Merge branch 'sched/urgent' into sched/core, to pick up fixes
[cascardo/linux.git] / kernel / sched / core.c
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97
98 void update_rq_clock(struct rq *rq)
99 {
100         s64 delta;
101
102         lockdep_assert_held(&rq->lock);
103
104         if (rq->clock_skip_update & RQCF_ACT_SKIP)
105                 return;
106
107         delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108         if (delta < 0)
109                 return;
110         rq->clock += delta;
111         update_rq_clock_task(rq, delta);
112 }
113
114 /*
115  * Debugging: various feature bits
116  */
117
118 #define SCHED_FEAT(name, enabled)       \
119         (1UL << __SCHED_FEAT_##name) * enabled |
120
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123         0;
124
125 #undef SCHED_FEAT
126
127 /*
128  * Number of tasks to iterate in a single balance run.
129  * Limited because this is done with IRQs disabled.
130  */
131 const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
133 /*
134  * period over which we average the RT time consumption, measured
135  * in ms.
136  *
137  * default: 1s
138  */
139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
141 /*
142  * period over which we measure -rt task cpu usage in us.
143  * default: 1s
144  */
145 unsigned int sysctl_sched_rt_period = 1000000;
146
147 __read_mostly int scheduler_running;
148
149 /*
150  * part of the period that we allow rt tasks to run in us.
151  * default: 0.95s
152  */
153 int sysctl_sched_rt_runtime = 950000;
154
155 /* cpus with isolated domains */
156 cpumask_var_t cpu_isolated_map;
157
158 /*
159  * this_rq_lock - lock this runqueue and disable interrupts.
160  */
161 static struct rq *this_rq_lock(void)
162         __acquires(rq->lock)
163 {
164         struct rq *rq;
165
166         local_irq_disable();
167         rq = this_rq();
168         raw_spin_lock(&rq->lock);
169
170         return rq;
171 }
172
173 /*
174  * __task_rq_lock - lock the rq @p resides on.
175  */
176 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
177         __acquires(rq->lock)
178 {
179         struct rq *rq;
180
181         lockdep_assert_held(&p->pi_lock);
182
183         for (;;) {
184                 rq = task_rq(p);
185                 raw_spin_lock(&rq->lock);
186                 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
187                         rf->cookie = lockdep_pin_lock(&rq->lock);
188                         return rq;
189                 }
190                 raw_spin_unlock(&rq->lock);
191
192                 while (unlikely(task_on_rq_migrating(p)))
193                         cpu_relax();
194         }
195 }
196
197 /*
198  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
199  */
200 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
201         __acquires(p->pi_lock)
202         __acquires(rq->lock)
203 {
204         struct rq *rq;
205
206         for (;;) {
207                 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
208                 rq = task_rq(p);
209                 raw_spin_lock(&rq->lock);
210                 /*
211                  *      move_queued_task()              task_rq_lock()
212                  *
213                  *      ACQUIRE (rq->lock)
214                  *      [S] ->on_rq = MIGRATING         [L] rq = task_rq()
215                  *      WMB (__set_task_cpu())          ACQUIRE (rq->lock);
216                  *      [S] ->cpu = new_cpu             [L] task_rq()
217                  *                                      [L] ->on_rq
218                  *      RELEASE (rq->lock)
219                  *
220                  * If we observe the old cpu in task_rq_lock, the acquire of
221                  * the old rq->lock will fully serialize against the stores.
222                  *
223                  * If we observe the new cpu in task_rq_lock, the acquire will
224                  * pair with the WMB to ensure we must then also see migrating.
225                  */
226                 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
227                         rf->cookie = lockdep_pin_lock(&rq->lock);
228                         return rq;
229                 }
230                 raw_spin_unlock(&rq->lock);
231                 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
232
233                 while (unlikely(task_on_rq_migrating(p)))
234                         cpu_relax();
235         }
236 }
237
238 #ifdef CONFIG_SCHED_HRTICK
239 /*
240  * Use HR-timers to deliver accurate preemption points.
241  */
242
243 static void hrtick_clear(struct rq *rq)
244 {
245         if (hrtimer_active(&rq->hrtick_timer))
246                 hrtimer_cancel(&rq->hrtick_timer);
247 }
248
249 /*
250  * High-resolution timer tick.
251  * Runs from hardirq context with interrupts disabled.
252  */
253 static enum hrtimer_restart hrtick(struct hrtimer *timer)
254 {
255         struct rq *rq = container_of(timer, struct rq, hrtick_timer);
256
257         WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
258
259         raw_spin_lock(&rq->lock);
260         update_rq_clock(rq);
261         rq->curr->sched_class->task_tick(rq, rq->curr, 1);
262         raw_spin_unlock(&rq->lock);
263
264         return HRTIMER_NORESTART;
265 }
266
267 #ifdef CONFIG_SMP
268
269 static void __hrtick_restart(struct rq *rq)
270 {
271         struct hrtimer *timer = &rq->hrtick_timer;
272
273         hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
274 }
275
276 /*
277  * called from hardirq (IPI) context
278  */
279 static void __hrtick_start(void *arg)
280 {
281         struct rq *rq = arg;
282
283         raw_spin_lock(&rq->lock);
284         __hrtick_restart(rq);
285         rq->hrtick_csd_pending = 0;
286         raw_spin_unlock(&rq->lock);
287 }
288
289 /*
290  * Called to set the hrtick timer state.
291  *
292  * called with rq->lock held and irqs disabled
293  */
294 void hrtick_start(struct rq *rq, u64 delay)
295 {
296         struct hrtimer *timer = &rq->hrtick_timer;
297         ktime_t time;
298         s64 delta;
299
300         /*
301          * Don't schedule slices shorter than 10000ns, that just
302          * doesn't make sense and can cause timer DoS.
303          */
304         delta = max_t(s64, delay, 10000LL);
305         time = ktime_add_ns(timer->base->get_time(), delta);
306
307         hrtimer_set_expires(timer, time);
308
309         if (rq == this_rq()) {
310                 __hrtick_restart(rq);
311         } else if (!rq->hrtick_csd_pending) {
312                 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
313                 rq->hrtick_csd_pending = 1;
314         }
315 }
316
317 #else
318 /*
319  * Called to set the hrtick timer state.
320  *
321  * called with rq->lock held and irqs disabled
322  */
323 void hrtick_start(struct rq *rq, u64 delay)
324 {
325         /*
326          * Don't schedule slices shorter than 10000ns, that just
327          * doesn't make sense. Rely on vruntime for fairness.
328          */
329         delay = max_t(u64, delay, 10000LL);
330         hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
331                       HRTIMER_MODE_REL_PINNED);
332 }
333 #endif /* CONFIG_SMP */
334
335 static void init_rq_hrtick(struct rq *rq)
336 {
337 #ifdef CONFIG_SMP
338         rq->hrtick_csd_pending = 0;
339
340         rq->hrtick_csd.flags = 0;
341         rq->hrtick_csd.func = __hrtick_start;
342         rq->hrtick_csd.info = rq;
343 #endif
344
345         hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
346         rq->hrtick_timer.function = hrtick;
347 }
348 #else   /* CONFIG_SCHED_HRTICK */
349 static inline void hrtick_clear(struct rq *rq)
350 {
351 }
352
353 static inline void init_rq_hrtick(struct rq *rq)
354 {
355 }
356 #endif  /* CONFIG_SCHED_HRTICK */
357
358 /*
359  * cmpxchg based fetch_or, macro so it works for different integer types
360  */
361 #define fetch_or(ptr, mask)                                             \
362         ({                                                              \
363                 typeof(ptr) _ptr = (ptr);                               \
364                 typeof(mask) _mask = (mask);                            \
365                 typeof(*_ptr) _old, _val = *_ptr;                       \
366                                                                         \
367                 for (;;) {                                              \
368                         _old = cmpxchg(_ptr, _val, _val | _mask);       \
369                         if (_old == _val)                               \
370                                 break;                                  \
371                         _val = _old;                                    \
372                 }                                                       \
373         _old;                                                           \
374 })
375
376 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
377 /*
378  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
379  * this avoids any races wrt polling state changes and thereby avoids
380  * spurious IPIs.
381  */
382 static bool set_nr_and_not_polling(struct task_struct *p)
383 {
384         struct thread_info *ti = task_thread_info(p);
385         return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
386 }
387
388 /*
389  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
390  *
391  * If this returns true, then the idle task promises to call
392  * sched_ttwu_pending() and reschedule soon.
393  */
394 static bool set_nr_if_polling(struct task_struct *p)
395 {
396         struct thread_info *ti = task_thread_info(p);
397         typeof(ti->flags) old, val = READ_ONCE(ti->flags);
398
399         for (;;) {
400                 if (!(val & _TIF_POLLING_NRFLAG))
401                         return false;
402                 if (val & _TIF_NEED_RESCHED)
403                         return true;
404                 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
405                 if (old == val)
406                         break;
407                 val = old;
408         }
409         return true;
410 }
411
412 #else
413 static bool set_nr_and_not_polling(struct task_struct *p)
414 {
415         set_tsk_need_resched(p);
416         return true;
417 }
418
419 #ifdef CONFIG_SMP
420 static bool set_nr_if_polling(struct task_struct *p)
421 {
422         return false;
423 }
424 #endif
425 #endif
426
427 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
428 {
429         struct wake_q_node *node = &task->wake_q;
430
431         /*
432          * Atomically grab the task, if ->wake_q is !nil already it means
433          * its already queued (either by us or someone else) and will get the
434          * wakeup due to that.
435          *
436          * This cmpxchg() implies a full barrier, which pairs with the write
437          * barrier implied by the wakeup in wake_up_q().
438          */
439         if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
440                 return;
441
442         get_task_struct(task);
443
444         /*
445          * The head is context local, there can be no concurrency.
446          */
447         *head->lastp = node;
448         head->lastp = &node->next;
449 }
450
451 void wake_up_q(struct wake_q_head *head)
452 {
453         struct wake_q_node *node = head->first;
454
455         while (node != WAKE_Q_TAIL) {
456                 struct task_struct *task;
457
458                 task = container_of(node, struct task_struct, wake_q);
459                 BUG_ON(!task);
460                 /* task can safely be re-inserted now */
461                 node = node->next;
462                 task->wake_q.next = NULL;
463
464                 /*
465                  * wake_up_process() implies a wmb() to pair with the queueing
466                  * in wake_q_add() so as not to miss wakeups.
467                  */
468                 wake_up_process(task);
469                 put_task_struct(task);
470         }
471 }
472
473 /*
474  * resched_curr - mark rq's current task 'to be rescheduled now'.
475  *
476  * On UP this means the setting of the need_resched flag, on SMP it
477  * might also involve a cross-CPU call to trigger the scheduler on
478  * the target CPU.
479  */
480 void resched_curr(struct rq *rq)
481 {
482         struct task_struct *curr = rq->curr;
483         int cpu;
484
485         lockdep_assert_held(&rq->lock);
486
487         if (test_tsk_need_resched(curr))
488                 return;
489
490         cpu = cpu_of(rq);
491
492         if (cpu == smp_processor_id()) {
493                 set_tsk_need_resched(curr);
494                 set_preempt_need_resched();
495                 return;
496         }
497
498         if (set_nr_and_not_polling(curr))
499                 smp_send_reschedule(cpu);
500         else
501                 trace_sched_wake_idle_without_ipi(cpu);
502 }
503
504 void resched_cpu(int cpu)
505 {
506         struct rq *rq = cpu_rq(cpu);
507         unsigned long flags;
508
509         if (!raw_spin_trylock_irqsave(&rq->lock, flags))
510                 return;
511         resched_curr(rq);
512         raw_spin_unlock_irqrestore(&rq->lock, flags);
513 }
514
515 #ifdef CONFIG_SMP
516 #ifdef CONFIG_NO_HZ_COMMON
517 /*
518  * In the semi idle case, use the nearest busy cpu for migrating timers
519  * from an idle cpu.  This is good for power-savings.
520  *
521  * We don't do similar optimization for completely idle system, as
522  * selecting an idle cpu will add more delays to the timers than intended
523  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
524  */
525 int get_nohz_timer_target(void)
526 {
527         int i, cpu = smp_processor_id();
528         struct sched_domain *sd;
529
530         if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
531                 return cpu;
532
533         rcu_read_lock();
534         for_each_domain(cpu, sd) {
535                 for_each_cpu(i, sched_domain_span(sd)) {
536                         if (cpu == i)
537                                 continue;
538
539                         if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
540                                 cpu = i;
541                                 goto unlock;
542                         }
543                 }
544         }
545
546         if (!is_housekeeping_cpu(cpu))
547                 cpu = housekeeping_any_cpu();
548 unlock:
549         rcu_read_unlock();
550         return cpu;
551 }
552 /*
553  * When add_timer_on() enqueues a timer into the timer wheel of an
554  * idle CPU then this timer might expire before the next timer event
555  * which is scheduled to wake up that CPU. In case of a completely
556  * idle system the next event might even be infinite time into the
557  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
558  * leaves the inner idle loop so the newly added timer is taken into
559  * account when the CPU goes back to idle and evaluates the timer
560  * wheel for the next timer event.
561  */
562 static void wake_up_idle_cpu(int cpu)
563 {
564         struct rq *rq = cpu_rq(cpu);
565
566         if (cpu == smp_processor_id())
567                 return;
568
569         if (set_nr_and_not_polling(rq->idle))
570                 smp_send_reschedule(cpu);
571         else
572                 trace_sched_wake_idle_without_ipi(cpu);
573 }
574
575 static bool wake_up_full_nohz_cpu(int cpu)
576 {
577         /*
578          * We just need the target to call irq_exit() and re-evaluate
579          * the next tick. The nohz full kick at least implies that.
580          * If needed we can still optimize that later with an
581          * empty IRQ.
582          */
583         if (tick_nohz_full_cpu(cpu)) {
584                 if (cpu != smp_processor_id() ||
585                     tick_nohz_tick_stopped())
586                         tick_nohz_full_kick_cpu(cpu);
587                 return true;
588         }
589
590         return false;
591 }
592
593 void wake_up_nohz_cpu(int cpu)
594 {
595         if (!wake_up_full_nohz_cpu(cpu))
596                 wake_up_idle_cpu(cpu);
597 }
598
599 static inline bool got_nohz_idle_kick(void)
600 {
601         int cpu = smp_processor_id();
602
603         if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
604                 return false;
605
606         if (idle_cpu(cpu) && !need_resched())
607                 return true;
608
609         /*
610          * We can't run Idle Load Balance on this CPU for this time so we
611          * cancel it and clear NOHZ_BALANCE_KICK
612          */
613         clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
614         return false;
615 }
616
617 #else /* CONFIG_NO_HZ_COMMON */
618
619 static inline bool got_nohz_idle_kick(void)
620 {
621         return false;
622 }
623
624 #endif /* CONFIG_NO_HZ_COMMON */
625
626 #ifdef CONFIG_NO_HZ_FULL
627 bool sched_can_stop_tick(struct rq *rq)
628 {
629         int fifo_nr_running;
630
631         /* Deadline tasks, even if single, need the tick */
632         if (rq->dl.dl_nr_running)
633                 return false;
634
635         /*
636          * If there are more than one RR tasks, we need the tick to effect the
637          * actual RR behaviour.
638          */
639         if (rq->rt.rr_nr_running) {
640                 if (rq->rt.rr_nr_running == 1)
641                         return true;
642                 else
643                         return false;
644         }
645
646         /*
647          * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
648          * forced preemption between FIFO tasks.
649          */
650         fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
651         if (fifo_nr_running)
652                 return true;
653
654         /*
655          * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
656          * if there's more than one we need the tick for involuntary
657          * preemption.
658          */
659         if (rq->nr_running > 1)
660                 return false;
661
662         return true;
663 }
664 #endif /* CONFIG_NO_HZ_FULL */
665
666 void sched_avg_update(struct rq *rq)
667 {
668         s64 period = sched_avg_period();
669
670         while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
671                 /*
672                  * Inline assembly required to prevent the compiler
673                  * optimising this loop into a divmod call.
674                  * See __iter_div_u64_rem() for another example of this.
675                  */
676                 asm("" : "+rm" (rq->age_stamp));
677                 rq->age_stamp += period;
678                 rq->rt_avg /= 2;
679         }
680 }
681
682 #endif /* CONFIG_SMP */
683
684 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
685                         (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
686 /*
687  * Iterate task_group tree rooted at *from, calling @down when first entering a
688  * node and @up when leaving it for the final time.
689  *
690  * Caller must hold rcu_lock or sufficient equivalent.
691  */
692 int walk_tg_tree_from(struct task_group *from,
693                              tg_visitor down, tg_visitor up, void *data)
694 {
695         struct task_group *parent, *child;
696         int ret;
697
698         parent = from;
699
700 down:
701         ret = (*down)(parent, data);
702         if (ret)
703                 goto out;
704         list_for_each_entry_rcu(child, &parent->children, siblings) {
705                 parent = child;
706                 goto down;
707
708 up:
709                 continue;
710         }
711         ret = (*up)(parent, data);
712         if (ret || parent == from)
713                 goto out;
714
715         child = parent;
716         parent = parent->parent;
717         if (parent)
718                 goto up;
719 out:
720         return ret;
721 }
722
723 int tg_nop(struct task_group *tg, void *data)
724 {
725         return 0;
726 }
727 #endif
728
729 static void set_load_weight(struct task_struct *p)
730 {
731         int prio = p->static_prio - MAX_RT_PRIO;
732         struct load_weight *load = &p->se.load;
733
734         /*
735          * SCHED_IDLE tasks get minimal weight:
736          */
737         if (idle_policy(p->policy)) {
738                 load->weight = scale_load(WEIGHT_IDLEPRIO);
739                 load->inv_weight = WMULT_IDLEPRIO;
740                 return;
741         }
742
743         load->weight = scale_load(sched_prio_to_weight[prio]);
744         load->inv_weight = sched_prio_to_wmult[prio];
745 }
746
747 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
748 {
749         update_rq_clock(rq);
750         if (!(flags & ENQUEUE_RESTORE))
751                 sched_info_queued(rq, p);
752         p->sched_class->enqueue_task(rq, p, flags);
753 }
754
755 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
756 {
757         update_rq_clock(rq);
758         if (!(flags & DEQUEUE_SAVE))
759                 sched_info_dequeued(rq, p);
760         p->sched_class->dequeue_task(rq, p, flags);
761 }
762
763 void activate_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765         if (task_contributes_to_load(p))
766                 rq->nr_uninterruptible--;
767
768         enqueue_task(rq, p, flags);
769 }
770
771 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
772 {
773         if (task_contributes_to_load(p))
774                 rq->nr_uninterruptible++;
775
776         dequeue_task(rq, p, flags);
777 }
778
779 static void update_rq_clock_task(struct rq *rq, s64 delta)
780 {
781 /*
782  * In theory, the compile should just see 0 here, and optimize out the call
783  * to sched_rt_avg_update. But I don't trust it...
784  */
785 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
786         s64 steal = 0, irq_delta = 0;
787 #endif
788 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
789         irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
790
791         /*
792          * Since irq_time is only updated on {soft,}irq_exit, we might run into
793          * this case when a previous update_rq_clock() happened inside a
794          * {soft,}irq region.
795          *
796          * When this happens, we stop ->clock_task and only update the
797          * prev_irq_time stamp to account for the part that fit, so that a next
798          * update will consume the rest. This ensures ->clock_task is
799          * monotonic.
800          *
801          * It does however cause some slight miss-attribution of {soft,}irq
802          * time, a more accurate solution would be to update the irq_time using
803          * the current rq->clock timestamp, except that would require using
804          * atomic ops.
805          */
806         if (irq_delta > delta)
807                 irq_delta = delta;
808
809         rq->prev_irq_time += irq_delta;
810         delta -= irq_delta;
811 #endif
812 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
813         if (static_key_false((&paravirt_steal_rq_enabled))) {
814                 steal = paravirt_steal_clock(cpu_of(rq));
815                 steal -= rq->prev_steal_time_rq;
816
817                 if (unlikely(steal > delta))
818                         steal = delta;
819
820                 rq->prev_steal_time_rq += steal;
821                 delta -= steal;
822         }
823 #endif
824
825         rq->clock_task += delta;
826
827 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
828         if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
829                 sched_rt_avg_update(rq, irq_delta + steal);
830 #endif
831 }
832
833 void sched_set_stop_task(int cpu, struct task_struct *stop)
834 {
835         struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
836         struct task_struct *old_stop = cpu_rq(cpu)->stop;
837
838         if (stop) {
839                 /*
840                  * Make it appear like a SCHED_FIFO task, its something
841                  * userspace knows about and won't get confused about.
842                  *
843                  * Also, it will make PI more or less work without too
844                  * much confusion -- but then, stop work should not
845                  * rely on PI working anyway.
846                  */
847                 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
848
849                 stop->sched_class = &stop_sched_class;
850         }
851
852         cpu_rq(cpu)->stop = stop;
853
854         if (old_stop) {
855                 /*
856                  * Reset it back to a normal scheduling class so that
857                  * it can die in pieces.
858                  */
859                 old_stop->sched_class = &rt_sched_class;
860         }
861 }
862
863 /*
864  * __normal_prio - return the priority that is based on the static prio
865  */
866 static inline int __normal_prio(struct task_struct *p)
867 {
868         return p->static_prio;
869 }
870
871 /*
872  * Calculate the expected normal priority: i.e. priority
873  * without taking RT-inheritance into account. Might be
874  * boosted by interactivity modifiers. Changes upon fork,
875  * setprio syscalls, and whenever the interactivity
876  * estimator recalculates.
877  */
878 static inline int normal_prio(struct task_struct *p)
879 {
880         int prio;
881
882         if (task_has_dl_policy(p))
883                 prio = MAX_DL_PRIO-1;
884         else if (task_has_rt_policy(p))
885                 prio = MAX_RT_PRIO-1 - p->rt_priority;
886         else
887                 prio = __normal_prio(p);
888         return prio;
889 }
890
891 /*
892  * Calculate the current priority, i.e. the priority
893  * taken into account by the scheduler. This value might
894  * be boosted by RT tasks, or might be boosted by
895  * interactivity modifiers. Will be RT if the task got
896  * RT-boosted. If not then it returns p->normal_prio.
897  */
898 static int effective_prio(struct task_struct *p)
899 {
900         p->normal_prio = normal_prio(p);
901         /*
902          * If we are RT tasks or we were boosted to RT priority,
903          * keep the priority unchanged. Otherwise, update priority
904          * to the normal priority:
905          */
906         if (!rt_prio(p->prio))
907                 return p->normal_prio;
908         return p->prio;
909 }
910
911 /**
912  * task_curr - is this task currently executing on a CPU?
913  * @p: the task in question.
914  *
915  * Return: 1 if the task is currently executing. 0 otherwise.
916  */
917 inline int task_curr(const struct task_struct *p)
918 {
919         return cpu_curr(task_cpu(p)) == p;
920 }
921
922 /*
923  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
924  * use the balance_callback list if you want balancing.
925  *
926  * this means any call to check_class_changed() must be followed by a call to
927  * balance_callback().
928  */
929 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
930                                        const struct sched_class *prev_class,
931                                        int oldprio)
932 {
933         if (prev_class != p->sched_class) {
934                 if (prev_class->switched_from)
935                         prev_class->switched_from(rq, p);
936
937                 p->sched_class->switched_to(rq, p);
938         } else if (oldprio != p->prio || dl_task(p))
939                 p->sched_class->prio_changed(rq, p, oldprio);
940 }
941
942 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
943 {
944         const struct sched_class *class;
945
946         if (p->sched_class == rq->curr->sched_class) {
947                 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
948         } else {
949                 for_each_class(class) {
950                         if (class == rq->curr->sched_class)
951                                 break;
952                         if (class == p->sched_class) {
953                                 resched_curr(rq);
954                                 break;
955                         }
956                 }
957         }
958
959         /*
960          * A queue event has occurred, and we're going to schedule.  In
961          * this case, we can save a useless back to back clock update.
962          */
963         if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
964                 rq_clock_skip_update(rq, true);
965 }
966
967 #ifdef CONFIG_SMP
968 /*
969  * This is how migration works:
970  *
971  * 1) we invoke migration_cpu_stop() on the target CPU using
972  *    stop_one_cpu().
973  * 2) stopper starts to run (implicitly forcing the migrated thread
974  *    off the CPU)
975  * 3) it checks whether the migrated task is still in the wrong runqueue.
976  * 4) if it's in the wrong runqueue then the migration thread removes
977  *    it and puts it into the right queue.
978  * 5) stopper completes and stop_one_cpu() returns and the migration
979  *    is done.
980  */
981
982 /*
983  * move_queued_task - move a queued task to new rq.
984  *
985  * Returns (locked) new rq. Old rq's lock is released.
986  */
987 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
988 {
989         lockdep_assert_held(&rq->lock);
990
991         p->on_rq = TASK_ON_RQ_MIGRATING;
992         dequeue_task(rq, p, 0);
993         set_task_cpu(p, new_cpu);
994         raw_spin_unlock(&rq->lock);
995
996         rq = cpu_rq(new_cpu);
997
998         raw_spin_lock(&rq->lock);
999         BUG_ON(task_cpu(p) != new_cpu);
1000         enqueue_task(rq, p, 0);
1001         p->on_rq = TASK_ON_RQ_QUEUED;
1002         check_preempt_curr(rq, p, 0);
1003
1004         return rq;
1005 }
1006
1007 struct migration_arg {
1008         struct task_struct *task;
1009         int dest_cpu;
1010 };
1011
1012 /*
1013  * Move (not current) task off this cpu, onto dest cpu. We're doing
1014  * this because either it can't run here any more (set_cpus_allowed()
1015  * away from this CPU, or CPU going down), or because we're
1016  * attempting to rebalance this task on exec (sched_exec).
1017  *
1018  * So we race with normal scheduler movements, but that's OK, as long
1019  * as the task is no longer on this CPU.
1020  */
1021 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1022 {
1023         if (unlikely(!cpu_active(dest_cpu)))
1024                 return rq;
1025
1026         /* Affinity changed (again). */
1027         if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1028                 return rq;
1029
1030         rq = move_queued_task(rq, p, dest_cpu);
1031
1032         return rq;
1033 }
1034
1035 /*
1036  * migration_cpu_stop - this will be executed by a highprio stopper thread
1037  * and performs thread migration by bumping thread off CPU then
1038  * 'pushing' onto another runqueue.
1039  */
1040 static int migration_cpu_stop(void *data)
1041 {
1042         struct migration_arg *arg = data;
1043         struct task_struct *p = arg->task;
1044         struct rq *rq = this_rq();
1045
1046         /*
1047          * The original target cpu might have gone down and we might
1048          * be on another cpu but it doesn't matter.
1049          */
1050         local_irq_disable();
1051         /*
1052          * We need to explicitly wake pending tasks before running
1053          * __migrate_task() such that we will not miss enforcing cpus_allowed
1054          * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1055          */
1056         sched_ttwu_pending();
1057
1058         raw_spin_lock(&p->pi_lock);
1059         raw_spin_lock(&rq->lock);
1060         /*
1061          * If task_rq(p) != rq, it cannot be migrated here, because we're
1062          * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1063          * we're holding p->pi_lock.
1064          */
1065         if (task_rq(p) == rq && task_on_rq_queued(p))
1066                 rq = __migrate_task(rq, p, arg->dest_cpu);
1067         raw_spin_unlock(&rq->lock);
1068         raw_spin_unlock(&p->pi_lock);
1069
1070         local_irq_enable();
1071         return 0;
1072 }
1073
1074 /*
1075  * sched_class::set_cpus_allowed must do the below, but is not required to
1076  * actually call this function.
1077  */
1078 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1079 {
1080         cpumask_copy(&p->cpus_allowed, new_mask);
1081         p->nr_cpus_allowed = cpumask_weight(new_mask);
1082 }
1083
1084 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1085 {
1086         struct rq *rq = task_rq(p);
1087         bool queued, running;
1088
1089         lockdep_assert_held(&p->pi_lock);
1090
1091         queued = task_on_rq_queued(p);
1092         running = task_current(rq, p);
1093
1094         if (queued) {
1095                 /*
1096                  * Because __kthread_bind() calls this on blocked tasks without
1097                  * holding rq->lock.
1098                  */
1099                 lockdep_assert_held(&rq->lock);
1100                 dequeue_task(rq, p, DEQUEUE_SAVE);
1101         }
1102         if (running)
1103                 put_prev_task(rq, p);
1104
1105         p->sched_class->set_cpus_allowed(p, new_mask);
1106
1107         if (running)
1108                 p->sched_class->set_curr_task(rq);
1109         if (queued)
1110                 enqueue_task(rq, p, ENQUEUE_RESTORE);
1111 }
1112
1113 /*
1114  * Change a given task's CPU affinity. Migrate the thread to a
1115  * proper CPU and schedule it away if the CPU it's executing on
1116  * is removed from the allowed bitmask.
1117  *
1118  * NOTE: the caller must have a valid reference to the task, the
1119  * task must not exit() & deallocate itself prematurely. The
1120  * call is not atomic; no spinlocks may be held.
1121  */
1122 static int __set_cpus_allowed_ptr(struct task_struct *p,
1123                                   const struct cpumask *new_mask, bool check)
1124 {
1125         const struct cpumask *cpu_valid_mask = cpu_active_mask;
1126         unsigned int dest_cpu;
1127         struct rq_flags rf;
1128         struct rq *rq;
1129         int ret = 0;
1130
1131         rq = task_rq_lock(p, &rf);
1132
1133         if (p->flags & PF_KTHREAD) {
1134                 /*
1135                  * Kernel threads are allowed on online && !active CPUs
1136                  */
1137                 cpu_valid_mask = cpu_online_mask;
1138         }
1139
1140         /*
1141          * Must re-check here, to close a race against __kthread_bind(),
1142          * sched_setaffinity() is not guaranteed to observe the flag.
1143          */
1144         if (check && (p->flags & PF_NO_SETAFFINITY)) {
1145                 ret = -EINVAL;
1146                 goto out;
1147         }
1148
1149         if (cpumask_equal(&p->cpus_allowed, new_mask))
1150                 goto out;
1151
1152         if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1153                 ret = -EINVAL;
1154                 goto out;
1155         }
1156
1157         do_set_cpus_allowed(p, new_mask);
1158
1159         if (p->flags & PF_KTHREAD) {
1160                 /*
1161                  * For kernel threads that do indeed end up on online &&
1162                  * !active we want to ensure they are strict per-cpu threads.
1163                  */
1164                 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1165                         !cpumask_intersects(new_mask, cpu_active_mask) &&
1166                         p->nr_cpus_allowed != 1);
1167         }
1168
1169         /* Can the task run on the task's current CPU? If so, we're done */
1170         if (cpumask_test_cpu(task_cpu(p), new_mask))
1171                 goto out;
1172
1173         dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1174         if (task_running(rq, p) || p->state == TASK_WAKING) {
1175                 struct migration_arg arg = { p, dest_cpu };
1176                 /* Need help from migration thread: drop lock and wait. */
1177                 task_rq_unlock(rq, p, &rf);
1178                 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1179                 tlb_migrate_finish(p->mm);
1180                 return 0;
1181         } else if (task_on_rq_queued(p)) {
1182                 /*
1183                  * OK, since we're going to drop the lock immediately
1184                  * afterwards anyway.
1185                  */
1186                 lockdep_unpin_lock(&rq->lock, rf.cookie);
1187                 rq = move_queued_task(rq, p, dest_cpu);
1188                 lockdep_repin_lock(&rq->lock, rf.cookie);
1189         }
1190 out:
1191         task_rq_unlock(rq, p, &rf);
1192
1193         return ret;
1194 }
1195
1196 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1197 {
1198         return __set_cpus_allowed_ptr(p, new_mask, false);
1199 }
1200 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1201
1202 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1203 {
1204 #ifdef CONFIG_SCHED_DEBUG
1205         /*
1206          * We should never call set_task_cpu() on a blocked task,
1207          * ttwu() will sort out the placement.
1208          */
1209         WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1210                         !p->on_rq);
1211
1212         /*
1213          * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1214          * because schedstat_wait_{start,end} rebase migrating task's wait_start
1215          * time relying on p->on_rq.
1216          */
1217         WARN_ON_ONCE(p->state == TASK_RUNNING &&
1218                      p->sched_class == &fair_sched_class &&
1219                      (p->on_rq && !task_on_rq_migrating(p)));
1220
1221 #ifdef CONFIG_LOCKDEP
1222         /*
1223          * The caller should hold either p->pi_lock or rq->lock, when changing
1224          * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1225          *
1226          * sched_move_task() holds both and thus holding either pins the cgroup,
1227          * see task_group().
1228          *
1229          * Furthermore, all task_rq users should acquire both locks, see
1230          * task_rq_lock().
1231          */
1232         WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1233                                       lockdep_is_held(&task_rq(p)->lock)));
1234 #endif
1235 #endif
1236
1237         trace_sched_migrate_task(p, new_cpu);
1238
1239         if (task_cpu(p) != new_cpu) {
1240                 if (p->sched_class->migrate_task_rq)
1241                         p->sched_class->migrate_task_rq(p);
1242                 p->se.nr_migrations++;
1243                 perf_event_task_migrate(p);
1244         }
1245
1246         __set_task_cpu(p, new_cpu);
1247 }
1248
1249 static void __migrate_swap_task(struct task_struct *p, int cpu)
1250 {
1251         if (task_on_rq_queued(p)) {
1252                 struct rq *src_rq, *dst_rq;
1253
1254                 src_rq = task_rq(p);
1255                 dst_rq = cpu_rq(cpu);
1256
1257                 p->on_rq = TASK_ON_RQ_MIGRATING;
1258                 deactivate_task(src_rq, p, 0);
1259                 set_task_cpu(p, cpu);
1260                 activate_task(dst_rq, p, 0);
1261                 p->on_rq = TASK_ON_RQ_QUEUED;
1262                 check_preempt_curr(dst_rq, p, 0);
1263         } else {
1264                 /*
1265                  * Task isn't running anymore; make it appear like we migrated
1266                  * it before it went to sleep. This means on wakeup we make the
1267                  * previous cpu our targer instead of where it really is.
1268                  */
1269                 p->wake_cpu = cpu;
1270         }
1271 }
1272
1273 struct migration_swap_arg {
1274         struct task_struct *src_task, *dst_task;
1275         int src_cpu, dst_cpu;
1276 };
1277
1278 static int migrate_swap_stop(void *data)
1279 {
1280         struct migration_swap_arg *arg = data;
1281         struct rq *src_rq, *dst_rq;
1282         int ret = -EAGAIN;
1283
1284         if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1285                 return -EAGAIN;
1286
1287         src_rq = cpu_rq(arg->src_cpu);
1288         dst_rq = cpu_rq(arg->dst_cpu);
1289
1290         double_raw_lock(&arg->src_task->pi_lock,
1291                         &arg->dst_task->pi_lock);
1292         double_rq_lock(src_rq, dst_rq);
1293
1294         if (task_cpu(arg->dst_task) != arg->dst_cpu)
1295                 goto unlock;
1296
1297         if (task_cpu(arg->src_task) != arg->src_cpu)
1298                 goto unlock;
1299
1300         if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1301                 goto unlock;
1302
1303         if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1304                 goto unlock;
1305
1306         __migrate_swap_task(arg->src_task, arg->dst_cpu);
1307         __migrate_swap_task(arg->dst_task, arg->src_cpu);
1308
1309         ret = 0;
1310
1311 unlock:
1312         double_rq_unlock(src_rq, dst_rq);
1313         raw_spin_unlock(&arg->dst_task->pi_lock);
1314         raw_spin_unlock(&arg->src_task->pi_lock);
1315
1316         return ret;
1317 }
1318
1319 /*
1320  * Cross migrate two tasks
1321  */
1322 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1323 {
1324         struct migration_swap_arg arg;
1325         int ret = -EINVAL;
1326
1327         arg = (struct migration_swap_arg){
1328                 .src_task = cur,
1329                 .src_cpu = task_cpu(cur),
1330                 .dst_task = p,
1331                 .dst_cpu = task_cpu(p),
1332         };
1333
1334         if (arg.src_cpu == arg.dst_cpu)
1335                 goto out;
1336
1337         /*
1338          * These three tests are all lockless; this is OK since all of them
1339          * will be re-checked with proper locks held further down the line.
1340          */
1341         if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1342                 goto out;
1343
1344         if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1345                 goto out;
1346
1347         if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1348                 goto out;
1349
1350         trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1351         ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1352
1353 out:
1354         return ret;
1355 }
1356
1357 /*
1358  * wait_task_inactive - wait for a thread to unschedule.
1359  *
1360  * If @match_state is nonzero, it's the @p->state value just checked and
1361  * not expected to change.  If it changes, i.e. @p might have woken up,
1362  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1363  * we return a positive number (its total switch count).  If a second call
1364  * a short while later returns the same number, the caller can be sure that
1365  * @p has remained unscheduled the whole time.
1366  *
1367  * The caller must ensure that the task *will* unschedule sometime soon,
1368  * else this function might spin for a *long* time. This function can't
1369  * be called with interrupts off, or it may introduce deadlock with
1370  * smp_call_function() if an IPI is sent by the same process we are
1371  * waiting to become inactive.
1372  */
1373 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1374 {
1375         int running, queued;
1376         struct rq_flags rf;
1377         unsigned long ncsw;
1378         struct rq *rq;
1379
1380         for (;;) {
1381                 /*
1382                  * We do the initial early heuristics without holding
1383                  * any task-queue locks at all. We'll only try to get
1384                  * the runqueue lock when things look like they will
1385                  * work out!
1386                  */
1387                 rq = task_rq(p);
1388
1389                 /*
1390                  * If the task is actively running on another CPU
1391                  * still, just relax and busy-wait without holding
1392                  * any locks.
1393                  *
1394                  * NOTE! Since we don't hold any locks, it's not
1395                  * even sure that "rq" stays as the right runqueue!
1396                  * But we don't care, since "task_running()" will
1397                  * return false if the runqueue has changed and p
1398                  * is actually now running somewhere else!
1399                  */
1400                 while (task_running(rq, p)) {
1401                         if (match_state && unlikely(p->state != match_state))
1402                                 return 0;
1403                         cpu_relax();
1404                 }
1405
1406                 /*
1407                  * Ok, time to look more closely! We need the rq
1408                  * lock now, to be *sure*. If we're wrong, we'll
1409                  * just go back and repeat.
1410                  */
1411                 rq = task_rq_lock(p, &rf);
1412                 trace_sched_wait_task(p);
1413                 running = task_running(rq, p);
1414                 queued = task_on_rq_queued(p);
1415                 ncsw = 0;
1416                 if (!match_state || p->state == match_state)
1417                         ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1418                 task_rq_unlock(rq, p, &rf);
1419
1420                 /*
1421                  * If it changed from the expected state, bail out now.
1422                  */
1423                 if (unlikely(!ncsw))
1424                         break;
1425
1426                 /*
1427                  * Was it really running after all now that we
1428                  * checked with the proper locks actually held?
1429                  *
1430                  * Oops. Go back and try again..
1431                  */
1432                 if (unlikely(running)) {
1433                         cpu_relax();
1434                         continue;
1435                 }
1436
1437                 /*
1438                  * It's not enough that it's not actively running,
1439                  * it must be off the runqueue _entirely_, and not
1440                  * preempted!
1441                  *
1442                  * So if it was still runnable (but just not actively
1443                  * running right now), it's preempted, and we should
1444                  * yield - it could be a while.
1445                  */
1446                 if (unlikely(queued)) {
1447                         ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1448
1449                         set_current_state(TASK_UNINTERRUPTIBLE);
1450                         schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1451                         continue;
1452                 }
1453
1454                 /*
1455                  * Ahh, all good. It wasn't running, and it wasn't
1456                  * runnable, which means that it will never become
1457                  * running in the future either. We're all done!
1458                  */
1459                 break;
1460         }
1461
1462         return ncsw;
1463 }
1464
1465 /***
1466  * kick_process - kick a running thread to enter/exit the kernel
1467  * @p: the to-be-kicked thread
1468  *
1469  * Cause a process which is running on another CPU to enter
1470  * kernel-mode, without any delay. (to get signals handled.)
1471  *
1472  * NOTE: this function doesn't have to take the runqueue lock,
1473  * because all it wants to ensure is that the remote task enters
1474  * the kernel. If the IPI races and the task has been migrated
1475  * to another CPU then no harm is done and the purpose has been
1476  * achieved as well.
1477  */
1478 void kick_process(struct task_struct *p)
1479 {
1480         int cpu;
1481
1482         preempt_disable();
1483         cpu = task_cpu(p);
1484         if ((cpu != smp_processor_id()) && task_curr(p))
1485                 smp_send_reschedule(cpu);
1486         preempt_enable();
1487 }
1488 EXPORT_SYMBOL_GPL(kick_process);
1489
1490 /*
1491  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1492  *
1493  * A few notes on cpu_active vs cpu_online:
1494  *
1495  *  - cpu_active must be a subset of cpu_online
1496  *
1497  *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1498  *    see __set_cpus_allowed_ptr(). At this point the newly online
1499  *    cpu isn't yet part of the sched domains, and balancing will not
1500  *    see it.
1501  *
1502  *  - on cpu-down we clear cpu_active() to mask the sched domains and
1503  *    avoid the load balancer to place new tasks on the to be removed
1504  *    cpu. Existing tasks will remain running there and will be taken
1505  *    off.
1506  *
1507  * This means that fallback selection must not select !active CPUs.
1508  * And can assume that any active CPU must be online. Conversely
1509  * select_task_rq() below may allow selection of !active CPUs in order
1510  * to satisfy the above rules.
1511  */
1512 static int select_fallback_rq(int cpu, struct task_struct *p)
1513 {
1514         int nid = cpu_to_node(cpu);
1515         const struct cpumask *nodemask = NULL;
1516         enum { cpuset, possible, fail } state = cpuset;
1517         int dest_cpu;
1518
1519         /*
1520          * If the node that the cpu is on has been offlined, cpu_to_node()
1521          * will return -1. There is no cpu on the node, and we should
1522          * select the cpu on the other node.
1523          */
1524         if (nid != -1) {
1525                 nodemask = cpumask_of_node(nid);
1526
1527                 /* Look for allowed, online CPU in same node. */
1528                 for_each_cpu(dest_cpu, nodemask) {
1529                         if (!cpu_active(dest_cpu))
1530                                 continue;
1531                         if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1532                                 return dest_cpu;
1533                 }
1534         }
1535
1536         for (;;) {
1537                 /* Any allowed, online CPU? */
1538                 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1539                         if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1540                                 continue;
1541                         if (!cpu_online(dest_cpu))
1542                                 continue;
1543                         goto out;
1544                 }
1545
1546                 /* No more Mr. Nice Guy. */
1547                 switch (state) {
1548                 case cpuset:
1549                         if (IS_ENABLED(CONFIG_CPUSETS)) {
1550                                 cpuset_cpus_allowed_fallback(p);
1551                                 state = possible;
1552                                 break;
1553                         }
1554                         /* fall-through */
1555                 case possible:
1556                         do_set_cpus_allowed(p, cpu_possible_mask);
1557                         state = fail;
1558                         break;
1559
1560                 case fail:
1561                         BUG();
1562                         break;
1563                 }
1564         }
1565
1566 out:
1567         if (state != cpuset) {
1568                 /*
1569                  * Don't tell them about moving exiting tasks or
1570                  * kernel threads (both mm NULL), since they never
1571                  * leave kernel.
1572                  */
1573                 if (p->mm && printk_ratelimit()) {
1574                         printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1575                                         task_pid_nr(p), p->comm, cpu);
1576                 }
1577         }
1578
1579         return dest_cpu;
1580 }
1581
1582 /*
1583  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1584  */
1585 static inline
1586 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1587 {
1588         lockdep_assert_held(&p->pi_lock);
1589
1590         if (tsk_nr_cpus_allowed(p) > 1)
1591                 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1592         else
1593                 cpu = cpumask_any(tsk_cpus_allowed(p));
1594
1595         /*
1596          * In order not to call set_task_cpu() on a blocking task we need
1597          * to rely on ttwu() to place the task on a valid ->cpus_allowed
1598          * cpu.
1599          *
1600          * Since this is common to all placement strategies, this lives here.
1601          *
1602          * [ this allows ->select_task() to simply return task_cpu(p) and
1603          *   not worry about this generic constraint ]
1604          */
1605         if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1606                      !cpu_online(cpu)))
1607                 cpu = select_fallback_rq(task_cpu(p), p);
1608
1609         return cpu;
1610 }
1611
1612 static void update_avg(u64 *avg, u64 sample)
1613 {
1614         s64 diff = sample - *avg;
1615         *avg += diff >> 3;
1616 }
1617
1618 #else
1619
1620 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1621                                          const struct cpumask *new_mask, bool check)
1622 {
1623         return set_cpus_allowed_ptr(p, new_mask);
1624 }
1625
1626 #endif /* CONFIG_SMP */
1627
1628 static void
1629 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1630 {
1631 #ifdef CONFIG_SCHEDSTATS
1632         struct rq *rq = this_rq();
1633
1634 #ifdef CONFIG_SMP
1635         int this_cpu = smp_processor_id();
1636
1637         if (cpu == this_cpu) {
1638                 schedstat_inc(rq, ttwu_local);
1639                 schedstat_inc(p, se.statistics.nr_wakeups_local);
1640         } else {
1641                 struct sched_domain *sd;
1642
1643                 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1644                 rcu_read_lock();
1645                 for_each_domain(this_cpu, sd) {
1646                         if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1647                                 schedstat_inc(sd, ttwu_wake_remote);
1648                                 break;
1649                         }
1650                 }
1651                 rcu_read_unlock();
1652         }
1653
1654         if (wake_flags & WF_MIGRATED)
1655                 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1656
1657 #endif /* CONFIG_SMP */
1658
1659         schedstat_inc(rq, ttwu_count);
1660         schedstat_inc(p, se.statistics.nr_wakeups);
1661
1662         if (wake_flags & WF_SYNC)
1663                 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1664
1665 #endif /* CONFIG_SCHEDSTATS */
1666 }
1667
1668 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1669 {
1670         activate_task(rq, p, en_flags);
1671         p->on_rq = TASK_ON_RQ_QUEUED;
1672
1673         /* if a worker is waking up, notify workqueue */
1674         if (p->flags & PF_WQ_WORKER)
1675                 wq_worker_waking_up(p, cpu_of(rq));
1676 }
1677
1678 /*
1679  * Mark the task runnable and perform wakeup-preemption.
1680  */
1681 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1682                            struct pin_cookie cookie)
1683 {
1684         check_preempt_curr(rq, p, wake_flags);
1685         p->state = TASK_RUNNING;
1686         trace_sched_wakeup(p);
1687
1688 #ifdef CONFIG_SMP
1689         if (p->sched_class->task_woken) {
1690                 /*
1691                  * Our task @p is fully woken up and running; so its safe to
1692                  * drop the rq->lock, hereafter rq is only used for statistics.
1693                  */
1694                 lockdep_unpin_lock(&rq->lock, cookie);
1695                 p->sched_class->task_woken(rq, p);
1696                 lockdep_repin_lock(&rq->lock, cookie);
1697         }
1698
1699         if (rq->idle_stamp) {
1700                 u64 delta = rq_clock(rq) - rq->idle_stamp;
1701                 u64 max = 2*rq->max_idle_balance_cost;
1702
1703                 update_avg(&rq->avg_idle, delta);
1704
1705                 if (rq->avg_idle > max)
1706                         rq->avg_idle = max;
1707
1708                 rq->idle_stamp = 0;
1709         }
1710 #endif
1711 }
1712
1713 static void
1714 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1715                  struct pin_cookie cookie)
1716 {
1717         int en_flags = ENQUEUE_WAKEUP;
1718
1719         lockdep_assert_held(&rq->lock);
1720
1721 #ifdef CONFIG_SMP
1722         if (p->sched_contributes_to_load)
1723                 rq->nr_uninterruptible--;
1724
1725         if (wake_flags & WF_MIGRATED)
1726                 en_flags |= ENQUEUE_MIGRATED;
1727 #endif
1728
1729         ttwu_activate(rq, p, en_flags);
1730         ttwu_do_wakeup(rq, p, wake_flags, cookie);
1731 }
1732
1733 /*
1734  * Called in case the task @p isn't fully descheduled from its runqueue,
1735  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1736  * since all we need to do is flip p->state to TASK_RUNNING, since
1737  * the task is still ->on_rq.
1738  */
1739 static int ttwu_remote(struct task_struct *p, int wake_flags)
1740 {
1741         struct rq_flags rf;
1742         struct rq *rq;
1743         int ret = 0;
1744
1745         rq = __task_rq_lock(p, &rf);
1746         if (task_on_rq_queued(p)) {
1747                 /* check_preempt_curr() may use rq clock */
1748                 update_rq_clock(rq);
1749                 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1750                 ret = 1;
1751         }
1752         __task_rq_unlock(rq, &rf);
1753
1754         return ret;
1755 }
1756
1757 #ifdef CONFIG_SMP
1758 void sched_ttwu_pending(void)
1759 {
1760         struct rq *rq = this_rq();
1761         struct llist_node *llist = llist_del_all(&rq->wake_list);
1762         struct pin_cookie cookie;
1763         struct task_struct *p;
1764         unsigned long flags;
1765
1766         if (!llist)
1767                 return;
1768
1769         raw_spin_lock_irqsave(&rq->lock, flags);
1770         cookie = lockdep_pin_lock(&rq->lock);
1771
1772         while (llist) {
1773                 int wake_flags = 0;
1774
1775                 p = llist_entry(llist, struct task_struct, wake_entry);
1776                 llist = llist_next(llist);
1777
1778                 if (p->sched_remote_wakeup)
1779                         wake_flags = WF_MIGRATED;
1780
1781                 ttwu_do_activate(rq, p, wake_flags, cookie);
1782         }
1783
1784         lockdep_unpin_lock(&rq->lock, cookie);
1785         raw_spin_unlock_irqrestore(&rq->lock, flags);
1786 }
1787
1788 void scheduler_ipi(void)
1789 {
1790         /*
1791          * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1792          * TIF_NEED_RESCHED remotely (for the first time) will also send
1793          * this IPI.
1794          */
1795         preempt_fold_need_resched();
1796
1797         if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1798                 return;
1799
1800         /*
1801          * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1802          * traditionally all their work was done from the interrupt return
1803          * path. Now that we actually do some work, we need to make sure
1804          * we do call them.
1805          *
1806          * Some archs already do call them, luckily irq_enter/exit nest
1807          * properly.
1808          *
1809          * Arguably we should visit all archs and update all handlers,
1810          * however a fair share of IPIs are still resched only so this would
1811          * somewhat pessimize the simple resched case.
1812          */
1813         irq_enter();
1814         sched_ttwu_pending();
1815
1816         /*
1817          * Check if someone kicked us for doing the nohz idle load balance.
1818          */
1819         if (unlikely(got_nohz_idle_kick())) {
1820                 this_rq()->idle_balance = 1;
1821                 raise_softirq_irqoff(SCHED_SOFTIRQ);
1822         }
1823         irq_exit();
1824 }
1825
1826 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1827 {
1828         struct rq *rq = cpu_rq(cpu);
1829
1830         p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1831
1832         if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1833                 if (!set_nr_if_polling(rq->idle))
1834                         smp_send_reschedule(cpu);
1835                 else
1836                         trace_sched_wake_idle_without_ipi(cpu);
1837         }
1838 }
1839
1840 void wake_up_if_idle(int cpu)
1841 {
1842         struct rq *rq = cpu_rq(cpu);
1843         unsigned long flags;
1844
1845         rcu_read_lock();
1846
1847         if (!is_idle_task(rcu_dereference(rq->curr)))
1848                 goto out;
1849
1850         if (set_nr_if_polling(rq->idle)) {
1851                 trace_sched_wake_idle_without_ipi(cpu);
1852         } else {
1853                 raw_spin_lock_irqsave(&rq->lock, flags);
1854                 if (is_idle_task(rq->curr))
1855                         smp_send_reschedule(cpu);
1856                 /* Else cpu is not in idle, do nothing here */
1857                 raw_spin_unlock_irqrestore(&rq->lock, flags);
1858         }
1859
1860 out:
1861         rcu_read_unlock();
1862 }
1863
1864 bool cpus_share_cache(int this_cpu, int that_cpu)
1865 {
1866         return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1867 }
1868 #endif /* CONFIG_SMP */
1869
1870 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1871 {
1872         struct rq *rq = cpu_rq(cpu);
1873         struct pin_cookie cookie;
1874
1875 #if defined(CONFIG_SMP)
1876         if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1877                 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1878                 ttwu_queue_remote(p, cpu, wake_flags);
1879                 return;
1880         }
1881 #endif
1882
1883         raw_spin_lock(&rq->lock);
1884         cookie = lockdep_pin_lock(&rq->lock);
1885         ttwu_do_activate(rq, p, wake_flags, cookie);
1886         lockdep_unpin_lock(&rq->lock, cookie);
1887         raw_spin_unlock(&rq->lock);
1888 }
1889
1890 /*
1891  * Notes on Program-Order guarantees on SMP systems.
1892  *
1893  *  MIGRATION
1894  *
1895  * The basic program-order guarantee on SMP systems is that when a task [t]
1896  * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1897  * execution on its new cpu [c1].
1898  *
1899  * For migration (of runnable tasks) this is provided by the following means:
1900  *
1901  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1902  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1903  *     rq(c1)->lock (if not at the same time, then in that order).
1904  *  C) LOCK of the rq(c1)->lock scheduling in task
1905  *
1906  * Transitivity guarantees that B happens after A and C after B.
1907  * Note: we only require RCpc transitivity.
1908  * Note: the cpu doing B need not be c0 or c1
1909  *
1910  * Example:
1911  *
1912  *   CPU0            CPU1            CPU2
1913  *
1914  *   LOCK rq(0)->lock
1915  *   sched-out X
1916  *   sched-in Y
1917  *   UNLOCK rq(0)->lock
1918  *
1919  *                                   LOCK rq(0)->lock // orders against CPU0
1920  *                                   dequeue X
1921  *                                   UNLOCK rq(0)->lock
1922  *
1923  *                                   LOCK rq(1)->lock
1924  *                                   enqueue X
1925  *                                   UNLOCK rq(1)->lock
1926  *
1927  *                   LOCK rq(1)->lock // orders against CPU2
1928  *                   sched-out Z
1929  *                   sched-in X
1930  *                   UNLOCK rq(1)->lock
1931  *
1932  *
1933  *  BLOCKING -- aka. SLEEP + WAKEUP
1934  *
1935  * For blocking we (obviously) need to provide the same guarantee as for
1936  * migration. However the means are completely different as there is no lock
1937  * chain to provide order. Instead we do:
1938  *
1939  *   1) smp_store_release(X->on_cpu, 0)
1940  *   2) smp_cond_acquire(!X->on_cpu)
1941  *
1942  * Example:
1943  *
1944  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1945  *
1946  *   LOCK rq(0)->lock LOCK X->pi_lock
1947  *   dequeue X
1948  *   sched-out X
1949  *   smp_store_release(X->on_cpu, 0);
1950  *
1951  *                    smp_cond_acquire(!X->on_cpu);
1952  *                    X->state = WAKING
1953  *                    set_task_cpu(X,2)
1954  *
1955  *                    LOCK rq(2)->lock
1956  *                    enqueue X
1957  *                    X->state = RUNNING
1958  *                    UNLOCK rq(2)->lock
1959  *
1960  *                                          LOCK rq(2)->lock // orders against CPU1
1961  *                                          sched-out Z
1962  *                                          sched-in X
1963  *                                          UNLOCK rq(2)->lock
1964  *
1965  *                    UNLOCK X->pi_lock
1966  *   UNLOCK rq(0)->lock
1967  *
1968  *
1969  * However; for wakeups there is a second guarantee we must provide, namely we
1970  * must observe the state that lead to our wakeup. That is, not only must our
1971  * task observe its own prior state, it must also observe the stores prior to
1972  * its wakeup.
1973  *
1974  * This means that any means of doing remote wakeups must order the CPU doing
1975  * the wakeup against the CPU the task is going to end up running on. This,
1976  * however, is already required for the regular Program-Order guarantee above,
1977  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1978  *
1979  */
1980
1981 /**
1982  * try_to_wake_up - wake up a thread
1983  * @p: the thread to be awakened
1984  * @state: the mask of task states that can be woken
1985  * @wake_flags: wake modifier flags (WF_*)
1986  *
1987  * Put it on the run-queue if it's not already there. The "current"
1988  * thread is always on the run-queue (except when the actual
1989  * re-schedule is in progress), and as such you're allowed to do
1990  * the simpler "current->state = TASK_RUNNING" to mark yourself
1991  * runnable without the overhead of this.
1992  *
1993  * Return: %true if @p was woken up, %false if it was already running.
1994  * or @state didn't match @p's state.
1995  */
1996 static int
1997 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1998 {
1999         unsigned long flags;
2000         int cpu, success = 0;
2001
2002         /*
2003          * If we are going to wake up a thread waiting for CONDITION we
2004          * need to ensure that CONDITION=1 done by the caller can not be
2005          * reordered with p->state check below. This pairs with mb() in
2006          * set_current_state() the waiting thread does.
2007          */
2008         smp_mb__before_spinlock();
2009         raw_spin_lock_irqsave(&p->pi_lock, flags);
2010         if (!(p->state & state))
2011                 goto out;
2012
2013         trace_sched_waking(p);
2014
2015         success = 1; /* we're going to change ->state */
2016         cpu = task_cpu(p);
2017
2018         if (p->on_rq && ttwu_remote(p, wake_flags))
2019                 goto stat;
2020
2021 #ifdef CONFIG_SMP
2022         /*
2023          * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2024          * possible to, falsely, observe p->on_cpu == 0.
2025          *
2026          * One must be running (->on_cpu == 1) in order to remove oneself
2027          * from the runqueue.
2028          *
2029          *  [S] ->on_cpu = 1;   [L] ->on_rq
2030          *      UNLOCK rq->lock
2031          *                      RMB
2032          *      LOCK   rq->lock
2033          *  [S] ->on_rq = 0;    [L] ->on_cpu
2034          *
2035          * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2036          * from the consecutive calls to schedule(); the first switching to our
2037          * task, the second putting it to sleep.
2038          */
2039         smp_rmb();
2040
2041         /*
2042          * If the owning (remote) cpu is still in the middle of schedule() with
2043          * this task as prev, wait until its done referencing the task.
2044          *
2045          * Pairs with the smp_store_release() in finish_lock_switch().
2046          *
2047          * This ensures that tasks getting woken will be fully ordered against
2048          * their previous state and preserve Program Order.
2049          */
2050         smp_cond_acquire(!p->on_cpu);
2051
2052         p->sched_contributes_to_load = !!task_contributes_to_load(p);
2053         p->state = TASK_WAKING;
2054
2055         cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2056         if (task_cpu(p) != cpu) {
2057                 wake_flags |= WF_MIGRATED;
2058                 set_task_cpu(p, cpu);
2059         }
2060 #endif /* CONFIG_SMP */
2061
2062         ttwu_queue(p, cpu, wake_flags);
2063 stat:
2064         if (schedstat_enabled())
2065                 ttwu_stat(p, cpu, wake_flags);
2066 out:
2067         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2068
2069         return success;
2070 }
2071
2072 /**
2073  * try_to_wake_up_local - try to wake up a local task with rq lock held
2074  * @p: the thread to be awakened
2075  *
2076  * Put @p on the run-queue if it's not already there. The caller must
2077  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2078  * the current task.
2079  */
2080 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2081 {
2082         struct rq *rq = task_rq(p);
2083
2084         if (WARN_ON_ONCE(rq != this_rq()) ||
2085             WARN_ON_ONCE(p == current))
2086                 return;
2087
2088         lockdep_assert_held(&rq->lock);
2089
2090         if (!raw_spin_trylock(&p->pi_lock)) {
2091                 /*
2092                  * This is OK, because current is on_cpu, which avoids it being
2093                  * picked for load-balance and preemption/IRQs are still
2094                  * disabled avoiding further scheduler activity on it and we've
2095                  * not yet picked a replacement task.
2096                  */
2097                 lockdep_unpin_lock(&rq->lock, cookie);
2098                 raw_spin_unlock(&rq->lock);
2099                 raw_spin_lock(&p->pi_lock);
2100                 raw_spin_lock(&rq->lock);
2101                 lockdep_repin_lock(&rq->lock, cookie);
2102         }
2103
2104         if (!(p->state & TASK_NORMAL))
2105                 goto out;
2106
2107         trace_sched_waking(p);
2108
2109         if (!task_on_rq_queued(p))
2110                 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2111
2112         ttwu_do_wakeup(rq, p, 0, cookie);
2113         if (schedstat_enabled())
2114                 ttwu_stat(p, smp_processor_id(), 0);
2115 out:
2116         raw_spin_unlock(&p->pi_lock);
2117 }
2118
2119 /**
2120  * wake_up_process - Wake up a specific process
2121  * @p: The process to be woken up.
2122  *
2123  * Attempt to wake up the nominated process and move it to the set of runnable
2124  * processes.
2125  *
2126  * Return: 1 if the process was woken up, 0 if it was already running.
2127  *
2128  * It may be assumed that this function implies a write memory barrier before
2129  * changing the task state if and only if any tasks are woken up.
2130  */
2131 int wake_up_process(struct task_struct *p)
2132 {
2133         return try_to_wake_up(p, TASK_NORMAL, 0);
2134 }
2135 EXPORT_SYMBOL(wake_up_process);
2136
2137 int wake_up_state(struct task_struct *p, unsigned int state)
2138 {
2139         return try_to_wake_up(p, state, 0);
2140 }
2141
2142 /*
2143  * This function clears the sched_dl_entity static params.
2144  */
2145 void __dl_clear_params(struct task_struct *p)
2146 {
2147         struct sched_dl_entity *dl_se = &p->dl;
2148
2149         dl_se->dl_runtime = 0;
2150         dl_se->dl_deadline = 0;
2151         dl_se->dl_period = 0;
2152         dl_se->flags = 0;
2153         dl_se->dl_bw = 0;
2154
2155         dl_se->dl_throttled = 0;
2156         dl_se->dl_yielded = 0;
2157 }
2158
2159 /*
2160  * Perform scheduler related setup for a newly forked process p.
2161  * p is forked by current.
2162  *
2163  * __sched_fork() is basic setup used by init_idle() too:
2164  */
2165 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2166 {
2167         p->on_rq                        = 0;
2168
2169         p->se.on_rq                     = 0;
2170         p->se.exec_start                = 0;
2171         p->se.sum_exec_runtime          = 0;
2172         p->se.prev_sum_exec_runtime     = 0;
2173         p->se.nr_migrations             = 0;
2174         p->se.vruntime                  = 0;
2175         INIT_LIST_HEAD(&p->se.group_node);
2176
2177 #ifdef CONFIG_FAIR_GROUP_SCHED
2178         p->se.cfs_rq                    = NULL;
2179 #endif
2180
2181 #ifdef CONFIG_SCHEDSTATS
2182         /* Even if schedstat is disabled, there should not be garbage */
2183         memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2184 #endif
2185
2186         RB_CLEAR_NODE(&p->dl.rb_node);
2187         init_dl_task_timer(&p->dl);
2188         __dl_clear_params(p);
2189
2190         INIT_LIST_HEAD(&p->rt.run_list);
2191         p->rt.timeout           = 0;
2192         p->rt.time_slice        = sched_rr_timeslice;
2193         p->rt.on_rq             = 0;
2194         p->rt.on_list           = 0;
2195
2196 #ifdef CONFIG_PREEMPT_NOTIFIERS
2197         INIT_HLIST_HEAD(&p->preempt_notifiers);
2198 #endif
2199
2200 #ifdef CONFIG_NUMA_BALANCING
2201         if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2202                 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2203                 p->mm->numa_scan_seq = 0;
2204         }
2205
2206         if (clone_flags & CLONE_VM)
2207                 p->numa_preferred_nid = current->numa_preferred_nid;
2208         else
2209                 p->numa_preferred_nid = -1;
2210
2211         p->node_stamp = 0ULL;
2212         p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2213         p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2214         p->numa_work.next = &p->numa_work;
2215         p->numa_faults = NULL;
2216         p->last_task_numa_placement = 0;
2217         p->last_sum_exec_runtime = 0;
2218
2219         p->numa_group = NULL;
2220 #endif /* CONFIG_NUMA_BALANCING */
2221 }
2222
2223 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2224
2225 #ifdef CONFIG_NUMA_BALANCING
2226
2227 void set_numabalancing_state(bool enabled)
2228 {
2229         if (enabled)
2230                 static_branch_enable(&sched_numa_balancing);
2231         else
2232                 static_branch_disable(&sched_numa_balancing);
2233 }
2234
2235 #ifdef CONFIG_PROC_SYSCTL
2236 int sysctl_numa_balancing(struct ctl_table *table, int write,
2237                          void __user *buffer, size_t *lenp, loff_t *ppos)
2238 {
2239         struct ctl_table t;
2240         int err;
2241         int state = static_branch_likely(&sched_numa_balancing);
2242
2243         if (write && !capable(CAP_SYS_ADMIN))
2244                 return -EPERM;
2245
2246         t = *table;
2247         t.data = &state;
2248         err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2249         if (err < 0)
2250                 return err;
2251         if (write)
2252                 set_numabalancing_state(state);
2253         return err;
2254 }
2255 #endif
2256 #endif
2257
2258 #ifdef CONFIG_SCHEDSTATS
2259
2260 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2261 static bool __initdata __sched_schedstats = false;
2262
2263 static void set_schedstats(bool enabled)
2264 {
2265         if (enabled)
2266                 static_branch_enable(&sched_schedstats);
2267         else
2268                 static_branch_disable(&sched_schedstats);
2269 }
2270
2271 void force_schedstat_enabled(void)
2272 {
2273         if (!schedstat_enabled()) {
2274                 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2275                 static_branch_enable(&sched_schedstats);
2276         }
2277 }
2278
2279 static int __init setup_schedstats(char *str)
2280 {
2281         int ret = 0;
2282         if (!str)
2283                 goto out;
2284
2285         /*
2286          * This code is called before jump labels have been set up, so we can't
2287          * change the static branch directly just yet.  Instead set a temporary
2288          * variable so init_schedstats() can do it later.
2289          */
2290         if (!strcmp(str, "enable")) {
2291                 __sched_schedstats = true;
2292                 ret = 1;
2293         } else if (!strcmp(str, "disable")) {
2294                 __sched_schedstats = false;
2295                 ret = 1;
2296         }
2297 out:
2298         if (!ret)
2299                 pr_warn("Unable to parse schedstats=\n");
2300
2301         return ret;
2302 }
2303 __setup("schedstats=", setup_schedstats);
2304
2305 static void __init init_schedstats(void)
2306 {
2307         set_schedstats(__sched_schedstats);
2308 }
2309
2310 #ifdef CONFIG_PROC_SYSCTL
2311 int sysctl_schedstats(struct ctl_table *table, int write,
2312                          void __user *buffer, size_t *lenp, loff_t *ppos)
2313 {
2314         struct ctl_table t;
2315         int err;
2316         int state = static_branch_likely(&sched_schedstats);
2317
2318         if (write && !capable(CAP_SYS_ADMIN))
2319                 return -EPERM;
2320
2321         t = *table;
2322         t.data = &state;
2323         err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2324         if (err < 0)
2325                 return err;
2326         if (write)
2327                 set_schedstats(state);
2328         return err;
2329 }
2330 #endif /* CONFIG_PROC_SYSCTL */
2331 #else  /* !CONFIG_SCHEDSTATS */
2332 static inline void init_schedstats(void) {}
2333 #endif /* CONFIG_SCHEDSTATS */
2334
2335 /*
2336  * fork()/clone()-time setup:
2337  */
2338 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2339 {
2340         unsigned long flags;
2341         int cpu = get_cpu();
2342
2343         __sched_fork(clone_flags, p);
2344         /*
2345          * We mark the process as running here. This guarantees that
2346          * nobody will actually run it, and a signal or other external
2347          * event cannot wake it up and insert it on the runqueue either.
2348          */
2349         p->state = TASK_RUNNING;
2350
2351         /*
2352          * Make sure we do not leak PI boosting priority to the child.
2353          */
2354         p->prio = current->normal_prio;
2355
2356         /*
2357          * Revert to default priority/policy on fork if requested.
2358          */
2359         if (unlikely(p->sched_reset_on_fork)) {
2360                 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2361                         p->policy = SCHED_NORMAL;
2362                         p->static_prio = NICE_TO_PRIO(0);
2363                         p->rt_priority = 0;
2364                 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2365                         p->static_prio = NICE_TO_PRIO(0);
2366
2367                 p->prio = p->normal_prio = __normal_prio(p);
2368                 set_load_weight(p);
2369
2370                 /*
2371                  * We don't need the reset flag anymore after the fork. It has
2372                  * fulfilled its duty:
2373                  */
2374                 p->sched_reset_on_fork = 0;
2375         }
2376
2377         if (dl_prio(p->prio)) {
2378                 put_cpu();
2379                 return -EAGAIN;
2380         } else if (rt_prio(p->prio)) {
2381                 p->sched_class = &rt_sched_class;
2382         } else {
2383                 p->sched_class = &fair_sched_class;
2384         }
2385
2386         if (p->sched_class->task_fork)
2387                 p->sched_class->task_fork(p);
2388
2389         /*
2390          * The child is not yet in the pid-hash so no cgroup attach races,
2391          * and the cgroup is pinned to this child due to cgroup_fork()
2392          * is ran before sched_fork().
2393          *
2394          * Silence PROVE_RCU.
2395          */
2396         raw_spin_lock_irqsave(&p->pi_lock, flags);
2397         set_task_cpu(p, cpu);
2398         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2399
2400 #ifdef CONFIG_SCHED_INFO
2401         if (likely(sched_info_on()))
2402                 memset(&p->sched_info, 0, sizeof(p->sched_info));
2403 #endif
2404 #if defined(CONFIG_SMP)
2405         p->on_cpu = 0;
2406 #endif
2407         init_task_preempt_count(p);
2408 #ifdef CONFIG_SMP
2409         plist_node_init(&p->pushable_tasks, MAX_PRIO);
2410         RB_CLEAR_NODE(&p->pushable_dl_tasks);
2411 #endif
2412
2413         put_cpu();
2414         return 0;
2415 }
2416
2417 unsigned long to_ratio(u64 period, u64 runtime)
2418 {
2419         if (runtime == RUNTIME_INF)
2420                 return 1ULL << 20;
2421
2422         /*
2423          * Doing this here saves a lot of checks in all
2424          * the calling paths, and returning zero seems
2425          * safe for them anyway.
2426          */
2427         if (period == 0)
2428                 return 0;
2429
2430         return div64_u64(runtime << 20, period);
2431 }
2432
2433 #ifdef CONFIG_SMP
2434 inline struct dl_bw *dl_bw_of(int i)
2435 {
2436         RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2437                          "sched RCU must be held");
2438         return &cpu_rq(i)->rd->dl_bw;
2439 }
2440
2441 static inline int dl_bw_cpus(int i)
2442 {
2443         struct root_domain *rd = cpu_rq(i)->rd;
2444         int cpus = 0;
2445
2446         RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2447                          "sched RCU must be held");
2448         for_each_cpu_and(i, rd->span, cpu_active_mask)
2449                 cpus++;
2450
2451         return cpus;
2452 }
2453 #else
2454 inline struct dl_bw *dl_bw_of(int i)
2455 {
2456         return &cpu_rq(i)->dl.dl_bw;
2457 }
2458
2459 static inline int dl_bw_cpus(int i)
2460 {
2461         return 1;
2462 }
2463 #endif
2464
2465 /*
2466  * We must be sure that accepting a new task (or allowing changing the
2467  * parameters of an existing one) is consistent with the bandwidth
2468  * constraints. If yes, this function also accordingly updates the currently
2469  * allocated bandwidth to reflect the new situation.
2470  *
2471  * This function is called while holding p's rq->lock.
2472  *
2473  * XXX we should delay bw change until the task's 0-lag point, see
2474  * __setparam_dl().
2475  */
2476 static int dl_overflow(struct task_struct *p, int policy,
2477                        const struct sched_attr *attr)
2478 {
2479
2480         struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2481         u64 period = attr->sched_period ?: attr->sched_deadline;
2482         u64 runtime = attr->sched_runtime;
2483         u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2484         int cpus, err = -1;
2485
2486         /* !deadline task may carry old deadline bandwidth */
2487         if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2488                 return 0;
2489
2490         /*
2491          * Either if a task, enters, leave, or stays -deadline but changes
2492          * its parameters, we may need to update accordingly the total
2493          * allocated bandwidth of the container.
2494          */
2495         raw_spin_lock(&dl_b->lock);
2496         cpus = dl_bw_cpus(task_cpu(p));
2497         if (dl_policy(policy) && !task_has_dl_policy(p) &&
2498             !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2499                 __dl_add(dl_b, new_bw);
2500                 err = 0;
2501         } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2502                    !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2503                 __dl_clear(dl_b, p->dl.dl_bw);
2504                 __dl_add(dl_b, new_bw);
2505                 err = 0;
2506         } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2507                 __dl_clear(dl_b, p->dl.dl_bw);
2508                 err = 0;
2509         }
2510         raw_spin_unlock(&dl_b->lock);
2511
2512         return err;
2513 }
2514
2515 extern void init_dl_bw(struct dl_bw *dl_b);
2516
2517 /*
2518  * wake_up_new_task - wake up a newly created task for the first time.
2519  *
2520  * This function will do some initial scheduler statistics housekeeping
2521  * that must be done for every newly created context, then puts the task
2522  * on the runqueue and wakes it.
2523  */
2524 void wake_up_new_task(struct task_struct *p)
2525 {
2526         struct rq_flags rf;
2527         struct rq *rq;
2528
2529         /* Initialize new task's runnable average */
2530         init_entity_runnable_average(&p->se);
2531         raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2532 #ifdef CONFIG_SMP
2533         /*
2534          * Fork balancing, do it here and not earlier because:
2535          *  - cpus_allowed can change in the fork path
2536          *  - any previously selected cpu might disappear through hotplug
2537          */
2538         set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2539 #endif
2540         rq = __task_rq_lock(p, &rf);
2541         post_init_entity_util_avg(&p->se);
2542
2543         activate_task(rq, p, 0);
2544         p->on_rq = TASK_ON_RQ_QUEUED;
2545         trace_sched_wakeup_new(p);
2546         check_preempt_curr(rq, p, WF_FORK);
2547 #ifdef CONFIG_SMP
2548         if (p->sched_class->task_woken) {
2549                 /*
2550                  * Nothing relies on rq->lock after this, so its fine to
2551                  * drop it.
2552                  */
2553                 lockdep_unpin_lock(&rq->lock, rf.cookie);
2554                 p->sched_class->task_woken(rq, p);
2555                 lockdep_repin_lock(&rq->lock, rf.cookie);
2556         }
2557 #endif
2558         task_rq_unlock(rq, p, &rf);
2559 }
2560
2561 #ifdef CONFIG_PREEMPT_NOTIFIERS
2562
2563 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2564
2565 void preempt_notifier_inc(void)
2566 {
2567         static_key_slow_inc(&preempt_notifier_key);
2568 }
2569 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2570
2571 void preempt_notifier_dec(void)
2572 {
2573         static_key_slow_dec(&preempt_notifier_key);
2574 }
2575 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2576
2577 /**
2578  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2579  * @notifier: notifier struct to register
2580  */
2581 void preempt_notifier_register(struct preempt_notifier *notifier)
2582 {
2583         if (!static_key_false(&preempt_notifier_key))
2584                 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2585
2586         hlist_add_head(&notifier->link, &current->preempt_notifiers);
2587 }
2588 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2589
2590 /**
2591  * preempt_notifier_unregister - no longer interested in preemption notifications
2592  * @notifier: notifier struct to unregister
2593  *
2594  * This is *not* safe to call from within a preemption notifier.
2595  */
2596 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2597 {
2598         hlist_del(&notifier->link);
2599 }
2600 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2601
2602 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2603 {
2604         struct preempt_notifier *notifier;
2605
2606         hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2607                 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2608 }
2609
2610 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2611 {
2612         if (static_key_false(&preempt_notifier_key))
2613                 __fire_sched_in_preempt_notifiers(curr);
2614 }
2615
2616 static void
2617 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2618                                    struct task_struct *next)
2619 {
2620         struct preempt_notifier *notifier;
2621
2622         hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2623                 notifier->ops->sched_out(notifier, next);
2624 }
2625
2626 static __always_inline void
2627 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2628                                  struct task_struct *next)
2629 {
2630         if (static_key_false(&preempt_notifier_key))
2631                 __fire_sched_out_preempt_notifiers(curr, next);
2632 }
2633
2634 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2635
2636 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2637 {
2638 }
2639
2640 static inline void
2641 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2642                                  struct task_struct *next)
2643 {
2644 }
2645
2646 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2647
2648 /**
2649  * prepare_task_switch - prepare to switch tasks
2650  * @rq: the runqueue preparing to switch
2651  * @prev: the current task that is being switched out
2652  * @next: the task we are going to switch to.
2653  *
2654  * This is called with the rq lock held and interrupts off. It must
2655  * be paired with a subsequent finish_task_switch after the context
2656  * switch.
2657  *
2658  * prepare_task_switch sets up locking and calls architecture specific
2659  * hooks.
2660  */
2661 static inline void
2662 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2663                     struct task_struct *next)
2664 {
2665         sched_info_switch(rq, prev, next);
2666         perf_event_task_sched_out(prev, next);
2667         fire_sched_out_preempt_notifiers(prev, next);
2668         prepare_lock_switch(rq, next);
2669         prepare_arch_switch(next);
2670 }
2671
2672 /**
2673  * finish_task_switch - clean up after a task-switch
2674  * @prev: the thread we just switched away from.
2675  *
2676  * finish_task_switch must be called after the context switch, paired
2677  * with a prepare_task_switch call before the context switch.
2678  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2679  * and do any other architecture-specific cleanup actions.
2680  *
2681  * Note that we may have delayed dropping an mm in context_switch(). If
2682  * so, we finish that here outside of the runqueue lock. (Doing it
2683  * with the lock held can cause deadlocks; see schedule() for
2684  * details.)
2685  *
2686  * The context switch have flipped the stack from under us and restored the
2687  * local variables which were saved when this task called schedule() in the
2688  * past. prev == current is still correct but we need to recalculate this_rq
2689  * because prev may have moved to another CPU.
2690  */
2691 static struct rq *finish_task_switch(struct task_struct *prev)
2692         __releases(rq->lock)
2693 {
2694         struct rq *rq = this_rq();
2695         struct mm_struct *mm = rq->prev_mm;
2696         long prev_state;
2697
2698         /*
2699          * The previous task will have left us with a preempt_count of 2
2700          * because it left us after:
2701          *
2702          *      schedule()
2703          *        preempt_disable();                    // 1
2704          *        __schedule()
2705          *          raw_spin_lock_irq(&rq->lock)        // 2
2706          *
2707          * Also, see FORK_PREEMPT_COUNT.
2708          */
2709         if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2710                       "corrupted preempt_count: %s/%d/0x%x\n",
2711                       current->comm, current->pid, preempt_count()))
2712                 preempt_count_set(FORK_PREEMPT_COUNT);
2713
2714         rq->prev_mm = NULL;
2715
2716         /*
2717          * A task struct has one reference for the use as "current".
2718          * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2719          * schedule one last time. The schedule call will never return, and
2720          * the scheduled task must drop that reference.
2721          *
2722          * We must observe prev->state before clearing prev->on_cpu (in
2723          * finish_lock_switch), otherwise a concurrent wakeup can get prev
2724          * running on another CPU and we could rave with its RUNNING -> DEAD
2725          * transition, resulting in a double drop.
2726          */
2727         prev_state = prev->state;
2728         vtime_task_switch(prev);
2729         perf_event_task_sched_in(prev, current);
2730         finish_lock_switch(rq, prev);
2731         finish_arch_post_lock_switch();
2732
2733         fire_sched_in_preempt_notifiers(current);
2734         if (mm)
2735                 mmdrop(mm);
2736         if (unlikely(prev_state == TASK_DEAD)) {
2737                 if (prev->sched_class->task_dead)
2738                         prev->sched_class->task_dead(prev);
2739
2740                 /*
2741                  * Remove function-return probe instances associated with this
2742                  * task and put them back on the free list.
2743                  */
2744                 kprobe_flush_task(prev);
2745                 put_task_struct(prev);
2746         }
2747
2748         tick_nohz_task_switch();
2749         return rq;
2750 }
2751
2752 #ifdef CONFIG_SMP
2753
2754 /* rq->lock is NOT held, but preemption is disabled */
2755 static void __balance_callback(struct rq *rq)
2756 {
2757         struct callback_head *head, *next;
2758         void (*func)(struct rq *rq);
2759         unsigned long flags;
2760
2761         raw_spin_lock_irqsave(&rq->lock, flags);
2762         head = rq->balance_callback;
2763         rq->balance_callback = NULL;
2764         while (head) {
2765                 func = (void (*)(struct rq *))head->func;
2766                 next = head->next;
2767                 head->next = NULL;
2768                 head = next;
2769
2770                 func(rq);
2771         }
2772         raw_spin_unlock_irqrestore(&rq->lock, flags);
2773 }
2774
2775 static inline void balance_callback(struct rq *rq)
2776 {
2777         if (unlikely(rq->balance_callback))
2778                 __balance_callback(rq);
2779 }
2780
2781 #else
2782
2783 static inline void balance_callback(struct rq *rq)
2784 {
2785 }
2786
2787 #endif
2788
2789 /**
2790  * schedule_tail - first thing a freshly forked thread must call.
2791  * @prev: the thread we just switched away from.
2792  */
2793 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2794         __releases(rq->lock)
2795 {
2796         struct rq *rq;
2797
2798         /*
2799          * New tasks start with FORK_PREEMPT_COUNT, see there and
2800          * finish_task_switch() for details.
2801          *
2802          * finish_task_switch() will drop rq->lock() and lower preempt_count
2803          * and the preempt_enable() will end up enabling preemption (on
2804          * PREEMPT_COUNT kernels).
2805          */
2806
2807         rq = finish_task_switch(prev);
2808         balance_callback(rq);
2809         preempt_enable();
2810
2811         if (current->set_child_tid)
2812                 put_user(task_pid_vnr(current), current->set_child_tid);
2813 }
2814
2815 /*
2816  * context_switch - switch to the new MM and the new thread's register state.
2817  */
2818 static __always_inline struct rq *
2819 context_switch(struct rq *rq, struct task_struct *prev,
2820                struct task_struct *next, struct pin_cookie cookie)
2821 {
2822         struct mm_struct *mm, *oldmm;
2823
2824         prepare_task_switch(rq, prev, next);
2825
2826         mm = next->mm;
2827         oldmm = prev->active_mm;
2828         /*
2829          * For paravirt, this is coupled with an exit in switch_to to
2830          * combine the page table reload and the switch backend into
2831          * one hypercall.
2832          */
2833         arch_start_context_switch(prev);
2834
2835         if (!mm) {
2836                 next->active_mm = oldmm;
2837                 atomic_inc(&oldmm->mm_count);
2838                 enter_lazy_tlb(oldmm, next);
2839         } else
2840                 switch_mm_irqs_off(oldmm, mm, next);
2841
2842         if (!prev->mm) {
2843                 prev->active_mm = NULL;
2844                 rq->prev_mm = oldmm;
2845         }
2846         /*
2847          * Since the runqueue lock will be released by the next
2848          * task (which is an invalid locking op but in the case
2849          * of the scheduler it's an obvious special-case), so we
2850          * do an early lockdep release here:
2851          */
2852         lockdep_unpin_lock(&rq->lock, cookie);
2853         spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2854
2855         /* Here we just switch the register state and the stack. */
2856         switch_to(prev, next, prev);
2857         barrier();
2858
2859         return finish_task_switch(prev);
2860 }
2861
2862 /*
2863  * nr_running and nr_context_switches:
2864  *
2865  * externally visible scheduler statistics: current number of runnable
2866  * threads, total number of context switches performed since bootup.
2867  */
2868 unsigned long nr_running(void)
2869 {
2870         unsigned long i, sum = 0;
2871
2872         for_each_online_cpu(i)
2873                 sum += cpu_rq(i)->nr_running;
2874
2875         return sum;
2876 }
2877
2878 /*
2879  * Check if only the current task is running on the cpu.
2880  *
2881  * Caution: this function does not check that the caller has disabled
2882  * preemption, thus the result might have a time-of-check-to-time-of-use
2883  * race.  The caller is responsible to use it correctly, for example:
2884  *
2885  * - from a non-preemptable section (of course)
2886  *
2887  * - from a thread that is bound to a single CPU
2888  *
2889  * - in a loop with very short iterations (e.g. a polling loop)
2890  */
2891 bool single_task_running(void)
2892 {
2893         return raw_rq()->nr_running == 1;
2894 }
2895 EXPORT_SYMBOL(single_task_running);
2896
2897 unsigned long long nr_context_switches(void)
2898 {
2899         int i;
2900         unsigned long long sum = 0;
2901
2902         for_each_possible_cpu(i)
2903                 sum += cpu_rq(i)->nr_switches;
2904
2905         return sum;
2906 }
2907
2908 unsigned long nr_iowait(void)
2909 {
2910         unsigned long i, sum = 0;
2911
2912         for_each_possible_cpu(i)
2913                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2914
2915         return sum;
2916 }
2917
2918 unsigned long nr_iowait_cpu(int cpu)
2919 {
2920         struct rq *this = cpu_rq(cpu);
2921         return atomic_read(&this->nr_iowait);
2922 }
2923
2924 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2925 {
2926         struct rq *rq = this_rq();
2927         *nr_waiters = atomic_read(&rq->nr_iowait);
2928         *load = rq->load.weight;
2929 }
2930
2931 #ifdef CONFIG_SMP
2932
2933 /*
2934  * sched_exec - execve() is a valuable balancing opportunity, because at
2935  * this point the task has the smallest effective memory and cache footprint.
2936  */
2937 void sched_exec(void)
2938 {
2939         struct task_struct *p = current;
2940         unsigned long flags;
2941         int dest_cpu;
2942
2943         raw_spin_lock_irqsave(&p->pi_lock, flags);
2944         dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2945         if (dest_cpu == smp_processor_id())
2946                 goto unlock;
2947
2948         if (likely(cpu_active(dest_cpu))) {
2949                 struct migration_arg arg = { p, dest_cpu };
2950
2951                 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2952                 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2953                 return;
2954         }
2955 unlock:
2956         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2957 }
2958
2959 #endif
2960
2961 DEFINE_PER_CPU(struct kernel_stat, kstat);
2962 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2963
2964 EXPORT_PER_CPU_SYMBOL(kstat);
2965 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2966
2967 /*
2968  * Return accounted runtime for the task.
2969  * In case the task is currently running, return the runtime plus current's
2970  * pending runtime that have not been accounted yet.
2971  */
2972 unsigned long long task_sched_runtime(struct task_struct *p)
2973 {
2974         struct rq_flags rf;
2975         struct rq *rq;
2976         u64 ns;
2977
2978 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2979         /*
2980          * 64-bit doesn't need locks to atomically read a 64bit value.
2981          * So we have a optimization chance when the task's delta_exec is 0.
2982          * Reading ->on_cpu is racy, but this is ok.
2983          *
2984          * If we race with it leaving cpu, we'll take a lock. So we're correct.
2985          * If we race with it entering cpu, unaccounted time is 0. This is
2986          * indistinguishable from the read occurring a few cycles earlier.
2987          * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2988          * been accounted, so we're correct here as well.
2989          */
2990         if (!p->on_cpu || !task_on_rq_queued(p))
2991                 return p->se.sum_exec_runtime;
2992 #endif
2993
2994         rq = task_rq_lock(p, &rf);
2995         /*
2996          * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2997          * project cycles that may never be accounted to this
2998          * thread, breaking clock_gettime().
2999          */
3000         if (task_current(rq, p) && task_on_rq_queued(p)) {
3001                 update_rq_clock(rq);
3002                 p->sched_class->update_curr(rq);
3003         }
3004         ns = p->se.sum_exec_runtime;
3005         task_rq_unlock(rq, p, &rf);
3006
3007         return ns;
3008 }
3009
3010 /*
3011  * This function gets called by the timer code, with HZ frequency.
3012  * We call it with interrupts disabled.
3013  */
3014 void scheduler_tick(void)
3015 {
3016         int cpu = smp_processor_id();
3017         struct rq *rq = cpu_rq(cpu);
3018         struct task_struct *curr = rq->curr;
3019
3020         sched_clock_tick();
3021
3022         raw_spin_lock(&rq->lock);
3023         update_rq_clock(rq);
3024         curr->sched_class->task_tick(rq, curr, 0);
3025         cpu_load_update_active(rq);
3026         calc_global_load_tick(rq);
3027         raw_spin_unlock(&rq->lock);
3028
3029         perf_event_task_tick();
3030
3031 #ifdef CONFIG_SMP
3032         rq->idle_balance = idle_cpu(cpu);
3033         trigger_load_balance(rq);
3034 #endif
3035         rq_last_tick_reset(rq);
3036 }
3037
3038 #ifdef CONFIG_NO_HZ_FULL
3039 /**
3040  * scheduler_tick_max_deferment
3041  *
3042  * Keep at least one tick per second when a single
3043  * active task is running because the scheduler doesn't
3044  * yet completely support full dynticks environment.
3045  *
3046  * This makes sure that uptime, CFS vruntime, load
3047  * balancing, etc... continue to move forward, even
3048  * with a very low granularity.
3049  *
3050  * Return: Maximum deferment in nanoseconds.
3051  */
3052 u64 scheduler_tick_max_deferment(void)
3053 {
3054         struct rq *rq = this_rq();
3055         unsigned long next, now = READ_ONCE(jiffies);
3056
3057         next = rq->last_sched_tick + HZ;
3058
3059         if (time_before_eq(next, now))
3060                 return 0;
3061
3062         return jiffies_to_nsecs(next - now);
3063 }
3064 #endif
3065
3066 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3067                                 defined(CONFIG_PREEMPT_TRACER))
3068 /*
3069  * If the value passed in is equal to the current preempt count
3070  * then we just disabled preemption. Start timing the latency.
3071  */
3072 static inline void preempt_latency_start(int val)
3073 {
3074         if (preempt_count() == val) {
3075                 unsigned long ip = get_lock_parent_ip();
3076 #ifdef CONFIG_DEBUG_PREEMPT
3077                 current->preempt_disable_ip = ip;
3078 #endif
3079                 trace_preempt_off(CALLER_ADDR0, ip);
3080         }
3081 }
3082
3083 void preempt_count_add(int val)
3084 {
3085 #ifdef CONFIG_DEBUG_PREEMPT
3086         /*
3087          * Underflow?
3088          */
3089         if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3090                 return;
3091 #endif
3092         __preempt_count_add(val);
3093 #ifdef CONFIG_DEBUG_PREEMPT
3094         /*
3095          * Spinlock count overflowing soon?
3096          */
3097         DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3098                                 PREEMPT_MASK - 10);
3099 #endif
3100         preempt_latency_start(val);
3101 }
3102 EXPORT_SYMBOL(preempt_count_add);
3103 NOKPROBE_SYMBOL(preempt_count_add);
3104
3105 /*
3106  * If the value passed in equals to the current preempt count
3107  * then we just enabled preemption. Stop timing the latency.
3108  */
3109 static inline void preempt_latency_stop(int val)
3110 {
3111         if (preempt_count() == val)
3112                 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3113 }
3114
3115 void preempt_count_sub(int val)
3116 {
3117 #ifdef CONFIG_DEBUG_PREEMPT
3118         /*
3119          * Underflow?
3120          */
3121         if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3122                 return;
3123         /*
3124          * Is the spinlock portion underflowing?
3125          */
3126         if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3127                         !(preempt_count() & PREEMPT_MASK)))
3128                 return;
3129 #endif
3130
3131         preempt_latency_stop(val);
3132         __preempt_count_sub(val);
3133 }
3134 EXPORT_SYMBOL(preempt_count_sub);
3135 NOKPROBE_SYMBOL(preempt_count_sub);
3136
3137 #else
3138 static inline void preempt_latency_start(int val) { }
3139 static inline void preempt_latency_stop(int val) { }
3140 #endif
3141
3142 /*
3143  * Print scheduling while atomic bug:
3144  */
3145 static noinline void __schedule_bug(struct task_struct *prev)
3146 {
3147         if (oops_in_progress)
3148                 return;
3149
3150         printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3151                 prev->comm, prev->pid, preempt_count());
3152
3153         debug_show_held_locks(prev);
3154         print_modules();
3155         if (irqs_disabled())
3156                 print_irqtrace_events(prev);
3157 #ifdef CONFIG_DEBUG_PREEMPT
3158         if (in_atomic_preempt_off()) {
3159                 pr_err("Preemption disabled at:");
3160                 print_ip_sym(current->preempt_disable_ip);
3161                 pr_cont("\n");
3162         }
3163 #endif
3164         dump_stack();
3165         add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3166 }
3167
3168 /*
3169  * Various schedule()-time debugging checks and statistics:
3170  */
3171 static inline void schedule_debug(struct task_struct *prev)
3172 {
3173 #ifdef CONFIG_SCHED_STACK_END_CHECK
3174         if (task_stack_end_corrupted(prev))
3175                 panic("corrupted stack end detected inside scheduler\n");
3176 #endif
3177
3178         if (unlikely(in_atomic_preempt_off())) {
3179                 __schedule_bug(prev);
3180                 preempt_count_set(PREEMPT_DISABLED);
3181         }
3182         rcu_sleep_check();
3183
3184         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3185
3186         schedstat_inc(this_rq(), sched_count);
3187 }
3188
3189 /*
3190  * Pick up the highest-prio task:
3191  */
3192 static inline struct task_struct *
3193 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3194 {
3195         const struct sched_class *class = &fair_sched_class;
3196         struct task_struct *p;
3197
3198         /*
3199          * Optimization: we know that if all tasks are in
3200          * the fair class we can call that function directly:
3201          */
3202         if (likely(prev->sched_class == class &&
3203                    rq->nr_running == rq->cfs.h_nr_running)) {
3204                 p = fair_sched_class.pick_next_task(rq, prev, cookie);
3205                 if (unlikely(p == RETRY_TASK))
3206                         goto again;
3207
3208                 /* assumes fair_sched_class->next == idle_sched_class */
3209                 if (unlikely(!p))
3210                         p = idle_sched_class.pick_next_task(rq, prev, cookie);
3211
3212                 return p;
3213         }
3214
3215 again:
3216         for_each_class(class) {
3217                 p = class->pick_next_task(rq, prev, cookie);
3218                 if (p) {
3219                         if (unlikely(p == RETRY_TASK))
3220                                 goto again;
3221                         return p;
3222                 }
3223         }
3224
3225         BUG(); /* the idle class will always have a runnable task */
3226 }
3227
3228 /*
3229  * __schedule() is the main scheduler function.
3230  *
3231  * The main means of driving the scheduler and thus entering this function are:
3232  *
3233  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3234  *
3235  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3236  *      paths. For example, see arch/x86/entry_64.S.
3237  *
3238  *      To drive preemption between tasks, the scheduler sets the flag in timer
3239  *      interrupt handler scheduler_tick().
3240  *
3241  *   3. Wakeups don't really cause entry into schedule(). They add a
3242  *      task to the run-queue and that's it.
3243  *
3244  *      Now, if the new task added to the run-queue preempts the current
3245  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3246  *      called on the nearest possible occasion:
3247  *
3248  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3249  *
3250  *         - in syscall or exception context, at the next outmost
3251  *           preempt_enable(). (this might be as soon as the wake_up()'s
3252  *           spin_unlock()!)
3253  *
3254  *         - in IRQ context, return from interrupt-handler to
3255  *           preemptible context
3256  *
3257  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3258  *         then at the next:
3259  *
3260  *          - cond_resched() call
3261  *          - explicit schedule() call
3262  *          - return from syscall or exception to user-space
3263  *          - return from interrupt-handler to user-space
3264  *
3265  * WARNING: must be called with preemption disabled!
3266  */
3267 static void __sched notrace __schedule(bool preempt)
3268 {
3269         struct task_struct *prev, *next;
3270         unsigned long *switch_count;
3271         struct pin_cookie cookie;
3272         struct rq *rq;
3273         int cpu;
3274
3275         cpu = smp_processor_id();
3276         rq = cpu_rq(cpu);
3277         prev = rq->curr;
3278
3279         /*
3280          * do_exit() calls schedule() with preemption disabled as an exception;
3281          * however we must fix that up, otherwise the next task will see an
3282          * inconsistent (higher) preempt count.
3283          *
3284          * It also avoids the below schedule_debug() test from complaining
3285          * about this.
3286          */
3287         if (unlikely(prev->state == TASK_DEAD))
3288                 preempt_enable_no_resched_notrace();
3289
3290         schedule_debug(prev);
3291
3292         if (sched_feat(HRTICK))
3293                 hrtick_clear(rq);
3294
3295         local_irq_disable();
3296         rcu_note_context_switch();
3297
3298         /*
3299          * Make sure that signal_pending_state()->signal_pending() below
3300          * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3301          * done by the caller to avoid the race with signal_wake_up().
3302          */
3303         smp_mb__before_spinlock();
3304         raw_spin_lock(&rq->lock);
3305         cookie = lockdep_pin_lock(&rq->lock);
3306
3307         rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3308
3309         switch_count = &prev->nivcsw;
3310         if (!preempt && prev->state) {
3311                 if (unlikely(signal_pending_state(prev->state, prev))) {
3312                         prev->state = TASK_RUNNING;
3313                 } else {
3314                         deactivate_task(rq, prev, DEQUEUE_SLEEP);
3315                         prev->on_rq = 0;
3316
3317                         /*
3318                          * If a worker went to sleep, notify and ask workqueue
3319                          * whether it wants to wake up a task to maintain
3320                          * concurrency.
3321                          */
3322                         if (prev->flags & PF_WQ_WORKER) {
3323                                 struct task_struct *to_wakeup;
3324
3325                                 to_wakeup = wq_worker_sleeping(prev);
3326                                 if (to_wakeup)
3327                                         try_to_wake_up_local(to_wakeup, cookie);
3328                         }
3329                 }
3330                 switch_count = &prev->nvcsw;
3331         }
3332
3333         if (task_on_rq_queued(prev))
3334                 update_rq_clock(rq);
3335
3336         next = pick_next_task(rq, prev, cookie);
3337         clear_tsk_need_resched(prev);
3338         clear_preempt_need_resched();
3339         rq->clock_skip_update = 0;
3340
3341         if (likely(prev != next)) {
3342                 rq->nr_switches++;
3343                 rq->curr = next;
3344                 ++*switch_count;
3345
3346                 trace_sched_switch(preempt, prev, next);
3347                 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3348         } else {
3349                 lockdep_unpin_lock(&rq->lock, cookie);
3350                 raw_spin_unlock_irq(&rq->lock);
3351         }
3352
3353         balance_callback(rq);
3354 }
3355 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3356
3357 static inline void sched_submit_work(struct task_struct *tsk)
3358 {
3359         if (!tsk->state || tsk_is_pi_blocked(tsk))
3360                 return;
3361         /*
3362          * If we are going to sleep and we have plugged IO queued,
3363          * make sure to submit it to avoid deadlocks.
3364          */
3365         if (blk_needs_flush_plug(tsk))
3366                 blk_schedule_flush_plug(tsk);
3367 }
3368
3369 asmlinkage __visible void __sched schedule(void)
3370 {
3371         struct task_struct *tsk = current;
3372
3373         sched_submit_work(tsk);
3374         do {
3375                 preempt_disable();
3376                 __schedule(false);
3377                 sched_preempt_enable_no_resched();
3378         } while (need_resched());
3379 }
3380 EXPORT_SYMBOL(schedule);
3381
3382 #ifdef CONFIG_CONTEXT_TRACKING
3383 asmlinkage __visible void __sched schedule_user(void)
3384 {
3385         /*
3386          * If we come here after a random call to set_need_resched(),
3387          * or we have been woken up remotely but the IPI has not yet arrived,
3388          * we haven't yet exited the RCU idle mode. Do it here manually until
3389          * we find a better solution.
3390          *
3391          * NB: There are buggy callers of this function.  Ideally we
3392          * should warn if prev_state != CONTEXT_USER, but that will trigger
3393          * too frequently to make sense yet.
3394          */
3395         enum ctx_state prev_state = exception_enter();
3396         schedule();
3397         exception_exit(prev_state);
3398 }
3399 #endif
3400
3401 /**
3402  * schedule_preempt_disabled - called with preemption disabled
3403  *
3404  * Returns with preemption disabled. Note: preempt_count must be 1
3405  */
3406 void __sched schedule_preempt_disabled(void)
3407 {
3408         sched_preempt_enable_no_resched();
3409         schedule();
3410         preempt_disable();
3411 }
3412
3413 static void __sched notrace preempt_schedule_common(void)
3414 {
3415         do {
3416                 /*
3417                  * Because the function tracer can trace preempt_count_sub()
3418                  * and it also uses preempt_enable/disable_notrace(), if
3419                  * NEED_RESCHED is set, the preempt_enable_notrace() called
3420                  * by the function tracer will call this function again and
3421                  * cause infinite recursion.
3422                  *
3423                  * Preemption must be disabled here before the function
3424                  * tracer can trace. Break up preempt_disable() into two
3425                  * calls. One to disable preemption without fear of being
3426                  * traced. The other to still record the preemption latency,
3427                  * which can also be traced by the function tracer.
3428                  */
3429                 preempt_disable_notrace();
3430                 preempt_latency_start(1);
3431                 __schedule(true);
3432                 preempt_latency_stop(1);
3433                 preempt_enable_no_resched_notrace();
3434
3435                 /*
3436                  * Check again in case we missed a preemption opportunity
3437                  * between schedule and now.
3438                  */
3439         } while (need_resched());
3440 }
3441
3442 #ifdef CONFIG_PREEMPT
3443 /*
3444  * this is the entry point to schedule() from in-kernel preemption
3445  * off of preempt_enable. Kernel preemptions off return from interrupt
3446  * occur there and call schedule directly.
3447  */
3448 asmlinkage __visible void __sched notrace preempt_schedule(void)
3449 {
3450         /*
3451          * If there is a non-zero preempt_count or interrupts are disabled,
3452          * we do not want to preempt the current task. Just return..
3453          */
3454         if (likely(!preemptible()))
3455                 return;
3456
3457         preempt_schedule_common();
3458 }
3459 NOKPROBE_SYMBOL(preempt_schedule);
3460 EXPORT_SYMBOL(preempt_schedule);
3461
3462 /**
3463  * preempt_schedule_notrace - preempt_schedule called by tracing
3464  *
3465  * The tracing infrastructure uses preempt_enable_notrace to prevent
3466  * recursion and tracing preempt enabling caused by the tracing
3467  * infrastructure itself. But as tracing can happen in areas coming
3468  * from userspace or just about to enter userspace, a preempt enable
3469  * can occur before user_exit() is called. This will cause the scheduler
3470  * to be called when the system is still in usermode.
3471  *
3472  * To prevent this, the preempt_enable_notrace will use this function
3473  * instead of preempt_schedule() to exit user context if needed before
3474  * calling the scheduler.
3475  */
3476 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3477 {
3478         enum ctx_state prev_ctx;
3479
3480         if (likely(!preemptible()))
3481                 return;
3482
3483         do {
3484                 /*
3485                  * Because the function tracer can trace preempt_count_sub()
3486                  * and it also uses preempt_enable/disable_notrace(), if
3487                  * NEED_RESCHED is set, the preempt_enable_notrace() called
3488                  * by the function tracer will call this function again and
3489                  * cause infinite recursion.
3490                  *
3491                  * Preemption must be disabled here before the function
3492                  * tracer can trace. Break up preempt_disable() into two
3493                  * calls. One to disable preemption without fear of being
3494                  * traced. The other to still record the preemption latency,
3495                  * which can also be traced by the function tracer.
3496                  */
3497                 preempt_disable_notrace();
3498                 preempt_latency_start(1);
3499                 /*
3500                  * Needs preempt disabled in case user_exit() is traced
3501                  * and the tracer calls preempt_enable_notrace() causing
3502                  * an infinite recursion.
3503                  */
3504                 prev_ctx = exception_enter();
3505                 __schedule(true);
3506                 exception_exit(prev_ctx);
3507
3508                 preempt_latency_stop(1);
3509                 preempt_enable_no_resched_notrace();
3510         } while (need_resched());
3511 }
3512 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3513
3514 #endif /* CONFIG_PREEMPT */
3515
3516 /*
3517  * this is the entry point to schedule() from kernel preemption
3518  * off of irq context.
3519  * Note, that this is called and return with irqs disabled. This will
3520  * protect us against recursive calling from irq.
3521  */
3522 asmlinkage __visible void __sched preempt_schedule_irq(void)
3523 {
3524         enum ctx_state prev_state;
3525
3526         /* Catch callers which need to be fixed */
3527         BUG_ON(preempt_count() || !irqs_disabled());
3528
3529         prev_state = exception_enter();
3530
3531         do {
3532                 preempt_disable();
3533                 local_irq_enable();
3534                 __schedule(true);
3535                 local_irq_disable();
3536                 sched_preempt_enable_no_resched();
3537         } while (need_resched());
3538
3539         exception_exit(prev_state);
3540 }
3541
3542 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3543                           void *key)
3544 {
3545         return try_to_wake_up(curr->private, mode, wake_flags);
3546 }
3547 EXPORT_SYMBOL(default_wake_function);
3548
3549 #ifdef CONFIG_RT_MUTEXES
3550
3551 /*
3552  * rt_mutex_setprio - set the current priority of a task
3553  * @p: task
3554  * @prio: prio value (kernel-internal form)
3555  *
3556  * This function changes the 'effective' priority of a task. It does
3557  * not touch ->normal_prio like __setscheduler().
3558  *
3559  * Used by the rt_mutex code to implement priority inheritance
3560  * logic. Call site only calls if the priority of the task changed.
3561  */
3562 void rt_mutex_setprio(struct task_struct *p, int prio)
3563 {
3564         int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3565         const struct sched_class *prev_class;
3566         struct rq_flags rf;
3567         struct rq *rq;
3568
3569         BUG_ON(prio > MAX_PRIO);
3570
3571         rq = __task_rq_lock(p, &rf);
3572
3573         /*
3574          * Idle task boosting is a nono in general. There is one
3575          * exception, when PREEMPT_RT and NOHZ is active:
3576          *
3577          * The idle task calls get_next_timer_interrupt() and holds
3578          * the timer wheel base->lock on the CPU and another CPU wants
3579          * to access the timer (probably to cancel it). We can safely
3580          * ignore the boosting request, as the idle CPU runs this code
3581          * with interrupts disabled and will complete the lock
3582          * protected section without being interrupted. So there is no
3583          * real need to boost.
3584          */
3585         if (unlikely(p == rq->idle)) {
3586                 WARN_ON(p != rq->curr);
3587                 WARN_ON(p->pi_blocked_on);
3588                 goto out_unlock;
3589         }
3590
3591         trace_sched_pi_setprio(p, prio);
3592         oldprio = p->prio;
3593
3594         if (oldprio == prio)
3595                 queue_flag &= ~DEQUEUE_MOVE;
3596
3597         prev_class = p->sched_class;
3598         queued = task_on_rq_queued(p);
3599         running = task_current(rq, p);
3600         if (queued)
3601                 dequeue_task(rq, p, queue_flag);
3602         if (running)
3603                 put_prev_task(rq, p);
3604
3605         /*
3606          * Boosting condition are:
3607          * 1. -rt task is running and holds mutex A
3608          *      --> -dl task blocks on mutex A
3609          *
3610          * 2. -dl task is running and holds mutex A
3611          *      --> -dl task blocks on mutex A and could preempt the
3612          *          running task
3613          */
3614         if (dl_prio(prio)) {
3615                 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3616                 if (!dl_prio(p->normal_prio) ||
3617                     (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3618                         p->dl.dl_boosted = 1;
3619                         queue_flag |= ENQUEUE_REPLENISH;
3620                 } else
3621                         p->dl.dl_boosted = 0;
3622                 p->sched_class = &dl_sched_class;
3623         } else if (rt_prio(prio)) {
3624                 if (dl_prio(oldprio))
3625                         p->dl.dl_boosted = 0;
3626                 if (oldprio < prio)
3627                         queue_flag |= ENQUEUE_HEAD;
3628                 p->sched_class = &rt_sched_class;
3629         } else {
3630                 if (dl_prio(oldprio))
3631                         p->dl.dl_boosted = 0;
3632                 if (rt_prio(oldprio))
3633                         p->rt.timeout = 0;
3634                 p->sched_class = &fair_sched_class;
3635         }
3636
3637         p->prio = prio;
3638
3639         if (running)
3640                 p->sched_class->set_curr_task(rq);
3641         if (queued)
3642                 enqueue_task(rq, p, queue_flag);
3643
3644         check_class_changed(rq, p, prev_class, oldprio);
3645 out_unlock:
3646         preempt_disable(); /* avoid rq from going away on us */
3647         __task_rq_unlock(rq, &rf);
3648
3649         balance_callback(rq);
3650         preempt_enable();
3651 }
3652 #endif
3653
3654 void set_user_nice(struct task_struct *p, long nice)
3655 {
3656         int old_prio, delta, queued;
3657         struct rq_flags rf;
3658         struct rq *rq;
3659
3660         if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3661                 return;
3662         /*
3663          * We have to be careful, if called from sys_setpriority(),
3664          * the task might be in the middle of scheduling on another CPU.
3665          */
3666         rq = task_rq_lock(p, &rf);
3667         /*
3668          * The RT priorities are set via sched_setscheduler(), but we still
3669          * allow the 'normal' nice value to be set - but as expected
3670          * it wont have any effect on scheduling until the task is
3671          * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3672          */
3673         if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3674                 p->static_prio = NICE_TO_PRIO(nice);
3675                 goto out_unlock;
3676         }
3677         queued = task_on_rq_queued(p);
3678         if (queued)
3679                 dequeue_task(rq, p, DEQUEUE_SAVE);
3680
3681         p->static_prio = NICE_TO_PRIO(nice);
3682         set_load_weight(p);
3683         old_prio = p->prio;
3684         p->prio = effective_prio(p);
3685         delta = p->prio - old_prio;
3686
3687         if (queued) {
3688                 enqueue_task(rq, p, ENQUEUE_RESTORE);
3689                 /*
3690                  * If the task increased its priority or is running and
3691                  * lowered its priority, then reschedule its CPU:
3692                  */
3693                 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3694                         resched_curr(rq);
3695         }
3696 out_unlock:
3697         task_rq_unlock(rq, p, &rf);
3698 }
3699 EXPORT_SYMBOL(set_user_nice);
3700
3701 /*
3702  * can_nice - check if a task can reduce its nice value
3703  * @p: task
3704  * @nice: nice value
3705  */
3706 int can_nice(const struct task_struct *p, const int nice)
3707 {
3708         /* convert nice value [19,-20] to rlimit style value [1,40] */
3709         int nice_rlim = nice_to_rlimit(nice);
3710
3711         return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3712                 capable(CAP_SYS_NICE));
3713 }
3714
3715 #ifdef __ARCH_WANT_SYS_NICE
3716
3717 /*
3718  * sys_nice - change the priority of the current process.
3719  * @increment: priority increment
3720  *
3721  * sys_setpriority is a more generic, but much slower function that
3722  * does similar things.
3723  */
3724 SYSCALL_DEFINE1(nice, int, increment)
3725 {
3726         long nice, retval;
3727
3728         /*
3729          * Setpriority might change our priority at the same moment.
3730          * We don't have to worry. Conceptually one call occurs first
3731          * and we have a single winner.
3732          */
3733         increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3734         nice = task_nice(current) + increment;
3735
3736         nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3737         if (increment < 0 && !can_nice(current, nice))
3738                 return -EPERM;
3739
3740         retval = security_task_setnice(current, nice);
3741         if (retval)
3742                 return retval;
3743
3744         set_user_nice(current, nice);
3745         return 0;
3746 }
3747
3748 #endif
3749
3750 /**
3751  * task_prio - return the priority value of a given task.
3752  * @p: the task in question.
3753  *
3754  * Return: The priority value as seen by users in /proc.
3755  * RT tasks are offset by -200. Normal tasks are centered
3756  * around 0, value goes from -16 to +15.
3757  */
3758 int task_prio(const struct task_struct *p)
3759 {
3760         return p->prio - MAX_RT_PRIO;
3761 }
3762
3763 /**
3764  * idle_cpu - is a given cpu idle currently?
3765  * @cpu: the processor in question.
3766  *
3767  * Return: 1 if the CPU is currently idle. 0 otherwise.
3768  */
3769 int idle_cpu(int cpu)
3770 {
3771         struct rq *rq = cpu_rq(cpu);
3772
3773         if (rq->curr != rq->idle)
3774                 return 0;
3775
3776         if (rq->nr_running)
3777                 return 0;
3778
3779 #ifdef CONFIG_SMP
3780         if (!llist_empty(&rq->wake_list))
3781                 return 0;
3782 #endif
3783
3784         return 1;
3785 }
3786
3787 /**
3788  * idle_task - return the idle task for a given cpu.
3789  * @cpu: the processor in question.
3790  *
3791  * Return: The idle task for the cpu @cpu.
3792  */
3793 struct task_struct *idle_task(int cpu)
3794 {
3795         return cpu_rq(cpu)->idle;
3796 }
3797
3798 /**
3799  * find_process_by_pid - find a process with a matching PID value.
3800  * @pid: the pid in question.
3801  *
3802  * The task of @pid, if found. %NULL otherwise.
3803  */
3804 static struct task_struct *find_process_by_pid(pid_t pid)
3805 {
3806         return pid ? find_task_by_vpid(pid) : current;
3807 }
3808
3809 /*
3810  * This function initializes the sched_dl_entity of a newly becoming
3811  * SCHED_DEADLINE task.
3812  *
3813  * Only the static values are considered here, the actual runtime and the
3814  * absolute deadline will be properly calculated when the task is enqueued
3815  * for the first time with its new policy.
3816  */
3817 static void
3818 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3819 {
3820         struct sched_dl_entity *dl_se = &p->dl;
3821
3822         dl_se->dl_runtime = attr->sched_runtime;
3823         dl_se->dl_deadline = attr->sched_deadline;
3824         dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3825         dl_se->flags = attr->sched_flags;
3826         dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3827
3828         /*
3829          * Changing the parameters of a task is 'tricky' and we're not doing
3830          * the correct thing -- also see task_dead_dl() and switched_from_dl().
3831          *
3832          * What we SHOULD do is delay the bandwidth release until the 0-lag
3833          * point. This would include retaining the task_struct until that time
3834          * and change dl_overflow() to not immediately decrement the current
3835          * amount.
3836          *
3837          * Instead we retain the current runtime/deadline and let the new
3838          * parameters take effect after the current reservation period lapses.
3839          * This is safe (albeit pessimistic) because the 0-lag point is always
3840          * before the current scheduling deadline.
3841          *
3842          * We can still have temporary overloads because we do not delay the
3843          * change in bandwidth until that time; so admission control is
3844          * not on the safe side. It does however guarantee tasks will never
3845          * consume more than promised.
3846          */
3847 }
3848
3849 /*
3850  * sched_setparam() passes in -1 for its policy, to let the functions
3851  * it calls know not to change it.
3852  */
3853 #define SETPARAM_POLICY -1
3854
3855 static void __setscheduler_params(struct task_struct *p,
3856                 const struct sched_attr *attr)
3857 {
3858         int policy = attr->sched_policy;
3859
3860         if (policy == SETPARAM_POLICY)
3861                 policy = p->policy;
3862
3863         p->policy = policy;
3864
3865         if (dl_policy(policy))
3866                 __setparam_dl(p, attr);
3867         else if (fair_policy(policy))
3868                 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3869
3870         /*
3871          * __sched_setscheduler() ensures attr->sched_priority == 0 when
3872          * !rt_policy. Always setting this ensures that things like
3873          * getparam()/getattr() don't report silly values for !rt tasks.
3874          */
3875         p->rt_priority = attr->sched_priority;
3876         p->normal_prio = normal_prio(p);
3877         set_load_weight(p);
3878 }
3879
3880 /* Actually do priority change: must hold pi & rq lock. */
3881 static void __setscheduler(struct rq *rq, struct task_struct *p,
3882                            const struct sched_attr *attr, bool keep_boost)
3883 {
3884         __setscheduler_params(p, attr);
3885
3886         /*
3887          * Keep a potential priority boosting if called from
3888          * sched_setscheduler().
3889          */
3890         if (keep_boost)
3891                 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3892         else
3893                 p->prio = normal_prio(p);
3894
3895         if (dl_prio(p->prio))
3896                 p->sched_class = &dl_sched_class;
3897         else if (rt_prio(p->prio))
3898                 p->sched_class = &rt_sched_class;
3899         else
3900                 p->sched_class = &fair_sched_class;
3901 }
3902
3903 static void
3904 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3905 {
3906         struct sched_dl_entity *dl_se = &p->dl;
3907
3908         attr->sched_priority = p->rt_priority;
3909         attr->sched_runtime = dl_se->dl_runtime;
3910         attr->sched_deadline = dl_se->dl_deadline;
3911         attr->sched_period = dl_se->dl_period;
3912         attr->sched_flags = dl_se->flags;
3913 }
3914
3915 /*
3916  * This function validates the new parameters of a -deadline task.
3917  * We ask for the deadline not being zero, and greater or equal
3918  * than the runtime, as well as the period of being zero or
3919  * greater than deadline. Furthermore, we have to be sure that
3920  * user parameters are above the internal resolution of 1us (we
3921  * check sched_runtime only since it is always the smaller one) and
3922  * below 2^63 ns (we have to check both sched_deadline and
3923  * sched_period, as the latter can be zero).
3924  */
3925 static bool
3926 __checkparam_dl(const struct sched_attr *attr)
3927 {
3928         /* deadline != 0 */
3929         if (attr->sched_deadline == 0)
3930                 return false;
3931
3932         /*
3933          * Since we truncate DL_SCALE bits, make sure we're at least
3934          * that big.
3935          */
3936         if (attr->sched_runtime < (1ULL << DL_SCALE))
3937                 return false;
3938
3939         /*
3940          * Since we use the MSB for wrap-around and sign issues, make
3941          * sure it's not set (mind that period can be equal to zero).
3942          */
3943         if (attr->sched_deadline & (1ULL << 63) ||
3944             attr->sched_period & (1ULL << 63))
3945                 return false;
3946
3947         /* runtime <= deadline <= period (if period != 0) */
3948         if ((attr->sched_period != 0 &&
3949              attr->sched_period < attr->sched_deadline) ||
3950             attr->sched_deadline < attr->sched_runtime)
3951                 return false;
3952
3953         return true;
3954 }
3955
3956 /*
3957  * check the target process has a UID that matches the current process's
3958  */
3959 static bool check_same_owner(struct task_struct *p)
3960 {
3961         const struct cred *cred = current_cred(), *pcred;
3962         bool match;
3963
3964         rcu_read_lock();
3965         pcred = __task_cred(p);
3966         match = (uid_eq(cred->euid, pcred->euid) ||
3967                  uid_eq(cred->euid, pcred->uid));
3968         rcu_read_unlock();
3969         return match;
3970 }
3971
3972 static bool dl_param_changed(struct task_struct *p,
3973                 const struct sched_attr *attr)
3974 {
3975         struct sched_dl_entity *dl_se = &p->dl;
3976
3977         if (dl_se->dl_runtime != attr->sched_runtime ||
3978                 dl_se->dl_deadline != attr->sched_deadline ||
3979                 dl_se->dl_period != attr->sched_period ||
3980                 dl_se->flags != attr->sched_flags)
3981                 return true;
3982
3983         return false;
3984 }
3985
3986 static int __sched_setscheduler(struct task_struct *p,
3987                                 const struct sched_attr *attr,
3988                                 bool user, bool pi)
3989 {
3990         int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3991                       MAX_RT_PRIO - 1 - attr->sched_priority;
3992         int retval, oldprio, oldpolicy = -1, queued, running;
3993         int new_effective_prio, policy = attr->sched_policy;
3994         const struct sched_class *prev_class;
3995         struct rq_flags rf;
3996         int reset_on_fork;
3997         int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3998         struct rq *rq;
3999
4000         /* may grab non-irq protected spin_locks */
4001         BUG_ON(in_interrupt());
4002 recheck:
4003         /* double check policy once rq lock held */
4004         if (policy < 0) {
4005                 reset_on_fork = p->sched_reset_on_fork;
4006                 policy = oldpolicy = p->policy;
4007         } else {
4008                 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4009
4010                 if (!valid_policy(policy))
4011                         return -EINVAL;
4012         }
4013
4014         if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4015                 return -EINVAL;
4016
4017         /*
4018          * Valid priorities for SCHED_FIFO and SCHED_RR are
4019          * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4020          * SCHED_BATCH and SCHED_IDLE is 0.
4021          */
4022         if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4023             (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4024                 return -EINVAL;
4025         if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4026             (rt_policy(policy) != (attr->sched_priority != 0)))
4027                 return -EINVAL;
4028
4029         /*
4030          * Allow unprivileged RT tasks to decrease priority:
4031          */
4032         if (user && !capable(CAP_SYS_NICE)) {
4033                 if (fair_policy(policy)) {
4034                         if (attr->sched_nice < task_nice(p) &&
4035                             !can_nice(p, attr->sched_nice))
4036                                 return -EPERM;
4037                 }
4038
4039                 if (rt_policy(policy)) {
4040                         unsigned long rlim_rtprio =
4041                                         task_rlimit(p, RLIMIT_RTPRIO);
4042
4043                         /* can't set/change the rt policy */
4044                         if (policy != p->policy && !rlim_rtprio)
4045                                 return -EPERM;
4046
4047                         /* can't increase priority */
4048                         if (attr->sched_priority > p->rt_priority &&
4049                             attr->sched_priority > rlim_rtprio)
4050                                 return -EPERM;
4051                 }
4052
4053                  /*
4054                   * Can't set/change SCHED_DEADLINE policy at all for now
4055                   * (safest behavior); in the future we would like to allow
4056                   * unprivileged DL tasks to increase their relative deadline
4057                   * or reduce their runtime (both ways reducing utilization)
4058                   */
4059                 if (dl_policy(policy))
4060                         return -EPERM;
4061
4062                 /*
4063                  * Treat SCHED_IDLE as nice 20. Only allow a switch to
4064                  * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4065                  */
4066                 if (idle_policy(p->policy) && !idle_policy(policy)) {
4067                         if (!can_nice(p, task_nice(p)))
4068                                 return -EPERM;
4069                 }
4070
4071                 /* can't change other user's priorities */
4072                 if (!check_same_owner(p))
4073                         return -EPERM;
4074
4075                 /* Normal users shall not reset the sched_reset_on_fork flag */
4076                 if (p->sched_reset_on_fork && !reset_on_fork)
4077                         return -EPERM;
4078         }
4079
4080         if (user) {
4081                 retval = security_task_setscheduler(p);
4082                 if (retval)
4083                         return retval;
4084         }
4085
4086         /*
4087          * make sure no PI-waiters arrive (or leave) while we are
4088          * changing the priority of the task:
4089          *
4090          * To be able to change p->policy safely, the appropriate
4091          * runqueue lock must be held.
4092          */
4093         rq = task_rq_lock(p, &rf);
4094
4095         /*
4096          * Changing the policy of the stop threads its a very bad idea
4097          */
4098         if (p == rq->stop) {
4099                 task_rq_unlock(rq, p, &rf);
4100                 return -EINVAL;
4101         }
4102
4103         /*
4104          * If not changing anything there's no need to proceed further,
4105          * but store a possible modification of reset_on_fork.
4106          */
4107         if (unlikely(policy == p->policy)) {
4108                 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4109                         goto change;
4110                 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4111                         goto change;
4112                 if (dl_policy(policy) && dl_param_changed(p, attr))
4113                         goto change;
4114
4115                 p->sched_reset_on_fork = reset_on_fork;
4116                 task_rq_unlock(rq, p, &rf);
4117                 return 0;
4118         }
4119 change:
4120
4121         if (user) {
4122 #ifdef CONFIG_RT_GROUP_SCHED
4123                 /*
4124                  * Do not allow realtime tasks into groups that have no runtime
4125                  * assigned.
4126                  */
4127                 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4128                                 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4129                                 !task_group_is_autogroup(task_group(p))) {
4130                         task_rq_unlock(rq, p, &rf);
4131                         return -EPERM;
4132                 }
4133 #endif
4134 #ifdef CONFIG_SMP
4135                 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4136                         cpumask_t *span = rq->rd->span;
4137
4138                         /*
4139                          * Don't allow tasks with an affinity mask smaller than
4140                          * the entire root_domain to become SCHED_DEADLINE. We
4141                          * will also fail if there's no bandwidth available.
4142                          */
4143                         if (!cpumask_subset(span, &p->cpus_allowed) ||
4144                             rq->rd->dl_bw.bw == 0) {
4145                                 task_rq_unlock(rq, p, &rf);
4146                                 return -EPERM;
4147                         }
4148                 }
4149 #endif
4150         }
4151
4152         /* recheck policy now with rq lock held */
4153         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4154                 policy = oldpolicy = -1;
4155                 task_rq_unlock(rq, p, &rf);
4156                 goto recheck;
4157         }
4158
4159         /*
4160          * If setscheduling to SCHED_DEADLINE (or changing the parameters
4161          * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4162          * is available.
4163          */
4164         if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4165                 task_rq_unlock(rq, p, &rf);
4166                 return -EBUSY;
4167         }
4168
4169         p->sched_reset_on_fork = reset_on_fork;
4170         oldprio = p->prio;
4171
4172         if (pi) {
4173                 /*
4174                  * Take priority boosted tasks into account. If the new
4175                  * effective priority is unchanged, we just store the new
4176                  * normal parameters and do not touch the scheduler class and
4177                  * the runqueue. This will be done when the task deboost
4178                  * itself.
4179                  */
4180                 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4181                 if (new_effective_prio == oldprio)
4182                         queue_flags &= ~DEQUEUE_MOVE;
4183         }
4184
4185         queued = task_on_rq_queued(p);
4186         running = task_current(rq, p);
4187         if (queued)
4188                 dequeue_task(rq, p, queue_flags);
4189         if (running)
4190                 put_prev_task(rq, p);
4191
4192         prev_class = p->sched_class;
4193         __setscheduler(rq, p, attr, pi);
4194
4195         if (running)
4196                 p->sched_class->set_curr_task(rq);
4197         if (queued) {
4198                 /*
4199                  * We enqueue to tail when the priority of a task is
4200                  * increased (user space view).
4201                  */
4202                 if (oldprio < p->prio)
4203                         queue_flags |= ENQUEUE_HEAD;
4204
4205                 enqueue_task(rq, p, queue_flags);
4206         }
4207
4208         check_class_changed(rq, p, prev_class, oldprio);
4209         preempt_disable(); /* avoid rq from going away on us */
4210         task_rq_unlock(rq, p, &rf);
4211
4212         if (pi)
4213                 rt_mutex_adjust_pi(p);
4214
4215         /*
4216          * Run balance callbacks after we've adjusted the PI chain.
4217          */
4218         balance_callback(rq);
4219         preempt_enable();
4220
4221         return 0;
4222 }
4223
4224 static int _sched_setscheduler(struct task_struct *p, int policy,
4225                                const struct sched_param *param, bool check)
4226 {
4227         struct sched_attr attr = {
4228                 .sched_policy   = policy,
4229                 .sched_priority = param->sched_priority,
4230                 .sched_nice     = PRIO_TO_NICE(p->static_prio),
4231         };
4232
4233         /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4234         if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4235                 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4236                 policy &= ~SCHED_RESET_ON_FORK;
4237                 attr.sched_policy = policy;
4238         }
4239
4240         return __sched_setscheduler(p, &attr, check, true);
4241 }
4242 /**
4243  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4244  * @p: the task in question.
4245  * @policy: new policy.
4246  * @param: structure containing the new RT priority.
4247  *
4248  * Return: 0 on success. An error code otherwise.
4249  *
4250  * NOTE that the task may be already dead.
4251  */
4252 int sched_setscheduler(struct task_struct *p, int policy,
4253                        const struct sched_param *param)
4254 {
4255         return _sched_setscheduler(p, policy, param, true);
4256 }
4257 EXPORT_SYMBOL_GPL(sched_setscheduler);
4258
4259 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4260 {
4261         return __sched_setscheduler(p, attr, true, true);
4262 }
4263 EXPORT_SYMBOL_GPL(sched_setattr);
4264
4265 /**
4266  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4267  * @p: the task in question.
4268  * @policy: new policy.
4269  * @param: structure containing the new RT priority.
4270  *
4271  * Just like sched_setscheduler, only don't bother checking if the
4272  * current context has permission.  For example, this is needed in
4273  * stop_machine(): we create temporary high priority worker threads,
4274  * but our caller might not have that capability.
4275  *
4276  * Return: 0 on success. An error code otherwise.
4277  */
4278 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4279                                const struct sched_param *param)
4280 {
4281         return _sched_setscheduler(p, policy, param, false);
4282 }
4283 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4284
4285 static int
4286 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4287 {
4288         struct sched_param lparam;
4289         struct task_struct *p;
4290         int retval;
4291
4292         if (!param || pid < 0)
4293                 return -EINVAL;
4294         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4295                 return -EFAULT;
4296
4297         rcu_read_lock();
4298         retval = -ESRCH;
4299         p = find_process_by_pid(pid);
4300         if (p != NULL)
4301                 retval = sched_setscheduler(p, policy, &lparam);
4302         rcu_read_unlock();
4303
4304         return retval;
4305 }
4306
4307 /*
4308  * Mimics kernel/events/core.c perf_copy_attr().
4309  */
4310 static int sched_copy_attr(struct sched_attr __user *uattr,
4311                            struct sched_attr *attr)
4312 {
4313         u32 size;
4314         int ret;
4315
4316         if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4317                 return -EFAULT;
4318
4319         /*
4320          * zero the full structure, so that a short copy will be nice.
4321          */
4322         memset(attr, 0, sizeof(*attr));
4323
4324         ret = get_user(size, &uattr->size);
4325         if (ret)
4326                 return ret;
4327
4328         if (size > PAGE_SIZE)   /* silly large */
4329                 goto err_size;
4330
4331         if (!size)              /* abi compat */
4332                 size = SCHED_ATTR_SIZE_VER0;
4333
4334         if (size < SCHED_ATTR_SIZE_VER0)
4335                 goto err_size;
4336
4337         /*
4338          * If we're handed a bigger struct than we know of,
4339          * ensure all the unknown bits are 0 - i.e. new
4340          * user-space does not rely on any kernel feature
4341          * extensions we dont know about yet.
4342          */
4343         if (size > sizeof(*attr)) {
4344                 unsigned char __user *addr;
4345                 unsigned char __user *end;
4346                 unsigned char val;
4347
4348                 addr = (void __user *)uattr + sizeof(*attr);
4349                 end  = (void __user *)uattr + size;
4350
4351                 for (; addr < end; addr++) {
4352                         ret = get_user(val, addr);
4353                         if (ret)
4354                                 return ret;
4355                         if (val)
4356                                 goto err_size;
4357                 }
4358                 size = sizeof(*attr);
4359         }
4360
4361         ret = copy_from_user(attr, uattr, size);
4362         if (ret)
4363                 return -EFAULT;
4364
4365         /*
4366          * XXX: do we want to be lenient like existing syscalls; or do we want
4367          * to be strict and return an error on out-of-bounds values?
4368          */
4369         attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4370
4371         return 0;
4372
4373 err_size:
4374         put_user(sizeof(*attr), &uattr->size);
4375         return -E2BIG;
4376 }
4377
4378 /**
4379  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4380  * @pid: the pid in question.
4381  * @policy: new policy.
4382  * @param: structure containing the new RT priority.
4383  *
4384  * Return: 0 on success. An error code otherwise.
4385  */
4386 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4387                 struct sched_param __user *, param)
4388 {
4389         /* negative values for policy are not valid */
4390         if (policy < 0)
4391                 return -EINVAL;
4392
4393         return do_sched_setscheduler(pid, policy, param);
4394 }
4395
4396 /**
4397  * sys_sched_setparam - set/change the RT priority of a thread
4398  * @pid: the pid in question.
4399  * @param: structure containing the new RT priority.
4400  *
4401  * Return: 0 on success. An error code otherwise.
4402  */
4403 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4404 {
4405         return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4406 }
4407
4408 /**
4409  * sys_sched_setattr - same as above, but with extended sched_attr
4410  * @pid: the pid in question.
4411  * @uattr: structure containing the extended parameters.
4412  * @flags: for future extension.
4413  */
4414 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4415                                unsigned int, flags)
4416 {
4417         struct sched_attr attr;
4418         struct task_struct *p;
4419         int retval;
4420
4421         if (!uattr || pid < 0 || flags)
4422                 return -EINVAL;
4423
4424         retval = sched_copy_attr(uattr, &attr);
4425         if (retval)
4426                 return retval;
4427
4428         if ((int)attr.sched_policy < 0)
4429                 return -EINVAL;
4430
4431         rcu_read_lock();
4432         retval = -ESRCH;
4433         p = find_process_by_pid(pid);
4434         if (p != NULL)
4435                 retval = sched_setattr(p, &attr);
4436         rcu_read_unlock();
4437
4438         return retval;
4439 }
4440
4441 /**
4442  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4443  * @pid: the pid in question.
4444  *
4445  * Return: On success, the policy of the thread. Otherwise, a negative error
4446  * code.
4447  */
4448 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4449 {
4450         struct task_struct *p;
4451         int retval;
4452
4453         if (pid < 0)
4454                 return -EINVAL;
4455
4456         retval = -ESRCH;
4457         rcu_read_lock();
4458         p = find_process_by_pid(pid);
4459         if (p) {
4460                 retval = security_task_getscheduler(p);
4461                 if (!retval)
4462                         retval = p->policy
4463                                 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4464         }
4465         rcu_read_unlock();
4466         return retval;
4467 }
4468
4469 /**
4470  * sys_sched_getparam - get the RT priority of a thread
4471  * @pid: the pid in question.
4472  * @param: structure containing the RT priority.
4473  *
4474  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4475  * code.
4476  */
4477 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4478 {
4479         struct sched_param lp = { .sched_priority = 0 };
4480         struct task_struct *p;
4481         int retval;
4482
4483         if (!param || pid < 0)
4484                 return -EINVAL;
4485
4486         rcu_read_lock();
4487         p = find_process_by_pid(pid);
4488         retval = -ESRCH;
4489         if (!p)
4490                 goto out_unlock;
4491
4492         retval = security_task_getscheduler(p);
4493         if (retval)
4494                 goto out_unlock;
4495
4496         if (task_has_rt_policy(p))
4497                 lp.sched_priority = p->rt_priority;
4498         rcu_read_unlock();
4499
4500         /*
4501          * This one might sleep, we cannot do it with a spinlock held ...
4502          */
4503         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4504
4505         return retval;
4506
4507 out_unlock:
4508         rcu_read_unlock();
4509         return retval;
4510 }
4511
4512 static int sched_read_attr(struct sched_attr __user *uattr,
4513                            struct sched_attr *attr,
4514                            unsigned int usize)
4515 {
4516         int ret;
4517
4518         if (!access_ok(VERIFY_WRITE, uattr, usize))
4519                 return -EFAULT;
4520
4521         /*
4522          * If we're handed a smaller struct than we know of,
4523          * ensure all the unknown bits are 0 - i.e. old
4524          * user-space does not get uncomplete information.
4525          */
4526         if (usize < sizeof(*attr)) {
4527                 unsigned char *addr;
4528                 unsigned char *end;
4529
4530                 addr = (void *)attr + usize;
4531                 end  = (void *)attr + sizeof(*attr);
4532
4533                 for (; addr < end; addr++) {
4534                         if (*addr)
4535                                 return -EFBIG;
4536                 }
4537
4538                 attr->size = usize;
4539         }
4540
4541         ret = copy_to_user(uattr, attr, attr->size);
4542         if (ret)
4543                 return -EFAULT;
4544
4545         return 0;
4546 }
4547
4548 /**
4549  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4550  * @pid: the pid in question.
4551  * @uattr: structure containing the extended parameters.
4552  * @size: sizeof(attr) for fwd/bwd comp.
4553  * @flags: for future extension.
4554  */
4555 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4556                 unsigned int, size, unsigned int, flags)
4557 {
4558         struct sched_attr attr = {
4559                 .size = sizeof(struct sched_attr),
4560         };
4561         struct task_struct *p;
4562         int retval;
4563
4564         if (!uattr || pid < 0 || size > PAGE_SIZE ||
4565             size < SCHED_ATTR_SIZE_VER0 || flags)
4566                 return -EINVAL;
4567
4568         rcu_read_lock();
4569         p = find_process_by_pid(pid);
4570         retval = -ESRCH;
4571         if (!p)
4572                 goto out_unlock;
4573
4574         retval = security_task_getscheduler(p);
4575         if (retval)
4576                 goto out_unlock;
4577
4578         attr.sched_policy = p->policy;
4579         if (p->sched_reset_on_fork)
4580                 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4581         if (task_has_dl_policy(p))
4582                 __getparam_dl(p, &attr);
4583         else if (task_has_rt_policy(p))
4584                 attr.sched_priority = p->rt_priority;
4585         else
4586                 attr.sched_nice = task_nice(p);
4587
4588         rcu_read_unlock();
4589
4590         retval = sched_read_attr(uattr, &attr, size);
4591         return retval;
4592
4593 out_unlock:
4594         rcu_read_unlock();
4595         return retval;
4596 }
4597
4598 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4599 {
4600         cpumask_var_t cpus_allowed, new_mask;
4601         struct task_struct *p;
4602         int retval;
4603
4604         rcu_read_lock();
4605
4606         p = find_process_by_pid(pid);
4607         if (!p) {
4608                 rcu_read_unlock();
4609                 return -ESRCH;
4610         }
4611
4612         /* Prevent p going away */
4613         get_task_struct(p);
4614         rcu_read_unlock();
4615
4616         if (p->flags & PF_NO_SETAFFINITY) {
4617                 retval = -EINVAL;
4618                 goto out_put_task;
4619         }
4620         if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4621                 retval = -ENOMEM;
4622                 goto out_put_task;
4623         }
4624         if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4625                 retval = -ENOMEM;
4626                 goto out_free_cpus_allowed;
4627         }
4628         retval = -EPERM;
4629         if (!check_same_owner(p)) {
4630                 rcu_read_lock();
4631                 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4632                         rcu_read_unlock();
4633                         goto out_free_new_mask;
4634                 }
4635                 rcu_read_unlock();
4636         }
4637
4638         retval = security_task_setscheduler(p);
4639         if (retval)
4640                 goto out_free_new_mask;
4641
4642
4643         cpuset_cpus_allowed(p, cpus_allowed);
4644         cpumask_and(new_mask, in_mask, cpus_allowed);
4645
4646         /*
4647          * Since bandwidth control happens on root_domain basis,
4648          * if admission test is enabled, we only admit -deadline
4649          * tasks allowed to run on all the CPUs in the task's
4650          * root_domain.
4651          */
4652 #ifdef CONFIG_SMP
4653         if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4654                 rcu_read_lock();
4655                 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4656                         retval = -EBUSY;
4657                         rcu_read_unlock();
4658                         goto out_free_new_mask;
4659                 }
4660                 rcu_read_unlock();
4661         }
4662 #endif
4663 again:
4664         retval = __set_cpus_allowed_ptr(p, new_mask, true);
4665
4666         if (!retval) {
4667                 cpuset_cpus_allowed(p, cpus_allowed);
4668                 if (!cpumask_subset(new_mask, cpus_allowed)) {
4669                         /*
4670                          * We must have raced with a concurrent cpuset
4671                          * update. Just reset the cpus_allowed to the
4672                          * cpuset's cpus_allowed
4673                          */
4674                         cpumask_copy(new_mask, cpus_allowed);
4675                         goto again;
4676                 }
4677         }
4678 out_free_new_mask:
4679         free_cpumask_var(new_mask);
4680 out_free_cpus_allowed:
4681         free_cpumask_var(cpus_allowed);
4682 out_put_task:
4683         put_task_struct(p);
4684         return retval;
4685 }
4686
4687 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4688                              struct cpumask *new_mask)
4689 {
4690         if (len < cpumask_size())
4691                 cpumask_clear(new_mask);
4692         else if (len > cpumask_size())
4693                 len = cpumask_size();
4694
4695         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4696 }
4697
4698 /**
4699  * sys_sched_setaffinity - set the cpu affinity of a process
4700  * @pid: pid of the process
4701  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4702  * @user_mask_ptr: user-space pointer to the new cpu mask
4703  *
4704  * Return: 0 on success. An error code otherwise.
4705  */
4706 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4707                 unsigned long __user *, user_mask_ptr)
4708 {
4709         cpumask_var_t new_mask;
4710         int retval;
4711
4712         if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4713                 return -ENOMEM;
4714
4715         retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4716         if (retval == 0)
4717                 retval = sched_setaffinity(pid, new_mask);
4718         free_cpumask_var(new_mask);
4719         return retval;
4720 }
4721
4722 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4723 {
4724         struct task_struct *p;
4725         unsigned long flags;
4726         int retval;
4727
4728         rcu_read_lock();
4729
4730         retval = -ESRCH;
4731         p = find_process_by_pid(pid);
4732         if (!p)
4733                 goto out_unlock;
4734
4735         retval = security_task_getscheduler(p);
4736         if (retval)
4737                 goto out_unlock;
4738
4739         raw_spin_lock_irqsave(&p->pi_lock, flags);
4740         cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4741         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4742
4743 out_unlock:
4744         rcu_read_unlock();
4745
4746         return retval;
4747 }
4748
4749 /**
4750  * sys_sched_getaffinity - get the cpu affinity of a process
4751  * @pid: pid of the process
4752  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4753  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4754  *
4755  * Return: 0 on success. An error code otherwise.
4756  */
4757 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4758                 unsigned long __user *, user_mask_ptr)
4759 {
4760         int ret;
4761         cpumask_var_t mask;
4762
4763         if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4764                 return -EINVAL;
4765         if (len & (sizeof(unsigned long)-1))
4766                 return -EINVAL;
4767
4768         if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4769                 return -ENOMEM;
4770
4771         ret = sched_getaffinity(pid, mask);
4772         if (ret == 0) {
4773                 size_t retlen = min_t(size_t, len, cpumask_size());
4774
4775                 if (copy_to_user(user_mask_ptr, mask, retlen))
4776                         ret = -EFAULT;
4777                 else
4778                         ret = retlen;
4779         }
4780         free_cpumask_var(mask);
4781
4782         return ret;
4783 }
4784
4785 /**
4786  * sys_sched_yield - yield the current processor to other threads.
4787  *
4788  * This function yields the current CPU to other tasks. If there are no
4789  * other threads running on this CPU then this function will return.
4790  *
4791  * Return: 0.
4792  */
4793 SYSCALL_DEFINE0(sched_yield)
4794 {
4795         struct rq *rq = this_rq_lock();
4796
4797         schedstat_inc(rq, yld_count);
4798         current->sched_class->yield_task(rq);
4799
4800         /*
4801          * Since we are going to call schedule() anyway, there's
4802          * no need to preempt or enable interrupts:
4803          */
4804         __release(rq->lock);
4805         spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4806         do_raw_spin_unlock(&rq->lock);
4807         sched_preempt_enable_no_resched();
4808
4809         schedule();
4810
4811         return 0;
4812 }
4813
4814 int __sched _cond_resched(void)
4815 {
4816         if (should_resched(0)) {
4817                 preempt_schedule_common();
4818                 return 1;
4819         }
4820         return 0;
4821 }
4822 EXPORT_SYMBOL(_cond_resched);
4823
4824 /*
4825  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4826  * call schedule, and on return reacquire the lock.
4827  *
4828  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4829  * operations here to prevent schedule() from being called twice (once via
4830  * spin_unlock(), once by hand).
4831  */
4832 int __cond_resched_lock(spinlock_t *lock)
4833 {
4834         int resched = should_resched(PREEMPT_LOCK_OFFSET);
4835         int ret = 0;
4836
4837         lockdep_assert_held(lock);
4838
4839         if (spin_needbreak(lock) || resched) {
4840                 spin_unlock(lock);
4841                 if (resched)
4842                         preempt_schedule_common();
4843                 else
4844                         cpu_relax();
4845                 ret = 1;
4846                 spin_lock(lock);
4847         }
4848         return ret;
4849 }
4850 EXPORT_SYMBOL(__cond_resched_lock);
4851
4852 int __sched __cond_resched_softirq(void)
4853 {
4854         BUG_ON(!in_softirq());
4855
4856         if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4857                 local_bh_enable();
4858                 preempt_schedule_common();
4859                 local_bh_disable();
4860                 return 1;
4861         }
4862         return 0;
4863 }
4864 EXPORT_SYMBOL(__cond_resched_softirq);
4865
4866 /**
4867  * yield - yield the current processor to other threads.
4868  *
4869  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4870  *
4871  * The scheduler is at all times free to pick the calling task as the most
4872  * eligible task to run, if removing the yield() call from your code breaks
4873  * it, its already broken.
4874  *
4875  * Typical broken usage is:
4876  *
4877  * while (!event)
4878  *      yield();
4879  *
4880  * where one assumes that yield() will let 'the other' process run that will
4881  * make event true. If the current task is a SCHED_FIFO task that will never
4882  * happen. Never use yield() as a progress guarantee!!
4883  *
4884  * If you want to use yield() to wait for something, use wait_event().
4885  * If you want to use yield() to be 'nice' for others, use cond_resched().
4886  * If you still want to use yield(), do not!
4887  */
4888 void __sched yield(void)
4889 {
4890         set_current_state(TASK_RUNNING);
4891         sys_sched_yield();
4892 }
4893 EXPORT_SYMBOL(yield);
4894
4895 /**
4896  * yield_to - yield the current processor to another thread in
4897  * your thread group, or accelerate that thread toward the
4898  * processor it's on.
4899  * @p: target task
4900  * @preempt: whether task preemption is allowed or not
4901  *
4902  * It's the caller's job to ensure that the target task struct
4903  * can't go away on us before we can do any checks.
4904  *
4905  * Return:
4906  *      true (>0) if we indeed boosted the target task.
4907  *      false (0) if we failed to boost the target.
4908  *      -ESRCH if there's no task to yield to.
4909  */
4910 int __sched yield_to(struct task_struct *p, bool preempt)
4911 {
4912         struct task_struct *curr = current;
4913         struct rq *rq, *p_rq;
4914         unsigned long flags;
4915         int yielded = 0;
4916
4917         local_irq_save(flags);
4918         rq = this_rq();
4919
4920 again:
4921         p_rq = task_rq(p);
4922         /*
4923          * If we're the only runnable task on the rq and target rq also
4924          * has only one task, there's absolutely no point in yielding.
4925          */
4926         if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4927                 yielded = -ESRCH;
4928                 goto out_irq;
4929         }
4930
4931         double_rq_lock(rq, p_rq);
4932         if (task_rq(p) != p_rq) {
4933                 double_rq_unlock(rq, p_rq);
4934                 goto again;
4935         }
4936
4937         if (!curr->sched_class->yield_to_task)
4938                 goto out_unlock;
4939
4940         if (curr->sched_class != p->sched_class)
4941                 goto out_unlock;
4942
4943         if (task_running(p_rq, p) || p->state)
4944                 goto out_unlock;
4945
4946         yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4947         if (yielded) {
4948                 schedstat_inc(rq, yld_count);
4949                 /*
4950                  * Make p's CPU reschedule; pick_next_entity takes care of
4951                  * fairness.
4952                  */
4953                 if (preempt && rq != p_rq)
4954                         resched_curr(p_rq);
4955         }
4956
4957 out_unlock:
4958         double_rq_unlock(rq, p_rq);
4959 out_irq:
4960         local_irq_restore(flags);
4961
4962         if (yielded > 0)
4963                 schedule();
4964
4965         return yielded;
4966 }
4967 EXPORT_SYMBOL_GPL(yield_to);
4968
4969 /*
4970  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4971  * that process accounting knows that this is a task in IO wait state.
4972  */
4973 long __sched io_schedule_timeout(long timeout)
4974 {
4975         int old_iowait = current->in_iowait;
4976         struct rq *rq;
4977         long ret;
4978
4979         current->in_iowait = 1;
4980         blk_schedule_flush_plug(current);
4981
4982         delayacct_blkio_start();
4983         rq = raw_rq();
4984         atomic_inc(&rq->nr_iowait);
4985         ret = schedule_timeout(timeout);
4986         current->in_iowait = old_iowait;
4987         atomic_dec(&rq->nr_iowait);
4988         delayacct_blkio_end();
4989
4990         return ret;
4991 }
4992 EXPORT_SYMBOL(io_schedule_timeout);
4993
4994 /**
4995  * sys_sched_get_priority_max - return maximum RT priority.
4996  * @policy: scheduling class.
4997  *
4998  * Return: On success, this syscall returns the maximum
4999  * rt_priority that can be used by a given scheduling class.
5000  * On failure, a negative error code is returned.
5001  */
5002 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5003 {
5004         int ret = -EINVAL;
5005
5006         switch (policy) {
5007         case SCHED_FIFO:
5008         case SCHED_RR:
5009                 ret = MAX_USER_RT_PRIO-1;
5010                 break;
5011         case SCHED_DEADLINE:
5012         case SCHED_NORMAL:
5013         case SCHED_BATCH:
5014         case SCHED_IDLE:
5015                 ret = 0;
5016                 break;
5017         }
5018         return ret;
5019 }
5020
5021 /**
5022  * sys_sched_get_priority_min - return minimum RT priority.
5023  * @policy: scheduling class.
5024  *
5025  * Return: On success, this syscall returns the minimum
5026  * rt_priority that can be used by a given scheduling class.
5027  * On failure, a negative error code is returned.
5028  */
5029 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5030 {
5031         int ret = -EINVAL;
5032
5033         switch (policy) {
5034         case SCHED_FIFO:
5035         case SCHED_RR:
5036                 ret = 1;
5037                 break;
5038         case SCHED_DEADLINE:
5039         case SCHED_NORMAL:
5040         case SCHED_BATCH:
5041         case SCHED_IDLE:
5042                 ret = 0;
5043         }
5044         return ret;
5045 }
5046
5047 /**
5048  * sys_sched_rr_get_interval - return the default timeslice of a process.
5049  * @pid: pid of the process.
5050  * @interval: userspace pointer to the timeslice value.
5051  *
5052  * this syscall writes the default timeslice value of a given process
5053  * into the user-space timespec buffer. A value of '0' means infinity.
5054  *
5055  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5056  * an error code.
5057  */
5058 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5059                 struct timespec __user *, interval)
5060 {
5061         struct task_struct *p;
5062         unsigned int time_slice;
5063         struct rq_flags rf;
5064         struct timespec t;
5065         struct rq *rq;
5066         int retval;
5067
5068         if (pid < 0)
5069                 return -EINVAL;
5070
5071         retval = -ESRCH;
5072         rcu_read_lock();
5073         p = find_process_by_pid(pid);
5074         if (!p)
5075                 goto out_unlock;
5076
5077         retval = security_task_getscheduler(p);
5078         if (retval)
5079                 goto out_unlock;
5080
5081         rq = task_rq_lock(p, &rf);
5082         time_slice = 0;
5083         if (p->sched_class->get_rr_interval)
5084                 time_slice = p->sched_class->get_rr_interval(rq, p);
5085         task_rq_unlock(rq, p, &rf);
5086
5087         rcu_read_unlock();
5088         jiffies_to_timespec(time_slice, &t);
5089         retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5090         return retval;
5091
5092 out_unlock:
5093         rcu_read_unlock();
5094         return retval;
5095 }
5096
5097 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5098
5099 void sched_show_task(struct task_struct *p)
5100 {
5101         unsigned long free = 0;
5102         int ppid;
5103         unsigned long state = p->state;
5104
5105         if (state)
5106                 state = __ffs(state) + 1;
5107         printk(KERN_INFO "%-15.15s %c", p->comm,
5108                 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5109 #if BITS_PER_LONG == 32
5110         if (state == TASK_RUNNING)
5111                 printk(KERN_CONT " running  ");
5112         else
5113                 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5114 #else
5115         if (state == TASK_RUNNING)
5116                 printk(KERN_CONT "  running task    ");
5117         else
5118                 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5119 #endif
5120 #ifdef CONFIG_DEBUG_STACK_USAGE
5121         free = stack_not_used(p);
5122 #endif
5123         ppid = 0;
5124         rcu_read_lock();
5125         if (pid_alive(p))
5126                 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5127         rcu_read_unlock();
5128         printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5129                 task_pid_nr(p), ppid,
5130                 (unsigned long)task_thread_info(p)->flags);
5131
5132         print_worker_info(KERN_INFO, p);
5133         show_stack(p, NULL);
5134 }
5135
5136 void show_state_filter(unsigned long state_filter)
5137 {
5138         struct task_struct *g, *p;
5139
5140 #if BITS_PER_LONG == 32
5141         printk(KERN_INFO
5142                 "  task                PC stack   pid father\n");
5143 #else
5144         printk(KERN_INFO
5145                 "  task                        PC stack   pid father\n");
5146 #endif
5147         rcu_read_lock();
5148         for_each_process_thread(g, p) {
5149                 /*
5150                  * reset the NMI-timeout, listing all files on a slow
5151                  * console might take a lot of time:
5152                  * Also, reset softlockup watchdogs on all CPUs, because
5153                  * another CPU might be blocked waiting for us to process
5154                  * an IPI.
5155                  */
5156                 touch_nmi_watchdog();
5157                 touch_all_softlockup_watchdogs();
5158                 if (!state_filter || (p->state & state_filter))
5159                         sched_show_task(p);
5160         }
5161
5162 #ifdef CONFIG_SCHED_DEBUG
5163         if (!state_filter)
5164                 sysrq_sched_debug_show();
5165 #endif
5166         rcu_read_unlock();
5167         /*
5168          * Only show locks if all tasks are dumped:
5169          */
5170         if (!state_filter)
5171                 debug_show_all_locks();
5172 }
5173
5174 void init_idle_bootup_task(struct task_struct *idle)
5175 {
5176         idle->sched_class = &idle_sched_class;
5177 }
5178
5179 /**
5180  * init_idle - set up an idle thread for a given CPU
5181  * @idle: task in question
5182  * @cpu: cpu the idle task belongs to
5183  *
5184  * NOTE: this function does not set the idle thread's NEED_RESCHED
5185  * flag, to make booting more robust.
5186  */
5187 void init_idle(struct task_struct *idle, int cpu)
5188 {
5189         struct rq *rq = cpu_rq(cpu);
5190         unsigned long flags;
5191
5192         raw_spin_lock_irqsave(&idle->pi_lock, flags);
5193         raw_spin_lock(&rq->lock);
5194
5195         __sched_fork(0, idle);
5196         idle->state = TASK_RUNNING;
5197         idle->se.exec_start = sched_clock();
5198
5199         kasan_unpoison_task_stack(idle);
5200
5201 #ifdef CONFIG_SMP
5202         /*
5203          * Its possible that init_idle() gets called multiple times on a task,
5204          * in that case do_set_cpus_allowed() will not do the right thing.
5205          *
5206          * And since this is boot we can forgo the serialization.
5207          */
5208         set_cpus_allowed_common(idle, cpumask_of(cpu));
5209 #endif
5210         /*
5211          * We're having a chicken and egg problem, even though we are
5212          * holding rq->lock, the cpu isn't yet set to this cpu so the
5213          * lockdep check in task_group() will fail.
5214          *
5215          * Similar case to sched_fork(). / Alternatively we could
5216          * use task_rq_lock() here and obtain the other rq->lock.
5217          *
5218          * Silence PROVE_RCU
5219          */
5220         rcu_read_lock();
5221         __set_task_cpu(idle, cpu);
5222         rcu_read_unlock();
5223
5224         rq->curr = rq->idle = idle;
5225         idle->on_rq = TASK_ON_RQ_QUEUED;
5226 #ifdef CONFIG_SMP
5227         idle->on_cpu = 1;
5228 #endif
5229         raw_spin_unlock(&rq->lock);
5230         raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5231
5232         /* Set the preempt count _outside_ the spinlocks! */
5233         init_idle_preempt_count(idle, cpu);
5234
5235         /*
5236          * The idle tasks have their own, simple scheduling class:
5237          */
5238         idle->sched_class = &idle_sched_class;
5239         ftrace_graph_init_idle_task(idle, cpu);
5240         vtime_init_idle(idle, cpu);
5241 #ifdef CONFIG_SMP
5242         sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5243 #endif
5244 }
5245
5246 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5247                               const struct cpumask *trial)
5248 {
5249         int ret = 1, trial_cpus;
5250         struct dl_bw *cur_dl_b;
5251         unsigned long flags;
5252
5253         if (!cpumask_weight(cur))
5254                 return ret;
5255
5256         rcu_read_lock_sched();
5257         cur_dl_b = dl_bw_of(cpumask_any(cur));
5258         trial_cpus = cpumask_weight(trial);
5259
5260         raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5261         if (cur_dl_b->bw != -1 &&
5262             cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5263                 ret = 0;
5264         raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5265         rcu_read_unlock_sched();
5266
5267         return ret;
5268 }
5269
5270 int task_can_attach(struct task_struct *p,
5271                     const struct cpumask *cs_cpus_allowed)
5272 {
5273         int ret = 0;
5274
5275         /*
5276          * Kthreads which disallow setaffinity shouldn't be moved
5277          * to a new cpuset; we don't want to change their cpu
5278          * affinity and isolating such threads by their set of
5279          * allowed nodes is unnecessary.  Thus, cpusets are not
5280          * applicable for such threads.  This prevents checking for
5281          * success of set_cpus_allowed_ptr() on all attached tasks
5282          * before cpus_allowed may be changed.
5283          */
5284         if (p->flags & PF_NO_SETAFFINITY) {
5285                 ret = -EINVAL;
5286                 goto out;
5287         }
5288
5289 #ifdef CONFIG_SMP
5290         if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5291                                               cs_cpus_allowed)) {
5292                 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5293                                                         cs_cpus_allowed);
5294                 struct dl_bw *dl_b;
5295                 bool overflow;
5296                 int cpus;
5297                 unsigned long flags;
5298
5299                 rcu_read_lock_sched();
5300                 dl_b = dl_bw_of(dest_cpu);
5301                 raw_spin_lock_irqsave(&dl_b->lock, flags);
5302                 cpus = dl_bw_cpus(dest_cpu);
5303                 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5304                 if (overflow)
5305                         ret = -EBUSY;
5306                 else {
5307                         /*
5308                          * We reserve space for this task in the destination
5309                          * root_domain, as we can't fail after this point.
5310                          * We will free resources in the source root_domain
5311                          * later on (see set_cpus_allowed_dl()).
5312                          */
5313                         __dl_add(dl_b, p->dl.dl_bw);
5314                 }
5315                 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5316                 rcu_read_unlock_sched();
5317
5318         }
5319 #endif
5320 out:
5321         return ret;
5322 }
5323
5324 #ifdef CONFIG_SMP
5325
5326 static bool sched_smp_initialized __read_mostly;
5327
5328 #ifdef CONFIG_NUMA_BALANCING
5329 /* Migrate current task p to target_cpu */
5330 int migrate_task_to(struct task_struct *p, int target_cpu)
5331 {
5332         struct migration_arg arg = { p, target_cpu };
5333         int curr_cpu = task_cpu(p);
5334
5335         if (curr_cpu == target_cpu)
5336                 return 0;
5337
5338         if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5339                 return -EINVAL;
5340
5341         /* TODO: This is not properly updating schedstats */
5342
5343         trace_sched_move_numa(p, curr_cpu, target_cpu);
5344         return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5345 }
5346
5347 /*
5348  * Requeue a task on a given node and accurately track the number of NUMA
5349  * tasks on the runqueues
5350  */
5351 void sched_setnuma(struct task_struct *p, int nid)
5352 {
5353         bool queued, running;
5354         struct rq_flags rf;
5355         struct rq *rq;
5356
5357         rq = task_rq_lock(p, &rf);
5358         queued = task_on_rq_queued(p);
5359         running = task_current(rq, p);
5360
5361         if (queued)
5362                 dequeue_task(rq, p, DEQUEUE_SAVE);
5363         if (running)
5364                 put_prev_task(rq, p);
5365
5366         p->numa_preferred_nid = nid;
5367
5368         if (running)
5369                 p->sched_class->set_curr_task(rq);
5370         if (queued)
5371                 enqueue_task(rq, p, ENQUEUE_RESTORE);
5372         task_rq_unlock(rq, p, &rf);
5373 }
5374 #endif /* CONFIG_NUMA_BALANCING */
5375
5376 #ifdef CONFIG_HOTPLUG_CPU
5377 /*
5378  * Ensures that the idle task is using init_mm right before its cpu goes
5379  * offline.
5380  */
5381 void idle_task_exit(void)
5382 {
5383         struct mm_struct *mm = current->active_mm;
5384
5385         BUG_ON(cpu_online(smp_processor_id()));
5386
5387         if (mm != &init_mm) {
5388                 switch_mm_irqs_off(mm, &init_mm, current);
5389                 finish_arch_post_lock_switch();
5390         }
5391         mmdrop(mm);
5392 }
5393
5394 /*
5395  * Since this CPU is going 'away' for a while, fold any nr_active delta
5396  * we might have. Assumes we're called after migrate_tasks() so that the
5397  * nr_active count is stable.
5398  *
5399  * Also see the comment "Global load-average calculations".
5400  */
5401 static void calc_load_migrate(struct rq *rq)
5402 {
5403         long delta = calc_load_fold_active(rq);
5404         if (delta)
5405                 atomic_long_add(delta, &calc_load_tasks);
5406 }
5407
5408 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5409 {
5410 }
5411
5412 static const struct sched_class fake_sched_class = {
5413         .put_prev_task = put_prev_task_fake,
5414 };
5415
5416 static struct task_struct fake_task = {
5417         /*
5418          * Avoid pull_{rt,dl}_task()
5419          */
5420         .prio = MAX_PRIO + 1,
5421         .sched_class = &fake_sched_class,
5422 };
5423
5424 /*
5425  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5426  * try_to_wake_up()->select_task_rq().
5427  *
5428  * Called with rq->lock held even though we'er in stop_machine() and
5429  * there's no concurrency possible, we hold the required locks anyway
5430  * because of lock validation efforts.
5431  */
5432 static void migrate_tasks(struct rq *dead_rq)
5433 {
5434         struct rq *rq = dead_rq;
5435         struct task_struct *next, *stop = rq->stop;
5436         struct pin_cookie cookie;
5437         int dest_cpu;
5438
5439         /*
5440          * Fudge the rq selection such that the below task selection loop
5441          * doesn't get stuck on the currently eligible stop task.
5442          *
5443          * We're currently inside stop_machine() and the rq is either stuck
5444          * in the stop_machine_cpu_stop() loop, or we're executing this code,
5445          * either way we should never end up calling schedule() until we're
5446          * done here.
5447          */
5448         rq->stop = NULL;
5449
5450         /*
5451          * put_prev_task() and pick_next_task() sched
5452          * class method both need to have an up-to-date
5453          * value of rq->clock[_task]
5454          */
5455         update_rq_clock(rq);
5456
5457         for (;;) {
5458                 /*
5459                  * There's this thread running, bail when that's the only
5460                  * remaining thread.
5461                  */
5462                 if (rq->nr_running == 1)
5463                         break;
5464
5465                 /*
5466                  * pick_next_task assumes pinned rq->lock.
5467                  */
5468                 cookie = lockdep_pin_lock(&rq->lock);
5469                 next = pick_next_task(rq, &fake_task, cookie);
5470                 BUG_ON(!next);
5471                 next->sched_class->put_prev_task(rq, next);
5472
5473                 /*
5474                  * Rules for changing task_struct::cpus_allowed are holding
5475                  * both pi_lock and rq->lock, such that holding either
5476                  * stabilizes the mask.
5477                  *
5478                  * Drop rq->lock is not quite as disastrous as it usually is
5479                  * because !cpu_active at this point, which means load-balance
5480                  * will not interfere. Also, stop-machine.
5481                  */
5482                 lockdep_unpin_lock(&rq->lock, cookie);
5483                 raw_spin_unlock(&rq->lock);
5484                 raw_spin_lock(&next->pi_lock);
5485                 raw_spin_lock(&rq->lock);
5486
5487                 /*
5488                  * Since we're inside stop-machine, _nothing_ should have
5489                  * changed the task, WARN if weird stuff happened, because in
5490                  * that case the above rq->lock drop is a fail too.
5491                  */
5492                 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5493                         raw_spin_unlock(&next->pi_lock);
5494                         continue;
5495                 }
5496
5497                 /* Find suitable destination for @next, with force if needed. */
5498                 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5499
5500                 rq = __migrate_task(rq, next, dest_cpu);
5501                 if (rq != dead_rq) {
5502                         raw_spin_unlock(&rq->lock);
5503                         rq = dead_rq;
5504                         raw_spin_lock(&rq->lock);
5505                 }
5506                 raw_spin_unlock(&next->pi_lock);
5507         }
5508
5509         rq->stop = stop;
5510 }
5511 #endif /* CONFIG_HOTPLUG_CPU */
5512
5513 static void set_rq_online(struct rq *rq)
5514 {
5515         if (!rq->online) {
5516                 const struct sched_class *class;
5517
5518                 cpumask_set_cpu(rq->cpu, rq->rd->online);
5519                 rq->online = 1;
5520
5521                 for_each_class(class) {
5522                         if (class->rq_online)
5523                                 class->rq_online(rq);
5524                 }
5525         }
5526 }
5527
5528 static void set_rq_offline(struct rq *rq)
5529 {
5530         if (rq->online) {
5531                 const struct sched_class *class;
5532
5533                 for_each_class(class) {
5534                         if (class->rq_offline)
5535                                 class->rq_offline(rq);
5536                 }
5537
5538                 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5539                 rq->online = 0;
5540         }
5541 }
5542
5543 static void set_cpu_rq_start_time(unsigned int cpu)
5544 {
5545         struct rq *rq = cpu_rq(cpu);
5546
5547         rq->age_stamp = sched_clock_cpu(cpu);
5548 }
5549
5550 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5551
5552 #ifdef CONFIG_SCHED_DEBUG
5553
5554 static __read_mostly int sched_debug_enabled;
5555
5556 static int __init sched_debug_setup(char *str)
5557 {
5558         sched_debug_enabled = 1;
5559
5560         return 0;
5561 }
5562 early_param("sched_debug", sched_debug_setup);
5563
5564 static inline bool sched_debug(void)
5565 {
5566         return sched_debug_enabled;
5567 }
5568
5569 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5570                                   struct cpumask *groupmask)
5571 {
5572         struct sched_group *group = sd->groups;
5573
5574         cpumask_clear(groupmask);
5575
5576         printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5577
5578         if (!(sd->flags & SD_LOAD_BALANCE)) {
5579                 printk("does not load-balance\n");
5580                 if (sd->parent)
5581                         printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5582                                         " has parent");
5583                 return -1;
5584         }
5585
5586         printk(KERN_CONT "span %*pbl level %s\n",
5587                cpumask_pr_args(sched_domain_span(sd)), sd->name);
5588
5589         if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5590                 printk(KERN_ERR "ERROR: domain->span does not contain "
5591                                 "CPU%d\n", cpu);
5592         }
5593         if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5594                 printk(KERN_ERR "ERROR: domain->groups does not contain"
5595                                 " CPU%d\n", cpu);
5596         }
5597
5598         printk(KERN_DEBUG "%*s groups:", level + 1, "");
5599         do {
5600                 if (!group) {
5601                         printk("\n");
5602                         printk(KERN_ERR "ERROR: group is NULL\n");
5603                         break;
5604                 }
5605
5606                 if (!cpumask_weight(sched_group_cpus(group))) {
5607                         printk(KERN_CONT "\n");
5608                         printk(KERN_ERR "ERROR: empty group\n");
5609                         break;
5610                 }
5611
5612                 if (!(sd->flags & SD_OVERLAP) &&
5613                     cpumask_intersects(groupmask, sched_group_cpus(group))) {
5614                         printk(KERN_CONT "\n");
5615                         printk(KERN_ERR "ERROR: repeated CPUs\n");
5616                         break;
5617                 }
5618
5619                 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5620
5621                 printk(KERN_CONT " %*pbl",
5622                        cpumask_pr_args(sched_group_cpus(group)));
5623                 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5624                         printk(KERN_CONT " (cpu_capacity = %d)",
5625                                 group->sgc->capacity);
5626                 }
5627
5628                 group = group->next;
5629         } while (group != sd->groups);
5630         printk(KERN_CONT "\n");
5631
5632         if (!cpumask_equal(sched_domain_span(sd), groupmask))
5633                 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5634
5635         if (sd->parent &&
5636             !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5637                 printk(KERN_ERR "ERROR: parent span is not a superset "
5638                         "of domain->span\n");
5639         return 0;
5640 }
5641
5642 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5643 {
5644         int level = 0;
5645
5646         if (!sched_debug_enabled)
5647                 return;
5648
5649         if (!sd) {
5650                 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5651                 return;
5652         }
5653
5654         printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5655
5656         for (;;) {
5657                 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5658                         break;
5659                 level++;
5660                 sd = sd->parent;
5661                 if (!sd)
5662                         break;
5663         }
5664 }
5665 #else /* !CONFIG_SCHED_DEBUG */
5666 # define sched_domain_debug(sd, cpu) do { } while (0)
5667 static inline bool sched_debug(void)
5668 {
5669         return false;
5670 }
5671 #endif /* CONFIG_SCHED_DEBUG */
5672
5673 static int sd_degenerate(struct sched_domain *sd)
5674 {
5675         if (cpumask_weight(sched_domain_span(sd)) == 1)
5676                 return 1;
5677
5678         /* Following flags need at least 2 groups */
5679         if (sd->flags & (SD_LOAD_BALANCE |
5680                          SD_BALANCE_NEWIDLE |
5681                          SD_BALANCE_FORK |
5682                          SD_BALANCE_EXEC |
5683                          SD_SHARE_CPUCAPACITY |
5684                          SD_SHARE_PKG_RESOURCES |
5685                          SD_SHARE_POWERDOMAIN)) {
5686                 if (sd->groups != sd->groups->next)
5687                         return 0;
5688         }
5689
5690         /* Following flags don't use groups */
5691         if (sd->flags & (SD_WAKE_AFFINE))
5692                 return 0;
5693
5694         return 1;
5695 }
5696
5697 static int
5698 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5699 {
5700         unsigned long cflags = sd->flags, pflags = parent->flags;
5701
5702         if (sd_degenerate(parent))
5703                 return 1;
5704
5705         if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5706                 return 0;
5707
5708         /* Flags needing groups don't count if only 1 group in parent */
5709         if (parent->groups == parent->groups->next) {
5710                 pflags &= ~(SD_LOAD_BALANCE |
5711                                 SD_BALANCE_NEWIDLE |
5712                                 SD_BALANCE_FORK |
5713                                 SD_BALANCE_EXEC |
5714                                 SD_SHARE_CPUCAPACITY |
5715                                 SD_SHARE_PKG_RESOURCES |
5716                                 SD_PREFER_SIBLING |
5717                                 SD_SHARE_POWERDOMAIN);
5718                 if (nr_node_ids == 1)
5719                         pflags &= ~SD_SERIALIZE;
5720         }
5721         if (~cflags & pflags)
5722                 return 0;
5723
5724         return 1;
5725 }
5726
5727 static void free_rootdomain(struct rcu_head *rcu)
5728 {
5729         struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5730
5731         cpupri_cleanup(&rd->cpupri);
5732         cpudl_cleanup(&rd->cpudl);
5733         free_cpumask_var(rd->dlo_mask);
5734         free_cpumask_var(rd->rto_mask);
5735         free_cpumask_var(rd->online);
5736         free_cpumask_var(rd->span);
5737         kfree(rd);
5738 }
5739
5740 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5741 {
5742         struct root_domain *old_rd = NULL;
5743         unsigned long flags;
5744
5745         raw_spin_lock_irqsave(&rq->lock, flags);
5746
5747         if (rq->rd) {
5748                 old_rd = rq->rd;
5749
5750                 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5751                         set_rq_offline(rq);
5752
5753                 cpumask_clear_cpu(rq->cpu, old_rd->span);
5754
5755                 /*
5756                  * If we dont want to free the old_rd yet then
5757                  * set old_rd to NULL to skip the freeing later
5758                  * in this function:
5759                  */
5760                 if (!atomic_dec_and_test(&old_rd->refcount))
5761                         old_rd = NULL;
5762         }
5763
5764         atomic_inc(&rd->refcount);
5765         rq->rd = rd;
5766
5767         cpumask_set_cpu(rq->cpu, rd->span);
5768         if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5769                 set_rq_online(rq);
5770
5771         raw_spin_unlock_irqrestore(&rq->lock, flags);
5772
5773         if (old_rd)
5774                 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5775 }
5776
5777 static int init_rootdomain(struct root_domain *rd)
5778 {
5779         memset(rd, 0, sizeof(*rd));
5780
5781         if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5782                 goto out;
5783         if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5784                 goto free_span;
5785         if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5786                 goto free_online;
5787         if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5788                 goto free_dlo_mask;
5789
5790         init_dl_bw(&rd->dl_bw);
5791         if (cpudl_init(&rd->cpudl) != 0)
5792                 goto free_dlo_mask;
5793
5794         if (cpupri_init(&rd->cpupri) != 0)
5795                 goto free_rto_mask;
5796         return 0;
5797
5798 free_rto_mask:
5799         free_cpumask_var(rd->rto_mask);
5800 free_dlo_mask:
5801         free_cpumask_var(rd->dlo_mask);
5802 free_online:
5803         free_cpumask_var(rd->online);
5804 free_span:
5805         free_cpumask_var(rd->span);
5806 out:
5807         return -ENOMEM;
5808 }
5809
5810 /*
5811  * By default the system creates a single root-domain with all cpus as
5812  * members (mimicking the global state we have today).
5813  */
5814 struct root_domain def_root_domain;
5815
5816 static void init_defrootdomain(void)
5817 {
5818         init_rootdomain(&def_root_domain);
5819
5820         atomic_set(&def_root_domain.refcount, 1);
5821 }
5822
5823 static struct root_domain *alloc_rootdomain(void)
5824 {
5825         struct root_domain *rd;
5826
5827         rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5828         if (!rd)
5829                 return NULL;
5830
5831         if (init_rootdomain(rd) != 0) {
5832                 kfree(rd);
5833                 return NULL;
5834         }
5835
5836         return rd;
5837 }
5838
5839 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5840 {
5841         struct sched_group *tmp, *first;
5842
5843         if (!sg)
5844                 return;
5845
5846         first = sg;
5847         do {
5848                 tmp = sg->next;
5849
5850                 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5851                         kfree(sg->sgc);
5852
5853                 kfree(sg);
5854                 sg = tmp;
5855         } while (sg != first);
5856 }
5857
5858 static void free_sched_domain(struct rcu_head *rcu)
5859 {
5860         struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5861
5862         /*
5863          * If its an overlapping domain it has private groups, iterate and
5864          * nuke them all.
5865          */
5866         if (sd->flags & SD_OVERLAP) {
5867                 free_sched_groups(sd->groups, 1);
5868         } else if (atomic_dec_and_test(&sd->groups->ref)) {
5869                 kfree(sd->groups->sgc);
5870                 kfree(sd->groups);
5871         }
5872         kfree(sd);
5873 }
5874
5875 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5876 {
5877         call_rcu(&sd->rcu, free_sched_domain);
5878 }
5879
5880 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5881 {
5882         for (; sd; sd = sd->parent)
5883                 destroy_sched_domain(sd, cpu);
5884 }
5885
5886 /*
5887  * Keep a special pointer to the highest sched_domain that has
5888  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5889  * allows us to avoid some pointer chasing select_idle_sibling().
5890  *
5891  * Also keep a unique ID per domain (we use the first cpu number in
5892  * the cpumask of the domain), this allows us to quickly tell if
5893  * two cpus are in the same cache domain, see cpus_share_cache().
5894  */
5895 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5896 DEFINE_PER_CPU(int, sd_llc_size);
5897 DEFINE_PER_CPU(int, sd_llc_id);
5898 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5899 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5900 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5901
5902 static void update_top_cache_domain(int cpu)
5903 {
5904         struct sched_domain *sd;
5905         struct sched_domain *busy_sd = NULL;
5906         int id = cpu;
5907         int size = 1;
5908
5909         sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5910         if (sd) {
5911                 id = cpumask_first(sched_domain_span(sd));
5912                 size = cpumask_weight(sched_domain_span(sd));
5913                 busy_sd = sd->parent; /* sd_busy */
5914         }
5915         rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5916
5917         rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5918         per_cpu(sd_llc_size, cpu) = size;
5919         per_cpu(sd_llc_id, cpu) = id;
5920
5921         sd = lowest_flag_domain(cpu, SD_NUMA);
5922         rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5923
5924         sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5925         rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5926 }
5927
5928 /*
5929  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5930  * hold the hotplug lock.
5931  */
5932 static void
5933 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5934 {
5935         struct rq *rq = cpu_rq(cpu);
5936         struct sched_domain *tmp;
5937
5938         /* Remove the sched domains which do not contribute to scheduling. */
5939         for (tmp = sd; tmp; ) {
5940                 struct sched_domain *parent = tmp->parent;
5941                 if (!parent)
5942                         break;
5943
5944                 if (sd_parent_degenerate(tmp, parent)) {
5945                         tmp->parent = parent->parent;
5946                         if (parent->parent)
5947                                 parent->parent->child = tmp;
5948                         /*
5949                          * Transfer SD_PREFER_SIBLING down in case of a
5950                          * degenerate parent; the spans match for this
5951                          * so the property transfers.
5952                          */
5953                         if (parent->flags & SD_PREFER_SIBLING)
5954                                 tmp->flags |= SD_PREFER_SIBLING;
5955                         destroy_sched_domain(parent, cpu);
5956                 } else
5957                         tmp = tmp->parent;
5958         }
5959
5960         if (sd && sd_degenerate(sd)) {
5961                 tmp = sd;
5962                 sd = sd->parent;
5963                 destroy_sched_domain(tmp, cpu);
5964                 if (sd)
5965                         sd->child = NULL;
5966         }
5967
5968         sched_domain_debug(sd, cpu);
5969
5970         rq_attach_root(rq, rd);
5971         tmp = rq->sd;
5972         rcu_assign_pointer(rq->sd, sd);
5973         destroy_sched_domains(tmp, cpu);
5974
5975         update_top_cache_domain(cpu);
5976 }
5977
5978 /* Setup the mask of cpus configured for isolated domains */
5979 static int __init isolated_cpu_setup(char *str)
5980 {
5981         int ret;
5982
5983         alloc_bootmem_cpumask_var(&cpu_isolated_map);
5984         ret = cpulist_parse(str, cpu_isolated_map);
5985         if (ret) {
5986                 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5987                 return 0;
5988         }
5989         return 1;
5990 }
5991 __setup("isolcpus=", isolated_cpu_setup);
5992
5993 struct s_data {
5994         struct sched_domain ** __percpu sd;
5995         struct root_domain      *rd;
5996 };
5997
5998 enum s_alloc {
5999         sa_rootdomain,
6000         sa_sd,
6001         sa_sd_storage,
6002         sa_none,
6003 };
6004
6005 /*
6006  * Build an iteration mask that can exclude certain CPUs from the upwards
6007  * domain traversal.
6008  *
6009  * Asymmetric node setups can result in situations where the domain tree is of
6010  * unequal depth, make sure to skip domains that already cover the entire
6011  * range.
6012  *
6013  * In that case build_sched_domains() will have terminated the iteration early
6014  * and our sibling sd spans will be empty. Domains should always include the
6015  * cpu they're built on, so check that.
6016  *
6017  */
6018 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6019 {
6020         const struct cpumask *span = sched_domain_span(sd);
6021         struct sd_data *sdd = sd->private;
6022         struct sched_domain *sibling;
6023         int i;
6024
6025         for_each_cpu(i, span) {
6026                 sibling = *per_cpu_ptr(sdd->sd, i);
6027                 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6028                         continue;
6029
6030                 cpumask_set_cpu(i, sched_group_mask(sg));
6031         }
6032 }
6033
6034 /*
6035  * Return the canonical balance cpu for this group, this is the first cpu
6036  * of this group that's also in the iteration mask.
6037  */
6038 int group_balance_cpu(struct sched_group *sg)
6039 {
6040         return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6041 }
6042
6043 static int
6044 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6045 {
6046         struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6047         const struct cpumask *span = sched_domain_span(sd);
6048         struct cpumask *covered = sched_domains_tmpmask;
6049         struct sd_data *sdd = sd->private;
6050         struct sched_domain *sibling;
6051         int i;
6052
6053         cpumask_clear(covered);
6054
6055         for_each_cpu(i, span) {
6056                 struct cpumask *sg_span;
6057
6058                 if (cpumask_test_cpu(i, covered))
6059                         continue;
6060
6061                 sibling = *per_cpu_ptr(sdd->sd, i);
6062
6063                 /* See the comment near build_group_mask(). */
6064                 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6065                         continue;
6066
6067                 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6068                                 GFP_KERNEL, cpu_to_node(cpu));
6069
6070                 if (!sg)
6071                         goto fail;
6072
6073                 sg_span = sched_group_cpus(sg);
6074                 if (sibling->child)
6075                         cpumask_copy(sg_span, sched_domain_span(sibling->child));
6076                 else
6077                         cpumask_set_cpu(i, sg_span);
6078
6079                 cpumask_or(covered, covered, sg_span);
6080
6081                 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6082                 if (atomic_inc_return(&sg->sgc->ref) == 1)
6083                         build_group_mask(sd, sg);
6084
6085                 /*
6086                  * Initialize sgc->capacity such that even if we mess up the
6087                  * domains and no possible iteration will get us here, we won't
6088                  * die on a /0 trap.
6089                  */
6090                 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6091
6092                 /*
6093                  * Make sure the first group of this domain contains the
6094                  * canonical balance cpu. Otherwise the sched_domain iteration
6095                  * breaks. See update_sg_lb_stats().
6096                  */
6097                 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6098                     group_balance_cpu(sg) == cpu)
6099                         groups = sg;
6100
6101                 if (!first)
6102                         first = sg;
6103                 if (last)
6104                         last->next = sg;
6105                 last = sg;
6106                 last->next = first;
6107         }
6108         sd->groups = groups;
6109
6110         return 0;
6111
6112 fail:
6113         free_sched_groups(first, 0);
6114
6115         return -ENOMEM;
6116 }
6117
6118 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6119 {
6120         struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6121         struct sched_domain *child = sd->child;
6122
6123         if (child)
6124                 cpu = cpumask_first(sched_domain_span(child));
6125
6126         if (sg) {
6127                 *sg = *per_cpu_ptr(sdd->sg, cpu);
6128                 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6129                 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6130         }
6131
6132         return cpu;
6133 }
6134
6135 /*
6136  * build_sched_groups will build a circular linked list of the groups
6137  * covered by the given span, and will set each group's ->cpumask correctly,
6138  * and ->cpu_capacity to 0.
6139  *
6140  * Assumes the sched_domain tree is fully constructed
6141  */
6142 static int
6143 build_sched_groups(struct sched_domain *sd, int cpu)
6144 {
6145         struct sched_group *first = NULL, *last = NULL;
6146         struct sd_data *sdd = sd->private;
6147         const struct cpumask *span = sched_domain_span(sd);
6148         struct cpumask *covered;
6149         int i;
6150
6151         get_group(cpu, sdd, &sd->groups);
6152         atomic_inc(&sd->groups->ref);
6153
6154         if (cpu != cpumask_first(span))
6155                 return 0;
6156
6157         lockdep_assert_held(&sched_domains_mutex);
6158         covered = sched_domains_tmpmask;
6159
6160         cpumask_clear(covered);
6161
6162         for_each_cpu(i, span) {
6163                 struct sched_group *sg;
6164                 int group, j;
6165
6166                 if (cpumask_test_cpu(i, covered))
6167                         continue;
6168
6169                 group = get_group(i, sdd, &sg);
6170                 cpumask_setall(sched_group_mask(sg));
6171
6172                 for_each_cpu(j, span) {
6173                         if (get_group(j, sdd, NULL) != group)
6174                                 continue;
6175
6176                         cpumask_set_cpu(j, covered);
6177                         cpumask_set_cpu(j, sched_group_cpus(sg));
6178                 }
6179
6180                 if (!first)
6181                         first = sg;
6182                 if (last)
6183                         last->next = sg;
6184                 last = sg;
6185         }
6186         last->next = first;
6187
6188         return 0;
6189 }
6190
6191 /*
6192  * Initialize sched groups cpu_capacity.
6193  *
6194  * cpu_capacity indicates the capacity of sched group, which is used while
6195  * distributing the load between different sched groups in a sched domain.
6196  * Typically cpu_capacity for all the groups in a sched domain will be same
6197  * unless there are asymmetries in the topology. If there are asymmetries,
6198  * group having more cpu_capacity will pickup more load compared to the
6199  * group having less cpu_capacity.
6200  */
6201 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6202 {
6203         struct sched_group *sg = sd->groups;
6204
6205         WARN_ON(!sg);
6206
6207         do {
6208                 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6209                 sg = sg->next;
6210         } while (sg != sd->groups);
6211
6212         if (cpu != group_balance_cpu(sg))
6213                 return;
6214
6215         update_group_capacity(sd, cpu);
6216         atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6217 }
6218
6219 /*
6220  * Initializers for schedule domains
6221  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6222  */
6223
6224 static int default_relax_domain_level = -1;
6225 int sched_domain_level_max;
6226
6227 static int __init setup_relax_domain_level(char *str)
6228 {
6229         if (kstrtoint(str, 0, &default_relax_domain_level))
6230                 pr_warn("Unable to set relax_domain_level\n");
6231
6232         return 1;
6233 }
6234 __setup("relax_domain_level=", setup_relax_domain_level);
6235
6236 static void set_domain_attribute(struct sched_domain *sd,
6237                                  struct sched_domain_attr *attr)
6238 {
6239         int request;
6240
6241         if (!attr || attr->relax_domain_level < 0) {
6242                 if (default_relax_domain_level < 0)
6243                         return;
6244                 else
6245                         request = default_relax_domain_level;
6246         } else
6247                 request = attr->relax_domain_level;
6248         if (request < sd->level) {
6249                 /* turn off idle balance on this domain */
6250                 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6251         } else {
6252                 /* turn on idle balance on this domain */
6253                 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6254         }
6255 }
6256
6257 static void __sdt_free(const struct cpumask *cpu_map);
6258 static int __sdt_alloc(const struct cpumask *cpu_map);
6259
6260 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6261                                  const struct cpumask *cpu_map)
6262 {
6263         switch (what) {
6264         case sa_rootdomain:
6265                 if (!atomic_read(&d->rd->refcount))
6266                         free_rootdomain(&d->rd->rcu); /* fall through */
6267         case sa_sd:
6268                 free_percpu(d->sd); /* fall through */
6269         case sa_sd_storage:
6270                 __sdt_free(cpu_map); /* fall through */
6271         case sa_none:
6272                 break;
6273         }
6274 }
6275
6276 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6277                                                    const struct cpumask *cpu_map)
6278 {
6279         memset(d, 0, sizeof(*d));
6280
6281         if (__sdt_alloc(cpu_map))
6282                 return sa_sd_storage;
6283         d->sd = alloc_percpu(struct sched_domain *);
6284         if (!d->sd)
6285                 return sa_sd_storage;
6286         d->rd = alloc_rootdomain();
6287         if (!d->rd)
6288                 return sa_sd;
6289         return sa_rootdomain;
6290 }
6291
6292 /*
6293  * NULL the sd_data elements we've used to build the sched_domain and
6294  * sched_group structure so that the subsequent __free_domain_allocs()
6295  * will not free the data we're using.
6296  */
6297 static void claim_allocations(int cpu, struct sched_domain *sd)
6298 {
6299         struct sd_data *sdd = sd->private;
6300
6301         WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6302         *per_cpu_ptr(sdd->sd, cpu) = NULL;
6303
6304         if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6305                 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6306
6307         if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6308                 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6309 }
6310
6311 #ifdef CONFIG_NUMA
6312 static int sched_domains_numa_levels;
6313 enum numa_topology_type sched_numa_topology_type;
6314 static int *sched_domains_numa_distance;
6315 int sched_max_numa_distance;
6316 static struct cpumask ***sched_domains_numa_masks;
6317 static int sched_domains_curr_level;
6318 #endif
6319
6320 /*
6321  * SD_flags allowed in topology descriptions.
6322  *
6323  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6324  * SD_SHARE_PKG_RESOURCES - describes shared caches
6325  * SD_NUMA                - describes NUMA topologies
6326  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6327  *
6328  * Odd one out:
6329  * SD_ASYM_PACKING        - describes SMT quirks
6330  */
6331 #define TOPOLOGY_SD_FLAGS               \
6332         (SD_SHARE_CPUCAPACITY |         \
6333          SD_SHARE_PKG_RESOURCES |       \
6334          SD_NUMA |                      \
6335          SD_ASYM_PACKING |              \
6336          SD_SHARE_POWERDOMAIN)
6337
6338 static struct sched_domain *
6339 sd_init(struct sched_domain_topology_level *tl, int cpu)
6340 {
6341         struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6342         int sd_weight, sd_flags = 0;
6343
6344 #ifdef CONFIG_NUMA
6345         /*
6346          * Ugly hack to pass state to sd_numa_mask()...
6347          */
6348         sched_domains_curr_level = tl->numa_level;
6349 #endif
6350
6351         sd_weight = cpumask_weight(tl->mask(cpu));
6352
6353         if (tl->sd_flags)
6354                 sd_flags = (*tl->sd_flags)();
6355         if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6356                         "wrong sd_flags in topology description\n"))
6357                 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6358
6359         *sd = (struct sched_domain){
6360                 .min_interval           = sd_weight,
6361                 .max_interval           = 2*sd_weight,
6362                 .busy_factor            = 32,
6363                 .imbalance_pct          = 125,
6364
6365                 .cache_nice_tries       = 0,
6366                 .busy_idx               = 0,
6367                 .idle_idx               = 0,
6368                 .newidle_idx            = 0,
6369                 .wake_idx               = 0,
6370                 .forkexec_idx           = 0,
6371
6372                 .flags                  = 1*SD_LOAD_BALANCE
6373                                         | 1*SD_BALANCE_NEWIDLE
6374                                         | 1*SD_BALANCE_EXEC
6375                                         | 1*SD_BALANCE_FORK
6376                                         | 0*SD_BALANCE_WAKE
6377                                         | 1*SD_WAKE_AFFINE
6378                                         | 0*SD_SHARE_CPUCAPACITY
6379                                         | 0*SD_SHARE_PKG_RESOURCES
6380                                         | 0*SD_SERIALIZE
6381                                         | 0*SD_PREFER_SIBLING
6382                                         | 0*SD_NUMA
6383                                         | sd_flags
6384                                         ,
6385
6386                 .last_balance           = jiffies,
6387                 .balance_interval       = sd_weight,
6388                 .smt_gain               = 0,
6389                 .max_newidle_lb_cost    = 0,
6390                 .next_decay_max_lb_cost = jiffies,
6391 #ifdef CONFIG_SCHED_DEBUG
6392                 .name                   = tl->name,
6393 #endif
6394         };
6395
6396         /*
6397          * Convert topological properties into behaviour.
6398          */
6399
6400         if (sd->flags & SD_SHARE_CPUCAPACITY) {
6401                 sd->flags |= SD_PREFER_SIBLING;
6402                 sd->imbalance_pct = 110;
6403                 sd->smt_gain = 1178; /* ~15% */
6404
6405         } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6406                 sd->imbalance_pct = 117;
6407                 sd->cache_nice_tries = 1;
6408                 sd->busy_idx = 2;
6409
6410 #ifdef CONFIG_NUMA
6411         } else if (sd->flags & SD_NUMA) {
6412                 sd->cache_nice_tries = 2;
6413                 sd->busy_idx = 3;
6414                 sd->idle_idx = 2;
6415
6416                 sd->flags |= SD_SERIALIZE;
6417                 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6418                         sd->flags &= ~(SD_BALANCE_EXEC |
6419                                        SD_BALANCE_FORK |
6420                                        SD_WAKE_AFFINE);
6421                 }
6422
6423 #endif
6424         } else {
6425                 sd->flags |= SD_PREFER_SIBLING;
6426                 sd->cache_nice_tries = 1;
6427                 sd->busy_idx = 2;
6428                 sd->idle_idx = 1;
6429         }
6430
6431         sd->private = &tl->data;
6432
6433         return sd;
6434 }
6435
6436 /*
6437  * Topology list, bottom-up.
6438  */
6439 static struct sched_domain_topology_level default_topology[] = {
6440 #ifdef CONFIG_SCHED_SMT
6441         { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6442 #endif
6443 #ifdef CONFIG_SCHED_MC
6444         { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6445 #endif
6446         { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6447         { NULL, },
6448 };
6449
6450 static struct sched_domain_topology_level *sched_domain_topology =
6451         default_topology;
6452
6453 #define for_each_sd_topology(tl)                        \
6454         for (tl = sched_domain_topology; tl->mask; tl++)
6455
6456 void set_sched_topology(struct sched_domain_topology_level *tl)
6457 {
6458         sched_domain_topology = tl;
6459 }
6460
6461 #ifdef CONFIG_NUMA
6462
6463 static const struct cpumask *sd_numa_mask(int cpu)
6464 {
6465         return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6466 }
6467
6468 static void sched_numa_warn(const char *str)
6469 {
6470         static int done = false;
6471         int i,j;
6472
6473         if (done)
6474                 return;
6475
6476         done = true;
6477
6478         printk(KERN_WARNING "ERROR: %s\n\n", str);
6479
6480         for (i = 0; i < nr_node_ids; i++) {
6481                 printk(KERN_WARNING "  ");
6482                 for (j = 0; j < nr_node_ids; j++)
6483                         printk(KERN_CONT "%02d ", node_distance(i,j));
6484                 printk(KERN_CONT "\n");
6485         }
6486         printk(KERN_WARNING "\n");
6487 }
6488
6489 bool find_numa_distance(int distance)
6490 {
6491         int i;
6492
6493         if (distance == node_distance(0, 0))
6494                 return true;
6495
6496         for (i = 0; i < sched_domains_numa_levels; i++) {
6497                 if (sched_domains_numa_distance[i] == distance)
6498                         return true;
6499         }
6500
6501         return false;
6502 }
6503
6504 /*
6505  * A system can have three types of NUMA topology:
6506  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6507  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6508  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6509  *
6510  * The difference between a glueless mesh topology and a backplane
6511  * topology lies in whether communication between not directly
6512  * connected nodes goes through intermediary nodes (where programs
6513  * could run), or through backplane controllers. This affects
6514  * placement of programs.
6515  *
6516  * The type of topology can be discerned with the following tests:
6517  * - If the maximum distance between any nodes is 1 hop, the system
6518  *   is directly connected.
6519  * - If for two nodes A and B, located N > 1 hops away from each other,
6520  *   there is an intermediary node C, which is < N hops away from both
6521  *   nodes A and B, the system is a glueless mesh.
6522  */
6523 static void init_numa_topology_type(void)
6524 {
6525         int a, b, c, n;
6526
6527         n = sched_max_numa_distance;
6528
6529         if (sched_domains_numa_levels <= 1) {
6530                 sched_numa_topology_type = NUMA_DIRECT;
6531                 return;
6532         }
6533
6534         for_each_online_node(a) {
6535                 for_each_online_node(b) {
6536                         /* Find two nodes furthest removed from each other. */
6537                         if (node_distance(a, b) < n)
6538                                 continue;
6539
6540                         /* Is there an intermediary node between a and b? */
6541                         for_each_online_node(c) {
6542                                 if (node_distance(a, c) < n &&
6543                                     node_distance(b, c) < n) {
6544                                         sched_numa_topology_type =
6545                                                         NUMA_GLUELESS_MESH;
6546                                         return;
6547                                 }
6548                         }
6549
6550                         sched_numa_topology_type = NUMA_BACKPLANE;
6551                         return;
6552                 }
6553         }
6554 }
6555
6556 static void sched_init_numa(void)
6557 {
6558         int next_distance, curr_distance = node_distance(0, 0);
6559         struct sched_domain_topology_level *tl;
6560         int level = 0;
6561         int i, j, k;
6562
6563         sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6564         if (!sched_domains_numa_distance)
6565                 return;
6566
6567         /*
6568          * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6569          * unique distances in the node_distance() table.
6570          *
6571          * Assumes node_distance(0,j) includes all distances in
6572          * node_distance(i,j) in order to avoid cubic time.
6573          */
6574         next_distance = curr_distance;
6575         for (i = 0; i < nr_node_ids; i++) {
6576                 for (j = 0; j < nr_node_ids; j++) {
6577                         for (k = 0; k < nr_node_ids; k++) {
6578                                 int distance = node_distance(i, k);
6579
6580                                 if (distance > curr_distance &&
6581                                     (distance < next_distance ||
6582                                      next_distance == curr_distance))
6583                                         next_distance = distance;
6584
6585                                 /*
6586                                  * While not a strong assumption it would be nice to know
6587                                  * about cases where if node A is connected to B, B is not
6588                                  * equally connected to A.
6589                                  */
6590                                 if (sched_debug() && node_distance(k, i) != distance)
6591                                         sched_numa_warn("Node-distance not symmetric");
6592
6593                                 if (sched_debug() && i && !find_numa_distance(distance))
6594                                         sched_numa_warn("Node-0 not representative");
6595                         }
6596                         if (next_distance != curr_distance) {
6597                                 sched_domains_numa_distance[level++] = next_distance;
6598                                 sched_domains_numa_levels = level;
6599                                 curr_distance = next_distance;
6600                         } else break;
6601                 }
6602
6603                 /*
6604                  * In case of sched_debug() we verify the above assumption.
6605                  */
6606                 if (!sched_debug())
6607                         break;
6608         }
6609
6610         if (!level)
6611                 return;
6612
6613         /*
6614          * 'level' contains the number of unique distances, excluding the
6615          * identity distance node_distance(i,i).
6616          *
6617          * The sched_domains_numa_distance[] array includes the actual distance
6618          * numbers.
6619          */
6620
6621         /*
6622          * Here, we should temporarily reset sched_domains_numa_levels to 0.
6623          * If it fails to allocate memory for array sched_domains_numa_masks[][],
6624          * the array will contain less then 'level' members. This could be
6625          * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6626          * in other functions.
6627          *
6628          * We reset it to 'level' at the end of this function.
6629          */
6630         sched_domains_numa_levels = 0;
6631
6632         sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6633         if (!sched_domains_numa_masks)
6634                 return;
6635
6636         /*
6637          * Now for each level, construct a mask per node which contains all
6638          * cpus of nodes that are that many hops away from us.
6639          */
6640         for (i = 0; i < level; i++) {
6641                 sched_domains_numa_masks[i] =
6642                         kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6643                 if (!sched_domains_numa_masks[i])
6644                         return;
6645
6646                 for (j = 0; j < nr_node_ids; j++) {
6647                         struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6648                         if (!mask)
6649                                 return;
6650
6651                         sched_domains_numa_masks[i][j] = mask;
6652
6653                         for_each_node(k) {
6654                                 if (node_distance(j, k) > sched_domains_numa_distance[i])
6655                                         continue;
6656
6657                                 cpumask_or(mask, mask, cpumask_of_node(k));
6658                         }
6659                 }
6660         }
6661
6662         /* Compute default topology size */
6663         for (i = 0; sched_domain_topology[i].mask; i++);
6664
6665         tl = kzalloc((i + level + 1) *
6666                         sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6667         if (!tl)
6668                 return;
6669
6670         /*
6671          * Copy the default topology bits..
6672          */
6673         for (i = 0; sched_domain_topology[i].mask; i++)
6674                 tl[i] = sched_domain_topology[i];
6675
6676         /*
6677          * .. and append 'j' levels of NUMA goodness.
6678          */
6679         for (j = 0; j < level; i++, j++) {
6680                 tl[i] = (struct sched_domain_topology_level){
6681                         .mask = sd_numa_mask,
6682                         .sd_flags = cpu_numa_flags,
6683                         .flags = SDTL_OVERLAP,
6684                         .numa_level = j,
6685                         SD_INIT_NAME(NUMA)
6686                 };
6687         }
6688
6689         sched_domain_topology = tl;
6690
6691         sched_domains_numa_levels = level;
6692         sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6693
6694         init_numa_topology_type();
6695 }
6696
6697 static void sched_domains_numa_masks_set(unsigned int cpu)
6698 {
6699         int node = cpu_to_node(cpu);
6700         int i, j;
6701
6702         for (i = 0; i < sched_domains_numa_levels; i++) {
6703                 for (j = 0; j < nr_node_ids; j++) {
6704                         if (node_distance(j, node) <= sched_domains_numa_distance[i])
6705                                 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6706                 }
6707         }
6708 }
6709
6710 static void sched_domains_numa_masks_clear(unsigned int cpu)
6711 {
6712         int i, j;
6713
6714         for (i = 0; i < sched_domains_numa_levels; i++) {
6715                 for (j = 0; j < nr_node_ids; j++)
6716                         cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6717         }
6718 }
6719
6720 #else
6721 static inline void sched_init_numa(void) { }
6722 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6723 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6724 #endif /* CONFIG_NUMA */
6725
6726 static int __sdt_alloc(const struct cpumask *cpu_map)
6727 {
6728         struct sched_domain_topology_level *tl;
6729         int j;
6730
6731         for_each_sd_topology(tl) {
6732                 struct sd_data *sdd = &tl->data;
6733
6734                 sdd->sd = alloc_percpu(struct sched_domain *);
6735                 if (!sdd->sd)
6736                         return -ENOMEM;
6737
6738                 sdd->sg = alloc_percpu(struct sched_group *);
6739                 if (!sdd->sg)
6740                         return -ENOMEM;
6741
6742                 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6743                 if (!sdd->sgc)
6744                         return -ENOMEM;
6745
6746                 for_each_cpu(j, cpu_map) {
6747                         struct sched_domain *sd;
6748                         struct sched_group *sg;
6749                         struct sched_group_capacity *sgc;
6750
6751                         sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6752                                         GFP_KERNEL, cpu_to_node(j));
6753                         if (!sd)
6754                                 return -ENOMEM;
6755
6756                         *per_cpu_ptr(sdd->sd, j) = sd;
6757
6758                         sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6759                                         GFP_KERNEL, cpu_to_node(j));
6760                         if (!sg)
6761                                 return -ENOMEM;
6762
6763                         sg->next = sg;
6764
6765                         *per_cpu_ptr(sdd->sg, j) = sg;
6766
6767                         sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6768                                         GFP_KERNEL, cpu_to_node(j));
6769                         if (!sgc)
6770                                 return -ENOMEM;
6771
6772                         *per_cpu_ptr(sdd->sgc, j) = sgc;
6773                 }
6774         }
6775
6776         return 0;
6777 }
6778
6779 static void __sdt_free(const struct cpumask *cpu_map)
6780 {
6781         struct sched_domain_topology_level *tl;
6782         int j;
6783
6784         for_each_sd_topology(tl) {
6785                 struct sd_data *sdd = &tl->data;
6786
6787                 for_each_cpu(j, cpu_map) {
6788                         struct sched_domain *sd;
6789
6790                         if (sdd->sd) {
6791                                 sd = *per_cpu_ptr(sdd->sd, j);
6792                                 if (sd && (sd->flags & SD_OVERLAP))
6793                                         free_sched_groups(sd->groups, 0);
6794                                 kfree(*per_cpu_ptr(sdd->sd, j));
6795                         }
6796
6797                         if (sdd->sg)
6798                                 kfree(*per_cpu_ptr(sdd->sg, j));
6799                         if (sdd->sgc)
6800                                 kfree(*per_cpu_ptr(sdd->sgc, j));
6801                 }
6802                 free_percpu(sdd->sd);
6803                 sdd->sd = NULL;
6804                 free_percpu(sdd->sg);
6805                 sdd->sg = NULL;
6806                 free_percpu(sdd->sgc);
6807                 sdd->sgc = NULL;
6808         }
6809 }
6810
6811 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6812                 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6813                 struct sched_domain *child, int cpu)
6814 {
6815         struct sched_domain *sd = sd_init(tl, cpu);
6816         if (!sd)
6817                 return child;
6818
6819         cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6820         if (child) {
6821                 sd->level = child->level + 1;
6822                 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6823                 child->parent = sd;
6824                 sd->child = child;
6825
6826                 if (!cpumask_subset(sched_domain_span(child),
6827                                     sched_domain_span(sd))) {
6828                         pr_err("BUG: arch topology borken\n");
6829 #ifdef CONFIG_SCHED_DEBUG
6830                         pr_err("     the %s domain not a subset of the %s domain\n",
6831                                         child->name, sd->name);
6832 #endif
6833                         /* Fixup, ensure @sd has at least @child cpus. */
6834                         cpumask_or(sched_domain_span(sd),
6835                                    sched_domain_span(sd),
6836                                    sched_domain_span(child));
6837                 }
6838
6839         }
6840         set_domain_attribute(sd, attr);
6841
6842         return sd;
6843 }
6844
6845 /*
6846  * Build sched domains for a given set of cpus and attach the sched domains
6847  * to the individual cpus
6848  */
6849 static int build_sched_domains(const struct cpumask *cpu_map,
6850                                struct sched_domain_attr *attr)
6851 {
6852         enum s_alloc alloc_state;
6853         struct sched_domain *sd;
6854         struct s_data d;
6855         int i, ret = -ENOMEM;
6856
6857         alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6858         if (alloc_state != sa_rootdomain)
6859                 goto error;
6860
6861         /* Set up domains for cpus specified by the cpu_map. */
6862         for_each_cpu(i, cpu_map) {
6863                 struct sched_domain_topology_level *tl;
6864
6865                 sd = NULL;
6866                 for_each_sd_topology(tl) {
6867                         sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6868                         if (tl == sched_domain_topology)
6869                                 *per_cpu_ptr(d.sd, i) = sd;
6870                         if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6871                                 sd->flags |= SD_OVERLAP;
6872                         if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6873                                 break;
6874                 }
6875         }
6876
6877         /* Build the groups for the domains */
6878         for_each_cpu(i, cpu_map) {
6879                 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6880                         sd->span_weight = cpumask_weight(sched_domain_span(sd));
6881                         if (sd->flags & SD_OVERLAP) {
6882                                 if (build_overlap_sched_groups(sd, i))
6883                                         goto error;
6884                         } else {
6885                                 if (build_sched_groups(sd, i))
6886                                         goto error;
6887                         }
6888                 }
6889         }
6890
6891         /* Calculate CPU capacity for physical packages and nodes */
6892         for (i = nr_cpumask_bits-1; i >= 0; i--) {
6893                 if (!cpumask_test_cpu(i, cpu_map))
6894                         continue;
6895
6896                 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6897                         claim_allocations(i, sd);
6898                         init_sched_groups_capacity(i, sd);
6899                 }
6900         }
6901
6902         /* Attach the domains */
6903         rcu_read_lock();
6904         for_each_cpu(i, cpu_map) {
6905                 sd = *per_cpu_ptr(d.sd, i);
6906                 cpu_attach_domain(sd, d.rd, i);
6907         }
6908         rcu_read_unlock();
6909
6910         ret = 0;
6911 error:
6912         __free_domain_allocs(&d, alloc_state, cpu_map);
6913         return ret;
6914 }
6915
6916 static cpumask_var_t *doms_cur; /* current sched domains */
6917 static int ndoms_cur;           /* number of sched domains in 'doms_cur' */
6918 static struct sched_domain_attr *dattr_cur;
6919                                 /* attribues of custom domains in 'doms_cur' */
6920
6921 /*
6922  * Special case: If a kmalloc of a doms_cur partition (array of
6923  * cpumask) fails, then fallback to a single sched domain,
6924  * as determined by the single cpumask fallback_doms.
6925  */
6926 static cpumask_var_t fallback_doms;
6927
6928 /*
6929  * arch_update_cpu_topology lets virtualized architectures update the
6930  * cpu core maps. It is supposed to return 1 if the topology changed
6931  * or 0 if it stayed the same.
6932  */
6933 int __weak arch_update_cpu_topology(void)
6934 {
6935         return 0;
6936 }
6937
6938 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6939 {
6940         int i;
6941         cpumask_var_t *doms;
6942
6943         doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6944         if (!doms)
6945                 return NULL;
6946         for (i = 0; i < ndoms; i++) {
6947                 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6948                         free_sched_domains(doms, i);
6949                         return NULL;
6950                 }
6951         }
6952         return doms;
6953 }
6954
6955 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6956 {
6957         unsigned int i;
6958         for (i = 0; i < ndoms; i++)
6959                 free_cpumask_var(doms[i]);
6960         kfree(doms);
6961 }
6962
6963 /*
6964  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6965  * For now this just excludes isolated cpus, but could be used to
6966  * exclude other special cases in the future.
6967  */
6968 static int init_sched_domains(const struct cpumask *cpu_map)
6969 {
6970         int err;
6971
6972         arch_update_cpu_topology();
6973         ndoms_cur = 1;
6974         doms_cur = alloc_sched_domains(ndoms_cur);
6975         if (!doms_cur)
6976                 doms_cur = &fallback_doms;
6977         cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6978         err = build_sched_domains(doms_cur[0], NULL);
6979         register_sched_domain_sysctl();
6980
6981         return err;
6982 }
6983
6984 /*
6985  * Detach sched domains from a group of cpus specified in cpu_map
6986  * These cpus will now be attached to the NULL domain
6987  */
6988 static void detach_destroy_domains(const struct cpumask *cpu_map)
6989 {
6990         int i;
6991
6992         rcu_read_lock();
6993         for_each_cpu(i, cpu_map)
6994                 cpu_attach_domain(NULL, &def_root_domain, i);
6995         rcu_read_unlock();
6996 }
6997
6998 /* handle null as "default" */
6999 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7000                         struct sched_domain_attr *new, int idx_new)
7001 {
7002         struct sched_domain_attr tmp;
7003
7004         /* fast path */
7005         if (!new && !cur)
7006                 return 1;
7007
7008         tmp = SD_ATTR_INIT;
7009         return !memcmp(cur ? (cur + idx_cur) : &tmp,
7010                         new ? (new + idx_new) : &tmp,
7011                         sizeof(struct sched_domain_attr));
7012 }
7013
7014 /*
7015  * Partition sched domains as specified by the 'ndoms_new'
7016  * cpumasks in the array doms_new[] of cpumasks. This compares
7017  * doms_new[] to the current sched domain partitioning, doms_cur[].
7018  * It destroys each deleted domain and builds each new domain.
7019  *
7020  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7021  * The masks don't intersect (don't overlap.) We should setup one
7022  * sched domain for each mask. CPUs not in any of the cpumasks will
7023  * not be load balanced. If the same cpumask appears both in the
7024  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7025  * it as it is.
7026  *
7027  * The passed in 'doms_new' should be allocated using
7028  * alloc_sched_domains.  This routine takes ownership of it and will
7029  * free_sched_domains it when done with it. If the caller failed the
7030  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7031  * and partition_sched_domains() will fallback to the single partition
7032  * 'fallback_doms', it also forces the domains to be rebuilt.
7033  *
7034  * If doms_new == NULL it will be replaced with cpu_online_mask.
7035  * ndoms_new == 0 is a special case for destroying existing domains,
7036  * and it will not create the default domain.
7037  *
7038  * Call with hotplug lock held
7039  */
7040 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7041                              struct sched_domain_attr *dattr_new)
7042 {
7043         int i, j, n;
7044         int new_topology;
7045
7046         mutex_lock(&sched_domains_mutex);
7047
7048         /* always unregister in case we don't destroy any domains */
7049         unregister_sched_domain_sysctl();
7050
7051         /* Let architecture update cpu core mappings. */
7052         new_topology = arch_update_cpu_topology();
7053
7054         n = doms_new ? ndoms_new : 0;
7055
7056         /* Destroy deleted domains */
7057         for (i = 0; i < ndoms_cur; i++) {
7058                 for (j = 0; j < n && !new_topology; j++) {
7059                         if (cpumask_equal(doms_cur[i], doms_new[j])
7060                             && dattrs_equal(dattr_cur, i, dattr_new, j))
7061                                 goto match1;
7062                 }
7063                 /* no match - a current sched domain not in new doms_new[] */
7064                 detach_destroy_domains(doms_cur[i]);
7065 match1:
7066                 ;
7067         }
7068
7069         n = ndoms_cur;
7070         if (doms_new == NULL) {
7071                 n = 0;
7072                 doms_new = &fallback_doms;
7073                 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7074                 WARN_ON_ONCE(dattr_new);
7075         }
7076
7077         /* Build new domains */
7078         for (i = 0; i < ndoms_new; i++) {
7079                 for (j = 0; j < n && !new_topology; j++) {
7080                         if (cpumask_equal(doms_new[i], doms_cur[j])
7081                             && dattrs_equal(dattr_new, i, dattr_cur, j))
7082                                 goto match2;
7083                 }
7084                 /* no match - add a new doms_new */
7085                 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7086 match2:
7087                 ;
7088         }
7089
7090         /* Remember the new sched domains */
7091         if (doms_cur != &fallback_doms)
7092                 free_sched_domains(doms_cur, ndoms_cur);
7093         kfree(dattr_cur);       /* kfree(NULL) is safe */
7094         doms_cur = doms_new;
7095         dattr_cur = dattr_new;
7096         ndoms_cur = ndoms_new;
7097
7098         register_sched_domain_sysctl();
7099
7100         mutex_unlock(&sched_domains_mutex);
7101 }
7102
7103 static int num_cpus_frozen;     /* used to mark begin/end of suspend/resume */
7104
7105 /*
7106  * Update cpusets according to cpu_active mask.  If cpusets are
7107  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7108  * around partition_sched_domains().
7109  *
7110  * If we come here as part of a suspend/resume, don't touch cpusets because we
7111  * want to restore it back to its original state upon resume anyway.
7112  */
7113 static void cpuset_cpu_active(void)
7114 {
7115         if (cpuhp_tasks_frozen) {
7116                 /*
7117                  * num_cpus_frozen tracks how many CPUs are involved in suspend
7118                  * resume sequence. As long as this is not the last online
7119                  * operation in the resume sequence, just build a single sched
7120                  * domain, ignoring cpusets.
7121                  */
7122                 num_cpus_frozen--;
7123                 if (likely(num_cpus_frozen)) {
7124                         partition_sched_domains(1, NULL, NULL);
7125                         return;
7126                 }
7127                 /*
7128                  * This is the last CPU online operation. So fall through and
7129                  * restore the original sched domains by considering the
7130                  * cpuset configurations.
7131                  */
7132         }
7133         cpuset_update_active_cpus(true);
7134 }
7135
7136 static int cpuset_cpu_inactive(unsigned int cpu)
7137 {
7138         unsigned long flags;
7139         struct dl_bw *dl_b;
7140         bool overflow;
7141         int cpus;
7142
7143         if (!cpuhp_tasks_frozen) {
7144                 rcu_read_lock_sched();
7145                 dl_b = dl_bw_of(cpu);
7146
7147                 raw_spin_lock_irqsave(&dl_b->lock, flags);
7148                 cpus = dl_bw_cpus(cpu);
7149                 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7150                 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7151
7152                 rcu_read_unlock_sched();
7153
7154                 if (overflow)
7155                         return -EBUSY;
7156                 cpuset_update_active_cpus(false);
7157         } else {
7158                 num_cpus_frozen++;
7159                 partition_sched_domains(1, NULL, NULL);
7160         }
7161         return 0;
7162 }
7163
7164 int sched_cpu_activate(unsigned int cpu)
7165 {
7166         struct rq *rq = cpu_rq(cpu);
7167         unsigned long flags;
7168
7169         set_cpu_active(cpu, true);
7170
7171         if (sched_smp_initialized) {
7172                 sched_domains_numa_masks_set(cpu);
7173                 cpuset_cpu_active();
7174         }
7175
7176         /*
7177          * Put the rq online, if not already. This happens:
7178          *
7179          * 1) In the early boot process, because we build the real domains
7180          *    after all cpus have been brought up.
7181          *
7182          * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7183          *    domains.
7184          */
7185         raw_spin_lock_irqsave(&rq->lock, flags);
7186         if (rq->rd) {
7187                 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7188                 set_rq_online(rq);
7189         }
7190         raw_spin_unlock_irqrestore(&rq->lock, flags);
7191
7192         update_max_interval();
7193
7194         return 0;
7195 }
7196
7197 int sched_cpu_deactivate(unsigned int cpu)
7198 {
7199         int ret;
7200
7201         set_cpu_active(cpu, false);
7202         /*
7203          * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7204          * users of this state to go away such that all new such users will
7205          * observe it.
7206          *
7207          * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7208          * not imply sync_sched(), so wait for both.
7209          *
7210          * Do sync before park smpboot threads to take care the rcu boost case.
7211          */
7212         if (IS_ENABLED(CONFIG_PREEMPT))
7213                 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7214         else
7215                 synchronize_rcu();
7216
7217         if (!sched_smp_initialized)
7218                 return 0;
7219
7220         ret = cpuset_cpu_inactive(cpu);
7221         if (ret) {
7222                 set_cpu_active(cpu, true);
7223                 return ret;
7224         }
7225         sched_domains_numa_masks_clear(cpu);
7226         return 0;
7227 }
7228
7229 static void sched_rq_cpu_starting(unsigned int cpu)
7230 {
7231         struct rq *rq = cpu_rq(cpu);
7232
7233         rq->calc_load_update = calc_load_update;
7234         update_max_interval();
7235 }
7236
7237 int sched_cpu_starting(unsigned int cpu)
7238 {
7239         set_cpu_rq_start_time(cpu);
7240         sched_rq_cpu_starting(cpu);
7241         return 0;
7242 }
7243
7244 #ifdef CONFIG_HOTPLUG_CPU
7245 int sched_cpu_dying(unsigned int cpu)
7246 {
7247         struct rq *rq = cpu_rq(cpu);
7248         unsigned long flags;
7249
7250         /* Handle pending wakeups and then migrate everything off */
7251         sched_ttwu_pending();
7252         raw_spin_lock_irqsave(&rq->lock, flags);
7253         if (rq->rd) {
7254                 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7255                 set_rq_offline(rq);
7256         }
7257         migrate_tasks(rq);
7258         BUG_ON(rq->nr_running != 1);
7259         raw_spin_unlock_irqrestore(&rq->lock, flags);
7260         calc_load_migrate(rq);
7261         update_max_interval();
7262         nohz_balance_exit_idle(cpu);
7263         hrtick_clear(rq);
7264         return 0;
7265 }
7266 #endif
7267
7268 void __init sched_init_smp(void)
7269 {
7270         cpumask_var_t non_isolated_cpus;
7271
7272         alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7273         alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7274
7275         sched_init_numa();
7276
7277         /*
7278          * There's no userspace yet to cause hotplug operations; hence all the
7279          * cpu masks are stable and all blatant races in the below code cannot
7280          * happen.
7281          */
7282         mutex_lock(&sched_domains_mutex);
7283         init_sched_domains(cpu_active_mask);
7284         cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7285         if (cpumask_empty(non_isolated_cpus))
7286                 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7287         mutex_unlock(&sched_domains_mutex);
7288
7289         /* Move init over to a non-isolated CPU */
7290         if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7291                 BUG();
7292         sched_init_granularity();
7293         free_cpumask_var(non_isolated_cpus);
7294
7295         init_sched_rt_class();
7296         init_sched_dl_class();
7297         sched_smp_initialized = true;
7298 }
7299
7300 static int __init migration_init(void)
7301 {
7302         sched_rq_cpu_starting(smp_processor_id());
7303         return 0;
7304 }
7305 early_initcall(migration_init);
7306
7307 #else
7308 void __init sched_init_smp(void)
7309 {
7310         sched_init_granularity();
7311 }
7312 #endif /* CONFIG_SMP */
7313
7314 int in_sched_functions(unsigned long addr)
7315 {
7316         return in_lock_functions(addr) ||
7317                 (addr >= (unsigned long)__sched_text_start
7318                 && addr < (unsigned long)__sched_text_end);
7319 }
7320
7321 #ifdef CONFIG_CGROUP_SCHED
7322 /*
7323  * Default task group.
7324  * Every task in system belongs to this group at bootup.
7325  */
7326 struct task_group root_task_group;
7327 LIST_HEAD(task_groups);
7328
7329 /* Cacheline aligned slab cache for task_group */
7330 static struct kmem_cache *task_group_cache __read_mostly;
7331 #endif
7332
7333 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7334
7335 void __init sched_init(void)
7336 {
7337         int i, j;
7338         unsigned long alloc_size = 0, ptr;
7339
7340 #ifdef CONFIG_FAIR_GROUP_SCHED
7341         alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7342 #endif
7343 #ifdef CONFIG_RT_GROUP_SCHED
7344         alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7345 #endif
7346         if (alloc_size) {
7347                 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7348
7349 #ifdef CONFIG_FAIR_GROUP_SCHED
7350                 root_task_group.se = (struct sched_entity **)ptr;
7351                 ptr += nr_cpu_ids * sizeof(void **);
7352
7353                 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7354                 ptr += nr_cpu_ids * sizeof(void **);
7355
7356 #endif /* CONFIG_FAIR_GROUP_SCHED */
7357 #ifdef CONFIG_RT_GROUP_SCHED
7358                 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7359                 ptr += nr_cpu_ids * sizeof(void **);
7360
7361                 root_task_group.rt_rq = (struct rt_rq **)ptr;
7362                 ptr += nr_cpu_ids * sizeof(void **);
7363
7364 #endif /* CONFIG_RT_GROUP_SCHED */
7365         }
7366 #ifdef CONFIG_CPUMASK_OFFSTACK
7367         for_each_possible_cpu(i) {
7368                 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7369                         cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7370         }
7371 #endif /* CONFIG_CPUMASK_OFFSTACK */
7372
7373         init_rt_bandwidth(&def_rt_bandwidth,
7374                         global_rt_period(), global_rt_runtime());
7375         init_dl_bandwidth(&def_dl_bandwidth,
7376                         global_rt_period(), global_rt_runtime());
7377
7378 #ifdef CONFIG_SMP
7379         init_defrootdomain();
7380 #endif
7381
7382 #ifdef CONFIG_RT_GROUP_SCHED
7383         init_rt_bandwidth(&root_task_group.rt_bandwidth,
7384                         global_rt_period(), global_rt_runtime());
7385 #endif /* CONFIG_RT_GROUP_SCHED */
7386
7387 #ifdef CONFIG_CGROUP_SCHED
7388         task_group_cache = KMEM_CACHE(task_group, 0);
7389
7390         list_add(&root_task_group.list, &task_groups);
7391         INIT_LIST_HEAD(&root_task_group.children);
7392         INIT_LIST_HEAD(&root_task_group.siblings);
7393         autogroup_init(&init_task);
7394 #endif /* CONFIG_CGROUP_SCHED */
7395
7396         for_each_possible_cpu(i) {
7397                 struct rq *rq;
7398
7399                 rq = cpu_rq(i);
7400                 raw_spin_lock_init(&rq->lock);
7401                 rq->nr_running = 0;
7402                 rq->calc_load_active = 0;
7403                 rq->calc_load_update = jiffies + LOAD_FREQ;
7404                 init_cfs_rq(&rq->cfs);
7405                 init_rt_rq(&rq->rt);
7406                 init_dl_rq(&rq->dl);
7407 #ifdef CONFIG_FAIR_GROUP_SCHED
7408                 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7409                 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7410                 /*
7411                  * How much cpu bandwidth does root_task_group get?
7412                  *
7413                  * In case of task-groups formed thr' the cgroup filesystem, it
7414                  * gets 100% of the cpu resources in the system. This overall
7415                  * system cpu resource is divided among the tasks of
7416                  * root_task_group and its child task-groups in a fair manner,
7417                  * based on each entity's (task or task-group's) weight
7418                  * (se->load.weight).
7419                  *
7420                  * In other words, if root_task_group has 10 tasks of weight
7421                  * 1024) and two child groups A0 and A1 (of weight 1024 each),
7422                  * then A0's share of the cpu resource is:
7423                  *
7424                  *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7425                  *
7426                  * We achieve this by letting root_task_group's tasks sit
7427                  * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7428                  */
7429                 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7430                 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7431 #endif /* CONFIG_FAIR_GROUP_SCHED */
7432
7433                 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7434 #ifdef CONFIG_RT_GROUP_SCHED
7435                 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7436 #endif
7437
7438                 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7439                         rq->cpu_load[j] = 0;
7440
7441 #ifdef CONFIG_SMP
7442                 rq->sd = NULL;
7443                 rq->rd = NULL;
7444                 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7445                 rq->balance_callback = NULL;
7446                 rq->active_balance = 0;
7447                 rq->next_balance = jiffies;
7448                 rq->push_cpu = 0;
7449                 rq->cpu = i;
7450                 rq->online = 0;
7451                 rq->idle_stamp = 0;
7452                 rq->avg_idle = 2*sysctl_sched_migration_cost;
7453                 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7454
7455                 INIT_LIST_HEAD(&rq->cfs_tasks);
7456
7457                 rq_attach_root(rq, &def_root_domain);
7458 #ifdef CONFIG_NO_HZ_COMMON
7459                 rq->last_load_update_tick = jiffies;
7460                 rq->nohz_flags = 0;
7461 #endif
7462 #ifdef CONFIG_NO_HZ_FULL
7463                 rq->last_sched_tick = 0;
7464 #endif
7465 #endif /* CONFIG_SMP */
7466                 init_rq_hrtick(rq);
7467                 atomic_set(&rq->nr_iowait, 0);
7468         }
7469
7470         set_load_weight(&init_task);
7471
7472 #ifdef CONFIG_PREEMPT_NOTIFIERS
7473         INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7474 #endif
7475
7476         /*
7477          * The boot idle thread does lazy MMU switching as well:
7478          */
7479         atomic_inc(&init_mm.mm_count);
7480         enter_lazy_tlb(&init_mm, current);
7481
7482         /*
7483          * During early bootup we pretend to be a normal task:
7484          */
7485         current->sched_class = &fair_sched_class;
7486
7487         /*
7488          * Make us the idle thread. Technically, schedule() should not be
7489          * called from this thread, however somewhere below it might be,
7490          * but because we are the idle thread, we just pick up running again
7491          * when this runqueue becomes "idle".
7492          */
7493         init_idle(current, smp_processor_id());
7494
7495         calc_load_update = jiffies + LOAD_FREQ;
7496
7497 #ifdef CONFIG_SMP
7498         zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7499         /* May be allocated at isolcpus cmdline parse time */
7500         if (cpu_isolated_map == NULL)
7501                 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7502         idle_thread_set_boot_cpu();
7503         set_cpu_rq_start_time(smp_processor_id());
7504 #endif
7505         init_sched_fair_class();
7506
7507         init_schedstats();
7508
7509         scheduler_running = 1;
7510 }
7511
7512 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7513 static inline int preempt_count_equals(int preempt_offset)
7514 {
7515         int nested = preempt_count() + rcu_preempt_depth();
7516
7517         return (nested == preempt_offset);
7518 }
7519
7520 void __might_sleep(const char *file, int line, int preempt_offset)
7521 {
7522         /*
7523          * Blocking primitives will set (and therefore destroy) current->state,
7524          * since we will exit with TASK_RUNNING make sure we enter with it,
7525          * otherwise we will destroy state.
7526          */
7527         WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7528                         "do not call blocking ops when !TASK_RUNNING; "
7529                         "state=%lx set at [<%p>] %pS\n",
7530                         current->state,
7531                         (void *)current->task_state_change,
7532                         (void *)current->task_state_change);
7533
7534         ___might_sleep(file, line, preempt_offset);
7535 }
7536 EXPORT_SYMBOL(__might_sleep);
7537
7538 void ___might_sleep(const char *file, int line, int preempt_offset)
7539 {
7540         static unsigned long prev_jiffy;        /* ratelimiting */
7541
7542         rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7543         if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7544              !is_idle_task(current)) ||
7545             system_state != SYSTEM_RUNNING || oops_in_progress)
7546                 return;
7547         if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7548                 return;
7549         prev_jiffy = jiffies;
7550
7551         printk(KERN_ERR
7552                 "BUG: sleeping function called from invalid context at %s:%d\n",
7553                         file, line);
7554         printk(KERN_ERR
7555                 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7556                         in_atomic(), irqs_disabled(),
7557                         current->pid, current->comm);
7558
7559         if (task_stack_end_corrupted(current))
7560                 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7561
7562         debug_show_held_locks(current);
7563         if (irqs_disabled())
7564                 print_irqtrace_events(current);
7565 #ifdef CONFIG_DEBUG_PREEMPT
7566         if (!preempt_count_equals(preempt_offset)) {
7567                 pr_err("Preemption disabled at:");
7568                 print_ip_sym(current->preempt_disable_ip);
7569                 pr_cont("\n");
7570         }
7571 #endif
7572         dump_stack();
7573 }
7574 EXPORT_SYMBOL(___might_sleep);
7575 #endif
7576
7577 #ifdef CONFIG_MAGIC_SYSRQ
7578 void normalize_rt_tasks(void)
7579 {
7580         struct task_struct *g, *p;
7581         struct sched_attr attr = {
7582                 .sched_policy = SCHED_NORMAL,
7583         };
7584
7585         read_lock(&tasklist_lock);
7586         for_each_process_thread(g, p) {
7587                 /*
7588                  * Only normalize user tasks:
7589                  */
7590                 if (p->flags & PF_KTHREAD)
7591                         continue;
7592
7593                 p->se.exec_start                = 0;
7594 #ifdef CONFIG_SCHEDSTATS
7595                 p->se.statistics.wait_start     = 0;
7596                 p->se.statistics.sleep_start    = 0;
7597                 p->se.statistics.block_start    = 0;
7598 #endif
7599
7600                 if (!dl_task(p) && !rt_task(p)) {
7601                         /*
7602                          * Renice negative nice level userspace
7603                          * tasks back to 0:
7604                          */
7605                         if (task_nice(p) < 0)
7606                                 set_user_nice(p, 0);
7607                         continue;
7608                 }
7609
7610                 __sched_setscheduler(p, &attr, false, false);
7611         }
7612         read_unlock(&tasklist_lock);
7613 }
7614
7615 #endif /* CONFIG_MAGIC_SYSRQ */
7616
7617 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7618 /*
7619  * These functions are only useful for the IA64 MCA handling, or kdb.
7620  *
7621  * They can only be called when the whole system has been
7622  * stopped - every CPU needs to be quiescent, and no scheduling
7623  * activity can take place. Using them for anything else would
7624  * be a serious bug, and as a result, they aren't even visible
7625  * under any other configuration.
7626  */
7627
7628 /**
7629  * curr_task - return the current task for a given cpu.
7630  * @cpu: the processor in question.
7631  *
7632  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7633  *
7634  * Return: The current task for @cpu.
7635  */
7636 struct task_struct *curr_task(int cpu)
7637 {
7638         return cpu_curr(cpu);
7639 }
7640
7641 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7642
7643 #ifdef CONFIG_IA64
7644 /**
7645  * set_curr_task - set the current task for a given cpu.
7646  * @cpu: the processor in question.
7647  * @p: the task pointer to set.
7648  *
7649  * Description: This function must only be used when non-maskable interrupts
7650  * are serviced on a separate stack. It allows the architecture to switch the
7651  * notion of the current task on a cpu in a non-blocking manner. This function
7652  * must be called with all CPU's synchronized, and interrupts disabled, the
7653  * and caller must save the original value of the current task (see
7654  * curr_task() above) and restore that value before reenabling interrupts and
7655  * re-starting the system.
7656  *
7657  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7658  */
7659 void set_curr_task(int cpu, struct task_struct *p)
7660 {
7661         cpu_curr(cpu) = p;
7662 }
7663
7664 #endif
7665
7666 #ifdef CONFIG_CGROUP_SCHED
7667 /* task_group_lock serializes the addition/removal of task groups */
7668 static DEFINE_SPINLOCK(task_group_lock);
7669
7670 static void sched_free_group(struct task_group *tg)
7671 {
7672         free_fair_sched_group(tg);
7673         free_rt_sched_group(tg);
7674         autogroup_free(tg);
7675         kmem_cache_free(task_group_cache, tg);
7676 }
7677
7678 /* allocate runqueue etc for a new task group */
7679 struct task_group *sched_create_group(struct task_group *parent)
7680 {
7681         struct task_group *tg;
7682
7683         tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7684         if (!tg)
7685                 return ERR_PTR(-ENOMEM);
7686
7687         if (!alloc_fair_sched_group(tg, parent))
7688                 goto err;
7689
7690         if (!alloc_rt_sched_group(tg, parent))
7691                 goto err;
7692
7693         return tg;
7694
7695 err:
7696         sched_free_group(tg);
7697         return ERR_PTR(-ENOMEM);
7698 }
7699
7700 void sched_online_group(struct task_group *tg, struct task_group *parent)
7701 {
7702         unsigned long flags;
7703
7704         spin_lock_irqsave(&task_group_lock, flags);
7705         list_add_rcu(&tg->list, &task_groups);
7706
7707         WARN_ON(!parent); /* root should already exist */
7708
7709         tg->parent = parent;
7710         INIT_LIST_HEAD(&tg->children);
7711         list_add_rcu(&tg->siblings, &parent->children);
7712         spin_unlock_irqrestore(&task_group_lock, flags);
7713 }
7714
7715 /* rcu callback to free various structures associated with a task group */
7716 static void sched_free_group_rcu(struct rcu_head *rhp)
7717 {
7718         /* now it should be safe to free those cfs_rqs */
7719         sched_free_group(container_of(rhp, struct task_group, rcu));
7720 }
7721
7722 void sched_destroy_group(struct task_group *tg)
7723 {
7724         /* wait for possible concurrent references to cfs_rqs complete */
7725         call_rcu(&tg->rcu, sched_free_group_rcu);
7726 }
7727
7728 void sched_offline_group(struct task_group *tg)
7729 {
7730         unsigned long flags;
7731
7732         /* end participation in shares distribution */
7733         unregister_fair_sched_group(tg);
7734
7735         spin_lock_irqsave(&task_group_lock, flags);
7736         list_del_rcu(&tg->list);
7737         list_del_rcu(&tg->siblings);
7738         spin_unlock_irqrestore(&task_group_lock, flags);
7739 }
7740
7741 /* change task's runqueue when it moves between groups.
7742  *      The caller of this function should have put the task in its new group
7743  *      by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7744  *      reflect its new group.
7745  */
7746 void sched_move_task(struct task_struct *tsk)
7747 {
7748         struct task_group *tg;
7749         int queued, running;
7750         struct rq_flags rf;
7751         struct rq *rq;
7752
7753         rq = task_rq_lock(tsk, &rf);
7754
7755         running = task_current(rq, tsk);
7756         queued = task_on_rq_queued(tsk);
7757
7758         if (queued)
7759                 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7760         if (unlikely(running))
7761                 put_prev_task(rq, tsk);
7762
7763         /*
7764          * All callers are synchronized by task_rq_lock(); we do not use RCU
7765          * which is pointless here. Thus, we pass "true" to task_css_check()
7766          * to prevent lockdep warnings.
7767          */
7768         tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7769                           struct task_group, css);
7770         tg = autogroup_task_group(tsk, tg);
7771         tsk->sched_task_group = tg;
7772
7773 #ifdef CONFIG_FAIR_GROUP_SCHED
7774         if (tsk->sched_class->task_move_group)
7775                 tsk->sched_class->task_move_group(tsk);
7776         else
7777 #endif
7778                 set_task_rq(tsk, task_cpu(tsk));
7779
7780         if (unlikely(running))
7781                 tsk->sched_class->set_curr_task(rq);
7782         if (queued)
7783                 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7784
7785         task_rq_unlock(rq, tsk, &rf);
7786 }
7787 #endif /* CONFIG_CGROUP_SCHED */
7788
7789 #ifdef CONFIG_RT_GROUP_SCHED
7790 /*
7791  * Ensure that the real time constraints are schedulable.
7792  */
7793 static DEFINE_MUTEX(rt_constraints_mutex);
7794
7795 /* Must be called with tasklist_lock held */
7796 static inline int tg_has_rt_tasks(struct task_group *tg)
7797 {
7798         struct task_struct *g, *p;
7799
7800         /*
7801          * Autogroups do not have RT tasks; see autogroup_create().
7802          */
7803         if (task_group_is_autogroup(tg))
7804                 return 0;
7805
7806         for_each_process_thread(g, p) {
7807                 if (rt_task(p) && task_group(p) == tg)
7808                         return 1;
7809         }
7810
7811         return 0;
7812 }
7813
7814 struct rt_schedulable_data {
7815         struct task_group *tg;
7816         u64 rt_period;
7817         u64 rt_runtime;
7818 };
7819
7820 static int tg_rt_schedulable(struct task_group *tg, void *data)
7821 {
7822         struct rt_schedulable_data *d = data;
7823         struct task_group *child;
7824         unsigned long total, sum = 0;
7825         u64 period, runtime;
7826
7827         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7828         runtime = tg->rt_bandwidth.rt_runtime;
7829
7830         if (tg == d->tg) {
7831                 period = d->rt_period;
7832                 runtime = d->rt_runtime;
7833         }
7834
7835         /*
7836          * Cannot have more runtime than the period.
7837          */
7838         if (runtime > period && runtime != RUNTIME_INF)
7839                 return -EINVAL;
7840
7841         /*
7842          * Ensure we don't starve existing RT tasks.
7843          */
7844         if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7845                 return -EBUSY;
7846
7847         total = to_ratio(period, runtime);
7848
7849         /*
7850          * Nobody can have more than the global setting allows.
7851          */
7852         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7853                 return -EINVAL;
7854
7855         /*
7856          * The sum of our children's runtime should not exceed our own.
7857          */
7858         list_for_each_entry_rcu(child, &tg->children, siblings) {
7859                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7860                 runtime = child->rt_bandwidth.rt_runtime;
7861
7862                 if (child == d->tg) {
7863                         period = d->rt_period;
7864                         runtime = d->rt_runtime;
7865                 }
7866
7867                 sum += to_ratio(period, runtime);
7868         }
7869
7870         if (sum > total)
7871                 return -EINVAL;
7872
7873         return 0;
7874 }
7875
7876 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7877 {
7878         int ret;
7879
7880         struct rt_schedulable_data data = {
7881                 .tg = tg,
7882                 .rt_period = period,
7883                 .rt_runtime = runtime,
7884         };
7885
7886         rcu_read_lock();
7887         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7888         rcu_read_unlock();
7889
7890         return ret;
7891 }
7892
7893 static int tg_set_rt_bandwidth(struct task_group *tg,
7894                 u64 rt_period, u64 rt_runtime)
7895 {
7896         int i, err = 0;
7897
7898         /*
7899          * Disallowing the root group RT runtime is BAD, it would disallow the
7900          * kernel creating (and or operating) RT threads.
7901          */
7902         if (tg == &root_task_group && rt_runtime == 0)
7903                 return -EINVAL;
7904
7905         /* No period doesn't make any sense. */
7906         if (rt_period == 0)
7907                 return -EINVAL;
7908
7909         mutex_lock(&rt_constraints_mutex);
7910         read_lock(&tasklist_lock);
7911         err = __rt_schedulable(tg, rt_period, rt_runtime);
7912         if (err)
7913                 goto unlock;
7914
7915         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7916         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7917         tg->rt_bandwidth.rt_runtime = rt_runtime;
7918
7919         for_each_possible_cpu(i) {
7920                 struct rt_rq *rt_rq = tg->rt_rq[i];
7921
7922                 raw_spin_lock(&rt_rq->rt_runtime_lock);
7923                 rt_rq->rt_runtime = rt_runtime;
7924                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7925         }
7926         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7927 unlock:
7928         read_unlock(&tasklist_lock);
7929         mutex_unlock(&rt_constraints_mutex);
7930
7931         return err;
7932 }
7933
7934 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7935 {
7936         u64 rt_runtime, rt_period;
7937
7938         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7939         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7940         if (rt_runtime_us < 0)
7941                 rt_runtime = RUNTIME_INF;
7942
7943         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7944 }
7945
7946 static long sched_group_rt_runtime(struct task_group *tg)
7947 {
7948         u64 rt_runtime_us;
7949
7950         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7951                 return -1;
7952
7953         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7954         do_div(rt_runtime_us, NSEC_PER_USEC);
7955         return rt_runtime_us;
7956 }
7957
7958 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7959 {
7960         u64 rt_runtime, rt_period;
7961
7962         rt_period = rt_period_us * NSEC_PER_USEC;
7963         rt_runtime = tg->rt_bandwidth.rt_runtime;
7964
7965         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7966 }
7967
7968 static long sched_group_rt_period(struct task_group *tg)
7969 {
7970         u64 rt_period_us;
7971
7972         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7973         do_div(rt_period_us, NSEC_PER_USEC);
7974         return rt_period_us;
7975 }
7976 #endif /* CONFIG_RT_GROUP_SCHED */
7977
7978 #ifdef CONFIG_RT_GROUP_SCHED
7979 static int sched_rt_global_constraints(void)
7980 {
7981         int ret = 0;
7982
7983         mutex_lock(&rt_constraints_mutex);
7984         read_lock(&tasklist_lock);
7985         ret = __rt_schedulable(NULL, 0, 0);
7986         read_unlock(&tasklist_lock);
7987         mutex_unlock(&rt_constraints_mutex);
7988
7989         return ret;
7990 }
7991
7992 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7993 {
7994         /* Don't accept realtime tasks when there is no way for them to run */
7995         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7996                 return 0;
7997
7998         return 1;
7999 }
8000
8001 #else /* !CONFIG_RT_GROUP_SCHED */
8002 static int sched_rt_global_constraints(void)
8003 {
8004         unsigned long flags;
8005         int i;
8006
8007         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8008         for_each_possible_cpu(i) {
8009                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8010
8011                 raw_spin_lock(&rt_rq->rt_runtime_lock);
8012                 rt_rq->rt_runtime = global_rt_runtime();
8013                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8014         }
8015         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8016
8017         return 0;
8018 }
8019 #endif /* CONFIG_RT_GROUP_SCHED */
8020
8021 static int sched_dl_global_validate(void)
8022 {
8023         u64 runtime = global_rt_runtime();
8024         u64 period = global_rt_period();
8025         u64 new_bw = to_ratio(period, runtime);
8026         struct dl_bw *dl_b;
8027         int cpu, ret = 0;
8028         unsigned long flags;
8029
8030         /*
8031          * Here we want to check the bandwidth not being set to some
8032          * value smaller than the currently allocated bandwidth in
8033          * any of the root_domains.
8034          *
8035          * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8036          * cycling on root_domains... Discussion on different/better
8037          * solutions is welcome!
8038          */
8039         for_each_possible_cpu(cpu) {
8040                 rcu_read_lock_sched();
8041                 dl_b = dl_bw_of(cpu);
8042
8043                 raw_spin_lock_irqsave(&dl_b->lock, flags);
8044                 if (new_bw < dl_b->total_bw)
8045                         ret = -EBUSY;
8046                 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8047
8048                 rcu_read_unlock_sched();
8049
8050                 if (ret)
8051                         break;
8052         }
8053
8054         return ret;
8055 }
8056
8057 static void sched_dl_do_global(void)
8058 {
8059         u64 new_bw = -1;
8060         struct dl_bw *dl_b;
8061         int cpu;
8062         unsigned long flags;
8063
8064         def_dl_bandwidth.dl_period = global_rt_period();
8065         def_dl_bandwidth.dl_runtime = global_rt_runtime();
8066
8067         if (global_rt_runtime() != RUNTIME_INF)
8068                 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8069
8070         /*
8071          * FIXME: As above...
8072          */
8073         for_each_possible_cpu(cpu) {
8074                 rcu_read_lock_sched();
8075                 dl_b = dl_bw_of(cpu);
8076
8077                 raw_spin_lock_irqsave(&dl_b->lock, flags);
8078                 dl_b->bw = new_bw;
8079                 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8080
8081                 rcu_read_unlock_sched();
8082         }
8083 }
8084
8085 static int sched_rt_global_validate(void)
8086 {
8087         if (sysctl_sched_rt_period <= 0)
8088                 return -EINVAL;
8089
8090         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8091                 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8092                 return -EINVAL;
8093
8094         return 0;
8095 }
8096
8097 static void sched_rt_do_global(void)
8098 {
8099         def_rt_bandwidth.rt_runtime = global_rt_runtime();
8100         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8101 }
8102
8103 int sched_rt_handler(struct ctl_table *table, int write,
8104                 void __user *buffer, size_t *lenp,
8105                 loff_t *ppos)
8106 {
8107         int old_period, old_runtime;
8108         static DEFINE_MUTEX(mutex);
8109         int ret;
8110
8111         mutex_lock(&mutex);
8112         old_period = sysctl_sched_rt_period;
8113         old_runtime = sysctl_sched_rt_runtime;
8114
8115         ret = proc_dointvec(table, write, buffer, lenp, ppos);
8116
8117         if (!ret && write) {
8118                 ret = sched_rt_global_validate();
8119                 if (ret)
8120                         goto undo;
8121
8122                 ret = sched_dl_global_validate();
8123                 if (ret)
8124                         goto undo;
8125
8126                 ret = sched_rt_global_constraints();
8127                 if (ret)
8128                         goto undo;
8129
8130                 sched_rt_do_global();
8131                 sched_dl_do_global();
8132         }
8133         if (0) {
8134 undo:
8135                 sysctl_sched_rt_period = old_period;
8136                 sysctl_sched_rt_runtime = old_runtime;
8137         }
8138         mutex_unlock(&mutex);
8139
8140         return ret;
8141 }
8142
8143 int sched_rr_handler(struct ctl_table *table, int write,
8144                 void __user *buffer, size_t *lenp,
8145                 loff_t *ppos)
8146 {
8147         int ret;
8148         static DEFINE_MUTEX(mutex);
8149
8150         mutex_lock(&mutex);
8151         ret = proc_dointvec(table, write, buffer, lenp, ppos);
8152         /* make sure that internally we keep jiffies */
8153         /* also, writing zero resets timeslice to default */
8154         if (!ret && write) {
8155                 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8156                         RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8157         }
8158         mutex_unlock(&mutex);
8159         return ret;
8160 }
8161
8162 #ifdef CONFIG_CGROUP_SCHED
8163
8164 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8165 {
8166         return css ? container_of(css, struct task_group, css) : NULL;
8167 }
8168
8169 static struct cgroup_subsys_state *
8170 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8171 {
8172         struct task_group *parent = css_tg(parent_css);
8173         struct task_group *tg;
8174
8175         if (!parent) {
8176                 /* This is early initialization for the top cgroup */
8177                 return &root_task_group.css;
8178         }
8179
8180         tg = sched_create_group(parent);
8181         if (IS_ERR(tg))
8182                 return ERR_PTR(-ENOMEM);
8183
8184         sched_online_group(tg, parent);
8185
8186         return &tg->css;
8187 }
8188
8189 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8190 {
8191         struct task_group *tg = css_tg(css);
8192
8193         sched_offline_group(tg);
8194 }
8195
8196 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8197 {
8198         struct task_group *tg = css_tg(css);
8199
8200         /*
8201          * Relies on the RCU grace period between css_released() and this.
8202          */
8203         sched_free_group(tg);
8204 }
8205
8206 static void cpu_cgroup_fork(struct task_struct *task)
8207 {
8208         sched_move_task(task);
8209 }
8210
8211 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8212 {
8213         struct task_struct *task;
8214         struct cgroup_subsys_state *css;
8215
8216         cgroup_taskset_for_each(task, css, tset) {
8217 #ifdef CONFIG_RT_GROUP_SCHED
8218                 if (!sched_rt_can_attach(css_tg(css), task))
8219                         return -EINVAL;
8220 #else
8221                 /* We don't support RT-tasks being in separate groups */
8222                 if (task->sched_class != &fair_sched_class)
8223                         return -EINVAL;
8224 #endif
8225         }
8226         return 0;
8227 }
8228
8229 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8230 {
8231         struct task_struct *task;
8232         struct cgroup_subsys_state *css;
8233
8234         cgroup_taskset_for_each(task, css, tset)
8235                 sched_move_task(task);
8236 }
8237
8238 #ifdef CONFIG_FAIR_GROUP_SCHED
8239 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8240                                 struct cftype *cftype, u64 shareval)
8241 {
8242         return sched_group_set_shares(css_tg(css), scale_load(shareval));
8243 }
8244
8245 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8246                                struct cftype *cft)
8247 {
8248         struct task_group *tg = css_tg(css);
8249
8250         return (u64) scale_load_down(tg->shares);
8251 }
8252
8253 #ifdef CONFIG_CFS_BANDWIDTH
8254 static DEFINE_MUTEX(cfs_constraints_mutex);
8255
8256 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8257 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8258
8259 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8260
8261 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8262 {
8263         int i, ret = 0, runtime_enabled, runtime_was_enabled;
8264         struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8265
8266         if (tg == &root_task_group)
8267                 return -EINVAL;
8268
8269         /*
8270          * Ensure we have at some amount of bandwidth every period.  This is
8271          * to prevent reaching a state of large arrears when throttled via
8272          * entity_tick() resulting in prolonged exit starvation.
8273          */
8274         if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8275                 return -EINVAL;
8276
8277         /*
8278          * Likewise, bound things on the otherside by preventing insane quota
8279          * periods.  This also allows us to normalize in computing quota
8280          * feasibility.
8281          */
8282         if (period > max_cfs_quota_period)
8283                 return -EINVAL;
8284
8285         /*
8286          * Prevent race between setting of cfs_rq->runtime_enabled and
8287          * unthrottle_offline_cfs_rqs().
8288          */
8289         get_online_cpus();
8290         mutex_lock(&cfs_constraints_mutex);
8291         ret = __cfs_schedulable(tg, period, quota);
8292         if (ret)
8293                 goto out_unlock;
8294
8295         runtime_enabled = quota != RUNTIME_INF;
8296         runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8297         /*
8298          * If we need to toggle cfs_bandwidth_used, off->on must occur
8299          * before making related changes, and on->off must occur afterwards
8300          */
8301         if (runtime_enabled && !runtime_was_enabled)
8302                 cfs_bandwidth_usage_inc();
8303         raw_spin_lock_irq(&cfs_b->lock);
8304         cfs_b->period = ns_to_ktime(period);
8305         cfs_b->quota = quota;
8306
8307         __refill_cfs_bandwidth_runtime(cfs_b);
8308         /* restart the period timer (if active) to handle new period expiry */
8309         if (runtime_enabled)
8310                 start_cfs_bandwidth(cfs_b);
8311         raw_spin_unlock_irq(&cfs_b->lock);
8312
8313         for_each_online_cpu(i) {
8314                 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8315                 struct rq *rq = cfs_rq->rq;
8316
8317                 raw_spin_lock_irq(&rq->lock);
8318                 cfs_rq->runtime_enabled = runtime_enabled;
8319                 cfs_rq->runtime_remaining = 0;
8320
8321                 if (cfs_rq->throttled)
8322                         unthrottle_cfs_rq(cfs_rq);
8323                 raw_spin_unlock_irq(&rq->lock);
8324         }
8325         if (runtime_was_enabled && !runtime_enabled)
8326                 cfs_bandwidth_usage_dec();
8327 out_unlock:
8328         mutex_unlock(&cfs_constraints_mutex);
8329         put_online_cpus();
8330
8331         return ret;
8332 }
8333
8334 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8335 {
8336         u64 quota, period;
8337
8338         period = ktime_to_ns(tg->cfs_bandwidth.period);
8339         if (cfs_quota_us < 0)
8340                 quota = RUNTIME_INF;
8341         else
8342                 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8343
8344         return tg_set_cfs_bandwidth(tg, period, quota);
8345 }
8346
8347 long tg_get_cfs_quota(struct task_group *tg)
8348 {
8349         u64 quota_us;
8350
8351         if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8352                 return -1;
8353
8354         quota_us = tg->cfs_bandwidth.quota;
8355         do_div(quota_us, NSEC_PER_USEC);
8356
8357         return quota_us;
8358 }
8359
8360 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8361 {
8362         u64 quota, period;
8363
8364         period = (u64)cfs_period_us * NSEC_PER_USEC;
8365         quota = tg->cfs_bandwidth.quota;
8366
8367         return tg_set_cfs_bandwidth(tg, period, quota);
8368 }
8369
8370 long tg_get_cfs_period(struct task_group *tg)
8371 {
8372         u64 cfs_period_us;
8373
8374         cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8375         do_div(cfs_period_us, NSEC_PER_USEC);
8376
8377         return cfs_period_us;
8378 }
8379
8380 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8381                                   struct cftype *cft)
8382 {
8383         return tg_get_cfs_quota(css_tg(css));
8384 }
8385
8386 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8387                                    struct cftype *cftype, s64 cfs_quota_us)
8388 {
8389         return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8390 }
8391
8392 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8393                                    struct cftype *cft)
8394 {
8395         return tg_get_cfs_period(css_tg(css));
8396 }
8397
8398 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8399                                     struct cftype *cftype, u64 cfs_period_us)
8400 {
8401         return tg_set_cfs_period(css_tg(css), cfs_period_us);
8402 }
8403
8404 struct cfs_schedulable_data {
8405         struct task_group *tg;
8406         u64 period, quota;
8407 };
8408
8409 /*
8410  * normalize group quota/period to be quota/max_period
8411  * note: units are usecs
8412  */
8413 static u64 normalize_cfs_quota(struct task_group *tg,
8414                                struct cfs_schedulable_data *d)
8415 {
8416         u64 quota, period;
8417
8418         if (tg == d->tg) {
8419                 period = d->period;
8420                 quota = d->quota;
8421         } else {
8422                 period = tg_get_cfs_period(tg);
8423                 quota = tg_get_cfs_quota(tg);
8424         }
8425
8426         /* note: these should typically be equivalent */
8427         if (quota == RUNTIME_INF || quota == -1)
8428                 return RUNTIME_INF;
8429
8430         return to_ratio(period, quota);
8431 }
8432
8433 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8434 {
8435         struct cfs_schedulable_data *d = data;
8436         struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8437         s64 quota = 0, parent_quota = -1;
8438
8439         if (!tg->parent) {
8440                 quota = RUNTIME_INF;
8441         } else {
8442                 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8443
8444                 quota = normalize_cfs_quota(tg, d);
8445                 parent_quota = parent_b->hierarchical_quota;
8446
8447                 /*
8448                  * ensure max(child_quota) <= parent_quota, inherit when no
8449                  * limit is set
8450                  */
8451                 if (quota == RUNTIME_INF)
8452                         quota = parent_quota;
8453                 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8454                         return -EINVAL;
8455         }
8456         cfs_b->hierarchical_quota = quota;
8457
8458         return 0;
8459 }
8460
8461 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8462 {
8463         int ret;
8464         struct cfs_schedulable_data data = {
8465                 .tg = tg,
8466                 .period = period,
8467                 .quota = quota,
8468         };
8469
8470         if (quota != RUNTIME_INF) {
8471                 do_div(data.period, NSEC_PER_USEC);
8472                 do_div(data.quota, NSEC_PER_USEC);
8473         }
8474
8475         rcu_read_lock();
8476         ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8477         rcu_read_unlock();
8478
8479         return ret;
8480 }
8481
8482 static int cpu_stats_show(struct seq_file *sf, void *v)
8483 {
8484         struct task_group *tg = css_tg(seq_css(sf));
8485         struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8486
8487         seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8488         seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8489         seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8490
8491         return 0;
8492 }
8493 #endif /* CONFIG_CFS_BANDWIDTH */
8494 #endif /* CONFIG_FAIR_GROUP_SCHED */
8495
8496 #ifdef CONFIG_RT_GROUP_SCHED
8497 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8498                                 struct cftype *cft, s64 val)
8499 {
8500         return sched_group_set_rt_runtime(css_tg(css), val);
8501 }
8502
8503 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8504                                struct cftype *cft)
8505 {
8506         return sched_group_rt_runtime(css_tg(css));
8507 }
8508
8509 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8510                                     struct cftype *cftype, u64 rt_period_us)
8511 {
8512         return sched_group_set_rt_period(css_tg(css), rt_period_us);
8513 }
8514
8515 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8516                                    struct cftype *cft)
8517 {
8518         return sched_group_rt_period(css_tg(css));
8519 }
8520 #endif /* CONFIG_RT_GROUP_SCHED */
8521
8522 static struct cftype cpu_files[] = {
8523 #ifdef CONFIG_FAIR_GROUP_SCHED
8524         {
8525                 .name = "shares",
8526                 .read_u64 = cpu_shares_read_u64,
8527                 .write_u64 = cpu_shares_write_u64,
8528         },
8529 #endif
8530 #ifdef CONFIG_CFS_BANDWIDTH
8531         {
8532                 .name = "cfs_quota_us",
8533                 .read_s64 = cpu_cfs_quota_read_s64,
8534                 .write_s64 = cpu_cfs_quota_write_s64,
8535         },
8536         {
8537                 .name = "cfs_period_us",
8538                 .read_u64 = cpu_cfs_period_read_u64,
8539                 .write_u64 = cpu_cfs_period_write_u64,
8540         },
8541         {
8542                 .name = "stat",
8543                 .seq_show = cpu_stats_show,
8544         },
8545 #endif
8546 #ifdef CONFIG_RT_GROUP_SCHED
8547         {
8548                 .name = "rt_runtime_us",
8549                 .read_s64 = cpu_rt_runtime_read,
8550                 .write_s64 = cpu_rt_runtime_write,
8551         },
8552         {
8553                 .name = "rt_period_us",
8554                 .read_u64 = cpu_rt_period_read_uint,
8555                 .write_u64 = cpu_rt_period_write_uint,
8556         },
8557 #endif
8558         { }     /* terminate */
8559 };
8560
8561 struct cgroup_subsys cpu_cgrp_subsys = {
8562         .css_alloc      = cpu_cgroup_css_alloc,
8563         .css_released   = cpu_cgroup_css_released,
8564         .css_free       = cpu_cgroup_css_free,
8565         .fork           = cpu_cgroup_fork,
8566         .can_attach     = cpu_cgroup_can_attach,
8567         .attach         = cpu_cgroup_attach,
8568         .legacy_cftypes = cpu_files,
8569         .early_init     = true,
8570 };
8571
8572 #endif  /* CONFIG_CGROUP_SCHED */
8573
8574 void dump_cpu_task(int cpu)
8575 {
8576         pr_info("Task dump for CPU %d:\n", cpu);
8577         sched_show_task(cpu_curr(cpu));
8578 }
8579
8580 /*
8581  * Nice levels are multiplicative, with a gentle 10% change for every
8582  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8583  * nice 1, it will get ~10% less CPU time than another CPU-bound task
8584  * that remained on nice 0.
8585  *
8586  * The "10% effect" is relative and cumulative: from _any_ nice level,
8587  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8588  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8589  * If a task goes up by ~10% and another task goes down by ~10% then
8590  * the relative distance between them is ~25%.)
8591  */
8592 const int sched_prio_to_weight[40] = {
8593  /* -20 */     88761,     71755,     56483,     46273,     36291,
8594  /* -15 */     29154,     23254,     18705,     14949,     11916,
8595  /* -10 */      9548,      7620,      6100,      4904,      3906,
8596  /*  -5 */      3121,      2501,      1991,      1586,      1277,
8597  /*   0 */      1024,       820,       655,       526,       423,
8598  /*   5 */       335,       272,       215,       172,       137,
8599  /*  10 */       110,        87,        70,        56,        45,
8600  /*  15 */        36,        29,        23,        18,        15,
8601 };
8602
8603 /*
8604  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8605  *
8606  * In cases where the weight does not change often, we can use the
8607  * precalculated inverse to speed up arithmetics by turning divisions
8608  * into multiplications:
8609  */
8610 const u32 sched_prio_to_wmult[40] = {
8611  /* -20 */     48388,     59856,     76040,     92818,    118348,
8612  /* -15 */    147320,    184698,    229616,    287308,    360437,
8613  /* -10 */    449829,    563644,    704093,    875809,   1099582,
8614  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8615  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8616  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8617  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8618  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8619 };