54f032cea04060c0f3c0eb991fc482850cdcf10a
[cascardo/linux.git] / kernel / sched / core.c
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 {
95         unsigned long delta;
96         ktime_t soft, hard, now;
97
98         for (;;) {
99                 if (hrtimer_active(period_timer))
100                         break;
101
102                 now = hrtimer_cb_get_time(period_timer);
103                 hrtimer_forward(period_timer, now, period);
104
105                 soft = hrtimer_get_softexpires(period_timer);
106                 hard = hrtimer_get_expires(period_timer);
107                 delta = ktime_to_ns(ktime_sub(hard, soft));
108                 __hrtimer_start_range_ns(period_timer, soft, delta,
109                                          HRTIMER_MODE_ABS_PINNED, 0);
110         }
111 }
112
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117
118 void update_rq_clock(struct rq *rq)
119 {
120         s64 delta;
121
122         lockdep_assert_held(&rq->lock);
123
124         if (rq->clock_skip_update & RQCF_ACT_SKIP)
125                 return;
126
127         delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
128         if (delta < 0)
129                 return;
130         rq->clock += delta;
131         update_rq_clock_task(rq, delta);
132 }
133
134 /*
135  * Debugging: various feature bits
136  */
137
138 #define SCHED_FEAT(name, enabled)       \
139         (1UL << __SCHED_FEAT_##name) * enabled |
140
141 const_debug unsigned int sysctl_sched_features =
142 #include "features.h"
143         0;
144
145 #undef SCHED_FEAT
146
147 #ifdef CONFIG_SCHED_DEBUG
148 #define SCHED_FEAT(name, enabled)       \
149         #name ,
150
151 static const char * const sched_feat_names[] = {
152 #include "features.h"
153 };
154
155 #undef SCHED_FEAT
156
157 static int sched_feat_show(struct seq_file *m, void *v)
158 {
159         int i;
160
161         for (i = 0; i < __SCHED_FEAT_NR; i++) {
162                 if (!(sysctl_sched_features & (1UL << i)))
163                         seq_puts(m, "NO_");
164                 seq_printf(m, "%s ", sched_feat_names[i]);
165         }
166         seq_puts(m, "\n");
167
168         return 0;
169 }
170
171 #ifdef HAVE_JUMP_LABEL
172
173 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
174 #define jump_label_key__false STATIC_KEY_INIT_FALSE
175
176 #define SCHED_FEAT(name, enabled)       \
177         jump_label_key__##enabled ,
178
179 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
180 #include "features.h"
181 };
182
183 #undef SCHED_FEAT
184
185 static void sched_feat_disable(int i)
186 {
187         if (static_key_enabled(&sched_feat_keys[i]))
188                 static_key_slow_dec(&sched_feat_keys[i]);
189 }
190
191 static void sched_feat_enable(int i)
192 {
193         if (!static_key_enabled(&sched_feat_keys[i]))
194                 static_key_slow_inc(&sched_feat_keys[i]);
195 }
196 #else
197 static void sched_feat_disable(int i) { };
198 static void sched_feat_enable(int i) { };
199 #endif /* HAVE_JUMP_LABEL */
200
201 static int sched_feat_set(char *cmp)
202 {
203         int i;
204         int neg = 0;
205
206         if (strncmp(cmp, "NO_", 3) == 0) {
207                 neg = 1;
208                 cmp += 3;
209         }
210
211         for (i = 0; i < __SCHED_FEAT_NR; i++) {
212                 if (strcmp(cmp, sched_feat_names[i]) == 0) {
213                         if (neg) {
214                                 sysctl_sched_features &= ~(1UL << i);
215                                 sched_feat_disable(i);
216                         } else {
217                                 sysctl_sched_features |= (1UL << i);
218                                 sched_feat_enable(i);
219                         }
220                         break;
221                 }
222         }
223
224         return i;
225 }
226
227 static ssize_t
228 sched_feat_write(struct file *filp, const char __user *ubuf,
229                 size_t cnt, loff_t *ppos)
230 {
231         char buf[64];
232         char *cmp;
233         int i;
234         struct inode *inode;
235
236         if (cnt > 63)
237                 cnt = 63;
238
239         if (copy_from_user(&buf, ubuf, cnt))
240                 return -EFAULT;
241
242         buf[cnt] = 0;
243         cmp = strstrip(buf);
244
245         /* Ensure the static_key remains in a consistent state */
246         inode = file_inode(filp);
247         mutex_lock(&inode->i_mutex);
248         i = sched_feat_set(cmp);
249         mutex_unlock(&inode->i_mutex);
250         if (i == __SCHED_FEAT_NR)
251                 return -EINVAL;
252
253         *ppos += cnt;
254
255         return cnt;
256 }
257
258 static int sched_feat_open(struct inode *inode, struct file *filp)
259 {
260         return single_open(filp, sched_feat_show, NULL);
261 }
262
263 static const struct file_operations sched_feat_fops = {
264         .open           = sched_feat_open,
265         .write          = sched_feat_write,
266         .read           = seq_read,
267         .llseek         = seq_lseek,
268         .release        = single_release,
269 };
270
271 static __init int sched_init_debug(void)
272 {
273         debugfs_create_file("sched_features", 0644, NULL, NULL,
274                         &sched_feat_fops);
275
276         return 0;
277 }
278 late_initcall(sched_init_debug);
279 #endif /* CONFIG_SCHED_DEBUG */
280
281 /*
282  * Number of tasks to iterate in a single balance run.
283  * Limited because this is done with IRQs disabled.
284  */
285 const_debug unsigned int sysctl_sched_nr_migrate = 32;
286
287 /*
288  * period over which we average the RT time consumption, measured
289  * in ms.
290  *
291  * default: 1s
292  */
293 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
294
295 /*
296  * period over which we measure -rt task cpu usage in us.
297  * default: 1s
298  */
299 unsigned int sysctl_sched_rt_period = 1000000;
300
301 __read_mostly int scheduler_running;
302
303 /*
304  * part of the period that we allow rt tasks to run in us.
305  * default: 0.95s
306  */
307 int sysctl_sched_rt_runtime = 950000;
308
309 /* cpus with isolated domains */
310 cpumask_var_t cpu_isolated_map;
311
312 /*
313  * this_rq_lock - lock this runqueue and disable interrupts.
314  */
315 static struct rq *this_rq_lock(void)
316         __acquires(rq->lock)
317 {
318         struct rq *rq;
319
320         local_irq_disable();
321         rq = this_rq();
322         raw_spin_lock(&rq->lock);
323
324         return rq;
325 }
326
327 #ifdef CONFIG_SCHED_HRTICK
328 /*
329  * Use HR-timers to deliver accurate preemption points.
330  */
331
332 static void hrtick_clear(struct rq *rq)
333 {
334         if (hrtimer_active(&rq->hrtick_timer))
335                 hrtimer_cancel(&rq->hrtick_timer);
336 }
337
338 /*
339  * High-resolution timer tick.
340  * Runs from hardirq context with interrupts disabled.
341  */
342 static enum hrtimer_restart hrtick(struct hrtimer *timer)
343 {
344         struct rq *rq = container_of(timer, struct rq, hrtick_timer);
345
346         WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
347
348         raw_spin_lock(&rq->lock);
349         update_rq_clock(rq);
350         rq->curr->sched_class->task_tick(rq, rq->curr, 1);
351         raw_spin_unlock(&rq->lock);
352
353         return HRTIMER_NORESTART;
354 }
355
356 #ifdef CONFIG_SMP
357
358 static int __hrtick_restart(struct rq *rq)
359 {
360         struct hrtimer *timer = &rq->hrtick_timer;
361         ktime_t time = hrtimer_get_softexpires(timer);
362
363         return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
364 }
365
366 /*
367  * called from hardirq (IPI) context
368  */
369 static void __hrtick_start(void *arg)
370 {
371         struct rq *rq = arg;
372
373         raw_spin_lock(&rq->lock);
374         __hrtick_restart(rq);
375         rq->hrtick_csd_pending = 0;
376         raw_spin_unlock(&rq->lock);
377 }
378
379 /*
380  * Called to set the hrtick timer state.
381  *
382  * called with rq->lock held and irqs disabled
383  */
384 void hrtick_start(struct rq *rq, u64 delay)
385 {
386         struct hrtimer *timer = &rq->hrtick_timer;
387         ktime_t time;
388         s64 delta;
389
390         /*
391          * Don't schedule slices shorter than 10000ns, that just
392          * doesn't make sense and can cause timer DoS.
393          */
394         delta = max_t(s64, delay, 10000LL);
395         time = ktime_add_ns(timer->base->get_time(), delta);
396
397         hrtimer_set_expires(timer, time);
398
399         if (rq == this_rq()) {
400                 __hrtick_restart(rq);
401         } else if (!rq->hrtick_csd_pending) {
402                 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
403                 rq->hrtick_csd_pending = 1;
404         }
405 }
406
407 static int
408 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
409 {
410         int cpu = (int)(long)hcpu;
411
412         switch (action) {
413         case CPU_UP_CANCELED:
414         case CPU_UP_CANCELED_FROZEN:
415         case CPU_DOWN_PREPARE:
416         case CPU_DOWN_PREPARE_FROZEN:
417         case CPU_DEAD:
418         case CPU_DEAD_FROZEN:
419                 hrtick_clear(cpu_rq(cpu));
420                 return NOTIFY_OK;
421         }
422
423         return NOTIFY_DONE;
424 }
425
426 static __init void init_hrtick(void)
427 {
428         hotcpu_notifier(hotplug_hrtick, 0);
429 }
430 #else
431 /*
432  * Called to set the hrtick timer state.
433  *
434  * called with rq->lock held and irqs disabled
435  */
436 void hrtick_start(struct rq *rq, u64 delay)
437 {
438         /*
439          * Don't schedule slices shorter than 10000ns, that just
440          * doesn't make sense. Rely on vruntime for fairness.
441          */
442         delay = max_t(u64, delay, 10000LL);
443         __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
444                         HRTIMER_MODE_REL_PINNED, 0);
445 }
446
447 static inline void init_hrtick(void)
448 {
449 }
450 #endif /* CONFIG_SMP */
451
452 static void init_rq_hrtick(struct rq *rq)
453 {
454 #ifdef CONFIG_SMP
455         rq->hrtick_csd_pending = 0;
456
457         rq->hrtick_csd.flags = 0;
458         rq->hrtick_csd.func = __hrtick_start;
459         rq->hrtick_csd.info = rq;
460 #endif
461
462         hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
463         rq->hrtick_timer.function = hrtick;
464 }
465 #else   /* CONFIG_SCHED_HRTICK */
466 static inline void hrtick_clear(struct rq *rq)
467 {
468 }
469
470 static inline void init_rq_hrtick(struct rq *rq)
471 {
472 }
473
474 static inline void init_hrtick(void)
475 {
476 }
477 #endif  /* CONFIG_SCHED_HRTICK */
478
479 /*
480  * cmpxchg based fetch_or, macro so it works for different integer types
481  */
482 #define fetch_or(ptr, val)                                              \
483 ({      typeof(*(ptr)) __old, __val = *(ptr);                           \
484         for (;;) {                                                      \
485                 __old = cmpxchg((ptr), __val, __val | (val));           \
486                 if (__old == __val)                                     \
487                         break;                                          \
488                 __val = __old;                                          \
489         }                                                               \
490         __old;                                                          \
491 })
492
493 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
494 /*
495  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
496  * this avoids any races wrt polling state changes and thereby avoids
497  * spurious IPIs.
498  */
499 static bool set_nr_and_not_polling(struct task_struct *p)
500 {
501         struct thread_info *ti = task_thread_info(p);
502         return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
503 }
504
505 /*
506  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
507  *
508  * If this returns true, then the idle task promises to call
509  * sched_ttwu_pending() and reschedule soon.
510  */
511 static bool set_nr_if_polling(struct task_struct *p)
512 {
513         struct thread_info *ti = task_thread_info(p);
514         typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
515
516         for (;;) {
517                 if (!(val & _TIF_POLLING_NRFLAG))
518                         return false;
519                 if (val & _TIF_NEED_RESCHED)
520                         return true;
521                 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
522                 if (old == val)
523                         break;
524                 val = old;
525         }
526         return true;
527 }
528
529 #else
530 static bool set_nr_and_not_polling(struct task_struct *p)
531 {
532         set_tsk_need_resched(p);
533         return true;
534 }
535
536 #ifdef CONFIG_SMP
537 static bool set_nr_if_polling(struct task_struct *p)
538 {
539         return false;
540 }
541 #endif
542 #endif
543
544 /*
545  * resched_curr - mark rq's current task 'to be rescheduled now'.
546  *
547  * On UP this means the setting of the need_resched flag, on SMP it
548  * might also involve a cross-CPU call to trigger the scheduler on
549  * the target CPU.
550  */
551 void resched_curr(struct rq *rq)
552 {
553         struct task_struct *curr = rq->curr;
554         int cpu;
555
556         lockdep_assert_held(&rq->lock);
557
558         if (test_tsk_need_resched(curr))
559                 return;
560
561         cpu = cpu_of(rq);
562
563         if (cpu == smp_processor_id()) {
564                 set_tsk_need_resched(curr);
565                 set_preempt_need_resched();
566                 return;
567         }
568
569         if (set_nr_and_not_polling(curr))
570                 smp_send_reschedule(cpu);
571         else
572                 trace_sched_wake_idle_without_ipi(cpu);
573 }
574
575 void resched_cpu(int cpu)
576 {
577         struct rq *rq = cpu_rq(cpu);
578         unsigned long flags;
579
580         if (!raw_spin_trylock_irqsave(&rq->lock, flags))
581                 return;
582         resched_curr(rq);
583         raw_spin_unlock_irqrestore(&rq->lock, flags);
584 }
585
586 #ifdef CONFIG_SMP
587 #ifdef CONFIG_NO_HZ_COMMON
588 /*
589  * In the semi idle case, use the nearest busy cpu for migrating timers
590  * from an idle cpu.  This is good for power-savings.
591  *
592  * We don't do similar optimization for completely idle system, as
593  * selecting an idle cpu will add more delays to the timers than intended
594  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
595  */
596 int get_nohz_timer_target(int pinned)
597 {
598         int cpu = smp_processor_id();
599         int i;
600         struct sched_domain *sd;
601
602         if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
603                 return cpu;
604
605         rcu_read_lock();
606         for_each_domain(cpu, sd) {
607                 for_each_cpu(i, sched_domain_span(sd)) {
608                         if (!idle_cpu(i)) {
609                                 cpu = i;
610                                 goto unlock;
611                         }
612                 }
613         }
614 unlock:
615         rcu_read_unlock();
616         return cpu;
617 }
618 /*
619  * When add_timer_on() enqueues a timer into the timer wheel of an
620  * idle CPU then this timer might expire before the next timer event
621  * which is scheduled to wake up that CPU. In case of a completely
622  * idle system the next event might even be infinite time into the
623  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
624  * leaves the inner idle loop so the newly added timer is taken into
625  * account when the CPU goes back to idle and evaluates the timer
626  * wheel for the next timer event.
627  */
628 static void wake_up_idle_cpu(int cpu)
629 {
630         struct rq *rq = cpu_rq(cpu);
631
632         if (cpu == smp_processor_id())
633                 return;
634
635         if (set_nr_and_not_polling(rq->idle))
636                 smp_send_reschedule(cpu);
637         else
638                 trace_sched_wake_idle_without_ipi(cpu);
639 }
640
641 static bool wake_up_full_nohz_cpu(int cpu)
642 {
643         /*
644          * We just need the target to call irq_exit() and re-evaluate
645          * the next tick. The nohz full kick at least implies that.
646          * If needed we can still optimize that later with an
647          * empty IRQ.
648          */
649         if (tick_nohz_full_cpu(cpu)) {
650                 if (cpu != smp_processor_id() ||
651                     tick_nohz_tick_stopped())
652                         tick_nohz_full_kick_cpu(cpu);
653                 return true;
654         }
655
656         return false;
657 }
658
659 void wake_up_nohz_cpu(int cpu)
660 {
661         if (!wake_up_full_nohz_cpu(cpu))
662                 wake_up_idle_cpu(cpu);
663 }
664
665 static inline bool got_nohz_idle_kick(void)
666 {
667         int cpu = smp_processor_id();
668
669         if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
670                 return false;
671
672         if (idle_cpu(cpu) && !need_resched())
673                 return true;
674
675         /*
676          * We can't run Idle Load Balance on this CPU for this time so we
677          * cancel it and clear NOHZ_BALANCE_KICK
678          */
679         clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
680         return false;
681 }
682
683 #else /* CONFIG_NO_HZ_COMMON */
684
685 static inline bool got_nohz_idle_kick(void)
686 {
687         return false;
688 }
689
690 #endif /* CONFIG_NO_HZ_COMMON */
691
692 #ifdef CONFIG_NO_HZ_FULL
693 bool sched_can_stop_tick(void)
694 {
695         /*
696          * FIFO realtime policy runs the highest priority task. Other runnable
697          * tasks are of a lower priority. The scheduler tick does nothing.
698          */
699         if (current->policy == SCHED_FIFO)
700                 return true;
701
702         /*
703          * Round-robin realtime tasks time slice with other tasks at the same
704          * realtime priority. Is this task the only one at this priority?
705          */
706         if (current->policy == SCHED_RR) {
707                 struct sched_rt_entity *rt_se = &current->rt;
708
709                 return rt_se->run_list.prev == rt_se->run_list.next;
710         }
711
712         /*
713          * More than one running task need preemption.
714          * nr_running update is assumed to be visible
715          * after IPI is sent from wakers.
716          */
717         if (this_rq()->nr_running > 1)
718                 return false;
719
720         return true;
721 }
722 #endif /* CONFIG_NO_HZ_FULL */
723
724 void sched_avg_update(struct rq *rq)
725 {
726         s64 period = sched_avg_period();
727
728         while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
729                 /*
730                  * Inline assembly required to prevent the compiler
731                  * optimising this loop into a divmod call.
732                  * See __iter_div_u64_rem() for another example of this.
733                  */
734                 asm("" : "+rm" (rq->age_stamp));
735                 rq->age_stamp += period;
736                 rq->rt_avg /= 2;
737         }
738 }
739
740 #endif /* CONFIG_SMP */
741
742 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
743                         (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
744 /*
745  * Iterate task_group tree rooted at *from, calling @down when first entering a
746  * node and @up when leaving it for the final time.
747  *
748  * Caller must hold rcu_lock or sufficient equivalent.
749  */
750 int walk_tg_tree_from(struct task_group *from,
751                              tg_visitor down, tg_visitor up, void *data)
752 {
753         struct task_group *parent, *child;
754         int ret;
755
756         parent = from;
757
758 down:
759         ret = (*down)(parent, data);
760         if (ret)
761                 goto out;
762         list_for_each_entry_rcu(child, &parent->children, siblings) {
763                 parent = child;
764                 goto down;
765
766 up:
767                 continue;
768         }
769         ret = (*up)(parent, data);
770         if (ret || parent == from)
771                 goto out;
772
773         child = parent;
774         parent = parent->parent;
775         if (parent)
776                 goto up;
777 out:
778         return ret;
779 }
780
781 int tg_nop(struct task_group *tg, void *data)
782 {
783         return 0;
784 }
785 #endif
786
787 static void set_load_weight(struct task_struct *p)
788 {
789         int prio = p->static_prio - MAX_RT_PRIO;
790         struct load_weight *load = &p->se.load;
791
792         /*
793          * SCHED_IDLE tasks get minimal weight:
794          */
795         if (p->policy == SCHED_IDLE) {
796                 load->weight = scale_load(WEIGHT_IDLEPRIO);
797                 load->inv_weight = WMULT_IDLEPRIO;
798                 return;
799         }
800
801         load->weight = scale_load(prio_to_weight[prio]);
802         load->inv_weight = prio_to_wmult[prio];
803 }
804
805 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
806 {
807         update_rq_clock(rq);
808         sched_info_queued(rq, p);
809         p->sched_class->enqueue_task(rq, p, flags);
810 }
811
812 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
813 {
814         update_rq_clock(rq);
815         sched_info_dequeued(rq, p);
816         p->sched_class->dequeue_task(rq, p, flags);
817 }
818
819 void activate_task(struct rq *rq, struct task_struct *p, int flags)
820 {
821         if (task_contributes_to_load(p))
822                 rq->nr_uninterruptible--;
823
824         enqueue_task(rq, p, flags);
825 }
826
827 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
828 {
829         if (task_contributes_to_load(p))
830                 rq->nr_uninterruptible++;
831
832         dequeue_task(rq, p, flags);
833 }
834
835 static void update_rq_clock_task(struct rq *rq, s64 delta)
836 {
837 /*
838  * In theory, the compile should just see 0 here, and optimize out the call
839  * to sched_rt_avg_update. But I don't trust it...
840  */
841 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
842         s64 steal = 0, irq_delta = 0;
843 #endif
844 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
845         irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
846
847         /*
848          * Since irq_time is only updated on {soft,}irq_exit, we might run into
849          * this case when a previous update_rq_clock() happened inside a
850          * {soft,}irq region.
851          *
852          * When this happens, we stop ->clock_task and only update the
853          * prev_irq_time stamp to account for the part that fit, so that a next
854          * update will consume the rest. This ensures ->clock_task is
855          * monotonic.
856          *
857          * It does however cause some slight miss-attribution of {soft,}irq
858          * time, a more accurate solution would be to update the irq_time using
859          * the current rq->clock timestamp, except that would require using
860          * atomic ops.
861          */
862         if (irq_delta > delta)
863                 irq_delta = delta;
864
865         rq->prev_irq_time += irq_delta;
866         delta -= irq_delta;
867 #endif
868 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
869         if (static_key_false((&paravirt_steal_rq_enabled))) {
870                 steal = paravirt_steal_clock(cpu_of(rq));
871                 steal -= rq->prev_steal_time_rq;
872
873                 if (unlikely(steal > delta))
874                         steal = delta;
875
876                 rq->prev_steal_time_rq += steal;
877                 delta -= steal;
878         }
879 #endif
880
881         rq->clock_task += delta;
882
883 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
884         if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
885                 sched_rt_avg_update(rq, irq_delta + steal);
886 #endif
887 }
888
889 void sched_set_stop_task(int cpu, struct task_struct *stop)
890 {
891         struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
892         struct task_struct *old_stop = cpu_rq(cpu)->stop;
893
894         if (stop) {
895                 /*
896                  * Make it appear like a SCHED_FIFO task, its something
897                  * userspace knows about and won't get confused about.
898                  *
899                  * Also, it will make PI more or less work without too
900                  * much confusion -- but then, stop work should not
901                  * rely on PI working anyway.
902                  */
903                 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
904
905                 stop->sched_class = &stop_sched_class;
906         }
907
908         cpu_rq(cpu)->stop = stop;
909
910         if (old_stop) {
911                 /*
912                  * Reset it back to a normal scheduling class so that
913                  * it can die in pieces.
914                  */
915                 old_stop->sched_class = &rt_sched_class;
916         }
917 }
918
919 /*
920  * __normal_prio - return the priority that is based on the static prio
921  */
922 static inline int __normal_prio(struct task_struct *p)
923 {
924         return p->static_prio;
925 }
926
927 /*
928  * Calculate the expected normal priority: i.e. priority
929  * without taking RT-inheritance into account. Might be
930  * boosted by interactivity modifiers. Changes upon fork,
931  * setprio syscalls, and whenever the interactivity
932  * estimator recalculates.
933  */
934 static inline int normal_prio(struct task_struct *p)
935 {
936         int prio;
937
938         if (task_has_dl_policy(p))
939                 prio = MAX_DL_PRIO-1;
940         else if (task_has_rt_policy(p))
941                 prio = MAX_RT_PRIO-1 - p->rt_priority;
942         else
943                 prio = __normal_prio(p);
944         return prio;
945 }
946
947 /*
948  * Calculate the current priority, i.e. the priority
949  * taken into account by the scheduler. This value might
950  * be boosted by RT tasks, or might be boosted by
951  * interactivity modifiers. Will be RT if the task got
952  * RT-boosted. If not then it returns p->normal_prio.
953  */
954 static int effective_prio(struct task_struct *p)
955 {
956         p->normal_prio = normal_prio(p);
957         /*
958          * If we are RT tasks or we were boosted to RT priority,
959          * keep the priority unchanged. Otherwise, update priority
960          * to the normal priority:
961          */
962         if (!rt_prio(p->prio))
963                 return p->normal_prio;
964         return p->prio;
965 }
966
967 /**
968  * task_curr - is this task currently executing on a CPU?
969  * @p: the task in question.
970  *
971  * Return: 1 if the task is currently executing. 0 otherwise.
972  */
973 inline int task_curr(const struct task_struct *p)
974 {
975         return cpu_curr(task_cpu(p)) == p;
976 }
977
978 /*
979  * Can drop rq->lock because from sched_class::switched_from() methods drop it.
980  */
981 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
982                                        const struct sched_class *prev_class,
983                                        int oldprio)
984 {
985         if (prev_class != p->sched_class) {
986                 if (prev_class->switched_from)
987                         prev_class->switched_from(rq, p);
988                 /* Possble rq->lock 'hole'.  */
989                 p->sched_class->switched_to(rq, p);
990         } else if (oldprio != p->prio || dl_task(p))
991                 p->sched_class->prio_changed(rq, p, oldprio);
992 }
993
994 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
995 {
996         const struct sched_class *class;
997
998         if (p->sched_class == rq->curr->sched_class) {
999                 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1000         } else {
1001                 for_each_class(class) {
1002                         if (class == rq->curr->sched_class)
1003                                 break;
1004                         if (class == p->sched_class) {
1005                                 resched_curr(rq);
1006                                 break;
1007                         }
1008                 }
1009         }
1010
1011         /*
1012          * A queue event has occurred, and we're going to schedule.  In
1013          * this case, we can save a useless back to back clock update.
1014          */
1015         if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1016                 rq_clock_skip_update(rq, true);
1017 }
1018
1019 #ifdef CONFIG_SMP
1020 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1021 {
1022 #ifdef CONFIG_SCHED_DEBUG
1023         /*
1024          * We should never call set_task_cpu() on a blocked task,
1025          * ttwu() will sort out the placement.
1026          */
1027         WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1028                         !p->on_rq);
1029
1030 #ifdef CONFIG_LOCKDEP
1031         /*
1032          * The caller should hold either p->pi_lock or rq->lock, when changing
1033          * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1034          *
1035          * sched_move_task() holds both and thus holding either pins the cgroup,
1036          * see task_group().
1037          *
1038          * Furthermore, all task_rq users should acquire both locks, see
1039          * task_rq_lock().
1040          */
1041         WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1042                                       lockdep_is_held(&task_rq(p)->lock)));
1043 #endif
1044 #endif
1045
1046         trace_sched_migrate_task(p, new_cpu);
1047
1048         if (task_cpu(p) != new_cpu) {
1049                 if (p->sched_class->migrate_task_rq)
1050                         p->sched_class->migrate_task_rq(p, new_cpu);
1051                 p->se.nr_migrations++;
1052                 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1053         }
1054
1055         __set_task_cpu(p, new_cpu);
1056 }
1057
1058 static void __migrate_swap_task(struct task_struct *p, int cpu)
1059 {
1060         if (task_on_rq_queued(p)) {
1061                 struct rq *src_rq, *dst_rq;
1062
1063                 src_rq = task_rq(p);
1064                 dst_rq = cpu_rq(cpu);
1065
1066                 deactivate_task(src_rq, p, 0);
1067                 set_task_cpu(p, cpu);
1068                 activate_task(dst_rq, p, 0);
1069                 check_preempt_curr(dst_rq, p, 0);
1070         } else {
1071                 /*
1072                  * Task isn't running anymore; make it appear like we migrated
1073                  * it before it went to sleep. This means on wakeup we make the
1074                  * previous cpu our targer instead of where it really is.
1075                  */
1076                 p->wake_cpu = cpu;
1077         }
1078 }
1079
1080 struct migration_swap_arg {
1081         struct task_struct *src_task, *dst_task;
1082         int src_cpu, dst_cpu;
1083 };
1084
1085 static int migrate_swap_stop(void *data)
1086 {
1087         struct migration_swap_arg *arg = data;
1088         struct rq *src_rq, *dst_rq;
1089         int ret = -EAGAIN;
1090
1091         src_rq = cpu_rq(arg->src_cpu);
1092         dst_rq = cpu_rq(arg->dst_cpu);
1093
1094         double_raw_lock(&arg->src_task->pi_lock,
1095                         &arg->dst_task->pi_lock);
1096         double_rq_lock(src_rq, dst_rq);
1097         if (task_cpu(arg->dst_task) != arg->dst_cpu)
1098                 goto unlock;
1099
1100         if (task_cpu(arg->src_task) != arg->src_cpu)
1101                 goto unlock;
1102
1103         if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1104                 goto unlock;
1105
1106         if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1107                 goto unlock;
1108
1109         __migrate_swap_task(arg->src_task, arg->dst_cpu);
1110         __migrate_swap_task(arg->dst_task, arg->src_cpu);
1111
1112         ret = 0;
1113
1114 unlock:
1115         double_rq_unlock(src_rq, dst_rq);
1116         raw_spin_unlock(&arg->dst_task->pi_lock);
1117         raw_spin_unlock(&arg->src_task->pi_lock);
1118
1119         return ret;
1120 }
1121
1122 /*
1123  * Cross migrate two tasks
1124  */
1125 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1126 {
1127         struct migration_swap_arg arg;
1128         int ret = -EINVAL;
1129
1130         arg = (struct migration_swap_arg){
1131                 .src_task = cur,
1132                 .src_cpu = task_cpu(cur),
1133                 .dst_task = p,
1134                 .dst_cpu = task_cpu(p),
1135         };
1136
1137         if (arg.src_cpu == arg.dst_cpu)
1138                 goto out;
1139
1140         /*
1141          * These three tests are all lockless; this is OK since all of them
1142          * will be re-checked with proper locks held further down the line.
1143          */
1144         if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1145                 goto out;
1146
1147         if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1148                 goto out;
1149
1150         if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1151                 goto out;
1152
1153         trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1154         ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1155
1156 out:
1157         return ret;
1158 }
1159
1160 struct migration_arg {
1161         struct task_struct *task;
1162         int dest_cpu;
1163 };
1164
1165 static int migration_cpu_stop(void *data);
1166
1167 /*
1168  * wait_task_inactive - wait for a thread to unschedule.
1169  *
1170  * If @match_state is nonzero, it's the @p->state value just checked and
1171  * not expected to change.  If it changes, i.e. @p might have woken up,
1172  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1173  * we return a positive number (its total switch count).  If a second call
1174  * a short while later returns the same number, the caller can be sure that
1175  * @p has remained unscheduled the whole time.
1176  *
1177  * The caller must ensure that the task *will* unschedule sometime soon,
1178  * else this function might spin for a *long* time. This function can't
1179  * be called with interrupts off, or it may introduce deadlock with
1180  * smp_call_function() if an IPI is sent by the same process we are
1181  * waiting to become inactive.
1182  */
1183 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1184 {
1185         unsigned long flags;
1186         int running, queued;
1187         unsigned long ncsw;
1188         struct rq *rq;
1189
1190         for (;;) {
1191                 /*
1192                  * We do the initial early heuristics without holding
1193                  * any task-queue locks at all. We'll only try to get
1194                  * the runqueue lock when things look like they will
1195                  * work out!
1196                  */
1197                 rq = task_rq(p);
1198
1199                 /*
1200                  * If the task is actively running on another CPU
1201                  * still, just relax and busy-wait without holding
1202                  * any locks.
1203                  *
1204                  * NOTE! Since we don't hold any locks, it's not
1205                  * even sure that "rq" stays as the right runqueue!
1206                  * But we don't care, since "task_running()" will
1207                  * return false if the runqueue has changed and p
1208                  * is actually now running somewhere else!
1209                  */
1210                 while (task_running(rq, p)) {
1211                         if (match_state && unlikely(p->state != match_state))
1212                                 return 0;
1213                         cpu_relax();
1214                 }
1215
1216                 /*
1217                  * Ok, time to look more closely! We need the rq
1218                  * lock now, to be *sure*. If we're wrong, we'll
1219                  * just go back and repeat.
1220                  */
1221                 rq = task_rq_lock(p, &flags);
1222                 trace_sched_wait_task(p);
1223                 running = task_running(rq, p);
1224                 queued = task_on_rq_queued(p);
1225                 ncsw = 0;
1226                 if (!match_state || p->state == match_state)
1227                         ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1228                 task_rq_unlock(rq, p, &flags);
1229
1230                 /*
1231                  * If it changed from the expected state, bail out now.
1232                  */
1233                 if (unlikely(!ncsw))
1234                         break;
1235
1236                 /*
1237                  * Was it really running after all now that we
1238                  * checked with the proper locks actually held?
1239                  *
1240                  * Oops. Go back and try again..
1241                  */
1242                 if (unlikely(running)) {
1243                         cpu_relax();
1244                         continue;
1245                 }
1246
1247                 /*
1248                  * It's not enough that it's not actively running,
1249                  * it must be off the runqueue _entirely_, and not
1250                  * preempted!
1251                  *
1252                  * So if it was still runnable (but just not actively
1253                  * running right now), it's preempted, and we should
1254                  * yield - it could be a while.
1255                  */
1256                 if (unlikely(queued)) {
1257                         ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1258
1259                         set_current_state(TASK_UNINTERRUPTIBLE);
1260                         schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1261                         continue;
1262                 }
1263
1264                 /*
1265                  * Ahh, all good. It wasn't running, and it wasn't
1266                  * runnable, which means that it will never become
1267                  * running in the future either. We're all done!
1268                  */
1269                 break;
1270         }
1271
1272         return ncsw;
1273 }
1274
1275 /***
1276  * kick_process - kick a running thread to enter/exit the kernel
1277  * @p: the to-be-kicked thread
1278  *
1279  * Cause a process which is running on another CPU to enter
1280  * kernel-mode, without any delay. (to get signals handled.)
1281  *
1282  * NOTE: this function doesn't have to take the runqueue lock,
1283  * because all it wants to ensure is that the remote task enters
1284  * the kernel. If the IPI races and the task has been migrated
1285  * to another CPU then no harm is done and the purpose has been
1286  * achieved as well.
1287  */
1288 void kick_process(struct task_struct *p)
1289 {
1290         int cpu;
1291
1292         preempt_disable();
1293         cpu = task_cpu(p);
1294         if ((cpu != smp_processor_id()) && task_curr(p))
1295                 smp_send_reschedule(cpu);
1296         preempt_enable();
1297 }
1298 EXPORT_SYMBOL_GPL(kick_process);
1299 #endif /* CONFIG_SMP */
1300
1301 #ifdef CONFIG_SMP
1302 /*
1303  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1304  */
1305 static int select_fallback_rq(int cpu, struct task_struct *p)
1306 {
1307         int nid = cpu_to_node(cpu);
1308         const struct cpumask *nodemask = NULL;
1309         enum { cpuset, possible, fail } state = cpuset;
1310         int dest_cpu;
1311
1312         /*
1313          * If the node that the cpu is on has been offlined, cpu_to_node()
1314          * will return -1. There is no cpu on the node, and we should
1315          * select the cpu on the other node.
1316          */
1317         if (nid != -1) {
1318                 nodemask = cpumask_of_node(nid);
1319
1320                 /* Look for allowed, online CPU in same node. */
1321                 for_each_cpu(dest_cpu, nodemask) {
1322                         if (!cpu_online(dest_cpu))
1323                                 continue;
1324                         if (!cpu_active(dest_cpu))
1325                                 continue;
1326                         if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1327                                 return dest_cpu;
1328                 }
1329         }
1330
1331         for (;;) {
1332                 /* Any allowed, online CPU? */
1333                 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1334                         if (!cpu_online(dest_cpu))
1335                                 continue;
1336                         if (!cpu_active(dest_cpu))
1337                                 continue;
1338                         goto out;
1339                 }
1340
1341                 switch (state) {
1342                 case cpuset:
1343                         /* No more Mr. Nice Guy. */
1344                         cpuset_cpus_allowed_fallback(p);
1345                         state = possible;
1346                         break;
1347
1348                 case possible:
1349                         do_set_cpus_allowed(p, cpu_possible_mask);
1350                         state = fail;
1351                         break;
1352
1353                 case fail:
1354                         BUG();
1355                         break;
1356                 }
1357         }
1358
1359 out:
1360         if (state != cpuset) {
1361                 /*
1362                  * Don't tell them about moving exiting tasks or
1363                  * kernel threads (both mm NULL), since they never
1364                  * leave kernel.
1365                  */
1366                 if (p->mm && printk_ratelimit()) {
1367                         printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1368                                         task_pid_nr(p), p->comm, cpu);
1369                 }
1370         }
1371
1372         return dest_cpu;
1373 }
1374
1375 /*
1376  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1377  */
1378 static inline
1379 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1380 {
1381         if (p->nr_cpus_allowed > 1)
1382                 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1383
1384         /*
1385          * In order not to call set_task_cpu() on a blocking task we need
1386          * to rely on ttwu() to place the task on a valid ->cpus_allowed
1387          * cpu.
1388          *
1389          * Since this is common to all placement strategies, this lives here.
1390          *
1391          * [ this allows ->select_task() to simply return task_cpu(p) and
1392          *   not worry about this generic constraint ]
1393          */
1394         if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1395                      !cpu_online(cpu)))
1396                 cpu = select_fallback_rq(task_cpu(p), p);
1397
1398         return cpu;
1399 }
1400
1401 static void update_avg(u64 *avg, u64 sample)
1402 {
1403         s64 diff = sample - *avg;
1404         *avg += diff >> 3;
1405 }
1406 #endif
1407
1408 static void
1409 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1410 {
1411 #ifdef CONFIG_SCHEDSTATS
1412         struct rq *rq = this_rq();
1413
1414 #ifdef CONFIG_SMP
1415         int this_cpu = smp_processor_id();
1416
1417         if (cpu == this_cpu) {
1418                 schedstat_inc(rq, ttwu_local);
1419                 schedstat_inc(p, se.statistics.nr_wakeups_local);
1420         } else {
1421                 struct sched_domain *sd;
1422
1423                 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1424                 rcu_read_lock();
1425                 for_each_domain(this_cpu, sd) {
1426                         if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1427                                 schedstat_inc(sd, ttwu_wake_remote);
1428                                 break;
1429                         }
1430                 }
1431                 rcu_read_unlock();
1432         }
1433
1434         if (wake_flags & WF_MIGRATED)
1435                 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1436
1437 #endif /* CONFIG_SMP */
1438
1439         schedstat_inc(rq, ttwu_count);
1440         schedstat_inc(p, se.statistics.nr_wakeups);
1441
1442         if (wake_flags & WF_SYNC)
1443                 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1444
1445 #endif /* CONFIG_SCHEDSTATS */
1446 }
1447
1448 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1449 {
1450         activate_task(rq, p, en_flags);
1451         p->on_rq = TASK_ON_RQ_QUEUED;
1452
1453         /* if a worker is waking up, notify workqueue */
1454         if (p->flags & PF_WQ_WORKER)
1455                 wq_worker_waking_up(p, cpu_of(rq));
1456 }
1457
1458 /*
1459  * Mark the task runnable and perform wakeup-preemption.
1460  */
1461 static void
1462 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1463 {
1464         check_preempt_curr(rq, p, wake_flags);
1465         trace_sched_wakeup(p, true);
1466
1467         p->state = TASK_RUNNING;
1468 #ifdef CONFIG_SMP
1469         if (p->sched_class->task_woken)
1470                 p->sched_class->task_woken(rq, p);
1471
1472         if (rq->idle_stamp) {
1473                 u64 delta = rq_clock(rq) - rq->idle_stamp;
1474                 u64 max = 2*rq->max_idle_balance_cost;
1475
1476                 update_avg(&rq->avg_idle, delta);
1477
1478                 if (rq->avg_idle > max)
1479                         rq->avg_idle = max;
1480
1481                 rq->idle_stamp = 0;
1482         }
1483 #endif
1484 }
1485
1486 static void
1487 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1488 {
1489 #ifdef CONFIG_SMP
1490         if (p->sched_contributes_to_load)
1491                 rq->nr_uninterruptible--;
1492 #endif
1493
1494         ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1495         ttwu_do_wakeup(rq, p, wake_flags);
1496 }
1497
1498 /*
1499  * Called in case the task @p isn't fully descheduled from its runqueue,
1500  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1501  * since all we need to do is flip p->state to TASK_RUNNING, since
1502  * the task is still ->on_rq.
1503  */
1504 static int ttwu_remote(struct task_struct *p, int wake_flags)
1505 {
1506         struct rq *rq;
1507         int ret = 0;
1508
1509         rq = __task_rq_lock(p);
1510         if (task_on_rq_queued(p)) {
1511                 /* check_preempt_curr() may use rq clock */
1512                 update_rq_clock(rq);
1513                 ttwu_do_wakeup(rq, p, wake_flags);
1514                 ret = 1;
1515         }
1516         __task_rq_unlock(rq);
1517
1518         return ret;
1519 }
1520
1521 #ifdef CONFIG_SMP
1522 void sched_ttwu_pending(void)
1523 {
1524         struct rq *rq = this_rq();
1525         struct llist_node *llist = llist_del_all(&rq->wake_list);
1526         struct task_struct *p;
1527         unsigned long flags;
1528
1529         if (!llist)
1530                 return;
1531
1532         raw_spin_lock_irqsave(&rq->lock, flags);
1533
1534         while (llist) {
1535                 p = llist_entry(llist, struct task_struct, wake_entry);
1536                 llist = llist_next(llist);
1537                 ttwu_do_activate(rq, p, 0);
1538         }
1539
1540         raw_spin_unlock_irqrestore(&rq->lock, flags);
1541 }
1542
1543 void scheduler_ipi(void)
1544 {
1545         /*
1546          * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1547          * TIF_NEED_RESCHED remotely (for the first time) will also send
1548          * this IPI.
1549          */
1550         preempt_fold_need_resched();
1551
1552         if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1553                 return;
1554
1555         /*
1556          * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1557          * traditionally all their work was done from the interrupt return
1558          * path. Now that we actually do some work, we need to make sure
1559          * we do call them.
1560          *
1561          * Some archs already do call them, luckily irq_enter/exit nest
1562          * properly.
1563          *
1564          * Arguably we should visit all archs and update all handlers,
1565          * however a fair share of IPIs are still resched only so this would
1566          * somewhat pessimize the simple resched case.
1567          */
1568         irq_enter();
1569         sched_ttwu_pending();
1570
1571         /*
1572          * Check if someone kicked us for doing the nohz idle load balance.
1573          */
1574         if (unlikely(got_nohz_idle_kick())) {
1575                 this_rq()->idle_balance = 1;
1576                 raise_softirq_irqoff(SCHED_SOFTIRQ);
1577         }
1578         irq_exit();
1579 }
1580
1581 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1582 {
1583         struct rq *rq = cpu_rq(cpu);
1584
1585         if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1586                 if (!set_nr_if_polling(rq->idle))
1587                         smp_send_reschedule(cpu);
1588                 else
1589                         trace_sched_wake_idle_without_ipi(cpu);
1590         }
1591 }
1592
1593 void wake_up_if_idle(int cpu)
1594 {
1595         struct rq *rq = cpu_rq(cpu);
1596         unsigned long flags;
1597
1598         rcu_read_lock();
1599
1600         if (!is_idle_task(rcu_dereference(rq->curr)))
1601                 goto out;
1602
1603         if (set_nr_if_polling(rq->idle)) {
1604                 trace_sched_wake_idle_without_ipi(cpu);
1605         } else {
1606                 raw_spin_lock_irqsave(&rq->lock, flags);
1607                 if (is_idle_task(rq->curr))
1608                         smp_send_reschedule(cpu);
1609                 /* Else cpu is not in idle, do nothing here */
1610                 raw_spin_unlock_irqrestore(&rq->lock, flags);
1611         }
1612
1613 out:
1614         rcu_read_unlock();
1615 }
1616
1617 bool cpus_share_cache(int this_cpu, int that_cpu)
1618 {
1619         return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1620 }
1621 #endif /* CONFIG_SMP */
1622
1623 static void ttwu_queue(struct task_struct *p, int cpu)
1624 {
1625         struct rq *rq = cpu_rq(cpu);
1626
1627 #if defined(CONFIG_SMP)
1628         if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1629                 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1630                 ttwu_queue_remote(p, cpu);
1631                 return;
1632         }
1633 #endif
1634
1635         raw_spin_lock(&rq->lock);
1636         ttwu_do_activate(rq, p, 0);
1637         raw_spin_unlock(&rq->lock);
1638 }
1639
1640 /**
1641  * try_to_wake_up - wake up a thread
1642  * @p: the thread to be awakened
1643  * @state: the mask of task states that can be woken
1644  * @wake_flags: wake modifier flags (WF_*)
1645  *
1646  * Put it on the run-queue if it's not already there. The "current"
1647  * thread is always on the run-queue (except when the actual
1648  * re-schedule is in progress), and as such you're allowed to do
1649  * the simpler "current->state = TASK_RUNNING" to mark yourself
1650  * runnable without the overhead of this.
1651  *
1652  * Return: %true if @p was woken up, %false if it was already running.
1653  * or @state didn't match @p's state.
1654  */
1655 static int
1656 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1657 {
1658         unsigned long flags;
1659         int cpu, success = 0;
1660
1661         /*
1662          * If we are going to wake up a thread waiting for CONDITION we
1663          * need to ensure that CONDITION=1 done by the caller can not be
1664          * reordered with p->state check below. This pairs with mb() in
1665          * set_current_state() the waiting thread does.
1666          */
1667         smp_mb__before_spinlock();
1668         raw_spin_lock_irqsave(&p->pi_lock, flags);
1669         if (!(p->state & state))
1670                 goto out;
1671
1672         success = 1; /* we're going to change ->state */
1673         cpu = task_cpu(p);
1674
1675         if (p->on_rq && ttwu_remote(p, wake_flags))
1676                 goto stat;
1677
1678 #ifdef CONFIG_SMP
1679         /*
1680          * If the owning (remote) cpu is still in the middle of schedule() with
1681          * this task as prev, wait until its done referencing the task.
1682          */
1683         while (p->on_cpu)
1684                 cpu_relax();
1685         /*
1686          * Pairs with the smp_wmb() in finish_lock_switch().
1687          */
1688         smp_rmb();
1689
1690         p->sched_contributes_to_load = !!task_contributes_to_load(p);
1691         p->state = TASK_WAKING;
1692
1693         if (p->sched_class->task_waking)
1694                 p->sched_class->task_waking(p);
1695
1696         cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1697         if (task_cpu(p) != cpu) {
1698                 wake_flags |= WF_MIGRATED;
1699                 set_task_cpu(p, cpu);
1700         }
1701 #endif /* CONFIG_SMP */
1702
1703         ttwu_queue(p, cpu);
1704 stat:
1705         ttwu_stat(p, cpu, wake_flags);
1706 out:
1707         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1708
1709         return success;
1710 }
1711
1712 /**
1713  * try_to_wake_up_local - try to wake up a local task with rq lock held
1714  * @p: the thread to be awakened
1715  *
1716  * Put @p on the run-queue if it's not already there. The caller must
1717  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1718  * the current task.
1719  */
1720 static void try_to_wake_up_local(struct task_struct *p)
1721 {
1722         struct rq *rq = task_rq(p);
1723
1724         if (WARN_ON_ONCE(rq != this_rq()) ||
1725             WARN_ON_ONCE(p == current))
1726                 return;
1727
1728         lockdep_assert_held(&rq->lock);
1729
1730         if (!raw_spin_trylock(&p->pi_lock)) {
1731                 raw_spin_unlock(&rq->lock);
1732                 raw_spin_lock(&p->pi_lock);
1733                 raw_spin_lock(&rq->lock);
1734         }
1735
1736         if (!(p->state & TASK_NORMAL))
1737                 goto out;
1738
1739         if (!task_on_rq_queued(p))
1740                 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1741
1742         ttwu_do_wakeup(rq, p, 0);
1743         ttwu_stat(p, smp_processor_id(), 0);
1744 out:
1745         raw_spin_unlock(&p->pi_lock);
1746 }
1747
1748 /**
1749  * wake_up_process - Wake up a specific process
1750  * @p: The process to be woken up.
1751  *
1752  * Attempt to wake up the nominated process and move it to the set of runnable
1753  * processes.
1754  *
1755  * Return: 1 if the process was woken up, 0 if it was already running.
1756  *
1757  * It may be assumed that this function implies a write memory barrier before
1758  * changing the task state if and only if any tasks are woken up.
1759  */
1760 int wake_up_process(struct task_struct *p)
1761 {
1762         WARN_ON(task_is_stopped_or_traced(p));
1763         return try_to_wake_up(p, TASK_NORMAL, 0);
1764 }
1765 EXPORT_SYMBOL(wake_up_process);
1766
1767 int wake_up_state(struct task_struct *p, unsigned int state)
1768 {
1769         return try_to_wake_up(p, state, 0);
1770 }
1771
1772 /*
1773  * This function clears the sched_dl_entity static params.
1774  */
1775 void __dl_clear_params(struct task_struct *p)
1776 {
1777         struct sched_dl_entity *dl_se = &p->dl;
1778
1779         dl_se->dl_runtime = 0;
1780         dl_se->dl_deadline = 0;
1781         dl_se->dl_period = 0;
1782         dl_se->flags = 0;
1783         dl_se->dl_bw = 0;
1784
1785         dl_se->dl_throttled = 0;
1786         dl_se->dl_new = 1;
1787         dl_se->dl_yielded = 0;
1788 }
1789
1790 /*
1791  * Perform scheduler related setup for a newly forked process p.
1792  * p is forked by current.
1793  *
1794  * __sched_fork() is basic setup used by init_idle() too:
1795  */
1796 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1797 {
1798         p->on_rq                        = 0;
1799
1800         p->se.on_rq                     = 0;
1801         p->se.exec_start                = 0;
1802         p->se.sum_exec_runtime          = 0;
1803         p->se.prev_sum_exec_runtime     = 0;
1804         p->se.nr_migrations             = 0;
1805         p->se.vruntime                  = 0;
1806 #ifdef CONFIG_SMP
1807         p->se.avg.decay_count           = 0;
1808 #endif
1809         INIT_LIST_HEAD(&p->se.group_node);
1810
1811 #ifdef CONFIG_SCHEDSTATS
1812         memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1813 #endif
1814
1815         RB_CLEAR_NODE(&p->dl.rb_node);
1816         init_dl_task_timer(&p->dl);
1817         __dl_clear_params(p);
1818
1819         INIT_LIST_HEAD(&p->rt.run_list);
1820
1821 #ifdef CONFIG_PREEMPT_NOTIFIERS
1822         INIT_HLIST_HEAD(&p->preempt_notifiers);
1823 #endif
1824
1825 #ifdef CONFIG_NUMA_BALANCING
1826         if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1827                 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1828                 p->mm->numa_scan_seq = 0;
1829         }
1830
1831         if (clone_flags & CLONE_VM)
1832                 p->numa_preferred_nid = current->numa_preferred_nid;
1833         else
1834                 p->numa_preferred_nid = -1;
1835
1836         p->node_stamp = 0ULL;
1837         p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1838         p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1839         p->numa_work.next = &p->numa_work;
1840         p->numa_faults = NULL;
1841         p->last_task_numa_placement = 0;
1842         p->last_sum_exec_runtime = 0;
1843
1844         p->numa_group = NULL;
1845 #endif /* CONFIG_NUMA_BALANCING */
1846 }
1847
1848 #ifdef CONFIG_NUMA_BALANCING
1849 #ifdef CONFIG_SCHED_DEBUG
1850 void set_numabalancing_state(bool enabled)
1851 {
1852         if (enabled)
1853                 sched_feat_set("NUMA");
1854         else
1855                 sched_feat_set("NO_NUMA");
1856 }
1857 #else
1858 __read_mostly bool numabalancing_enabled;
1859
1860 void set_numabalancing_state(bool enabled)
1861 {
1862         numabalancing_enabled = enabled;
1863 }
1864 #endif /* CONFIG_SCHED_DEBUG */
1865
1866 #ifdef CONFIG_PROC_SYSCTL
1867 int sysctl_numa_balancing(struct ctl_table *table, int write,
1868                          void __user *buffer, size_t *lenp, loff_t *ppos)
1869 {
1870         struct ctl_table t;
1871         int err;
1872         int state = numabalancing_enabled;
1873
1874         if (write && !capable(CAP_SYS_ADMIN))
1875                 return -EPERM;
1876
1877         t = *table;
1878         t.data = &state;
1879         err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1880         if (err < 0)
1881                 return err;
1882         if (write)
1883                 set_numabalancing_state(state);
1884         return err;
1885 }
1886 #endif
1887 #endif
1888
1889 /*
1890  * fork()/clone()-time setup:
1891  */
1892 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1893 {
1894         unsigned long flags;
1895         int cpu = get_cpu();
1896
1897         __sched_fork(clone_flags, p);
1898         /*
1899          * We mark the process as running here. This guarantees that
1900          * nobody will actually run it, and a signal or other external
1901          * event cannot wake it up and insert it on the runqueue either.
1902          */
1903         p->state = TASK_RUNNING;
1904
1905         /*
1906          * Make sure we do not leak PI boosting priority to the child.
1907          */
1908         p->prio = current->normal_prio;
1909
1910         /*
1911          * Revert to default priority/policy on fork if requested.
1912          */
1913         if (unlikely(p->sched_reset_on_fork)) {
1914                 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1915                         p->policy = SCHED_NORMAL;
1916                         p->static_prio = NICE_TO_PRIO(0);
1917                         p->rt_priority = 0;
1918                 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1919                         p->static_prio = NICE_TO_PRIO(0);
1920
1921                 p->prio = p->normal_prio = __normal_prio(p);
1922                 set_load_weight(p);
1923
1924                 /*
1925                  * We don't need the reset flag anymore after the fork. It has
1926                  * fulfilled its duty:
1927                  */
1928                 p->sched_reset_on_fork = 0;
1929         }
1930
1931         if (dl_prio(p->prio)) {
1932                 put_cpu();
1933                 return -EAGAIN;
1934         } else if (rt_prio(p->prio)) {
1935                 p->sched_class = &rt_sched_class;
1936         } else {
1937                 p->sched_class = &fair_sched_class;
1938         }
1939
1940         if (p->sched_class->task_fork)
1941                 p->sched_class->task_fork(p);
1942
1943         /*
1944          * The child is not yet in the pid-hash so no cgroup attach races,
1945          * and the cgroup is pinned to this child due to cgroup_fork()
1946          * is ran before sched_fork().
1947          *
1948          * Silence PROVE_RCU.
1949          */
1950         raw_spin_lock_irqsave(&p->pi_lock, flags);
1951         set_task_cpu(p, cpu);
1952         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1953
1954 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1955         if (likely(sched_info_on()))
1956                 memset(&p->sched_info, 0, sizeof(p->sched_info));
1957 #endif
1958 #if defined(CONFIG_SMP)
1959         p->on_cpu = 0;
1960 #endif
1961         init_task_preempt_count(p);
1962 #ifdef CONFIG_SMP
1963         plist_node_init(&p->pushable_tasks, MAX_PRIO);
1964         RB_CLEAR_NODE(&p->pushable_dl_tasks);
1965 #endif
1966
1967         put_cpu();
1968         return 0;
1969 }
1970
1971 unsigned long to_ratio(u64 period, u64 runtime)
1972 {
1973         if (runtime == RUNTIME_INF)
1974                 return 1ULL << 20;
1975
1976         /*
1977          * Doing this here saves a lot of checks in all
1978          * the calling paths, and returning zero seems
1979          * safe for them anyway.
1980          */
1981         if (period == 0)
1982                 return 0;
1983
1984         return div64_u64(runtime << 20, period);
1985 }
1986
1987 #ifdef CONFIG_SMP
1988 inline struct dl_bw *dl_bw_of(int i)
1989 {
1990         rcu_lockdep_assert(rcu_read_lock_sched_held(),
1991                            "sched RCU must be held");
1992         return &cpu_rq(i)->rd->dl_bw;
1993 }
1994
1995 static inline int dl_bw_cpus(int i)
1996 {
1997         struct root_domain *rd = cpu_rq(i)->rd;
1998         int cpus = 0;
1999
2000         rcu_lockdep_assert(rcu_read_lock_sched_held(),
2001                            "sched RCU must be held");
2002         for_each_cpu_and(i, rd->span, cpu_active_mask)
2003                 cpus++;
2004
2005         return cpus;
2006 }
2007 #else
2008 inline struct dl_bw *dl_bw_of(int i)
2009 {
2010         return &cpu_rq(i)->dl.dl_bw;
2011 }
2012
2013 static inline int dl_bw_cpus(int i)
2014 {
2015         return 1;
2016 }
2017 #endif
2018
2019 /*
2020  * We must be sure that accepting a new task (or allowing changing the
2021  * parameters of an existing one) is consistent with the bandwidth
2022  * constraints. If yes, this function also accordingly updates the currently
2023  * allocated bandwidth to reflect the new situation.
2024  *
2025  * This function is called while holding p's rq->lock.
2026  *
2027  * XXX we should delay bw change until the task's 0-lag point, see
2028  * __setparam_dl().
2029  */
2030 static int dl_overflow(struct task_struct *p, int policy,
2031                        const struct sched_attr *attr)
2032 {
2033
2034         struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2035         u64 period = attr->sched_period ?: attr->sched_deadline;
2036         u64 runtime = attr->sched_runtime;
2037         u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2038         int cpus, err = -1;
2039
2040         if (new_bw == p->dl.dl_bw)
2041                 return 0;
2042
2043         /*
2044          * Either if a task, enters, leave, or stays -deadline but changes
2045          * its parameters, we may need to update accordingly the total
2046          * allocated bandwidth of the container.
2047          */
2048         raw_spin_lock(&dl_b->lock);
2049         cpus = dl_bw_cpus(task_cpu(p));
2050         if (dl_policy(policy) && !task_has_dl_policy(p) &&
2051             !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2052                 __dl_add(dl_b, new_bw);
2053                 err = 0;
2054         } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2055                    !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2056                 __dl_clear(dl_b, p->dl.dl_bw);
2057                 __dl_add(dl_b, new_bw);
2058                 err = 0;
2059         } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2060                 __dl_clear(dl_b, p->dl.dl_bw);
2061                 err = 0;
2062         }
2063         raw_spin_unlock(&dl_b->lock);
2064
2065         return err;
2066 }
2067
2068 extern void init_dl_bw(struct dl_bw *dl_b);
2069
2070 /*
2071  * wake_up_new_task - wake up a newly created task for the first time.
2072  *
2073  * This function will do some initial scheduler statistics housekeeping
2074  * that must be done for every newly created context, then puts the task
2075  * on the runqueue and wakes it.
2076  */
2077 void wake_up_new_task(struct task_struct *p)
2078 {
2079         unsigned long flags;
2080         struct rq *rq;
2081
2082         raw_spin_lock_irqsave(&p->pi_lock, flags);
2083 #ifdef CONFIG_SMP
2084         /*
2085          * Fork balancing, do it here and not earlier because:
2086          *  - cpus_allowed can change in the fork path
2087          *  - any previously selected cpu might disappear through hotplug
2088          */
2089         set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2090 #endif
2091
2092         /* Initialize new task's runnable average */
2093         init_task_runnable_average(p);
2094         rq = __task_rq_lock(p);
2095         activate_task(rq, p, 0);
2096         p->on_rq = TASK_ON_RQ_QUEUED;
2097         trace_sched_wakeup_new(p, true);
2098         check_preempt_curr(rq, p, WF_FORK);
2099 #ifdef CONFIG_SMP
2100         if (p->sched_class->task_woken)
2101                 p->sched_class->task_woken(rq, p);
2102 #endif
2103         task_rq_unlock(rq, p, &flags);
2104 }
2105
2106 #ifdef CONFIG_PREEMPT_NOTIFIERS
2107
2108 /**
2109  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2110  * @notifier: notifier struct to register
2111  */
2112 void preempt_notifier_register(struct preempt_notifier *notifier)
2113 {
2114         hlist_add_head(&notifier->link, &current->preempt_notifiers);
2115 }
2116 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2117
2118 /**
2119  * preempt_notifier_unregister - no longer interested in preemption notifications
2120  * @notifier: notifier struct to unregister
2121  *
2122  * This is safe to call from within a preemption notifier.
2123  */
2124 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2125 {
2126         hlist_del(&notifier->link);
2127 }
2128 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2129
2130 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2131 {
2132         struct preempt_notifier *notifier;
2133
2134         hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2135                 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2136 }
2137
2138 static void
2139 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2140                                  struct task_struct *next)
2141 {
2142         struct preempt_notifier *notifier;
2143
2144         hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2145                 notifier->ops->sched_out(notifier, next);
2146 }
2147
2148 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2149
2150 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2151 {
2152 }
2153
2154 static void
2155 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2156                                  struct task_struct *next)
2157 {
2158 }
2159
2160 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2161
2162 /**
2163  * prepare_task_switch - prepare to switch tasks
2164  * @rq: the runqueue preparing to switch
2165  * @prev: the current task that is being switched out
2166  * @next: the task we are going to switch to.
2167  *
2168  * This is called with the rq lock held and interrupts off. It must
2169  * be paired with a subsequent finish_task_switch after the context
2170  * switch.
2171  *
2172  * prepare_task_switch sets up locking and calls architecture specific
2173  * hooks.
2174  */
2175 static inline void
2176 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2177                     struct task_struct *next)
2178 {
2179         trace_sched_switch(prev, next);
2180         sched_info_switch(rq, prev, next);
2181         perf_event_task_sched_out(prev, next);
2182         fire_sched_out_preempt_notifiers(prev, next);
2183         prepare_lock_switch(rq, next);
2184         prepare_arch_switch(next);
2185 }
2186
2187 /**
2188  * finish_task_switch - clean up after a task-switch
2189  * @prev: the thread we just switched away from.
2190  *
2191  * finish_task_switch must be called after the context switch, paired
2192  * with a prepare_task_switch call before the context switch.
2193  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2194  * and do any other architecture-specific cleanup actions.
2195  *
2196  * Note that we may have delayed dropping an mm in context_switch(). If
2197  * so, we finish that here outside of the runqueue lock. (Doing it
2198  * with the lock held can cause deadlocks; see schedule() for
2199  * details.)
2200  *
2201  * The context switch have flipped the stack from under us and restored the
2202  * local variables which were saved when this task called schedule() in the
2203  * past. prev == current is still correct but we need to recalculate this_rq
2204  * because prev may have moved to another CPU.
2205  */
2206 static struct rq *finish_task_switch(struct task_struct *prev)
2207         __releases(rq->lock)
2208 {
2209         struct rq *rq = this_rq();
2210         struct mm_struct *mm = rq->prev_mm;
2211         long prev_state;
2212
2213         rq->prev_mm = NULL;
2214
2215         /*
2216          * A task struct has one reference for the use as "current".
2217          * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2218          * schedule one last time. The schedule call will never return, and
2219          * the scheduled task must drop that reference.
2220          * The test for TASK_DEAD must occur while the runqueue locks are
2221          * still held, otherwise prev could be scheduled on another cpu, die
2222          * there before we look at prev->state, and then the reference would
2223          * be dropped twice.
2224          *              Manfred Spraul <manfred@colorfullife.com>
2225          */
2226         prev_state = prev->state;
2227         vtime_task_switch(prev);
2228         finish_arch_switch(prev);
2229         perf_event_task_sched_in(prev, current);
2230         finish_lock_switch(rq, prev);
2231         finish_arch_post_lock_switch();
2232
2233         fire_sched_in_preempt_notifiers(current);
2234         if (mm)
2235                 mmdrop(mm);
2236         if (unlikely(prev_state == TASK_DEAD)) {
2237                 if (prev->sched_class->task_dead)
2238                         prev->sched_class->task_dead(prev);
2239
2240                 /*
2241                  * Remove function-return probe instances associated with this
2242                  * task and put them back on the free list.
2243                  */
2244                 kprobe_flush_task(prev);
2245                 put_task_struct(prev);
2246         }
2247
2248         tick_nohz_task_switch(current);
2249         return rq;
2250 }
2251
2252 #ifdef CONFIG_SMP
2253
2254 /* rq->lock is NOT held, but preemption is disabled */
2255 static inline void post_schedule(struct rq *rq)
2256 {
2257         if (rq->post_schedule) {
2258                 unsigned long flags;
2259
2260                 raw_spin_lock_irqsave(&rq->lock, flags);
2261                 if (rq->curr->sched_class->post_schedule)
2262                         rq->curr->sched_class->post_schedule(rq);
2263                 raw_spin_unlock_irqrestore(&rq->lock, flags);
2264
2265                 rq->post_schedule = 0;
2266         }
2267 }
2268
2269 #else
2270
2271 static inline void post_schedule(struct rq *rq)
2272 {
2273 }
2274
2275 #endif
2276
2277 /**
2278  * schedule_tail - first thing a freshly forked thread must call.
2279  * @prev: the thread we just switched away from.
2280  */
2281 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2282         __releases(rq->lock)
2283 {
2284         struct rq *rq;
2285
2286         /* finish_task_switch() drops rq->lock and enables preemtion */
2287         preempt_disable();
2288         rq = finish_task_switch(prev);
2289         post_schedule(rq);
2290         preempt_enable();
2291
2292         if (current->set_child_tid)
2293                 put_user(task_pid_vnr(current), current->set_child_tid);
2294 }
2295
2296 /*
2297  * context_switch - switch to the new MM and the new thread's register state.
2298  */
2299 static inline struct rq *
2300 context_switch(struct rq *rq, struct task_struct *prev,
2301                struct task_struct *next)
2302 {
2303         struct mm_struct *mm, *oldmm;
2304
2305         prepare_task_switch(rq, prev, next);
2306
2307         mm = next->mm;
2308         oldmm = prev->active_mm;
2309         /*
2310          * For paravirt, this is coupled with an exit in switch_to to
2311          * combine the page table reload and the switch backend into
2312          * one hypercall.
2313          */
2314         arch_start_context_switch(prev);
2315
2316         if (!mm) {
2317                 next->active_mm = oldmm;
2318                 atomic_inc(&oldmm->mm_count);
2319                 enter_lazy_tlb(oldmm, next);
2320         } else
2321                 switch_mm(oldmm, mm, next);
2322
2323         if (!prev->mm) {
2324                 prev->active_mm = NULL;
2325                 rq->prev_mm = oldmm;
2326         }
2327         /*
2328          * Since the runqueue lock will be released by the next
2329          * task (which is an invalid locking op but in the case
2330          * of the scheduler it's an obvious special-case), so we
2331          * do an early lockdep release here:
2332          */
2333         spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2334
2335         /* Here we just switch the register state and the stack. */
2336         switch_to(prev, next, prev);
2337         barrier();
2338
2339         return finish_task_switch(prev);
2340 }
2341
2342 /*
2343  * nr_running and nr_context_switches:
2344  *
2345  * externally visible scheduler statistics: current number of runnable
2346  * threads, total number of context switches performed since bootup.
2347  */
2348 unsigned long nr_running(void)
2349 {
2350         unsigned long i, sum = 0;
2351
2352         for_each_online_cpu(i)
2353                 sum += cpu_rq(i)->nr_running;
2354
2355         return sum;
2356 }
2357
2358 /*
2359  * Check if only the current task is running on the cpu.
2360  */
2361 bool single_task_running(void)
2362 {
2363         if (cpu_rq(smp_processor_id())->nr_running == 1)
2364                 return true;
2365         else
2366                 return false;
2367 }
2368 EXPORT_SYMBOL(single_task_running);
2369
2370 unsigned long long nr_context_switches(void)
2371 {
2372         int i;
2373         unsigned long long sum = 0;
2374
2375         for_each_possible_cpu(i)
2376                 sum += cpu_rq(i)->nr_switches;
2377
2378         return sum;
2379 }
2380
2381 unsigned long nr_iowait(void)
2382 {
2383         unsigned long i, sum = 0;
2384
2385         for_each_possible_cpu(i)
2386                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2387
2388         return sum;
2389 }
2390
2391 unsigned long nr_iowait_cpu(int cpu)
2392 {
2393         struct rq *this = cpu_rq(cpu);
2394         return atomic_read(&this->nr_iowait);
2395 }
2396
2397 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2398 {
2399         struct rq *this = this_rq();
2400         *nr_waiters = atomic_read(&this->nr_iowait);
2401         *load = this->cpu_load[0];
2402 }
2403
2404 #ifdef CONFIG_SMP
2405
2406 /*
2407  * sched_exec - execve() is a valuable balancing opportunity, because at
2408  * this point the task has the smallest effective memory and cache footprint.
2409  */
2410 void sched_exec(void)
2411 {
2412         struct task_struct *p = current;
2413         unsigned long flags;
2414         int dest_cpu;
2415
2416         raw_spin_lock_irqsave(&p->pi_lock, flags);
2417         dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2418         if (dest_cpu == smp_processor_id())
2419                 goto unlock;
2420
2421         if (likely(cpu_active(dest_cpu))) {
2422                 struct migration_arg arg = { p, dest_cpu };
2423
2424                 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2425                 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2426                 return;
2427         }
2428 unlock:
2429         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2430 }
2431
2432 #endif
2433
2434 DEFINE_PER_CPU(struct kernel_stat, kstat);
2435 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2436
2437 EXPORT_PER_CPU_SYMBOL(kstat);
2438 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2439
2440 /*
2441  * Return accounted runtime for the task.
2442  * In case the task is currently running, return the runtime plus current's
2443  * pending runtime that have not been accounted yet.
2444  */
2445 unsigned long long task_sched_runtime(struct task_struct *p)
2446 {
2447         unsigned long flags;
2448         struct rq *rq;
2449         u64 ns;
2450
2451 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2452         /*
2453          * 64-bit doesn't need locks to atomically read a 64bit value.
2454          * So we have a optimization chance when the task's delta_exec is 0.
2455          * Reading ->on_cpu is racy, but this is ok.
2456          *
2457          * If we race with it leaving cpu, we'll take a lock. So we're correct.
2458          * If we race with it entering cpu, unaccounted time is 0. This is
2459          * indistinguishable from the read occurring a few cycles earlier.
2460          * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2461          * been accounted, so we're correct here as well.
2462          */
2463         if (!p->on_cpu || !task_on_rq_queued(p))
2464                 return p->se.sum_exec_runtime;
2465 #endif
2466
2467         rq = task_rq_lock(p, &flags);
2468         /*
2469          * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2470          * project cycles that may never be accounted to this
2471          * thread, breaking clock_gettime().
2472          */
2473         if (task_current(rq, p) && task_on_rq_queued(p)) {
2474                 update_rq_clock(rq);
2475                 p->sched_class->update_curr(rq);
2476         }
2477         ns = p->se.sum_exec_runtime;
2478         task_rq_unlock(rq, p, &flags);
2479
2480         return ns;
2481 }
2482
2483 /*
2484  * This function gets called by the timer code, with HZ frequency.
2485  * We call it with interrupts disabled.
2486  */
2487 void scheduler_tick(void)
2488 {
2489         int cpu = smp_processor_id();
2490         struct rq *rq = cpu_rq(cpu);
2491         struct task_struct *curr = rq->curr;
2492
2493         sched_clock_tick();
2494
2495         raw_spin_lock(&rq->lock);
2496         update_rq_clock(rq);
2497         curr->sched_class->task_tick(rq, curr, 0);
2498         update_cpu_load_active(rq);
2499         raw_spin_unlock(&rq->lock);
2500
2501         perf_event_task_tick();
2502
2503 #ifdef CONFIG_SMP
2504         rq->idle_balance = idle_cpu(cpu);
2505         trigger_load_balance(rq);
2506 #endif
2507         rq_last_tick_reset(rq);
2508 }
2509
2510 #ifdef CONFIG_NO_HZ_FULL
2511 /**
2512  * scheduler_tick_max_deferment
2513  *
2514  * Keep at least one tick per second when a single
2515  * active task is running because the scheduler doesn't
2516  * yet completely support full dynticks environment.
2517  *
2518  * This makes sure that uptime, CFS vruntime, load
2519  * balancing, etc... continue to move forward, even
2520  * with a very low granularity.
2521  *
2522  * Return: Maximum deferment in nanoseconds.
2523  */
2524 u64 scheduler_tick_max_deferment(void)
2525 {
2526         struct rq *rq = this_rq();
2527         unsigned long next, now = ACCESS_ONCE(jiffies);
2528
2529         next = rq->last_sched_tick + HZ;
2530
2531         if (time_before_eq(next, now))
2532                 return 0;
2533
2534         return jiffies_to_nsecs(next - now);
2535 }
2536 #endif
2537
2538 notrace unsigned long get_parent_ip(unsigned long addr)
2539 {
2540         if (in_lock_functions(addr)) {
2541                 addr = CALLER_ADDR2;
2542                 if (in_lock_functions(addr))
2543                         addr = CALLER_ADDR3;
2544         }
2545         return addr;
2546 }
2547
2548 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2549                                 defined(CONFIG_PREEMPT_TRACER))
2550
2551 void preempt_count_add(int val)
2552 {
2553 #ifdef CONFIG_DEBUG_PREEMPT
2554         /*
2555          * Underflow?
2556          */
2557         if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2558                 return;
2559 #endif
2560         __preempt_count_add(val);
2561 #ifdef CONFIG_DEBUG_PREEMPT
2562         /*
2563          * Spinlock count overflowing soon?
2564          */
2565         DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2566                                 PREEMPT_MASK - 10);
2567 #endif
2568         if (preempt_count() == val) {
2569                 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2570 #ifdef CONFIG_DEBUG_PREEMPT
2571                 current->preempt_disable_ip = ip;
2572 #endif
2573                 trace_preempt_off(CALLER_ADDR0, ip);
2574         }
2575 }
2576 EXPORT_SYMBOL(preempt_count_add);
2577 NOKPROBE_SYMBOL(preempt_count_add);
2578
2579 void preempt_count_sub(int val)
2580 {
2581 #ifdef CONFIG_DEBUG_PREEMPT
2582         /*
2583          * Underflow?
2584          */
2585         if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2586                 return;
2587         /*
2588          * Is the spinlock portion underflowing?
2589          */
2590         if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2591                         !(preempt_count() & PREEMPT_MASK)))
2592                 return;
2593 #endif
2594
2595         if (preempt_count() == val)
2596                 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2597         __preempt_count_sub(val);
2598 }
2599 EXPORT_SYMBOL(preempt_count_sub);
2600 NOKPROBE_SYMBOL(preempt_count_sub);
2601
2602 #endif
2603
2604 /*
2605  * Print scheduling while atomic bug:
2606  */
2607 static noinline void __schedule_bug(struct task_struct *prev)
2608 {
2609         if (oops_in_progress)
2610                 return;
2611
2612         printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2613                 prev->comm, prev->pid, preempt_count());
2614
2615         debug_show_held_locks(prev);
2616         print_modules();
2617         if (irqs_disabled())
2618                 print_irqtrace_events(prev);
2619 #ifdef CONFIG_DEBUG_PREEMPT
2620         if (in_atomic_preempt_off()) {
2621                 pr_err("Preemption disabled at:");
2622                 print_ip_sym(current->preempt_disable_ip);
2623                 pr_cont("\n");
2624         }
2625 #endif
2626         dump_stack();
2627         add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2628 }
2629
2630 /*
2631  * Various schedule()-time debugging checks and statistics:
2632  */
2633 static inline void schedule_debug(struct task_struct *prev)
2634 {
2635 #ifdef CONFIG_SCHED_STACK_END_CHECK
2636         BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2637 #endif
2638         /*
2639          * Test if we are atomic. Since do_exit() needs to call into
2640          * schedule() atomically, we ignore that path. Otherwise whine
2641          * if we are scheduling when we should not.
2642          */
2643         if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2644                 __schedule_bug(prev);
2645         rcu_sleep_check();
2646
2647         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2648
2649         schedstat_inc(this_rq(), sched_count);
2650 }
2651
2652 /*
2653  * Pick up the highest-prio task:
2654  */
2655 static inline struct task_struct *
2656 pick_next_task(struct rq *rq, struct task_struct *prev)
2657 {
2658         const struct sched_class *class = &fair_sched_class;
2659         struct task_struct *p;
2660
2661         /*
2662          * Optimization: we know that if all tasks are in
2663          * the fair class we can call that function directly:
2664          */
2665         if (likely(prev->sched_class == class &&
2666                    rq->nr_running == rq->cfs.h_nr_running)) {
2667                 p = fair_sched_class.pick_next_task(rq, prev);
2668                 if (unlikely(p == RETRY_TASK))
2669                         goto again;
2670
2671                 /* assumes fair_sched_class->next == idle_sched_class */
2672                 if (unlikely(!p))
2673                         p = idle_sched_class.pick_next_task(rq, prev);
2674
2675                 return p;
2676         }
2677
2678 again:
2679         for_each_class(class) {
2680                 p = class->pick_next_task(rq, prev);
2681                 if (p) {
2682                         if (unlikely(p == RETRY_TASK))
2683                                 goto again;
2684                         return p;
2685                 }
2686         }
2687
2688         BUG(); /* the idle class will always have a runnable task */
2689 }
2690
2691 /*
2692  * __schedule() is the main scheduler function.
2693  *
2694  * The main means of driving the scheduler and thus entering this function are:
2695  *
2696  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2697  *
2698  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2699  *      paths. For example, see arch/x86/entry_64.S.
2700  *
2701  *      To drive preemption between tasks, the scheduler sets the flag in timer
2702  *      interrupt handler scheduler_tick().
2703  *
2704  *   3. Wakeups don't really cause entry into schedule(). They add a
2705  *      task to the run-queue and that's it.
2706  *
2707  *      Now, if the new task added to the run-queue preempts the current
2708  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2709  *      called on the nearest possible occasion:
2710  *
2711  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2712  *
2713  *         - in syscall or exception context, at the next outmost
2714  *           preempt_enable(). (this might be as soon as the wake_up()'s
2715  *           spin_unlock()!)
2716  *
2717  *         - in IRQ context, return from interrupt-handler to
2718  *           preemptible context
2719  *
2720  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2721  *         then at the next:
2722  *
2723  *          - cond_resched() call
2724  *          - explicit schedule() call
2725  *          - return from syscall or exception to user-space
2726  *          - return from interrupt-handler to user-space
2727  *
2728  * WARNING: all callers must re-check need_resched() afterward and reschedule
2729  * accordingly in case an event triggered the need for rescheduling (such as
2730  * an interrupt waking up a task) while preemption was disabled in __schedule().
2731  */
2732 static void __sched __schedule(void)
2733 {
2734         struct task_struct *prev, *next;
2735         unsigned long *switch_count;
2736         struct rq *rq;
2737         int cpu;
2738
2739         preempt_disable();
2740         cpu = smp_processor_id();
2741         rq = cpu_rq(cpu);
2742         rcu_note_context_switch();
2743         prev = rq->curr;
2744
2745         schedule_debug(prev);
2746
2747         if (sched_feat(HRTICK))
2748                 hrtick_clear(rq);
2749
2750         /*
2751          * Make sure that signal_pending_state()->signal_pending() below
2752          * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2753          * done by the caller to avoid the race with signal_wake_up().
2754          */
2755         smp_mb__before_spinlock();
2756         raw_spin_lock_irq(&rq->lock);
2757
2758         rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2759
2760         switch_count = &prev->nivcsw;
2761         if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2762                 if (unlikely(signal_pending_state(prev->state, prev))) {
2763                         prev->state = TASK_RUNNING;
2764                 } else {
2765                         deactivate_task(rq, prev, DEQUEUE_SLEEP);
2766                         prev->on_rq = 0;
2767
2768                         /*
2769                          * If a worker went to sleep, notify and ask workqueue
2770                          * whether it wants to wake up a task to maintain
2771                          * concurrency.
2772                          */
2773                         if (prev->flags & PF_WQ_WORKER) {
2774                                 struct task_struct *to_wakeup;
2775
2776                                 to_wakeup = wq_worker_sleeping(prev, cpu);
2777                                 if (to_wakeup)
2778                                         try_to_wake_up_local(to_wakeup);
2779                         }
2780                 }
2781                 switch_count = &prev->nvcsw;
2782         }
2783
2784         if (task_on_rq_queued(prev))
2785                 update_rq_clock(rq);
2786
2787         next = pick_next_task(rq, prev);
2788         clear_tsk_need_resched(prev);
2789         clear_preempt_need_resched();
2790         rq->clock_skip_update = 0;
2791
2792         if (likely(prev != next)) {
2793                 rq->nr_switches++;
2794                 rq->curr = next;
2795                 ++*switch_count;
2796
2797                 rq = context_switch(rq, prev, next); /* unlocks the rq */
2798                 cpu = cpu_of(rq);
2799         } else
2800                 raw_spin_unlock_irq(&rq->lock);
2801
2802         post_schedule(rq);
2803
2804         sched_preempt_enable_no_resched();
2805 }
2806
2807 static inline void sched_submit_work(struct task_struct *tsk)
2808 {
2809         if (!tsk->state || tsk_is_pi_blocked(tsk))
2810                 return;
2811         /*
2812          * If we are going to sleep and we have plugged IO queued,
2813          * make sure to submit it to avoid deadlocks.
2814          */
2815         if (blk_needs_flush_plug(tsk))
2816                 blk_schedule_flush_plug(tsk);
2817 }
2818
2819 asmlinkage __visible void __sched schedule(void)
2820 {
2821         struct task_struct *tsk = current;
2822
2823         sched_submit_work(tsk);
2824         do {
2825                 __schedule();
2826         } while (need_resched());
2827 }
2828 EXPORT_SYMBOL(schedule);
2829
2830 #ifdef CONFIG_CONTEXT_TRACKING
2831 asmlinkage __visible void __sched schedule_user(void)
2832 {
2833         /*
2834          * If we come here after a random call to set_need_resched(),
2835          * or we have been woken up remotely but the IPI has not yet arrived,
2836          * we haven't yet exited the RCU idle mode. Do it here manually until
2837          * we find a better solution.
2838          *
2839          * NB: There are buggy callers of this function.  Ideally we
2840          * should warn if prev_state != CONTEXT_USER, but that will trigger
2841          * too frequently to make sense yet.
2842          */
2843         enum ctx_state prev_state = exception_enter();
2844         schedule();
2845         exception_exit(prev_state);
2846 }
2847 #endif
2848
2849 /**
2850  * schedule_preempt_disabled - called with preemption disabled
2851  *
2852  * Returns with preemption disabled. Note: preempt_count must be 1
2853  */
2854 void __sched schedule_preempt_disabled(void)
2855 {
2856         sched_preempt_enable_no_resched();
2857         schedule();
2858         preempt_disable();
2859 }
2860
2861 static void __sched notrace preempt_schedule_common(void)
2862 {
2863         do {
2864                 __preempt_count_add(PREEMPT_ACTIVE);
2865                 __schedule();
2866                 __preempt_count_sub(PREEMPT_ACTIVE);
2867
2868                 /*
2869                  * Check again in case we missed a preemption opportunity
2870                  * between schedule and now.
2871                  */
2872                 barrier();
2873         } while (need_resched());
2874 }
2875
2876 #ifdef CONFIG_PREEMPT
2877 /*
2878  * this is the entry point to schedule() from in-kernel preemption
2879  * off of preempt_enable. Kernel preemptions off return from interrupt
2880  * occur there and call schedule directly.
2881  */
2882 asmlinkage __visible void __sched notrace preempt_schedule(void)
2883 {
2884         /*
2885          * If there is a non-zero preempt_count or interrupts are disabled,
2886          * we do not want to preempt the current task. Just return..
2887          */
2888         if (likely(!preemptible()))
2889                 return;
2890
2891         preempt_schedule_common();
2892 }
2893 NOKPROBE_SYMBOL(preempt_schedule);
2894 EXPORT_SYMBOL(preempt_schedule);
2895
2896 #ifdef CONFIG_CONTEXT_TRACKING
2897 /**
2898  * preempt_schedule_context - preempt_schedule called by tracing
2899  *
2900  * The tracing infrastructure uses preempt_enable_notrace to prevent
2901  * recursion and tracing preempt enabling caused by the tracing
2902  * infrastructure itself. But as tracing can happen in areas coming
2903  * from userspace or just about to enter userspace, a preempt enable
2904  * can occur before user_exit() is called. This will cause the scheduler
2905  * to be called when the system is still in usermode.
2906  *
2907  * To prevent this, the preempt_enable_notrace will use this function
2908  * instead of preempt_schedule() to exit user context if needed before
2909  * calling the scheduler.
2910  */
2911 asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2912 {
2913         enum ctx_state prev_ctx;
2914
2915         if (likely(!preemptible()))
2916                 return;
2917
2918         do {
2919                 __preempt_count_add(PREEMPT_ACTIVE);
2920                 /*
2921                  * Needs preempt disabled in case user_exit() is traced
2922                  * and the tracer calls preempt_enable_notrace() causing
2923                  * an infinite recursion.
2924                  */
2925                 prev_ctx = exception_enter();
2926                 __schedule();
2927                 exception_exit(prev_ctx);
2928
2929                 __preempt_count_sub(PREEMPT_ACTIVE);
2930                 barrier();
2931         } while (need_resched());
2932 }
2933 EXPORT_SYMBOL_GPL(preempt_schedule_context);
2934 #endif /* CONFIG_CONTEXT_TRACKING */
2935
2936 #endif /* CONFIG_PREEMPT */
2937
2938 /*
2939  * this is the entry point to schedule() from kernel preemption
2940  * off of irq context.
2941  * Note, that this is called and return with irqs disabled. This will
2942  * protect us against recursive calling from irq.
2943  */
2944 asmlinkage __visible void __sched preempt_schedule_irq(void)
2945 {
2946         enum ctx_state prev_state;
2947
2948         /* Catch callers which need to be fixed */
2949         BUG_ON(preempt_count() || !irqs_disabled());
2950
2951         prev_state = exception_enter();
2952
2953         do {
2954                 __preempt_count_add(PREEMPT_ACTIVE);
2955                 local_irq_enable();
2956                 __schedule();
2957                 local_irq_disable();
2958                 __preempt_count_sub(PREEMPT_ACTIVE);
2959
2960                 /*
2961                  * Check again in case we missed a preemption opportunity
2962                  * between schedule and now.
2963                  */
2964                 barrier();
2965         } while (need_resched());
2966
2967         exception_exit(prev_state);
2968 }
2969
2970 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2971                           void *key)
2972 {
2973         return try_to_wake_up(curr->private, mode, wake_flags);
2974 }
2975 EXPORT_SYMBOL(default_wake_function);
2976
2977 #ifdef CONFIG_RT_MUTEXES
2978
2979 /*
2980  * rt_mutex_setprio - set the current priority of a task
2981  * @p: task
2982  * @prio: prio value (kernel-internal form)
2983  *
2984  * This function changes the 'effective' priority of a task. It does
2985  * not touch ->normal_prio like __setscheduler().
2986  *
2987  * Used by the rt_mutex code to implement priority inheritance
2988  * logic. Call site only calls if the priority of the task changed.
2989  */
2990 void rt_mutex_setprio(struct task_struct *p, int prio)
2991 {
2992         int oldprio, queued, running, enqueue_flag = 0;
2993         struct rq *rq;
2994         const struct sched_class *prev_class;
2995
2996         BUG_ON(prio > MAX_PRIO);
2997
2998         rq = __task_rq_lock(p);
2999
3000         /*
3001          * Idle task boosting is a nono in general. There is one
3002          * exception, when PREEMPT_RT and NOHZ is active:
3003          *
3004          * The idle task calls get_next_timer_interrupt() and holds
3005          * the timer wheel base->lock on the CPU and another CPU wants
3006          * to access the timer (probably to cancel it). We can safely
3007          * ignore the boosting request, as the idle CPU runs this code
3008          * with interrupts disabled and will complete the lock
3009          * protected section without being interrupted. So there is no
3010          * real need to boost.
3011          */
3012         if (unlikely(p == rq->idle)) {
3013                 WARN_ON(p != rq->curr);
3014                 WARN_ON(p->pi_blocked_on);
3015                 goto out_unlock;
3016         }
3017
3018         trace_sched_pi_setprio(p, prio);
3019         oldprio = p->prio;
3020         prev_class = p->sched_class;
3021         queued = task_on_rq_queued(p);
3022         running = task_current(rq, p);
3023         if (queued)
3024                 dequeue_task(rq, p, 0);
3025         if (running)
3026                 put_prev_task(rq, p);
3027
3028         /*
3029          * Boosting condition are:
3030          * 1. -rt task is running and holds mutex A
3031          *      --> -dl task blocks on mutex A
3032          *
3033          * 2. -dl task is running and holds mutex A
3034          *      --> -dl task blocks on mutex A and could preempt the
3035          *          running task
3036          */
3037         if (dl_prio(prio)) {
3038                 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3039                 if (!dl_prio(p->normal_prio) ||
3040                     (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3041                         p->dl.dl_boosted = 1;
3042                         p->dl.dl_throttled = 0;
3043                         enqueue_flag = ENQUEUE_REPLENISH;
3044                 } else
3045                         p->dl.dl_boosted = 0;
3046                 p->sched_class = &dl_sched_class;
3047         } else if (rt_prio(prio)) {
3048                 if (dl_prio(oldprio))
3049                         p->dl.dl_boosted = 0;
3050                 if (oldprio < prio)
3051                         enqueue_flag = ENQUEUE_HEAD;
3052                 p->sched_class = &rt_sched_class;
3053         } else {
3054                 if (dl_prio(oldprio))
3055                         p->dl.dl_boosted = 0;
3056                 if (rt_prio(oldprio))
3057                         p->rt.timeout = 0;
3058                 p->sched_class = &fair_sched_class;
3059         }
3060
3061         p->prio = prio;
3062
3063         if (running)
3064                 p->sched_class->set_curr_task(rq);
3065         if (queued)
3066                 enqueue_task(rq, p, enqueue_flag);
3067
3068         check_class_changed(rq, p, prev_class, oldprio);
3069 out_unlock:
3070         __task_rq_unlock(rq);
3071 }
3072 #endif
3073
3074 void set_user_nice(struct task_struct *p, long nice)
3075 {
3076         int old_prio, delta, queued;
3077         unsigned long flags;
3078         struct rq *rq;
3079
3080         if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3081                 return;
3082         /*
3083          * We have to be careful, if called from sys_setpriority(),
3084          * the task might be in the middle of scheduling on another CPU.
3085          */
3086         rq = task_rq_lock(p, &flags);
3087         /*
3088          * The RT priorities are set via sched_setscheduler(), but we still
3089          * allow the 'normal' nice value to be set - but as expected
3090          * it wont have any effect on scheduling until the task is
3091          * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3092          */
3093         if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3094                 p->static_prio = NICE_TO_PRIO(nice);
3095                 goto out_unlock;
3096         }
3097         queued = task_on_rq_queued(p);
3098         if (queued)
3099                 dequeue_task(rq, p, 0);
3100
3101         p->static_prio = NICE_TO_PRIO(nice);
3102         set_load_weight(p);
3103         old_prio = p->prio;
3104         p->prio = effective_prio(p);
3105         delta = p->prio - old_prio;
3106
3107         if (queued) {
3108                 enqueue_task(rq, p, 0);
3109                 /*
3110                  * If the task increased its priority or is running and
3111                  * lowered its priority, then reschedule its CPU:
3112                  */
3113                 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3114                         resched_curr(rq);
3115         }
3116 out_unlock:
3117         task_rq_unlock(rq, p, &flags);
3118 }
3119 EXPORT_SYMBOL(set_user_nice);
3120
3121 /*
3122  * can_nice - check if a task can reduce its nice value
3123  * @p: task
3124  * @nice: nice value
3125  */
3126 int can_nice(const struct task_struct *p, const int nice)
3127 {
3128         /* convert nice value [19,-20] to rlimit style value [1,40] */
3129         int nice_rlim = nice_to_rlimit(nice);
3130
3131         return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3132                 capable(CAP_SYS_NICE));
3133 }
3134
3135 #ifdef __ARCH_WANT_SYS_NICE
3136
3137 /*
3138  * sys_nice - change the priority of the current process.
3139  * @increment: priority increment
3140  *
3141  * sys_setpriority is a more generic, but much slower function that
3142  * does similar things.
3143  */
3144 SYSCALL_DEFINE1(nice, int, increment)
3145 {
3146         long nice, retval;
3147
3148         /*
3149          * Setpriority might change our priority at the same moment.
3150          * We don't have to worry. Conceptually one call occurs first
3151          * and we have a single winner.
3152          */
3153         increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3154         nice = task_nice(current) + increment;
3155
3156         nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3157         if (increment < 0 && !can_nice(current, nice))
3158                 return -EPERM;
3159
3160         retval = security_task_setnice(current, nice);
3161         if (retval)
3162                 return retval;
3163
3164         set_user_nice(current, nice);
3165         return 0;
3166 }
3167
3168 #endif
3169
3170 /**
3171  * task_prio - return the priority value of a given task.
3172  * @p: the task in question.
3173  *
3174  * Return: The priority value as seen by users in /proc.
3175  * RT tasks are offset by -200. Normal tasks are centered
3176  * around 0, value goes from -16 to +15.
3177  */
3178 int task_prio(const struct task_struct *p)
3179 {
3180         return p->prio - MAX_RT_PRIO;
3181 }
3182
3183 /**
3184  * idle_cpu - is a given cpu idle currently?
3185  * @cpu: the processor in question.
3186  *
3187  * Return: 1 if the CPU is currently idle. 0 otherwise.
3188  */
3189 int idle_cpu(int cpu)
3190 {
3191         struct rq *rq = cpu_rq(cpu);
3192
3193         if (rq->curr != rq->idle)
3194                 return 0;
3195
3196         if (rq->nr_running)
3197                 return 0;
3198
3199 #ifdef CONFIG_SMP
3200         if (!llist_empty(&rq->wake_list))
3201                 return 0;
3202 #endif
3203
3204         return 1;
3205 }
3206
3207 /**
3208  * idle_task - return the idle task for a given cpu.
3209  * @cpu: the processor in question.
3210  *
3211  * Return: The idle task for the cpu @cpu.
3212  */
3213 struct task_struct *idle_task(int cpu)
3214 {
3215         return cpu_rq(cpu)->idle;
3216 }
3217
3218 /**
3219  * find_process_by_pid - find a process with a matching PID value.
3220  * @pid: the pid in question.
3221  *
3222  * The task of @pid, if found. %NULL otherwise.
3223  */
3224 static struct task_struct *find_process_by_pid(pid_t pid)
3225 {
3226         return pid ? find_task_by_vpid(pid) : current;
3227 }
3228
3229 /*
3230  * This function initializes the sched_dl_entity of a newly becoming
3231  * SCHED_DEADLINE task.
3232  *
3233  * Only the static values are considered here, the actual runtime and the
3234  * absolute deadline will be properly calculated when the task is enqueued
3235  * for the first time with its new policy.
3236  */
3237 static void
3238 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3239 {
3240         struct sched_dl_entity *dl_se = &p->dl;
3241
3242         dl_se->dl_runtime = attr->sched_runtime;
3243         dl_se->dl_deadline = attr->sched_deadline;
3244         dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3245         dl_se->flags = attr->sched_flags;
3246         dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3247
3248         /*
3249          * Changing the parameters of a task is 'tricky' and we're not doing
3250          * the correct thing -- also see task_dead_dl() and switched_from_dl().
3251          *
3252          * What we SHOULD do is delay the bandwidth release until the 0-lag
3253          * point. This would include retaining the task_struct until that time
3254          * and change dl_overflow() to not immediately decrement the current
3255          * amount.
3256          *
3257          * Instead we retain the current runtime/deadline and let the new
3258          * parameters take effect after the current reservation period lapses.
3259          * This is safe (albeit pessimistic) because the 0-lag point is always
3260          * before the current scheduling deadline.
3261          *
3262          * We can still have temporary overloads because we do not delay the
3263          * change in bandwidth until that time; so admission control is
3264          * not on the safe side. It does however guarantee tasks will never
3265          * consume more than promised.
3266          */
3267 }
3268
3269 /*
3270  * sched_setparam() passes in -1 for its policy, to let the functions
3271  * it calls know not to change it.
3272  */
3273 #define SETPARAM_POLICY -1
3274
3275 static void __setscheduler_params(struct task_struct *p,
3276                 const struct sched_attr *attr)
3277 {
3278         int policy = attr->sched_policy;
3279
3280         if (policy == SETPARAM_POLICY)
3281                 policy = p->policy;
3282
3283         p->policy = policy;
3284
3285         if (dl_policy(policy))
3286                 __setparam_dl(p, attr);
3287         else if (fair_policy(policy))
3288                 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3289
3290         /*
3291          * __sched_setscheduler() ensures attr->sched_priority == 0 when
3292          * !rt_policy. Always setting this ensures that things like
3293          * getparam()/getattr() don't report silly values for !rt tasks.
3294          */
3295         p->rt_priority = attr->sched_priority;
3296         p->normal_prio = normal_prio(p);
3297         set_load_weight(p);
3298 }
3299
3300 /* Actually do priority change: must hold pi & rq lock. */
3301 static void __setscheduler(struct rq *rq, struct task_struct *p,
3302                            const struct sched_attr *attr)
3303 {
3304         __setscheduler_params(p, attr);
3305
3306         /*
3307          * If we get here, there was no pi waiters boosting the
3308          * task. It is safe to use the normal prio.
3309          */
3310         p->prio = normal_prio(p);
3311
3312         if (dl_prio(p->prio))
3313                 p->sched_class = &dl_sched_class;
3314         else if (rt_prio(p->prio))
3315                 p->sched_class = &rt_sched_class;
3316         else
3317                 p->sched_class = &fair_sched_class;
3318 }
3319
3320 static void
3321 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3322 {
3323         struct sched_dl_entity *dl_se = &p->dl;
3324
3325         attr->sched_priority = p->rt_priority;
3326         attr->sched_runtime = dl_se->dl_runtime;
3327         attr->sched_deadline = dl_se->dl_deadline;
3328         attr->sched_period = dl_se->dl_period;
3329         attr->sched_flags = dl_se->flags;
3330 }
3331
3332 /*
3333  * This function validates the new parameters of a -deadline task.
3334  * We ask for the deadline not being zero, and greater or equal
3335  * than the runtime, as well as the period of being zero or
3336  * greater than deadline. Furthermore, we have to be sure that
3337  * user parameters are above the internal resolution of 1us (we
3338  * check sched_runtime only since it is always the smaller one) and
3339  * below 2^63 ns (we have to check both sched_deadline and
3340  * sched_period, as the latter can be zero).
3341  */
3342 static bool
3343 __checkparam_dl(const struct sched_attr *attr)
3344 {
3345         /* deadline != 0 */
3346         if (attr->sched_deadline == 0)
3347                 return false;
3348
3349         /*
3350          * Since we truncate DL_SCALE bits, make sure we're at least
3351          * that big.
3352          */
3353         if (attr->sched_runtime < (1ULL << DL_SCALE))
3354                 return false;
3355
3356         /*
3357          * Since we use the MSB for wrap-around and sign issues, make
3358          * sure it's not set (mind that period can be equal to zero).
3359          */
3360         if (attr->sched_deadline & (1ULL << 63) ||
3361             attr->sched_period & (1ULL << 63))
3362                 return false;
3363
3364         /* runtime <= deadline <= period (if period != 0) */
3365         if ((attr->sched_period != 0 &&
3366              attr->sched_period < attr->sched_deadline) ||
3367             attr->sched_deadline < attr->sched_runtime)
3368                 return false;
3369
3370         return true;
3371 }
3372
3373 /*
3374  * check the target process has a UID that matches the current process's
3375  */
3376 static bool check_same_owner(struct task_struct *p)
3377 {
3378         const struct cred *cred = current_cred(), *pcred;
3379         bool match;
3380
3381         rcu_read_lock();
3382         pcred = __task_cred(p);
3383         match = (uid_eq(cred->euid, pcred->euid) ||
3384                  uid_eq(cred->euid, pcred->uid));
3385         rcu_read_unlock();
3386         return match;
3387 }
3388
3389 static bool dl_param_changed(struct task_struct *p,
3390                 const struct sched_attr *attr)
3391 {
3392         struct sched_dl_entity *dl_se = &p->dl;
3393
3394         if (dl_se->dl_runtime != attr->sched_runtime ||
3395                 dl_se->dl_deadline != attr->sched_deadline ||
3396                 dl_se->dl_period != attr->sched_period ||
3397                 dl_se->flags != attr->sched_flags)
3398                 return true;
3399
3400         return false;
3401 }
3402
3403 static int __sched_setscheduler(struct task_struct *p,
3404                                 const struct sched_attr *attr,
3405                                 bool user)
3406 {
3407         int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3408                       MAX_RT_PRIO - 1 - attr->sched_priority;
3409         int retval, oldprio, oldpolicy = -1, queued, running;
3410         int policy = attr->sched_policy;
3411         unsigned long flags;
3412         const struct sched_class *prev_class;
3413         struct rq *rq;
3414         int reset_on_fork;
3415
3416         /* may grab non-irq protected spin_locks */
3417         BUG_ON(in_interrupt());
3418 recheck:
3419         /* double check policy once rq lock held */
3420         if (policy < 0) {
3421                 reset_on_fork = p->sched_reset_on_fork;
3422                 policy = oldpolicy = p->policy;
3423         } else {
3424                 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3425
3426                 if (policy != SCHED_DEADLINE &&
3427                                 policy != SCHED_FIFO && policy != SCHED_RR &&
3428                                 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3429                                 policy != SCHED_IDLE)
3430                         return -EINVAL;
3431         }
3432
3433         if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3434                 return -EINVAL;
3435
3436         /*
3437          * Valid priorities for SCHED_FIFO and SCHED_RR are
3438          * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3439          * SCHED_BATCH and SCHED_IDLE is 0.
3440          */
3441         if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3442             (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3443                 return -EINVAL;
3444         if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3445             (rt_policy(policy) != (attr->sched_priority != 0)))
3446                 return -EINVAL;
3447
3448         /*
3449          * Allow unprivileged RT tasks to decrease priority:
3450          */
3451         if (user && !capable(CAP_SYS_NICE)) {
3452                 if (fair_policy(policy)) {
3453                         if (attr->sched_nice < task_nice(p) &&
3454                             !can_nice(p, attr->sched_nice))
3455                                 return -EPERM;
3456                 }
3457
3458                 if (rt_policy(policy)) {
3459                         unsigned long rlim_rtprio =
3460                                         task_rlimit(p, RLIMIT_RTPRIO);
3461
3462                         /* can't set/change the rt policy */
3463                         if (policy != p->policy && !rlim_rtprio)
3464                                 return -EPERM;
3465
3466                         /* can't increase priority */
3467                         if (attr->sched_priority > p->rt_priority &&
3468                             attr->sched_priority > rlim_rtprio)
3469                                 return -EPERM;
3470                 }
3471
3472                  /*
3473                   * Can't set/change SCHED_DEADLINE policy at all for now
3474                   * (safest behavior); in the future we would like to allow
3475                   * unprivileged DL tasks to increase their relative deadline
3476                   * or reduce their runtime (both ways reducing utilization)
3477                   */
3478                 if (dl_policy(policy))
3479                         return -EPERM;
3480
3481                 /*
3482                  * Treat SCHED_IDLE as nice 20. Only allow a switch to
3483                  * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3484                  */
3485                 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3486                         if (!can_nice(p, task_nice(p)))
3487                                 return -EPERM;
3488                 }
3489
3490                 /* can't change other user's priorities */
3491                 if (!check_same_owner(p))
3492                         return -EPERM;
3493
3494                 /* Normal users shall not reset the sched_reset_on_fork flag */
3495                 if (p->sched_reset_on_fork && !reset_on_fork)
3496                         return -EPERM;
3497         }
3498
3499         if (user) {
3500                 retval = security_task_setscheduler(p);
3501                 if (retval)
3502                         return retval;
3503         }
3504
3505         /*
3506          * make sure no PI-waiters arrive (or leave) while we are
3507          * changing the priority of the task:
3508          *
3509          * To be able to change p->policy safely, the appropriate
3510          * runqueue lock must be held.
3511          */
3512         rq = task_rq_lock(p, &flags);
3513
3514         /*
3515          * Changing the policy of the stop threads its a very bad idea
3516          */
3517         if (p == rq->stop) {
3518                 task_rq_unlock(rq, p, &flags);
3519                 return -EINVAL;
3520         }
3521
3522         /*
3523          * If not changing anything there's no need to proceed further,
3524          * but store a possible modification of reset_on_fork.
3525          */
3526         if (unlikely(policy == p->policy)) {
3527                 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3528                         goto change;
3529                 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3530                         goto change;
3531                 if (dl_policy(policy) && dl_param_changed(p, attr))
3532                         goto change;
3533
3534                 p->sched_reset_on_fork = reset_on_fork;
3535                 task_rq_unlock(rq, p, &flags);
3536                 return 0;
3537         }
3538 change:
3539
3540         if (user) {
3541 #ifdef CONFIG_RT_GROUP_SCHED
3542                 /*
3543                  * Do not allow realtime tasks into groups that have no runtime
3544                  * assigned.
3545                  */
3546                 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3547                                 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3548                                 !task_group_is_autogroup(task_group(p))) {
3549                         task_rq_unlock(rq, p, &flags);
3550                         return -EPERM;
3551                 }
3552 #endif
3553 #ifdef CONFIG_SMP
3554                 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3555                         cpumask_t *span = rq->rd->span;
3556
3557                         /*
3558                          * Don't allow tasks with an affinity mask smaller than
3559                          * the entire root_domain to become SCHED_DEADLINE. We
3560                          * will also fail if there's no bandwidth available.
3561                          */
3562                         if (!cpumask_subset(span, &p->cpus_allowed) ||
3563                             rq->rd->dl_bw.bw == 0) {
3564                                 task_rq_unlock(rq, p, &flags);
3565                                 return -EPERM;
3566                         }
3567                 }
3568 #endif
3569         }
3570
3571         /* recheck policy now with rq lock held */
3572         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3573                 policy = oldpolicy = -1;
3574                 task_rq_unlock(rq, p, &flags);
3575                 goto recheck;
3576         }
3577
3578         /*
3579          * If setscheduling to SCHED_DEADLINE (or changing the parameters
3580          * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3581          * is available.
3582          */
3583         if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3584                 task_rq_unlock(rq, p, &flags);
3585                 return -EBUSY;
3586         }
3587
3588         p->sched_reset_on_fork = reset_on_fork;
3589         oldprio = p->prio;
3590
3591         /*
3592          * Special case for priority boosted tasks.
3593          *
3594          * If the new priority is lower or equal (user space view)
3595          * than the current (boosted) priority, we just store the new
3596          * normal parameters and do not touch the scheduler class and
3597          * the runqueue. This will be done when the task deboost
3598          * itself.
3599          */
3600         if (rt_mutex_check_prio(p, newprio)) {
3601                 __setscheduler_params(p, attr);
3602                 task_rq_unlock(rq, p, &flags);
3603                 return 0;
3604         }
3605
3606         queued = task_on_rq_queued(p);
3607         running = task_current(rq, p);
3608         if (queued)
3609                 dequeue_task(rq, p, 0);
3610         if (running)
3611                 put_prev_task(rq, p);
3612
3613         prev_class = p->sched_class;
3614         __setscheduler(rq, p, attr);
3615
3616         if (running)
3617                 p->sched_class->set_curr_task(rq);
3618         if (queued) {
3619                 /*
3620                  * We enqueue to tail when the priority of a task is
3621                  * increased (user space view).
3622                  */
3623                 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3624         }
3625
3626         check_class_changed(rq, p, prev_class, oldprio);
3627         task_rq_unlock(rq, p, &flags);
3628
3629         rt_mutex_adjust_pi(p);
3630
3631         return 0;
3632 }
3633
3634 static int _sched_setscheduler(struct task_struct *p, int policy,
3635                                const struct sched_param *param, bool check)
3636 {
3637         struct sched_attr attr = {
3638                 .sched_policy   = policy,
3639                 .sched_priority = param->sched_priority,
3640                 .sched_nice     = PRIO_TO_NICE(p->static_prio),
3641         };
3642
3643         /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3644         if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3645                 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3646                 policy &= ~SCHED_RESET_ON_FORK;
3647                 attr.sched_policy = policy;
3648         }
3649
3650         return __sched_setscheduler(p, &attr, check);
3651 }
3652 /**
3653  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3654  * @p: the task in question.
3655  * @policy: new policy.
3656  * @param: structure containing the new RT priority.
3657  *
3658  * Return: 0 on success. An error code otherwise.
3659  *
3660  * NOTE that the task may be already dead.
3661  */
3662 int sched_setscheduler(struct task_struct *p, int policy,
3663                        const struct sched_param *param)
3664 {
3665         return _sched_setscheduler(p, policy, param, true);
3666 }
3667 EXPORT_SYMBOL_GPL(sched_setscheduler);
3668
3669 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3670 {
3671         return __sched_setscheduler(p, attr, true);
3672 }
3673 EXPORT_SYMBOL_GPL(sched_setattr);
3674
3675 /**
3676  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3677  * @p: the task in question.
3678  * @policy: new policy.
3679  * @param: structure containing the new RT priority.
3680  *
3681  * Just like sched_setscheduler, only don't bother checking if the
3682  * current context has permission.  For example, this is needed in
3683  * stop_machine(): we create temporary high priority worker threads,
3684  * but our caller might not have that capability.
3685  *
3686  * Return: 0 on success. An error code otherwise.
3687  */
3688 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3689                                const struct sched_param *param)
3690 {
3691         return _sched_setscheduler(p, policy, param, false);
3692 }
3693
3694 static int
3695 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3696 {
3697         struct sched_param lparam;
3698         struct task_struct *p;
3699         int retval;
3700
3701         if (!param || pid < 0)
3702                 return -EINVAL;
3703         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3704                 return -EFAULT;
3705
3706         rcu_read_lock();
3707         retval = -ESRCH;
3708         p = find_process_by_pid(pid);
3709         if (p != NULL)
3710                 retval = sched_setscheduler(p, policy, &lparam);
3711         rcu_read_unlock();
3712
3713         return retval;
3714 }
3715
3716 /*
3717  * Mimics kernel/events/core.c perf_copy_attr().
3718  */
3719 static int sched_copy_attr(struct sched_attr __user *uattr,
3720                            struct sched_attr *attr)
3721 {
3722         u32 size;
3723         int ret;
3724
3725         if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3726                 return -EFAULT;
3727
3728         /*
3729          * zero the full structure, so that a short copy will be nice.
3730          */
3731         memset(attr, 0, sizeof(*attr));
3732
3733         ret = get_user(size, &uattr->size);
3734         if (ret)
3735                 return ret;
3736
3737         if (size > PAGE_SIZE)   /* silly large */
3738                 goto err_size;
3739
3740         if (!size)              /* abi compat */
3741                 size = SCHED_ATTR_SIZE_VER0;
3742
3743         if (size < SCHED_ATTR_SIZE_VER0)
3744                 goto err_size;
3745
3746         /*
3747          * If we're handed a bigger struct than we know of,
3748          * ensure all the unknown bits are 0 - i.e. new
3749          * user-space does not rely on any kernel feature
3750          * extensions we dont know about yet.
3751          */
3752         if (size > sizeof(*attr)) {
3753                 unsigned char __user *addr;
3754                 unsigned char __user *end;
3755                 unsigned char val;
3756
3757                 addr = (void __user *)uattr + sizeof(*attr);
3758                 end  = (void __user *)uattr + size;
3759
3760                 for (; addr < end; addr++) {
3761                         ret = get_user(val, addr);
3762                         if (ret)
3763                                 return ret;
3764                         if (val)
3765                                 goto err_size;
3766                 }
3767                 size = sizeof(*attr);
3768         }
3769
3770         ret = copy_from_user(attr, uattr, size);
3771         if (ret)
3772                 return -EFAULT;
3773
3774         /*
3775          * XXX: do we want to be lenient like existing syscalls; or do we want
3776          * to be strict and return an error on out-of-bounds values?
3777          */
3778         attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3779
3780         return 0;
3781
3782 err_size:
3783         put_user(sizeof(*attr), &uattr->size);
3784         return -E2BIG;
3785 }
3786
3787 /**
3788  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3789  * @pid: the pid in question.
3790  * @policy: new policy.
3791  * @param: structure containing the new RT priority.
3792  *
3793  * Return: 0 on success. An error code otherwise.
3794  */
3795 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3796                 struct sched_param __user *, param)
3797 {
3798         /* negative values for policy are not valid */
3799         if (policy < 0)
3800                 return -EINVAL;
3801
3802         return do_sched_setscheduler(pid, policy, param);
3803 }
3804
3805 /**
3806  * sys_sched_setparam - set/change the RT priority of a thread
3807  * @pid: the pid in question.
3808  * @param: structure containing the new RT priority.
3809  *
3810  * Return: 0 on success. An error code otherwise.
3811  */
3812 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3813 {
3814         return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3815 }
3816
3817 /**
3818  * sys_sched_setattr - same as above, but with extended sched_attr
3819  * @pid: the pid in question.
3820  * @uattr: structure containing the extended parameters.
3821  * @flags: for future extension.
3822  */
3823 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3824                                unsigned int, flags)
3825 {
3826         struct sched_attr attr;
3827         struct task_struct *p;
3828         int retval;
3829
3830         if (!uattr || pid < 0 || flags)
3831                 return -EINVAL;
3832
3833         retval = sched_copy_attr(uattr, &attr);
3834         if (retval)
3835                 return retval;
3836
3837         if ((int)attr.sched_policy < 0)
3838                 return -EINVAL;
3839
3840         rcu_read_lock();
3841         retval = -ESRCH;
3842         p = find_process_by_pid(pid);
3843         if (p != NULL)
3844                 retval = sched_setattr(p, &attr);
3845         rcu_read_unlock();
3846
3847         return retval;
3848 }
3849
3850 /**
3851  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3852  * @pid: the pid in question.
3853  *
3854  * Return: On success, the policy of the thread. Otherwise, a negative error
3855  * code.
3856  */
3857 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3858 {
3859         struct task_struct *p;
3860         int retval;
3861
3862         if (pid < 0)
3863                 return -EINVAL;
3864
3865         retval = -ESRCH;
3866         rcu_read_lock();
3867         p = find_process_by_pid(pid);
3868         if (p) {
3869                 retval = security_task_getscheduler(p);
3870                 if (!retval)
3871                         retval = p->policy
3872                                 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3873         }
3874         rcu_read_unlock();
3875         return retval;
3876 }
3877
3878 /**
3879  * sys_sched_getparam - get the RT priority of a thread
3880  * @pid: the pid in question.
3881  * @param: structure containing the RT priority.
3882  *
3883  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3884  * code.
3885  */
3886 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3887 {
3888         struct sched_param lp = { .sched_priority = 0 };
3889         struct task_struct *p;
3890         int retval;
3891
3892         if (!param || pid < 0)
3893                 return -EINVAL;
3894
3895         rcu_read_lock();
3896         p = find_process_by_pid(pid);
3897         retval = -ESRCH;
3898         if (!p)
3899                 goto out_unlock;
3900
3901         retval = security_task_getscheduler(p);
3902         if (retval)
3903                 goto out_unlock;
3904
3905         if (task_has_rt_policy(p))
3906                 lp.sched_priority = p->rt_priority;
3907         rcu_read_unlock();
3908
3909         /*
3910          * This one might sleep, we cannot do it with a spinlock held ...
3911          */
3912         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3913
3914         return retval;
3915
3916 out_unlock:
3917         rcu_read_unlock();
3918         return retval;
3919 }
3920
3921 static int sched_read_attr(struct sched_attr __user *uattr,
3922                            struct sched_attr *attr,
3923                            unsigned int usize)
3924 {
3925         int ret;
3926
3927         if (!access_ok(VERIFY_WRITE, uattr, usize))
3928                 return -EFAULT;
3929
3930         /*
3931          * If we're handed a smaller struct than we know of,
3932          * ensure all the unknown bits are 0 - i.e. old
3933          * user-space does not get uncomplete information.
3934          */
3935         if (usize < sizeof(*attr)) {
3936                 unsigned char *addr;
3937                 unsigned char *end;
3938
3939                 addr = (void *)attr + usize;
3940                 end  = (void *)attr + sizeof(*attr);
3941
3942                 for (; addr < end; addr++) {
3943                         if (*addr)
3944                                 return -EFBIG;
3945                 }
3946
3947                 attr->size = usize;
3948         }
3949
3950         ret = copy_to_user(uattr, attr, attr->size);
3951         if (ret)
3952                 return -EFAULT;
3953
3954         return 0;
3955 }
3956
3957 /**
3958  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3959  * @pid: the pid in question.
3960  * @uattr: structure containing the extended parameters.
3961  * @size: sizeof(attr) for fwd/bwd comp.
3962  * @flags: for future extension.
3963  */
3964 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3965                 unsigned int, size, unsigned int, flags)
3966 {
3967         struct sched_attr attr = {
3968                 .size = sizeof(struct sched_attr),
3969         };
3970         struct task_struct *p;
3971         int retval;
3972
3973         if (!uattr || pid < 0 || size > PAGE_SIZE ||
3974             size < SCHED_ATTR_SIZE_VER0 || flags)
3975                 return -EINVAL;
3976
3977         rcu_read_lock();
3978         p = find_process_by_pid(pid);
3979         retval = -ESRCH;
3980         if (!p)
3981                 goto out_unlock;
3982
3983         retval = security_task_getscheduler(p);
3984         if (retval)
3985                 goto out_unlock;
3986
3987         attr.sched_policy = p->policy;
3988         if (p->sched_reset_on_fork)
3989                 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3990         if (task_has_dl_policy(p))
3991                 __getparam_dl(p, &attr);
3992         else if (task_has_rt_policy(p))
3993                 attr.sched_priority = p->rt_priority;
3994         else
3995                 attr.sched_nice = task_nice(p);
3996
3997         rcu_read_unlock();
3998
3999         retval = sched_read_attr(uattr, &attr, size);
4000         return retval;
4001
4002 out_unlock:
4003         rcu_read_unlock();
4004         return retval;
4005 }
4006
4007 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4008 {
4009         cpumask_var_t cpus_allowed, new_mask;
4010         struct task_struct *p;
4011         int retval;
4012
4013         rcu_read_lock();
4014
4015         p = find_process_by_pid(pid);
4016         if (!p) {
4017                 rcu_read_unlock();
4018                 return -ESRCH;
4019         }
4020
4021         /* Prevent p going away */
4022         get_task_struct(p);
4023         rcu_read_unlock();
4024
4025         if (p->flags & PF_NO_SETAFFINITY) {
4026                 retval = -EINVAL;
4027                 goto out_put_task;
4028         }
4029         if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4030                 retval = -ENOMEM;
4031                 goto out_put_task;
4032         }
4033         if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4034                 retval = -ENOMEM;
4035                 goto out_free_cpus_allowed;
4036         }
4037         retval = -EPERM;
4038         if (!check_same_owner(p)) {
4039                 rcu_read_lock();
4040                 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4041                         rcu_read_unlock();
4042                         goto out_free_new_mask;
4043                 }
4044                 rcu_read_unlock();
4045         }
4046
4047         retval = security_task_setscheduler(p);
4048         if (retval)
4049                 goto out_free_new_mask;
4050
4051
4052         cpuset_cpus_allowed(p, cpus_allowed);
4053         cpumask_and(new_mask, in_mask, cpus_allowed);
4054
4055         /*
4056          * Since bandwidth control happens on root_domain basis,
4057          * if admission test is enabled, we only admit -deadline
4058          * tasks allowed to run on all the CPUs in the task's
4059          * root_domain.
4060          */
4061 #ifdef CONFIG_SMP
4062         if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4063                 rcu_read_lock();
4064                 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4065                         retval = -EBUSY;
4066                         rcu_read_unlock();
4067                         goto out_free_new_mask;
4068                 }
4069                 rcu_read_unlock();
4070         }
4071 #endif
4072 again:
4073         retval = set_cpus_allowed_ptr(p, new_mask);
4074
4075         if (!retval) {
4076                 cpuset_cpus_allowed(p, cpus_allowed);
4077                 if (!cpumask_subset(new_mask, cpus_allowed)) {
4078                         /*
4079                          * We must have raced with a concurrent cpuset
4080                          * update. Just reset the cpus_allowed to the
4081                          * cpuset's cpus_allowed
4082                          */
4083                         cpumask_copy(new_mask, cpus_allowed);
4084                         goto again;
4085                 }
4086         }
4087 out_free_new_mask:
4088         free_cpumask_var(new_mask);
4089 out_free_cpus_allowed:
4090         free_cpumask_var(cpus_allowed);
4091 out_put_task:
4092         put_task_struct(p);
4093         return retval;
4094 }
4095
4096 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4097                              struct cpumask *new_mask)
4098 {
4099         if (len < cpumask_size())
4100                 cpumask_clear(new_mask);
4101         else if (len > cpumask_size())
4102                 len = cpumask_size();
4103
4104         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4105 }
4106
4107 /**
4108  * sys_sched_setaffinity - set the cpu affinity of a process
4109  * @pid: pid of the process
4110  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4111  * @user_mask_ptr: user-space pointer to the new cpu mask
4112  *
4113  * Return: 0 on success. An error code otherwise.
4114  */
4115 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4116                 unsigned long __user *, user_mask_ptr)
4117 {
4118         cpumask_var_t new_mask;
4119         int retval;
4120
4121         if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4122                 return -ENOMEM;
4123
4124         retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4125         if (retval == 0)
4126                 retval = sched_setaffinity(pid, new_mask);
4127         free_cpumask_var(new_mask);
4128         return retval;
4129 }
4130
4131 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4132 {
4133         struct task_struct *p;
4134         unsigned long flags;
4135         int retval;
4136
4137         rcu_read_lock();
4138
4139         retval = -ESRCH;
4140         p = find_process_by_pid(pid);
4141         if (!p)
4142                 goto out_unlock;
4143
4144         retval = security_task_getscheduler(p);
4145         if (retval)
4146                 goto out_unlock;
4147
4148         raw_spin_lock_irqsave(&p->pi_lock, flags);
4149         cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4150         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4151
4152 out_unlock:
4153         rcu_read_unlock();
4154
4155         return retval;
4156 }
4157
4158 /**
4159  * sys_sched_getaffinity - get the cpu affinity of a process
4160  * @pid: pid of the process
4161  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4162  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4163  *
4164  * Return: 0 on success. An error code otherwise.
4165  */
4166 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4167                 unsigned long __user *, user_mask_ptr)
4168 {
4169         int ret;
4170         cpumask_var_t mask;
4171
4172         if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4173                 return -EINVAL;
4174         if (len & (sizeof(unsigned long)-1))
4175                 return -EINVAL;
4176
4177         if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4178                 return -ENOMEM;
4179
4180         ret = sched_getaffinity(pid, mask);
4181         if (ret == 0) {
4182                 size_t retlen = min_t(size_t, len, cpumask_size());
4183
4184                 if (copy_to_user(user_mask_ptr, mask, retlen))
4185                         ret = -EFAULT;
4186                 else
4187                         ret = retlen;
4188         }
4189         free_cpumask_var(mask);
4190
4191         return ret;
4192 }
4193
4194 /**
4195  * sys_sched_yield - yield the current processor to other threads.
4196  *
4197  * This function yields the current CPU to other tasks. If there are no
4198  * other threads running on this CPU then this function will return.
4199  *
4200  * Return: 0.
4201  */
4202 SYSCALL_DEFINE0(sched_yield)
4203 {
4204         struct rq *rq = this_rq_lock();
4205
4206         schedstat_inc(rq, yld_count);
4207         current->sched_class->yield_task(rq);
4208
4209         /*
4210          * Since we are going to call schedule() anyway, there's
4211          * no need to preempt or enable interrupts:
4212          */
4213         __release(rq->lock);
4214         spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4215         do_raw_spin_unlock(&rq->lock);
4216         sched_preempt_enable_no_resched();
4217
4218         schedule();
4219
4220         return 0;
4221 }
4222
4223 int __sched _cond_resched(void)
4224 {
4225         if (should_resched()) {
4226                 preempt_schedule_common();
4227                 return 1;
4228         }
4229         return 0;
4230 }
4231 EXPORT_SYMBOL(_cond_resched);
4232
4233 /*
4234  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4235  * call schedule, and on return reacquire the lock.
4236  *
4237  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4238  * operations here to prevent schedule() from being called twice (once via
4239  * spin_unlock(), once by hand).
4240  */
4241 int __cond_resched_lock(spinlock_t *lock)
4242 {
4243         int resched = should_resched();
4244         int ret = 0;
4245
4246         lockdep_assert_held(lock);
4247
4248         if (spin_needbreak(lock) || resched) {
4249                 spin_unlock(lock);
4250                 if (resched)
4251                         preempt_schedule_common();
4252                 else
4253                         cpu_relax();
4254                 ret = 1;
4255                 spin_lock(lock);
4256         }
4257         return ret;
4258 }
4259 EXPORT_SYMBOL(__cond_resched_lock);
4260
4261 int __sched __cond_resched_softirq(void)
4262 {
4263         BUG_ON(!in_softirq());
4264
4265         if (should_resched()) {
4266                 local_bh_enable();
4267                 preempt_schedule_common();
4268                 local_bh_disable();
4269                 return 1;
4270         }
4271         return 0;
4272 }
4273 EXPORT_SYMBOL(__cond_resched_softirq);
4274
4275 /**
4276  * yield - yield the current processor to other threads.
4277  *
4278  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4279  *
4280  * The scheduler is at all times free to pick the calling task as the most
4281  * eligible task to run, if removing the yield() call from your code breaks
4282  * it, its already broken.
4283  *
4284  * Typical broken usage is:
4285  *
4286  * while (!event)
4287  *      yield();
4288  *
4289  * where one assumes that yield() will let 'the other' process run that will
4290  * make event true. If the current task is a SCHED_FIFO task that will never
4291  * happen. Never use yield() as a progress guarantee!!
4292  *
4293  * If you want to use yield() to wait for something, use wait_event().
4294  * If you want to use yield() to be 'nice' for others, use cond_resched().
4295  * If you still want to use yield(), do not!
4296  */
4297 void __sched yield(void)
4298 {
4299         set_current_state(TASK_RUNNING);
4300         sys_sched_yield();
4301 }
4302 EXPORT_SYMBOL(yield);
4303
4304 /**
4305  * yield_to - yield the current processor to another thread in
4306  * your thread group, or accelerate that thread toward the
4307  * processor it's on.
4308  * @p: target task
4309  * @preempt: whether task preemption is allowed or not
4310  *
4311  * It's the caller's job to ensure that the target task struct
4312  * can't go away on us before we can do any checks.
4313  *
4314  * Return:
4315  *      true (>0) if we indeed boosted the target task.
4316  *      false (0) if we failed to boost the target.
4317  *      -ESRCH if there's no task to yield to.
4318  */
4319 int __sched yield_to(struct task_struct *p, bool preempt)
4320 {
4321         struct task_struct *curr = current;
4322         struct rq *rq, *p_rq;
4323         unsigned long flags;
4324         int yielded = 0;
4325
4326         local_irq_save(flags);
4327         rq = this_rq();
4328
4329 again:
4330         p_rq = task_rq(p);
4331         /*
4332          * If we're the only runnable task on the rq and target rq also
4333          * has only one task, there's absolutely no point in yielding.
4334          */
4335         if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4336                 yielded = -ESRCH;
4337                 goto out_irq;
4338         }
4339
4340         double_rq_lock(rq, p_rq);
4341         if (task_rq(p) != p_rq) {
4342                 double_rq_unlock(rq, p_rq);
4343                 goto again;
4344         }
4345
4346         if (!curr->sched_class->yield_to_task)
4347                 goto out_unlock;
4348
4349         if (curr->sched_class != p->sched_class)
4350                 goto out_unlock;
4351
4352         if (task_running(p_rq, p) || p->state)
4353                 goto out_unlock;
4354
4355         yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4356         if (yielded) {
4357                 schedstat_inc(rq, yld_count);
4358                 /*
4359                  * Make p's CPU reschedule; pick_next_entity takes care of
4360                  * fairness.
4361                  */
4362                 if (preempt && rq != p_rq)
4363                         resched_curr(p_rq);
4364         }
4365
4366 out_unlock:
4367         double_rq_unlock(rq, p_rq);
4368 out_irq:
4369         local_irq_restore(flags);
4370
4371         if (yielded > 0)
4372                 schedule();
4373
4374         return yielded;
4375 }
4376 EXPORT_SYMBOL_GPL(yield_to);
4377
4378 /*
4379  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4380  * that process accounting knows that this is a task in IO wait state.
4381  */
4382 long __sched io_schedule_timeout(long timeout)
4383 {
4384         int old_iowait = current->in_iowait;
4385         struct rq *rq;
4386         long ret;
4387
4388         current->in_iowait = 1;
4389         if (old_iowait)
4390                 blk_schedule_flush_plug(current);
4391         else
4392                 blk_flush_plug(current);
4393
4394         delayacct_blkio_start();
4395         rq = raw_rq();
4396         atomic_inc(&rq->nr_iowait);
4397         ret = schedule_timeout(timeout);
4398         current->in_iowait = old_iowait;
4399         atomic_dec(&rq->nr_iowait);
4400         delayacct_blkio_end();
4401
4402         return ret;
4403 }
4404 EXPORT_SYMBOL(io_schedule_timeout);
4405
4406 /**
4407  * sys_sched_get_priority_max - return maximum RT priority.
4408  * @policy: scheduling class.
4409  *
4410  * Return: On success, this syscall returns the maximum
4411  * rt_priority that can be used by a given scheduling class.
4412  * On failure, a negative error code is returned.
4413  */
4414 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4415 {
4416         int ret = -EINVAL;
4417
4418         switch (policy) {
4419         case SCHED_FIFO:
4420         case SCHED_RR:
4421                 ret = MAX_USER_RT_PRIO-1;
4422                 break;
4423         case SCHED_DEADLINE:
4424         case SCHED_NORMAL:
4425         case SCHED_BATCH:
4426         case SCHED_IDLE:
4427                 ret = 0;
4428                 break;
4429         }
4430         return ret;
4431 }
4432
4433 /**
4434  * sys_sched_get_priority_min - return minimum RT priority.
4435  * @policy: scheduling class.
4436  *
4437  * Return: On success, this syscall returns the minimum
4438  * rt_priority that can be used by a given scheduling class.
4439  * On failure, a negative error code is returned.
4440  */
4441 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4442 {
4443         int ret = -EINVAL;
4444
4445         switch (policy) {
4446         case SCHED_FIFO:
4447         case SCHED_RR:
4448                 ret = 1;
4449                 break;
4450         case SCHED_DEADLINE:
4451         case SCHED_NORMAL:
4452         case SCHED_BATCH:
4453         case SCHED_IDLE:
4454                 ret = 0;
4455         }
4456         return ret;
4457 }
4458
4459 /**
4460  * sys_sched_rr_get_interval - return the default timeslice of a process.
4461  * @pid: pid of the process.
4462  * @interval: userspace pointer to the timeslice value.
4463  *
4464  * this syscall writes the default timeslice value of a given process
4465  * into the user-space timespec buffer. A value of '0' means infinity.
4466  *
4467  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4468  * an error code.
4469  */
4470 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4471                 struct timespec __user *, interval)
4472 {
4473         struct task_struct *p;
4474         unsigned int time_slice;
4475         unsigned long flags;
4476         struct rq *rq;
4477         int retval;
4478         struct timespec t;
4479
4480         if (pid < 0)
4481                 return -EINVAL;
4482
4483         retval = -ESRCH;
4484         rcu_read_lock();
4485         p = find_process_by_pid(pid);
4486         if (!p)
4487                 goto out_unlock;
4488
4489         retval = security_task_getscheduler(p);
4490         if (retval)
4491                 goto out_unlock;
4492
4493         rq = task_rq_lock(p, &flags);
4494         time_slice = 0;
4495         if (p->sched_class->get_rr_interval)
4496                 time_slice = p->sched_class->get_rr_interval(rq, p);
4497         task_rq_unlock(rq, p, &flags);
4498
4499         rcu_read_unlock();
4500         jiffies_to_timespec(time_slice, &t);
4501         retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4502         return retval;
4503
4504 out_unlock:
4505         rcu_read_unlock();
4506         return retval;
4507 }
4508
4509 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4510
4511 void sched_show_task(struct task_struct *p)
4512 {
4513         unsigned long free = 0;
4514         int ppid;
4515         unsigned long state = p->state;
4516
4517         if (state)
4518                 state = __ffs(state) + 1;
4519         printk(KERN_INFO "%-15.15s %c", p->comm,
4520                 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4521 #if BITS_PER_LONG == 32
4522         if (state == TASK_RUNNING)
4523                 printk(KERN_CONT " running  ");
4524         else
4525                 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4526 #else
4527         if (state == TASK_RUNNING)
4528                 printk(KERN_CONT "  running task    ");
4529         else
4530                 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4531 #endif
4532 #ifdef CONFIG_DEBUG_STACK_USAGE
4533         free = stack_not_used(p);
4534 #endif
4535         ppid = 0;
4536         rcu_read_lock();
4537         if (pid_alive(p))
4538                 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4539         rcu_read_unlock();
4540         printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4541                 task_pid_nr(p), ppid,
4542                 (unsigned long)task_thread_info(p)->flags);
4543
4544         print_worker_info(KERN_INFO, p);
4545         show_stack(p, NULL);
4546 }
4547
4548 void show_state_filter(unsigned long state_filter)
4549 {
4550         struct task_struct *g, *p;
4551
4552 #if BITS_PER_LONG == 32
4553         printk(KERN_INFO
4554                 "  task                PC stack   pid father\n");
4555 #else
4556         printk(KERN_INFO
4557                 "  task                        PC stack   pid father\n");
4558 #endif
4559         rcu_read_lock();
4560         for_each_process_thread(g, p) {
4561                 /*
4562                  * reset the NMI-timeout, listing all files on a slow
4563                  * console might take a lot of time:
4564                  */
4565                 touch_nmi_watchdog();
4566                 if (!state_filter || (p->state & state_filter))
4567                         sched_show_task(p);
4568         }
4569
4570         touch_all_softlockup_watchdogs();
4571
4572 #ifdef CONFIG_SCHED_DEBUG
4573         sysrq_sched_debug_show();
4574 #endif
4575         rcu_read_unlock();
4576         /*
4577          * Only show locks if all tasks are dumped:
4578          */
4579         if (!state_filter)
4580                 debug_show_all_locks();
4581 }
4582
4583 void init_idle_bootup_task(struct task_struct *idle)
4584 {
4585         idle->sched_class = &idle_sched_class;
4586 }
4587
4588 /**
4589  * init_idle - set up an idle thread for a given CPU
4590  * @idle: task in question
4591  * @cpu: cpu the idle task belongs to
4592  *
4593  * NOTE: this function does not set the idle thread's NEED_RESCHED
4594  * flag, to make booting more robust.
4595  */
4596 void init_idle(struct task_struct *idle, int cpu)
4597 {
4598         struct rq *rq = cpu_rq(cpu);
4599         unsigned long flags;
4600
4601         raw_spin_lock_irqsave(&rq->lock, flags);
4602
4603         __sched_fork(0, idle);
4604         idle->state = TASK_RUNNING;
4605         idle->se.exec_start = sched_clock();
4606
4607         do_set_cpus_allowed(idle, cpumask_of(cpu));
4608         /*
4609          * We're having a chicken and egg problem, even though we are
4610          * holding rq->lock, the cpu isn't yet set to this cpu so the
4611          * lockdep check in task_group() will fail.
4612          *
4613          * Similar case to sched_fork(). / Alternatively we could
4614          * use task_rq_lock() here and obtain the other rq->lock.
4615          *
4616          * Silence PROVE_RCU
4617          */
4618         rcu_read_lock();
4619         __set_task_cpu(idle, cpu);
4620         rcu_read_unlock();
4621
4622         rq->curr = rq->idle = idle;
4623         idle->on_rq = TASK_ON_RQ_QUEUED;
4624 #if defined(CONFIG_SMP)
4625         idle->on_cpu = 1;
4626 #endif
4627         raw_spin_unlock_irqrestore(&rq->lock, flags);
4628
4629         /* Set the preempt count _outside_ the spinlocks! */
4630         init_idle_preempt_count(idle, cpu);
4631
4632         /*
4633          * The idle tasks have their own, simple scheduling class:
4634          */
4635         idle->sched_class = &idle_sched_class;
4636         ftrace_graph_init_idle_task(idle, cpu);
4637         vtime_init_idle(idle, cpu);
4638 #if defined(CONFIG_SMP)
4639         sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4640 #endif
4641 }
4642
4643 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4644                               const struct cpumask *trial)
4645 {
4646         int ret = 1, trial_cpus;
4647         struct dl_bw *cur_dl_b;
4648         unsigned long flags;
4649
4650         if (!cpumask_weight(cur))
4651                 return ret;
4652
4653         rcu_read_lock_sched();
4654         cur_dl_b = dl_bw_of(cpumask_any(cur));
4655         trial_cpus = cpumask_weight(trial);
4656
4657         raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4658         if (cur_dl_b->bw != -1 &&
4659             cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4660                 ret = 0;
4661         raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4662         rcu_read_unlock_sched();
4663
4664         return ret;
4665 }
4666
4667 int task_can_attach(struct task_struct *p,
4668                     const struct cpumask *cs_cpus_allowed)
4669 {
4670         int ret = 0;
4671
4672         /*
4673          * Kthreads which disallow setaffinity shouldn't be moved
4674          * to a new cpuset; we don't want to change their cpu
4675          * affinity and isolating such threads by their set of
4676          * allowed nodes is unnecessary.  Thus, cpusets are not
4677          * applicable for such threads.  This prevents checking for
4678          * success of set_cpus_allowed_ptr() on all attached tasks
4679          * before cpus_allowed may be changed.
4680          */
4681         if (p->flags & PF_NO_SETAFFINITY) {
4682                 ret = -EINVAL;
4683                 goto out;
4684         }
4685
4686 #ifdef CONFIG_SMP
4687         if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4688                                               cs_cpus_allowed)) {
4689                 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4690                                                         cs_cpus_allowed);
4691                 struct dl_bw *dl_b;
4692                 bool overflow;
4693                 int cpus;
4694                 unsigned long flags;
4695
4696                 rcu_read_lock_sched();
4697                 dl_b = dl_bw_of(dest_cpu);
4698                 raw_spin_lock_irqsave(&dl_b->lock, flags);
4699                 cpus = dl_bw_cpus(dest_cpu);
4700                 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4701                 if (overflow)
4702                         ret = -EBUSY;
4703                 else {
4704                         /*
4705                          * We reserve space for this task in the destination
4706                          * root_domain, as we can't fail after this point.
4707                          * We will free resources in the source root_domain
4708                          * later on (see set_cpus_allowed_dl()).
4709                          */
4710                         __dl_add(dl_b, p->dl.dl_bw);
4711                 }
4712                 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4713                 rcu_read_unlock_sched();
4714
4715         }
4716 #endif
4717 out:
4718         return ret;
4719 }
4720
4721 #ifdef CONFIG_SMP
4722 /*
4723  * move_queued_task - move a queued task to new rq.
4724  *
4725  * Returns (locked) new rq. Old rq's lock is released.
4726  */
4727 static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4728 {
4729         struct rq *rq = task_rq(p);
4730
4731         lockdep_assert_held(&rq->lock);
4732
4733         dequeue_task(rq, p, 0);
4734         p->on_rq = TASK_ON_RQ_MIGRATING;
4735         set_task_cpu(p, new_cpu);
4736         raw_spin_unlock(&rq->lock);
4737
4738         rq = cpu_rq(new_cpu);
4739
4740         raw_spin_lock(&rq->lock);
4741         BUG_ON(task_cpu(p) != new_cpu);
4742         p->on_rq = TASK_ON_RQ_QUEUED;
4743         enqueue_task(rq, p, 0);
4744         check_preempt_curr(rq, p, 0);
4745
4746         return rq;
4747 }
4748
4749 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4750 {
4751         if (p->sched_class->set_cpus_allowed)
4752                 p->sched_class->set_cpus_allowed(p, new_mask);
4753
4754         cpumask_copy(&p->cpus_allowed, new_mask);
4755         p->nr_cpus_allowed = cpumask_weight(new_mask);
4756 }
4757
4758 /*
4759  * This is how migration works:
4760  *
4761  * 1) we invoke migration_cpu_stop() on the target CPU using
4762  *    stop_one_cpu().
4763  * 2) stopper starts to run (implicitly forcing the migrated thread
4764  *    off the CPU)
4765  * 3) it checks whether the migrated task is still in the wrong runqueue.
4766  * 4) if it's in the wrong runqueue then the migration thread removes
4767  *    it and puts it into the right queue.
4768  * 5) stopper completes and stop_one_cpu() returns and the migration
4769  *    is done.
4770  */
4771
4772 /*
4773  * Change a given task's CPU affinity. Migrate the thread to a
4774  * proper CPU and schedule it away if the CPU it's executing on
4775  * is removed from the allowed bitmask.
4776  *
4777  * NOTE: the caller must have a valid reference to the task, the
4778  * task must not exit() & deallocate itself prematurely. The
4779  * call is not atomic; no spinlocks may be held.
4780  */
4781 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4782 {
4783         unsigned long flags;
4784         struct rq *rq;
4785         unsigned int dest_cpu;
4786         int ret = 0;
4787
4788         rq = task_rq_lock(p, &flags);
4789
4790         if (cpumask_equal(&p->cpus_allowed, new_mask))
4791                 goto out;
4792
4793         if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4794                 ret = -EINVAL;
4795                 goto out;
4796         }
4797
4798         do_set_cpus_allowed(p, new_mask);
4799
4800         /* Can the task run on the task's current CPU? If so, we're done */
4801         if (cpumask_test_cpu(task_cpu(p), new_mask))
4802                 goto out;
4803
4804         dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4805         if (task_running(rq, p) || p->state == TASK_WAKING) {
4806                 struct migration_arg arg = { p, dest_cpu };
4807                 /* Need help from migration thread: drop lock and wait. */
4808                 task_rq_unlock(rq, p, &flags);
4809                 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4810                 tlb_migrate_finish(p->mm);
4811                 return 0;
4812         } else if (task_on_rq_queued(p))
4813                 rq = move_queued_task(p, dest_cpu);
4814 out:
4815         task_rq_unlock(rq, p, &flags);
4816
4817         return ret;
4818 }
4819 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4820
4821 /*
4822  * Move (not current) task off this cpu, onto dest cpu. We're doing
4823  * this because either it can't run here any more (set_cpus_allowed()
4824  * away from this CPU, or CPU going down), or because we're
4825  * attempting to rebalance this task on exec (sched_exec).
4826  *
4827  * So we race with normal scheduler movements, but that's OK, as long
4828  * as the task is no longer on this CPU.
4829  *
4830  * Returns non-zero if task was successfully migrated.
4831  */
4832 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4833 {
4834         struct rq *rq;
4835         int ret = 0;
4836
4837         if (unlikely(!cpu_active(dest_cpu)))
4838                 return ret;
4839
4840         rq = cpu_rq(src_cpu);
4841
4842         raw_spin_lock(&p->pi_lock);
4843         raw_spin_lock(&rq->lock);
4844         /* Already moved. */
4845         if (task_cpu(p) != src_cpu)
4846                 goto done;
4847
4848         /* Affinity changed (again). */
4849         if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4850                 goto fail;
4851
4852         /*
4853          * If we're not on a rq, the next wake-up will ensure we're
4854          * placed properly.
4855          */
4856         if (task_on_rq_queued(p))
4857                 rq = move_queued_task(p, dest_cpu);
4858 done:
4859         ret = 1;
4860 fail:
4861         raw_spin_unlock(&rq->lock);
4862         raw_spin_unlock(&p->pi_lock);
4863         return ret;
4864 }
4865
4866 #ifdef CONFIG_NUMA_BALANCING
4867 /* Migrate current task p to target_cpu */
4868 int migrate_task_to(struct task_struct *p, int target_cpu)
4869 {
4870         struct migration_arg arg = { p, target_cpu };
4871         int curr_cpu = task_cpu(p);
4872
4873         if (curr_cpu == target_cpu)
4874                 return 0;
4875
4876         if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4877                 return -EINVAL;
4878
4879         /* TODO: This is not properly updating schedstats */
4880
4881         trace_sched_move_numa(p, curr_cpu, target_cpu);
4882         return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4883 }
4884
4885 /*
4886  * Requeue a task on a given node and accurately track the number of NUMA
4887  * tasks on the runqueues
4888  */
4889 void sched_setnuma(struct task_struct *p, int nid)
4890 {
4891         struct rq *rq;
4892         unsigned long flags;
4893         bool queued, running;
4894
4895         rq = task_rq_lock(p, &flags);
4896         queued = task_on_rq_queued(p);
4897         running = task_current(rq, p);
4898
4899         if (queued)
4900                 dequeue_task(rq, p, 0);
4901         if (running)
4902                 put_prev_task(rq, p);
4903
4904         p->numa_preferred_nid = nid;
4905
4906         if (running)
4907                 p->sched_class->set_curr_task(rq);
4908         if (queued)
4909                 enqueue_task(rq, p, 0);
4910         task_rq_unlock(rq, p, &flags);
4911 }
4912 #endif
4913
4914 /*
4915  * migration_cpu_stop - this will be executed by a highprio stopper thread
4916  * and performs thread migration by bumping thread off CPU then
4917  * 'pushing' onto another runqueue.
4918  */
4919 static int migration_cpu_stop(void *data)
4920 {
4921         struct migration_arg *arg = data;
4922
4923         /*
4924          * The original target cpu might have gone down and we might
4925          * be on another cpu but it doesn't matter.
4926          */
4927         local_irq_disable();
4928         /*
4929          * We need to explicitly wake pending tasks before running
4930          * __migrate_task() such that we will not miss enforcing cpus_allowed
4931          * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4932          */
4933         sched_ttwu_pending();
4934         __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4935         local_irq_enable();
4936         return 0;
4937 }
4938
4939 #ifdef CONFIG_HOTPLUG_CPU
4940
4941 /*
4942  * Ensures that the idle task is using init_mm right before its cpu goes
4943  * offline.
4944  */
4945 void idle_task_exit(void)
4946 {
4947         struct mm_struct *mm = current->active_mm;
4948
4949         BUG_ON(cpu_online(smp_processor_id()));
4950
4951         if (mm != &init_mm) {
4952                 switch_mm(mm, &init_mm, current);
4953                 finish_arch_post_lock_switch();
4954         }
4955         mmdrop(mm);
4956 }
4957
4958 /*
4959  * Since this CPU is going 'away' for a while, fold any nr_active delta
4960  * we might have. Assumes we're called after migrate_tasks() so that the
4961  * nr_active count is stable.
4962  *
4963  * Also see the comment "Global load-average calculations".
4964  */
4965 static void calc_load_migrate(struct rq *rq)
4966 {
4967         long delta = calc_load_fold_active(rq);
4968         if (delta)
4969                 atomic_long_add(delta, &calc_load_tasks);
4970 }
4971
4972 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4973 {
4974 }
4975
4976 static const struct sched_class fake_sched_class = {
4977         .put_prev_task = put_prev_task_fake,
4978 };
4979
4980 static struct task_struct fake_task = {
4981         /*
4982          * Avoid pull_{rt,dl}_task()
4983          */
4984         .prio = MAX_PRIO + 1,
4985         .sched_class = &fake_sched_class,
4986 };
4987
4988 /*
4989  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4990  * try_to_wake_up()->select_task_rq().
4991  *
4992  * Called with rq->lock held even though we'er in stop_machine() and
4993  * there's no concurrency possible, we hold the required locks anyway
4994  * because of lock validation efforts.
4995  */
4996 static void migrate_tasks(unsigned int dead_cpu)
4997 {
4998         struct rq *rq = cpu_rq(dead_cpu);
4999         struct task_struct *next, *stop = rq->stop;
5000         int dest_cpu;
5001
5002         /*
5003          * Fudge the rq selection such that the below task selection loop
5004          * doesn't get stuck on the currently eligible stop task.
5005          *
5006          * We're currently inside stop_machine() and the rq is either stuck
5007          * in the stop_machine_cpu_stop() loop, or we're executing this code,
5008          * either way we should never end up calling schedule() until we're
5009          * done here.
5010          */
5011         rq->stop = NULL;
5012
5013         /*
5014          * put_prev_task() and pick_next_task() sched
5015          * class method both need to have an up-to-date
5016          * value of rq->clock[_task]
5017          */
5018         update_rq_clock(rq);
5019
5020         for ( ; ; ) {
5021                 /*
5022                  * There's this thread running, bail when that's the only
5023                  * remaining thread.
5024                  */
5025                 if (rq->nr_running == 1)
5026                         break;
5027
5028                 next = pick_next_task(rq, &fake_task);
5029                 BUG_ON(!next);
5030                 next->sched_class->put_prev_task(rq, next);
5031
5032                 /* Find suitable destination for @next, with force if needed. */
5033                 dest_cpu = select_fallback_rq(dead_cpu, next);
5034                 raw_spin_unlock(&rq->lock);
5035
5036                 __migrate_task(next, dead_cpu, dest_cpu);
5037
5038                 raw_spin_lock(&rq->lock);
5039         }
5040
5041         rq->stop = stop;
5042 }
5043
5044 #endif /* CONFIG_HOTPLUG_CPU */
5045
5046 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5047
5048 static struct ctl_table sd_ctl_dir[] = {
5049         {
5050                 .procname       = "sched_domain",
5051                 .mode           = 0555,
5052         },
5053         {}
5054 };
5055
5056 static struct ctl_table sd_ctl_root[] = {
5057         {
5058                 .procname       = "kernel",
5059                 .mode           = 0555,
5060                 .child          = sd_ctl_dir,
5061         },
5062         {}
5063 };
5064
5065 static struct ctl_table *sd_alloc_ctl_entry(int n)
5066 {
5067         struct ctl_table *entry =
5068                 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5069
5070         return entry;
5071 }
5072
5073 static void sd_free_ctl_entry(struct ctl_table **tablep)
5074 {
5075         struct ctl_table *entry;
5076
5077         /*
5078          * In the intermediate directories, both the child directory and
5079          * procname are dynamically allocated and could fail but the mode
5080          * will always be set. In the lowest directory the names are
5081          * static strings and all have proc handlers.
5082          */
5083         for (entry = *tablep; entry->mode; entry++) {
5084                 if (entry->child)
5085                         sd_free_ctl_entry(&entry->child);
5086                 if (entry->proc_handler == NULL)
5087                         kfree(entry->procname);
5088         }
5089
5090         kfree(*tablep);
5091         *tablep = NULL;
5092 }
5093
5094 static int min_load_idx = 0;
5095 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5096
5097 static void
5098 set_table_entry(struct ctl_table *entry,
5099                 const char *procname, void *data, int maxlen,
5100                 umode_t mode, proc_handler *proc_handler,
5101                 bool load_idx)
5102 {
5103         entry->procname = procname;
5104         entry->data = data;
5105         entry->maxlen = maxlen;
5106         entry->mode = mode;
5107         entry->proc_handler = proc_handler;
5108
5109         if (load_idx) {
5110                 entry->extra1 = &min_load_idx;
5111                 entry->extra2 = &max_load_idx;
5112         }
5113 }
5114
5115 static struct ctl_table *
5116 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5117 {
5118         struct ctl_table *table = sd_alloc_ctl_entry(14);
5119
5120         if (table == NULL)
5121                 return NULL;
5122
5123         set_table_entry(&table[0], "min_interval", &sd->min_interval,
5124                 sizeof(long), 0644, proc_doulongvec_minmax, false);
5125         set_table_entry(&table[1], "max_interval", &sd->max_interval,
5126                 sizeof(long), 0644, proc_doulongvec_minmax, false);
5127         set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5128                 sizeof(int), 0644, proc_dointvec_minmax, true);
5129         set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5130                 sizeof(int), 0644, proc_dointvec_minmax, true);
5131         set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5132                 sizeof(int), 0644, proc_dointvec_minmax, true);
5133         set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5134                 sizeof(int), 0644, proc_dointvec_minmax, true);
5135         set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5136                 sizeof(int), 0644, proc_dointvec_minmax, true);
5137         set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5138                 sizeof(int), 0644, proc_dointvec_minmax, false);
5139         set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5140                 sizeof(int), 0644, proc_dointvec_minmax, false);
5141         set_table_entry(&table[9], "cache_nice_tries",
5142                 &sd->cache_nice_tries,
5143                 sizeof(int), 0644, proc_dointvec_minmax, false);
5144         set_table_entry(&table[10], "flags", &sd->flags,
5145                 sizeof(int), 0644, proc_dointvec_minmax, false);
5146         set_table_entry(&table[11], "max_newidle_lb_cost",
5147                 &sd->max_newidle_lb_cost,
5148                 sizeof(long), 0644, proc_doulongvec_minmax, false);
5149         set_table_entry(&table[12], "name", sd->name,
5150                 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5151         /* &table[13] is terminator */
5152
5153         return table;
5154 }
5155
5156 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5157 {
5158         struct ctl_table *entry, *table;
5159         struct sched_domain *sd;
5160         int domain_num = 0, i;
5161         char buf[32];
5162
5163         for_each_domain(cpu, sd)
5164                 domain_num++;
5165         entry = table = sd_alloc_ctl_entry(domain_num + 1);
5166         if (table == NULL)
5167                 return NULL;
5168
5169         i = 0;
5170         for_each_domain(cpu, sd) {
5171                 snprintf(buf, 32, "domain%d", i);
5172                 entry->procname = kstrdup(buf, GFP_KERNEL);
5173                 entry->mode = 0555;
5174                 entry->child = sd_alloc_ctl_domain_table(sd);
5175                 entry++;
5176                 i++;
5177         }
5178         return table;
5179 }
5180
5181 static struct ctl_table_header *sd_sysctl_header;
5182 static void register_sched_domain_sysctl(void)
5183 {
5184         int i, cpu_num = num_possible_cpus();
5185         struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5186         char buf[32];
5187
5188         WARN_ON(sd_ctl_dir[0].child);
5189         sd_ctl_dir[0].child = entry;
5190
5191         if (entry == NULL)
5192                 return;
5193
5194         for_each_possible_cpu(i) {
5195                 snprintf(buf, 32, "cpu%d", i);
5196                 entry->procname = kstrdup(buf, GFP_KERNEL);
5197                 entry->mode = 0555;
5198                 entry->child = sd_alloc_ctl_cpu_table(i);
5199                 entry++;
5200         }
5201
5202         WARN_ON(sd_sysctl_header);
5203         sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5204 }
5205
5206 /* may be called multiple times per register */
5207 static void unregister_sched_domain_sysctl(void)
5208 {
5209         if (sd_sysctl_header)
5210                 unregister_sysctl_table(sd_sysctl_header);
5211         sd_sysctl_header = NULL;
5212         if (sd_ctl_dir[0].child)
5213                 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5214 }
5215 #else
5216 static void register_sched_domain_sysctl(void)
5217 {
5218 }
5219 static void unregister_sched_domain_sysctl(void)
5220 {
5221 }
5222 #endif
5223
5224 static void set_rq_online(struct rq *rq)
5225 {
5226         if (!rq->online) {
5227                 const struct sched_class *class;
5228
5229                 cpumask_set_cpu(rq->cpu, rq->rd->online);
5230                 rq->online = 1;
5231
5232                 for_each_class(class) {
5233                         if (class->rq_online)
5234                                 class->rq_online(rq);
5235                 }
5236         }
5237 }
5238
5239 static void set_rq_offline(struct rq *rq)
5240 {
5241         if (rq->online) {
5242                 const struct sched_class *class;
5243
5244                 for_each_class(class) {
5245                         if (class->rq_offline)
5246                                 class->rq_offline(rq);
5247                 }
5248
5249                 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5250                 rq->online = 0;
5251         }
5252 }
5253
5254 /*
5255  * migration_call - callback that gets triggered when a CPU is added.
5256  * Here we can start up the necessary migration thread for the new CPU.
5257  */
5258 static int
5259 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5260 {
5261         int cpu = (long)hcpu;
5262         unsigned long flags;
5263         struct rq *rq = cpu_rq(cpu);
5264
5265         switch (action & ~CPU_TASKS_FROZEN) {
5266
5267         case CPU_UP_PREPARE:
5268                 rq->calc_load_update = calc_load_update;
5269                 break;
5270
5271         case CPU_ONLINE:
5272                 /* Update our root-domain */
5273                 raw_spin_lock_irqsave(&rq->lock, flags);
5274                 if (rq->rd) {
5275                         BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5276
5277                         set_rq_online(rq);
5278                 }
5279                 raw_spin_unlock_irqrestore(&rq->lock, flags);
5280                 break;
5281
5282 #ifdef CONFIG_HOTPLUG_CPU
5283         case CPU_DYING:
5284                 sched_ttwu_pending();
5285                 /* Update our root-domain */
5286                 raw_spin_lock_irqsave(&rq->lock, flags);
5287                 if (rq->rd) {
5288                         BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5289                         set_rq_offline(rq);
5290                 }
5291                 migrate_tasks(cpu);
5292                 BUG_ON(rq->nr_running != 1); /* the migration thread */
5293                 raw_spin_unlock_irqrestore(&rq->lock, flags);
5294                 break;
5295
5296         case CPU_DEAD:
5297                 calc_load_migrate(rq);
5298                 break;
5299 #endif
5300         }
5301
5302         update_max_interval();
5303
5304         return NOTIFY_OK;
5305 }
5306
5307 /*
5308  * Register at high priority so that task migration (migrate_all_tasks)
5309  * happens before everything else.  This has to be lower priority than
5310  * the notifier in the perf_event subsystem, though.
5311  */
5312 static struct notifier_block migration_notifier = {
5313         .notifier_call = migration_call,
5314         .priority = CPU_PRI_MIGRATION,
5315 };
5316
5317 static void __cpuinit set_cpu_rq_start_time(void)
5318 {
5319         int cpu = smp_processor_id();
5320         struct rq *rq = cpu_rq(cpu);
5321         rq->age_stamp = sched_clock_cpu(cpu);
5322 }
5323
5324 static int sched_cpu_active(struct notifier_block *nfb,
5325                                       unsigned long action, void *hcpu)
5326 {
5327         switch (action & ~CPU_TASKS_FROZEN) {
5328         case CPU_STARTING:
5329                 set_cpu_rq_start_time();
5330                 return NOTIFY_OK;
5331         case CPU_DOWN_FAILED:
5332                 set_cpu_active((long)hcpu, true);
5333                 return NOTIFY_OK;
5334         default:
5335                 return NOTIFY_DONE;
5336         }
5337 }
5338
5339 static int sched_cpu_inactive(struct notifier_block *nfb,
5340                                         unsigned long action, void *hcpu)
5341 {
5342         switch (action & ~CPU_TASKS_FROZEN) {
5343         case CPU_DOWN_PREPARE:
5344                 set_cpu_active((long)hcpu, false);
5345                 return NOTIFY_OK;
5346         default:
5347                 return NOTIFY_DONE;
5348         }
5349 }
5350
5351 static int __init migration_init(void)
5352 {
5353         void *cpu = (void *)(long)smp_processor_id();
5354         int err;
5355
5356         /* Initialize migration for the boot CPU */
5357         err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5358         BUG_ON(err == NOTIFY_BAD);
5359         migration_call(&migration_notifier, CPU_ONLINE, cpu);
5360         register_cpu_notifier(&migration_notifier);
5361
5362         /* Register cpu active notifiers */
5363         cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5364         cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5365
5366         return 0;
5367 }
5368 early_initcall(migration_init);
5369 #endif
5370
5371 #ifdef CONFIG_SMP
5372
5373 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5374
5375 #ifdef CONFIG_SCHED_DEBUG
5376
5377 static __read_mostly int sched_debug_enabled;
5378
5379 static int __init sched_debug_setup(char *str)
5380 {
5381         sched_debug_enabled = 1;
5382
5383         return 0;
5384 }
5385 early_param("sched_debug", sched_debug_setup);
5386
5387 static inline bool sched_debug(void)
5388 {
5389         return sched_debug_enabled;
5390 }
5391
5392 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5393                                   struct cpumask *groupmask)
5394 {
5395         struct sched_group *group = sd->groups;
5396
5397         cpumask_clear(groupmask);
5398
5399         printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5400
5401         if (!(sd->flags & SD_LOAD_BALANCE)) {
5402                 printk("does not load-balance\n");
5403                 if (sd->parent)
5404                         printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5405                                         " has parent");
5406                 return -1;
5407         }
5408
5409         printk(KERN_CONT "span %*pbl level %s\n",
5410                cpumask_pr_args(sched_domain_span(sd)), sd->name);
5411
5412         if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5413                 printk(KERN_ERR "ERROR: domain->span does not contain "
5414                                 "CPU%d\n", cpu);
5415         }
5416         if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5417                 printk(KERN_ERR "ERROR: domain->groups does not contain"
5418                                 " CPU%d\n", cpu);
5419         }
5420
5421         printk(KERN_DEBUG "%*s groups:", level + 1, "");
5422         do {
5423                 if (!group) {
5424                         printk("\n");
5425                         printk(KERN_ERR "ERROR: group is NULL\n");
5426                         break;
5427                 }
5428
5429                 if (!cpumask_weight(sched_group_cpus(group))) {
5430                         printk(KERN_CONT "\n");
5431                         printk(KERN_ERR "ERROR: empty group\n");
5432                         break;
5433                 }
5434
5435                 if (!(sd->flags & SD_OVERLAP) &&
5436                     cpumask_intersects(groupmask, sched_group_cpus(group))) {
5437                         printk(KERN_CONT "\n");
5438                         printk(KERN_ERR "ERROR: repeated CPUs\n");
5439                         break;
5440                 }
5441
5442                 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5443
5444                 printk(KERN_CONT " %*pbl",
5445                        cpumask_pr_args(sched_group_cpus(group)));
5446                 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5447                         printk(KERN_CONT " (cpu_capacity = %d)",
5448                                 group->sgc->capacity);
5449                 }
5450
5451                 group = group->next;
5452         } while (group != sd->groups);
5453         printk(KERN_CONT "\n");
5454
5455         if (!cpumask_equal(sched_domain_span(sd), groupmask))
5456                 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5457
5458         if (sd->parent &&
5459             !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5460                 printk(KERN_ERR "ERROR: parent span is not a superset "
5461                         "of domain->span\n");
5462         return 0;
5463 }
5464
5465 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5466 {
5467         int level = 0;
5468
5469         if (!sched_debug_enabled)
5470                 return;
5471
5472         if (!sd) {
5473                 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5474                 return;
5475         }
5476
5477         printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5478
5479         for (;;) {
5480                 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5481                         break;
5482                 level++;
5483                 sd = sd->parent;
5484                 if (!sd)
5485                         break;
5486         }
5487 }
5488 #else /* !CONFIG_SCHED_DEBUG */
5489 # define sched_domain_debug(sd, cpu) do { } while (0)
5490 static inline bool sched_debug(void)
5491 {
5492         return false;
5493 }
5494 #endif /* CONFIG_SCHED_DEBUG */
5495
5496 static int sd_degenerate(struct sched_domain *sd)
5497 {
5498         if (cpumask_weight(sched_domain_span(sd)) == 1)
5499                 return 1;
5500
5501         /* Following flags need at least 2 groups */
5502         if (sd->flags & (SD_LOAD_BALANCE |
5503                          SD_BALANCE_NEWIDLE |
5504                          SD_BALANCE_FORK |
5505                          SD_BALANCE_EXEC |
5506                          SD_SHARE_CPUCAPACITY |
5507                          SD_SHARE_PKG_RESOURCES |
5508                          SD_SHARE_POWERDOMAIN)) {
5509                 if (sd->groups != sd->groups->next)
5510                         return 0;
5511         }
5512
5513         /* Following flags don't use groups */
5514         if (sd->flags & (SD_WAKE_AFFINE))
5515                 return 0;
5516
5517         return 1;
5518 }
5519
5520 static int
5521 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5522 {
5523         unsigned long cflags = sd->flags, pflags = parent->flags;
5524
5525         if (sd_degenerate(parent))
5526                 return 1;
5527
5528         if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5529                 return 0;
5530
5531         /* Flags needing groups don't count if only 1 group in parent */
5532         if (parent->groups == parent->groups->next) {
5533                 pflags &= ~(SD_LOAD_BALANCE |
5534                                 SD_BALANCE_NEWIDLE |
5535                                 SD_BALANCE_FORK |
5536                                 SD_BALANCE_EXEC |
5537                                 SD_SHARE_CPUCAPACITY |
5538                                 SD_SHARE_PKG_RESOURCES |
5539                                 SD_PREFER_SIBLING |
5540                                 SD_SHARE_POWERDOMAIN);
5541                 if (nr_node_ids == 1)
5542                         pflags &= ~SD_SERIALIZE;
5543         }
5544         if (~cflags & pflags)
5545                 return 0;
5546
5547         return 1;
5548 }
5549
5550 static void free_rootdomain(struct rcu_head *rcu)
5551 {
5552         struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5553
5554         cpupri_cleanup(&rd->cpupri);
5555         cpudl_cleanup(&rd->cpudl);
5556         free_cpumask_var(rd->dlo_mask);
5557         free_cpumask_var(rd->rto_mask);
5558         free_cpumask_var(rd->online);
5559         free_cpumask_var(rd->span);
5560         kfree(rd);
5561 }
5562
5563 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5564 {
5565         struct root_domain *old_rd = NULL;
5566         unsigned long flags;
5567
5568         raw_spin_lock_irqsave(&rq->lock, flags);
5569
5570         if (rq->rd) {
5571                 old_rd = rq->rd;
5572
5573                 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5574                         set_rq_offline(rq);
5575
5576                 cpumask_clear_cpu(rq->cpu, old_rd->span);
5577
5578                 /*
5579                  * If we dont want to free the old_rd yet then
5580                  * set old_rd to NULL to skip the freeing later
5581                  * in this function:
5582                  */
5583                 if (!atomic_dec_and_test(&old_rd->refcount))
5584                         old_rd = NULL;
5585         }
5586
5587         atomic_inc(&rd->refcount);
5588         rq->rd = rd;
5589
5590         cpumask_set_cpu(rq->cpu, rd->span);
5591         if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5592                 set_rq_online(rq);
5593
5594         raw_spin_unlock_irqrestore(&rq->lock, flags);
5595
5596         if (old_rd)
5597                 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5598 }
5599
5600 static int init_rootdomain(struct root_domain *rd)
5601 {
5602         memset(rd, 0, sizeof(*rd));
5603
5604         if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5605                 goto out;
5606         if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5607                 goto free_span;
5608         if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5609                 goto free_online;
5610         if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5611                 goto free_dlo_mask;
5612
5613         init_dl_bw(&rd->dl_bw);
5614         if (cpudl_init(&rd->cpudl) != 0)
5615                 goto free_dlo_mask;
5616
5617         if (cpupri_init(&rd->cpupri) != 0)
5618                 goto free_rto_mask;
5619         return 0;
5620
5621 free_rto_mask:
5622         free_cpumask_var(rd->rto_mask);
5623 free_dlo_mask:
5624         free_cpumask_var(rd->dlo_mask);
5625 free_online:
5626         free_cpumask_var(rd->online);
5627 free_span:
5628         free_cpumask_var(rd->span);
5629 out:
5630         return -ENOMEM;
5631 }
5632
5633 /*
5634  * By default the system creates a single root-domain with all cpus as
5635  * members (mimicking the global state we have today).
5636  */
5637 struct root_domain def_root_domain;
5638
5639 static void init_defrootdomain(void)
5640 {
5641         init_rootdomain(&def_root_domain);
5642
5643         atomic_set(&def_root_domain.refcount, 1);
5644 }
5645
5646 static struct root_domain *alloc_rootdomain(void)
5647 {
5648         struct root_domain *rd;
5649
5650         rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5651         if (!rd)
5652                 return NULL;
5653
5654         if (init_rootdomain(rd) != 0) {
5655                 kfree(rd);
5656                 return NULL;
5657         }
5658
5659         return rd;
5660 }
5661
5662 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5663 {
5664         struct sched_group *tmp, *first;
5665
5666         if (!sg)
5667                 return;
5668
5669         first = sg;
5670         do {
5671                 tmp = sg->next;
5672
5673                 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5674                         kfree(sg->sgc);
5675
5676                 kfree(sg);
5677                 sg = tmp;
5678         } while (sg != first);
5679 }
5680
5681 static void free_sched_domain(struct rcu_head *rcu)
5682 {
5683         struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5684
5685         /*
5686          * If its an overlapping domain it has private groups, iterate and
5687          * nuke them all.
5688          */
5689         if (sd->flags & SD_OVERLAP) {
5690                 free_sched_groups(sd->groups, 1);
5691         } else if (atomic_dec_and_test(&sd->groups->ref)) {
5692                 kfree(sd->groups->sgc);
5693                 kfree(sd->groups);
5694         }
5695         kfree(sd);
5696 }
5697
5698 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5699 {
5700         call_rcu(&sd->rcu, free_sched_domain);
5701 }
5702
5703 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5704 {
5705         for (; sd; sd = sd->parent)
5706                 destroy_sched_domain(sd, cpu);
5707 }
5708
5709 /*
5710  * Keep a special pointer to the highest sched_domain that has
5711  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5712  * allows us to avoid some pointer chasing select_idle_sibling().
5713  *
5714  * Also keep a unique ID per domain (we use the first cpu number in
5715  * the cpumask of the domain), this allows us to quickly tell if
5716  * two cpus are in the same cache domain, see cpus_share_cache().
5717  */
5718 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5719 DEFINE_PER_CPU(int, sd_llc_size);
5720 DEFINE_PER_CPU(int, sd_llc_id);
5721 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5722 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5723 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5724
5725 static void update_top_cache_domain(int cpu)
5726 {
5727         struct sched_domain *sd;
5728         struct sched_domain *busy_sd = NULL;
5729         int id = cpu;
5730         int size = 1;
5731
5732         sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5733         if (sd) {
5734                 id = cpumask_first(sched_domain_span(sd));
5735                 size = cpumask_weight(sched_domain_span(sd));
5736                 busy_sd = sd->parent; /* sd_busy */
5737         }
5738         rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5739
5740         rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5741         per_cpu(sd_llc_size, cpu) = size;
5742         per_cpu(sd_llc_id, cpu) = id;
5743
5744         sd = lowest_flag_domain(cpu, SD_NUMA);
5745         rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5746
5747         sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5748         rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5749 }
5750
5751 /*
5752  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5753  * hold the hotplug lock.
5754  */
5755 static void
5756 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5757 {
5758         struct rq *rq = cpu_rq(cpu);
5759         struct sched_domain *tmp;
5760
5761         /* Remove the sched domains which do not contribute to scheduling. */
5762         for (tmp = sd; tmp; ) {
5763                 struct sched_domain *parent = tmp->parent;
5764                 if (!parent)
5765                         break;
5766
5767                 if (sd_parent_degenerate(tmp, parent)) {
5768                         tmp->parent = parent->parent;
5769                         if (parent->parent)
5770                                 parent->parent->child = tmp;
5771                         /*
5772                          * Transfer SD_PREFER_SIBLING down in case of a
5773                          * degenerate parent; the spans match for this
5774                          * so the property transfers.
5775                          */
5776                         if (parent->flags & SD_PREFER_SIBLING)
5777                                 tmp->flags |= SD_PREFER_SIBLING;
5778                         destroy_sched_domain(parent, cpu);
5779                 } else
5780                         tmp = tmp->parent;
5781         }
5782
5783         if (sd && sd_degenerate(sd)) {
5784                 tmp = sd;
5785                 sd = sd->parent;
5786                 destroy_sched_domain(tmp, cpu);
5787                 if (sd)
5788                         sd->child = NULL;
5789         }
5790
5791         sched_domain_debug(sd, cpu);
5792
5793         rq_attach_root(rq, rd);
5794         tmp = rq->sd;
5795         rcu_assign_pointer(rq->sd, sd);
5796         destroy_sched_domains(tmp, cpu);
5797
5798         update_top_cache_domain(cpu);
5799 }
5800
5801 /* Setup the mask of cpus configured for isolated domains */
5802 static int __init isolated_cpu_setup(char *str)
5803 {
5804         alloc_bootmem_cpumask_var(&cpu_isolated_map);
5805         cpulist_parse(str, cpu_isolated_map);
5806         return 1;
5807 }
5808
5809 __setup("isolcpus=", isolated_cpu_setup);
5810
5811 struct s_data {
5812         struct sched_domain ** __percpu sd;
5813         struct root_domain      *rd;
5814 };
5815
5816 enum s_alloc {
5817         sa_rootdomain,
5818         sa_sd,
5819         sa_sd_storage,
5820         sa_none,
5821 };
5822
5823 /*
5824  * Build an iteration mask that can exclude certain CPUs from the upwards
5825  * domain traversal.
5826  *
5827  * Asymmetric node setups can result in situations where the domain tree is of
5828  * unequal depth, make sure to skip domains that already cover the entire
5829  * range.
5830  *
5831  * In that case build_sched_domains() will have terminated the iteration early
5832  * and our sibling sd spans will be empty. Domains should always include the
5833  * cpu they're built on, so check that.
5834  *
5835  */
5836 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5837 {
5838         const struct cpumask *span = sched_domain_span(sd);
5839         struct sd_data *sdd = sd->private;
5840         struct sched_domain *sibling;
5841         int i;
5842
5843         for_each_cpu(i, span) {
5844                 sibling = *per_cpu_ptr(sdd->sd, i);
5845                 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5846                         continue;
5847
5848                 cpumask_set_cpu(i, sched_group_mask(sg));
5849         }
5850 }
5851
5852 /*
5853  * Return the canonical balance cpu for this group, this is the first cpu
5854  * of this group that's also in the iteration mask.
5855  */
5856 int group_balance_cpu(struct sched_group *sg)
5857 {
5858         return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5859 }
5860
5861 static int
5862 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5863 {
5864         struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5865         const struct cpumask *span = sched_domain_span(sd);
5866         struct cpumask *covered = sched_domains_tmpmask;
5867         struct sd_data *sdd = sd->private;
5868         struct sched_domain *sibling;
5869         int i;
5870
5871         cpumask_clear(covered);
5872
5873         for_each_cpu(i, span) {
5874                 struct cpumask *sg_span;
5875
5876                 if (cpumask_test_cpu(i, covered))
5877                         continue;
5878
5879                 sibling = *per_cpu_ptr(sdd->sd, i);
5880
5881                 /* See the comment near build_group_mask(). */
5882                 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5883                         continue;
5884
5885                 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5886                                 GFP_KERNEL, cpu_to_node(cpu));
5887
5888                 if (!sg)
5889                         goto fail;
5890
5891                 sg_span = sched_group_cpus(sg);
5892                 if (sibling->child)
5893                         cpumask_copy(sg_span, sched_domain_span(sibling->child));
5894                 else
5895                         cpumask_set_cpu(i, sg_span);
5896
5897                 cpumask_or(covered, covered, sg_span);
5898
5899                 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5900                 if (atomic_inc_return(&sg->sgc->ref) == 1)
5901                         build_group_mask(sd, sg);
5902
5903                 /*
5904                  * Initialize sgc->capacity such that even if we mess up the
5905                  * domains and no possible iteration will get us here, we won't
5906                  * die on a /0 trap.
5907                  */
5908                 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5909
5910                 /*
5911                  * Make sure the first group of this domain contains the
5912                  * canonical balance cpu. Otherwise the sched_domain iteration
5913                  * breaks. See update_sg_lb_stats().
5914                  */
5915                 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5916                     group_balance_cpu(sg) == cpu)
5917                         groups = sg;
5918
5919                 if (!first)
5920                         first = sg;
5921                 if (last)
5922                         last->next = sg;
5923                 last = sg;
5924                 last->next = first;
5925         }
5926         sd->groups = groups;
5927
5928         return 0;
5929
5930 fail:
5931         free_sched_groups(first, 0);
5932
5933         return -ENOMEM;
5934 }
5935
5936 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5937 {
5938         struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5939         struct sched_domain *child = sd->child;
5940
5941         if (child)
5942                 cpu = cpumask_first(sched_domain_span(child));
5943
5944         if (sg) {
5945                 *sg = *per_cpu_ptr(sdd->sg, cpu);
5946                 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5947                 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5948         }
5949
5950         return cpu;
5951 }
5952
5953 /*
5954  * build_sched_groups will build a circular linked list of the groups
5955  * covered by the given span, and will set each group's ->cpumask correctly,
5956  * and ->cpu_capacity to 0.
5957  *
5958  * Assumes the sched_domain tree is fully constructed
5959  */
5960 static int
5961 build_sched_groups(struct sched_domain *sd, int cpu)
5962 {
5963         struct sched_group *first = NULL, *last = NULL;
5964         struct sd_data *sdd = sd->private;
5965         const struct cpumask *span = sched_domain_span(sd);
5966         struct cpumask *covered;
5967         int i;
5968
5969         get_group(cpu, sdd, &sd->groups);
5970         atomic_inc(&sd->groups->ref);
5971
5972         if (cpu != cpumask_first(span))
5973                 return 0;
5974
5975         lockdep_assert_held(&sched_domains_mutex);
5976         covered = sched_domains_tmpmask;
5977
5978         cpumask_clear(covered);
5979
5980         for_each_cpu(i, span) {
5981                 struct sched_group *sg;
5982                 int group, j;
5983
5984                 if (cpumask_test_cpu(i, covered))
5985                         continue;
5986
5987                 group = get_group(i, sdd, &sg);
5988                 cpumask_setall(sched_group_mask(sg));
5989
5990                 for_each_cpu(j, span) {
5991                         if (get_group(j, sdd, NULL) != group)
5992                                 continue;
5993
5994                         cpumask_set_cpu(j, covered);
5995                         cpumask_set_cpu(j, sched_group_cpus(sg));
5996                 }
5997
5998                 if (!first)
5999                         first = sg;
6000                 if (last)
6001                         last->next = sg;
6002                 last = sg;
6003         }
6004         last->next = first;
6005
6006         return 0;
6007 }
6008
6009 /*
6010  * Initialize sched groups cpu_capacity.
6011  *
6012  * cpu_capacity indicates the capacity of sched group, which is used while
6013  * distributing the load between different sched groups in a sched domain.
6014  * Typically cpu_capacity for all the groups in a sched domain will be same
6015  * unless there are asymmetries in the topology. If there are asymmetries,
6016  * group having more cpu_capacity will pickup more load compared to the
6017  * group having less cpu_capacity.
6018  */
6019 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6020 {
6021         struct sched_group *sg = sd->groups;
6022
6023         WARN_ON(!sg);
6024
6025         do {
6026                 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6027                 sg = sg->next;
6028         } while (sg != sd->groups);
6029
6030         if (cpu != group_balance_cpu(sg))
6031                 return;
6032
6033         update_group_capacity(sd, cpu);
6034         atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6035 }
6036
6037 /*
6038  * Initializers for schedule domains
6039  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6040  */
6041
6042 static int default_relax_domain_level = -1;
6043 int sched_domain_level_max;
6044
6045 static int __init setup_relax_domain_level(char *str)
6046 {
6047         if (kstrtoint(str, 0, &default_relax_domain_level))
6048                 pr_warn("Unable to set relax_domain_level\n");
6049
6050         return 1;
6051 }
6052 __setup("relax_domain_level=", setup_relax_domain_level);
6053
6054 static void set_domain_attribute(struct sched_domain *sd,
6055                                  struct sched_domain_attr *attr)
6056 {
6057         int request;
6058
6059         if (!attr || attr->relax_domain_level < 0) {
6060                 if (default_relax_domain_level < 0)
6061                         return;
6062                 else
6063                         request = default_relax_domain_level;
6064         } else
6065                 request = attr->relax_domain_level;
6066         if (request < sd->level) {
6067                 /* turn off idle balance on this domain */
6068                 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6069         } else {
6070                 /* turn on idle balance on this domain */
6071                 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6072         }
6073 }
6074
6075 static void __sdt_free(const struct cpumask *cpu_map);
6076 static int __sdt_alloc(const struct cpumask *cpu_map);
6077
6078 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6079                                  const struct cpumask *cpu_map)
6080 {
6081         switch (what) {
6082         case sa_rootdomain:
6083                 if (!atomic_read(&d->rd->refcount))
6084                         free_rootdomain(&d->rd->rcu); /* fall through */
6085         case sa_sd:
6086                 free_percpu(d->sd); /* fall through */
6087         case sa_sd_storage:
6088                 __sdt_free(cpu_map); /* fall through */
6089         case sa_none:
6090                 break;
6091         }
6092 }
6093
6094 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6095                                                    const struct cpumask *cpu_map)
6096 {
6097         memset(d, 0, sizeof(*d));
6098
6099         if (__sdt_alloc(cpu_map))
6100                 return sa_sd_storage;
6101         d->sd = alloc_percpu(struct sched_domain *);
6102         if (!d->sd)
6103                 return sa_sd_storage;
6104         d->rd = alloc_rootdomain();
6105         if (!d->rd)
6106                 return sa_sd;
6107         return sa_rootdomain;
6108 }
6109
6110 /*
6111  * NULL the sd_data elements we've used to build the sched_domain and
6112  * sched_group structure so that the subsequent __free_domain_allocs()
6113  * will not free the data we're using.
6114  */
6115 static void claim_allocations(int cpu, struct sched_domain *sd)
6116 {
6117         struct sd_data *sdd = sd->private;
6118
6119         WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6120         *per_cpu_ptr(sdd->sd, cpu) = NULL;
6121
6122         if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6123                 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6124
6125         if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6126                 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6127 }
6128
6129 #ifdef CONFIG_NUMA
6130 static int sched_domains_numa_levels;
6131 enum numa_topology_type sched_numa_topology_type;
6132 static int *sched_domains_numa_distance;
6133 int sched_max_numa_distance;
6134 static struct cpumask ***sched_domains_numa_masks;
6135 static int sched_domains_curr_level;
6136 #endif
6137
6138 /*
6139  * SD_flags allowed in topology descriptions.
6140  *
6141  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6142  * SD_SHARE_PKG_RESOURCES - describes shared caches
6143  * SD_NUMA                - describes NUMA topologies
6144  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6145  *
6146  * Odd one out:
6147  * SD_ASYM_PACKING        - describes SMT quirks
6148  */
6149 #define TOPOLOGY_SD_FLAGS               \
6150         (SD_SHARE_CPUCAPACITY |         \
6151          SD_SHARE_PKG_RESOURCES |       \
6152          SD_NUMA |                      \
6153          SD_ASYM_PACKING |              \
6154          SD_SHARE_POWERDOMAIN)
6155
6156 static struct sched_domain *
6157 sd_init(struct sched_domain_topology_level *tl, int cpu)
6158 {
6159         struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6160         int sd_weight, sd_flags = 0;
6161
6162 #ifdef CONFIG_NUMA
6163         /*
6164          * Ugly hack to pass state to sd_numa_mask()...
6165          */
6166         sched_domains_curr_level = tl->numa_level;
6167 #endif
6168
6169         sd_weight = cpumask_weight(tl->mask(cpu));
6170
6171         if (tl->sd_flags)
6172                 sd_flags = (*tl->sd_flags)();
6173         if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6174                         "wrong sd_flags in topology description\n"))
6175                 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6176
6177         *sd = (struct sched_domain){
6178                 .min_interval           = sd_weight,
6179                 .max_interval           = 2*sd_weight,
6180                 .busy_factor            = 32,
6181                 .imbalance_pct          = 125,
6182
6183                 .cache_nice_tries       = 0,
6184                 .busy_idx               = 0,
6185                 .idle_idx               = 0,
6186                 .newidle_idx            = 0,
6187                 .wake_idx               = 0,
6188                 .forkexec_idx           = 0,
6189
6190                 .flags                  = 1*SD_LOAD_BALANCE
6191                                         | 1*SD_BALANCE_NEWIDLE
6192                                         | 1*SD_BALANCE_EXEC
6193                                         | 1*SD_BALANCE_FORK
6194                                         | 0*SD_BALANCE_WAKE
6195                                         | 1*SD_WAKE_AFFINE
6196                                         | 0*SD_SHARE_CPUCAPACITY
6197                                         | 0*SD_SHARE_PKG_RESOURCES
6198                                         | 0*SD_SERIALIZE
6199                                         | 0*SD_PREFER_SIBLING
6200                                         | 0*SD_NUMA
6201                                         | sd_flags
6202                                         ,
6203
6204                 .last_balance           = jiffies,
6205                 .balance_interval       = sd_weight,
6206                 .smt_gain               = 0,
6207                 .max_newidle_lb_cost    = 0,
6208                 .next_decay_max_lb_cost = jiffies,
6209 #ifdef CONFIG_SCHED_DEBUG
6210                 .name                   = tl->name,
6211 #endif
6212         };
6213
6214         /*
6215          * Convert topological properties into behaviour.
6216          */
6217
6218         if (sd->flags & SD_SHARE_CPUCAPACITY) {
6219                 sd->flags |= SD_PREFER_SIBLING;
6220                 sd->imbalance_pct = 110;
6221                 sd->smt_gain = 1178; /* ~15% */
6222
6223         } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6224                 sd->imbalance_pct = 117;
6225                 sd->cache_nice_tries = 1;
6226                 sd->busy_idx = 2;
6227
6228 #ifdef CONFIG_NUMA
6229         } else if (sd->flags & SD_NUMA) {
6230                 sd->cache_nice_tries = 2;
6231                 sd->busy_idx = 3;
6232                 sd->idle_idx = 2;
6233
6234                 sd->flags |= SD_SERIALIZE;
6235                 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6236                         sd->flags &= ~(SD_BALANCE_EXEC |
6237                                        SD_BALANCE_FORK |
6238                                        SD_WAKE_AFFINE);
6239                 }
6240
6241 #endif
6242         } else {
6243                 sd->flags |= SD_PREFER_SIBLING;
6244                 sd->cache_nice_tries = 1;
6245                 sd->busy_idx = 2;
6246                 sd->idle_idx = 1;
6247         }
6248
6249         sd->private = &tl->data;
6250
6251         return sd;
6252 }
6253
6254 /*
6255  * Topology list, bottom-up.
6256  */
6257 static struct sched_domain_topology_level default_topology[] = {
6258 #ifdef CONFIG_SCHED_SMT
6259         { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6260 #endif
6261 #ifdef CONFIG_SCHED_MC
6262         { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6263 #endif
6264         { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6265         { NULL, },
6266 };
6267
6268 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6269
6270 #define for_each_sd_topology(tl)                        \
6271         for (tl = sched_domain_topology; tl->mask; tl++)
6272
6273 void set_sched_topology(struct sched_domain_topology_level *tl)
6274 {
6275         sched_domain_topology = tl;
6276 }
6277
6278 #ifdef CONFIG_NUMA
6279
6280 static const struct cpumask *sd_numa_mask(int cpu)
6281 {
6282         return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6283 }
6284
6285 static void sched_numa_warn(const char *str)
6286 {
6287         static int done = false;
6288         int i,j;
6289
6290         if (done)
6291                 return;
6292
6293         done = true;
6294
6295         printk(KERN_WARNING "ERROR: %s\n\n", str);
6296
6297         for (i = 0; i < nr_node_ids; i++) {
6298                 printk(KERN_WARNING "  ");
6299                 for (j = 0; j < nr_node_ids; j++)
6300                         printk(KERN_CONT "%02d ", node_distance(i,j));
6301                 printk(KERN_CONT "\n");
6302         }
6303         printk(KERN_WARNING "\n");
6304 }
6305
6306 bool find_numa_distance(int distance)
6307 {
6308         int i;
6309
6310         if (distance == node_distance(0, 0))
6311                 return true;
6312
6313         for (i = 0; i < sched_domains_numa_levels; i++) {
6314                 if (sched_domains_numa_distance[i] == distance)
6315                         return true;
6316         }
6317
6318         return false;
6319 }
6320
6321 /*
6322  * A system can have three types of NUMA topology:
6323  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6324  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6325  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6326  *
6327  * The difference between a glueless mesh topology and a backplane
6328  * topology lies in whether communication between not directly
6329  * connected nodes goes through intermediary nodes (where programs
6330  * could run), or through backplane controllers. This affects
6331  * placement of programs.
6332  *
6333  * The type of topology can be discerned with the following tests:
6334  * - If the maximum distance between any nodes is 1 hop, the system
6335  *   is directly connected.
6336  * - If for two nodes A and B, located N > 1 hops away from each other,
6337  *   there is an intermediary node C, which is < N hops away from both
6338  *   nodes A and B, the system is a glueless mesh.
6339  */
6340 static void init_numa_topology_type(void)
6341 {
6342         int a, b, c, n;
6343
6344         n = sched_max_numa_distance;
6345
6346         if (n <= 1)
6347                 sched_numa_topology_type = NUMA_DIRECT;
6348
6349         for_each_online_node(a) {
6350                 for_each_online_node(b) {
6351                         /* Find two nodes furthest removed from each other. */
6352                         if (node_distance(a, b) < n)
6353                                 continue;
6354
6355                         /* Is there an intermediary node between a and b? */
6356                         for_each_online_node(c) {
6357                                 if (node_distance(a, c) < n &&
6358                                     node_distance(b, c) < n) {
6359                                         sched_numa_topology_type =
6360                                                         NUMA_GLUELESS_MESH;
6361                                         return;
6362                                 }
6363                         }
6364
6365                         sched_numa_topology_type = NUMA_BACKPLANE;
6366                         return;
6367                 }
6368         }
6369 }
6370
6371 static void sched_init_numa(void)
6372 {
6373         int next_distance, curr_distance = node_distance(0, 0);
6374         struct sched_domain_topology_level *tl;
6375         int level = 0;
6376         int i, j, k;
6377
6378         sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6379         if (!sched_domains_numa_distance)
6380                 return;
6381
6382         /*
6383          * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6384          * unique distances in the node_distance() table.
6385          *
6386          * Assumes node_distance(0,j) includes all distances in
6387          * node_distance(i,j) in order to avoid cubic time.
6388          */
6389         next_distance = curr_distance;
6390         for (i = 0; i < nr_node_ids; i++) {
6391                 for (j = 0; j < nr_node_ids; j++) {
6392                         for (k = 0; k < nr_node_ids; k++) {
6393                                 int distance = node_distance(i, k);
6394
6395                                 if (distance > curr_distance &&
6396                                     (distance < next_distance ||
6397                                      next_distance == curr_distance))
6398                                         next_distance = distance;
6399
6400                                 /*
6401                                  * While not a strong assumption it would be nice to know
6402                                  * about cases where if node A is connected to B, B is not
6403                                  * equally connected to A.
6404                                  */
6405                                 if (sched_debug() && node_distance(k, i) != distance)
6406                                         sched_numa_warn("Node-distance not symmetric");
6407
6408                                 if (sched_debug() && i && !find_numa_distance(distance))
6409                                         sched_numa_warn("Node-0 not representative");
6410                         }
6411                         if (next_distance != curr_distance) {
6412                                 sched_domains_numa_distance[level++] = next_distance;
6413                                 sched_domains_numa_levels = level;
6414                                 curr_distance = next_distance;
6415                         } else break;
6416                 }
6417
6418                 /*
6419                  * In case of sched_debug() we verify the above assumption.
6420                  */
6421                 if (!sched_debug())
6422                         break;
6423         }
6424
6425         if (!level)
6426                 return;
6427
6428         /*
6429          * 'level' contains the number of unique distances, excluding the
6430          * identity distance node_distance(i,i).
6431          *
6432          * The sched_domains_numa_distance[] array includes the actual distance
6433          * numbers.
6434          */
6435
6436         /*
6437          * Here, we should temporarily reset sched_domains_numa_levels to 0.
6438          * If it fails to allocate memory for array sched_domains_numa_masks[][],
6439          * the array will contain less then 'level' members. This could be
6440          * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6441          * in other functions.
6442          *
6443          * We reset it to 'level' at the end of this function.
6444          */
6445         sched_domains_numa_levels = 0;
6446
6447         sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6448         if (!sched_domains_numa_masks)
6449                 return;
6450
6451         /*
6452          * Now for each level, construct a mask per node which contains all
6453          * cpus of nodes that are that many hops away from us.
6454          */
6455         for (i = 0; i < level; i++) {
6456                 sched_domains_numa_masks[i] =
6457                         kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6458                 if (!sched_domains_numa_masks[i])
6459                         return;
6460
6461                 for (j = 0; j < nr_node_ids; j++) {
6462                         struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6463                         if (!mask)
6464                                 return;
6465
6466                         sched_domains_numa_masks[i][j] = mask;
6467
6468                         for (k = 0; k < nr_node_ids; k++) {
6469                                 if (node_distance(j, k) > sched_domains_numa_distance[i])
6470                                         continue;
6471
6472                                 cpumask_or(mask, mask, cpumask_of_node(k));
6473                         }
6474                 }
6475         }
6476
6477         /* Compute default topology size */
6478         for (i = 0; sched_domain_topology[i].mask; i++);
6479
6480         tl = kzalloc((i + level + 1) *
6481                         sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6482         if (!tl)
6483                 return;
6484
6485         /*
6486          * Copy the default topology bits..
6487          */
6488         for (i = 0; sched_domain_topology[i].mask; i++)
6489                 tl[i] = sched_domain_topology[i];
6490
6491         /*
6492          * .. and append 'j' levels of NUMA goodness.
6493          */
6494         for (j = 0; j < level; i++, j++) {
6495                 tl[i] = (struct sched_domain_topology_level){
6496                         .mask = sd_numa_mask,
6497                         .sd_flags = cpu_numa_flags,
6498                         .flags = SDTL_OVERLAP,
6499                         .numa_level = j,
6500                         SD_INIT_NAME(NUMA)
6501                 };
6502         }
6503
6504         sched_domain_topology = tl;
6505
6506         sched_domains_numa_levels = level;
6507         sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6508
6509         init_numa_topology_type();
6510 }
6511
6512 static void sched_domains_numa_masks_set(int cpu)
6513 {
6514         int i, j;
6515         int node = cpu_to_node(cpu);
6516
6517         for (i = 0; i < sched_domains_numa_levels; i++) {
6518                 for (j = 0; j < nr_node_ids; j++) {
6519                         if (node_distance(j, node) <= sched_domains_numa_distance[i])
6520                                 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6521                 }
6522         }
6523 }
6524
6525 static void sched_domains_numa_masks_clear(int cpu)
6526 {
6527         int i, j;
6528         for (i = 0; i < sched_domains_numa_levels; i++) {
6529                 for (j = 0; j < nr_node_ids; j++)
6530                         cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6531         }
6532 }
6533
6534 /*
6535  * Update sched_domains_numa_masks[level][node] array when new cpus
6536  * are onlined.
6537  */
6538 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6539                                            unsigned long action,
6540                                            void *hcpu)
6541 {
6542         int cpu = (long)hcpu;
6543
6544         switch (action & ~CPU_TASKS_FROZEN) {
6545         case CPU_ONLINE:
6546                 sched_domains_numa_masks_set(cpu);
6547                 break;
6548
6549         case CPU_DEAD:
6550                 sched_domains_numa_masks_clear(cpu);
6551                 break;
6552
6553         default:
6554                 return NOTIFY_DONE;
6555         }
6556
6557         return NOTIFY_OK;
6558 }
6559 #else
6560 static inline void sched_init_numa(void)
6561 {
6562 }
6563
6564 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6565                                            unsigned long action,
6566                                            void *hcpu)
6567 {
6568         return 0;
6569 }
6570 #endif /* CONFIG_NUMA */
6571
6572 static int __sdt_alloc(const struct cpumask *cpu_map)
6573 {
6574         struct sched_domain_topology_level *tl;
6575         int j;
6576
6577         for_each_sd_topology(tl) {
6578                 struct sd_data *sdd = &tl->data;
6579
6580                 sdd->sd = alloc_percpu(struct sched_domain *);
6581                 if (!sdd->sd)
6582                         return -ENOMEM;
6583
6584                 sdd->sg = alloc_percpu(struct sched_group *);
6585                 if (!sdd->sg)
6586                         return -ENOMEM;
6587
6588                 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6589                 if (!sdd->sgc)
6590                         return -ENOMEM;
6591
6592                 for_each_cpu(j, cpu_map) {
6593                         struct sched_domain *sd;
6594                         struct sched_group *sg;
6595                         struct sched_group_capacity *sgc;
6596
6597                         sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6598                                         GFP_KERNEL, cpu_to_node(j));
6599                         if (!sd)
6600                                 return -ENOMEM;
6601
6602                         *per_cpu_ptr(sdd->sd, j) = sd;
6603
6604                         sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6605                                         GFP_KERNEL, cpu_to_node(j));
6606                         if (!sg)
6607                                 return -ENOMEM;
6608
6609                         sg->next = sg;
6610
6611                         *per_cpu_ptr(sdd->sg, j) = sg;
6612
6613                         sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6614                                         GFP_KERNEL, cpu_to_node(j));
6615                         if (!sgc)
6616                                 return -ENOMEM;
6617
6618                         *per_cpu_ptr(sdd->sgc, j) = sgc;
6619                 }
6620         }
6621
6622         return 0;
6623 }
6624
6625 static void __sdt_free(const struct cpumask *cpu_map)
6626 {
6627         struct sched_domain_topology_level *tl;
6628         int j;
6629
6630         for_each_sd_topology(tl) {
6631                 struct sd_data *sdd = &tl->data;
6632
6633                 for_each_cpu(j, cpu_map) {
6634                         struct sched_domain *sd;
6635
6636                         if (sdd->sd) {
6637                                 sd = *per_cpu_ptr(sdd->sd, j);
6638                                 if (sd && (sd->flags & SD_OVERLAP))
6639                                         free_sched_groups(sd->groups, 0);
6640                                 kfree(*per_cpu_ptr(sdd->sd, j));
6641                         }
6642
6643                         if (sdd->sg)
6644                                 kfree(*per_cpu_ptr(sdd->sg, j));
6645                         if (sdd->sgc)
6646                                 kfree(*per_cpu_ptr(sdd->sgc, j));
6647                 }
6648                 free_percpu(sdd->sd);
6649                 sdd->sd = NULL;
6650                 free_percpu(sdd->sg);
6651                 sdd->sg = NULL;
6652                 free_percpu(sdd->sgc);
6653                 sdd->sgc = NULL;
6654         }
6655 }
6656
6657 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6658                 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6659                 struct sched_domain *child, int cpu)
6660 {
6661         struct sched_domain *sd = sd_init(tl, cpu);
6662         if (!sd)
6663                 return child;
6664
6665         cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6666         if (child) {
6667                 sd->level = child->level + 1;
6668                 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6669                 child->parent = sd;
6670                 sd->child = child;
6671
6672                 if (!cpumask_subset(sched_domain_span(child),
6673                                     sched_domain_span(sd))) {
6674                         pr_err("BUG: arch topology borken\n");
6675 #ifdef CONFIG_SCHED_DEBUG
6676                         pr_err("     the %s domain not a subset of the %s domain\n",
6677                                         child->name, sd->name);
6678 #endif
6679                         /* Fixup, ensure @sd has at least @child cpus. */
6680                         cpumask_or(sched_domain_span(sd),
6681                                    sched_domain_span(sd),
6682                                    sched_domain_span(child));
6683                 }
6684
6685         }
6686         set_domain_attribute(sd, attr);
6687
6688         return sd;
6689 }
6690
6691 /*
6692  * Build sched domains for a given set of cpus and attach the sched domains
6693  * to the individual cpus
6694  */
6695 static int build_sched_domains(const struct cpumask *cpu_map,
6696                                struct sched_domain_attr *attr)
6697 {
6698         enum s_alloc alloc_state;
6699         struct sched_domain *sd;
6700         struct s_data d;
6701         int i, ret = -ENOMEM;
6702
6703         alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6704         if (alloc_state != sa_rootdomain)
6705                 goto error;
6706
6707         /* Set up domains for cpus specified by the cpu_map. */
6708         for_each_cpu(i, cpu_map) {
6709                 struct sched_domain_topology_level *tl;
6710
6711                 sd = NULL;
6712                 for_each_sd_topology(tl) {
6713                         sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6714                         if (tl == sched_domain_topology)
6715                                 *per_cpu_ptr(d.sd, i) = sd;
6716                         if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6717                                 sd->flags |= SD_OVERLAP;
6718                         if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6719                                 break;
6720                 }
6721         }
6722
6723         /* Build the groups for the domains */
6724         for_each_cpu(i, cpu_map) {
6725                 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6726                         sd->span_weight = cpumask_weight(sched_domain_span(sd));
6727                         if (sd->flags & SD_OVERLAP) {
6728                                 if (build_overlap_sched_groups(sd, i))
6729                                         goto error;
6730                         } else {
6731                                 if (build_sched_groups(sd, i))
6732                                         goto error;
6733                         }
6734                 }
6735         }
6736
6737         /* Calculate CPU capacity for physical packages and nodes */
6738         for (i = nr_cpumask_bits-1; i >= 0; i--) {
6739                 if (!cpumask_test_cpu(i, cpu_map))
6740                         continue;
6741
6742                 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6743                         claim_allocations(i, sd);
6744                         init_sched_groups_capacity(i, sd);
6745                 }
6746         }
6747
6748         /* Attach the domains */
6749         rcu_read_lock();
6750         for_each_cpu(i, cpu_map) {
6751                 sd = *per_cpu_ptr(d.sd, i);
6752                 cpu_attach_domain(sd, d.rd, i);
6753         }
6754         rcu_read_unlock();
6755
6756         ret = 0;
6757 error:
6758         __free_domain_allocs(&d, alloc_state, cpu_map);
6759         return ret;
6760 }
6761
6762 static cpumask_var_t *doms_cur; /* current sched domains */
6763 static int ndoms_cur;           /* number of sched domains in 'doms_cur' */
6764 static struct sched_domain_attr *dattr_cur;
6765                                 /* attribues of custom domains in 'doms_cur' */
6766
6767 /*
6768  * Special case: If a kmalloc of a doms_cur partition (array of
6769  * cpumask) fails, then fallback to a single sched domain,
6770  * as determined by the single cpumask fallback_doms.
6771  */
6772 static cpumask_var_t fallback_doms;
6773
6774 /*
6775  * arch_update_cpu_topology lets virtualized architectures update the
6776  * cpu core maps. It is supposed to return 1 if the topology changed
6777  * or 0 if it stayed the same.
6778  */
6779 int __weak arch_update_cpu_topology(void)
6780 {
6781         return 0;
6782 }
6783
6784 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6785 {
6786         int i;
6787         cpumask_var_t *doms;
6788
6789         doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6790         if (!doms)
6791                 return NULL;
6792         for (i = 0; i < ndoms; i++) {
6793                 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6794                         free_sched_domains(doms, i);
6795                         return NULL;
6796                 }
6797         }
6798         return doms;
6799 }
6800
6801 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6802 {
6803         unsigned int i;
6804         for (i = 0; i < ndoms; i++)
6805                 free_cpumask_var(doms[i]);
6806         kfree(doms);
6807 }
6808
6809 /*
6810  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6811  * For now this just excludes isolated cpus, but could be used to
6812  * exclude other special cases in the future.
6813  */
6814 static int init_sched_domains(const struct cpumask *cpu_map)
6815 {
6816         int err;
6817
6818         arch_update_cpu_topology();
6819         ndoms_cur = 1;
6820         doms_cur = alloc_sched_domains(ndoms_cur);
6821         if (!doms_cur)
6822                 doms_cur = &fallback_doms;
6823         cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6824         err = build_sched_domains(doms_cur[0], NULL);
6825         register_sched_domain_sysctl();
6826
6827         return err;
6828 }
6829
6830 /*
6831  * Detach sched domains from a group of cpus specified in cpu_map
6832  * These cpus will now be attached to the NULL domain
6833  */
6834 static void detach_destroy_domains(const struct cpumask *cpu_map)
6835 {
6836         int i;
6837
6838         rcu_read_lock();
6839         for_each_cpu(i, cpu_map)
6840                 cpu_attach_domain(NULL, &def_root_domain, i);
6841         rcu_read_unlock();
6842 }
6843
6844 /* handle null as "default" */
6845 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6846                         struct sched_domain_attr *new, int idx_new)
6847 {
6848         struct sched_domain_attr tmp;
6849
6850         /* fast path */
6851         if (!new && !cur)
6852                 return 1;
6853
6854         tmp = SD_ATTR_INIT;
6855         return !memcmp(cur ? (cur + idx_cur) : &tmp,
6856                         new ? (new + idx_new) : &tmp,
6857                         sizeof(struct sched_domain_attr));
6858 }
6859
6860 /*
6861  * Partition sched domains as specified by the 'ndoms_new'
6862  * cpumasks in the array doms_new[] of cpumasks. This compares
6863  * doms_new[] to the current sched domain partitioning, doms_cur[].
6864  * It destroys each deleted domain and builds each new domain.
6865  *
6866  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6867  * The masks don't intersect (don't overlap.) We should setup one
6868  * sched domain for each mask. CPUs not in any of the cpumasks will
6869  * not be load balanced. If the same cpumask appears both in the
6870  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6871  * it as it is.
6872  *
6873  * The passed in 'doms_new' should be allocated using
6874  * alloc_sched_domains.  This routine takes ownership of it and will
6875  * free_sched_domains it when done with it. If the caller failed the
6876  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6877  * and partition_sched_domains() will fallback to the single partition
6878  * 'fallback_doms', it also forces the domains to be rebuilt.
6879  *
6880  * If doms_new == NULL it will be replaced with cpu_online_mask.
6881  * ndoms_new == 0 is a special case for destroying existing domains,
6882  * and it will not create the default domain.
6883  *
6884  * Call with hotplug lock held
6885  */
6886 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6887                              struct sched_domain_attr *dattr_new)
6888 {
6889         int i, j, n;
6890         int new_topology;
6891
6892         mutex_lock(&sched_domains_mutex);
6893
6894         /* always unregister in case we don't destroy any domains */
6895         unregister_sched_domain_sysctl();
6896
6897         /* Let architecture update cpu core mappings. */
6898         new_topology = arch_update_cpu_topology();
6899
6900         n = doms_new ? ndoms_new : 0;
6901
6902         /* Destroy deleted domains */
6903         for (i = 0; i < ndoms_cur; i++) {
6904                 for (j = 0; j < n && !new_topology; j++) {
6905                         if (cpumask_equal(doms_cur[i], doms_new[j])
6906                             && dattrs_equal(dattr_cur, i, dattr_new, j))
6907                                 goto match1;
6908                 }
6909                 /* no match - a current sched domain not in new doms_new[] */
6910                 detach_destroy_domains(doms_cur[i]);
6911 match1:
6912                 ;
6913         }
6914
6915         n = ndoms_cur;
6916         if (doms_new == NULL) {
6917                 n = 0;
6918                 doms_new = &fallback_doms;
6919                 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6920                 WARN_ON_ONCE(dattr_new);
6921         }
6922
6923         /* Build new domains */
6924         for (i = 0; i < ndoms_new; i++) {
6925                 for (j = 0; j < n && !new_topology; j++) {
6926                         if (cpumask_equal(doms_new[i], doms_cur[j])
6927                             && dattrs_equal(dattr_new, i, dattr_cur, j))
6928                                 goto match2;
6929                 }
6930                 /* no match - add a new doms_new */
6931                 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6932 match2:
6933                 ;
6934         }
6935
6936         /* Remember the new sched domains */
6937         if (doms_cur != &fallback_doms)
6938                 free_sched_domains(doms_cur, ndoms_cur);
6939         kfree(dattr_cur);       /* kfree(NULL) is safe */
6940         doms_cur = doms_new;
6941         dattr_cur = dattr_new;
6942         ndoms_cur = ndoms_new;
6943
6944         register_sched_domain_sysctl();
6945
6946         mutex_unlock(&sched_domains_mutex);
6947 }
6948
6949 static int num_cpus_frozen;     /* used to mark begin/end of suspend/resume */
6950
6951 /*
6952  * Update cpusets according to cpu_active mask.  If cpusets are
6953  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6954  * around partition_sched_domains().
6955  *
6956  * If we come here as part of a suspend/resume, don't touch cpusets because we
6957  * want to restore it back to its original state upon resume anyway.
6958  */
6959 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6960                              void *hcpu)
6961 {
6962         switch (action) {
6963         case CPU_ONLINE_FROZEN:
6964         case CPU_DOWN_FAILED_FROZEN:
6965
6966                 /*
6967                  * num_cpus_frozen tracks how many CPUs are involved in suspend
6968                  * resume sequence. As long as this is not the last online
6969                  * operation in the resume sequence, just build a single sched
6970                  * domain, ignoring cpusets.
6971                  */
6972                 num_cpus_frozen--;
6973                 if (likely(num_cpus_frozen)) {
6974                         partition_sched_domains(1, NULL, NULL);
6975                         break;
6976                 }
6977
6978                 /*
6979                  * This is the last CPU online operation. So fall through and
6980                  * restore the original sched domains by considering the
6981                  * cpuset configurations.
6982                  */
6983
6984         case CPU_ONLINE:
6985                 cpuset_update_active_cpus(true);
6986                 break;
6987         default:
6988                 return NOTIFY_DONE;
6989         }
6990         return NOTIFY_OK;
6991 }
6992
6993 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6994                                void *hcpu)
6995 {
6996         unsigned long flags;
6997         long cpu = (long)hcpu;
6998         struct dl_bw *dl_b;
6999
7000         switch (action & ~CPU_TASKS_FROZEN) {
7001         case CPU_DOWN_PREPARE:
7002                 /* explicitly allow suspend */
7003                 if (!(action & CPU_TASKS_FROZEN)) {
7004                         bool overflow;
7005                         int cpus;
7006
7007                         rcu_read_lock_sched();
7008                         dl_b = dl_bw_of(cpu);
7009
7010                         raw_spin_lock_irqsave(&dl_b->lock, flags);
7011                         cpus = dl_bw_cpus(cpu);
7012                         overflow = __dl_overflow(dl_b, cpus, 0, 0);
7013                         raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7014
7015                         rcu_read_unlock_sched();
7016
7017                         if (overflow)
7018                                 return notifier_from_errno(-EBUSY);
7019                 }
7020                 cpuset_update_active_cpus(false);
7021                 break;
7022         case CPU_DOWN_PREPARE_FROZEN:
7023                 num_cpus_frozen++;
7024                 partition_sched_domains(1, NULL, NULL);
7025                 break;
7026         default:
7027                 return NOTIFY_DONE;
7028         }
7029         return NOTIFY_OK;
7030 }
7031
7032 void __init sched_init_smp(void)
7033 {
7034         cpumask_var_t non_isolated_cpus;
7035
7036         alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7037         alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7038
7039         sched_init_numa();
7040
7041         /*
7042          * There's no userspace yet to cause hotplug operations; hence all the
7043          * cpu masks are stable and all blatant races in the below code cannot
7044          * happen.
7045          */
7046         mutex_lock(&sched_domains_mutex);
7047         init_sched_domains(cpu_active_mask);
7048         cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7049         if (cpumask_empty(non_isolated_cpus))
7050                 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7051         mutex_unlock(&sched_domains_mutex);
7052
7053         hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7054         hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7055         hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7056
7057         init_hrtick();
7058
7059         /* Move init over to a non-isolated CPU */
7060         if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7061                 BUG();
7062         sched_init_granularity();
7063         free_cpumask_var(non_isolated_cpus);
7064
7065         init_sched_rt_class();
7066         init_sched_dl_class();
7067 }
7068 #else
7069 void __init sched_init_smp(void)
7070 {
7071         sched_init_granularity();
7072 }
7073 #endif /* CONFIG_SMP */
7074
7075 const_debug unsigned int sysctl_timer_migration = 1;
7076
7077 int in_sched_functions(unsigned long addr)
7078 {
7079         return in_lock_functions(addr) ||
7080                 (addr >= (unsigned long)__sched_text_start
7081                 && addr < (unsigned long)__sched_text_end);
7082 }
7083
7084 #ifdef CONFIG_CGROUP_SCHED
7085 /*
7086  * Default task group.
7087  * Every task in system belongs to this group at bootup.
7088  */
7089 struct task_group root_task_group;
7090 LIST_HEAD(task_groups);
7091 #endif
7092
7093 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7094
7095 void __init sched_init(void)
7096 {
7097         int i, j;
7098         unsigned long alloc_size = 0, ptr;
7099
7100 #ifdef CONFIG_FAIR_GROUP_SCHED
7101         alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7102 #endif
7103 #ifdef CONFIG_RT_GROUP_SCHED
7104         alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7105 #endif
7106         if (alloc_size) {
7107                 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7108
7109 #ifdef CONFIG_FAIR_GROUP_SCHED
7110                 root_task_group.se = (struct sched_entity **)ptr;
7111                 ptr += nr_cpu_ids * sizeof(void **);
7112
7113                 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7114                 ptr += nr_cpu_ids * sizeof(void **);
7115
7116 #endif /* CONFIG_FAIR_GROUP_SCHED */
7117 #ifdef CONFIG_RT_GROUP_SCHED
7118                 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7119                 ptr += nr_cpu_ids * sizeof(void **);
7120
7121                 root_task_group.rt_rq = (struct rt_rq **)ptr;
7122                 ptr += nr_cpu_ids * sizeof(void **);
7123
7124 #endif /* CONFIG_RT_GROUP_SCHED */
7125         }
7126 #ifdef CONFIG_CPUMASK_OFFSTACK
7127         for_each_possible_cpu(i) {
7128                 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7129                         cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7130         }
7131 #endif /* CONFIG_CPUMASK_OFFSTACK */
7132
7133         init_rt_bandwidth(&def_rt_bandwidth,
7134                         global_rt_period(), global_rt_runtime());
7135         init_dl_bandwidth(&def_dl_bandwidth,
7136                         global_rt_period(), global_rt_runtime());
7137
7138 #ifdef CONFIG_SMP
7139         init_defrootdomain();
7140 #endif
7141
7142 #ifdef CONFIG_RT_GROUP_SCHED
7143         init_rt_bandwidth(&root_task_group.rt_bandwidth,
7144                         global_rt_period(), global_rt_runtime());
7145 #endif /* CONFIG_RT_GROUP_SCHED */
7146
7147 #ifdef CONFIG_CGROUP_SCHED
7148         list_add(&root_task_group.list, &task_groups);
7149         INIT_LIST_HEAD(&root_task_group.children);
7150         INIT_LIST_HEAD(&root_task_group.siblings);
7151         autogroup_init(&init_task);
7152
7153 #endif /* CONFIG_CGROUP_SCHED */
7154
7155         for_each_possible_cpu(i) {
7156                 struct rq *rq;
7157
7158                 rq = cpu_rq(i);
7159                 raw_spin_lock_init(&rq->lock);
7160                 rq->nr_running = 0;
7161                 rq->calc_load_active = 0;
7162                 rq->calc_load_update = jiffies + LOAD_FREQ;
7163                 init_cfs_rq(&rq->cfs);
7164                 init_rt_rq(&rq->rt);
7165                 init_dl_rq(&rq->dl);
7166 #ifdef CONFIG_FAIR_GROUP_SCHED
7167                 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7168                 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7169                 /*
7170                  * How much cpu bandwidth does root_task_group get?
7171                  *
7172                  * In case of task-groups formed thr' the cgroup filesystem, it
7173                  * gets 100% of the cpu resources in the system. This overall
7174                  * system cpu resource is divided among the tasks of
7175                  * root_task_group and its child task-groups in a fair manner,
7176                  * based on each entity's (task or task-group's) weight
7177                  * (se->load.weight).
7178                  *
7179                  * In other words, if root_task_group has 10 tasks of weight
7180                  * 1024) and two child groups A0 and A1 (of weight 1024 each),
7181                  * then A0's share of the cpu resource is:
7182                  *
7183                  *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7184                  *
7185                  * We achieve this by letting root_task_group's tasks sit
7186                  * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7187                  */
7188                 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7189                 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7190 #endif /* CONFIG_FAIR_GROUP_SCHED */
7191
7192                 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7193 #ifdef CONFIG_RT_GROUP_SCHED
7194                 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7195 #endif
7196
7197                 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7198                         rq->cpu_load[j] = 0;
7199
7200                 rq->last_load_update_tick = jiffies;
7201
7202 #ifdef CONFIG_SMP
7203                 rq->sd = NULL;
7204                 rq->rd = NULL;
7205                 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7206                 rq->post_schedule = 0;
7207                 rq->active_balance = 0;
7208                 rq->next_balance = jiffies;
7209                 rq->push_cpu = 0;
7210                 rq->cpu = i;
7211                 rq->online = 0;
7212                 rq->idle_stamp = 0;
7213                 rq->avg_idle = 2*sysctl_sched_migration_cost;
7214                 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7215
7216                 INIT_LIST_HEAD(&rq->cfs_tasks);
7217
7218                 rq_attach_root(rq, &def_root_domain);
7219 #ifdef CONFIG_NO_HZ_COMMON
7220                 rq->nohz_flags = 0;
7221 #endif
7222 #ifdef CONFIG_NO_HZ_FULL
7223                 rq->last_sched_tick = 0;
7224 #endif
7225 #endif
7226                 init_rq_hrtick(rq);
7227                 atomic_set(&rq->nr_iowait, 0);
7228         }
7229
7230         set_load_weight(&init_task);
7231
7232 #ifdef CONFIG_PREEMPT_NOTIFIERS
7233         INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7234 #endif
7235
7236         /*
7237          * The boot idle thread does lazy MMU switching as well:
7238          */
7239         atomic_inc(&init_mm.mm_count);
7240         enter_lazy_tlb(&init_mm, current);
7241
7242         /*
7243          * During early bootup we pretend to be a normal task:
7244          */
7245         current->sched_class = &fair_sched_class;
7246
7247         /*
7248          * Make us the idle thread. Technically, schedule() should not be
7249          * called from this thread, however somewhere below it might be,
7250          * but because we are the idle thread, we just pick up running again
7251          * when this runqueue becomes "idle".
7252          */
7253         init_idle(current, smp_processor_id());
7254
7255         calc_load_update = jiffies + LOAD_FREQ;
7256
7257 #ifdef CONFIG_SMP
7258         zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7259         /* May be allocated at isolcpus cmdline parse time */
7260         if (cpu_isolated_map == NULL)
7261                 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7262         idle_thread_set_boot_cpu();
7263         set_cpu_rq_start_time();
7264 #endif
7265         init_sched_fair_class();
7266
7267         scheduler_running = 1;
7268 }
7269
7270 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7271 static inline int preempt_count_equals(int preempt_offset)
7272 {
7273         int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7274
7275         return (nested == preempt_offset);
7276 }
7277
7278 void __might_sleep(const char *file, int line, int preempt_offset)
7279 {
7280         /*
7281          * Blocking primitives will set (and therefore destroy) current->state,
7282          * since we will exit with TASK_RUNNING make sure we enter with it,
7283          * otherwise we will destroy state.
7284          */
7285         WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7286                         "do not call blocking ops when !TASK_RUNNING; "
7287                         "state=%lx set at [<%p>] %pS\n",
7288                         current->state,
7289                         (void *)current->task_state_change,
7290                         (void *)current->task_state_change);
7291
7292         ___might_sleep(file, line, preempt_offset);
7293 }
7294 EXPORT_SYMBOL(__might_sleep);
7295
7296 void ___might_sleep(const char *file, int line, int preempt_offset)
7297 {
7298         static unsigned long prev_jiffy;        /* ratelimiting */
7299
7300         rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7301         if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7302              !is_idle_task(current)) ||
7303             system_state != SYSTEM_RUNNING || oops_in_progress)
7304                 return;
7305         if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7306                 return;
7307         prev_jiffy = jiffies;
7308
7309         printk(KERN_ERR
7310                 "BUG: sleeping function called from invalid context at %s:%d\n",
7311                         file, line);
7312         printk(KERN_ERR
7313                 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7314                         in_atomic(), irqs_disabled(),
7315                         current->pid, current->comm);
7316
7317         if (task_stack_end_corrupted(current))
7318                 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7319
7320         debug_show_held_locks(current);
7321         if (irqs_disabled())
7322                 print_irqtrace_events(current);
7323 #ifdef CONFIG_DEBUG_PREEMPT
7324         if (!preempt_count_equals(preempt_offset)) {
7325                 pr_err("Preemption disabled at:");
7326                 print_ip_sym(current->preempt_disable_ip);
7327                 pr_cont("\n");
7328         }
7329 #endif
7330         dump_stack();
7331 }
7332 EXPORT_SYMBOL(___might_sleep);
7333 #endif
7334
7335 #ifdef CONFIG_MAGIC_SYSRQ
7336 static void normalize_task(struct rq *rq, struct task_struct *p)
7337 {
7338         const struct sched_class *prev_class = p->sched_class;
7339         struct sched_attr attr = {
7340                 .sched_policy = SCHED_NORMAL,
7341         };
7342         int old_prio = p->prio;
7343         int queued;
7344
7345         queued = task_on_rq_queued(p);
7346         if (queued)
7347                 dequeue_task(rq, p, 0);
7348         __setscheduler(rq, p, &attr);
7349         if (queued) {
7350                 enqueue_task(rq, p, 0);
7351                 resched_curr(rq);
7352         }
7353
7354         check_class_changed(rq, p, prev_class, old_prio);
7355 }
7356
7357 void normalize_rt_tasks(void)
7358 {
7359         struct task_struct *g, *p;
7360         unsigned long flags;
7361         struct rq *rq;
7362
7363         read_lock(&tasklist_lock);
7364         for_each_process_thread(g, p) {
7365                 /*
7366                  * Only normalize user tasks:
7367                  */
7368                 if (p->flags & PF_KTHREAD)
7369                         continue;
7370
7371                 p->se.exec_start                = 0;
7372 #ifdef CONFIG_SCHEDSTATS
7373                 p->se.statistics.wait_start     = 0;
7374                 p->se.statistics.sleep_start    = 0;
7375                 p->se.statistics.block_start    = 0;
7376 #endif
7377
7378                 if (!dl_task(p) && !rt_task(p)) {
7379                         /*
7380                          * Renice negative nice level userspace
7381                          * tasks back to 0:
7382                          */
7383                         if (task_nice(p) < 0)
7384                                 set_user_nice(p, 0);
7385                         continue;
7386                 }
7387
7388                 rq = task_rq_lock(p, &flags);
7389                 normalize_task(rq, p);
7390                 task_rq_unlock(rq, p, &flags);
7391         }
7392         read_unlock(&tasklist_lock);
7393 }
7394
7395 #endif /* CONFIG_MAGIC_SYSRQ */
7396
7397 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7398 /*
7399  * These functions are only useful for the IA64 MCA handling, or kdb.
7400  *
7401  * They can only be called when the whole system has been
7402  * stopped - every CPU needs to be quiescent, and no scheduling
7403  * activity can take place. Using them for anything else would
7404  * be a serious bug, and as a result, they aren't even visible
7405  * under any other configuration.
7406  */
7407
7408 /**
7409  * curr_task - return the current task for a given cpu.
7410  * @cpu: the processor in question.
7411  *
7412  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7413  *
7414  * Return: The current task for @cpu.
7415  */
7416 struct task_struct *curr_task(int cpu)
7417 {
7418         return cpu_curr(cpu);
7419 }
7420
7421 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7422
7423 #ifdef CONFIG_IA64
7424 /**
7425  * set_curr_task - set the current task for a given cpu.
7426  * @cpu: the processor in question.
7427  * @p: the task pointer to set.
7428  *
7429  * Description: This function must only be used when non-maskable interrupts
7430  * are serviced on a separate stack. It allows the architecture to switch the
7431  * notion of the current task on a cpu in a non-blocking manner. This function
7432  * must be called with all CPU's synchronized, and interrupts disabled, the
7433  * and caller must save the original value of the current task (see
7434  * curr_task() above) and restore that value before reenabling interrupts and
7435  * re-starting the system.
7436  *
7437  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7438  */
7439 void set_curr_task(int cpu, struct task_struct *p)
7440 {
7441         cpu_curr(cpu) = p;
7442 }
7443
7444 #endif
7445
7446 #ifdef CONFIG_CGROUP_SCHED
7447 /* task_group_lock serializes the addition/removal of task groups */
7448 static DEFINE_SPINLOCK(task_group_lock);
7449
7450 static void free_sched_group(struct task_group *tg)
7451 {
7452         free_fair_sched_group(tg);
7453         free_rt_sched_group(tg);
7454         autogroup_free(tg);
7455         kfree(tg);
7456 }
7457
7458 /* allocate runqueue etc for a new task group */
7459 struct task_group *sched_create_group(struct task_group *parent)
7460 {
7461         struct task_group *tg;
7462
7463         tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7464         if (!tg)
7465                 return ERR_PTR(-ENOMEM);
7466
7467         if (!alloc_fair_sched_group(tg, parent))
7468                 goto err;
7469
7470         if (!alloc_rt_sched_group(tg, parent))
7471                 goto err;
7472
7473         return tg;
7474
7475 err:
7476         free_sched_group(tg);
7477         return ERR_PTR(-ENOMEM);
7478 }
7479
7480 void sched_online_group(struct task_group *tg, struct task_group *parent)
7481 {
7482         unsigned long flags;
7483
7484         spin_lock_irqsave(&task_group_lock, flags);
7485         list_add_rcu(&tg->list, &task_groups);
7486
7487         WARN_ON(!parent); /* root should already exist */
7488
7489         tg->parent = parent;
7490         INIT_LIST_HEAD(&tg->children);
7491         list_add_rcu(&tg->siblings, &parent->children);
7492         spin_unlock_irqrestore(&task_group_lock, flags);
7493 }
7494
7495 /* rcu callback to free various structures associated with a task group */
7496 static void free_sched_group_rcu(struct rcu_head *rhp)
7497 {
7498         /* now it should be safe to free those cfs_rqs */
7499         free_sched_group(container_of(rhp, struct task_group, rcu));
7500 }
7501
7502 /* Destroy runqueue etc associated with a task group */
7503 void sched_destroy_group(struct task_group *tg)
7504 {
7505         /* wait for possible concurrent references to cfs_rqs complete */
7506         call_rcu(&tg->rcu, free_sched_group_rcu);
7507 }
7508
7509 void sched_offline_group(struct task_group *tg)
7510 {
7511         unsigned long flags;
7512         int i;
7513
7514         /* end participation in shares distribution */
7515         for_each_possible_cpu(i)
7516                 unregister_fair_sched_group(tg, i);
7517
7518         spin_lock_irqsave(&task_group_lock, flags);
7519         list_del_rcu(&tg->list);
7520         list_del_rcu(&tg->siblings);
7521         spin_unlock_irqrestore(&task_group_lock, flags);
7522 }
7523
7524 /* change task's runqueue when it moves between groups.
7525  *      The caller of this function should have put the task in its new group
7526  *      by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7527  *      reflect its new group.
7528  */
7529 void sched_move_task(struct task_struct *tsk)
7530 {
7531         struct task_group *tg;
7532         int queued, running;
7533         unsigned long flags;
7534         struct rq *rq;
7535
7536         rq = task_rq_lock(tsk, &flags);
7537
7538         running = task_current(rq, tsk);
7539         queued = task_on_rq_queued(tsk);
7540
7541         if (queued)
7542                 dequeue_task(rq, tsk, 0);
7543         if (unlikely(running))
7544                 put_prev_task(rq, tsk);
7545
7546         /*
7547          * All callers are synchronized by task_rq_lock(); we do not use RCU
7548          * which is pointless here. Thus, we pass "true" to task_css_check()
7549          * to prevent lockdep warnings.
7550          */
7551         tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7552                           struct task_group, css);
7553         tg = autogroup_task_group(tsk, tg);
7554         tsk->sched_task_group = tg;
7555
7556 #ifdef CONFIG_FAIR_GROUP_SCHED
7557         if (tsk->sched_class->task_move_group)
7558                 tsk->sched_class->task_move_group(tsk, queued);
7559         else
7560 #endif
7561                 set_task_rq(tsk, task_cpu(tsk));
7562
7563         if (unlikely(running))
7564                 tsk->sched_class->set_curr_task(rq);
7565         if (queued)
7566                 enqueue_task(rq, tsk, 0);
7567
7568         task_rq_unlock(rq, tsk, &flags);
7569 }
7570 #endif /* CONFIG_CGROUP_SCHED */
7571
7572 #ifdef CONFIG_RT_GROUP_SCHED
7573 /*
7574  * Ensure that the real time constraints are schedulable.
7575  */
7576 static DEFINE_MUTEX(rt_constraints_mutex);
7577
7578 /* Must be called with tasklist_lock held */
7579 static inline int tg_has_rt_tasks(struct task_group *tg)
7580 {
7581         struct task_struct *g, *p;
7582
7583         /*
7584          * Autogroups do not have RT tasks; see autogroup_create().
7585          */
7586         if (task_group_is_autogroup(tg))
7587                 return 0;
7588
7589         for_each_process_thread(g, p) {
7590                 if (rt_task(p) && task_group(p) == tg)
7591                         return 1;
7592         }
7593
7594         return 0;
7595 }
7596
7597 struct rt_schedulable_data {
7598         struct task_group *tg;
7599         u64 rt_period;
7600         u64 rt_runtime;
7601 };
7602
7603 static int tg_rt_schedulable(struct task_group *tg, void *data)
7604 {
7605         struct rt_schedulable_data *d = data;
7606         struct task_group *child;
7607         unsigned long total, sum = 0;
7608         u64 period, runtime;
7609
7610         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7611         runtime = tg->rt_bandwidth.rt_runtime;
7612
7613         if (tg == d->tg) {
7614                 period = d->rt_period;
7615                 runtime = d->rt_runtime;
7616         }
7617
7618         /*
7619          * Cannot have more runtime than the period.
7620          */
7621         if (runtime > period && runtime != RUNTIME_INF)
7622                 return -EINVAL;
7623
7624         /*
7625          * Ensure we don't starve existing RT tasks.
7626          */
7627         if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7628                 return -EBUSY;
7629
7630         total = to_ratio(period, runtime);
7631
7632         /*
7633          * Nobody can have more than the global setting allows.
7634          */
7635         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7636                 return -EINVAL;
7637
7638         /*
7639          * The sum of our children's runtime should not exceed our own.
7640          */
7641         list_for_each_entry_rcu(child, &tg->children, siblings) {
7642                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7643                 runtime = child->rt_bandwidth.rt_runtime;
7644
7645                 if (child == d->tg) {
7646                         period = d->rt_period;
7647                         runtime = d->rt_runtime;
7648                 }
7649
7650                 sum += to_ratio(period, runtime);
7651         }
7652
7653         if (sum > total)
7654                 return -EINVAL;
7655
7656         return 0;
7657 }
7658
7659 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7660 {
7661         int ret;
7662
7663         struct rt_schedulable_data data = {
7664                 .tg = tg,
7665                 .rt_period = period,
7666                 .rt_runtime = runtime,
7667         };
7668
7669         rcu_read_lock();
7670         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7671         rcu_read_unlock();
7672
7673         return ret;
7674 }
7675
7676 static int tg_set_rt_bandwidth(struct task_group *tg,
7677                 u64 rt_period, u64 rt_runtime)
7678 {
7679         int i, err = 0;
7680
7681         /*
7682          * Disallowing the root group RT runtime is BAD, it would disallow the
7683          * kernel creating (and or operating) RT threads.
7684          */
7685         if (tg == &root_task_group && rt_runtime == 0)
7686                 return -EINVAL;
7687
7688         /* No period doesn't make any sense. */
7689         if (rt_period == 0)
7690                 return -EINVAL;
7691
7692         mutex_lock(&rt_constraints_mutex);
7693         read_lock(&tasklist_lock);
7694         err = __rt_schedulable(tg, rt_period, rt_runtime);
7695         if (err)
7696                 goto unlock;
7697
7698         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7699         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7700         tg->rt_bandwidth.rt_runtime = rt_runtime;
7701
7702         for_each_possible_cpu(i) {
7703                 struct rt_rq *rt_rq = tg->rt_rq[i];
7704
7705                 raw_spin_lock(&rt_rq->rt_runtime_lock);
7706                 rt_rq->rt_runtime = rt_runtime;
7707                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7708         }
7709         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7710 unlock:
7711         read_unlock(&tasklist_lock);
7712         mutex_unlock(&rt_constraints_mutex);
7713
7714         return err;
7715 }
7716
7717 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7718 {
7719         u64 rt_runtime, rt_period;
7720
7721         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7722         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7723         if (rt_runtime_us < 0)
7724                 rt_runtime = RUNTIME_INF;
7725
7726         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7727 }
7728
7729 static long sched_group_rt_runtime(struct task_group *tg)
7730 {
7731         u64 rt_runtime_us;
7732
7733         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7734                 return -1;
7735
7736         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7737         do_div(rt_runtime_us, NSEC_PER_USEC);
7738         return rt_runtime_us;
7739 }
7740
7741 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7742 {
7743         u64 rt_runtime, rt_period;
7744
7745         rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7746         rt_runtime = tg->rt_bandwidth.rt_runtime;
7747
7748         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7749 }
7750
7751 static long sched_group_rt_period(struct task_group *tg)
7752 {
7753         u64 rt_period_us;
7754
7755         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7756         do_div(rt_period_us, NSEC_PER_USEC);
7757         return rt_period_us;
7758 }
7759 #endif /* CONFIG_RT_GROUP_SCHED */
7760
7761 #ifdef CONFIG_RT_GROUP_SCHED
7762 static int sched_rt_global_constraints(void)
7763 {
7764         int ret = 0;
7765
7766         mutex_lock(&rt_constraints_mutex);
7767         read_lock(&tasklist_lock);
7768         ret = __rt_schedulable(NULL, 0, 0);
7769         read_unlock(&tasklist_lock);
7770         mutex_unlock(&rt_constraints_mutex);
7771
7772         return ret;
7773 }
7774
7775 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7776 {
7777         /* Don't accept realtime tasks when there is no way for them to run */
7778         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7779                 return 0;
7780
7781         return 1;
7782 }
7783
7784 #else /* !CONFIG_RT_GROUP_SCHED */
7785 static int sched_rt_global_constraints(void)
7786 {
7787         unsigned long flags;
7788         int i, ret = 0;
7789
7790         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7791         for_each_possible_cpu(i) {
7792                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7793
7794                 raw_spin_lock(&rt_rq->rt_runtime_lock);
7795                 rt_rq->rt_runtime = global_rt_runtime();
7796                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7797         }
7798         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7799
7800         return ret;
7801 }
7802 #endif /* CONFIG_RT_GROUP_SCHED */
7803
7804 static int sched_dl_global_validate(void)
7805 {
7806         u64 runtime = global_rt_runtime();
7807         u64 period = global_rt_period();
7808         u64 new_bw = to_ratio(period, runtime);
7809         struct dl_bw *dl_b;
7810         int cpu, ret = 0;
7811         unsigned long flags;
7812
7813         /*
7814          * Here we want to check the bandwidth not being set to some
7815          * value smaller than the currently allocated bandwidth in
7816          * any of the root_domains.
7817          *
7818          * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7819          * cycling on root_domains... Discussion on different/better
7820          * solutions is welcome!
7821          */
7822         for_each_possible_cpu(cpu) {
7823                 rcu_read_lock_sched();
7824                 dl_b = dl_bw_of(cpu);
7825
7826                 raw_spin_lock_irqsave(&dl_b->lock, flags);
7827                 if (new_bw < dl_b->total_bw)
7828                         ret = -EBUSY;
7829                 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7830
7831                 rcu_read_unlock_sched();
7832
7833                 if (ret)
7834                         break;
7835         }
7836
7837         return ret;
7838 }
7839
7840 static void sched_dl_do_global(void)
7841 {
7842         u64 new_bw = -1;
7843         struct dl_bw *dl_b;
7844         int cpu;
7845         unsigned long flags;
7846
7847         def_dl_bandwidth.dl_period = global_rt_period();
7848         def_dl_bandwidth.dl_runtime = global_rt_runtime();
7849
7850         if (global_rt_runtime() != RUNTIME_INF)
7851                 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7852
7853         /*
7854          * FIXME: As above...
7855          */
7856         for_each_possible_cpu(cpu) {
7857                 rcu_read_lock_sched();
7858                 dl_b = dl_bw_of(cpu);
7859
7860                 raw_spin_lock_irqsave(&dl_b->lock, flags);
7861                 dl_b->bw = new_bw;
7862                 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7863
7864                 rcu_read_unlock_sched();
7865         }
7866 }
7867
7868 static int sched_rt_global_validate(void)
7869 {
7870         if (sysctl_sched_rt_period <= 0)
7871                 return -EINVAL;
7872
7873         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7874                 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7875                 return -EINVAL;
7876
7877         return 0;
7878 }
7879
7880 static void sched_rt_do_global(void)
7881 {
7882         def_rt_bandwidth.rt_runtime = global_rt_runtime();
7883         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7884 }
7885
7886 int sched_rt_handler(struct ctl_table *table, int write,
7887                 void __user *buffer, size_t *lenp,
7888                 loff_t *ppos)
7889 {
7890         int old_period, old_runtime;
7891         static DEFINE_MUTEX(mutex);
7892         int ret;
7893
7894         mutex_lock(&mutex);
7895         old_period = sysctl_sched_rt_period;
7896         old_runtime = sysctl_sched_rt_runtime;
7897
7898         ret = proc_dointvec(table, write, buffer, lenp, ppos);
7899
7900         if (!ret && write) {
7901                 ret = sched_rt_global_validate();
7902                 if (ret)
7903                         goto undo;
7904
7905                 ret = sched_dl_global_validate();
7906                 if (ret)
7907                         goto undo;
7908
7909                 ret = sched_rt_global_constraints();
7910                 if (ret)
7911                         goto undo;
7912
7913                 sched_rt_do_global();
7914                 sched_dl_do_global();
7915         }
7916         if (0) {
7917 undo:
7918                 sysctl_sched_rt_period = old_period;
7919                 sysctl_sched_rt_runtime = old_runtime;
7920         }
7921         mutex_unlock(&mutex);
7922
7923         return ret;
7924 }
7925
7926 int sched_rr_handler(struct ctl_table *table, int write,
7927                 void __user *buffer, size_t *lenp,
7928                 loff_t *ppos)
7929 {
7930         int ret;
7931         static DEFINE_MUTEX(mutex);
7932
7933         mutex_lock(&mutex);
7934         ret = proc_dointvec(table, write, buffer, lenp, ppos);
7935         /* make sure that internally we keep jiffies */
7936         /* also, writing zero resets timeslice to default */
7937         if (!ret && write) {
7938                 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7939                         RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7940         }
7941         mutex_unlock(&mutex);
7942         return ret;
7943 }
7944
7945 #ifdef CONFIG_CGROUP_SCHED
7946
7947 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7948 {
7949         return css ? container_of(css, struct task_group, css) : NULL;
7950 }
7951
7952 static struct cgroup_subsys_state *
7953 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7954 {
7955         struct task_group *parent = css_tg(parent_css);
7956         struct task_group *tg;
7957
7958         if (!parent) {
7959                 /* This is early initialization for the top cgroup */
7960                 return &root_task_group.css;
7961         }
7962
7963         tg = sched_create_group(parent);
7964         if (IS_ERR(tg))
7965                 return ERR_PTR(-ENOMEM);
7966
7967         return &tg->css;
7968 }
7969
7970 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7971 {
7972         struct task_group *tg = css_tg(css);
7973         struct task_group *parent = css_tg(css->parent);
7974
7975         if (parent)
7976                 sched_online_group(tg, parent);
7977         return 0;
7978 }
7979
7980 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7981 {
7982         struct task_group *tg = css_tg(css);
7983
7984         sched_destroy_group(tg);
7985 }
7986
7987 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7988 {
7989         struct task_group *tg = css_tg(css);
7990
7991         sched_offline_group(tg);
7992 }
7993
7994 static void cpu_cgroup_fork(struct task_struct *task)
7995 {
7996         sched_move_task(task);
7997 }
7998
7999 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8000                                  struct cgroup_taskset *tset)
8001 {
8002         struct task_struct *task;
8003
8004         cgroup_taskset_for_each(task, tset) {
8005 #ifdef CONFIG_RT_GROUP_SCHED
8006                 if (!sched_rt_can_attach(css_tg(css), task))
8007                         return -EINVAL;
8008 #else
8009                 /* We don't support RT-tasks being in separate groups */
8010                 if (task->sched_class != &fair_sched_class)
8011                         return -EINVAL;
8012 #endif
8013         }
8014         return 0;
8015 }
8016
8017 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8018                               struct cgroup_taskset *tset)
8019 {
8020         struct task_struct *task;
8021
8022         cgroup_taskset_for_each(task, tset)
8023                 sched_move_task(task);
8024 }
8025
8026 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8027                             struct cgroup_subsys_state *old_css,
8028                             struct task_struct *task)
8029 {
8030         /*
8031          * cgroup_exit() is called in the copy_process() failure path.
8032          * Ignore this case since the task hasn't ran yet, this avoids
8033          * trying to poke a half freed task state from generic code.
8034          */
8035         if (!(task->flags & PF_EXITING))
8036                 return;
8037
8038         sched_move_task(task);
8039 }
8040
8041 #ifdef CONFIG_FAIR_GROUP_SCHED
8042 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8043                                 struct cftype *cftype, u64 shareval)
8044 {
8045         return sched_group_set_shares(css_tg(css), scale_load(shareval));
8046 }
8047
8048 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8049                                struct cftype *cft)
8050 {
8051         struct task_group *tg = css_tg(css);
8052
8053         return (u64) scale_load_down(tg->shares);
8054 }
8055
8056 #ifdef CONFIG_CFS_BANDWIDTH
8057 static DEFINE_MUTEX(cfs_constraints_mutex);
8058
8059 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8060 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8061
8062 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8063
8064 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8065 {
8066         int i, ret = 0, runtime_enabled, runtime_was_enabled;
8067         struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8068
8069         if (tg == &root_task_group)
8070                 return -EINVAL;
8071
8072         /*
8073          * Ensure we have at some amount of bandwidth every period.  This is
8074          * to prevent reaching a state of large arrears when throttled via
8075          * entity_tick() resulting in prolonged exit starvation.
8076          */
8077         if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8078                 return -EINVAL;
8079
8080         /*
8081          * Likewise, bound things on the otherside by preventing insane quota
8082          * periods.  This also allows us to normalize in computing quota
8083          * feasibility.
8084          */
8085         if (period > max_cfs_quota_period)
8086                 return -EINVAL;
8087
8088         /*
8089          * Prevent race between setting of cfs_rq->runtime_enabled and
8090          * unthrottle_offline_cfs_rqs().
8091          */
8092         get_online_cpus();
8093         mutex_lock(&cfs_constraints_mutex);
8094         ret = __cfs_schedulable(tg, period, quota);
8095         if (ret)
8096                 goto out_unlock;
8097
8098         runtime_enabled = quota != RUNTIME_INF;
8099         runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8100         /*
8101          * If we need to toggle cfs_bandwidth_used, off->on must occur
8102          * before making related changes, and on->off must occur afterwards
8103          */
8104         if (runtime_enabled && !runtime_was_enabled)
8105                 cfs_bandwidth_usage_inc();
8106         raw_spin_lock_irq(&cfs_b->lock);
8107         cfs_b->period = ns_to_ktime(period);
8108         cfs_b->quota = quota;
8109
8110         __refill_cfs_bandwidth_runtime(cfs_b);
8111         /* restart the period timer (if active) to handle new period expiry */
8112         if (runtime_enabled && cfs_b->timer_active) {
8113                 /* force a reprogram */
8114                 __start_cfs_bandwidth(cfs_b, true);
8115         }
8116         raw_spin_unlock_irq(&cfs_b->lock);
8117
8118         for_each_online_cpu(i) {
8119                 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8120                 struct rq *rq = cfs_rq->rq;
8121
8122                 raw_spin_lock_irq(&rq->lock);
8123                 cfs_rq->runtime_enabled = runtime_enabled;
8124                 cfs_rq->runtime_remaining = 0;
8125
8126                 if (cfs_rq->throttled)
8127                         unthrottle_cfs_rq(cfs_rq);
8128                 raw_spin_unlock_irq(&rq->lock);
8129         }
8130         if (runtime_was_enabled && !runtime_enabled)
8131                 cfs_bandwidth_usage_dec();
8132 out_unlock:
8133         mutex_unlock(&cfs_constraints_mutex);
8134         put_online_cpus();
8135
8136         return ret;
8137 }
8138
8139 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8140 {
8141         u64 quota, period;
8142
8143         period = ktime_to_ns(tg->cfs_bandwidth.period);
8144         if (cfs_quota_us < 0)
8145                 quota = RUNTIME_INF;
8146         else
8147                 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8148
8149         return tg_set_cfs_bandwidth(tg, period, quota);
8150 }
8151
8152 long tg_get_cfs_quota(struct task_group *tg)
8153 {
8154         u64 quota_us;
8155
8156         if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8157                 return -1;
8158
8159         quota_us = tg->cfs_bandwidth.quota;
8160         do_div(quota_us, NSEC_PER_USEC);
8161
8162         return quota_us;
8163 }
8164
8165 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8166 {
8167         u64 quota, period;
8168
8169         period = (u64)cfs_period_us * NSEC_PER_USEC;
8170         quota = tg->cfs_bandwidth.quota;
8171
8172         return tg_set_cfs_bandwidth(tg, period, quota);
8173 }
8174
8175 long tg_get_cfs_period(struct task_group *tg)
8176 {
8177         u64 cfs_period_us;
8178
8179         cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8180         do_div(cfs_period_us, NSEC_PER_USEC);
8181
8182         return cfs_period_us;
8183 }
8184
8185 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8186                                   struct cftype *cft)
8187 {
8188         return tg_get_cfs_quota(css_tg(css));
8189 }
8190
8191 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8192                                    struct cftype *cftype, s64 cfs_quota_us)
8193 {
8194         return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8195 }
8196
8197 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8198                                    struct cftype *cft)
8199 {
8200         return tg_get_cfs_period(css_tg(css));
8201 }
8202
8203 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8204                                     struct cftype *cftype, u64 cfs_period_us)
8205 {
8206         return tg_set_cfs_period(css_tg(css), cfs_period_us);
8207 }
8208
8209 struct cfs_schedulable_data {
8210         struct task_group *tg;
8211         u64 period, quota;
8212 };
8213
8214 /*
8215  * normalize group quota/period to be quota/max_period
8216  * note: units are usecs
8217  */
8218 static u64 normalize_cfs_quota(struct task_group *tg,
8219                                struct cfs_schedulable_data *d)
8220 {
8221         u64 quota, period;
8222
8223         if (tg == d->tg) {
8224                 period = d->period;
8225                 quota = d->quota;
8226         } else {
8227                 period = tg_get_cfs_period(tg);
8228                 quota = tg_get_cfs_quota(tg);
8229         }
8230
8231         /* note: these should typically be equivalent */
8232         if (quota == RUNTIME_INF || quota == -1)
8233                 return RUNTIME_INF;
8234
8235         return to_ratio(period, quota);
8236 }
8237
8238 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8239 {
8240         struct cfs_schedulable_data *d = data;
8241         struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8242         s64 quota = 0, parent_quota = -1;
8243
8244         if (!tg->parent) {
8245                 quota = RUNTIME_INF;
8246         } else {
8247                 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8248
8249                 quota = normalize_cfs_quota(tg, d);
8250                 parent_quota = parent_b->hierarchical_quota;
8251
8252                 /*
8253                  * ensure max(child_quota) <= parent_quota, inherit when no
8254                  * limit is set
8255                  */
8256                 if (quota == RUNTIME_INF)
8257                         quota = parent_quota;
8258                 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8259                         return -EINVAL;
8260         }
8261         cfs_b->hierarchical_quota = quota;
8262
8263         return 0;
8264 }
8265
8266 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8267 {
8268         int ret;
8269         struct cfs_schedulable_data data = {
8270                 .tg = tg,
8271                 .period = period,
8272                 .quota = quota,
8273         };
8274
8275         if (quota != RUNTIME_INF) {
8276                 do_div(data.period, NSEC_PER_USEC);
8277                 do_div(data.quota, NSEC_PER_USEC);
8278         }
8279
8280         rcu_read_lock();
8281         ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8282         rcu_read_unlock();
8283
8284         return ret;
8285 }
8286
8287 static int cpu_stats_show(struct seq_file *sf, void *v)
8288 {
8289         struct task_group *tg = css_tg(seq_css(sf));
8290         struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8291
8292         seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8293         seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8294         seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8295
8296         return 0;
8297 }
8298 #endif /* CONFIG_CFS_BANDWIDTH */
8299 #endif /* CONFIG_FAIR_GROUP_SCHED */
8300
8301 #ifdef CONFIG_RT_GROUP_SCHED
8302 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8303                                 struct cftype *cft, s64 val)
8304 {
8305         return sched_group_set_rt_runtime(css_tg(css), val);
8306 }
8307
8308 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8309                                struct cftype *cft)
8310 {
8311         return sched_group_rt_runtime(css_tg(css));
8312 }
8313
8314 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8315                                     struct cftype *cftype, u64 rt_period_us)
8316 {
8317         return sched_group_set_rt_period(css_tg(css), rt_period_us);
8318 }
8319
8320 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8321                                    struct cftype *cft)
8322 {
8323         return sched_group_rt_period(css_tg(css));
8324 }
8325 #endif /* CONFIG_RT_GROUP_SCHED */
8326
8327 static struct cftype cpu_files[] = {
8328 #ifdef CONFIG_FAIR_GROUP_SCHED
8329         {
8330                 .name = "shares",
8331                 .read_u64 = cpu_shares_read_u64,
8332                 .write_u64 = cpu_shares_write_u64,
8333         },
8334 #endif
8335 #ifdef CONFIG_CFS_BANDWIDTH
8336         {
8337                 .name = "cfs_quota_us",
8338                 .read_s64 = cpu_cfs_quota_read_s64,
8339                 .write_s64 = cpu_cfs_quota_write_s64,
8340         },
8341         {
8342                 .name = "cfs_period_us",
8343                 .read_u64 = cpu_cfs_period_read_u64,
8344                 .write_u64 = cpu_cfs_period_write_u64,
8345         },
8346         {
8347                 .name = "stat",
8348                 .seq_show = cpu_stats_show,
8349         },
8350 #endif
8351 #ifdef CONFIG_RT_GROUP_SCHED
8352         {
8353                 .name = "rt_runtime_us",
8354                 .read_s64 = cpu_rt_runtime_read,
8355                 .write_s64 = cpu_rt_runtime_write,
8356         },
8357         {
8358                 .name = "rt_period_us",
8359                 .read_u64 = cpu_rt_period_read_uint,
8360                 .write_u64 = cpu_rt_period_write_uint,
8361         },
8362 #endif
8363         { }     /* terminate */
8364 };
8365
8366 struct cgroup_subsys cpu_cgrp_subsys = {
8367         .css_alloc      = cpu_cgroup_css_alloc,
8368         .css_free       = cpu_cgroup_css_free,
8369         .css_online     = cpu_cgroup_css_online,
8370         .css_offline    = cpu_cgroup_css_offline,
8371         .fork           = cpu_cgroup_fork,
8372         .can_attach     = cpu_cgroup_can_attach,
8373         .attach         = cpu_cgroup_attach,
8374         .exit           = cpu_cgroup_exit,
8375         .legacy_cftypes = cpu_files,
8376         .early_init     = 1,
8377 };
8378
8379 #endif  /* CONFIG_CGROUP_SCHED */
8380
8381 void dump_cpu_task(int cpu)
8382 {
8383         pr_info("Task dump for CPU %d:\n", cpu);
8384         sched_show_task(cpu_curr(cpu));
8385 }