580                 list_del(&t->rcu_node_entry);
581                 t->rcu_blocked_node = rnp_root;
582                 list_add(&t->rcu_node_entry, lp_root);
583                 if (&t->rcu_node_entry == rnp->gp_tasks)
584                         rnp_root->gp_tasks = rnp->gp_tasks;
585                 if (&t->rcu_node_entry == rnp->exp_tasks)
586                         rnp_root->exp_tasks = rnp->exp_tasks;
587 #ifdef CONFIG_RCU_BOOST
588                 if (&t->rcu_node_entry == rnp->boost_tasks)
589                         rnp_root->boost_tasks = rnp->boost_tasks;
590 #endif /* #ifdef CONFIG_RCU_BOOST */
591                 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
592         }
593
594         rnp->gp_tasks = NULL;
595         rnp->exp_tasks = NULL;
596 #ifdef CONFIG_RCU_BOOST
597         rnp->boost_tasks = NULL;
598         /*
599          * In case root is being boosted and leaf was not.  Make sure
600          * that we boost the tasks blocking the current grace period
601          * in this case.
602          */
603         raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
604         smp_mb__after_unlock_lock();
605         if (rnp_root->boost_tasks != NULL &&
606             rnp_root->boost_tasks != rnp_root->gp_tasks &&
607             rnp_root->boost_tasks != rnp_root->exp_tasks)
608                 rnp_root->boost_tasks = rnp_root->gp_tasks;
609         raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
610 #endif /* #ifdef CONFIG_RCU_BOOST */
611
612         return retval;
613 }
614
615 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
616
617 /*
618  * Check for a quiescent state from the current CPU.  When a task blocks,
619  * the task is recorded in the corresponding CPU's rcu_node structure,
620  * which is checked elsewhere.
621  *
622  * Caller must disable hard irqs.
623  */
624 static void rcu_preempt_check_callbacks(int cpu)
625 {
626         struct task_struct *t = current;
627
628         if (t->rcu_read_lock_nesting == 0) {
629                 rcu_preempt_qs();
630                 return;
631         }
632         if (t->rcu_read_lock_nesting > 0 &&
633             per_cpu(rcu_preempt_data, cpu).qs_pending &&
634             !per_cpu(rcu_preempt_data, cpu).passed_quiesce)
635                 t->rcu_read_unlock_special.b.need_qs = true;
636 }
637
638 #ifdef CONFIG_RCU_BOOST
639
640 static void rcu_preempt_do_callbacks(void)
641 {
642         rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
643 }
644
645 #endif /* #ifdef CONFIG_RCU_BOOST */
646
647 /*
648  * Queue a preemptible-RCU callback for invocation after a grace period.
649  */
650 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
651 {
652         __call_rcu(head, func, &rcu_preempt_state, -1, 0);
653 }
654 EXPORT_SYMBOL_GPL(call_rcu);
655
656 /**
657  * synchronize_rcu - wait until a grace period has elapsed.
658  *
659  * Control will return to the caller some time after a full grace
660  * period has elapsed, in other words after all currently executing RCU
661  * read-side critical sections have completed.  Note, however, that
662  * upon return from synchronize_rcu(), the caller might well be executing
663  * concurrently with new RCU read-side critical sections that began while
664  * synchronize_rcu() was waiting.  RCU read-side critical sections are
665  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
666  *
667  * See the description of synchronize_sched() for more detailed information
668  * on memory ordering guarantees.
669  */
670 void synchronize_rcu(void)
671 {
672         rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
673                            !lock_is_held(&rcu_lock_map) &&
674                            !lock_is_held(&rcu_sched_lock_map),
675                            "Illegal synchronize_rcu() in RCU read-side critical section");
676         if (!rcu_scheduler_active)
677                 return;
678         if (rcu_expedited)
679                 synchronize_rcu_expedited();
680         else
681                 wait_rcu_gp(call_rcu);
682 }
683 EXPORT_SYMBOL_GPL(synchronize_rcu);
684
685 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
686 static unsigned long sync_rcu_preempt_exp_count;
687 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
688
689 /*
690  * Return non-zero if there are any tasks in RCU read-side critical
691  * sections blocking the current preemptible-RCU expedited grace period.
692  * If there is no preemptible-RCU expedited grace period currently in
693  * progress, returns zero unconditionally.
694  */
695 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
696 {
697         return rnp->exp_tasks != NULL;
698 }
699
700 /*
701  * return non-zero if there is no RCU expedited grace period in progress
702  * for the specified rcu_node structure, in other words, if all CPUs and
703  * tasks covered by the specified rcu_node structure have done their bit
704  * for the current expedited grace period.  Works only for preemptible
705  * RCU -- other RCU implementation use other means.
706  *
707  * Caller must hold sync_rcu_preempt_exp_mutex.
708  */
709 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
710 {
711         return !rcu_preempted_readers_exp(rnp) &&
712                ACCESS_ONCE(rnp->expmask) == 0;
713 }
714
715 /*
716  * Report the exit from RCU read-side critical section for the last task
717  * that queued itself during or before the current expedited preemptible-RCU
718  * grace period.  This event is reported either to the rcu_node structure on
719  * which the task was queued or to one of that rcu_node structure's ancestors,
720  * recursively up the tree.  (Calm down, calm down, we do the recursion
721  * iteratively!)
722  *
723  * Most callers will set the "wake" flag, but the task initiating the
724  * expedited grace period need not wake itself.
725  *
726  * Caller must hold sync_rcu_preempt_exp_mutex.
727  */
728 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
729                                bool wake)
730 {
731         unsigned long flags;
732         unsigned long mask;
733
734         raw_spin_lock_irqsave(&rnp->lock, flags);
735         smp_mb__after_unlock_lock();
736         for (;;) {
737                 if (!sync_rcu_preempt_exp_done(rnp)) {
738                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
739                         break;
740                 }
741                 if (rnp->parent == NULL) {
742                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
743                         if (wake) {
744                                 smp_mb(); /* EGP done before wake_up(). */
745                                 wake_up(&sync_rcu_preempt_exp_wq);
746                         }
747                         break;
748                 }
749                 mask = rnp->grpmask;
750                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
751                 rnp = rnp->parent;
752                 raw_spin_lock(&rnp->lock); /* irqs already disabled */
753                 smp_mb__after_unlock_lock();
754                 rnp->expmask &= ~mask;
755         }
756 }
757
758 /*
759  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
760  * grace period for the specified rcu_node structure.  If there are no such
761  * tasks, report it up the rcu_node hierarchy.
762  *
763  * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
764  * CPU hotplug operations.
765  */
766 static void
767 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
768 {
769         unsigned long flags;
770         int must_wait = 0;
771
772         raw_spin_lock_irqsave(&rnp->lock, flags);
773         smp_mb__after_unlock_lock();
774         if (list_empty(&rnp->blkd_tasks)) {
775                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
776         } else {
777                 rnp->exp_tasks = rnp->blkd_tasks.next;
778                 rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
779                 must_wait = 1;
780         }
781         if (!must_wait)
782                 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
783 }
784
785 /**
786  * synchronize_rcu_expedited - Brute-force RCU grace period
787  *
788  * Wait for an RCU-preempt grace period, but expedite it.  The basic
789  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
790  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
791  * significant time on all CPUs and is unfriendly to real-time workloads,
792  * so is thus not recommended for any sort of common-case code.
793  * In fact, if you are using synchronize_rcu_expedited() in a loop,
794  * please restructure your code to batch your updates, and then Use a
795  * single synchronize_rcu() instead.
796  */
797 void synchronize_rcu_expedited(void)
798 {
799         unsigned long flags;
800         struct rcu_node *rnp;
801         struct rcu_state *rsp = &rcu_preempt_state;
802         unsigned long snap;
803         int trycount = 0;
804
805         smp_mb(); /* Caller's modifications seen first by other CPUs. */
806         snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
807         smp_mb(); /* Above access cannot bleed into critical section. */
808
809         /*
810          * Block CPU-hotplug operations.  This means that any CPU-hotplug
811          * operation that finds an rcu_node structure with tasks in the
812          * process of being boosted will know that all tasks blocking
813          * this expedited grace period will already be in the process of
814          * being boosted.  This simplifies the process of moving tasks
815          * from leaf to root rcu_node structures.
816          */
817         if (!try_get_online_cpus()) {
818                 /* CPU-hotplug operation in flight, fall back to normal GP. */
819                 wait_rcu_gp(call_rcu);
820                 return;
821         }
822
823         /*
824          * Acquire lock, falling back to synchronize_rcu() if too many
825          * lock-acquisition failures.  Of course, if someone does the
826          * expedited grace period for us, just leave.
827          */
828         while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
829                 if (ULONG_CMP_LT(snap,
830                     ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
831                         put_online_cpus();
832                         goto mb_ret; /* Others did our work for us. */
833                 }
834                 if (trycount++ < 10) {
835                         udelay(trycount * num_online_cpus());
836                 } else {
837                         put_online_cpus();
838                         wait_rcu_gp(call_rcu);
839                         return;
840                 }
841         }
842         if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
843                 put_online_cpus();
844                 goto unlock_mb_ret; /* Others did our work for us. */
845         }
846
847         /* force all RCU readers onto ->blkd_tasks lists. */
848         synchronize_sched_expedited();
849
850         /* Initialize ->expmask for all non-leaf rcu_node structures. */
851         rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
852                 raw_spin_lock_irqsave(&rnp->lock, flags);
853                 smp_mb__after_unlock_lock();
854                 rnp->expmask = rnp->qsmaskinit;
855                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
856         }
857
858         /* Snapshot current state of ->blkd_tasks lists. */
859         rcu_for_each_leaf_node(rsp, rnp)
860                 sync_rcu_preempt_exp_init(rsp, rnp);
861         if (NUM_RCU_NODES > 1)
862                 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
863
864         put_online_cpus();
865
866         /* Wait for snapshotted ->blkd_tasks lists to drain. */
867         rnp = rcu_get_root(rsp);
868         wait_event(sync_rcu_preempt_exp_wq,
869                    sync_rcu_preempt_exp_done(rnp));
870
871         /* Clean up and exit. */
872         smp_mb(); /* ensure expedited GP seen before counter increment. */
873         ACCESS_ONCE(sync_rcu_preempt_exp_count) =
874                                         sync_rcu_preempt_exp_count + 1;
875 unlock_mb_ret:
876         mutex_unlock(&sync_rcu_preempt_exp_mutex);
877 mb_ret:
878         smp_mb(); /* ensure subsequent action seen after grace period. */
879 }
880 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
881
882 /**
883  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
884  *
885  * Note that this primitive does not necessarily wait for an RCU grace period
886  * to complete.  For example, if there are no RCU callbacks queued anywhere
887  * in the system, then rcu_barrier() is within its rights to return
888  * immediately, without waiting for anything, much less an RCU grace period.
889  */
890 void rcu_barrier(void)
891 {
892         _rcu_barrier(&rcu_preempt_state);
893 }
894 EXPORT_SYMBOL_GPL(rcu_barrier);
895
896 /*
897  * Initialize preemptible RCU's state structures.
898  */
899 static void __init __rcu_init_preempt(void)
900 {
901         rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
902 }
903
904 /*
905  * Check for a task exiting while in a preemptible-RCU read-side
906  * critical section, clean up if so.  No need to issue warnings,
907  * as debug_check_no_locks_held() already does this if lockdep
908  * is enabled.
909  */
910 void exit_rcu(void)
911 {
912         struct task_struct *t = current;
913
914         if (likely(list_empty(&current->rcu_node_entry)))
915                 return;
916         t->rcu_read_lock_nesting = 1;
917         barrier();
918         t->rcu_read_unlock_special.b.blocked = true;
919         __rcu_read_unlock();
920 }
921
922 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
923
924 static struct rcu_state *rcu_state_p = &rcu_sched_state;
925
926 /*
927  * Tell them what RCU they are running.
928  */
929 static void __init rcu_bootup_announce(void)
930 {
931         pr_info("Hierarchical RCU implementation.\n");
932         rcu_bootup_announce_oddness();
933 }
934
935 /*
936  * Return the number of RCU batches processed thus far for debug & stats.
937  */
938 long rcu_batches_completed(void)
939 {
940         return rcu_batches_completed_sched();
941 }
942 EXPORT_SYMBOL_GPL(rcu_batches_completed);
943
944 /*
945  * Because preemptible RCU does not exist, we never have to check for
946  * CPUs being in quiescent states.
947  */
948 static void rcu_preempt_note_context_switch(int cpu)
949 {
950 }
951
952 /*
953  * Because preemptible RCU does not exist, there are never any preempted
954  * RCU readers.
955  */
956 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
957 {
958         return 0;
959 }
960
961 #ifdef CONFIG_HOTPLUG_CPU
962
963 /* Because preemptible RCU does not exist, no quieting of tasks. */
964 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
965         __releases(rnp->lock)
966 {
967         raw_spin_unlock_irqrestore(&rnp->lock, flags);
968 }
969
970 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
971
972 /*
973  * Because preemptible RCU does not exist, we never have to check for
974  * tasks blocked within RCU read-side critical sections.
975  */
976 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
977 {
978 }
979
980 /*
981  * Because preemptible RCU does not exist, we never have to check for
982  * tasks blocked within RCU read-side critical sections.
983  */
984 static int rcu_print_task_stall(struct rcu_node *rnp)
985 {
986         return 0;
987 }
988
989 /*
990  * Because there is no preemptible RCU, there can be no readers blocked,
991  * so there is no need to check for blocked tasks.  So check only for
992  * bogus qsmask values.
993  */
994 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
995 {
996         WARN_ON_ONCE(rnp->qsmask);
997 }
998
999 #ifdef CONFIG_HOTPLUG_CPU
1000
1001 /*
1002  * Because preemptible RCU does not exist, it never needs to migrate
1003  * tasks that were blocked within RCU read-side critical sections, and
1004  * such non-existent tasks cannot possibly have been blocking the current
1005  * grace period.
1006  */
1007 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1008                                      struct rcu_node *rnp,
1009                                      struct rcu_data *rdp)
1010 {
1011         return 0;
1012 }
1013
1014 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1015
1016 /*
1017  * Because preemptible RCU does not exist, it never has any callbacks
1018  * to check.
1019  */
1020 static void rcu_preempt_check_callbacks(int cpu)
1021 {
1022 }
1023
1024 /*
1025  * Wait for an rcu-preempt grace period, but make it happen quickly.
1026  * But because preemptible RCU does not exist, map to rcu-sched.
1027  */
1028 void synchronize_rcu_expedited(void)
1029 {
1030         synchronize_sched_expedited();
1031 }
1032 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1033
1034 #ifdef CONFIG_HOTPLUG_CPU
1035
1036 /*
1037  * Because preemptible RCU does not exist, there is never any need to
1038  * report on tasks preempted in RCU read-side critical sections during
1039  * expedited RCU grace periods.
1040  */
1041 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1042                                bool wake)
1043 {
1044 }
1045
1046 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1047
1048 /*
1049  * Because preemptible RCU does not exist, rcu_barrier() is just
1050  * another name for rcu_barrier_sched().
1051  */
1052 void rcu_barrier(void)
1053 {
1054         rcu_barrier_sched();
1055 }
1056 EXPORT_SYMBOL_GPL(rcu_barrier);
1057
1058 /*
1059  * Because preemptible RCU does not exist, it need not be initialized.
1060  */
1061 static void __init __rcu_init_preempt(void)
1062 {
1063 }
1064
1065 /*
1066  * Because preemptible RCU does not exist, tasks cannot possibly exit
1067  * while in preemptible RCU read-side critical sections.
1068  */
1069 void exit_rcu(void)
1070 {
1071 }
1072
1073 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1074
1075 #ifdef CONFIG_RCU_BOOST
1076
1077 #include "../locking/rtmutex_common.h"
1078
1079 #ifdef CONFIG_RCU_TRACE
1080
1081 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1082 {
1083         if (list_empty(&rnp->blkd_tasks))
1084                 rnp->n_balk_blkd_tasks++;
1085         else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1086                 rnp->n_balk_exp_gp_tasks++;
1087         else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1088                 rnp->n_balk_boost_tasks++;
1089         else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1090                 rnp->n_balk_notblocked++;
1091         else if (rnp->gp_tasks != NULL &&
1092                  ULONG_CMP_LT(jiffies, rnp->boost_time))
1093                 rnp->n_balk_notyet++;
1094         else
1095                 rnp->n_balk_nos++;
1096 }
1097
1098 #else /* #ifdef CONFIG_RCU_TRACE */
1099
1100 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1101 {
1102 }
1103
1104 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1105
1106 static void rcu_wake_cond(struct task_struct *t, int status)
1107 {
1108         /*
1109          * If the thread is yielding, only wake it when this
1110          * is invoked from idle
1111          */
1112         if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1113                 wake_up_process(t);
1114 }
1115
1116 /*
1117  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1118  * or ->boost_tasks, advancing the pointer to the next task in the
1119  * ->blkd_tasks list.
1120  *
1121  * Note that irqs must be enabled: boosting the task can block.
1122  * Returns 1 if there are more tasks needing to be boosted.
1123  */
1124 static int rcu_boost(struct rcu_node *rnp)
1125 {
1126         unsigned long flags;
1127         struct task_struct *t;
1128         struct list_head *tb;
1129
1130         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1131                 return 0;  /* Nothing left to boost. */
1132
1133         raw_spin_lock_irqsave(&rnp->lock, flags);
1134         smp_mb__after_unlock_lock();
1135
1136         /*
1137          * Recheck under the lock: all tasks in need of boosting
1138          * might exit their RCU read-side critical sections on their own.
1139          */
1140         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1141                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1142                 return 0;
1143         }
1144
1145         /*
1146          * Preferentially boost tasks blocking expedited grace periods.
1147          * This cannot starve the normal grace periods because a second
1148          * expedited grace period must boost all blocked tasks, including
1149          * those blocking the pre-existing normal grace period.
1150          */
1151         if (rnp->exp_tasks != NULL) {
1152                 tb = rnp->exp_tasks;
1153                 rnp->n_exp_boosts++;
1154         } else {
1155                 tb = rnp->boost_tasks;
1156                 rnp->n_normal_boosts++;
1157         }
1158         rnp->n_tasks_boosted++;
1159
1160         /*
1161          * We boost task t by manufacturing an rt_mutex that appears to
1162          * be held by task t.  We leave a pointer to that rt_mutex where
1163          * task t can find it, and task t will release the mutex when it
1164          * exits its outermost RCU read-side critical section.  Then
1165          * simply acquiring this artificial rt_mutex will boost task
1166          * t's priority.  (Thanks to tglx for suggesting this approach!)
1167          *
1168          * Note that task t must acquire rnp->lock to remove itself from
1169          * the ->blkd_tasks list, which it will do from exit() if from
1170          * nowhere else.  We therefore are guaranteed that task t will
1171          * stay around at least until we drop rnp->lock.  Note that
1172          * rnp->lock also resolves races between our priority boosting
1173          * and task t's exiting its outermost RCU read-side critical
1174          * section.
1175          */
1176         t = container_of(tb, struct task_struct, rcu_node_entry);
1177         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1178         init_completion(&rnp->boost_completion);
1179         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1180         /* Lock only for side effect: boosts task t's priority. */
1181         rt_mutex_lock(&rnp->boost_mtx);
1182         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1183
1184         /* Wait for boostee to be done w/boost_mtx before reinitializing. */
1185         wait_for_completion(&rnp->boost_completion);
1186
1187         return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1188                ACCESS_ONCE(rnp->boost_tasks) != NULL;
1189 }
1190
1191 /*
1192  * Priority-boosting kthread.  One per leaf rcu_node and one for the
1193  * root rcu_node.
1194  */
1195 static int rcu_boost_kthread(void *arg)
1196 {
1197         struct rcu_node *rnp = (struct rcu_node *)arg;
1198         int spincnt = 0;
1199         int more2boost;
1200
1201         trace_rcu_utilization(TPS("Start boost kthread@init"));
1202         for (;;) {
1203                 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1204                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1205                 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1206                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1207                 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1208                 more2boost = rcu_boost(rnp);
1209                 if (more2boost)
1210                         spincnt++;
1211                 else
1212                         spincnt = 0;
1213                 if (spincnt > 10) {
1214                         rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1215                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1216                         schedule_timeout_interruptible(2);
1217                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1218                         spincnt = 0;
1219                 }
1220         }
1221         /* NOTREACHED */
1222         trace_rcu_utilization(TPS("End boost kthread@notreached"));
1223         return 0;
1224 }
1225
1226 /*
1227  * Check to see if it is time to start boosting RCU readers that are
1228  * blocking the current grace period, and, if so, tell the per-rcu_node
1229  * kthread to start boosting them.  If there is an expedited grace
1230  * period in progress, it is always time to boost.
1231  *
1232  * The caller must hold rnp->lock, which this function releases.
1233  * The ->boost_kthread_task is immortal, so we don't need to worry
1234  * about it going away.
1235  */
1236 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1237         __releases(rnp->lock)
1238 {
1239         struct task_struct *t;
1240
1241         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1242                 rnp->n_balk_exp_gp_tasks++;
1243                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1244                 return;
1245         }
1246         if (rnp->exp_tasks != NULL ||
1247             (rnp->gp_tasks != NULL &&
1248              rnp->boost_tasks == NULL &&
1249              rnp->qsmask == 0 &&
1250              ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1251                 if (rnp->exp_tasks == NULL)
1252                         rnp->boost_tasks = rnp->gp_tasks;
1253                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1254                 t = rnp->boost_kthread_task;
1255                 if (t)
1256                         rcu_wake_cond(t, rnp->boost_kthread_status);
1257         } else {
1258                 rcu_initiate_boost_trace(rnp);
1259                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1260         }
1261 }
1262
1263 /*
1264  * Wake up the per-CPU kthread to invoke RCU callbacks.
1265  */
1266 static void invoke_rcu_callbacks_kthread(void)
1267 {
1268         unsigned long flags;
1269
1270         local_irq_save(flags);
1271         __this_cpu_write(rcu_cpu_has_work, 1);
1272         if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1273             current != __this_cpu_read(rcu_cpu_kthread_task)) {
1274                 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1275                               __this_cpu_read(rcu_cpu_kthread_status));
1276         }
1277         local_irq_restore(flags);
1278 }
1279
1280 /*
1281  * Is the current CPU running the RCU-callbacks kthread?
1282  * Caller must have preemption disabled.
1283  */
1284 static bool rcu_is_callbacks_kthread(void)
1285 {
1286         return __this_cpu_read(rcu_cpu_kthread_task) == current;
1287 }
1288
1289 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1290
1291 /*
1292  * Do priority-boost accounting for the start of a new grace period.
1293  */
1294 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1295 {
1296         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1297 }
1298
1299 /*
1300  * Create an RCU-boost kthread for the specified node if one does not
1301  * already exist.  We only create this kthread for preemptible RCU.
1302  * Returns zero if all is well, a negated errno otherwise.
1303  */
1304 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1305                                                  struct rcu_node *rnp)
1306 {
1307         int rnp_index = rnp - &rsp->node[0];
1308         unsigned long flags;
1309         struct sched_param sp;
1310         struct task_struct *t;
1311
1312         if (&rcu_preempt_state != rsp)
1313                 return 0;
1314
1315         if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1316                 return 0;
1317
1318         rsp->boost = 1;
1319         if (rnp->boost_kthread_task != NULL)
1320                 return 0;
1321         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1322                            "rcub/%d", rnp_index);
1323         if (IS_ERR(t))
1324                 return PTR_ERR(t);
1325         raw_spin_lock_irqsave(&rnp->lock, flags);
1326         smp_mb__after_unlock_lock();
1327         rnp->boost_kthread_task = t;
1328         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1329         sp.sched_priority = RCU_BOOST_PRIO;
1330         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1331         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1332         return 0;
1333 }
1334
1335 static void rcu_kthread_do_work(void)
1336 {
1337         rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1338         rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1339         rcu_preempt_do_callbacks();
1340 }
1341
1342 static void rcu_cpu_kthread_setup(unsigned int cpu)
1343 {
1344         struct sched_param sp;
1345
1346         sp.sched_priority = RCU_KTHREAD_PRIO;
1347         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1348 }
1349
1350 static void rcu_cpu_kthread_park(unsigned int cpu)
1351 {
1352         per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1353 }
1354
1355 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1356 {
1357         return __this_cpu_read(rcu_cpu_has_work);
1358 }
1359
1360 /*
1361  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1362  * RCU softirq used in flavors and configurations of RCU that do not
1363  * support RCU priority boosting.
1364  */
1365 static void rcu_cpu_kthread(unsigned int cpu)
1366 {
1367         unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1368         char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1369         int spincnt;
1370
1371         for (spincnt = 0; spincnt < 10; spincnt++) {
1372                 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1373                 local_bh_disable();
1374                 *statusp = RCU_KTHREAD_RUNNING;
1375                 this_cpu_inc(rcu_cpu_kthread_loops);
1376                 local_irq_disable();
1377                 work = *workp;
1378                 *workp = 0;
1379                 local_irq_enable();
1380                 if (work)
1381                         rcu_kthread_do_work();
1382                 local_bh_enable();
1383                 if (*workp == 0) {
1384                         trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1385                         *statusp = RCU_KTHREAD_WAITING;
1386                         return;
1387                 }
1388         }
1389         *statusp = RCU_KTHREAD_YIELDING;
1390         trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1391         schedule_timeout_interruptible(2);
1392         trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1393         *statusp = RCU_KTHREAD_WAITING;
1394 }
1395
1396 /*
1397  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1398  * served by the rcu_node in question.  The CPU hotplug lock is still
1399  * held, so the value of rnp->qsmaskinit will be stable.
1400  *
1401  * We don't include outgoingcpu in the affinity set, use -1 if there is
1402  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1403  * this function allows the kthread to execute on any CPU.
1404  */
1405 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1406 {
1407         struct task_struct *t = rnp->boost_kthread_task;
1408         unsigned long mask = rnp->qsmaskinit;
1409         cpumask_var_t cm;
1410         int cpu;
1411
1412         if (!t)
1413                 return;
1414         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1415                 return;
1416         for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1417                 if ((mask & 0x1) && cpu != outgoingcpu)
1418                         cpumask_set_cpu(cpu, cm);
1419         if (cpumask_weight(cm) == 0) {
1420                 cpumask_setall(cm);
1421                 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1422                         cpumask_clear_cpu(cpu, cm);
1423                 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1424         }
1425         set_cpus_allowed_ptr(t, cm);
1426         free_cpumask_var(cm);
1427 }
1428
1429 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1430         .store                  = &rcu_cpu_kthread_task,
1431         .thread_should_run      = rcu_cpu_kthread_should_run,
1432         .thread_fn              = rcu_cpu_kthread,
1433         .thread_comm            = "rcuc/%u",
1434         .setup                  = rcu_cpu_kthread_setup,
1435         .park                   = rcu_cpu_kthread_park,
1436 };
1437
1438 /*
1439  * Spawn boost kthreads -- called as soon as the scheduler is running.
1440  */
1441 static void __init rcu_spawn_boost_kthreads(void)
1442 {
1443         struct rcu_node *rnp;
1444         int cpu;
1445
1446         for_each_possible_cpu(cpu)
1447                 per_cpu(rcu_cpu_has_work, cpu) = 0;
1448         BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1449         rnp = rcu_get_root(rcu_state_p);
1450         (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1451         if (NUM_RCU_NODES > 1) {
1452                 rcu_for_each_leaf_node(rcu_state_p, rnp)
1453                         (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1454         }
1455 }
1456
1457 static void rcu_prepare_kthreads(int cpu)
1458 {
1459         struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1460         struct rcu_node *rnp = rdp->mynode;
1461
1462         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1463         if (rcu_scheduler_fully_active)
1464                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1465 }
1466
1467 #else /* #ifdef CONFIG_RCU_BOOST */
1468
1469 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1470         __releases(rnp->lock)
1471 {
1472         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1473 }
1474
1475 static void invoke_rcu_callbacks_kthread(void)
1476 {
1477         WARN_ON_ONCE(1);
1478 }
1479
1480 static bool rcu_is_callbacks_kthread(void)
1481 {
1482         return false;
1483 }
1484
1485 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1486 {
1487 }
1488
1489 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1490 {
1491 }
1492
1493 static void __init rcu_spawn_boost_kthreads(void)
1494 {
1495 }
1496
1497 static void rcu_prepare_kthreads(int cpu)
1498 {
1499 }
1500
1501 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1502
1503 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1504
1505 /*
1506  * Check to see if any future RCU-related work will need to be done
1507  * by the current CPU, even if none need be done immediately, returning
1508  * 1 if so.  This function is part of the RCU implementation; it is -not-
1509  * an exported member of the RCU API.
1510  *
1511  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1512  * any flavor of RCU.
1513  */
1514 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1515 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1516 {
1517         *delta_jiffies = ULONG_MAX;
1518         return rcu_cpu_has_callbacks(cpu, NULL);
1519 }
1520 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1521
1522 /*
1523  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1524  * after it.
1525  */
1526 static void rcu_cleanup_after_idle(int cpu)
1527 {
1528 }
1529
1530 /*
1531  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1532  * is nothing.
1533  */
1534 static void rcu_prepare_for_idle(int cpu)
1535 {
1536 }
1537
1538 /*
1539  * Don't bother keeping a running count of the number of RCU callbacks
1540  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1541  */
1542 static void rcu_idle_count_callbacks_posted(void)
1543 {
1544 }
1545
1546 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1547
1548 /*
1549  * This code is invoked when a CPU goes idle, at which point we want
1550  * to have the CPU do everything required for RCU so that it can enter
1551  * the energy-efficient dyntick-idle mode.  This is handled by a
1552  * state machine implemented by rcu_prepare_for_idle() below.
1553  *
1554  * The following three proprocessor symbols control this state machine:
1555  *
1556  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1557  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1558  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1559  *      benchmarkers who might otherwise be tempted to set this to a large
1560  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1561  *      system.  And if you are -that- concerned about energy efficiency,
1562  *      just power the system down and be done with it!
1563  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1564  *      permitted to sleep in dyntick-idle mode with only lazy RCU
1565  *      callbacks pending.  Setting this too high can OOM your system.
1566  *
1567  * The values below work well in practice.  If future workloads require
1568  * adjustment, they can be converted into kernel config parameters, though
1569  * making the state machine smarter might be a better option.
1570  */
1571 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1572 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1573
1574 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1575 module_param(rcu_idle_gp_delay, int, 0644);
1576 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1577 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1578
1579 extern int tick_nohz_active;
1580
1581 /*
1582  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1583  * only if it has been awhile since the last time we did so.  Afterwards,
1584  * if there are any callbacks ready for immediate invocation, return true.
1585  */
1586 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1587 {
1588         bool cbs_ready = false;
1589         struct rcu_data *rdp;
1590         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1591         struct rcu_node *rnp;
1592         struct rcu_state *rsp;
1593
1594         /* Exit early if we advanced recently. */
1595         if (jiffies == rdtp->last_advance_all)
1596                 return false;
1597         rdtp->last_advance_all = jiffies;
1598
1599         for_each_rcu_flavor(rsp) {
1600                 rdp = this_cpu_ptr(rsp->rda);
1601                 rnp = rdp->mynode;
1602
1603                 /*
1604                  * Don't bother checking unless a grace period has
1605                  * completed since we last checked and there are
1606                  * callbacks not yet ready to invoke.
1607                  */
1608                 if (rdp->completed != rnp->completed &&
1609                     rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1610                         note_gp_changes(rsp, rdp);
1611
1612                 if (cpu_has_callbacks_ready_to_invoke(rdp))
1613                         cbs_ready = true;
1614         }
1615         return cbs_ready;
1616 }
1617
1618 /*
1619  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1620  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1621  * caller to set the timeout based on whether or not there are non-lazy
1622  * callbacks.
1623  *
1624  * The caller must have disabled interrupts.
1625  */
1626 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1627 int rcu_needs_cpu(int cpu, unsigned long *dj)
1628 {
1629         struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1630
1631         /* Snapshot to detect later posting of non-lazy callback. */
1632         rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1633
1634         /* If no callbacks, RCU doesn't need the CPU. */
1635         if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1636                 *dj = ULONG_MAX;
1637                 return 0;
1638         }
1639
1640         /* Attempt to advance callbacks. */
1641         if (rcu_try_advance_all_cbs()) {
1642                 /* Some ready to invoke, so initiate later invocation. */
1643                 invoke_rcu_core();
1644                 return 1;
1645         }
1646         rdtp->last_accelerate = jiffies;
1647
1648         /* Request timer delay depending on laziness, and round. */
1649         if (!rdtp->all_lazy) {
1650                 *dj = round_up(rcu_idle_gp_delay + jiffies,
1651                                rcu_idle_gp_delay) - jiffies;
1652         } else {
1653                 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1654         }
1655         return 0;
1656 }
1657 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1658
1659 /*
1660  * Prepare a CPU for idle from an RCU perspective.  The first major task
1661  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1662  * The second major task is to check to see if a non-lazy callback has
1663  * arrived at a CPU that previously had only lazy callbacks.  The third
1664  * major task is to accelerate (that is, assign grace-period numbers to)
1665  * any recently arrived callbacks.
1666  *
1667  * The caller must have disabled interrupts.
1668  */
1669 static void rcu_prepare_for_idle(int cpu)
1670 {
1671 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1672         bool needwake;
1673         struct rcu_data *rdp;
1674         struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1675         struct rcu_node *rnp;
1676         struct rcu_state *rsp;
1677         int tne;
1678
1679         /* Handle nohz enablement switches conservatively. */
1680         tne = ACCESS_ONCE(tick_nohz_active);
1681         if (tne != rdtp->tick_nohz_enabled_snap) {
1682                 if (rcu_cpu_has_callbacks(cpu, NULL))
1683                         invoke_rcu_core(); /* force nohz to see update. */
1684                 rdtp->tick_nohz_enabled_snap = tne;
1685                 return;
1686         }
1687         if (!tne)
1688                 return;
1689
1690         /* If this is a no-CBs CPU, no callbacks, just return. */
1691         if (rcu_is_nocb_cpu(cpu))
1692                 return;
1693
1694         /*
1695          * If a non-lazy callback arrived at a CPU having only lazy
1696          * callbacks, invoke RCU core for the side-effect of recalculating
1697          * idle duration on re-entry to idle.
1698          */
1699         if (rdtp->all_lazy &&
1700             rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1701                 rdtp->all_lazy = false;
1702                 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1703                 invoke_rcu_core();
1704                 return;
1705         }
1706
1707         /*
1708          * If we have not yet accelerated this jiffy, accelerate all
1709          * callbacks on this CPU.
1710          */
1711         if (rdtp->last_accelerate == jiffies)
1712                 return;
1713         rdtp->last_accelerate = jiffies;
1714         for_each_rcu_flavor(rsp) {
1715                 rdp = per_cpu_ptr(rsp->rda, cpu);
1716                 if (!*rdp->nxttail[RCU_DONE_TAIL])
1717                         continue;
1718                 rnp = rdp->mynode;
1719                 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1720                 smp_mb__after_unlock_lock();
1721                 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1722                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1723                 if (needwake)
1724                         rcu_gp_kthread_wake(rsp);
1725         }
1726 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1727 }
1728
1729 /*
1730  * Clean up for exit from idle.  Attempt to advance callbacks based on
1731  * any grace periods that elapsed while the CPU was idle, and if any
1732  * callbacks are now ready to invoke, initiate invocation.
1733  */
1734 static void rcu_cleanup_after_idle(int cpu)
1735 {
1736 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1737         if (rcu_is_nocb_cpu(cpu))
1738                 return;
1739         if (rcu_try_advance_all_cbs())
1740                 invoke_rcu_core();
1741 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1742 }
1743
1744 /*
1745  * Keep a running count of the number of non-lazy callbacks posted
1746  * on this CPU.  This running counter (which is never decremented) allows
1747  * rcu_prepare_for_idle() to detect when something out of the idle loop
1748  * posts a callback, even if an equal number of callbacks are invoked.
1749  * Of course, callbacks should only be posted from within a trace event
1750  * designed to be called from idle or from within RCU_NONIDLE().
1751  */
1752 static void rcu_idle_count_callbacks_posted(void)
1753 {
1754         __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1755 }
1756
1757 /*
1758  * Data for flushing lazy RCU callbacks at OOM time.
1759  */
1760 static atomic_t oom_callback_count;
1761 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1762
1763 /*
1764  * RCU OOM callback -- decrement the outstanding count and deliver the
1765  * wake-up if we are the last one.
1766  */
1767 static void rcu_oom_callback(struct rcu_head *rhp)
1768 {
1769         if (atomic_dec_and_test(&oom_callback_count))
1770                 wake_up(&oom_callback_wq);
1771 }
1772
1773 /*
1774  * Post an rcu_oom_notify callback on the current CPU if it has at
1775  * least one lazy callback.  This will unnecessarily post callbacks
1776  * to CPUs that already have a non-lazy callback at the end of their
1777  * callback list, but this is an infrequent operation, so accept some
1778  * extra overhead to keep things simple.
1779  */
1780 static void rcu_oom_notify_cpu(void *unused)
1781 {
1782         struct rcu_state *rsp;
1783         struct rcu_data *rdp;
1784
1785         for_each_rcu_flavor(rsp) {
1786                 rdp = raw_cpu_ptr(rsp->rda);
1787                 if (rdp->qlen_lazy != 0) {
1788                         atomic_inc(&oom_callback_count);
1789                         rsp->call(&rdp->oom_head, rcu_oom_callback);
1790                 }
1791         }
1792 }
1793
1794 /*
1795  * If low on memory, ensure that each CPU has a non-lazy callback.
1796  * This will wake up CPUs that have only lazy callbacks, in turn
1797  * ensuring that they free up the corresponding memory in a timely manner.
1798  * Because an uncertain amount of memory will be freed in some uncertain
1799  * timeframe, we do not claim to have freed anything.
1800  */
1801 static int rcu_oom_notify(struct notifier_block *self,
1802                           unsigned long notused, void *nfreed)
1803 {
1804         int cpu;
1805
1806         /* Wait for callbacks from earlier instance to complete. */
1807         wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1808         smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1809
1810         /*
1811          * Prevent premature wakeup: ensure that all increments happen
1812          * before there is a chance of the counter reaching zero.
1813          */
1814         atomic_set(&oom_callback_count, 1);
1815
1816         get_online_cpus();
1817         for_each_online_cpu(cpu) {
1818                 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1819                 cond_resched_rcu_qs();
1820         }
1821         put_online_cpus();
1822
1823         /* Unconditionally decrement: no need to wake ourselves up. */
1824         atomic_dec(&oom_callback_count);
1825
1826         return NOTIFY_OK;
1827 }
1828
1829 static struct notifier_block rcu_oom_nb = {
1830         .notifier_call = rcu_oom_notify
1831 };
1832
1833 static int __init rcu_register_oom_notifier(void)
1834 {
1835         register_oom_notifier(&rcu_oom_nb);
1836         return 0;
1837 }
1838 early_initcall(rcu_register_oom_notifier);
1839
1840 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1841
1842 #ifdef CONFIG_RCU_CPU_STALL_INFO
1843
1844 #ifdef CONFIG_RCU_FAST_NO_HZ
1845
1846 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1847 {
1848         struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1849         unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1850
1851         sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1852                 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1853                 ulong2long(nlpd),
1854                 rdtp->all_lazy ? 'L' : '.',
1855                 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1856 }
1857
1858 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1859
1860 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1861 {
1862         *cp = '\0';
1863 }
1864
1865 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1866
1867 /* Initiate the stall-info list. */
1868 static void print_cpu_stall_info_begin(void)
1869 {
1870         pr_cont("\n");
1871 }
1872
1873 /*
1874  * Print out diagnostic information for the specified stalled CPU.
1875  *
1876  * If the specified CPU is aware of the current RCU grace period
1877  * (flavor specified by rsp), then print the number of scheduling
1878  * clock interrupts the CPU has taken during the time that it has
1879  * been aware.  Otherwise, print the number of RCU grace periods
1880  * that this CPU is ignorant of, for example, "1" if the CPU was
1881  * aware of the previous grace period.
1882  *
1883  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1884  */
1885 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1886 {
1887         char fast_no_hz[72];
1888         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1889         struct rcu_dynticks *rdtp = rdp->dynticks;
1890         char *ticks_title;
1891         unsigned long ticks_value;
1892
1893         if (rsp->gpnum == rdp->gpnum) {
1894                 ticks_title = "ticks this GP";
1895                 ticks_value = rdp->ticks_this_gp;
1896         } else {
1897                 ticks_title = "GPs behind";
1898                 ticks_value = rsp->gpnum - rdp->gpnum;
1899         }
1900         print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1901         pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1902                cpu, ticks_value, ticks_title,
1903                atomic_read(&rdtp->dynticks) & 0xfff,
1904                rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1905                rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1906                fast_no_hz);
1907 }
1908
1909 /* Terminate the stall-info list. */
1910 static void print_cpu_stall_info_end(void)
1911 {
1912         pr_err("\t");
1913 }
1914
1915 /* Zero ->ticks_this_gp for all flavors of RCU. */
1916 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1917 {
1918         rdp->ticks_this_gp = 0;
1919         rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1920 }
1921
1922 /* Increment ->ticks_this_gp for all flavors of RCU. */
1923 static void increment_cpu_stall_ticks(void)
1924 {
1925         struct rcu_state *rsp;
1926
1927         for_each_rcu_flavor(rsp)
1928                 raw_cpu_inc(rsp->rda->ticks_this_gp);
1929 }
1930
1931 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1932
1933 static void print_cpu_stall_info_begin(void)
1934 {
1935         pr_cont(" {");
1936 }
1937
1938 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1939 {
1940         pr_cont(" %d", cpu);
1941 }
1942
1943 static void print_cpu_stall_info_end(void)
1944 {
1945         pr_cont("} ");
1946 }
1947
1948 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1949 {
1950 }
1951
1952 static void increment_cpu_stall_ticks(void)
1953 {
1954 }
1955
1956 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1957
1958 #ifdef CONFIG_RCU_NOCB_CPU
1959
1960 /*
1961  * Offload callback processing from the boot-time-specified set of CPUs
1962  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1963  * kthread created that pulls the callbacks from the corresponding CPU,
1964  * waits for a grace period to elapse, and invokes the callbacks.
1965  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1966  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1967  * has been specified, in which case each kthread actively polls its
1968  * CPU.  (Which isn't so great for energy efficiency, but which does
1969  * reduce RCU's overhead on that CPU.)
1970  *
1971  * This is intended to be used in conjunction with Frederic Weisbecker's
1972  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1973  * running CPU-bound user-mode computations.
1974  *
1975  * Offloading of callback processing could also in theory be used as
1976  * an energy-efficiency measure because CPUs with no RCU callbacks
1977  * queued are more aggressive about entering dyntick-idle mode.
1978  */
1979
1980
1981 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1982 static int __init rcu_nocb_setup(char *str)
1983 {
1984         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1985         have_rcu_nocb_mask = true;
1986         cpulist_parse(str, rcu_nocb_mask);
1987         return 1;
1988 }
1989 __setup("rcu_nocbs=", rcu_nocb_setup);
1990
1991 static int __init parse_rcu_nocb_poll(char *arg)
1992 {
1993         rcu_nocb_poll = 1;
1994         return 0;
1995 }
1996 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1997
1998 /*
1999  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2000  * grace period.
2001  */
2002 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2003 {
2004         wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2005 }
2006
2007 /*
2008  * Set the root rcu_node structure's ->need_future_gp field
2009  * based on the sum of those of all rcu_node structures.  This does
2010  * double-count the root rcu_node structure's requests, but this
2011  * is necessary to handle the possibility of a rcu_nocb_kthread()
2012  * having awakened during the time that the rcu_node structures
2013  * were being updated for the end of the previous grace period.
2014  */
2015 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2016 {
2017         rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2018 }
2019
2020 static void rcu_init_one_nocb(struct rcu_node *rnp)
2021 {
2022         init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2023         init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2024 }
2025
2026 #ifndef CONFIG_RCU_NOCB_CPU_ALL
2027 /* Is the specified CPU a no-CBs CPU? */
2028 bool rcu_is_nocb_cpu(int cpu)
2029 {
2030         if (have_rcu_nocb_mask)
2031                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
2032         return false;
2033 }
2034 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
2035
2036 /*
2037  * Kick the leader kthread for this NOCB group.
2038  */
2039 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
2040 {
2041         struct rcu_data *rdp_leader = rdp->nocb_leader;
2042
2043         if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
2044                 return;
2045         if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
2046                 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
2047                 ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
2048                 wake_up(&rdp_leader->nocb_wq);
2049         }
2050 }
2051
2052 /*
2053  * Enqueue the specified string of rcu_head structures onto the specified
2054  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
2055  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
2056  * counts are supplied by rhcount and rhcount_lazy.
2057  *
2058  * If warranted, also wake up the kthread servicing this CPUs queues.
2059  */
2060 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2061                                     struct rcu_head *rhp,
2062                                     struct rcu_head **rhtp,
2063                                     int rhcount, int rhcount_lazy,
2064                                     unsigned long flags)
2065 {
2066         int len;
2067         struct rcu_head **old_rhpp;
2068         struct task_struct *t;
2069
2070         /* Enqueue the callback on the nocb list and update counts. */
2071         old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2072         ACCESS_ONCE(*old_rhpp) = rhp;
2073         atomic_long_add(rhcount, &rdp->nocb_q_count);
2074         atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2075         smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
2076
2077         /* If we are not being polled and there is a kthread, awaken it ... */
2078         t = ACCESS_ONCE(rdp->nocb_kthread);
2079         if (rcu_nocb_poll || !t) {
2080                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2081                                     TPS("WakeNotPoll"));
2082                 return;
2083         }
2084         len = atomic_long_read(&rdp->nocb_q_count);
2085         if (old_rhpp == &rdp->nocb_head) {
2086                 if (!irqs_disabled_flags(flags)) {
2087                         /* ... if queue was empty ... */
2088                         wake_nocb_leader(rdp, false);
2089                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2090                                             TPS("WakeEmpty"));
2091                 } else {
2092                         rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
2093                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2094                                             TPS("WakeEmptyIsDeferred"));
2095                 }
2096                 rdp->qlen_last_fqs_check = 0;
2097         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2098                 /* ... or if many callbacks queued. */
2099                 if (!irqs_disabled_flags(flags)) {
2100                         wake_nocb_leader(rdp, true);
2101                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2102                                             TPS("WakeOvf"));
2103                 } else {
2104                         rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2105                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2106                                             TPS("WakeOvfIsDeferred"));
2107                 }
2108                 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2109         } else {
2110                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2111         }
2112         return;
2113 }
2114
2115 /*
2116  * This is a helper for __call_rcu(), which invokes this when the normal
2117  * callback queue is inoperable.  If this is not a no-CBs CPU, this
2118  * function returns failure back to __call_rcu(), which can complain
2119  * appropriately.
2120  *
2121  * Otherwise, this function queues the callback where the corresponding
2122  * "rcuo" kthread can find it.
2123  */
2124 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2125                             bool lazy, unsigned long flags)
2126 {
2127
2128         if (!rcu_is_nocb_cpu(rdp->cpu))
2129                 return false;
2130         __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2131         if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2132                 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2133                                          (unsigned long)rhp->func,
2134                                          -atomic_long_read(&rdp->nocb_q_count_lazy),
2135                                          -atomic_long_read(&rdp->nocb_q_count));
2136         else
2137                 trace_rcu_callback(rdp->rsp->name, rhp,
2138                                    -atomic_long_read(&rdp->nocb_q_count_lazy),
2139                                    -atomic_long_read(&rdp->nocb_q_count));
2140
2141         /*
2142          * If called from an extended quiescent state with interrupts
2143          * disabled, invoke the RCU core in order to allow the idle-entry
2144          * deferred-wakeup check to function.
2145          */
2146         if (irqs_disabled_flags(flags) &&
2147             !rcu_is_watching() &&
2148             cpu_online(smp_processor_id()))
2149                 invoke_rcu_core();
2150
2151         return true;
2152 }
2153
2154 /*
2155  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2156  * not a no-CBs CPU.
2157  */
2158 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2159                                                      struct rcu_data *rdp,
2160                                                      unsigned long flags)
2161 {
2162         long ql = rsp->qlen;
2163         long qll = rsp->qlen_lazy;
2164
2165         /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2166         if (!rcu_is_nocb_cpu(smp_processor_id()))
2167                 return false;
2168         rsp->qlen = 0;
2169         rsp->qlen_lazy = 0;
2170
2171         /* First, enqueue the donelist, if any.  This preserves CB ordering. */
2172         if (rsp->orphan_donelist != NULL) {
2173                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2174                                         rsp->orphan_donetail, ql, qll, flags);
2175                 ql = qll = 0;
2176                 rsp->orphan_donelist = NULL;
2177                 rsp->orphan_donetail = &rsp->orphan_donelist;
2178         }
2179         if (rsp->orphan_nxtlist != NULL) {
2180                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2181                                         rsp->orphan_nxttail, ql, qll, flags);
2182                 ql = qll = 0;
2183                 rsp->orphan_nxtlist = NULL;
2184                 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2185         }
2186         return true;
2187 }
2188
2189 /*
2190  * If necessary, kick off a new grace period, and either way wait
2191  * for a subsequent grace period to complete.
2192  */
2193 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2194 {
2195         unsigned long c;
2196         bool d;
2197         unsigned long flags;
2198         bool needwake;
2199         struct rcu_node *rnp = rdp->mynode;
2200
2201         raw_spin_lock_irqsave(&rnp->lock, flags);
2202         smp_mb__after_unlock_lock();
2203         needwake = rcu_start_future_gp(rnp, rdp, &c);
2204         raw_spin_unlock_irqrestore(&rnp->lock, flags);
2205         if (needwake)
2206                 rcu_gp_kthread_wake(rdp->rsp);
2207
2208         /*
2209          * Wait for the grace period.  Do so interruptibly to avoid messing
2210          * up the load average.
2211          */
2212         trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2213         for (;;) {
2214                 wait_event_interruptible(
2215                         rnp->nocb_gp_wq[c & 0x1],
2216                         (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2217                 if (likely(d))
2218                         break;
2219                 WARN_ON(signal_pending(current));
2220                 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2221         }
2222         trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2223         smp_mb(); /* Ensure that CB invocation happens after GP end. */
2224 }
2225
2226 /*
2227  * Leaders come here to wait for additional callbacks to show up.
2228  * This function does not return until callbacks appear.
2229  */
2230 static void nocb_leader_wait(struct rcu_data *my_rdp)
2231 {
2232         bool firsttime = true;
2233         bool gotcbs;
2234         struct rcu_data *rdp;
2235         struct rcu_head **tail;
2236
2237 wait_again:
2238
2239         /* Wait for callbacks to appear. */
2240         if (!rcu_nocb_poll) {
2241                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2242                 wait_event_interruptible(my_rdp->nocb_wq,
2243                                 !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2244                 /* Memory barrier handled by smp_mb() calls below and repoll. */
2245         } else if (firsttime) {
2246                 firsttime = false; /* Don't drown trace log with "Poll"! */
2247                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2248         }
2249
2250         /*
2251          * Each pass through the following loop checks a follower for CBs.
2252          * We are our own first follower.  Any CBs found are moved to
2253          * nocb_gp_head, where they await a grace period.
2254          */
2255         gotcbs = false;
2256         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2257                 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2258                 if (!rdp->nocb_gp_head)
2259                         continue;  /* No CBs here, try next follower. */
2260
2261                 /* Move callbacks to wait-for-GP list, which is empty. */
2262                 ACCESS_ONCE(rdp->nocb_head) = NULL;
2263                 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2264                 rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
2265                 rdp->nocb_gp_count_lazy =
2266                         atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2267                 gotcbs = true;
2268         }
2269
2270         /*
2271          * If there were no callbacks, sleep a bit, rescan after a
2272          * memory barrier, and go retry.
2273          */
2274         if (unlikely(!gotcbs)) {
2275                 if (!rcu_nocb_poll)
2276                         trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2277                                             "WokeEmpty");
2278                 WARN_ON(signal_pending(current));
2279                 schedule_timeout_interruptible(1);
2280
2281                 /* Rescan in case we were a victim of memory ordering. */
2282                 my_rdp->nocb_leader_sleep = true;
2283                 smp_mb();  /* Ensure _sleep true before scan. */
2284                 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2285                         if (ACCESS_ONCE(rdp->nocb_head)) {
2286                                 /* Found CB, so short-circuit next wait. */
2287                                 my_rdp->nocb_leader_sleep = false;
2288                                 break;
2289                         }
2290                 goto wait_again;
2291         }
2292
2293         /* Wait for one grace period. */
2294         rcu_nocb_wait_gp(my_rdp);
2295
2296         /*
2297          * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2298          * We set it now, but recheck for new callbacks while
2299          * traversing our follower list.
2300          */
2301         my_rdp->nocb_leader_sleep = true;
2302         smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2303
2304         /* Each pass through the following loop wakes a follower, if needed. */
2305         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2306                 if (ACCESS_ONCE(rdp->nocb_head))
2307                         my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2308                 if (!rdp->nocb_gp_head)
2309                         continue; /* No CBs, so no need to wake follower. */
2310
2311                 /* Append callbacks to follower's "done" list. */
2312                 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2313                 *tail = rdp->nocb_gp_head;
2314                 atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
2315                 atomic_long_add(rdp->nocb_gp_count_lazy,
2316                                 &rdp->nocb_follower_count_lazy);
2317                 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2318                 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2319                         /*
2320                          * List was empty, wake up the follower.
2321                          * Memory barriers supplied by atomic_long_add().
2322                          */
2323                         wake_up(&rdp->nocb_wq);
2324                 }
2325         }
2326
2327         /* If we (the leader) don't have CBs, go wait some more. */
2328         if (!my_rdp->nocb_follower_head)
2329                 goto wait_again;
2330 }
2331
2332 /*
2333  * Followers come here to wait for additional callbacks to show up.
2334  * This function does not return until callbacks appear.
2335  */
2336 static void nocb_follower_wait(struct rcu_data *rdp)
2337 {
2338         bool firsttime = true;
2339
2340         for (;;) {
2341                 if (!rcu_nocb_poll) {
2342                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2343                                             "FollowerSleep");
2344                         wait_event_interruptible(rdp->nocb_wq,
2345                                                  ACCESS_ONCE(rdp->nocb_follower_head));
2346                 } else if (firsttime) {
2347                         /* Don't drown trace log with "Poll"! */
2348                         firsttime = false;
2349                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2350                 }
2351                 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2352                         /* ^^^ Ensure CB invocation follows _head test. */
2353                         return;
2354                 }
2355                 if (!rcu_nocb_poll)
2356                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2357                                             "WokeEmpty");
2358                 WARN_ON(signal_pending(current));
2359                 schedule_timeout_interruptible(1);
2360         }
2361 }
2362
2363 /*
2364  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2365  * callbacks queued by the corresponding no-CBs CPU, however, there is
2366  * an optional leader-follower relationship so that the grace-period
2367  * kthreads don't have to do quite so many wakeups.
2368  */
2369 static int rcu_nocb_kthread(void *arg)
2370 {
2371         int c, cl;
2372         struct rcu_head *list;
2373         struct rcu_head *next;
2374         struct rcu_head **tail;
2375         struct rcu_data *rdp = arg;
2376
2377         /* Each pass through this loop invokes one batch of callbacks */
2378         for (;;) {
2379                 /* Wait for callbacks. */
2380                 if (rdp->nocb_leader == rdp)
2381                         nocb_leader_wait(rdp);
2382                 else
2383                         nocb_follower_wait(rdp);
2384
2385                 /* Pull the ready-to-invoke callbacks onto local list. */
2386                 list = ACCESS_ONCE(rdp->nocb_follower_head);
2387                 BUG_ON(!list);
2388                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2389                 ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2390                 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2391                 c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
2392                 cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
2393                 rdp->nocb_p_count += c;
2394                 rdp->nocb_p_count_lazy += cl;
2395
2396                 /* Each pass through the following loop invokes a callback. */
2397                 trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2398                 c = cl = 0;
2399                 while (list) {
2400                         next = list->next;
2401                         /* Wait for enqueuing to complete, if needed. */
2402                         while (next == NULL && &list->next != tail) {
2403                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2404                                                     TPS("WaitQueue"));
2405                                 schedule_timeout_interruptible(1);
2406                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2407                                                     TPS("WokeQueue"));
2408                                 next = list->next;
2409                         }
2410                         debug_rcu_head_unqueue(list);
2411                         local_bh_disable();
2412                         if (__rcu_reclaim(rdp->rsp->name, list))
2413                                 cl++;
2414                         c++;
2415                         local_bh_enable();
2416                         list = next;
2417                 }
2418                 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2419                 ACCESS_ONCE(rdp->nocb_p_count) = rdp->nocb_p_count - c;
2420                 ACCESS_ONCE(rdp->nocb_p_count_lazy) =
2421                                                 rdp->nocb_p_count_lazy - cl;
2422                 rdp->n_nocbs_invoked += c;
2423         }
2424         return 0;
2425 }
2426
2427 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2428 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2429 {
2430         return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2431 }
2432
2433 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2434 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2435 {
2436         int ndw;
2437
2438         if (!rcu_nocb_need_deferred_wakeup(rdp))
2439                 return;
2440         ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
2441         ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
2442         wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2443         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2444 }
2445
2446 void __init rcu_init_nohz(void)
2447 {
2448         int cpu;
2449         bool need_rcu_nocb_mask = true;
2450         struct rcu_state *rsp;
2451
2452 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2453         need_rcu_nocb_mask = false;
2454 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2455
2456 #if defined(CONFIG_NO_HZ_FULL)
2457         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2458                 need_rcu_nocb_mask = true;
2459 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2460
2461         if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2462                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2463                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2464                         return;
2465                 }
2466                 have_rcu_nocb_mask = true;
2467         }
2468         if (!have_rcu_nocb_mask)
2469                 return;
2470
2471 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2472         pr_info("\tOffload RCU callbacks from CPU 0\n");
2473         cpumask_set_cpu(0, rcu_nocb_mask);
2474 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2475 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2476         pr_info("\tOffload RCU callbacks from all CPUs\n");
2477         cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2478 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2479 #if defined(CONFIG_NO_HZ_FULL)
2480         if (tick_nohz_full_running)
2481                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2482 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2483
2484         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2485                 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2486                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2487                             rcu_nocb_mask);
2488         }
2489         cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
2490         pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
2491         if (rcu_nocb_poll)
2492                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2493
2494         for_each_rcu_flavor(rsp) {
2495                 for_each_cpu(cpu, rcu_nocb_mask) {
2496                         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2497
2498                         /*
2499                          * If there are early callbacks, they will need
2500                          * to be moved to the nocb lists.
2501                          */
2502                         WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
2503                                      &rdp->nxtlist &&
2504                                      rdp->nxttail[RCU_NEXT_TAIL] != NULL);
2505                         init_nocb_callback_list(rdp);
2506                 }
2507                 rcu_organize_nocb_kthreads(rsp);
2508         }
2509 }
2510
2511 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2512 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2513 {
2514         rdp->nocb_tail = &rdp->nocb_head;
2515         init_waitqueue_head(&rdp->nocb_wq);
2516         rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2517 }
2518
2519 /*
2520  * If the specified CPU is a no-CBs CPU that does not already have its
2521  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2522  * brought online out of order, this can require re-organizing the
2523  * leader-follower relationships.
2524  */
2525 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2526 {
2527         struct rcu_data *rdp;
2528         struct rcu_data *rdp_last;
2529         struct rcu_data *rdp_old_leader;
2530         struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2531         struct task_struct *t;
2532
2533         /*
2534          * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2535          * then nothing to do.
2536          */
2537         if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2538                 return;
2539
2540         /* If we didn't spawn the leader first, reorganize! */
2541         rdp_old_leader = rdp_spawn->nocb_leader;
2542         if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2543                 rdp_last = NULL;
2544                 rdp = rdp_old_leader;
2545                 do {
2546                         rdp->nocb_leader = rdp_spawn;
2547                         if (rdp_last && rdp != rdp_spawn)
2548                                 rdp_last->nocb_next_follower = rdp;
2549                         rdp_last = rdp;
2550                         rdp = rdp->nocb_next_follower;
2551                         rdp_last->nocb_next_follower = NULL;
2552                 } while (rdp);
2553                 rdp_spawn->nocb_next_follower = rdp_old_leader;
2554         }
2555
2556         /* Spawn the kthread for this CPU and RCU flavor. */
2557         t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2558                         "rcuo%c/%d", rsp->abbr, cpu);
2559         BUG_ON(IS_ERR(t));
2560         ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
2561 }
2562
2563 /*
2564  * If the specified CPU is a no-CBs CPU that does not already have its
2565  * rcuo kthreads, spawn them.
2566  */
2567 static void rcu_spawn_all_nocb_kthreads(int cpu)
2568 {
2569         struct rcu_state *rsp;
2570
2571         if (rcu_scheduler_fully_active)
2572                 for_each_rcu_flavor(rsp)
2573                         rcu_spawn_one_nocb_kthread(rsp, cpu);
2574 }
2575
2576 /*
2577  * Once the scheduler is running, spawn rcuo kthreads for all online
2578  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2579  * non-boot CPUs come online -- if this changes, we will need to add
2580  * some mutual exclusion.
2581  */
2582 static void __init rcu_spawn_nocb_kthreads(void)
2583 {
2584         int cpu;
2585
2586         for_each_online_cpu(cpu)
2587                 rcu_spawn_all_nocb_kthreads(cpu);
2588 }
2589
2590 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2591 static int rcu_nocb_leader_stride = -1;
2592 module_param(rcu_nocb_leader_stride, int, 0444);
2593
2594 /*
2595  * Initialize leader-follower relationships for all no-CBs CPU.
2596  */
2597 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2598 {
2599         int cpu;
2600         int ls = rcu_nocb_leader_stride;
2601         int nl = 0;  /* Next leader. */
2602         struct rcu_data *rdp;
2603         struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2604         struct rcu_data *rdp_prev = NULL;
2605
2606         if (!have_rcu_nocb_mask)
2607                 return;
2608         if (ls == -1) {
2609                 ls = int_sqrt(nr_cpu_ids);
2610                 rcu_nocb_leader_stride = ls;
2611         }
2612
2613         /*
2614          * Each pass through this loop sets up one rcu_data structure and
2615          * spawns one rcu_nocb_kthread().
2616          */
2617         for_each_cpu(cpu, rcu_nocb_mask) {
2618                 rdp = per_cpu_ptr(rsp->rda, cpu);
2619                 if (rdp->cpu >= nl) {
2620                         /* New leader, set up for followers & next leader. */
2621                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2622                         rdp->nocb_leader = rdp;
2623                         rdp_leader = rdp;
2624                 } else {
2625                         /* Another follower, link to previous leader. */
2626                         rdp->nocb_leader = rdp_leader;
2627                         rdp_prev->nocb_next_follower = rdp;
2628                 }
2629                 rdp_prev = rdp;
2630         }
2631 }
2632
2633 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2634 static bool init_nocb_callback_list(struct rcu_data *rdp)
2635 {
2636         if (!rcu_is_nocb_cpu(rdp->cpu))
2637                 return false;
2638
2639         rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2640         return true;
2641 }
2642
2643 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2644
2645 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2646 {
2647 }
2648
2649 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2650 {
2651 }
2652
2653 static void rcu_init_one_nocb(struct rcu_node *rnp)
2654 {
2655 }
2656
2657 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2658                             bool lazy, unsigned long flags)
2659 {
2660         return false;
2661 }
2662
2663 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2664                                                      struct rcu_data *rdp,
2665                                                      unsigned long flags)
2666 {
2667         return false;
2668 }
2669
2670 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2671 {
2672 }
2673
2674 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2675 {
2676         return false;
2677 }
2678
2679 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2680 {
2681 }
2682
2683 static void rcu_spawn_all_nocb_kthreads(int cpu)
2684 {
2685 }
2686
2687 static void __init rcu_spawn_nocb_kthreads(void)
2688 {
2689 }
2690
2691 static bool init_nocb_callback_list(struct rcu_data *rdp)
2692 {
2693         return false;
2694 }
2695
2696 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2697
2698 /*
2699  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2700  * arbitrarily long period of time with the scheduling-clock tick turned
2701  * off.  RCU will be paying attention to this CPU because it is in the
2702  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2703  * machine because the scheduling-clock tick has been disabled.  Therefore,
2704  * if an adaptive-ticks CPU is failing to respond to the current grace
2705  * period and has not be idle from an RCU perspective, kick it.
2706  */
2707 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2708 {
2709 #ifdef CONFIG_NO_HZ_FULL
2710         if (tick_nohz_full_cpu(cpu))
2711                 smp_send_reschedule(cpu);
2712 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2713 }
2714
2715
2716 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2717
2718 static int full_sysidle_state;          /* Current system-idle state. */
2719 #define RCU_SYSIDLE_NOT         0       /* Some CPU is not idle. */
2720 #define RCU_SYSIDLE_SHORT       1       /* All CPUs idle for brief period. */
2721 #define RCU_SYSIDLE_LONG        2       /* All CPUs idle for long enough. */
2722 #define RCU_SYSIDLE_FULL        3       /* All CPUs idle, ready for sysidle. */
2723 #define RCU_SYSIDLE_FULL_NOTED  4       /* Actually entered sysidle state. */
2724
2725 /*
2726  * Invoked to note exit from irq or task transition to idle.  Note that
2727  * usermode execution does -not- count as idle here!  After all, we want
2728  * to detect full-system idle states, not RCU quiescent states and grace
2729  * periods.  The caller must have disabled interrupts.
2730  */
2731 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2732 {
2733         unsigned long j;
2734
2735         /* If there are no nohz_full= CPUs, no need to track this. */
2736         if (!tick_nohz_full_enabled())
2737                 return;
2738
2739         /* Adjust nesting, check for fully idle. */
2740         if (irq) {
2741                 rdtp->dynticks_idle_nesting--;
2742                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2743                 if (rdtp->dynticks_idle_nesting != 0)
2744                         return;  /* Still not fully idle. */
2745         } else {
2746                 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2747                     DYNTICK_TASK_NEST_VALUE) {
2748                         rdtp->dynticks_idle_nesting = 0;
2749                 } else {
2750                         rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2751                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2752                         return;  /* Still not fully idle. */
2753                 }
2754         }
2755
2756         /* Record start of fully idle period. */
2757         j = jiffies;
2758         ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2759         smp_mb__before_atomic();
2760         atomic_inc(&rdtp->dynticks_idle);
2761         smp_mb__after_atomic();
2762         WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2763 }
2764
2765 /*
2766  * Unconditionally force exit from full system-idle state.  This is
2767  * invoked when a normal CPU exits idle, but must be called separately
2768  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2769  * is that the timekeeping CPU is permitted to take scheduling-clock
2770  * interrupts while the system is in system-idle state, and of course
2771  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2772  * interrupt from any other type of interrupt.
2773  */
2774 void rcu_sysidle_force_exit(void)
2775 {
2776         int oldstate = ACCESS_ONCE(full_sysidle_state);
2777         int newoldstate;
2778
2779         /*
2780          * Each pass through the following loop attempts to exit full
2781          * system-idle state.  If contention proves to be a problem,
2782          * a trylock-based contention tree could be used here.
2783          */
2784         while (oldstate > RCU_SYSIDLE_SHORT) {
2785                 newoldstate = cmpxchg(&full_sysidle_state,
2786                                       oldstate, RCU_SYSIDLE_NOT);
2787                 if (oldstate == newoldstate &&
2788                     oldstate == RCU_SYSIDLE_FULL_NOTED) {
2789                         rcu_kick_nohz_cpu(tick_do_timer_cpu);
2790                         return; /* We cleared it, done! */
2791                 }
2792                 oldstate = newoldstate;
2793         }
2794         smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2795 }
2796
2797 /*
2798  * Invoked to note entry to irq or task transition from idle.  Note that
2799  * usermode execution does -not- count as idle here!  The caller must
2800  * have disabled interrupts.
2801  */
2802 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2803 {
2804         /* If there are no nohz_full= CPUs, no need to track this. */
2805         if (!tick_nohz_full_enabled())
2806                 return;
2807
2808         /* Adjust nesting, check for already non-idle. */
2809         if (irq) {
2810                 rdtp->dynticks_idle_nesting++;
2811                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2812                 if (rdtp->dynticks_idle_nesting != 1)
2813                         return; /* Already non-idle. */
2814         } else {
2815                 /*
2816                  * Allow for irq misnesting.  Yes, it really is possible
2817                  * to enter an irq handler then never leave it, and maybe
2818                  * also vice versa.  Handle both possibilities.
2819                  */
2820                 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2821                         rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2822                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2823                         return; /* Already non-idle. */
2824                 } else {
2825                         rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2826                 }
2827         }
2828
2829         /* Record end of idle period. */
2830         smp_mb__before_atomic();
2831         atomic_inc(&rdtp->dynticks_idle);
2832         smp_mb__after_atomic();
2833         WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2834
2835         /*
2836          * If we are the timekeeping CPU, we are permitted to be non-idle
2837          * during a system-idle state.  This must be the case, because
2838          * the timekeeping CPU has to take scheduling-clock interrupts
2839          * during the time that the system is transitioning to full
2840          * system-idle state.  This means that the timekeeping CPU must
2841          * invoke rcu_sysidle_force_exit() directly if it does anything
2842          * more than take a scheduling-clock interrupt.
2843          */
2844         if (smp_processor_id() == tick_do_timer_cpu)
2845                 return;
2846
2847         /* Update system-idle state: We are clearly no longer fully idle! */
2848         rcu_sysidle_force_exit();
2849 }
2850
2851 /*
2852  * Check to see if the current CPU is idle.  Note that usermode execution
2853  * does not count as idle.  The caller must have disabled interrupts.
2854  */
2855 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2856                                   unsigned long *maxj)
2857 {
2858         int cur;
2859         unsigned long j;
2860         struct rcu_dynticks *rdtp = rdp->dynticks;
2861
2862         /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2863         if (!tick_nohz_full_enabled())
2864                 return;
2865
2866         /*
2867          * If some other CPU has already reported non-idle, if this is
2868          * not the flavor of RCU that tracks sysidle state, or if this
2869          * is an offline or the timekeeping CPU, nothing to do.
2870          */
2871         if (!*isidle || rdp->rsp != rcu_state_p ||
2872             cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2873                 return;
2874         if (rcu_gp_in_progress(rdp->rsp))
2875                 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2876
2877         /* Pick up current idle and NMI-nesting counter and check. */
2878         cur = atomic_read(&rdtp->dynticks_idle);
2879         if (cur & 0x1) {
2880                 *isidle = false; /* We are not idle! */
2881                 return;
2882         }
2883         smp_mb(); /* Read counters before timestamps. */
2884
2885         /* Pick up timestamps. */
2886         j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2887         /* If this CPU entered idle more recently, update maxj timestamp. */
2888         if (ULONG_CMP_LT(*maxj, j))
2889                 *maxj = j;
2890 }
2891
2892 /*
2893  * Is this the flavor of RCU that is handling full-system idle?
2894  */
2895 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2896 {
2897         return rsp == rcu_state_p;
2898 }
2899
2900 /*
2901  * Return a delay in jiffies based on the number of CPUs, rcu_node
2902  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2903  * systems more time to transition to full-idle state in order to
2904  * avoid the cache thrashing that otherwise occur on the state variable.
2905  * Really small systems (less than a couple of tens of CPUs) should
2906  * instead use a single global atomically incremented counter, and later
2907  * versions of this will automatically reconfigure themselves accordingly.
2908  */
2909 static unsigned long rcu_sysidle_delay(void)
2910 {
2911         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2912                 return 0;
2913         return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2914 }
2915
2916 /*
2917  * Advance the full-system-idle state.  This is invoked when all of
2918  * the non-timekeeping CPUs are idle.
2919  */
2920 static void rcu_sysidle(unsigned long j)
2921 {
2922         /* Check the current state. */
2923         switch (ACCESS_ONCE(full_sysidle_state)) {
2924         case RCU_SYSIDLE_NOT:
2925
2926                 /* First time all are idle, so note a short idle period. */
2927                 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2928                 break;
2929
2930         case RCU_SYSIDLE_SHORT:
2931
2932                 /*
2933                  * Idle for a bit, time to advance to next state?
2934                  * cmpxchg failure means race with non-idle, let them win.
2935                  */
2936                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2937                         (void)cmpxchg(&full_sysidle_state,
2938                                       RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2939                 break;
2940
2941         case RCU_SYSIDLE_LONG:
2942
2943                 /*
2944                  * Do an additional check pass before advancing to full.
2945                  * cmpxchg failure means race with non-idle, let them win.
2946                  */
2947                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2948                         (void)cmpxchg(&full_sysidle_state,
2949                                       RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2950                 break;
2951
2952         default:
2953                 break;
2954         }
2955 }
2956
2957 /*
2958  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2959  * back to the beginning.
2960  */
2961 static void rcu_sysidle_cancel(void)
2962 {
2963         smp_mb();
2964         if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2965                 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2966 }
2967
2968 /*
2969  * Update the sysidle state based on the results of a force-quiescent-state
2970  * scan of the CPUs' dyntick-idle state.
2971  */
2972 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2973                                unsigned long maxj, bool gpkt)
2974 {
2975         if (rsp != rcu_state_p)
2976                 return;  /* Wrong flavor, ignore. */
2977         if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2978                 return;  /* Running state machine from timekeeping CPU. */
2979         if (isidle)
2980                 rcu_sysidle(maxj);    /* More idle! */
2981         else
2982                 rcu_sysidle_cancel(); /* Idle is over. */
2983 }
2984
2985 /*
2986  * Wrapper for rcu_sysidle_report() when called from the grace-period
2987  * kthread's context.
2988  */
2989 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2990                                   unsigned long maxj)
2991 {
2992         /* If there are no nohz_full= CPUs, no need to track this. */
2993         if (!tick_nohz_full_enabled())
2994                 return;
2995
2996         rcu_sysidle_report(rsp, isidle, maxj, true);
2997 }
2998
2999 /* Callback and function for forcing an RCU grace period. */
3000 struct rcu_sysidle_head {
3001         struct rcu_head rh;
3002         int inuse;
3003 };
3004
3005 static void rcu_sysidle_cb(struct rcu_head *rhp)
3006 {
3007         struct rcu_sysidle_head *rshp;
3008
3009         /*
3010          * The following memory barrier is needed to replace the
3011          * memory barriers that would normally be in the memory
3012          * allocator.
3013          */
3014         smp_mb();  /* grace period precedes setting inuse. */
3015
3016         rshp = container_of(rhp, struct rcu_sysidle_head, rh);
3017         ACCESS_ONCE(rshp->inuse) = 0;
3018 }
3019
3020 /*
3021  * Check to see if the system is fully idle, other than the timekeeping CPU.
3022  * The caller must have disabled interrupts.  This is not intended to be
3023  * called unless tick_nohz_full_enabled().
3024  */
3025 bool rcu_sys_is_idle(void)
3026 {
3027         static struct rcu_sysidle_head rsh;
3028         int rss = ACCESS_ONCE(full_sysidle_state);
3029
3030         if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
3031                 return false;
3032
3033         /* Handle small-system case by doing a full scan of CPUs. */
3034         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
3035                 int oldrss = rss - 1;
3036
3037                 /*
3038                  * One pass to advance to each state up to _FULL.
3039                  * Give up if any pass fails to advance the state.
3040                  */
3041                 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
3042                         int cpu;
3043                         bool isidle = true;
3044                         unsigned long maxj = jiffies - ULONG_MAX / 4;
3045                         struct rcu_data *rdp;
3046
3047                         /* Scan all the CPUs looking for nonidle CPUs. */
3048                         for_each_possible_cpu(cpu) {
3049                                 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3050                                 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
3051                                 if (!isidle)
3052                                         break;
3053                         }
3054                         rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
3055                         oldrss = rss;
3056                         rss = ACCESS_ONCE(full_sysidle_state);
3057                 }
3058         }
3059
3060         /* If this is the first observation of an idle period, record it. */
3061         if (rss == RCU_SYSIDLE_FULL) {
3062                 rss = cmpxchg(&full_sysidle_state,
3063                               RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
3064                 return rss == RCU_SYSIDLE_FULL;
3065         }
3066
3067         smp_mb(); /* ensure rss load happens before later caller actions. */
3068
3069         /* If already fully idle, tell the caller (in case of races). */
3070         if (rss == RCU_SYSIDLE_FULL_NOTED)
3071                 return true;
3072
3073         /*
3074          * If we aren't there yet, and a grace period is not in flight,
3075          * initiate a grace period.  Either way, tell the caller that
3076          * we are not there yet.  We use an xchg() rather than an assignment
3077          * to make up for the memory barriers that would otherwise be
3078          * provided by the memory allocator.
3079          */
3080         if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
3081             !rcu_gp_in_progress(rcu_state_p) &&
3082             !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
3083                 call_rcu(&rsh.rh, rcu_sysidle_cb);
3084         return false;
3085 }
3086
3087 /*
3088  * Initialize dynticks sysidle state for CPUs coming online.
3089  */
3090 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3091 {
3092         rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3093 }
3094
3095 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3096
3097 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
3098 {
3099 }
3100
3101 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
3102 {
3103 }
3104
3105 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3106                                   unsigned long *maxj)
3107 {
3108 }
3109
3110 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3111 {
3112         return false;
3113 }
3114
3115 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3116                                   unsigned long maxj)
3117 {
3118 }
3119
3120 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3121 {
3122 }
3123
3124 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3125
3126 /*
3127  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3128  * grace-period kthread will do force_quiescent_state() processing?
3129  * The idea is to avoid waking up RCU core processing on such a
3130  * CPU unless the grace period has extended for too long.
3131  *
3132  * This code relies on the fact that all NO_HZ_FULL CPUs are also
3133  * CONFIG_RCU_NOCB_CPU CPUs.
3134  */
3135 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3136 {
3137 #ifdef CONFIG_NO_HZ_FULL
3138         if (tick_nohz_full_cpu(smp_processor_id()) &&
3139             (!rcu_gp_in_progress(rsp) ||
3140              ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3141                 return 1;
3142 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3143         return 0;
3144 }
3145
3146 /*
3147  * Bind the grace-period kthread for the sysidle flavor of RCU to the
3148  * timekeeping CPU.
3149  */
3150 static void rcu_bind_gp_kthread(void)
3151 {
3152         int __maybe_unused cpu;
3153
3154         if (!tick_nohz_full_enabled())
3155                 return;
3156 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3157         cpu = tick_do_timer_cpu;
3158         if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
3159                 set_cpus_allowed_ptr(current, cpumask_of(cpu));
3160 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3161         if (!is_housekeeping_cpu(raw_smp_processor_id()))
3162                 housekeeping_affine(current);
3163 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3164 }
3165
3166 /* Record the current task on dyntick-idle entry. */
3167 static void rcu_dynticks_task_enter(void)
3168 {
3169 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3170         ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
3171 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3172 }
3173
3174 /* Record no current task on dyntick-idle exit. */
3175 static void rcu_dynticks_task_exit(void)
3176 {
3177 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3178         ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
3179 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3180 }