Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[cascardo/linux.git] / kernel / sched / core.c
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 {
95         unsigned long delta;
96         ktime_t soft, hard, now;
97
98         for (;;) {
99                 if (hrtimer_active(period_timer))
100                         break;
101
102                 now = hrtimer_cb_get_time(period_timer);
103                 hrtimer_forward(period_timer, now, period);
104
105                 soft = hrtimer_get_softexpires(period_timer);
106                 hard = hrtimer_get_expires(period_timer);
107                 delta = ktime_to_ns(ktime_sub(hard, soft));
108                 __hrtimer_start_range_ns(period_timer, soft, delta,
109                                          HRTIMER_MODE_ABS_PINNED, 0);
110         }
111 }
112
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117
118 void update_rq_clock(struct rq *rq)
119 {
120         s64 delta;
121
122         lockdep_assert_held(&rq->lock);
123
124         if (rq->clock_skip_update & RQCF_ACT_SKIP)
125                 return;
126
127         delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
128         if (delta < 0)
129                 return;
130         rq->clock += delta;
131         update_rq_clock_task(rq, delta);
132 }
133
134 /*
135  * Debugging: various feature bits
136  */
137
138 #define SCHED_FEAT(name, enabled)       \
139         (1UL << __SCHED_FEAT_##name) * enabled |
140
141 const_debug unsigned int sysctl_sched_features =
142 #include "features.h"
143         0;
144
145 #undef SCHED_FEAT
146
147 #ifdef CONFIG_SCHED_DEBUG
148 #define SCHED_FEAT(name, enabled)       \
149         #name ,
150
151 static const char * const sched_feat_names[] = {
152 #include "features.h"
153 };
154
155 #undef SCHED_FEAT
156
157 static int sched_feat_show(struct seq_file *m, void *v)
158 {
159         int i;
160
161         for (i = 0; i < __SCHED_FEAT_NR; i++) {
162                 if (!(sysctl_sched_features & (1UL << i)))
163                         seq_puts(m, "NO_");
164                 seq_printf(m, "%s ", sched_feat_names[i]);
165         }
166         seq_puts(m, "\n");
167
168         return 0;
169 }
170
171 #ifdef HAVE_JUMP_LABEL
172
173 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
174 #define jump_label_key__false STATIC_KEY_INIT_FALSE
175
176 #define SCHED_FEAT(name, enabled)       \
177         jump_label_key__##enabled ,
178
179 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
180 #include "features.h"
181 };
182
183 #undef SCHED_FEAT
184
185 static void sched_feat_disable(int i)
186 {
187         if (static_key_enabled(&sched_feat_keys[i]))
188                 static_key_slow_dec(&sched_feat_keys[i]);
189 }
190
191 static void sched_feat_enable(int i)
192 {
193         if (!static_key_enabled(&sched_feat_keys[i]))
194                 static_key_slow_inc(&sched_feat_keys[i]);
195 }
196 #else
197 static void sched_feat_disable(int i) { };
198 static void sched_feat_enable(int i) { };
199 #endif /* HAVE_JUMP_LABEL */
200
201 static int sched_feat_set(char *cmp)
202 {
203         int i;
204         int neg = 0;
205
206         if (strncmp(cmp, "NO_", 3) == 0) {
207                 neg = 1;
208                 cmp += 3;
209         }
210
211         for (i = 0; i < __SCHED_FEAT_NR; i++) {
212                 if (strcmp(cmp, sched_feat_names[i]) == 0) {
213                         if (neg) {
214                                 sysctl_sched_features &= ~(1UL << i);
215                                 sched_feat_disable(i);
216                         } else {
217                                 sysctl_sched_features |= (1UL << i);
218                                 sched_feat_enable(i);
219                         }
220                         break;
221                 }
222         }
223
224         return i;
225 }
226
227 static ssize_t
228 sched_feat_write(struct file *filp, const char __user *ubuf,
229                 size_t cnt, loff_t *ppos)
230 {
231         char buf[64];
232         char *cmp;
233         int i;
234         struct inode *inode;
235
236         if (cnt > 63)
237                 cnt = 63;
238
239         if (copy_from_user(&buf, ubuf, cnt))
240                 return -EFAULT;
241
242         buf[cnt] = 0;
243         cmp = strstrip(buf);
244
245         /* Ensure the static_key remains in a consistent state */
246         inode = file_inode(filp);
247         mutex_lock(&inode->i_mutex);
248         i = sched_feat_set(cmp);
249         mutex_unlock(&inode->i_mutex);
250         if (i == __SCHED_FEAT_NR)
251                 return -EINVAL;
252
253         *ppos += cnt;
254
255         return cnt;
256 }
257
258 static int sched_feat_open(struct inode *inode, struct file *filp)
259 {
260         return single_open(filp, sched_feat_show, NULL);
261 }
262
263 static const struct file_operations sched_feat_fops = {
264         .open           = sched_feat_open,
265         .write          = sched_feat_write,
266         .read           = seq_read,
267         .llseek         = seq_lseek,
268         .release        = single_release,
269 };
270
271 static __init int sched_init_debug(void)
272 {
273         debugfs_create_file("sched_features", 0644, NULL, NULL,
274                         &sched_feat_fops);
275
276         return 0;
277 }
278 late_initcall(sched_init_debug);
279 #endif /* CONFIG_SCHED_DEBUG */
280
281 /*
282  * Number of tasks to iterate in a single balance run.
283  * Limited because this is done with IRQs disabled.
284  */
285 const_debug unsigned int sysctl_sched_nr_migrate = 32;
286
287 /*
288  * period over which we average the RT time consumption, measured
289  * in ms.
290  *
291  * default: 1s
292  */
293 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
294
295 /*
296  * period over which we measure -rt task cpu usage in us.
297  * default: 1s
298  */
299 unsigned int sysctl_sched_rt_period = 1000000;
300
301 __read_mostly int scheduler_running;
302
303 /*
304  * part of the period that we allow rt tasks to run in us.
305  * default: 0.95s
306  */
307 int sysctl_sched_rt_runtime = 950000;
308
309 /* cpus with isolated domains */
310 cpumask_var_t cpu_isolated_map;
311
312 /*
313  * this_rq_lock - lock this runqueue and disable interrupts.
314  */
315 static struct rq *this_rq_lock(void)
316         __acquires(rq->lock)
317 {
318         struct rq *rq;
319
320         local_irq_disable();
321         rq = this_rq();
322         raw_spin_lock(&rq->lock);
323
324         return rq;
325 }
326
327 #ifdef CONFIG_SCHED_HRTICK
328 /*
329  * Use HR-timers to deliver accurate preemption points.
330  */
331
332 static void hrtick_clear(struct rq *rq)
333 {
334         if (hrtimer_active(&rq->hrtick_timer))
335                 hrtimer_cancel(&rq->hrtick_timer);
336 }
337
338 /*
339  * High-resolution timer tick.
340  * Runs from hardirq context with interrupts disabled.
341  */
342 static enum hrtimer_restart hrtick(struct hrtimer *timer)
343 {
344         struct rq *rq = container_of(timer, struct rq, hrtick_timer);
345
346         WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
347
348         raw_spin_lock(&rq->lock);
349         update_rq_clock(rq);
350         rq->curr->sched_class->task_tick(rq, rq->curr, 1);
351         raw_spin_unlock(&rq->lock);
352
353         return HRTIMER_NORESTART;
354 }
355
356 #ifdef CONFIG_SMP
357
358 static int __hrtick_restart(struct rq *rq)
359 {
360         struct hrtimer *timer = &rq->hrtick_timer;
361         ktime_t time = hrtimer_get_softexpires(timer);
362
363         return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
364 }
365
366 /*
367  * called from hardirq (IPI) context
368  */
369 static void __hrtick_start(void *arg)
370 {
371         struct rq *rq = arg;
372
373         raw_spin_lock(&rq->lock);
374         __hrtick_restart(rq);
375         rq->hrtick_csd_pending = 0;
376         raw_spin_unlock(&rq->lock);
377 }
378
379 /*
380  * Called to set the hrtick timer state.
381  *
382  * called with rq->lock held and irqs disabled
383  */
384 void hrtick_start(struct rq *rq, u64 delay)
385 {
386         struct hrtimer *timer = &rq->hrtick_timer;
387         ktime_t time;
388         s64 delta;
389
390         /*
391          * Don't schedule slices shorter than 10000ns, that just
392          * doesn't make sense and can cause timer DoS.
393          */
394         delta = max_t(s64, delay, 10000LL);
395         time = ktime_add_ns(timer->base->get_time(), delta);
396
397         hrtimer_set_expires(timer, time);
398
399         if (rq == this_rq()) {
400                 __hrtick_restart(rq);
401         } else if (!rq->hrtick_csd_pending) {
402                 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
403                 rq->hrtick_csd_pending = 1;
404         }
405 }
406
407 static int
408 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
409 {
410         int cpu = (int)(long)hcpu;
411
412         switch (action) {
413         case CPU_UP_CANCELED:
414         case CPU_UP_CANCELED_FROZEN:
415         case CPU_DOWN_PREPARE:
416         case CPU_DOWN_PREPARE_FROZEN:
417         case CPU_DEAD:
418         case CPU_DEAD_FROZEN:
419                 hrtick_clear(cpu_rq(cpu));
420                 return NOTIFY_OK;
421         }
422
423         return NOTIFY_DONE;
424 }
425
426 static __init void init_hrtick(void)
427 {
428         hotcpu_notifier(hotplug_hrtick, 0);
429 }
430 #else
431 /*
432  * Called to set the hrtick timer state.
433  *
434  * called with rq->lock held and irqs disabled
435  */
436 void hrtick_start(struct rq *rq, u64 delay)
437 {
438         /*
439          * Don't schedule slices shorter than 10000ns, that just
440          * doesn't make sense. Rely on vruntime for fairness.
441          */
442         delay = max_t(u64, delay, 10000LL);
443         __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
444                         HRTIMER_MODE_REL_PINNED, 0);
445 }
446
447 static inline void init_hrtick(void)
448 {
449 }
450 #endif /* CONFIG_SMP */
451
452 static void init_rq_hrtick(struct rq *rq)
453 {
454 #ifdef CONFIG_SMP
455         rq->hrtick_csd_pending = 0;
456
457         rq->hrtick_csd.flags = 0;
458         rq->hrtick_csd.func = __hrtick_start;
459         rq->hrtick_csd.info = rq;
460 #endif
461
462         hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
463         rq->hrtick_timer.function = hrtick;
464 }
465 #else   /* CONFIG_SCHED_HRTICK */
466 static inline void hrtick_clear(struct rq *rq)
467 {
468 }
469
470 static inline void init_rq_hrtick(struct rq *rq)
471 {
472 }
473
474 static inline void init_hrtick(void)
475 {
476 }
477 #endif  /* CONFIG_SCHED_HRTICK */
478
479 /*
480  * cmpxchg based fetch_or, macro so it works for different integer types
481  */
482 #define fetch_or(ptr, val)                                              \
483 ({      typeof(*(ptr)) __old, __val = *(ptr);                           \
484         for (;;) {                                                      \
485                 __old = cmpxchg((ptr), __val, __val | (val));           \
486                 if (__old == __val)                                     \
487                         break;                                          \
488                 __val = __old;                                          \
489         }                                                               \
490         __old;                                                          \
491 })
492
493 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
494 /*
495  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
496  * this avoids any races wrt polling state changes and thereby avoids
497  * spurious IPIs.
498  */
499 static bool set_nr_and_not_polling(struct task_struct *p)
500 {
501         struct thread_info *ti = task_thread_info(p);
502         return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
503 }
504
505 /*
506  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
507  *
508  * If this returns true, then the idle task promises to call
509  * sched_ttwu_pending() and reschedule soon.
510  */
511 static bool set_nr_if_polling(struct task_struct *p)
512 {
513         struct thread_info *ti = task_thread_info(p);
514         typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
515
516         for (;;) {
517                 if (!(val & _TIF_POLLING_NRFLAG))
518                         return false;
519                 if (val & _TIF_NEED_RESCHED)
520                         return true;
521                 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
522                 if (old == val)
523                         break;
524                 val = old;
525         }
526         return true;
527 }
528
529 #else
530 static bool set_nr_and_not_polling(struct task_struct *p)
531 {
532         set_tsk_need_resched(p);
533         return true;
534 }
535
536 #ifdef CONFIG_SMP
537 static bool set_nr_if_polling(struct task_struct *p)
538 {
539         return false;
540 }
541 #endif
542 #endif
543
544 /*
545  * resched_curr - mark rq's current task 'to be rescheduled now'.
546  *
547  * On UP this means the setting of the need_resched flag, on SMP it
548  * might also involve a cross-CPU call to trigger the scheduler on
549  * the target CPU.
550  */
551 void resched_curr(struct rq *rq)
552 {
553         struct task_struct *curr = rq->curr;
554         int cpu;
555
556         lockdep_assert_held(&rq->lock);
557
558         if (test_tsk_need_resched(curr))
559                 return;
560
561         cpu = cpu_of(rq);
562
563         if (cpu == smp_processor_id()) {
564                 set_tsk_need_resched(curr);
565                 set_preempt_need_resched();
566                 return;
567         }
568
569         if (set_nr_and_not_polling(curr))
570                 smp_send_reschedule(cpu);
571         else
572                 trace_sched_wake_idle_without_ipi(cpu);
573 }
574
575 void resched_cpu(int cpu)
576 {
577         struct rq *rq = cpu_rq(cpu);
578         unsigned long flags;
579
580         if (!raw_spin_trylock_irqsave(&rq->lock, flags))
581                 return;
582         resched_curr(rq);
583         raw_spin_unlock_irqrestore(&rq->lock, flags);
584 }
585
586 #ifdef CONFIG_SMP
587 #ifdef CONFIG_NO_HZ_COMMON
588 /*
589  * In the semi idle case, use the nearest busy cpu for migrating timers
590  * from an idle cpu.  This is good for power-savings.
591  *
592  * We don't do similar optimization for completely idle system, as
593  * selecting an idle cpu will add more delays to the timers than intended
594  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
595  */
596 int get_nohz_timer_target(int pinned)
597 {
598         int cpu = smp_processor_id();
599         int i;
600         struct sched_domain *sd;
601
602         if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
603                 return cpu;
604
605         rcu_read_lock();
606         for_each_domain(cpu, sd) {
607                 for_each_cpu(i, sched_domain_span(sd)) {
608                         if (!idle_cpu(i)) {
609                                 cpu = i;
610                                 goto unlock;
611                         }
612                 }
613         }
614 unlock:
615         rcu_read_unlock();
616         return cpu;
617 }
618 /*
619  * When add_timer_on() enqueues a timer into the timer wheel of an
620  * idle CPU then this timer might expire before the next timer event
621  * which is scheduled to wake up that CPU. In case of a completely
622  * idle system the next event might even be infinite time into the
623  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
624  * leaves the inner idle loop so the newly added timer is taken into
625  * account when the CPU goes back to idle and evaluates the timer
626  * wheel for the next timer event.
627  */
628 static void wake_up_idle_cpu(int cpu)
629 {
630         struct rq *rq = cpu_rq(cpu);
631
632         if (cpu == smp_processor_id())
633                 return;
634
635         if (set_nr_and_not_polling(rq->idle))
636                 smp_send_reschedule(cpu);
637         else
638                 trace_sched_wake_idle_without_ipi(cpu);
639 }
640
641 static bool wake_up_full_nohz_cpu(int cpu)
642 {
643         /*
644          * We just need the target to call irq_exit() and re-evaluate
645          * the next tick. The nohz full kick at least implies that.
646          * If needed we can still optimize that later with an
647          * empty IRQ.
648          */
649         if (tick_nohz_full_cpu(cpu)) {
650                 if (cpu != smp_processor_id() ||
651                     tick_nohz_tick_stopped())
652                         tick_nohz_full_kick_cpu(cpu);
653                 return true;
654         }
655
656         return false;
657 }
658
659 void wake_up_nohz_cpu(int cpu)
660 {
661         if (!wake_up_full_nohz_cpu(cpu))
662                 wake_up_idle_cpu(cpu);
663 }
664
665 static inline bool got_nohz_idle_kick(void)
666 {
667         int cpu = smp_processor_id();
668
669         if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
670                 return false;
671
672         if (idle_cpu(cpu) && !need_resched())
673                 return true;
674
675         /*
676          * We can't run Idle Load Balance on this CPU for this time so we
677          * cancel it and clear NOHZ_BALANCE_KICK
678          */
679         clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
680         return false;
681 }
682
683 #else /* CONFIG_NO_HZ_COMMON */
684
685 static inline bool got_nohz_idle_kick(void)
686 {
687         return false;
688 }
689
690 #endif /* CONFIG_NO_HZ_COMMON */
691
692 #ifdef CONFIG_NO_HZ_FULL
693 bool sched_can_stop_tick(void)
694 {
695         /*
696          * FIFO realtime policy runs the highest priority task. Other runnable
697          * tasks are of a lower priority. The scheduler tick does nothing.
698          */
699         if (current->policy == SCHED_FIFO)
700                 return true;
701
702         /*
703          * Round-robin realtime tasks time slice with other tasks at the same
704          * realtime priority. Is this task the only one at this priority?
705          */
706         if (current->policy == SCHED_RR) {
707                 struct sched_rt_entity *rt_se = &current->rt;
708
709                 return rt_se->run_list.prev == rt_se->run_list.next;
710         }
711
712         /*
713          * More than one running task need preemption.
714          * nr_running update is assumed to be visible
715          * after IPI is sent from wakers.
716          */
717         if (this_rq()->nr_running > 1)
718                 return false;
719
720         return true;
721 }
722 #endif /* CONFIG_NO_HZ_FULL */
723
724 void sched_avg_update(struct rq *rq)
725 {
726         s64 period = sched_avg_period();
727
728         while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
729                 /*
730                  * Inline assembly required to prevent the compiler
731                  * optimising this loop into a divmod call.
732                  * See __iter_div_u64_rem() for another example of this.
733                  */
734                 asm("" : "+rm" (rq->age_stamp));
735                 rq->age_stamp += period;
736                 rq->rt_avg /= 2;
737         }
738 }
739
740 #endif /* CONFIG_SMP */
741
742 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
743                         (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
744 /*
745  * Iterate task_group tree rooted at *from, calling @down when first entering a
746  * node and @up when leaving it for the final time.
747  *
748  * Caller must hold rcu_lock or sufficient equivalent.
749  */
750 int walk_tg_tree_from(struct task_group *from,
751                              tg_visitor down, tg_visitor up, void *data)
752 {
753         struct task_group *parent, *child;
754         int ret;
755
756         parent = from;
757
758 down:
759         ret = (*down)(parent, data);
760         if (ret)
761                 goto out;
762         list_for_each_entry_rcu(child, &parent->children, siblings) {
763                 parent = child;
764                 goto down;
765
766 up:
767                 continue;
768         }
769         ret = (*up)(parent, data);
770         if (ret || parent == from)
771                 goto out;
772
773         child = parent;
774         parent = parent->parent;
775         if (parent)
776                 goto up;
777 out:
778         return ret;
779 }
780
781 int tg_nop(struct task_group *tg, void *data)
782 {
783         return 0;
784 }
785 #endif
786
787 static void set_load_weight(struct task_struct *p)
788 {
789         int prio = p->static_prio - MAX_RT_PRIO;
790         struct load_weight *load = &p->se.load;
791
792         /*
793          * SCHED_IDLE tasks get minimal weight:
794          */
795         if (p->policy == SCHED_IDLE) {
796                 load->weight = scale_load(WEIGHT_IDLEPRIO);
797                 load->inv_weight = WMULT_IDLEPRIO;
798                 return;
799         }
800
801         load->weight = scale_load(prio_to_weight[prio]);
802         load->inv_weight = prio_to_wmult[prio];
803 }
804
805 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
806 {
807         update_rq_clock(rq);
808         sched_info_queued(rq, p);
809         p->sched_class->enqueue_task(rq, p, flags);
810 }
811
812 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
813 {
814         update_rq_clock(rq);
815         sched_info_dequeued(rq, p);
816         p->sched_class->dequeue_task(rq, p, flags);
817 }
818
819 void activate_task(struct rq *rq, struct task_struct *p, int flags)
820 {
821         if (task_contributes_to_load(p))
822                 rq->nr_uninterruptible--;
823
824         enqueue_task(rq, p, flags);
825 }
826
827 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
828 {
829         if (task_contributes_to_load(p))
830                 rq->nr_uninterruptible++;
831
832         dequeue_task(rq, p, flags);
833 }
834
835 static void update_rq_clock_task(struct rq *rq, s64 delta)
836 {
837 /*
838  * In theory, the compile should just see 0 here, and optimize out the call
839  * to sched_rt_avg_update. But I don't trust it...
840  */
841 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
842         s64 steal = 0, irq_delta = 0;
843 #endif
844 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
845         irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
846
847         /*
848          * Since irq_time is only updated on {soft,}irq_exit, we might run into
849          * this case when a previous update_rq_clock() happened inside a
850          * {soft,}irq region.
851          *
852          * When this happens, we stop ->clock_task and only update the
853          * prev_irq_time stamp to account for the part that fit, so that a next
854          * update will consume the rest. This ensures ->clock_task is
855          * monotonic.
856          *
857          * It does however cause some slight miss-attribution of {soft,}irq
858          * time, a more accurate solution would be to update the irq_time using
859          * the current rq->clock timestamp, except that would require using
860          * atomic ops.
861          */
862         if (irq_delta > delta)
863                 irq_delta = delta;
864
865         rq->prev_irq_time += irq_delta;
866         delta -= irq_delta;
867 #endif
868 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
869         if (static_key_false((&paravirt_steal_rq_enabled))) {
870                 steal = paravirt_steal_clock(cpu_of(rq));
871                 steal -= rq->prev_steal_time_rq;
872
873                 if (unlikely(steal > delta))
874                         steal = delta;
875
876                 rq->prev_steal_time_rq += steal;
877                 delta -= steal;
878         }
879 #endif
880
881         rq->clock_task += delta;
882
883 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
884         if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
885                 sched_rt_avg_update(rq, irq_delta + steal);
886 #endif
887 }
888
889 void sched_set_stop_task(int cpu, struct task_struct *stop)
890 {
891         struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
892         struct task_struct *old_stop = cpu_rq(cpu)->stop;
893
894         if (stop) {
895                 /*
896                  * Make it appear like a SCHED_FIFO task, its something
897                  * userspace knows about and won't get confused about.
898                  *
899                  * Also, it will make PI more or less work without too
900                  * much confusion -- but then, stop work should not
901                  * rely on PI working anyway.
902                  */
903                 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
904
905                 stop->sched_class = &stop_sched_class;
906         }
907
908         cpu_rq(cpu)->stop = stop;
909
910         if (old_stop) {
911                 /*
912                  * Reset it back to a normal scheduling class so that
913                  * it can die in pieces.
914                  */
915                 old_stop->sched_class = &rt_sched_class;
916         }
917 }
918
919 /*
920  * __normal_prio - return the priority that is based on the static prio
921  */
922 static inline int __normal_prio(struct task_struct *p)
923 {
924         return p->static_prio;
925 }
926
927 /*
928  * Calculate the expected normal priority: i.e. priority
929  * without taking RT-inheritance into account. Might be
930  * boosted by interactivity modifiers. Changes upon fork,
931  * setprio syscalls, and whenever the interactivity
932  * estimator recalculates.
933  */
934 static inline int normal_prio(struct task_struct *p)
935 {
936         int prio;
937
938         if (task_has_dl_policy(p))
939                 prio = MAX_DL_PRIO-1;
940         else if (task_has_rt_policy(p))
941                 prio = MAX_RT_PRIO-1 - p->rt_priority;
942         else
943                 prio = __normal_prio(p);
944         return prio;
945 }
946
947 /*
948  * Calculate the current priority, i.e. the priority
949  * taken into account by the scheduler. This value might
950  * be boosted by RT tasks, or might be boosted by
951  * interactivity modifiers. Will be RT if the task got
952  * RT-boosted. If not then it returns p->normal_prio.
953  */
954 static int effective_prio(struct task_struct *p)
955 {
956         p->normal_prio = normal_prio(p);
957         /*
958          * If we are RT tasks or we were boosted to RT priority,
959          * keep the priority unchanged. Otherwise, update priority
960          * to the normal priority:
961          */
962         if (!rt_prio(p->prio))
963                 return p->normal_prio;
964         return p->prio;
965 }
966
967 /**
968  * task_curr - is this task currently executing on a CPU?
969  * @p: the task in question.
970  *
971  * Return: 1 if the task is currently executing. 0 otherwise.
972  */
973 inline int task_curr(const struct task_struct *p)
974 {
975         return cpu_curr(task_cpu(p)) == p;
976 }
977
978 /*
979  * Can drop rq->lock because from sched_class::switched_from() methods drop it.
980  */
981 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
982                                        const struct sched_class *prev_class,
983                                        int oldprio)
984 {
985         if (prev_class != p->sched_class) {
986                 if (prev_class->switched_from)
987                         prev_class->switched_from(rq, p);
988                 /* Possble rq->lock 'hole'.  */
989                 p->sched_class->switched_to(rq, p);
990         } else if (oldprio != p->prio || dl_task(p))
991                 p->sched_class->prio_changed(rq, p, oldprio);
992 }
993
994 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
995 {
996         const struct sched_class *class;
997
998         if (p->sched_class == rq->curr->sched_class) {
999                 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1000         } else {
1001                 for_each_class(class) {
1002                         if (class == rq->curr->sched_class)
1003                                 break;
1004                         if (class == p->sched_class) {
1005                                 resched_curr(rq);
1006                                 break;
1007                         }
1008                 }
1009         }
1010
1011         /*
1012          * A queue event has occurred, and we're going to schedule.  In
1013          * this case, we can save a useless back to back clock update.
1014          */
1015         if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1016                 rq_clock_skip_update(rq, true);
1017 }
1018
1019 #ifdef CONFIG_SMP
1020 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1021 {
1022 #ifdef CONFIG_SCHED_DEBUG
1023         /*
1024          * We should never call set_task_cpu() on a blocked task,
1025          * ttwu() will sort out the placement.
1026          */
1027         WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1028                         !p->on_rq);
1029
1030 #ifdef CONFIG_LOCKDEP
1031         /*
1032          * The caller should hold either p->pi_lock or rq->lock, when changing
1033          * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1034          *
1035          * sched_move_task() holds both and thus holding either pins the cgroup,
1036          * see task_group().
1037          *
1038          * Furthermore, all task_rq users should acquire both locks, see
1039          * task_rq_lock().
1040          */
1041         WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1042                                       lockdep_is_held(&task_rq(p)->lock)));
1043 #endif
1044 #endif
1045
1046         trace_sched_migrate_task(p, new_cpu);
1047
1048         if (task_cpu(p) != new_cpu) {
1049                 if (p->sched_class->migrate_task_rq)
1050                         p->sched_class->migrate_task_rq(p, new_cpu);
1051                 p->se.nr_migrations++;
1052                 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1053         }
1054
1055         __set_task_cpu(p, new_cpu);
1056 }
1057
1058 static void __migrate_swap_task(struct task_struct *p, int cpu)
1059 {
1060         if (task_on_rq_queued(p)) {
1061                 struct rq *src_rq, *dst_rq;
1062
1063                 src_rq = task_rq(p);
1064                 dst_rq = cpu_rq(cpu);
1065
1066                 deactivate_task(src_rq, p, 0);
1067                 set_task_cpu(p, cpu);
1068                 activate_task(dst_rq, p, 0);
1069                 check_preempt_curr(dst_rq, p, 0);
1070         } else {
1071                 /*
1072                  * Task isn't running anymore; make it appear like we migrated
1073                  * it before it went to sleep. This means on wakeup we make the
1074                  * previous cpu our targer instead of where it really is.
1075                  */
1076                 p->wake_cpu = cpu;
1077         }
1078 }
1079
1080 struct migration_swap_arg {
1081         struct task_struct *src_task, *dst_task;
1082         int src_cpu, dst_cpu;
1083 };
1084
1085 static int migrate_swap_stop(void *data)
1086 {
1087         struct migration_swap_arg *arg = data;
1088         struct rq *src_rq, *dst_rq;
1089         int ret = -EAGAIN;
1090
1091         src_rq = cpu_rq(arg->src_cpu);
1092         dst_rq = cpu_rq(arg->dst_cpu);
1093
1094         double_raw_lock(&arg->src_task->pi_lock,
1095                         &arg->dst_task->pi_lock);
1096         double_rq_lock(src_rq, dst_rq);
1097         if (task_cpu(arg->dst_task) != arg->dst_cpu)
1098                 goto unlock;
1099
1100         if (task_cpu(arg->src_task) != arg->src_cpu)
1101                 goto unlock;
1102
1103         if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1104                 goto unlock;
1105
1106         if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1107                 goto unlock;
1108
1109         __migrate_swap_task(arg->src_task, arg->dst_cpu);
1110         __migrate_swap_task(arg->dst_task, arg->src_cpu);
1111
1112         ret = 0;
1113
1114 unlock:
1115         double_rq_unlock(src_rq, dst_rq);
1116         raw_spin_unlock(&arg->dst_task->pi_lock);
1117         raw_spin_unlock(&arg->src_task->pi_lock);
1118
1119         return ret;
1120 }
1121
1122 /*
1123  * Cross migrate two tasks
1124  */
1125 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1126 {
1127         struct migration_swap_arg arg;
1128         int ret = -EINVAL;
1129
1130         arg = (struct migration_swap_arg){
1131                 .src_task = cur,
1132                 .src_cpu = task_cpu(cur),
1133                 .dst_task = p,
1134                 .dst_cpu = task_cpu(p),
1135         };
1136
1137         if (arg.src_cpu == arg.dst_cpu)
1138                 goto out;
1139
1140         /*
1141          * These three tests are all lockless; this is OK since all of them
1142          * will be re-checked with proper locks held further down the line.
1143          */
1144         if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1145                 goto out;
1146
1147         if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1148                 goto out;
1149
1150         if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1151                 goto out;
1152
1153         trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1154         ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1155
1156 out:
1157         return ret;
1158 }
1159
1160 struct migration_arg {
1161         struct task_struct *task;
1162         int dest_cpu;
1163 };
1164
1165 static int migration_cpu_stop(void *data);
1166
1167 /*
1168  * wait_task_inactive - wait for a thread to unschedule.
1169  *
1170  * If @match_state is nonzero, it's the @p->state value just checked and
1171  * not expected to change.  If it changes, i.e. @p might have woken up,
1172  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1173  * we return a positive number (its total switch count).  If a second call
1174  * a short while later returns the same number, the caller can be sure that
1175  * @p has remained unscheduled the whole time.
1176  *
1177  * The caller must ensure that the task *will* unschedule sometime soon,
1178  * else this function might spin for a *long* time. This function can't
1179  * be called with interrupts off, or it may introduce deadlock with
1180  * smp_call_function() if an IPI is sent by the same process we are
1181  * waiting to become inactive.
1182  */
1183 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1184 {
1185         unsigned long flags;
1186         int running, queued;
1187         unsigned long ncsw;
1188         struct rq *rq;
1189
1190         for (;;) {
1191                 /*
1192                  * We do the initial early heuristics without holding
1193                  * any task-queue locks at all. We'll only try to get
1194                  * the runqueue lock when things look like they will
1195                  * work out!
1196                  */
1197                 rq = task_rq(p);
1198
1199                 /*
1200                  * If the task is actively running on another CPU
1201                  * still, just relax and busy-wait without holding
1202                  * any locks.
1203                  *
1204                  * NOTE! Since we don't hold any locks, it's not
1205                  * even sure that "rq" stays as the right runqueue!
1206                  * But we don't care, since "task_running()" will
1207                  * return false if the runqueue has changed and p
1208                  * is actually now running somewhere else!
1209                  */
1210                 while (task_running(rq, p)) {
1211                         if (match_state && unlikely(p->state != match_state))
1212                                 return 0;
1213                         cpu_relax();
1214                 }
1215
1216                 /*
1217                  * Ok, time to look more closely! We need the rq
1218                  * lock now, to be *sure*. If we're wrong, we'll
1219                  * just go back and repeat.
1220                  */
1221                 rq = task_rq_lock(p, &flags);
1222                 trace_sched_wait_task(p);
1223                 running = task_running(rq, p);
1224                 queued = task_on_rq_queued(p);
1225                 ncsw = 0;
1226                 if (!match_state || p->state == match_state)
1227                         ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1228                 task_rq_unlock(rq, p, &flags);
1229
1230                 /*
1231                  * If it changed from the expected state, bail out now.
1232                  */
1233                 if (unlikely(!ncsw))
1234                         break;
1235
1236                 /*
1237                  * Was it really running after all now that we
1238                  * checked with the proper locks actually held?
1239                  *
1240                  * Oops. Go back and try again..
1241                  */
1242                 if (unlikely(running)) {
1243                         cpu_relax();
1244                         continue;
1245                 }
1246
1247                 /*
1248                  * It's not enough that it's not actively running,
1249                  * it must be off the runqueue _entirely_, and not
1250                  * preempted!
1251                  *
1252                  * So if it was still runnable (but just not actively
1253                  * running right now), it's preempted, and we should
1254                  * yield - it could be a while.
1255                  */
1256                 if (unlikely(queued)) {
1257                         ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1258
1259                         set_current_state(TASK_UNINTERRUPTIBLE);
1260                         schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1261                         continue;
1262                 }
1263
1264                 /*
1265                  * Ahh, all good. It wasn't running, and it wasn't
1266                  * runnable, which means that it will never become
1267                  * running in the future either. We're all done!
1268                  */
1269                 break;
1270         }
1271
1272         return ncsw;
1273 }
1274
1275 /***
1276  * kick_process - kick a running thread to enter/exit the kernel
1277  * @p: the to-be-kicked thread
1278  *
1279  * Cause a process which is running on another CPU to enter
1280  * kernel-mode, without any delay. (to get signals handled.)
1281  *
1282  * NOTE: this function doesn't have to take the runqueue lock,
1283  * because all it wants to ensure is that the remote task enters
1284  * the kernel. If the IPI races and the task has been migrated
1285  * to another CPU then no harm is done and the purpose has been
1286  * achieved as well.
1287  */
1288 void kick_process(struct task_struct *p)
1289 {
1290         int cpu;
1291
1292         preempt_disable();
1293         cpu = task_cpu(p);
1294         if ((cpu != smp_processor_id()) && task_curr(p))
1295                 smp_send_reschedule(cpu);
1296         preempt_enable();
1297 }
1298 EXPORT_SYMBOL_GPL(kick_process);
1299 #endif /* CONFIG_SMP */
1300
1301 #ifdef CONFIG_SMP
1302 /*
1303  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1304  */
1305 static int select_fallback_rq(int cpu, struct task_struct *p)
1306 {
1307         int nid = cpu_to_node(cpu);
1308         const struct cpumask *nodemask = NULL;
1309         enum { cpuset, possible, fail } state = cpuset;
1310         int dest_cpu;
1311
1312         /*
1313          * If the node that the cpu is on has been offlined, cpu_to_node()
1314          * will return -1. There is no cpu on the node, and we should
1315          * select the cpu on the other node.
1316          */
1317         if (nid != -1) {
1318                 nodemask = cpumask_of_node(nid);
1319
1320                 /* Look for allowed, online CPU in same node. */
1321                 for_each_cpu(dest_cpu, nodemask) {
1322                         if (!cpu_online(dest_cpu))
1323                                 continue;
1324                         if (!cpu_active(dest_cpu))
1325                                 continue;
1326                         if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1327                                 return dest_cpu;
1328                 }
1329         }
1330
1331         for (;;) {
1332                 /* Any allowed, online CPU? */
1333                 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1334                         if (!cpu_online(dest_cpu))
1335                                 continue;
1336                         if (!cpu_active(dest_cpu))
1337                                 continue;
1338                         goto out;
1339                 }
1340
1341                 switch (state) {
1342                 case cpuset:
1343                         /* No more Mr. Nice Guy. */
1344                         cpuset_cpus_allowed_fallback(p);
1345                         state = possible;
1346                         break;
1347
1348                 case possible:
1349                         do_set_cpus_allowed(p, cpu_possible_mask);
1350                         state = fail;
1351                         break;
1352
1353                 case fail:
1354                         BUG();
1355                         break;
1356                 }
1357         }
1358
1359 out:
1360         if (state != cpuset) {
1361                 /*
1362                  * Don't tell them about moving exiting tasks or
1363                  * kernel threads (both mm NULL), since they never
1364                  * leave kernel.
1365                  */
1366                 if (p->mm && printk_ratelimit()) {
1367                         printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1368                                         task_pid_nr(p), p->comm, cpu);
1369                 }
1370         }
1371
1372         return dest_cpu;
1373 }
1374
1375 /*
1376  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1377  */
1378 static inline
1379 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1380 {
1381         if (p->nr_cpus_allowed > 1)
1382                 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1383
1384         /*
1385          * In order not to call set_task_cpu() on a blocking task we need
1386          * to rely on ttwu() to place the task on a valid ->cpus_allowed
1387          * cpu.
1388          *
1389          * Since this is common to all placement strategies, this lives here.
1390          *
1391          * [ this allows ->select_task() to simply return task_cpu(p) and
1392          *   not worry about this generic constraint ]
1393          */
1394         if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1395                      !cpu_online(cpu)))
1396                 cpu = select_fallback_rq(task_cpu(p), p);
1397
1398         return cpu;
1399 }
1400
1401 static void update_avg(u64 *avg, u64 sample)
1402 {
1403         s64 diff = sample - *avg;
1404         *avg += diff >> 3;
1405 }
1406 #endif
1407
1408 static void
1409 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1410 {
1411 #ifdef CONFIG_SCHEDSTATS
1412         struct rq *rq = this_rq();
1413
1414 #ifdef CONFIG_SMP
1415         int this_cpu = smp_processor_id();
1416
1417         if (cpu == this_cpu) {
1418                 schedstat_inc(rq, ttwu_local);
1419                 schedstat_inc(p, se.statistics.nr_wakeups_local);
1420         } else {
1421                 struct sched_domain *sd;
1422
1423                 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1424                 rcu_read_lock();
1425                 for_each_domain(this_cpu, sd) {
1426                         if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1427                                 schedstat_inc(sd, ttwu_wake_remote);
1428                                 break;
1429                         }
1430                 }
1431                 rcu_read_unlock();
1432         }
1433
1434         if (wake_flags & WF_MIGRATED)
1435                 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1436
1437 #endif /* CONFIG_SMP */
1438
1439         schedstat_inc(rq, ttwu_count);
1440         schedstat_inc(p, se.statistics.nr_wakeups);
1441
1442         if (wake_flags & WF_SYNC)
1443                 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1444
1445 #endif /* CONFIG_SCHEDSTATS */
1446 }
1447
1448 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1449 {
1450         activate_task(rq, p, en_flags);
1451         p->on_rq = TASK_ON_RQ_QUEUED;
1452
1453         /* if a worker is waking up, notify workqueue */
1454         if (p->flags & PF_WQ_WORKER)
1455                 wq_worker_waking_up(p, cpu_of(rq));
1456 }
1457
1458 /*
1459  * Mark the task runnable and perform wakeup-preemption.
1460  */
1461 static void
1462 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1463 {
1464         check_preempt_curr(rq, p, wake_flags);
1465         trace_sched_wakeup(p, true);
1466
1467         p->state = TASK_RUNNING;
1468 #ifdef CONFIG_SMP
1469         if (p->sched_class->task_woken)
1470                 p->sched_class->task_woken(rq, p);
1471
1472         if (rq->idle_stamp) {
1473                 u64 delta = rq_clock(rq) - rq->idle_stamp;
1474                 u64 max = 2*rq->max_idle_balance_cost;
1475
1476                 update_avg(&rq->avg_idle, delta);
1477
1478                 if (rq->avg_idle > max)
1479                         rq->avg_idle = max;
1480
1481                 rq->idle_stamp = 0;
1482         }
1483 #endif
1484 }
1485
1486 static void
1487 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1488 {
1489 #ifdef CONFIG_SMP
1490         if (p->sched_contributes_to_load)
1491                 rq->nr_uninterruptible--;
1492 #endif
1493
1494         ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1495         ttwu_do_wakeup(rq, p, wake_flags);
1496 }
1497
1498 /*
1499  * Called in case the task @p isn't fully descheduled from its runqueue,
1500  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1501  * since all we need to do is flip p->state to TASK_RUNNING, since
1502  * the task is still ->on_rq.
1503  */
1504 static int ttwu_remote(struct task_struct *p, int wake_flags)
1505 {
1506         struct rq *rq;
1507         int ret = 0;
1508
1509         rq = __task_rq_lock(p);
1510         if (task_on_rq_queued(p)) {
1511                 /* check_preempt_curr() may use rq clock */
1512                 update_rq_clock(rq);
1513                 ttwu_do_wakeup(rq, p, wake_flags);
1514                 ret = 1;
1515         }
1516         __task_rq_unlock(rq);
1517
1518         return ret;
1519 }
1520
1521 #ifdef CONFIG_SMP
1522 void sched_ttwu_pending(void)
1523 {
1524         struct rq *rq = this_rq();
1525         struct llist_node *llist = llist_del_all(&rq->wake_list);
1526         struct task_struct *p;
1527         unsigned long flags;
1528
1529         if (!llist)
1530                 return;
1531
1532         raw_spin_lock_irqsave(&rq->lock, flags);
1533
1534         while (llist) {
1535                 p = llist_entry(llist, struct task_struct, wake_entry);
1536                 llist = llist_next(llist);
1537                 ttwu_do_activate(rq, p, 0);
1538         }
1539
1540         raw_spin_unlock_irqrestore(&rq->lock, flags);
1541 }
1542
1543 void scheduler_ipi(void)
1544 {
1545         /*
1546          * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1547          * TIF_NEED_RESCHED remotely (for the first time) will also send
1548          * this IPI.
1549          */
1550         preempt_fold_need_resched();
1551
1552         if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1553                 return;
1554
1555         /*
1556          * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1557          * traditionally all their work was done from the interrupt return
1558          * path. Now that we actually do some work, we need to make sure
1559          * we do call them.
1560          *
1561          * Some archs already do call them, luckily irq_enter/exit nest
1562          * properly.
1563          *
1564          * Arguably we should visit all archs and update all handlers,
1565          * however a fair share of IPIs are still resched only so this would
1566          * somewhat pessimize the simple resched case.
1567          */
1568         irq_enter();
1569         sched_ttwu_pending();
1570
1571         /*
1572          * Check if someone kicked us for doing the nohz idle load balance.
1573          */
1574         if (unlikely(got_nohz_idle_kick())) {
1575                 this_rq()->idle_balance = 1;
1576                 raise_softirq_irqoff(SCHED_SOFTIRQ);
1577         }
1578         irq_exit();
1579 }
1580
1581 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1582 {
1583         struct rq *rq = cpu_rq(cpu);
1584
1585         if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1586                 if (!set_nr_if_polling(rq->idle))
1587                         smp_send_reschedule(cpu);
1588                 else
1589                         trace_sched_wake_idle_without_ipi(cpu);
1590         }
1591 }
1592
1593 void wake_up_if_idle(int cpu)
1594 {
1595         struct rq *rq = cpu_rq(cpu);
1596         unsigned long flags;
1597
1598         rcu_read_lock();
1599
1600         if (!is_idle_task(rcu_dereference(rq->curr)))
1601                 goto out;
1602
1603         if (set_nr_if_polling(rq->idle)) {
1604                 trace_sched_wake_idle_without_ipi(cpu);
1605         } else {
1606                 raw_spin_lock_irqsave(&rq->lock, flags);
1607                 if (is_idle_task(rq->curr))
1608                         smp_send_reschedule(cpu);
1609                 /* Else cpu is not in idle, do nothing here */
1610                 raw_spin_unlock_irqrestore(&rq->lock, flags);
1611         }
1612
1613 out:
1614         rcu_read_unlock();
1615 }
1616
1617 bool cpus_share_cache(int this_cpu, int that_cpu)
1618 {
1619         return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1620 }
1621 #endif /* CONFIG_SMP */
1622
1623 static void ttwu_queue(struct task_struct *p, int cpu)
1624 {
1625         struct rq *rq = cpu_rq(cpu);
1626
1627 #if defined(CONFIG_SMP)
1628         if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1629                 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1630                 ttwu_queue_remote(p, cpu);
1631                 return;
1632         }
1633 #endif
1634
1635         raw_spin_lock(&rq->lock);
1636         ttwu_do_activate(rq, p, 0);
1637         raw_spin_unlock(&rq->lock);
1638 }
1639
1640 /**
1641  * try_to_wake_up - wake up a thread
1642  * @p: the thread to be awakened
1643  * @state: the mask of task states that can be woken
1644  * @wake_flags: wake modifier flags (WF_*)
1645  *
1646  * Put it on the run-queue if it's not already there. The "current"
1647  * thread is always on the run-queue (except when the actual
1648  * re-schedule is in progress), and as such you're allowed to do
1649  * the simpler "current->state = TASK_RUNNING" to mark yourself
1650  * runnable without the overhead of this.
1651  *
1652  * Return: %true if @p was woken up, %false if it was already running.
1653  * or @state didn't match @p's state.
1654  */
1655 static int
1656 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1657 {
1658         unsigned long flags;
1659         int cpu, success = 0;
1660
1661         /*
1662          * If we are going to wake up a thread waiting for CONDITION we
1663          * need to ensure that CONDITION=1 done by the caller can not be
1664          * reordered with p->state check below. This pairs with mb() in
1665          * set_current_state() the waiting thread does.
1666          */
1667         smp_mb__before_spinlock();
1668         raw_spin_lock_irqsave(&p->pi_lock, flags);
1669         if (!(p->state & state))
1670                 goto out;
1671
1672         success = 1; /* we're going to change ->state */
1673         cpu = task_cpu(p);
1674
1675         if (p->on_rq && ttwu_remote(p, wake_flags))
1676                 goto stat;
1677
1678 #ifdef CONFIG_SMP
1679         /*
1680          * If the owning (remote) cpu is still in the middle of schedule() with
1681          * this task as prev, wait until its done referencing the task.
1682          */
1683         while (p->on_cpu)
1684                 cpu_relax();
1685         /*
1686          * Pairs with the smp_wmb() in finish_lock_switch().
1687          */
1688         smp_rmb();
1689
1690         p->sched_contributes_to_load = !!task_contributes_to_load(p);
1691         p->state = TASK_WAKING;
1692
1693         if (p->sched_class->task_waking)
1694                 p->sched_class->task_waking(p);
1695
1696         cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1697         if (task_cpu(p) != cpu) {
1698                 wake_flags |= WF_MIGRATED;
1699                 set_task_cpu(p, cpu);
1700         }
1701 #endif /* CONFIG_SMP */
1702
1703         ttwu_queue(p, cpu);
1704 stat:
1705         ttwu_stat(p, cpu, wake_flags);
1706 out:
1707         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1708
1709         return success;
1710 }
1711
1712 /**
1713  * try_to_wake_up_local - try to wake up a local task with rq lock held
1714  * @p: the thread to be awakened
1715  *
1716  * Put @p on the run-queue if it's not already there. The caller must
1717  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1718  * the current task.
1719  */
1720 static void try_to_wake_up_local(struct task_struct *p)
1721 {
1722         struct rq *rq = task_rq(p);
1723
1724         if (WARN_ON_ONCE(rq != this_rq()) ||
1725             WARN_ON_ONCE(p == current))
1726                 return;
1727
1728         lockdep_assert_held(&rq->lock);
1729
1730         if (!raw_spin_trylock(&p->pi_lock)) {
1731                 raw_spin_unlock(&rq->lock);
1732                 raw_spin_lock(&p->pi_lock);
1733                 raw_spin_lock(&rq->lock);
1734         }
1735
1736         if (!(p->state & TASK_NORMAL))
1737                 goto out;
1738
1739         if (!task_on_rq_queued(p))
1740                 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1741
1742         ttwu_do_wakeup(rq, p, 0);
1743         ttwu_stat(p, smp_processor_id(), 0);
1744 out:
1745         raw_spin_unlock(&p->pi_lock);
1746 }
1747
1748 /**
1749  * wake_up_process - Wake up a specific process
1750  * @p: The process to be woken up.
1751  *
1752  * Attempt to wake up the nominated process and move it to the set of runnable
1753  * processes.
1754  *
1755  * Return: 1 if the process was woken up, 0 if it was already running.
1756  *
1757  * It may be assumed that this function implies a write memory barrier before
1758  * changing the task state if and only if any tasks are woken up.
1759  */
1760 int wake_up_process(struct task_struct *p)
1761 {
1762         WARN_ON(task_is_stopped_or_traced(p));
1763         return try_to_wake_up(p, TASK_NORMAL, 0);
1764 }
1765 EXPORT_SYMBOL(wake_up_process);
1766
1767 int wake_up_state(struct task_struct *p, unsigned int state)
1768 {
1769         return try_to_wake_up(p, state, 0);
1770 }
1771
1772 /*
1773  * This function clears the sched_dl_entity static params.
1774  */
1775 void __dl_clear_params(struct task_struct *p)
1776 {
1777         struct sched_dl_entity *dl_se = &p->dl;
1778
1779         dl_se->dl_runtime = 0;
1780         dl_se->dl_deadline = 0;
1781         dl_se->dl_period = 0;
1782         dl_se->flags = 0;
1783         dl_se->dl_bw = 0;
1784
1785         dl_se->dl_throttled = 0;
1786         dl_se->dl_new = 1;
1787         dl_se->dl_yielded = 0;
1788 }
1789
1790 /*
1791  * Perform scheduler related setup for a newly forked process p.
1792  * p is forked by current.
1793  *
1794  * __sched_fork() is basic setup used by init_idle() too:
1795  */
1796 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1797 {
1798         p->on_rq                        = 0;
1799
1800         p->se.on_rq                     = 0;
1801         p->se.exec_start                = 0;
1802         p->se.sum_exec_runtime          = 0;
1803         p->se.prev_sum_exec_runtime     = 0;
1804         p->se.nr_migrations             = 0;
1805         p->se.vruntime                  = 0;
1806 #ifdef CONFIG_SMP
1807         p->se.avg.decay_count           = 0;
1808 #endif
1809         INIT_LIST_HEAD(&p->se.group_node);
1810
1811 #ifdef CONFIG_SCHEDSTATS
1812         memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1813 #endif
1814
1815         RB_CLEAR_NODE(&p->dl.rb_node);
1816         init_dl_task_timer(&p->dl);
1817         __dl_clear_params(p);
1818
1819         INIT_LIST_HEAD(&p->rt.run_list);
1820
1821 #ifdef CONFIG_PREEMPT_NOTIFIERS
1822         INIT_HLIST_HEAD(&p->preempt_notifiers);
1823 #endif
1824
1825 #ifdef CONFIG_NUMA_BALANCING
1826         if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1827                 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1828                 p->mm->numa_scan_seq = 0;
1829         }
1830
1831         if (clone_flags & CLONE_VM)
1832                 p->numa_preferred_nid = current->numa_preferred_nid;
1833         else
1834                 p->numa_preferred_nid = -1;
1835
1836         p->node_stamp = 0ULL;
1837         p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1838         p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1839         p->numa_work.next = &p->numa_work;
1840         p->numa_faults = NULL;
1841         p->last_task_numa_placement = 0;
1842         p->last_sum_exec_runtime = 0;
1843
1844         p->numa_group = NULL;
1845 #endif /* CONFIG_NUMA_BALANCING */
1846 }
1847
1848 #ifdef CONFIG_NUMA_BALANCING
1849 #ifdef CONFIG_SCHED_DEBUG
1850 void set_numabalancing_state(bool enabled)
1851 {
1852         if (enabled)
1853                 sched_feat_set("NUMA");
1854         else
1855                 sched_feat_set("NO_NUMA");
1856 }
1857 #else
1858 __read_mostly bool numabalancing_enabled;
1859
1860 void set_numabalancing_state(bool enabled)
1861 {
1862         numabalancing_enabled = enabled;
1863 }
1864 #endif /* CONFIG_SCHED_DEBUG */
1865
1866 #ifdef CONFIG_PROC_SYSCTL
1867 int sysctl_numa_balancing(struct ctl_table *table, int write,
1868                          void __user *buffer, size_t *lenp, loff_t *ppos)
1869 {
1870         struct ctl_table t;
1871         int err;
1872         int state = numabalancing_enabled;
1873
1874         if (write && !capable(CAP_SYS_ADMIN))
1875                 return -EPERM;
1876
1877         t = *table;
1878         t.data = &state;
1879         err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1880         if (err < 0)
1881                 return err;
1882         if (write)
1883                 set_numabalancing_state(state);
1884         return err;
1885 }
1886 #endif
1887 #endif
1888
1889 /*
1890  * fork()/clone()-time setup:
1891  */
1892 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1893 {
1894         unsigned long flags;
1895         int cpu = get_cpu();
1896
1897         __sched_fork(clone_flags, p);
1898         /*
1899          * We mark the process as running here. This guarantees that
1900          * nobody will actually run it, and a signal or other external
1901          * event cannot wake it up and insert it on the runqueue either.
1902          */
1903         p->state = TASK_RUNNING;
1904
1905         /*
1906          * Make sure we do not leak PI boosting priority to the child.
1907          */
1908         p->prio = current->normal_prio;
1909
1910         /*
1911          * Revert to default priority/policy on fork if requested.
1912          */
1913         if (unlikely(p->sched_reset_on_fork)) {
1914                 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1915                         p->policy = SCHED_NORMAL;
1916                         p->static_prio = NICE_TO_PRIO(0);
1917                         p->rt_priority = 0;
1918                 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1919                         p->static_prio = NICE_TO_PRIO(0);
1920
1921                 p->prio = p->normal_prio = __normal_prio(p);
1922                 set_load_weight(p);
1923
1924                 /*
1925                  * We don't need the reset flag anymore after the fork. It has
1926                  * fulfilled its duty:
1927                  */
1928                 p->sched_reset_on_fork = 0;
1929         }
1930
1931         if (dl_prio(p->prio)) {
1932                 put_cpu();
1933                 return -EAGAIN;
1934         } else if (rt_prio(p->prio)) {
1935                 p->sched_class = &rt_sched_class;
1936         } else {
1937                 p->sched_class = &fair_sched_class;
1938         }
1939
1940         if (p->sched_class->task_fork)
1941                 p->sched_class->task_fork(p);
1942
1943         /*
1944          * The child is not yet in the pid-hash so no cgroup attach races,
1945          * and the cgroup is pinned to this child due to cgroup_fork()
1946          * is ran before sched_fork().
1947          *
1948          * Silence PROVE_RCU.
1949          */
1950         raw_spin_lock_irqsave(&p->pi_lock, flags);
1951         set_task_cpu(p, cpu);
1952         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1953
1954 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1955         if (likely(sched_info_on()))
1956                 memset(&p->sched_info, 0, sizeof(p->sched_info));
1957 #endif
1958 #if defined(CONFIG_SMP)
1959         p->on_cpu = 0;
1960 #endif
1961         init_task_preempt_count(p);
1962 #ifdef CONFIG_SMP
1963         plist_node_init(&p->pushable_tasks, MAX_PRIO);
1964         RB_CLEAR_NODE(&p->pushable_dl_tasks);
1965 #endif
1966
1967         put_cpu();
1968         return 0;
1969 }
1970
1971 unsigned long to_ratio(u64 period, u64 runtime)
1972 {
1973         if (runtime == RUNTIME_INF)
1974                 return 1ULL << 20;
1975
1976         /*
1977          * Doing this here saves a lot of checks in all
1978          * the calling paths, and returning zero seems
1979          * safe for them anyway.
1980          */
1981         if (period == 0)
1982                 return 0;
1983
1984         return div64_u64(runtime << 20, period);
1985 }
1986
1987 #ifdef CONFIG_SMP
1988 inline struct dl_bw *dl_bw_of(int i)
1989 {
1990         rcu_lockdep_assert(rcu_read_lock_sched_held(),
1991                            "sched RCU must be held");
1992         return &cpu_rq(i)->rd->dl_bw;
1993 }
1994
1995 static inline int dl_bw_cpus(int i)
1996 {
1997         struct root_domain *rd = cpu_rq(i)->rd;
1998         int cpus = 0;
1999
2000         rcu_lockdep_assert(rcu_read_lock_sched_held(),
2001                            "sched RCU must be held");
2002         for_each_cpu_and(i, rd->span, cpu_active_mask)
2003                 cpus++;
2004
2005         return cpus;
2006 }
2007 #else
2008 inline struct dl_bw *dl_bw_of(int i)
2009 {
2010         return &cpu_rq(i)->dl.dl_bw;
2011 }
2012
2013 static inline int dl_bw_cpus(int i)
2014 {
2015         return 1;
2016 }
2017 #endif
2018
2019 /*
2020  * We must be sure that accepting a new task (or allowing changing the
2021  * parameters of an existing one) is consistent with the bandwidth
2022  * constraints. If yes, this function also accordingly updates the currently
2023  * allocated bandwidth to reflect the new situation.
2024  *
2025  * This function is called while holding p's rq->lock.
2026  *
2027  * XXX we should delay bw change until the task's 0-lag point, see
2028  * __setparam_dl().
2029  */
2030 static int dl_overflow(struct task_struct *p, int policy,
2031                        const struct sched_attr *attr)
2032 {
2033
2034         struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2035         u64 period = attr->sched_period ?: attr->sched_deadline;
2036         u64 runtime = attr->sched_runtime;
2037         u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2038         int cpus, err = -1;
2039
2040         if (new_bw == p->dl.dl_bw)
2041                 return 0;
2042
2043         /*
2044          * Either if a task, enters, leave, or stays -deadline but changes
2045          * its parameters, we may need to update accordingly the total
2046          * allocated bandwidth of the container.
2047          */
2048         raw_spin_lock(&dl_b->lock);
2049         cpus = dl_bw_cpus(task_cpu(p));
2050         if (dl_policy(policy) && !task_has_dl_policy(p) &&
2051             !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2052                 __dl_add(dl_b, new_bw);
2053                 err = 0;
2054         } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2055                    !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2056                 __dl_clear(dl_b, p->dl.dl_bw);
2057                 __dl_add(dl_b, new_bw);
2058                 err = 0;
2059         } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2060                 __dl_clear(dl_b, p->dl.dl_bw);
2061                 err = 0;
2062         }
2063         raw_spin_unlock(&dl_b->lock);
2064
2065         return err;
2066 }
2067
2068 extern void init_dl_bw(struct dl_bw *dl_b);
2069
2070 /*
2071  * wake_up_new_task - wake up a newly created task for the first time.
2072  *
2073  * This function will do some initial scheduler statistics housekeeping
2074  * that must be done for every newly created context, then puts the task
2075  * on the runqueue and wakes it.
2076  */
2077 void wake_up_new_task(struct task_struct *p)
2078 {
2079         unsigned long flags;
2080         struct rq *rq;
2081
2082         raw_spin_lock_irqsave(&p->pi_lock, flags);
2083 #ifdef CONFIG_SMP
2084         /*
2085          * Fork balancing, do it here and not earlier because:
2086          *  - cpus_allowed can change in the fork path
2087          *  - any previously selected cpu might disappear through hotplug
2088          */
2089         set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2090 #endif
2091
2092         /* Initialize new task's runnable average */
2093         init_task_runnable_average(p);
2094         rq = __task_rq_lock(p);
2095         activate_task(rq, p, 0);
2096         p->on_rq = TASK_ON_RQ_QUEUED;
2097         trace_sched_wakeup_new(p, true);
2098         check_preempt_curr(rq, p, WF_FORK);
2099 #ifdef CONFIG_SMP
2100         if (p->sched_class->task_woken)
2101                 p->sched_class->task_woken(rq, p);
2102 #endif
2103         task_rq_unlock(rq, p, &flags);
2104 }
2105
2106 #ifdef CONFIG_PREEMPT_NOTIFIERS
2107
2108 /**
2109  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2110  * @notifier: notifier struct to register
2111  */
2112 void preempt_notifier_register(struct preempt_notifier *notifier)
2113 {
2114         hlist_add_head(&notifier->link, &current->preempt_notifiers);
2115 }
2116 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2117
2118 /**
2119  * preempt_notifier_unregister - no longer interested in preemption notifications
2120  * @notifier: notifier struct to unregister
2121  *
2122  * This is safe to call from within a preemption notifier.
2123  */
2124 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2125 {
2126         hlist_del(&notifier->link);
2127 }
2128 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2129
2130 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2131 {
2132         struct preempt_notifier *notifier;
2133
2134         hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2135                 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2136 }
2137
2138 static void
2139 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2140                                  struct task_struct *next)
2141 {
2142         struct preempt_notifier *notifier;
2143
2144         hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2145                 notifier->ops->sched_out(notifier, next);
2146 }
2147
2148 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2149
2150 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2151 {
2152 }
2153
2154 static void
2155 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2156                                  struct task_struct *next)
2157 {
2158 }
2159
2160 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2161
2162 /**
2163  * prepare_task_switch - prepare to switch tasks
2164  * @rq: the runqueue preparing to switch
2165  * @prev: the current task that is being switched out
2166  * @next: the task we are going to switch to.
2167  *
2168  * This is called with the rq lock held and interrupts off. It must
2169  * be paired with a subsequent finish_task_switch after the context
2170  * switch.
2171  *
2172  * prepare_task_switch sets up locking and calls architecture specific
2173  * hooks.
2174  */
2175 static inline void
2176 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2177                     struct task_struct *next)
2178 {
2179         trace_sched_switch(prev, next);
2180         sched_info_switch(rq, prev, next);
2181         perf_event_task_sched_out(prev, next);
2182         fire_sched_out_preempt_notifiers(prev, next);
2183         prepare_lock_switch(rq, next);
2184         prepare_arch_switch(next);
2185 }
2186
2187 /**
2188  * finish_task_switch - clean up after a task-switch
2189  * @prev: the thread we just switched away from.
2190  *
2191  * finish_task_switch must be called after the context switch, paired
2192  * with a prepare_task_switch call before the context switch.
2193  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2194  * and do any other architecture-specific cleanup actions.
2195  *
2196  * Note that we may have delayed dropping an mm in context_switch(). If
2197  * so, we finish that here outside of the runqueue lock. (Doing it
2198  * with the lock held can cause deadlocks; see schedule() for
2199  * details.)
2200  *
2201  * The context switch have flipped the stack from under us and restored the
2202  * local variables which were saved when this task called schedule() in the
2203  * past. prev == current is still correct but we need to recalculate this_rq
2204  * because prev may have moved to another CPU.
2205  */
2206 static struct rq *finish_task_switch(struct task_struct *prev)
2207         __releases(rq->lock)
2208 {
2209         struct rq *rq = this_rq();
2210         struct mm_struct *mm = rq->prev_mm;
2211         long prev_state;
2212
2213         rq->prev_mm = NULL;
2214
2215         /*
2216          * A task struct has one reference for the use as "current".
2217          * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2218          * schedule one last time. The schedule call will never return, and
2219          * the scheduled task must drop that reference.
2220          * The test for TASK_DEAD must occur while the runqueue locks are
2221          * still held, otherwise prev could be scheduled on another cpu, die
2222          * there before we look at prev->state, and then the reference would
2223          * be dropped twice.
2224          *              Manfred Spraul <manfred@colorfullife.com>
2225          */
2226         prev_state = prev->state;
2227         vtime_task_switch(prev);
2228         finish_arch_switch(prev);
2229         perf_event_task_sched_in(prev, current);
2230         finish_lock_switch(rq, prev);
2231         finish_arch_post_lock_switch();
2232
2233         fire_sched_in_preempt_notifiers(current);
2234         if (mm)
2235                 mmdrop(mm);
2236         if (unlikely(prev_state == TASK_DEAD)) {
2237                 if (prev->sched_class->task_dead)
2238                         prev->sched_class->task_dead(prev);
2239
2240                 /*
2241                  * Remove function-return probe instances associated with this
2242                  * task and put them back on the free list.
2243                  */
2244                 kprobe_flush_task(prev);
2245                 put_task_struct(prev);
2246         }
2247
2248         tick_nohz_task_switch(current);
2249         return rq;
2250 }
2251
2252 #ifdef CONFIG_SMP
2253
2254 /* rq->lock is NOT held, but preemption is disabled */
2255 static inline void post_schedule(struct rq *rq)
2256 {
2257         if (rq->post_schedule) {
2258                 unsigned long flags;
2259
2260                 raw_spin_lock_irqsave(&rq->lock, flags);
2261                 if (rq->curr->sched_class->post_schedule)
2262                         rq->curr->sched_class->post_schedule(rq);
2263                 raw_spin_unlock_irqrestore(&rq->lock, flags);
2264
2265                 rq->post_schedule = 0;
2266         }
2267 }
2268
2269 #else
2270
2271 static inline void post_schedule(struct rq *rq)
2272 {
2273 }
2274
2275 #endif
2276
2277 /**
2278  * schedule_tail - first thing a freshly forked thread must call.
2279  * @prev: the thread we just switched away from.
2280  */
2281 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2282         __releases(rq->lock)
2283 {
2284         struct rq *rq;
2285
2286         /* finish_task_switch() drops rq->lock and enables preemtion */
2287         preempt_disable();
2288         rq = finish_task_switch(prev);
2289         post_schedule(rq);
2290         preempt_enable();
2291
2292         if (current->set_child_tid)
2293                 put_user(task_pid_vnr(current), current->set_child_tid);
2294 }
2295
2296 /*
2297  * context_switch - switch to the new MM and the new thread's register state.
2298  */
2299 static inline struct rq *
2300 context_switch(struct rq *rq, struct task_struct *prev,
2301                struct task_struct *next)
2302 {
2303         struct mm_struct *mm, *oldmm;
2304
2305         prepare_task_switch(rq, prev, next);
2306
2307         mm = next->mm;
2308         oldmm = prev->active_mm;
2309         /*
2310          * For paravirt, this is coupled with an exit in switch_to to
2311          * combine the page table reload and the switch backend into
2312          * one hypercall.
2313          */
2314         arch_start_context_switch(prev);
2315
2316         if (!mm) {
2317                 next->active_mm = oldmm;
2318                 atomic_inc(&oldmm->mm_count);
2319                 enter_lazy_tlb(oldmm, next);
2320         } else
2321                 switch_mm(oldmm, mm, next);
2322
2323         if (!prev->mm) {
2324                 prev->active_mm = NULL;
2325                 rq->prev_mm = oldmm;
2326         }
2327         /*
2328          * Since the runqueue lock will be released by the next
2329          * task (which is an invalid locking op but in the case
2330          * of the scheduler it's an obvious special-case), so we
2331          * do an early lockdep release here:
2332          */
2333         spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2334
2335         context_tracking_task_switch(prev, next);
2336         /* Here we just switch the register state and the stack. */
2337         switch_to(prev, next, prev);
2338         barrier();
2339
2340         return finish_task_switch(prev);
2341 }
2342
2343 /*
2344  * nr_running and nr_context_switches:
2345  *
2346  * externally visible scheduler statistics: current number of runnable
2347  * threads, total number of context switches performed since bootup.
2348  */
2349 unsigned long nr_running(void)
2350 {
2351         unsigned long i, sum = 0;
2352
2353         for_each_online_cpu(i)
2354                 sum += cpu_rq(i)->nr_running;
2355
2356         return sum;
2357 }
2358
2359 /*
2360  * Check if only the current task is running on the cpu.
2361  */
2362 bool single_task_running(void)
2363 {
2364         if (cpu_rq(smp_processor_id())->nr_running == 1)
2365                 return true;
2366         else
2367                 return false;
2368 }
2369 EXPORT_SYMBOL(single_task_running);
2370
2371 unsigned long long nr_context_switches(void)
2372 {
2373         int i;
2374         unsigned long long sum = 0;
2375
2376         for_each_possible_cpu(i)
2377                 sum += cpu_rq(i)->nr_switches;
2378
2379         return sum;
2380 }
2381
2382 unsigned long nr_iowait(void)
2383 {
2384         unsigned long i, sum = 0;
2385
2386         for_each_possible_cpu(i)
2387                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2388
2389         return sum;
2390 }
2391
2392 unsigned long nr_iowait_cpu(int cpu)
2393 {
2394         struct rq *this = cpu_rq(cpu);
2395         return atomic_read(&this->nr_iowait);
2396 }
2397
2398 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2399 {
2400         struct rq *this = this_rq();
2401         *nr_waiters = atomic_read(&this->nr_iowait);
2402         *load = this->cpu_load[0];
2403 }
2404
2405 #ifdef CONFIG_SMP
2406
2407 /*
2408  * sched_exec - execve() is a valuable balancing opportunity, because at
2409  * this point the task has the smallest effective memory and cache footprint.
2410  */
2411 void sched_exec(void)
2412 {
2413         struct task_struct *p = current;
2414         unsigned long flags;
2415         int dest_cpu;
2416
2417         raw_spin_lock_irqsave(&p->pi_lock, flags);
2418         dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2419         if (dest_cpu == smp_processor_id())
2420                 goto unlock;
2421
2422         if (likely(cpu_active(dest_cpu))) {
2423                 struct migration_arg arg = { p, dest_cpu };
2424
2425                 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2426                 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2427                 return;
2428         }
2429 unlock:
2430         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2431 }
2432
2433 #endif
2434
2435 DEFINE_PER_CPU(struct kernel_stat, kstat);
2436 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2437
2438 EXPORT_PER_CPU_SYMBOL(kstat);
2439 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2440
2441 /*
2442  * Return accounted runtime for the task.
2443  * In case the task is currently running, return the runtime plus current's
2444  * pending runtime that have not been accounted yet.
2445  */
2446 unsigned long long task_sched_runtime(struct task_struct *p)
2447 {
2448         unsigned long flags;
2449         struct rq *rq;
2450         u64 ns;
2451
2452 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2453         /*
2454          * 64-bit doesn't need locks to atomically read a 64bit value.
2455          * So we have a optimization chance when the task's delta_exec is 0.
2456          * Reading ->on_cpu is racy, but this is ok.
2457          *
2458          * If we race with it leaving cpu, we'll take a lock. So we're correct.
2459          * If we race with it entering cpu, unaccounted time is 0. This is
2460          * indistinguishable from the read occurring a few cycles earlier.
2461          * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2462          * been accounted, so we're correct here as well.
2463          */
2464         if (!p->on_cpu || !task_on_rq_queued(p))
2465                 return p->se.sum_exec_runtime;
2466 #endif
2467
2468         rq = task_rq_lock(p, &flags);
2469         /*
2470          * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2471          * project cycles that may never be accounted to this
2472          * thread, breaking clock_gettime().
2473          */
2474         if (task_current(rq, p) && task_on_rq_queued(p)) {
2475                 update_rq_clock(rq);
2476                 p->sched_class->update_curr(rq);
2477         }
2478         ns = p->se.sum_exec_runtime;
2479         task_rq_unlock(rq, p, &flags);
2480
2481         return ns;
2482 }
2483
2484 /*
2485  * This function gets called by the timer code, with HZ frequency.
2486  * We call it with interrupts disabled.
2487  */
2488 void scheduler_tick(void)
2489 {
2490         int cpu = smp_processor_id();
2491         struct rq *rq = cpu_rq(cpu);
2492         struct task_struct *curr = rq->curr;
2493
2494         sched_clock_tick();
2495
2496         raw_spin_lock(&rq->lock);
2497         update_rq_clock(rq);
2498         curr->sched_class->task_tick(rq, curr, 0);
2499         update_cpu_load_active(rq);
2500         raw_spin_unlock(&rq->lock);
2501
2502         perf_event_task_tick();
2503
2504 #ifdef CONFIG_SMP
2505         rq->idle_balance = idle_cpu(cpu);
2506         trigger_load_balance(rq);
2507 #endif
2508         rq_last_tick_reset(rq);
2509 }
2510
2511 #ifdef CONFIG_NO_HZ_FULL
2512 /**
2513  * scheduler_tick_max_deferment
2514  *
2515  * Keep at least one tick per second when a single
2516  * active task is running because the scheduler doesn't
2517  * yet completely support full dynticks environment.
2518  *
2519  * This makes sure that uptime, CFS vruntime, load
2520  * balancing, etc... continue to move forward, even
2521  * with a very low granularity.
2522  *
2523  * Return: Maximum deferment in nanoseconds.
2524  */
2525 u64 scheduler_tick_max_deferment(void)
2526 {
2527         struct rq *rq = this_rq();
2528         unsigned long next, now = ACCESS_ONCE(jiffies);
2529
2530         next = rq->last_sched_tick + HZ;
2531
2532         if (time_before_eq(next, now))
2533                 return 0;
2534
2535         return jiffies_to_nsecs(next - now);
2536 }
2537 #endif
2538
2539 notrace unsigned long get_parent_ip(unsigned long addr)
2540 {
2541         if (in_lock_functions(addr)) {
2542                 addr = CALLER_ADDR2;
2543                 if (in_lock_functions(addr))
2544                         addr = CALLER_ADDR3;
2545         }
2546         return addr;
2547 }
2548
2549 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2550                                 defined(CONFIG_PREEMPT_TRACER))
2551
2552 void preempt_count_add(int val)
2553 {
2554 #ifdef CONFIG_DEBUG_PREEMPT
2555         /*
2556          * Underflow?
2557          */
2558         if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2559                 return;
2560 #endif
2561         __preempt_count_add(val);
2562 #ifdef CONFIG_DEBUG_PREEMPT
2563         /*
2564          * Spinlock count overflowing soon?
2565          */
2566         DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2567                                 PREEMPT_MASK - 10);
2568 #endif
2569         if (preempt_count() == val) {
2570                 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2571 #ifdef CONFIG_DEBUG_PREEMPT
2572                 current->preempt_disable_ip = ip;
2573 #endif
2574                 trace_preempt_off(CALLER_ADDR0, ip);
2575         }
2576 }
2577 EXPORT_SYMBOL(preempt_count_add);
2578 NOKPROBE_SYMBOL(preempt_count_add);
2579
2580 void preempt_count_sub(int val)
2581 {
2582 #ifdef CONFIG_DEBUG_PREEMPT
2583         /*
2584          * Underflow?
2585          */
2586         if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2587                 return;
2588         /*
2589          * Is the spinlock portion underflowing?
2590          */
2591         if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2592                         !(preempt_count() & PREEMPT_MASK)))
2593                 return;
2594 #endif
2595
2596         if (preempt_count() == val)
2597                 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2598         __preempt_count_sub(val);
2599 }
2600 EXPORT_SYMBOL(preempt_count_sub);
2601 NOKPROBE_SYMBOL(preempt_count_sub);
2602
2603 #endif
2604
2605 /*
2606  * Print scheduling while atomic bug:
2607  */
2608 static noinline void __schedule_bug(struct task_struct *prev)
2609 {
2610         if (oops_in_progress)
2611                 return;
2612
2613         printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2614                 prev->comm, prev->pid, preempt_count());
2615
2616         debug_show_held_locks(prev);
2617         print_modules();
2618         if (irqs_disabled())
2619                 print_irqtrace_events(prev);
2620 #ifdef CONFIG_DEBUG_PREEMPT
2621         if (in_atomic_preempt_off()) {
2622                 pr_err("Preemption disabled at:");
2623                 print_ip_sym(current->preempt_disable_ip);
2624                 pr_cont("\n");
2625         }
2626 #endif
2627         dump_stack();
2628         add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2629 }
2630
2631 /*
2632  * Various schedule()-time debugging checks and statistics:
2633  */
2634 static inline void schedule_debug(struct task_struct *prev)
2635 {
2636 #ifdef CONFIG_SCHED_STACK_END_CHECK
2637         BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2638 #endif
2639         /*
2640          * Test if we are atomic. Since do_exit() needs to call into
2641          * schedule() atomically, we ignore that path. Otherwise whine
2642          * if we are scheduling when we should not.
2643          */
2644         if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2645                 __schedule_bug(prev);
2646         rcu_sleep_check();
2647
2648         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2649
2650         schedstat_inc(this_rq(), sched_count);
2651 }
2652
2653 /*
2654  * Pick up the highest-prio task:
2655  */
2656 static inline struct task_struct *
2657 pick_next_task(struct rq *rq, struct task_struct *prev)
2658 {
2659         const struct sched_class *class = &fair_sched_class;
2660         struct task_struct *p;
2661
2662         /*
2663          * Optimization: we know that if all tasks are in
2664          * the fair class we can call that function directly:
2665          */
2666         if (likely(prev->sched_class == class &&
2667                    rq->nr_running == rq->cfs.h_nr_running)) {
2668                 p = fair_sched_class.pick_next_task(rq, prev);
2669                 if (unlikely(p == RETRY_TASK))
2670                         goto again;
2671
2672                 /* assumes fair_sched_class->next == idle_sched_class */
2673                 if (unlikely(!p))
2674                         p = idle_sched_class.pick_next_task(rq, prev);
2675
2676                 return p;
2677         }
2678
2679 again:
2680         for_each_class(class) {
2681                 p = class->pick_next_task(rq, prev);
2682                 if (p) {
2683                         if (unlikely(p == RETRY_TASK))
2684                                 goto again;
2685                         return p;
2686                 }
2687         }
2688
2689         BUG(); /* the idle class will always have a runnable task */
2690 }
2691
2692 /*
2693  * __schedule() is the main scheduler function.
2694  *
2695  * The main means of driving the scheduler and thus entering this function are:
2696  *
2697  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2698  *
2699  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2700  *      paths. For example, see arch/x86/entry_64.S.
2701  *
2702  *      To drive preemption between tasks, the scheduler sets the flag in timer
2703  *      interrupt handler scheduler_tick().
2704  *
2705  *   3. Wakeups don't really cause entry into schedule(). They add a
2706  *      task to the run-queue and that's it.
2707  *
2708  *      Now, if the new task added to the run-queue preempts the current
2709  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2710  *      called on the nearest possible occasion:
2711  *
2712  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2713  *
2714  *         - in syscall or exception context, at the next outmost
2715  *           preempt_enable(). (this might be as soon as the wake_up()'s
2716  *           spin_unlock()!)
2717  *
2718  *         - in IRQ context, return from interrupt-handler to
2719  *           preemptible context
2720  *
2721  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2722  *         then at the next:
2723  *
2724  *          - cond_resched() call
2725  *          - explicit schedule() call
2726  *          - return from syscall or exception to user-space
2727  *          - return from interrupt-handler to user-space
2728  *
2729  * WARNING: all callers must re-check need_resched() afterward and reschedule
2730  * accordingly in case an event triggered the need for rescheduling (such as
2731  * an interrupt waking up a task) while preemption was disabled in __schedule().
2732  */
2733 static void __sched __schedule(void)
2734 {
2735         struct task_struct *prev, *next;
2736         unsigned long *switch_count;
2737         struct rq *rq;
2738         int cpu;
2739
2740         preempt_disable();
2741         cpu = smp_processor_id();
2742         rq = cpu_rq(cpu);
2743         rcu_note_context_switch();
2744         prev = rq->curr;
2745
2746         schedule_debug(prev);
2747
2748         if (sched_feat(HRTICK))
2749                 hrtick_clear(rq);
2750
2751         /*
2752          * Make sure that signal_pending_state()->signal_pending() below
2753          * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2754          * done by the caller to avoid the race with signal_wake_up().
2755          */
2756         smp_mb__before_spinlock();
2757         raw_spin_lock_irq(&rq->lock);
2758
2759         rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2760
2761         switch_count = &prev->nivcsw;
2762         if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2763                 if (unlikely(signal_pending_state(prev->state, prev))) {
2764                         prev->state = TASK_RUNNING;
2765                 } else {
2766                         deactivate_task(rq, prev, DEQUEUE_SLEEP);
2767                         prev->on_rq = 0;
2768
2769                         /*
2770                          * If a worker went to sleep, notify and ask workqueue
2771                          * whether it wants to wake up a task to maintain
2772                          * concurrency.
2773                          */
2774                         if (prev->flags & PF_WQ_WORKER) {
2775                                 struct task_struct *to_wakeup;
2776
2777                                 to_wakeup = wq_worker_sleeping(prev, cpu);
2778                                 if (to_wakeup)
2779                                         try_to_wake_up_local(to_wakeup);
2780                         }
2781                 }
2782                 switch_count = &prev->nvcsw;
2783         }
2784
2785         if (task_on_rq_queued(prev))
2786                 update_rq_clock(rq);
2787
2788         next = pick_next_task(rq, prev);
2789         clear_tsk_need_resched(prev);
2790         clear_preempt_need_resched();
2791         rq->clock_skip_update = 0;
2792
2793         if (likely(prev != next)) {
2794                 rq->nr_switches++;
2795                 rq->curr = next;
2796                 ++*switch_count;
2797
2798                 rq = context_switch(rq, prev, next); /* unlocks the rq */
2799                 cpu = cpu_of(rq);
2800         } else
2801                 raw_spin_unlock_irq(&rq->lock);
2802
2803         post_schedule(rq);
2804
2805         sched_preempt_enable_no_resched();
2806 }
2807
2808 static inline void sched_submit_work(struct task_struct *tsk)
2809 {
2810         if (!tsk->state || tsk_is_pi_blocked(tsk))
2811                 return;
2812         /*
2813          * If we are going to sleep and we have plugged IO queued,
2814          * make sure to submit it to avoid deadlocks.
2815          */
2816         if (blk_needs_flush_plug(tsk))
2817                 blk_schedule_flush_plug(tsk);
2818 }
2819
2820 asmlinkage __visible void __sched schedule(void)
2821 {
2822         struct task_struct *tsk = current;
2823
2824         sched_submit_work(tsk);
2825         do {
2826                 __schedule();
2827         } while (need_resched());
2828 }
2829 EXPORT_SYMBOL(schedule);
2830
2831 #ifdef CONFIG_CONTEXT_TRACKING
2832 asmlinkage __visible void __sched schedule_user(void)
2833 {
2834         /*
2835          * If we come here after a random call to set_need_resched(),
2836          * or we have been woken up remotely but the IPI has not yet arrived,
2837          * we haven't yet exited the RCU idle mode. Do it here manually until
2838          * we find a better solution.
2839          *
2840          * NB: There are buggy callers of this function.  Ideally we
2841          * should warn if prev_state != CONTEXT_USER, but that will trigger
2842          * too frequently to make sense yet.
2843          */
2844         enum ctx_state prev_state = exception_enter();
2845         schedule();
2846         exception_exit(prev_state);
2847 }
2848 #endif
2849
2850 /**
2851  * schedule_preempt_disabled - called with preemption disabled
2852  *
2853  * Returns with preemption disabled. Note: preempt_count must be 1
2854  */
2855 void __sched schedule_preempt_disabled(void)
2856 {
2857         sched_preempt_enable_no_resched();
2858         schedule();
2859         preempt_disable();
2860 }
2861
2862 static void __sched notrace preempt_schedule_common(void)
2863 {
2864         do {
2865                 __preempt_count_add(PREEMPT_ACTIVE);
2866                 __schedule();
2867                 __preempt_count_sub(PREEMPT_ACTIVE);
2868
2869                 /*
2870                  * Check again in case we missed a preemption opportunity
2871                  * between schedule and now.
2872                  */
2873                 barrier();
2874         } while (need_resched());
2875 }
2876
2877 #ifdef CONFIG_PREEMPT
2878 /*
2879  * this is the entry point to schedule() from in-kernel preemption
2880  * off of preempt_enable. Kernel preemptions off return from interrupt
2881  * occur there and call schedule directly.
2882  */
2883 asmlinkage __visible void __sched notrace preempt_schedule(void)
2884 {
2885         /*
2886          * If there is a non-zero preempt_count or interrupts are disabled,
2887          * we do not want to preempt the current task. Just return..
2888          */
2889         if (likely(!preemptible()))
2890                 return;
2891
2892         preempt_schedule_common();
2893 }
2894 NOKPROBE_SYMBOL(preempt_schedule);
2895 EXPORT_SYMBOL(preempt_schedule);
2896
2897 #ifdef CONFIG_CONTEXT_TRACKING
2898 /**
2899  * preempt_schedule_context - preempt_schedule called by tracing
2900  *
2901  * The tracing infrastructure uses preempt_enable_notrace to prevent
2902  * recursion and tracing preempt enabling caused by the tracing
2903  * infrastructure itself. But as tracing can happen in areas coming
2904  * from userspace or just about to enter userspace, a preempt enable
2905  * can occur before user_exit() is called. This will cause the scheduler
2906  * to be called when the system is still in usermode.
2907  *
2908  * To prevent this, the preempt_enable_notrace will use this function
2909  * instead of preempt_schedule() to exit user context if needed before
2910  * calling the scheduler.
2911  */
2912 asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2913 {
2914         enum ctx_state prev_ctx;
2915
2916         if (likely(!preemptible()))
2917                 return;
2918
2919         do {
2920                 __preempt_count_add(PREEMPT_ACTIVE);
2921                 /*
2922                  * Needs preempt disabled in case user_exit() is traced
2923                  * and the tracer calls preempt_enable_notrace() causing
2924                  * an infinite recursion.
2925                  */
2926                 prev_ctx = exception_enter();
2927                 __schedule();
2928                 exception_exit(prev_ctx);
2929
2930                 __preempt_count_sub(PREEMPT_ACTIVE);
2931                 barrier();
2932         } while (need_resched());
2933 }
2934 EXPORT_SYMBOL_GPL(preempt_schedule_context);
2935 #endif /* CONFIG_CONTEXT_TRACKING */
2936
2937 #endif /* CONFIG_PREEMPT */
2938
2939 /*
2940  * this is the entry point to schedule() from kernel preemption
2941  * off of irq context.
2942  * Note, that this is called and return with irqs disabled. This will
2943  * protect us against recursive calling from irq.
2944  */
2945 asmlinkage __visible void __sched preempt_schedule_irq(void)
2946 {
2947         enum ctx_state prev_state;
2948
2949         /* Catch callers which need to be fixed */
2950         BUG_ON(preempt_count() || !irqs_disabled());
2951
2952         prev_state = exception_enter();
2953
2954         do {
2955                 __preempt_count_add(PREEMPT_ACTIVE);
2956                 local_irq_enable();
2957                 __schedule();
2958                 local_irq_disable();
2959                 __preempt_count_sub(PREEMPT_ACTIVE);
2960
2961                 /*
2962                  * Check again in case we missed a preemption opportunity
2963                  * between schedule and now.
2964                  */
2965                 barrier();
2966         } while (need_resched());
2967
2968         exception_exit(prev_state);
2969 }
2970
2971 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2972                           void *key)
2973 {
2974         return try_to_wake_up(curr->private, mode, wake_flags);
2975 }
2976 EXPORT_SYMBOL(default_wake_function);
2977
2978 #ifdef CONFIG_RT_MUTEXES
2979
2980 /*
2981  * rt_mutex_setprio - set the current priority of a task
2982  * @p: task
2983  * @prio: prio value (kernel-internal form)
2984  *
2985  * This function changes the 'effective' priority of a task. It does
2986  * not touch ->normal_prio like __setscheduler().
2987  *
2988  * Used by the rt_mutex code to implement priority inheritance
2989  * logic. Call site only calls if the priority of the task changed.
2990  */
2991 void rt_mutex_setprio(struct task_struct *p, int prio)
2992 {
2993         int oldprio, queued, running, enqueue_flag = 0;
2994         struct rq *rq;
2995         const struct sched_class *prev_class;
2996
2997         BUG_ON(prio > MAX_PRIO);
2998
2999         rq = __task_rq_lock(p);
3000
3001         /*
3002          * Idle task boosting is a nono in general. There is one
3003          * exception, when PREEMPT_RT and NOHZ is active:
3004          *
3005          * The idle task calls get_next_timer_interrupt() and holds
3006          * the timer wheel base->lock on the CPU and another CPU wants
3007          * to access the timer (probably to cancel it). We can safely
3008          * ignore the boosting request, as the idle CPU runs this code
3009          * with interrupts disabled and will complete the lock
3010          * protected section without being interrupted. So there is no
3011          * real need to boost.
3012          */
3013         if (unlikely(p == rq->idle)) {
3014                 WARN_ON(p != rq->curr);
3015                 WARN_ON(p->pi_blocked_on);
3016                 goto out_unlock;
3017         }
3018
3019         trace_sched_pi_setprio(p, prio);
3020         oldprio = p->prio;
3021         prev_class = p->sched_class;
3022         queued = task_on_rq_queued(p);
3023         running = task_current(rq, p);
3024         if (queued)
3025                 dequeue_task(rq, p, 0);
3026         if (running)
3027                 put_prev_task(rq, p);
3028
3029         /*
3030          * Boosting condition are:
3031          * 1. -rt task is running and holds mutex A
3032          *      --> -dl task blocks on mutex A
3033          *
3034          * 2. -dl task is running and holds mutex A
3035          *      --> -dl task blocks on mutex A and could preempt the
3036          *          running task
3037          */
3038         if (dl_prio(prio)) {
3039                 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3040                 if (!dl_prio(p->normal_prio) ||
3041                     (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3042                         p->dl.dl_boosted = 1;
3043                         p->dl.dl_throttled = 0;
3044                         enqueue_flag = ENQUEUE_REPLENISH;
3045                 } else
3046                         p->dl.dl_boosted = 0;
3047                 p->sched_class = &dl_sched_class;
3048         } else if (rt_prio(prio)) {
3049                 if (dl_prio(oldprio))
3050                         p->dl.dl_boosted = 0;
3051                 if (oldprio < prio)
3052                         enqueue_flag = ENQUEUE_HEAD;
3053                 p->sched_class = &rt_sched_class;
3054         } else {
3055                 if (dl_prio(oldprio))
3056                         p->dl.dl_boosted = 0;
3057                 if (rt_prio(oldprio))
3058                         p->rt.timeout = 0;
3059                 p->sched_class = &fair_sched_class;
3060         }
3061
3062         p->prio = prio;
3063
3064         if (running)
3065                 p->sched_class->set_curr_task(rq);
3066         if (queued)
3067                 enqueue_task(rq, p, enqueue_flag);
3068
3069         check_class_changed(rq, p, prev_class, oldprio);
3070 out_unlock:
3071         __task_rq_unlock(rq);
3072 }
3073 #endif
3074
3075 void set_user_nice(struct task_struct *p, long nice)
3076 {
3077         int old_prio, delta, queued;
3078         unsigned long flags;
3079         struct rq *rq;
3080
3081         if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3082                 return;
3083         /*
3084          * We have to be careful, if called from sys_setpriority(),
3085          * the task might be in the middle of scheduling on another CPU.
3086          */
3087         rq = task_rq_lock(p, &flags);
3088         /*
3089          * The RT priorities are set via sched_setscheduler(), but we still
3090          * allow the 'normal' nice value to be set - but as expected
3091          * it wont have any effect on scheduling until the task is
3092          * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3093          */
3094         if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3095                 p->static_prio = NICE_TO_PRIO(nice);
3096                 goto out_unlock;
3097         }
3098         queued = task_on_rq_queued(p);
3099         if (queued)
3100                 dequeue_task(rq, p, 0);
3101
3102         p->static_prio = NICE_TO_PRIO(nice);
3103         set_load_weight(p);
3104         old_prio = p->prio;
3105         p->prio = effective_prio(p);
3106         delta = p->prio - old_prio;
3107
3108         if (queued) {
3109                 enqueue_task(rq, p, 0);
3110                 /*
3111                  * If the task increased its priority or is running and
3112                  * lowered its priority, then reschedule its CPU:
3113                  */
3114                 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3115                         resched_curr(rq);
3116         }
3117 out_unlock:
3118         task_rq_unlock(rq, p, &flags);
3119 }
3120 EXPORT_SYMBOL(set_user_nice);
3121
3122 /*
3123  * can_nice - check if a task can reduce its nice value
3124  * @p: task
3125  * @nice: nice value
3126  */
3127 int can_nice(const struct task_struct *p, const int nice)
3128 {
3129         /* convert nice value [19,-20] to rlimit style value [1,40] */
3130         int nice_rlim = nice_to_rlimit(nice);
3131
3132         return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3133                 capable(CAP_SYS_NICE));
3134 }
3135
3136 #ifdef __ARCH_WANT_SYS_NICE
3137
3138 /*
3139  * sys_nice - change the priority of the current process.
3140  * @increment: priority increment
3141  *
3142  * sys_setpriority is a more generic, but much slower function that
3143  * does similar things.
3144  */
3145 SYSCALL_DEFINE1(nice, int, increment)
3146 {
3147         long nice, retval;
3148
3149         /*
3150          * Setpriority might change our priority at the same moment.
3151          * We don't have to worry. Conceptually one call occurs first
3152          * and we have a single winner.
3153          */
3154         increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3155         nice = task_nice(current) + increment;
3156
3157         nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3158         if (increment < 0 && !can_nice(current, nice))
3159                 return -EPERM;
3160
3161         retval = security_task_setnice(current, nice);
3162         if (retval)
3163                 return retval;
3164
3165         set_user_nice(current, nice);
3166         return 0;
3167 }
3168
3169 #endif
3170
3171 /**
3172  * task_prio - return the priority value of a given task.
3173  * @p: the task in question.
3174  *
3175  * Return: The priority value as seen by users in /proc.
3176  * RT tasks are offset by -200. Normal tasks are centered
3177  * around 0, value goes from -16 to +15.
3178  */
3179 int task_prio(const struct task_struct *p)
3180 {
3181         return p->prio - MAX_RT_PRIO;
3182 }
3183
3184 /**
3185  * idle_cpu - is a given cpu idle currently?
3186  * @cpu: the processor in question.
3187  *
3188  * Return: 1 if the CPU is currently idle. 0 otherwise.
3189  */
3190 int idle_cpu(int cpu)
3191 {
3192         struct rq *rq = cpu_rq(cpu);
3193
3194         if (rq->curr != rq->idle)
3195                 return 0;
3196
3197         if (rq->nr_running)
3198                 return 0;
3199
3200 #ifdef CONFIG_SMP
3201         if (!llist_empty(&rq->wake_list))
3202                 return 0;
3203 #endif
3204
3205         return 1;
3206 }
3207
3208 /**
3209  * idle_task - return the idle task for a given cpu.
3210  * @cpu: the processor in question.
3211  *
3212  * Return: The idle task for the cpu @cpu.
3213  */
3214 struct task_struct *idle_task(int cpu)
3215 {
3216         return cpu_rq(cpu)->idle;
3217 }
3218
3219 /**
3220  * find_process_by_pid - find a process with a matching PID value.
3221  * @pid: the pid in question.
3222  *
3223  * The task of @pid, if found. %NULL otherwise.
3224  */
3225 static struct task_struct *find_process_by_pid(pid_t pid)
3226 {
3227         return pid ? find_task_by_vpid(pid) : current;
3228 }
3229
3230 /*
3231  * This function initializes the sched_dl_entity of a newly becoming
3232  * SCHED_DEADLINE task.
3233  *
3234  * Only the static values are considered here, the actual runtime and the
3235  * absolute deadline will be properly calculated when the task is enqueued
3236  * for the first time with its new policy.
3237  */
3238 static void
3239 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3240 {
3241         struct sched_dl_entity *dl_se = &p->dl;
3242
3243         dl_se->dl_runtime = attr->sched_runtime;
3244         dl_se->dl_deadline = attr->sched_deadline;
3245         dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3246         dl_se->flags = attr->sched_flags;
3247         dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3248
3249         /*
3250          * Changing the parameters of a task is 'tricky' and we're not doing
3251          * the correct thing -- also see task_dead_dl() and switched_from_dl().
3252          *
3253          * What we SHOULD do is delay the bandwidth release until the 0-lag
3254          * point. This would include retaining the task_struct until that time
3255          * and change dl_overflow() to not immediately decrement the current
3256          * amount.
3257          *
3258          * Instead we retain the current runtime/deadline and let the new
3259          * parameters take effect after the current reservation period lapses.
3260          * This is safe (albeit pessimistic) because the 0-lag point is always
3261          * before the current scheduling deadline.
3262          *
3263          * We can still have temporary overloads because we do not delay the
3264          * change in bandwidth until that time; so admission control is
3265          * not on the safe side. It does however guarantee tasks will never
3266          * consume more than promised.
3267          */
3268 }
3269
3270 /*
3271  * sched_setparam() passes in -1 for its policy, to let the functions
3272  * it calls know not to change it.
3273  */
3274 #define SETPARAM_POLICY -1
3275
3276 static void __setscheduler_params(struct task_struct *p,
3277                 const struct sched_attr *attr)
3278 {
3279         int policy = attr->sched_policy;
3280
3281         if (policy == SETPARAM_POLICY)
3282                 policy = p->policy;
3283
3284         p->policy = policy;
3285
3286         if (dl_policy(policy))
3287                 __setparam_dl(p, attr);
3288         else if (fair_policy(policy))
3289                 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3290
3291         /*
3292          * __sched_setscheduler() ensures attr->sched_priority == 0 when
3293          * !rt_policy. Always setting this ensures that things like
3294          * getparam()/getattr() don't report silly values for !rt tasks.
3295          */
3296         p->rt_priority = attr->sched_priority;
3297         p->normal_prio = normal_prio(p);
3298         set_load_weight(p);
3299 }
3300
3301 /* Actually do priority change: must hold pi & rq lock. */
3302 static void __setscheduler(struct rq *rq, struct task_struct *p,
3303                            const struct sched_attr *attr)
3304 {
3305         __setscheduler_params(p, attr);
3306
3307         /*
3308          * If we get here, there was no pi waiters boosting the
3309          * task. It is safe to use the normal prio.
3310          */
3311         p->prio = normal_prio(p);
3312
3313         if (dl_prio(p->prio))
3314                 p->sched_class = &dl_sched_class;
3315         else if (rt_prio(p->prio))
3316                 p->sched_class = &rt_sched_class;
3317         else
3318                 p->sched_class = &fair_sched_class;
3319 }
3320
3321 static void
3322 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3323 {
3324         struct sched_dl_entity *dl_se = &p->dl;
3325
3326         attr->sched_priority = p->rt_priority;
3327         attr->sched_runtime = dl_se->dl_runtime;
3328         attr->sched_deadline = dl_se->dl_deadline;
3329         attr->sched_period = dl_se->dl_period;
3330         attr->sched_flags = dl_se->flags;
3331 }
3332
3333 /*
3334  * This function validates the new parameters of a -deadline task.
3335  * We ask for the deadline not being zero, and greater or equal
3336  * than the runtime, as well as the period of being zero or
3337  * greater than deadline. Furthermore, we have to be sure that
3338  * user parameters are above the internal resolution of 1us (we
3339  * check sched_runtime only since it is always the smaller one) and
3340  * below 2^63 ns (we have to check both sched_deadline and
3341  * sched_period, as the latter can be zero).
3342  */
3343 static bool
3344 __checkparam_dl(const struct sched_attr *attr)
3345 {
3346         /* deadline != 0 */
3347         if (attr->sched_deadline == 0)
3348                 return false;
3349
3350         /*
3351          * Since we truncate DL_SCALE bits, make sure we're at least
3352          * that big.
3353          */
3354         if (attr->sched_runtime < (1ULL << DL_SCALE))
3355                 return false;
3356
3357         /*
3358          * Since we use the MSB for wrap-around and sign issues, make
3359          * sure it's not set (mind that period can be equal to zero).
3360          */
3361         if (attr->sched_deadline & (1ULL << 63) ||
3362             attr->sched_period & (1ULL << 63))
3363                 return false;
3364
3365         /* runtime <= deadline <= period (if period != 0) */
3366         if ((attr->sched_period != 0 &&
3367              attr->sched_period < attr->sched_deadline) ||
3368             attr->sched_deadline < attr->sched_runtime)
3369                 return false;
3370
3371         return true;
3372 }
3373
3374 /*
3375  * check the target process has a UID that matches the current process's
3376  */
3377 static bool check_same_owner(struct task_struct *p)
3378 {
3379         const struct cred *cred = current_cred(), *pcred;
3380         bool match;
3381
3382         rcu_read_lock();
3383         pcred = __task_cred(p);
3384         match = (uid_eq(cred->euid, pcred->euid) ||
3385                  uid_eq(cred->euid, pcred->uid));
3386         rcu_read_unlock();
3387         return match;
3388 }
3389
3390 static bool dl_param_changed(struct task_struct *p,
3391                 const struct sched_attr *attr)
3392 {
3393         struct sched_dl_entity *dl_se = &p->dl;
3394
3395         if (dl_se->dl_runtime != attr->sched_runtime ||
3396                 dl_se->dl_deadline != attr->sched_deadline ||
3397                 dl_se->dl_period != attr->sched_period ||
3398                 dl_se->flags != attr->sched_flags)
3399                 return true;
3400
3401         return false;
3402 }
3403
3404 static int __sched_setscheduler(struct task_struct *p,
3405                                 const struct sched_attr *attr,
3406                                 bool user)
3407 {
3408         int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3409                       MAX_RT_PRIO - 1 - attr->sched_priority;
3410         int retval, oldprio, oldpolicy = -1, queued, running;
3411         int policy = attr->sched_policy;
3412         unsigned long flags;
3413         const struct sched_class *prev_class;
3414         struct rq *rq;
3415         int reset_on_fork;
3416
3417         /* may grab non-irq protected spin_locks */
3418         BUG_ON(in_interrupt());
3419 recheck:
3420         /* double check policy once rq lock held */
3421         if (policy < 0) {
3422                 reset_on_fork = p->sched_reset_on_fork;
3423                 policy = oldpolicy = p->policy;
3424         } else {
3425                 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3426
3427                 if (policy != SCHED_DEADLINE &&
3428                                 policy != SCHED_FIFO && policy != SCHED_RR &&
3429                                 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3430                                 policy != SCHED_IDLE)
3431                         return -EINVAL;
3432         }
3433
3434         if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3435                 return -EINVAL;
3436
3437         /*
3438          * Valid priorities for SCHED_FIFO and SCHED_RR are
3439          * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3440          * SCHED_BATCH and SCHED_IDLE is 0.
3441          */
3442         if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3443             (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3444                 return -EINVAL;
3445         if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3446             (rt_policy(policy) != (attr->sched_priority != 0)))
3447                 return -EINVAL;
3448
3449         /*
3450          * Allow unprivileged RT tasks to decrease priority:
3451          */
3452         if (user && !capable(CAP_SYS_NICE)) {
3453                 if (fair_policy(policy)) {
3454                         if (attr->sched_nice < task_nice(p) &&
3455                             !can_nice(p, attr->sched_nice))
3456                                 return -EPERM;
3457                 }
3458
3459                 if (rt_policy(policy)) {
3460                         unsigned long rlim_rtprio =
3461                                         task_rlimit(p, RLIMIT_RTPRIO);
3462
3463                         /* can't set/change the rt policy */
3464                         if (policy != p->policy && !rlim_rtprio)
3465                                 return -EPERM;
3466
3467                         /* can't increase priority */
3468                         if (attr->sched_priority > p->rt_priority &&
3469                             attr->sched_priority > rlim_rtprio)
3470                                 return -EPERM;
3471                 }
3472
3473                  /*
3474                   * Can't set/change SCHED_DEADLINE policy at all for now
3475                   * (safest behavior); in the future we would like to allow
3476                   * unprivileged DL tasks to increase their relative deadline
3477                   * or reduce their runtime (both ways reducing utilization)
3478                   */
3479                 if (dl_policy(policy))
3480                         return -EPERM;
3481
3482                 /*
3483                  * Treat SCHED_IDLE as nice 20. Only allow a switch to
3484                  * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3485                  */
3486                 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3487                         if (!can_nice(p, task_nice(p)))
3488                                 return -EPERM;
3489                 }
3490
3491                 /* can't change other user's priorities */
3492                 if (!check_same_owner(p))
3493                         return -EPERM;
3494
3495                 /* Normal users shall not reset the sched_reset_on_fork flag */
3496                 if (p->sched_reset_on_fork && !reset_on_fork)
3497                         return -EPERM;
3498         }
3499
3500         if (user) {
3501                 retval = security_task_setscheduler(p);
3502                 if (retval)
3503                         return retval;
3504         }
3505
3506         /*
3507          * make sure no PI-waiters arrive (or leave) while we are
3508          * changing the priority of the task:
3509          *
3510          * To be able to change p->policy safely, the appropriate
3511          * runqueue lock must be held.
3512          */
3513         rq = task_rq_lock(p, &flags);
3514
3515         /*
3516          * Changing the policy of the stop threads its a very bad idea
3517          */
3518         if (p == rq->stop) {
3519                 task_rq_unlock(rq, p, &flags);
3520                 return -EINVAL;
3521         }
3522
3523         /*
3524          * If not changing anything there's no need to proceed further,
3525          * but store a possible modification of reset_on_fork.
3526          */
3527         if (unlikely(policy == p->policy)) {
3528                 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3529                         goto change;
3530                 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3531                         goto change;
3532                 if (dl_policy(policy) && dl_param_changed(p, attr))
3533                         goto change;
3534
3535                 p->sched_reset_on_fork = reset_on_fork;
3536                 task_rq_unlock(rq, p, &flags);
3537                 return 0;
3538         }
3539 change:
3540
3541         if (user) {
3542 #ifdef CONFIG_RT_GROUP_SCHED
3543                 /*
3544                  * Do not allow realtime tasks into groups that have no runtime
3545                  * assigned.
3546                  */
3547                 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3548                                 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3549                                 !task_group_is_autogroup(task_group(p))) {
3550                         task_rq_unlock(rq, p, &flags);
3551                         return -EPERM;
3552                 }
3553 #endif
3554 #ifdef CONFIG_SMP
3555                 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3556                         cpumask_t *span = rq->rd->span;
3557
3558                         /*
3559                          * Don't allow tasks with an affinity mask smaller than
3560                          * the entire root_domain to become SCHED_DEADLINE. We
3561                          * will also fail if there's no bandwidth available.
3562                          */
3563                         if (!cpumask_subset(span, &p->cpus_allowed) ||
3564                             rq->rd->dl_bw.bw == 0) {
3565                                 task_rq_unlock(rq, p, &flags);
3566                                 return -EPERM;
3567                         }
3568                 }
3569 #endif
3570         }
3571
3572         /* recheck policy now with rq lock held */
3573         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3574                 policy = oldpolicy = -1;
3575                 task_rq_unlock(rq, p, &flags);
3576                 goto recheck;
3577         }
3578
3579         /*
3580          * If setscheduling to SCHED_DEADLINE (or changing the parameters
3581          * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3582          * is available.
3583          */
3584         if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3585                 task_rq_unlock(rq, p, &flags);
3586                 return -EBUSY;
3587         }
3588
3589         p->sched_reset_on_fork = reset_on_fork;
3590         oldprio = p->prio;
3591
3592         /*
3593          * Special case for priority boosted tasks.
3594          *
3595          * If the new priority is lower or equal (user space view)
3596          * than the current (boosted) priority, we just store the new
3597          * normal parameters and do not touch the scheduler class and
3598          * the runqueue. This will be done when the task deboost
3599          * itself.
3600          */
3601         if (rt_mutex_check_prio(p, newprio)) {
3602                 __setscheduler_params(p, attr);
3603                 task_rq_unlock(rq, p, &flags);
3604                 return 0;
3605         }
3606
3607         queued = task_on_rq_queued(p);
3608         running = task_current(rq, p);
3609         if (queued)
3610                 dequeue_task(rq, p, 0);
3611         if (running)
3612                 put_prev_task(rq, p);
3613
3614         prev_class = p->sched_class;
3615         __setscheduler(rq, p, attr);
3616
3617         if (running)
3618                 p->sched_class->set_curr_task(rq);
3619         if (queued) {
3620                 /*
3621                  * We enqueue to tail when the priority of a task is
3622                  * increased (user space view).
3623                  */
3624                 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3625         }
3626
3627         check_class_changed(rq, p, prev_class, oldprio);
3628         task_rq_unlock(rq, p, &flags);
3629
3630         rt_mutex_adjust_pi(p);
3631
3632         return 0;
3633 }
3634
3635 static int _sched_setscheduler(struct task_struct *p, int policy,
3636                                const struct sched_param *param, bool check)
3637 {
3638         struct sched_attr attr = {
3639                 .sched_policy   = policy,
3640                 .sched_priority = param->sched_priority,
3641                 .sched_nice     = PRIO_TO_NICE(p->static_prio),
3642         };
3643
3644         /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3645         if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3646                 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3647                 policy &= ~SCHED_RESET_ON_FORK;
3648                 attr.sched_policy = policy;
3649         }
3650
3651         return __sched_setscheduler(p, &attr, check);
3652 }
3653 /**
3654  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3655  * @p: the task in question.
3656  * @policy: new policy.
3657  * @param: structure containing the new RT priority.
3658  *
3659  * Return: 0 on success. An error code otherwise.
3660  *
3661  * NOTE that the task may be already dead.
3662  */
3663 int sched_setscheduler(struct task_struct *p, int policy,
3664                        const struct sched_param *param)
3665 {
3666         return _sched_setscheduler(p, policy, param, true);
3667 }
3668 EXPORT_SYMBOL_GPL(sched_setscheduler);
3669
3670 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3671 {
3672         return __sched_setscheduler(p, attr, true);
3673 }
3674 EXPORT_SYMBOL_GPL(sched_setattr);
3675
3676 /**
3677  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3678  * @p: the task in question.
3679  * @policy: new policy.
3680  * @param: structure containing the new RT priority.
3681  *
3682  * Just like sched_setscheduler, only don't bother checking if the
3683  * current context has permission.  For example, this is needed in
3684  * stop_machine(): we create temporary high priority worker threads,
3685  * but our caller might not have that capability.
3686  *
3687  * Return: 0 on success. An error code otherwise.
3688  */
3689 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3690                                const struct sched_param *param)
3691 {
3692         return _sched_setscheduler(p, policy, param, false);
3693 }
3694
3695 static int
3696 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3697 {
3698         struct sched_param lparam;
3699         struct task_struct *p;
3700         int retval;
3701
3702         if (!param || pid < 0)
3703                 return -EINVAL;
3704         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3705                 return -EFAULT;
3706
3707         rcu_read_lock();
3708         retval = -ESRCH;
3709         p = find_process_by_pid(pid);
3710         if (p != NULL)
3711                 retval = sched_setscheduler(p, policy, &lparam);
3712         rcu_read_unlock();
3713
3714         return retval;
3715 }
3716
3717 /*
3718  * Mimics kernel/events/core.c perf_copy_attr().
3719  */
3720 static int sched_copy_attr(struct sched_attr __user *uattr,
3721                            struct sched_attr *attr)
3722 {
3723         u32 size;
3724         int ret;
3725
3726         if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3727                 return -EFAULT;
3728
3729         /*
3730          * zero the full structure, so that a short copy will be nice.
3731          */
3732         memset(attr, 0, sizeof(*attr));
3733
3734         ret = get_user(size, &uattr->size);
3735         if (ret)
3736                 return ret;
3737
3738         if (size > PAGE_SIZE)   /* silly large */
3739                 goto err_size;
3740
3741         if (!size)              /* abi compat */
3742                 size = SCHED_ATTR_SIZE_VER0;
3743
3744         if (size < SCHED_ATTR_SIZE_VER0)
3745                 goto err_size;
3746
3747         /*
3748          * If we're handed a bigger struct than we know of,
3749          * ensure all the unknown bits are 0 - i.e. new
3750          * user-space does not rely on any kernel feature
3751          * extensions we dont know about yet.
3752          */
3753         if (size > sizeof(*attr)) {
3754                 unsigned char __user *addr;
3755                 unsigned char __user *end;
3756                 unsigned char val;
3757
3758                 addr = (void __user *)uattr + sizeof(*attr);
3759                 end  = (void __user *)uattr + size;
3760
3761                 for (; addr < end; addr++) {
3762                         ret = get_user(val, addr);
3763                         if (ret)
3764                                 return ret;
3765                         if (val)
3766                                 goto err_size;
3767                 }
3768                 size = sizeof(*attr);
3769         }
3770
3771         ret = copy_from_user(attr, uattr, size);
3772         if (ret)
3773                 return -EFAULT;
3774
3775         /*
3776          * XXX: do we want to be lenient like existing syscalls; or do we want
3777          * to be strict and return an error on out-of-bounds values?
3778          */
3779         attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3780
3781         return 0;
3782
3783 err_size:
3784         put_user(sizeof(*attr), &uattr->size);
3785         return -E2BIG;
3786 }
3787
3788 /**
3789  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3790  * @pid: the pid in question.
3791  * @policy: new policy.
3792  * @param: structure containing the new RT priority.
3793  *
3794  * Return: 0 on success. An error code otherwise.
3795  */
3796 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3797                 struct sched_param __user *, param)
3798 {
3799         /* negative values for policy are not valid */
3800         if (policy < 0)
3801                 return -EINVAL;
3802
3803         return do_sched_setscheduler(pid, policy, param);
3804 }
3805
3806 /**
3807  * sys_sched_setparam - set/change the RT priority of a thread
3808  * @pid: the pid in question.
3809  * @param: structure containing the new RT priority.
3810  *
3811  * Return: 0 on success. An error code otherwise.
3812  */
3813 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3814 {
3815         return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3816 }
3817
3818 /**
3819  * sys_sched_setattr - same as above, but with extended sched_attr
3820  * @pid: the pid in question.
3821  * @uattr: structure containing the extended parameters.
3822  * @flags: for future extension.
3823  */
3824 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3825                                unsigned int, flags)
3826 {
3827         struct sched_attr attr;
3828         struct task_struct *p;
3829         int retval;
3830
3831         if (!uattr || pid < 0 || flags)
3832                 return -EINVAL;
3833
3834         retval = sched_copy_attr(uattr, &attr);
3835         if (retval)
3836                 return retval;
3837
3838         if ((int)attr.sched_policy < 0)
3839                 return -EINVAL;
3840
3841         rcu_read_lock();
3842         retval = -ESRCH;
3843         p = find_process_by_pid(pid);
3844         if (p != NULL)
3845                 retval = sched_setattr(p, &attr);
3846         rcu_read_unlock();
3847
3848         return retval;
3849 }
3850
3851 /**
3852  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3853  * @pid: the pid in question.
3854  *
3855  * Return: On success, the policy of the thread. Otherwise, a negative error
3856  * code.
3857  */
3858 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3859 {
3860         struct task_struct *p;
3861         int retval;
3862
3863         if (pid < 0)
3864                 return -EINVAL;
3865
3866         retval = -ESRCH;
3867         rcu_read_lock();
3868         p = find_process_by_pid(pid);
3869         if (p) {
3870                 retval = security_task_getscheduler(p);
3871                 if (!retval)
3872                         retval = p->policy
3873                                 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3874         }
3875         rcu_read_unlock();
3876         return retval;
3877 }
3878
3879 /**
3880  * sys_sched_getparam - get the RT priority of a thread
3881  * @pid: the pid in question.
3882  * @param: structure containing the RT priority.
3883  *
3884  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3885  * code.
3886  */
3887 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3888 {
3889         struct sched_param lp = { .sched_priority = 0 };
3890         struct task_struct *p;
3891         int retval;
3892
3893         if (!param || pid < 0)
3894                 return -EINVAL;
3895
3896         rcu_read_lock();
3897         p = find_process_by_pid(pid);
3898         retval = -ESRCH;
3899         if (!p)
3900                 goto out_unlock;
3901
3902         retval = security_task_getscheduler(p);
3903         if (retval)
3904                 goto out_unlock;
3905
3906         if (task_has_rt_policy(p))
3907                 lp.sched_priority = p->rt_priority;
3908         rcu_read_unlock();
3909
3910         /*
3911          * This one might sleep, we cannot do it with a spinlock held ...
3912          */
3913         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3914
3915         return retval;
3916
3917 out_unlock:
3918         rcu_read_unlock();
3919         return retval;
3920 }
3921
3922 static int sched_read_attr(struct sched_attr __user *uattr,
3923                            struct sched_attr *attr,
3924                            unsigned int usize)
3925 {
3926         int ret;
3927
3928         if (!access_ok(VERIFY_WRITE, uattr, usize))
3929                 return -EFAULT;
3930
3931         /*
3932          * If we're handed a smaller struct than we know of,
3933          * ensure all the unknown bits are 0 - i.e. old
3934          * user-space does not get uncomplete information.
3935          */
3936         if (usize < sizeof(*attr)) {
3937                 unsigned char *addr;
3938                 unsigned char *end;
3939
3940                 addr = (void *)attr + usize;
3941                 end  = (void *)attr + sizeof(*attr);
3942
3943                 for (; addr < end; addr++) {
3944                         if (*addr)
3945                                 return -EFBIG;
3946                 }
3947
3948                 attr->size = usize;
3949         }
3950
3951         ret = copy_to_user(uattr, attr, attr->size);
3952         if (ret)
3953                 return -EFAULT;
3954
3955         return 0;
3956 }
3957
3958 /**
3959  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3960  * @pid: the pid in question.
3961  * @uattr: structure containing the extended parameters.
3962  * @size: sizeof(attr) for fwd/bwd comp.
3963  * @flags: for future extension.
3964  */
3965 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3966                 unsigned int, size, unsigned int, flags)
3967 {
3968         struct sched_attr attr = {
3969                 .size = sizeof(struct sched_attr),
3970         };
3971         struct task_struct *p;
3972         int retval;
3973
3974         if (!uattr || pid < 0 || size > PAGE_SIZE ||
3975             size < SCHED_ATTR_SIZE_VER0 || flags)
3976                 return -EINVAL;
3977
3978         rcu_read_lock();
3979         p = find_process_by_pid(pid);
3980         retval = -ESRCH;
3981         if (!p)
3982                 goto out_unlock;
3983
3984         retval = security_task_getscheduler(p);
3985         if (retval)
3986                 goto out_unlock;
3987
3988         attr.sched_policy = p->policy;
3989         if (p->sched_reset_on_fork)
3990                 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3991         if (task_has_dl_policy(p))
3992                 __getparam_dl(p, &attr);
3993         else if (task_has_rt_policy(p))
3994                 attr.sched_priority = p->rt_priority;
3995         else
3996                 attr.sched_nice = task_nice(p);
3997
3998         rcu_read_unlock();
3999
4000         retval = sched_read_attr(uattr, &attr, size);
4001         return retval;
4002
4003 out_unlock:
4004         rcu_read_unlock();
4005         return retval;
4006 }
4007
4008 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4009 {
4010         cpumask_var_t cpus_allowed, new_mask;
4011         struct task_struct *p;
4012         int retval;
4013
4014         rcu_read_lock();
4015
4016         p = find_process_by_pid(pid);
4017         if (!p) {
4018                 rcu_read_unlock();
4019                 return -ESRCH;
4020         }
4021
4022         /* Prevent p going away */
4023         get_task_struct(p);
4024         rcu_read_unlock();
4025
4026         if (p->flags & PF_NO_SETAFFINITY) {
4027                 retval = -EINVAL;
4028                 goto out_put_task;
4029         }
4030         if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4031                 retval = -ENOMEM;
4032                 goto out_put_task;
4033         }
4034         if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4035                 retval = -ENOMEM;
4036                 goto out_free_cpus_allowed;
4037         }
4038         retval = -EPERM;
4039         if (!check_same_owner(p)) {
4040                 rcu_read_lock();
4041                 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4042                         rcu_read_unlock();
4043                         goto out_free_new_mask;
4044                 }
4045                 rcu_read_unlock();
4046         }
4047
4048         retval = security_task_setscheduler(p);
4049         if (retval)
4050                 goto out_free_new_mask;
4051
4052
4053         cpuset_cpus_allowed(p, cpus_allowed);
4054         cpumask_and(new_mask, in_mask, cpus_allowed);
4055
4056         /*
4057          * Since bandwidth control happens on root_domain basis,
4058          * if admission test is enabled, we only admit -deadline
4059          * tasks allowed to run on all the CPUs in the task's
4060          * root_domain.
4061          */
4062 #ifdef CONFIG_SMP
4063         if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4064                 rcu_read_lock();
4065                 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4066                         retval = -EBUSY;
4067                         rcu_read_unlock();
4068                         goto out_free_new_mask;
4069                 }
4070                 rcu_read_unlock();
4071         }
4072 #endif
4073 again:
4074         retval = set_cpus_allowed_ptr(p, new_mask);
4075
4076         if (!retval) {
4077                 cpuset_cpus_allowed(p, cpus_allowed);
4078                 if (!cpumask_subset(new_mask, cpus_allowed)) {
4079                         /*
4080                          * We must have raced with a concurrent cpuset
4081                          * update. Just reset the cpus_allowed to the
4082                          * cpuset's cpus_allowed
4083                          */
4084                         cpumask_copy(new_mask, cpus_allowed);
4085                         goto again;
4086                 }
4087         }
4088 out_free_new_mask:
4089         free_cpumask_var(new_mask);
4090 out_free_cpus_allowed:
4091         free_cpumask_var(cpus_allowed);
4092 out_put_task:
4093         put_task_struct(p);
4094         return retval;
4095 }
4096
4097 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4098                              struct cpumask *new_mask)
4099 {
4100         if (len < cpumask_size())
4101                 cpumask_clear(new_mask);
4102         else if (len > cpumask_size())
4103                 len = cpumask_size();
4104
4105         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4106 }
4107
4108 /**
4109  * sys_sched_setaffinity - set the cpu affinity of a process
4110  * @pid: pid of the process
4111  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4112  * @user_mask_ptr: user-space pointer to the new cpu mask
4113  *
4114  * Return: 0 on success. An error code otherwise.
4115  */
4116 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4117                 unsigned long __user *, user_mask_ptr)
4118 {
4119         cpumask_var_t new_mask;
4120         int retval;
4121
4122         if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4123                 return -ENOMEM;
4124
4125         retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4126         if (retval == 0)
4127                 retval = sched_setaffinity(pid, new_mask);
4128         free_cpumask_var(new_mask);
4129         return retval;
4130 }
4131
4132 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4133 {
4134         struct task_struct *p;
4135         unsigned long flags;
4136         int retval;
4137
4138         rcu_read_lock();
4139
4140         retval = -ESRCH;
4141         p = find_process_by_pid(pid);
4142         if (!p)
4143                 goto out_unlock;
4144
4145         retval = security_task_getscheduler(p);
4146         if (retval)
4147                 goto out_unlock;
4148
4149         raw_spin_lock_irqsave(&p->pi_lock, flags);
4150         cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4151         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4152
4153 out_unlock:
4154         rcu_read_unlock();
4155
4156         return retval;
4157 }
4158
4159 /**
4160  * sys_sched_getaffinity - get the cpu affinity of a process
4161  * @pid: pid of the process
4162  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4163  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4164  *
4165  * Return: 0 on success. An error code otherwise.
4166  */
4167 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4168                 unsigned long __user *, user_mask_ptr)
4169 {
4170         int ret;
4171         cpumask_var_t mask;
4172
4173         if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4174                 return -EINVAL;
4175         if (len & (sizeof(unsigned long)-1))
4176                 return -EINVAL;
4177
4178         if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4179                 return -ENOMEM;
4180
4181         ret = sched_getaffinity(pid, mask);
4182         if (ret == 0) {
4183                 size_t retlen = min_t(size_t, len, cpumask_size());
4184
4185                 if (copy_to_user(user_mask_ptr, mask, retlen))
4186                         ret = -EFAULT;
4187                 else
4188                         ret = retlen;
4189         }
4190         free_cpumask_var(mask);
4191
4192         return ret;
4193 }
4194
4195 /**
4196  * sys_sched_yield - yield the current processor to other threads.
4197  *
4198  * This function yields the current CPU to other tasks. If there are no
4199  * other threads running on this CPU then this function will return.
4200  *
4201  * Return: 0.
4202  */
4203 SYSCALL_DEFINE0(sched_yield)
4204 {
4205         struct rq *rq = this_rq_lock();
4206
4207         schedstat_inc(rq, yld_count);
4208         current->sched_class->yield_task(rq);
4209
4210         /*
4211          * Since we are going to call schedule() anyway, there's
4212          * no need to preempt or enable interrupts:
4213          */
4214         __release(rq->lock);
4215         spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4216         do_raw_spin_unlock(&rq->lock);
4217         sched_preempt_enable_no_resched();
4218
4219         schedule();
4220
4221         return 0;
4222 }
4223
4224 int __sched _cond_resched(void)
4225 {
4226         if (should_resched()) {
4227                 preempt_schedule_common();
4228                 return 1;
4229         }
4230         return 0;
4231 }
4232 EXPORT_SYMBOL(_cond_resched);
4233
4234 /*
4235  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4236  * call schedule, and on return reacquire the lock.
4237  *
4238  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4239  * operations here to prevent schedule() from being called twice (once via
4240  * spin_unlock(), once by hand).
4241  */
4242 int __cond_resched_lock(spinlock_t *lock)
4243 {
4244         int resched = should_resched();
4245         int ret = 0;
4246
4247         lockdep_assert_held(lock);
4248
4249         if (spin_needbreak(lock) || resched) {
4250                 spin_unlock(lock);
4251                 if (resched)
4252                         preempt_schedule_common();
4253                 else
4254                         cpu_relax();
4255                 ret = 1;
4256                 spin_lock(lock);
4257         }
4258         return ret;
4259 }
4260 EXPORT_SYMBOL(__cond_resched_lock);
4261
4262 int __sched __cond_resched_softirq(void)
4263 {
4264         BUG_ON(!in_softirq());
4265
4266         if (should_resched()) {
4267                 local_bh_enable();
4268                 preempt_schedule_common();
4269                 local_bh_disable();
4270                 return 1;
4271         }
4272         return 0;
4273 }
4274 EXPORT_SYMBOL(__cond_resched_softirq);
4275
4276 /**
4277  * yield - yield the current processor to other threads.
4278  *
4279  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4280  *
4281  * The scheduler is at all times free to pick the calling task as the most
4282  * eligible task to run, if removing the yield() call from your code breaks
4283  * it, its already broken.
4284  *
4285  * Typical broken usage is:
4286  *
4287  * while (!event)
4288  *      yield();
4289  *
4290  * where one assumes that yield() will let 'the other' process run that will
4291  * make event true. If the current task is a SCHED_FIFO task that will never
4292  * happen. Never use yield() as a progress guarantee!!
4293  *
4294  * If you want to use yield() to wait for something, use wait_event().
4295  * If you want to use yield() to be 'nice' for others, use cond_resched().
4296  * If you still want to use yield(), do not!
4297  */
4298 void __sched yield(void)
4299 {
4300         set_current_state(TASK_RUNNING);
4301         sys_sched_yield();
4302 }
4303 EXPORT_SYMBOL(yield);
4304
4305 /**
4306  * yield_to - yield the current processor to another thread in
4307  * your thread group, or accelerate that thread toward the
4308  * processor it's on.
4309  * @p: target task
4310  * @preempt: whether task preemption is allowed or not
4311  *
4312  * It's the caller's job to ensure that the target task struct
4313  * can't go away on us before we can do any checks.
4314  *
4315  * Return:
4316  *      true (>0) if we indeed boosted the target task.
4317  *      false (0) if we failed to boost the target.
4318  *      -ESRCH if there's no task to yield to.
4319  */
4320 int __sched yield_to(struct task_struct *p, bool preempt)
4321 {
4322         struct task_struct *curr = current;
4323         struct rq *rq, *p_rq;
4324         unsigned long flags;
4325         int yielded = 0;
4326
4327         local_irq_save(flags);
4328         rq = this_rq();
4329
4330 again:
4331         p_rq = task_rq(p);
4332         /*
4333          * If we're the only runnable task on the rq and target rq also
4334          * has only one task, there's absolutely no point in yielding.
4335          */
4336         if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4337                 yielded = -ESRCH;
4338                 goto out_irq;
4339         }
4340
4341         double_rq_lock(rq, p_rq);
4342         if (task_rq(p) != p_rq) {
4343                 double_rq_unlock(rq, p_rq);
4344                 goto again;
4345         }
4346
4347         if (!curr->sched_class->yield_to_task)
4348                 goto out_unlock;
4349
4350         if (curr->sched_class != p->sched_class)
4351                 goto out_unlock;
4352
4353         if (task_running(p_rq, p) || p->state)
4354                 goto out_unlock;
4355
4356         yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4357         if (yielded) {
4358                 schedstat_inc(rq, yld_count);
4359                 /*
4360                  * Make p's CPU reschedule; pick_next_entity takes care of
4361                  * fairness.
4362                  */
4363                 if (preempt && rq != p_rq)
4364                         resched_curr(p_rq);
4365         }
4366
4367 out_unlock:
4368         double_rq_unlock(rq, p_rq);
4369 out_irq:
4370         local_irq_restore(flags);
4371
4372         if (yielded > 0)
4373                 schedule();
4374
4375         return yielded;
4376 }
4377 EXPORT_SYMBOL_GPL(yield_to);
4378
4379 /*
4380  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4381  * that process accounting knows that this is a task in IO wait state.
4382  */
4383 long __sched io_schedule_timeout(long timeout)
4384 {
4385         int old_iowait = current->in_iowait;
4386         struct rq *rq;
4387         long ret;
4388
4389         current->in_iowait = 1;
4390         if (old_iowait)
4391                 blk_schedule_flush_plug(current);
4392         else
4393                 blk_flush_plug(current);
4394
4395         delayacct_blkio_start();
4396         rq = raw_rq();
4397         atomic_inc(&rq->nr_iowait);
4398         ret = schedule_timeout(timeout);
4399         current->in_iowait = old_iowait;
4400         atomic_dec(&rq->nr_iowait);
4401         delayacct_blkio_end();
4402
4403         return ret;
4404 }
4405 EXPORT_SYMBOL(io_schedule_timeout);
4406
4407 /**
4408  * sys_sched_get_priority_max - return maximum RT priority.
4409  * @policy: scheduling class.
4410  *
4411  * Return: On success, this syscall returns the maximum
4412  * rt_priority that can be used by a given scheduling class.
4413  * On failure, a negative error code is returned.
4414  */
4415 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4416 {
4417         int ret = -EINVAL;
4418
4419         switch (policy) {
4420         case SCHED_FIFO:
4421         case SCHED_RR:
4422                 ret = MAX_USER_RT_PRIO-1;
4423                 break;
4424         case SCHED_DEADLINE:
4425         case SCHED_NORMAL:
4426         case SCHED_BATCH:
4427         case SCHED_IDLE:
4428                 ret = 0;
4429                 break;
4430         }
4431         return ret;
4432 }
4433
4434 /**
4435  * sys_sched_get_priority_min - return minimum RT priority.
4436  * @policy: scheduling class.
4437  *
4438  * Return: On success, this syscall returns the minimum
4439  * rt_priority that can be used by a given scheduling class.
4440  * On failure, a negative error code is returned.
4441  */
4442 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4443 {
4444         int ret = -EINVAL;
4445
4446         switch (policy) {
4447         case SCHED_FIFO:
4448         case SCHED_RR:
4449                 ret = 1;
4450                 break;
4451         case SCHED_DEADLINE:
4452         case SCHED_NORMAL:
4453         case SCHED_BATCH:
4454         case SCHED_IDLE:
4455                 ret = 0;
4456         }
4457         return ret;
4458 }
4459
4460 /**
4461  * sys_sched_rr_get_interval - return the default timeslice of a process.
4462  * @pid: pid of the process.
4463  * @interval: userspace pointer to the timeslice value.
4464  *
4465  * this syscall writes the default timeslice value of a given process
4466  * into the user-space timespec buffer. A value of '0' means infinity.
4467  *
4468  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4469  * an error code.
4470  */
4471 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4472                 struct timespec __user *, interval)
4473 {
4474         struct task_struct *p;
4475         unsigned int time_slice;
4476         unsigned long flags;
4477         struct rq *rq;
4478         int retval;
4479         struct timespec t;
4480
4481         if (pid < 0)
4482                 return -EINVAL;
4483
4484         retval = -ESRCH;
4485         rcu_read_lock();
4486         p = find_process_by_pid(pid);
4487         if (!p)
4488                 goto out_unlock;
4489
4490         retval = security_task_getscheduler(p);
4491         if (retval)
4492                 goto out_unlock;
4493
4494         rq = task_rq_lock(p, &flags);
4495         time_slice = 0;
4496         if (p->sched_class->get_rr_interval)
4497                 time_slice = p->sched_class->get_rr_interval(rq, p);
4498         task_rq_unlock(rq, p, &flags);
4499
4500         rcu_read_unlock();
4501         jiffies_to_timespec(time_slice, &t);
4502         retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4503         return retval;
4504
4505 out_unlock:
4506         rcu_read_unlock();
4507         return retval;
4508 }
4509
4510 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4511
4512 void sched_show_task(struct task_struct *p)
4513 {
4514         unsigned long free = 0;
4515         int ppid;
4516         unsigned long state = p->state;
4517
4518         if (state)
4519                 state = __ffs(state) + 1;
4520         printk(KERN_INFO "%-15.15s %c", p->comm,
4521                 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4522 #if BITS_PER_LONG == 32
4523         if (state == TASK_RUNNING)
4524                 printk(KERN_CONT " running  ");
4525         else
4526                 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4527 #else
4528         if (state == TASK_RUNNING)
4529                 printk(KERN_CONT "  running task    ");
4530         else
4531                 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4532 #endif
4533 #ifdef CONFIG_DEBUG_STACK_USAGE
4534         free = stack_not_used(p);
4535 #endif
4536         ppid = 0;
4537         rcu_read_lock();
4538         if (pid_alive(p))
4539                 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4540         rcu_read_unlock();
4541         printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4542                 task_pid_nr(p), ppid,
4543                 (unsigned long)task_thread_info(p)->flags);
4544
4545         print_worker_info(KERN_INFO, p);
4546         show_stack(p, NULL);
4547 }
4548
4549 void show_state_filter(unsigned long state_filter)
4550 {
4551         struct task_struct *g, *p;
4552
4553 #if BITS_PER_LONG == 32
4554         printk(KERN_INFO
4555                 "  task                PC stack   pid father\n");
4556 #else
4557         printk(KERN_INFO
4558                 "  task                        PC stack   pid father\n");
4559 #endif
4560         rcu_read_lock();
4561         for_each_process_thread(g, p) {
4562                 /*
4563                  * reset the NMI-timeout, listing all files on a slow
4564                  * console might take a lot of time:
4565                  */
4566                 touch_nmi_watchdog();
4567                 if (!state_filter || (p->state & state_filter))
4568                         sched_show_task(p);
4569         }
4570
4571         touch_all_softlockup_watchdogs();
4572
4573 #ifdef CONFIG_SCHED_DEBUG
4574         sysrq_sched_debug_show();
4575 #endif
4576         rcu_read_unlock();
4577         /*
4578          * Only show locks if all tasks are dumped:
4579          */
4580         if (!state_filter)
4581                 debug_show_all_locks();
4582 }
4583
4584 void init_idle_bootup_task(struct task_struct *idle)
4585 {
4586         idle->sched_class = &idle_sched_class;
4587 }
4588
4589 /**
4590  * init_idle - set up an idle thread for a given CPU
4591  * @idle: task in question
4592  * @cpu: cpu the idle task belongs to
4593  *
4594  * NOTE: this function does not set the idle thread's NEED_RESCHED
4595  * flag, to make booting more robust.
4596  */
4597 void init_idle(struct task_struct *idle, int cpu)
4598 {
4599         struct rq *rq = cpu_rq(cpu);
4600         unsigned long flags;
4601
4602         raw_spin_lock_irqsave(&rq->lock, flags);
4603
4604         __sched_fork(0, idle);
4605         idle->state = TASK_RUNNING;
4606         idle->se.exec_start = sched_clock();
4607
4608         do_set_cpus_allowed(idle, cpumask_of(cpu));
4609         /*
4610          * We're having a chicken and egg problem, even though we are
4611          * holding rq->lock, the cpu isn't yet set to this cpu so the
4612          * lockdep check in task_group() will fail.
4613          *
4614          * Similar case to sched_fork(). / Alternatively we could
4615          * use task_rq_lock() here and obtain the other rq->lock.
4616          *
4617          * Silence PROVE_RCU
4618          */
4619         rcu_read_lock();
4620         __set_task_cpu(idle, cpu);
4621         rcu_read_unlock();
4622
4623         rq->curr = rq->idle = idle;
4624         idle->on_rq = TASK_ON_RQ_QUEUED;
4625 #if defined(CONFIG_SMP)
4626         idle->on_cpu = 1;
4627 #endif
4628         raw_spin_unlock_irqrestore(&rq->lock, flags);
4629
4630         /* Set the preempt count _outside_ the spinlocks! */
4631         init_idle_preempt_count(idle, cpu);
4632
4633         /*
4634          * The idle tasks have their own, simple scheduling class:
4635          */
4636         idle->sched_class = &idle_sched_class;
4637         ftrace_graph_init_idle_task(idle, cpu);
4638         vtime_init_idle(idle, cpu);
4639 #if defined(CONFIG_SMP)
4640         sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4641 #endif
4642 }
4643
4644 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4645                               const struct cpumask *trial)
4646 {
4647         int ret = 1, trial_cpus;
4648         struct dl_bw *cur_dl_b;
4649         unsigned long flags;
4650
4651         if (!cpumask_weight(cur))
4652                 return ret;
4653
4654         rcu_read_lock_sched();
4655         cur_dl_b = dl_bw_of(cpumask_any(cur));
4656         trial_cpus = cpumask_weight(trial);
4657
4658         raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4659         if (cur_dl_b->bw != -1 &&
4660             cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4661                 ret = 0;
4662         raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4663         rcu_read_unlock_sched();
4664
4665         return ret;
4666 }
4667
4668 int task_can_attach(struct task_struct *p,
4669                     const struct cpumask *cs_cpus_allowed)
4670 {
4671         int ret = 0;
4672
4673         /*
4674          * Kthreads which disallow setaffinity shouldn't be moved
4675          * to a new cpuset; we don't want to change their cpu
4676          * affinity and isolating such threads by their set of
4677          * allowed nodes is unnecessary.  Thus, cpusets are not
4678          * applicable for such threads.  This prevents checking for
4679          * success of set_cpus_allowed_ptr() on all attached tasks
4680          * before cpus_allowed may be changed.
4681          */
4682         if (p->flags & PF_NO_SETAFFINITY) {
4683                 ret = -EINVAL;
4684                 goto out;
4685         }
4686
4687 #ifdef CONFIG_SMP
4688         if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4689                                               cs_cpus_allowed)) {
4690                 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4691                                                         cs_cpus_allowed);
4692                 struct dl_bw *dl_b;
4693                 bool overflow;
4694                 int cpus;
4695                 unsigned long flags;
4696
4697                 rcu_read_lock_sched();
4698                 dl_b = dl_bw_of(dest_cpu);
4699                 raw_spin_lock_irqsave(&dl_b->lock, flags);
4700                 cpus = dl_bw_cpus(dest_cpu);
4701                 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4702                 if (overflow)
4703                         ret = -EBUSY;
4704                 else {
4705                         /*
4706                          * We reserve space for this task in the destination
4707                          * root_domain, as we can't fail after this point.
4708                          * We will free resources in the source root_domain
4709                          * later on (see set_cpus_allowed_dl()).
4710                          */
4711                         __dl_add(dl_b, p->dl.dl_bw);
4712                 }
4713                 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4714                 rcu_read_unlock_sched();
4715
4716         }
4717 #endif
4718 out:
4719         return ret;
4720 }
4721
4722 #ifdef CONFIG_SMP
4723 /*
4724  * move_queued_task - move a queued task to new rq.
4725  *
4726  * Returns (locked) new rq. Old rq's lock is released.
4727  */
4728 static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4729 {
4730         struct rq *rq = task_rq(p);
4731
4732         lockdep_assert_held(&rq->lock);
4733
4734         dequeue_task(rq, p, 0);
4735         p->on_rq = TASK_ON_RQ_MIGRATING;
4736         set_task_cpu(p, new_cpu);
4737         raw_spin_unlock(&rq->lock);
4738
4739         rq = cpu_rq(new_cpu);
4740
4741         raw_spin_lock(&rq->lock);
4742         BUG_ON(task_cpu(p) != new_cpu);
4743         p->on_rq = TASK_ON_RQ_QUEUED;
4744         enqueue_task(rq, p, 0);
4745         check_preempt_curr(rq, p, 0);
4746
4747         return rq;
4748 }
4749
4750 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4751 {
4752         if (p->sched_class->set_cpus_allowed)
4753                 p->sched_class->set_cpus_allowed(p, new_mask);
4754
4755         cpumask_copy(&p->cpus_allowed, new_mask);
4756         p->nr_cpus_allowed = cpumask_weight(new_mask);
4757 }
4758
4759 /*
4760  * This is how migration works:
4761  *
4762  * 1) we invoke migration_cpu_stop() on the target CPU using
4763  *    stop_one_cpu().
4764  * 2) stopper starts to run (implicitly forcing the migrated thread
4765  *    off the CPU)
4766  * 3) it checks whether the migrated task is still in the wrong runqueue.
4767  * 4) if it's in the wrong runqueue then the migration thread removes
4768  *    it and puts it into the right queue.
4769  * 5) stopper completes and stop_one_cpu() returns and the migration
4770  *    is done.
4771  */
4772
4773 /*
4774  * Change a given task's CPU affinity. Migrate the thread to a
4775  * proper CPU and schedule it away if the CPU it's executing on
4776  * is removed from the allowed bitmask.
4777  *
4778  * NOTE: the caller must have a valid reference to the task, the
4779  * task must not exit() & deallocate itself prematurely. The
4780  * call is not atomic; no spinlocks may be held.
4781  */
4782 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4783 {
4784         unsigned long flags;
4785         struct rq *rq;
4786         unsigned int dest_cpu;
4787         int ret = 0;
4788
4789         rq = task_rq_lock(p, &flags);
4790
4791         if (cpumask_equal(&p->cpus_allowed, new_mask))
4792                 goto out;
4793
4794         if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4795                 ret = -EINVAL;
4796                 goto out;
4797         }
4798
4799         do_set_cpus_allowed(p, new_mask);
4800
4801         /* Can the task run on the task's current CPU? If so, we're done */
4802         if (cpumask_test_cpu(task_cpu(p), new_mask))
4803                 goto out;
4804
4805         dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4806         if (task_running(rq, p) || p->state == TASK_WAKING) {
4807                 struct migration_arg arg = { p, dest_cpu };
4808                 /* Need help from migration thread: drop lock and wait. */
4809                 task_rq_unlock(rq, p, &flags);
4810                 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4811                 tlb_migrate_finish(p->mm);
4812                 return 0;
4813         } else if (task_on_rq_queued(p))
4814                 rq = move_queued_task(p, dest_cpu);
4815 out:
4816         task_rq_unlock(rq, p, &flags);
4817
4818         return ret;
4819 }
4820 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4821
4822 /*
4823  * Move (not current) task off this cpu, onto dest cpu. We're doing
4824  * this because either it can't run here any more (set_cpus_allowed()
4825  * away from this CPU, or CPU going down), or because we're
4826  * attempting to rebalance this task on exec (sched_exec).
4827  *
4828  * So we race with normal scheduler movements, but that's OK, as long
4829  * as the task is no longer on this CPU.
4830  *
4831  * Returns non-zero if task was successfully migrated.
4832  */
4833 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4834 {
4835         struct rq *rq;
4836         int ret = 0;
4837
4838         if (unlikely(!cpu_active(dest_cpu)))
4839                 return ret;
4840
4841         rq = cpu_rq(src_cpu);
4842
4843         raw_spin_lock(&p->pi_lock);
4844         raw_spin_lock(&rq->lock);
4845         /* Already moved. */
4846         if (task_cpu(p) != src_cpu)
4847                 goto done;
4848
4849         /* Affinity changed (again). */
4850         if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4851                 goto fail;
4852
4853         /*
4854          * If we're not on a rq, the next wake-up will ensure we're
4855          * placed properly.
4856          */
4857         if (task_on_rq_queued(p))
4858                 rq = move_queued_task(p, dest_cpu);
4859 done:
4860         ret = 1;
4861 fail:
4862         raw_spin_unlock(&rq->lock);
4863         raw_spin_unlock(&p->pi_lock);
4864         return ret;
4865 }
4866
4867 #ifdef CONFIG_NUMA_BALANCING
4868 /* Migrate current task p to target_cpu */
4869 int migrate_task_to(struct task_struct *p, int target_cpu)
4870 {
4871         struct migration_arg arg = { p, target_cpu };
4872         int curr_cpu = task_cpu(p);
4873
4874         if (curr_cpu == target_cpu)
4875                 return 0;
4876
4877         if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4878                 return -EINVAL;
4879
4880         /* TODO: This is not properly updating schedstats */
4881
4882         trace_sched_move_numa(p, curr_cpu, target_cpu);
4883         return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4884 }
4885
4886 /*
4887  * Requeue a task on a given node and accurately track the number of NUMA
4888  * tasks on the runqueues
4889  */
4890 void sched_setnuma(struct task_struct *p, int nid)
4891 {
4892         struct rq *rq;
4893         unsigned long flags;
4894         bool queued, running;
4895
4896         rq = task_rq_lock(p, &flags);
4897         queued = task_on_rq_queued(p);
4898         running = task_current(rq, p);
4899
4900         if (queued)
4901                 dequeue_task(rq, p, 0);
4902         if (running)
4903                 put_prev_task(rq, p);
4904
4905         p->numa_preferred_nid = nid;
4906
4907         if (running)
4908                 p->sched_class->set_curr_task(rq);
4909         if (queued)
4910                 enqueue_task(rq, p, 0);
4911         task_rq_unlock(rq, p, &flags);
4912 }
4913 #endif
4914
4915 /*
4916  * migration_cpu_stop - this will be executed by a highprio stopper thread
4917  * and performs thread migration by bumping thread off CPU then
4918  * 'pushing' onto another runqueue.
4919  */
4920 static int migration_cpu_stop(void *data)
4921 {
4922         struct migration_arg *arg = data;
4923
4924         /*
4925          * The original target cpu might have gone down and we might
4926          * be on another cpu but it doesn't matter.
4927          */
4928         local_irq_disable();
4929         /*
4930          * We need to explicitly wake pending tasks before running
4931          * __migrate_task() such that we will not miss enforcing cpus_allowed
4932          * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4933          */
4934         sched_ttwu_pending();
4935         __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4936         local_irq_enable();
4937         return 0;
4938 }
4939
4940 #ifdef CONFIG_HOTPLUG_CPU
4941
4942 /*
4943  * Ensures that the idle task is using init_mm right before its cpu goes
4944  * offline.
4945  */
4946 void idle_task_exit(void)
4947 {
4948         struct mm_struct *mm = current->active_mm;
4949
4950         BUG_ON(cpu_online(smp_processor_id()));
4951
4952         if (mm != &init_mm) {
4953                 switch_mm(mm, &init_mm, current);
4954                 finish_arch_post_lock_switch();
4955         }
4956         mmdrop(mm);
4957 }
4958
4959 /*
4960  * Since this CPU is going 'away' for a while, fold any nr_active delta
4961  * we might have. Assumes we're called after migrate_tasks() so that the
4962  * nr_active count is stable.
4963  *
4964  * Also see the comment "Global load-average calculations".
4965  */
4966 static void calc_load_migrate(struct rq *rq)
4967 {
4968         long delta = calc_load_fold_active(rq);
4969         if (delta)
4970                 atomic_long_add(delta, &calc_load_tasks);
4971 }
4972
4973 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4974 {
4975 }
4976
4977 static const struct sched_class fake_sched_class = {
4978         .put_prev_task = put_prev_task_fake,
4979 };
4980
4981 static struct task_struct fake_task = {
4982         /*
4983          * Avoid pull_{rt,dl}_task()
4984          */
4985         .prio = MAX_PRIO + 1,
4986         .sched_class = &fake_sched_class,
4987 };
4988
4989 /*
4990  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4991  * try_to_wake_up()->select_task_rq().
4992  *
4993  * Called with rq->lock held even though we'er in stop_machine() and
4994  * there's no concurrency possible, we hold the required locks anyway
4995  * because of lock validation efforts.
4996  */
4997 static void migrate_tasks(unsigned int dead_cpu)
4998 {
4999         struct rq *rq = cpu_rq(dead_cpu);
5000         struct task_struct *next, *stop = rq->stop;
5001         int dest_cpu;
5002
5003         /*
5004          * Fudge the rq selection such that the below task selection loop
5005          * doesn't get stuck on the currently eligible stop task.
5006          *
5007          * We're currently inside stop_machine() and the rq is either stuck
5008          * in the stop_machine_cpu_stop() loop, or we're executing this code,
5009          * either way we should never end up calling schedule() until we're
5010          * done here.
5011          */
5012         rq->stop = NULL;
5013
5014         /*
5015          * put_prev_task() and pick_next_task() sched
5016          * class method both need to have an up-to-date
5017          * value of rq->clock[_task]
5018          */
5019         update_rq_clock(rq);
5020
5021         for ( ; ; ) {
5022                 /*
5023                  * There's this thread running, bail when that's the only
5024                  * remaining thread.
5025                  */
5026                 if (rq->nr_running == 1)
5027                         break;
5028
5029                 next = pick_next_task(rq, &fake_task);
5030                 BUG_ON(!next);
5031                 next->sched_class->put_prev_task(rq, next);
5032
5033                 /* Find suitable destination for @next, with force if needed. */
5034                 dest_cpu = select_fallback_rq(dead_cpu, next);
5035                 raw_spin_unlock(&rq->lock);
5036
5037                 __migrate_task(next, dead_cpu, dest_cpu);
5038
5039                 raw_spin_lock(&rq->lock);
5040         }
5041
5042         rq->stop = stop;
5043 }
5044
5045 #endif /* CONFIG_HOTPLUG_CPU */
5046
5047 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5048
5049 static struct ctl_table sd_ctl_dir[] = {
5050         {
5051                 .procname       = "sched_domain",
5052                 .mode           = 0555,
5053         },
5054         {}
5055 };
5056
5057 static struct ctl_table sd_ctl_root[] = {
5058         {
5059                 .procname       = "kernel",
5060                 .mode           = 0555,
5061                 .child          = sd_ctl_dir,
5062         },
5063         {}
5064 };
5065
5066 static struct ctl_table *sd_alloc_ctl_entry(int n)
5067 {
5068         struct ctl_table *entry =
5069                 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5070
5071         return entry;
5072 }
5073
5074 static void sd_free_ctl_entry(struct ctl_table **tablep)
5075 {
5076         struct ctl_table *entry;
5077
5078         /*
5079          * In the intermediate directories, both the child directory and
5080          * procname are dynamically allocated and could fail but the mode
5081          * will always be set. In the lowest directory the names are
5082          * static strings and all have proc handlers.
5083          */
5084         for (entry = *tablep; entry->mode; entry++) {
5085                 if (entry->child)
5086                         sd_free_ctl_entry(&entry->child);
5087                 if (entry->proc_handler == NULL)
5088                         kfree(entry->procname);
5089         }
5090
5091         kfree(*tablep);
5092         *tablep = NULL;
5093 }
5094
5095 static int min_load_idx = 0;
5096 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5097
5098 static void
5099 set_table_entry(struct ctl_table *entry,
5100                 const char *procname, void *data, int maxlen,
5101                 umode_t mode, proc_handler *proc_handler,
5102                 bool load_idx)
5103 {
5104         entry->procname = procname;
5105         entry->data = data;
5106         entry->maxlen = maxlen;
5107         entry->mode = mode;
5108         entry->proc_handler = proc_handler;
5109
5110         if (load_idx) {
5111                 entry->extra1 = &min_load_idx;
5112                 entry->extra2 = &max_load_idx;
5113         }
5114 }
5115
5116 static struct ctl_table *
5117 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5118 {
5119         struct ctl_table *table = sd_alloc_ctl_entry(14);
5120
5121         if (table == NULL)
5122                 return NULL;
5123
5124         set_table_entry(&table[0], "min_interval", &sd->min_interval,
5125                 sizeof(long), 0644, proc_doulongvec_minmax, false);
5126         set_table_entry(&table[1], "max_interval", &sd->max_interval,
5127                 sizeof(long), 0644, proc_doulongvec_minmax, false);
5128         set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5129                 sizeof(int), 0644, proc_dointvec_minmax, true);
5130         set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5131                 sizeof(int), 0644, proc_dointvec_minmax, true);
5132         set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5133                 sizeof(int), 0644, proc_dointvec_minmax, true);
5134         set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5135                 sizeof(int), 0644, proc_dointvec_minmax, true);
5136         set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5137                 sizeof(int), 0644, proc_dointvec_minmax, true);
5138         set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5139                 sizeof(int), 0644, proc_dointvec_minmax, false);
5140         set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5141                 sizeof(int), 0644, proc_dointvec_minmax, false);
5142         set_table_entry(&table[9], "cache_nice_tries",
5143                 &sd->cache_nice_tries,
5144                 sizeof(int), 0644, proc_dointvec_minmax, false);
5145         set_table_entry(&table[10], "flags", &sd->flags,
5146                 sizeof(int), 0644, proc_dointvec_minmax, false);
5147         set_table_entry(&table[11], "max_newidle_lb_cost",
5148                 &sd->max_newidle_lb_cost,
5149                 sizeof(long), 0644, proc_doulongvec_minmax, false);
5150         set_table_entry(&table[12], "name", sd->name,
5151                 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5152         /* &table[13] is terminator */
5153
5154         return table;
5155 }
5156
5157 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5158 {
5159         struct ctl_table *entry, *table;
5160         struct sched_domain *sd;
5161         int domain_num = 0, i;
5162         char buf[32];
5163
5164         for_each_domain(cpu, sd)
5165                 domain_num++;
5166         entry = table = sd_alloc_ctl_entry(domain_num + 1);
5167         if (table == NULL)
5168                 return NULL;
5169
5170         i = 0;
5171         for_each_domain(cpu, sd) {
5172                 snprintf(buf, 32, "domain%d", i);
5173                 entry->procname = kstrdup(buf, GFP_KERNEL);
5174                 entry->mode = 0555;
5175                 entry->child = sd_alloc_ctl_domain_table(sd);
5176                 entry++;
5177                 i++;
5178         }
5179         return table;
5180 }
5181
5182 static struct ctl_table_header *sd_sysctl_header;
5183 static void register_sched_domain_sysctl(void)
5184 {
5185         int i, cpu_num = num_possible_cpus();
5186         struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5187         char buf[32];
5188
5189         WARN_ON(sd_ctl_dir[0].child);
5190         sd_ctl_dir[0].child = entry;
5191
5192         if (entry == NULL)
5193                 return;
5194
5195         for_each_possible_cpu(i) {
5196                 snprintf(buf, 32, "cpu%d", i);
5197                 entry->procname = kstrdup(buf, GFP_KERNEL);
5198                 entry->mode = 0555;
5199                 entry->child = sd_alloc_ctl_cpu_table(i);
5200                 entry++;
5201         }
5202
5203         WARN_ON(sd_sysctl_header);
5204         sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5205 }
5206
5207 /* may be called multiple times per register */
5208 static void unregister_sched_domain_sysctl(void)
5209 {
5210         if (sd_sysctl_header)
5211                 unregister_sysctl_table(sd_sysctl_header);
5212         sd_sysctl_header = NULL;
5213         if (sd_ctl_dir[0].child)
5214                 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5215 }
5216 #else
5217 static void register_sched_domain_sysctl(void)
5218 {
5219 }
5220 static void unregister_sched_domain_sysctl(void)
5221 {
5222 }
5223 #endif
5224
5225 static void set_rq_online(struct rq *rq)
5226 {
5227         if (!rq->online) {
5228                 const struct sched_class *class;
5229
5230                 cpumask_set_cpu(rq->cpu, rq->rd->online);
5231                 rq->online = 1;
5232
5233                 for_each_class(class) {
5234                         if (class->rq_online)
5235                                 class->rq_online(rq);
5236                 }
5237         }
5238 }
5239
5240 static void set_rq_offline(struct rq *rq)
5241 {
5242         if (rq->online) {
5243                 const struct sched_class *class;
5244
5245                 for_each_class(class) {
5246                         if (class->rq_offline)
5247                                 class->rq_offline(rq);
5248                 }
5249
5250                 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5251                 rq->online = 0;
5252         }
5253 }
5254
5255 /*
5256  * migration_call - callback that gets triggered when a CPU is added.
5257  * Here we can start up the necessary migration thread for the new CPU.
5258  */
5259 static int
5260 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5261 {
5262         int cpu = (long)hcpu;
5263         unsigned long flags;
5264         struct rq *rq = cpu_rq(cpu);
5265
5266         switch (action & ~CPU_TASKS_FROZEN) {
5267
5268         case CPU_UP_PREPARE:
5269                 rq->calc_load_update = calc_load_update;
5270                 break;
5271
5272         case CPU_ONLINE:
5273                 /* Update our root-domain */
5274                 raw_spin_lock_irqsave(&rq->lock, flags);
5275                 if (rq->rd) {
5276                         BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5277
5278                         set_rq_online(rq);
5279                 }
5280                 raw_spin_unlock_irqrestore(&rq->lock, flags);
5281                 break;
5282
5283 #ifdef CONFIG_HOTPLUG_CPU
5284         case CPU_DYING:
5285                 sched_ttwu_pending();
5286                 /* Update our root-domain */
5287                 raw_spin_lock_irqsave(&rq->lock, flags);
5288                 if (rq->rd) {
5289                         BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5290                         set_rq_offline(rq);
5291                 }
5292                 migrate_tasks(cpu);
5293                 BUG_ON(rq->nr_running != 1); /* the migration thread */
5294                 raw_spin_unlock_irqrestore(&rq->lock, flags);
5295                 break;
5296
5297         case CPU_DEAD:
5298                 calc_load_migrate(rq);
5299                 break;
5300 #endif
5301         }
5302
5303         update_max_interval();
5304
5305         return NOTIFY_OK;
5306 }
5307
5308 /*
5309  * Register at high priority so that task migration (migrate_all_tasks)
5310  * happens before everything else.  This has to be lower priority than
5311  * the notifier in the perf_event subsystem, though.
5312  */
5313 static struct notifier_block migration_notifier = {
5314         .notifier_call = migration_call,
5315         .priority = CPU_PRI_MIGRATION,
5316 };
5317
5318 static void __cpuinit set_cpu_rq_start_time(void)
5319 {
5320         int cpu = smp_processor_id();
5321         struct rq *rq = cpu_rq(cpu);
5322         rq->age_stamp = sched_clock_cpu(cpu);
5323 }
5324
5325 static int sched_cpu_active(struct notifier_block *nfb,
5326                                       unsigned long action, void *hcpu)
5327 {
5328         switch (action & ~CPU_TASKS_FROZEN) {
5329         case CPU_STARTING:
5330                 set_cpu_rq_start_time();
5331                 return NOTIFY_OK;
5332         case CPU_DOWN_FAILED:
5333                 set_cpu_active((long)hcpu, true);
5334                 return NOTIFY_OK;
5335         default:
5336                 return NOTIFY_DONE;
5337         }
5338 }
5339
5340 static int sched_cpu_inactive(struct notifier_block *nfb,
5341                                         unsigned long action, void *hcpu)
5342 {
5343         switch (action & ~CPU_TASKS_FROZEN) {
5344         case CPU_DOWN_PREPARE:
5345                 set_cpu_active((long)hcpu, false);
5346                 return NOTIFY_OK;
5347         default:
5348                 return NOTIFY_DONE;
5349         }
5350 }
5351
5352 static int __init migration_init(void)
5353 {
5354         void *cpu = (void *)(long)smp_processor_id();
5355         int err;
5356
5357         /* Initialize migration for the boot CPU */
5358         err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5359         BUG_ON(err == NOTIFY_BAD);
5360         migration_call(&migration_notifier, CPU_ONLINE, cpu);
5361         register_cpu_notifier(&migration_notifier);
5362
5363         /* Register cpu active notifiers */
5364         cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5365         cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5366
5367         return 0;
5368 }
5369 early_initcall(migration_init);
5370 #endif
5371
5372 #ifdef CONFIG_SMP
5373
5374 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5375
5376 #ifdef CONFIG_SCHED_DEBUG
5377
5378 static __read_mostly int sched_debug_enabled;
5379
5380 static int __init sched_debug_setup(char *str)
5381 {
5382         sched_debug_enabled = 1;
5383
5384         return 0;
5385 }
5386 early_param("sched_debug", sched_debug_setup);
5387
5388 static inline bool sched_debug(void)
5389 {
5390         return sched_debug_enabled;
5391 }
5392
5393 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5394                                   struct cpumask *groupmask)
5395 {
5396         struct sched_group *group = sd->groups;
5397
5398         cpumask_clear(groupmask);
5399
5400         printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5401
5402         if (!(sd->flags & SD_LOAD_BALANCE)) {
5403                 printk("does not load-balance\n");
5404                 if (sd->parent)
5405                         printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5406                                         " has parent");
5407                 return -1;
5408         }
5409
5410         printk(KERN_CONT "span %*pbl level %s\n",
5411                cpumask_pr_args(sched_domain_span(sd)), sd->name);
5412
5413         if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5414                 printk(KERN_ERR "ERROR: domain->span does not contain "
5415                                 "CPU%d\n", cpu);
5416         }
5417         if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5418                 printk(KERN_ERR "ERROR: domain->groups does not contain"
5419                                 " CPU%d\n", cpu);
5420         }
5421
5422         printk(KERN_DEBUG "%*s groups:", level + 1, "");
5423         do {
5424                 if (!group) {
5425                         printk("\n");
5426                         printk(KERN_ERR "ERROR: group is NULL\n");
5427                         break;
5428                 }
5429
5430                 if (!cpumask_weight(sched_group_cpus(group))) {
5431                         printk(KERN_CONT "\n");
5432                         printk(KERN_ERR "ERROR: empty group\n");
5433                         break;
5434                 }
5435
5436                 if (!(sd->flags & SD_OVERLAP) &&
5437                     cpumask_intersects(groupmask, sched_group_cpus(group))) {
5438                         printk(KERN_CONT "\n");
5439                         printk(KERN_ERR "ERROR: repeated CPUs\n");
5440                         break;
5441                 }
5442
5443                 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5444
5445                 printk(KERN_CONT " %*pbl",
5446                        cpumask_pr_args(sched_group_cpus(group)));
5447                 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5448                         printk(KERN_CONT " (cpu_capacity = %d)",
5449                                 group->sgc->capacity);
5450                 }
5451
5452                 group = group->next;
5453         } while (group != sd->groups);
5454         printk(KERN_CONT "\n");
5455
5456         if (!cpumask_equal(sched_domain_span(sd), groupmask))
5457                 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5458
5459         if (sd->parent &&
5460             !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5461                 printk(KERN_ERR "ERROR: parent span is not a superset "
5462                         "of domain->span\n");
5463         return 0;
5464 }
5465
5466 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5467 {
5468         int level = 0;
5469
5470         if (!sched_debug_enabled)
5471                 return;
5472
5473         if (!sd) {
5474                 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5475                 return;
5476         }
5477
5478         printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5479
5480         for (;;) {
5481                 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5482                         break;
5483                 level++;
5484                 sd = sd->parent;
5485                 if (!sd)
5486                         break;
5487         }
5488 }
5489 #else /* !CONFIG_SCHED_DEBUG */
5490 # define sched_domain_debug(sd, cpu) do { } while (0)
5491 static inline bool sched_debug(void)
5492 {
5493         return false;
5494 }
5495 #endif /* CONFIG_SCHED_DEBUG */
5496
5497 static int sd_degenerate(struct sched_domain *sd)
5498 {
5499         if (cpumask_weight(sched_domain_span(sd)) == 1)
5500                 return 1;
5501
5502         /* Following flags need at least 2 groups */
5503         if (sd->flags & (SD_LOAD_BALANCE |
5504                          SD_BALANCE_NEWIDLE |
5505                          SD_BALANCE_FORK |
5506                          SD_BALANCE_EXEC |
5507                          SD_SHARE_CPUCAPACITY |
5508                          SD_SHARE_PKG_RESOURCES |
5509                          SD_SHARE_POWERDOMAIN)) {
5510                 if (sd->groups != sd->groups->next)
5511                         return 0;
5512         }
5513
5514         /* Following flags don't use groups */
5515         if (sd->flags & (SD_WAKE_AFFINE))
5516                 return 0;
5517
5518         return 1;
5519 }
5520
5521 static int
5522 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5523 {
5524         unsigned long cflags = sd->flags, pflags = parent->flags;
5525
5526         if (sd_degenerate(parent))
5527                 return 1;
5528
5529         if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5530                 return 0;
5531
5532         /* Flags needing groups don't count if only 1 group in parent */
5533         if (parent->groups == parent->groups->next) {
5534                 pflags &= ~(SD_LOAD_BALANCE |
5535                                 SD_BALANCE_NEWIDLE |
5536                                 SD_BALANCE_FORK |
5537                                 SD_BALANCE_EXEC |
5538                                 SD_SHARE_CPUCAPACITY |
5539                                 SD_SHARE_PKG_RESOURCES |
5540                                 SD_PREFER_SIBLING |
5541                                 SD_SHARE_POWERDOMAIN);
5542                 if (nr_node_ids == 1)
5543                         pflags &= ~SD_SERIALIZE;
5544         }
5545         if (~cflags & pflags)
5546                 return 0;
5547
5548         return 1;
5549 }
5550
5551 static void free_rootdomain(struct rcu_head *rcu)
5552 {
5553         struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5554
5555         cpupri_cleanup(&rd->cpupri);
5556         cpudl_cleanup(&rd->cpudl);
5557         free_cpumask_var(rd->dlo_mask);
5558         free_cpumask_var(rd->rto_mask);
5559         free_cpumask_var(rd->online);
5560         free_cpumask_var(rd->span);
5561         kfree(rd);
5562 }
5563
5564 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5565 {
5566         struct root_domain *old_rd = NULL;
5567         unsigned long flags;
5568
5569         raw_spin_lock_irqsave(&rq->lock, flags);
5570
5571         if (rq->rd) {
5572                 old_rd = rq->rd;
5573
5574                 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5575                         set_rq_offline(rq);
5576
5577                 cpumask_clear_cpu(rq->cpu, old_rd->span);
5578
5579                 /*
5580                  * If we dont want to free the old_rd yet then
5581                  * set old_rd to NULL to skip the freeing later
5582                  * in this function:
5583                  */
5584                 if (!atomic_dec_and_test(&old_rd->refcount))
5585                         old_rd = NULL;
5586         }
5587
5588         atomic_inc(&rd->refcount);
5589         rq->rd = rd;
5590
5591         cpumask_set_cpu(rq->cpu, rd->span);
5592         if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5593                 set_rq_online(rq);
5594
5595         raw_spin_unlock_irqrestore(&rq->lock, flags);
5596
5597         if (old_rd)
5598                 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5599 }
5600
5601 static int init_rootdomain(struct root_domain *rd)
5602 {
5603         memset(rd, 0, sizeof(*rd));
5604
5605         if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5606                 goto out;
5607         if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5608                 goto free_span;
5609         if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5610                 goto free_online;
5611         if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5612                 goto free_dlo_mask;
5613
5614         init_dl_bw(&rd->dl_bw);
5615         if (cpudl_init(&rd->cpudl) != 0)
5616                 goto free_dlo_mask;
5617
5618         if (cpupri_init(&rd->cpupri) != 0)
5619                 goto free_rto_mask;
5620         return 0;
5621
5622 free_rto_mask:
5623         free_cpumask_var(rd->rto_mask);
5624 free_dlo_mask:
5625         free_cpumask_var(rd->dlo_mask);
5626 free_online:
5627         free_cpumask_var(rd->online);
5628 free_span:
5629         free_cpumask_var(rd->span);
5630 out:
5631         return -ENOMEM;
5632 }
5633
5634 /*
5635  * By default the system creates a single root-domain with all cpus as
5636  * members (mimicking the global state we have today).
5637  */
5638 struct root_domain def_root_domain;
5639
5640 static void init_defrootdomain(void)
5641 {
5642         init_rootdomain(&def_root_domain);
5643
5644         atomic_set(&def_root_domain.refcount, 1);
5645 }
5646
5647 static struct root_domain *alloc_rootdomain(void)
5648 {
5649         struct root_domain *rd;
5650
5651         rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5652         if (!rd)
5653                 return NULL;
5654
5655         if (init_rootdomain(rd) != 0) {
5656                 kfree(rd);
5657                 return NULL;
5658         }
5659
5660         return rd;
5661 }
5662
5663 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5664 {
5665         struct sched_group *tmp, *first;
5666
5667         if (!sg)
5668                 return;
5669
5670         first = sg;
5671         do {
5672                 tmp = sg->next;
5673
5674                 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5675                         kfree(sg->sgc);
5676
5677                 kfree(sg);
5678                 sg = tmp;
5679         } while (sg != first);
5680 }
5681
5682 static void free_sched_domain(struct rcu_head *rcu)
5683 {
5684         struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5685
5686         /*
5687          * If its an overlapping domain it has private groups, iterate and
5688          * nuke them all.
5689          */
5690         if (sd->flags & SD_OVERLAP) {
5691                 free_sched_groups(sd->groups, 1);
5692         } else if (atomic_dec_and_test(&sd->groups->ref)) {
5693                 kfree(sd->groups->sgc);
5694                 kfree(sd->groups);
5695         }
5696         kfree(sd);
5697 }
5698
5699 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5700 {
5701         call_rcu(&sd->rcu, free_sched_domain);
5702 }
5703
5704 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5705 {
5706         for (; sd; sd = sd->parent)
5707                 destroy_sched_domain(sd, cpu);
5708 }
5709
5710 /*
5711  * Keep a special pointer to the highest sched_domain that has
5712  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5713  * allows us to avoid some pointer chasing select_idle_sibling().
5714  *
5715  * Also keep a unique ID per domain (we use the first cpu number in
5716  * the cpumask of the domain), this allows us to quickly tell if
5717  * two cpus are in the same cache domain, see cpus_share_cache().
5718  */
5719 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5720 DEFINE_PER_CPU(int, sd_llc_size);
5721 DEFINE_PER_CPU(int, sd_llc_id);
5722 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5723 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5724 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5725
5726 static void update_top_cache_domain(int cpu)
5727 {
5728         struct sched_domain *sd;
5729         struct sched_domain *busy_sd = NULL;
5730         int id = cpu;
5731         int size = 1;
5732
5733         sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5734         if (sd) {
5735                 id = cpumask_first(sched_domain_span(sd));
5736                 size = cpumask_weight(sched_domain_span(sd));
5737                 busy_sd = sd->parent; /* sd_busy */
5738         }
5739         rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5740
5741         rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5742         per_cpu(sd_llc_size, cpu) = size;
5743         per_cpu(sd_llc_id, cpu) = id;
5744
5745         sd = lowest_flag_domain(cpu, SD_NUMA);
5746         rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5747
5748         sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5749         rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5750 }
5751
5752 /*
5753  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5754  * hold the hotplug lock.
5755  */
5756 static void
5757 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5758 {
5759         struct rq *rq = cpu_rq(cpu);
5760         struct sched_domain *tmp;
5761
5762         /* Remove the sched domains which do not contribute to scheduling. */
5763         for (tmp = sd; tmp; ) {
5764                 struct sched_domain *parent = tmp->parent;
5765                 if (!parent)
5766                         break;
5767
5768                 if (sd_parent_degenerate(tmp, parent)) {
5769                         tmp->parent = parent->parent;
5770                         if (parent->parent)
5771                                 parent->parent->child = tmp;
5772                         /*
5773                          * Transfer SD_PREFER_SIBLING down in case of a
5774                          * degenerate parent; the spans match for this
5775                          * so the property transfers.
5776                          */
5777                         if (parent->flags & SD_PREFER_SIBLING)
5778                                 tmp->flags |= SD_PREFER_SIBLING;
5779                         destroy_sched_domain(parent, cpu);
5780                 } else
5781                         tmp = tmp->parent;
5782         }
5783
5784         if (sd && sd_degenerate(sd)) {
5785                 tmp = sd;
5786                 sd = sd->parent;
5787                 destroy_sched_domain(tmp, cpu);
5788                 if (sd)
5789                         sd->child = NULL;
5790         }
5791
5792         sched_domain_debug(sd, cpu);
5793
5794         rq_attach_root(rq, rd);
5795         tmp = rq->sd;
5796         rcu_assign_pointer(rq->sd, sd);
5797         destroy_sched_domains(tmp, cpu);
5798
5799         update_top_cache_domain(cpu);
5800 }
5801
5802 /* Setup the mask of cpus configured for isolated domains */
5803 static int __init isolated_cpu_setup(char *str)
5804 {
5805         alloc_bootmem_cpumask_var(&cpu_isolated_map);
5806         cpulist_parse(str, cpu_isolated_map);
5807         return 1;
5808 }
5809
5810 __setup("isolcpus=", isolated_cpu_setup);
5811
5812 struct s_data {
5813         struct sched_domain ** __percpu sd;
5814         struct root_domain      *rd;
5815 };
5816
5817 enum s_alloc {
5818         sa_rootdomain,
5819         sa_sd,
5820         sa_sd_storage,
5821         sa_none,
5822 };
5823
5824 /*
5825  * Build an iteration mask that can exclude certain CPUs from the upwards
5826  * domain traversal.
5827  *
5828  * Asymmetric node setups can result in situations where the domain tree is of
5829  * unequal depth, make sure to skip domains that already cover the entire
5830  * range.
5831  *
5832  * In that case build_sched_domains() will have terminated the iteration early
5833  * and our sibling sd spans will be empty. Domains should always include the
5834  * cpu they're built on, so check that.
5835  *
5836  */
5837 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5838 {
5839         const struct cpumask *span = sched_domain_span(sd);
5840         struct sd_data *sdd = sd->private;
5841         struct sched_domain *sibling;
5842         int i;
5843
5844         for_each_cpu(i, span) {
5845                 sibling = *per_cpu_ptr(sdd->sd, i);
5846                 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5847                         continue;
5848
5849                 cpumask_set_cpu(i, sched_group_mask(sg));
5850         }
5851 }
5852
5853 /*
5854  * Return the canonical balance cpu for this group, this is the first cpu
5855  * of this group that's also in the iteration mask.
5856  */
5857 int group_balance_cpu(struct sched_group *sg)
5858 {
5859         return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5860 }
5861
5862 static int
5863 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5864 {
5865         struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5866         const struct cpumask *span = sched_domain_span(sd);
5867         struct cpumask *covered = sched_domains_tmpmask;
5868         struct sd_data *sdd = sd->private;
5869         struct sched_domain *sibling;
5870         int i;
5871
5872         cpumask_clear(covered);
5873
5874         for_each_cpu(i, span) {
5875                 struct cpumask *sg_span;
5876
5877                 if (cpumask_test_cpu(i, covered))
5878                         continue;
5879
5880                 sibling = *per_cpu_ptr(sdd->sd, i);
5881
5882                 /* See the comment near build_group_mask(). */
5883                 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5884                         continue;
5885
5886                 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5887                                 GFP_KERNEL, cpu_to_node(cpu));
5888
5889                 if (!sg)
5890                         goto fail;
5891
5892                 sg_span = sched_group_cpus(sg);
5893                 if (sibling->child)
5894                         cpumask_copy(sg_span, sched_domain_span(sibling->child));
5895                 else
5896                         cpumask_set_cpu(i, sg_span);
5897
5898                 cpumask_or(covered, covered, sg_span);
5899
5900                 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5901                 if (atomic_inc_return(&sg->sgc->ref) == 1)
5902                         build_group_mask(sd, sg);
5903
5904                 /*
5905                  * Initialize sgc->capacity such that even if we mess up the
5906                  * domains and no possible iteration will get us here, we won't
5907                  * die on a /0 trap.
5908                  */
5909                 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5910
5911                 /*
5912                  * Make sure the first group of this domain contains the
5913                  * canonical balance cpu. Otherwise the sched_domain iteration
5914                  * breaks. See update_sg_lb_stats().
5915                  */
5916                 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5917                     group_balance_cpu(sg) == cpu)
5918                         groups = sg;
5919
5920                 if (!first)
5921                         first = sg;
5922                 if (last)
5923                         last->next = sg;
5924                 last = sg;
5925                 last->next = first;
5926         }
5927         sd->groups = groups;
5928
5929         return 0;
5930
5931 fail:
5932         free_sched_groups(first, 0);
5933
5934         return -ENOMEM;
5935 }
5936
5937 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5938 {
5939         struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5940         struct sched_domain *child = sd->child;
5941
5942         if (child)
5943                 cpu = cpumask_first(sched_domain_span(child));
5944
5945         if (sg) {
5946                 *sg = *per_cpu_ptr(sdd->sg, cpu);
5947                 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5948                 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5949         }
5950
5951         return cpu;
5952 }
5953
5954 /*
5955  * build_sched_groups will build a circular linked list of the groups
5956  * covered by the given span, and will set each group's ->cpumask correctly,
5957  * and ->cpu_capacity to 0.
5958  *
5959  * Assumes the sched_domain tree is fully constructed
5960  */
5961 static int
5962 build_sched_groups(struct sched_domain *sd, int cpu)
5963 {
5964         struct sched_group *first = NULL, *last = NULL;
5965         struct sd_data *sdd = sd->private;
5966         const struct cpumask *span = sched_domain_span(sd);
5967         struct cpumask *covered;
5968         int i;
5969
5970         get_group(cpu, sdd, &sd->groups);
5971         atomic_inc(&sd->groups->ref);
5972
5973         if (cpu != cpumask_first(span))
5974                 return 0;
5975
5976         lockdep_assert_held(&sched_domains_mutex);
5977         covered = sched_domains_tmpmask;
5978
5979         cpumask_clear(covered);
5980
5981         for_each_cpu(i, span) {
5982                 struct sched_group *sg;
5983                 int group, j;
5984
5985                 if (cpumask_test_cpu(i, covered))
5986                         continue;
5987
5988                 group = get_group(i, sdd, &sg);
5989                 cpumask_setall(sched_group_mask(sg));
5990
5991                 for_each_cpu(j, span) {
5992                         if (get_group(j, sdd, NULL) != group)
5993                                 continue;
5994
5995                         cpumask_set_cpu(j, covered);
5996                         cpumask_set_cpu(j, sched_group_cpus(sg));
5997                 }
5998
5999                 if (!first)
6000                         first = sg;
6001                 if (last)
6002                         last->next = sg;
6003                 last = sg;
6004         }
6005         last->next = first;
6006
6007         return 0;
6008 }
6009
6010 /*
6011  * Initialize sched groups cpu_capacity.
6012  *
6013  * cpu_capacity indicates the capacity of sched group, which is used while
6014  * distributing the load between different sched groups in a sched domain.
6015  * Typically cpu_capacity for all the groups in a sched domain will be same
6016  * unless there are asymmetries in the topology. If there are asymmetries,
6017  * group having more cpu_capacity will pickup more load compared to the
6018  * group having less cpu_capacity.
6019  */
6020 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6021 {
6022         struct sched_group *sg = sd->groups;
6023
6024         WARN_ON(!sg);
6025
6026         do {
6027                 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6028                 sg = sg->next;
6029         } while (sg != sd->groups);
6030
6031         if (cpu != group_balance_cpu(sg))
6032                 return;
6033
6034         update_group_capacity(sd, cpu);
6035         atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6036 }
6037
6038 /*
6039  * Initializers for schedule domains
6040  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6041  */
6042
6043 static int default_relax_domain_level = -1;
6044 int sched_domain_level_max;
6045
6046 static int __init setup_relax_domain_level(char *str)
6047 {
6048         if (kstrtoint(str, 0, &default_relax_domain_level))
6049                 pr_warn("Unable to set relax_domain_level\n");
6050
6051         return 1;
6052 }
6053 __setup("relax_domain_level=", setup_relax_domain_level);
6054
6055 static void set_domain_attribute(struct sched_domain *sd,
6056                                  struct sched_domain_attr *attr)
6057 {
6058         int request;
6059
6060         if (!attr || attr->relax_domain_level < 0) {
6061                 if (default_relax_domain_level < 0)
6062                         return;
6063                 else
6064                         request = default_relax_domain_level;
6065         } else
6066                 request = attr->relax_domain_level;
6067         if (request < sd->level) {
6068                 /* turn off idle balance on this domain */
6069                 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6070         } else {
6071                 /* turn on idle balance on this domain */
6072                 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6073         }
6074 }
6075
6076 static void __sdt_free(const struct cpumask *cpu_map);
6077 static int __sdt_alloc(const struct cpumask *cpu_map);
6078
6079 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6080                                  const struct cpumask *cpu_map)
6081 {
6082         switch (what) {
6083         case sa_rootdomain:
6084                 if (!atomic_read(&d->rd->refcount))
6085                         free_rootdomain(&d->rd->rcu); /* fall through */
6086         case sa_sd:
6087                 free_percpu(d->sd); /* fall through */
6088         case sa_sd_storage:
6089                 __sdt_free(cpu_map); /* fall through */
6090         case sa_none:
6091                 break;
6092         }
6093 }
6094
6095 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6096                                                    const struct cpumask *cpu_map)
6097 {
6098         memset(d, 0, sizeof(*d));
6099
6100         if (__sdt_alloc(cpu_map))
6101                 return sa_sd_storage;
6102         d->sd = alloc_percpu(struct sched_domain *);
6103         if (!d->sd)
6104                 return sa_sd_storage;
6105         d->rd = alloc_rootdomain();
6106         if (!d->rd)
6107                 return sa_sd;
6108         return sa_rootdomain;
6109 }
6110
6111 /*
6112  * NULL the sd_data elements we've used to build the sched_domain and
6113  * sched_group structure so that the subsequent __free_domain_allocs()
6114  * will not free the data we're using.
6115  */
6116 static void claim_allocations(int cpu, struct sched_domain *sd)
6117 {
6118         struct sd_data *sdd = sd->private;
6119
6120         WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6121         *per_cpu_ptr(sdd->sd, cpu) = NULL;
6122
6123         if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6124                 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6125
6126         if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6127                 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6128 }
6129
6130 #ifdef CONFIG_NUMA
6131 static int sched_domains_numa_levels;
6132 enum numa_topology_type sched_numa_topology_type;
6133 static int *sched_domains_numa_distance;
6134 int sched_max_numa_distance;
6135 static struct cpumask ***sched_domains_numa_masks;
6136 static int sched_domains_curr_level;
6137 #endif
6138
6139 /*
6140  * SD_flags allowed in topology descriptions.
6141  *
6142  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6143  * SD_SHARE_PKG_RESOURCES - describes shared caches
6144  * SD_NUMA                - describes NUMA topologies
6145  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6146  *
6147  * Odd one out:
6148  * SD_ASYM_PACKING        - describes SMT quirks
6149  */
6150 #define TOPOLOGY_SD_FLAGS               \
6151         (SD_SHARE_CPUCAPACITY |         \
6152          SD_SHARE_PKG_RESOURCES |       \
6153          SD_NUMA |                      \
6154          SD_ASYM_PACKING |              \
6155          SD_SHARE_POWERDOMAIN)
6156
6157 static struct sched_domain *
6158 sd_init(struct sched_domain_topology_level *tl, int cpu)
6159 {
6160         struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6161         int sd_weight, sd_flags = 0;
6162
6163 #ifdef CONFIG_NUMA
6164         /*
6165          * Ugly hack to pass state to sd_numa_mask()...
6166          */
6167         sched_domains_curr_level = tl->numa_level;
6168 #endif
6169
6170         sd_weight = cpumask_weight(tl->mask(cpu));
6171
6172         if (tl->sd_flags)
6173                 sd_flags = (*tl->sd_flags)();
6174         if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6175                         "wrong sd_flags in topology description\n"))
6176                 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6177
6178         *sd = (struct sched_domain){
6179                 .min_interval           = sd_weight,
6180                 .max_interval           = 2*sd_weight,
6181                 .busy_factor            = 32,
6182                 .imbalance_pct          = 125,
6183
6184                 .cache_nice_tries       = 0,
6185                 .busy_idx               = 0,
6186                 .idle_idx               = 0,
6187                 .newidle_idx            = 0,
6188                 .wake_idx               = 0,
6189                 .forkexec_idx           = 0,
6190
6191                 .flags                  = 1*SD_LOAD_BALANCE
6192                                         | 1*SD_BALANCE_NEWIDLE
6193                                         | 1*SD_BALANCE_EXEC
6194                                         | 1*SD_BALANCE_FORK
6195                                         | 0*SD_BALANCE_WAKE
6196                                         | 1*SD_WAKE_AFFINE
6197                                         | 0*SD_SHARE_CPUCAPACITY
6198                                         | 0*SD_SHARE_PKG_RESOURCES
6199                                         | 0*SD_SERIALIZE
6200                                         | 0*SD_PREFER_SIBLING
6201                                         | 0*SD_NUMA
6202                                         | sd_flags
6203                                         ,
6204
6205                 .last_balance           = jiffies,
6206                 .balance_interval       = sd_weight,
6207                 .smt_gain               = 0,
6208                 .max_newidle_lb_cost    = 0,
6209                 .next_decay_max_lb_cost = jiffies,
6210 #ifdef CONFIG_SCHED_DEBUG
6211                 .name                   = tl->name,
6212 #endif
6213         };
6214
6215         /*
6216          * Convert topological properties into behaviour.
6217          */
6218
6219         if (sd->flags & SD_SHARE_CPUCAPACITY) {
6220                 sd->flags |= SD_PREFER_SIBLING;
6221                 sd->imbalance_pct = 110;
6222                 sd->smt_gain = 1178; /* ~15% */
6223
6224         } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6225                 sd->imbalance_pct = 117;
6226                 sd->cache_nice_tries = 1;
6227                 sd->busy_idx = 2;
6228
6229 #ifdef CONFIG_NUMA
6230         } else if (sd->flags & SD_NUMA) {
6231                 sd->cache_nice_tries = 2;
6232                 sd->busy_idx = 3;
6233                 sd->idle_idx = 2;
6234
6235                 sd->flags |= SD_SERIALIZE;
6236                 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6237                         sd->flags &= ~(SD_BALANCE_EXEC |
6238                                        SD_BALANCE_FORK |
6239                                        SD_WAKE_AFFINE);
6240                 }
6241
6242 #endif
6243         } else {
6244                 sd->flags |= SD_PREFER_SIBLING;
6245                 sd->cache_nice_tries = 1;
6246                 sd->busy_idx = 2;
6247                 sd->idle_idx = 1;
6248         }
6249
6250         sd->private = &tl->data;
6251
6252         return sd;
6253 }
6254
6255 /*
6256  * Topology list, bottom-up.
6257  */
6258 static struct sched_domain_topology_level default_topology[] = {
6259 #ifdef CONFIG_SCHED_SMT
6260         { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6261 #endif
6262 #ifdef CONFIG_SCHED_MC
6263         { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6264 #endif
6265         { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6266         { NULL, },
6267 };
6268
6269 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6270
6271 #define for_each_sd_topology(tl)                        \
6272         for (tl = sched_domain_topology; tl->mask; tl++)
6273
6274 void set_sched_topology(struct sched_domain_topology_level *tl)
6275 {
6276         sched_domain_topology = tl;
6277 }
6278
6279 #ifdef CONFIG_NUMA
6280
6281 static const struct cpumask *sd_numa_mask(int cpu)
6282 {
6283         return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6284 }
6285
6286 static void sched_numa_warn(const char *str)
6287 {
6288         static int done = false;
6289         int i,j;
6290
6291         if (done)
6292                 return;
6293
6294         done = true;
6295
6296         printk(KERN_WARNING "ERROR: %s\n\n", str);
6297
6298         for (i = 0; i < nr_node_ids; i++) {
6299                 printk(KERN_WARNING "  ");
6300                 for (j = 0; j < nr_node_ids; j++)
6301                         printk(KERN_CONT "%02d ", node_distance(i,j));
6302                 printk(KERN_CONT "\n");
6303         }
6304         printk(KERN_WARNING "\n");
6305 }
6306
6307 bool find_numa_distance(int distance)
6308 {
6309         int i;
6310
6311         if (distance == node_distance(0, 0))
6312                 return true;
6313
6314         for (i = 0; i < sched_domains_numa_levels; i++) {
6315                 if (sched_domains_numa_distance[i] == distance)
6316                         return true;
6317         }
6318
6319         return false;
6320 }
6321
6322 /*
6323  * A system can have three types of NUMA topology:
6324  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6325  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6326  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6327  *
6328  * The difference between a glueless mesh topology and a backplane
6329  * topology lies in whether communication between not directly
6330  * connected nodes goes through intermediary nodes (where programs
6331  * could run), or through backplane controllers. This affects
6332  * placement of programs.
6333  *
6334  * The type of topology can be discerned with the following tests:
6335  * - If the maximum distance between any nodes is 1 hop, the system
6336  *   is directly connected.
6337  * - If for two nodes A and B, located N > 1 hops away from each other,
6338  *   there is an intermediary node C, which is < N hops away from both
6339  *   nodes A and B, the system is a glueless mesh.
6340  */
6341 static void init_numa_topology_type(void)
6342 {
6343         int a, b, c, n;
6344
6345         n = sched_max_numa_distance;
6346
6347         if (n <= 1)
6348                 sched_numa_topology_type = NUMA_DIRECT;
6349
6350         for_each_online_node(a) {
6351                 for_each_online_node(b) {
6352                         /* Find two nodes furthest removed from each other. */
6353                         if (node_distance(a, b) < n)
6354                                 continue;
6355
6356                         /* Is there an intermediary node between a and b? */
6357                         for_each_online_node(c) {
6358                                 if (node_distance(a, c) < n &&
6359                                     node_distance(b, c) < n) {
6360                                         sched_numa_topology_type =
6361                                                         NUMA_GLUELESS_MESH;
6362                                         return;
6363                                 }
6364                         }
6365
6366                         sched_numa_topology_type = NUMA_BACKPLANE;
6367                         return;
6368                 }
6369         }
6370 }
6371
6372 static void sched_init_numa(void)
6373 {
6374         int next_distance, curr_distance = node_distance(0, 0);
6375         struct sched_domain_topology_level *tl;
6376         int level = 0;
6377         int i, j, k;
6378
6379         sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6380         if (!sched_domains_numa_distance)
6381                 return;
6382
6383         /*
6384          * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6385          * unique distances in the node_distance() table.
6386          *
6387          * Assumes node_distance(0,j) includes all distances in
6388          * node_distance(i,j) in order to avoid cubic time.
6389          */
6390         next_distance = curr_distance;
6391         for (i = 0; i < nr_node_ids; i++) {
6392                 for (j = 0; j < nr_node_ids; j++) {
6393                         for (k = 0; k < nr_node_ids; k++) {
6394                                 int distance = node_distance(i, k);
6395
6396                                 if (distance > curr_distance &&
6397                                     (distance < next_distance ||
6398                                      next_distance == curr_distance))
6399                                         next_distance = distance;
6400
6401                                 /*
6402                                  * While not a strong assumption it would be nice to know
6403                                  * about cases where if node A is connected to B, B is not
6404                                  * equally connected to A.
6405                                  */
6406                                 if (sched_debug() && node_distance(k, i) != distance)
6407                                         sched_numa_warn("Node-distance not symmetric");
6408
6409                                 if (sched_debug() && i && !find_numa_distance(distance))
6410                                         sched_numa_warn("Node-0 not representative");
6411                         }
6412                         if (next_distance != curr_distance) {
6413                                 sched_domains_numa_distance[level++] = next_distance;
6414                                 sched_domains_numa_levels = level;
6415                                 curr_distance = next_distance;
6416                         } else break;
6417                 }
6418
6419                 /*
6420                  * In case of sched_debug() we verify the above assumption.
6421                  */
6422                 if (!sched_debug())
6423                         break;
6424         }
6425
6426         if (!level)
6427                 return;
6428
6429         /*
6430          * 'level' contains the number of unique distances, excluding the
6431          * identity distance node_distance(i,i).
6432          *
6433          * The sched_domains_numa_distance[] array includes the actual distance
6434          * numbers.
6435          */
6436
6437         /*
6438          * Here, we should temporarily reset sched_domains_numa_levels to 0.
6439          * If it fails to allocate memory for array sched_domains_numa_masks[][],
6440          * the array will contain less then 'level' members. This could be
6441          * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6442          * in other functions.
6443          *
6444          * We reset it to 'level' at the end of this function.
6445          */
6446         sched_domains_numa_levels = 0;
6447
6448         sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6449         if (!sched_domains_numa_masks)
6450                 return;
6451
6452         /*
6453          * Now for each level, construct a mask per node which contains all
6454          * cpus of nodes that are that many hops away from us.
6455          */
6456         for (i = 0; i < level; i++) {
6457                 sched_domains_numa_masks[i] =
6458                         kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6459                 if (!sched_domains_numa_masks[i])
6460                         return;
6461
6462                 for (j = 0; j < nr_node_ids; j++) {
6463                         struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6464                         if (!mask)
6465                                 return;
6466
6467                         sched_domains_numa_masks[i][j] = mask;
6468
6469                         for (k = 0; k < nr_node_ids; k++) {
6470                                 if (node_distance(j, k) > sched_domains_numa_distance[i])
6471                                         continue;
6472
6473                                 cpumask_or(mask, mask, cpumask_of_node(k));
6474                         }
6475                 }
6476         }
6477
6478         /* Compute default topology size */
6479         for (i = 0; sched_domain_topology[i].mask; i++);
6480
6481         tl = kzalloc((i + level + 1) *
6482                         sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6483         if (!tl)
6484                 return;
6485
6486         /*
6487          * Copy the default topology bits..
6488          */
6489         for (i = 0; sched_domain_topology[i].mask; i++)
6490                 tl[i] = sched_domain_topology[i];
6491
6492         /*
6493          * .. and append 'j' levels of NUMA goodness.
6494          */
6495         for (j = 0; j < level; i++, j++) {
6496                 tl[i] = (struct sched_domain_topology_level){
6497                         .mask = sd_numa_mask,
6498                         .sd_flags = cpu_numa_flags,
6499                         .flags = SDTL_OVERLAP,
6500                         .numa_level = j,
6501                         SD_INIT_NAME(NUMA)
6502                 };
6503         }
6504
6505         sched_domain_topology = tl;
6506
6507         sched_domains_numa_levels = level;
6508         sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6509
6510         init_numa_topology_type();
6511 }
6512
6513 static void sched_domains_numa_masks_set(int cpu)
6514 {
6515         int i, j;
6516         int node = cpu_to_node(cpu);
6517
6518         for (i = 0; i < sched_domains_numa_levels; i++) {
6519                 for (j = 0; j < nr_node_ids; j++) {
6520                         if (node_distance(j, node) <= sched_domains_numa_distance[i])
6521                                 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6522                 }
6523         }
6524 }
6525
6526 static void sched_domains_numa_masks_clear(int cpu)
6527 {
6528         int i, j;
6529         for (i = 0; i < sched_domains_numa_levels; i++) {
6530                 for (j = 0; j < nr_node_ids; j++)
6531                         cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6532         }
6533 }
6534
6535 /*
6536  * Update sched_domains_numa_masks[level][node] array when new cpus
6537  * are onlined.
6538  */
6539 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6540                                            unsigned long action,
6541                                            void *hcpu)
6542 {
6543         int cpu = (long)hcpu;
6544
6545         switch (action & ~CPU_TASKS_FROZEN) {
6546         case CPU_ONLINE:
6547                 sched_domains_numa_masks_set(cpu);
6548                 break;
6549
6550         case CPU_DEAD:
6551                 sched_domains_numa_masks_clear(cpu);
6552                 break;
6553
6554         default:
6555                 return NOTIFY_DONE;
6556         }
6557
6558         return NOTIFY_OK;
6559 }
6560 #else
6561 static inline void sched_init_numa(void)
6562 {
6563 }
6564
6565 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6566                                            unsigned long action,
6567                                            void *hcpu)
6568 {
6569         return 0;
6570 }
6571 #endif /* CONFIG_NUMA */
6572
6573 static int __sdt_alloc(const struct cpumask *cpu_map)
6574 {
6575         struct sched_domain_topology_level *tl;
6576         int j;
6577
6578         for_each_sd_topology(tl) {
6579                 struct sd_data *sdd = &tl->data;
6580
6581                 sdd->sd = alloc_percpu(struct sched_domain *);
6582                 if (!sdd->sd)
6583                         return -ENOMEM;
6584
6585                 sdd->sg = alloc_percpu(struct sched_group *);
6586                 if (!sdd->sg)
6587                         return -ENOMEM;
6588
6589                 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6590                 if (!sdd->sgc)
6591                         return -ENOMEM;
6592
6593                 for_each_cpu(j, cpu_map) {
6594                         struct sched_domain *sd;
6595                         struct sched_group *sg;
6596                         struct sched_group_capacity *sgc;
6597
6598                         sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6599                                         GFP_KERNEL, cpu_to_node(j));
6600                         if (!sd)
6601                                 return -ENOMEM;
6602
6603                         *per_cpu_ptr(sdd->sd, j) = sd;
6604
6605                         sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6606                                         GFP_KERNEL, cpu_to_node(j));
6607                         if (!sg)
6608                                 return -ENOMEM;
6609
6610                         sg->next = sg;
6611
6612                         *per_cpu_ptr(sdd->sg, j) = sg;
6613
6614                         sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6615                                         GFP_KERNEL, cpu_to_node(j));
6616                         if (!sgc)
6617                                 return -ENOMEM;
6618
6619                         *per_cpu_ptr(sdd->sgc, j) = sgc;
6620                 }
6621         }
6622
6623         return 0;
6624 }
6625
6626 static void __sdt_free(const struct cpumask *cpu_map)
6627 {
6628         struct sched_domain_topology_level *tl;
6629         int j;
6630
6631         for_each_sd_topology(tl) {
6632                 struct sd_data *sdd = &tl->data;
6633
6634                 for_each_cpu(j, cpu_map) {
6635                         struct sched_domain *sd;
6636
6637                         if (sdd->sd) {
6638                                 sd = *per_cpu_ptr(sdd->sd, j);
6639                                 if (sd && (sd->flags & SD_OVERLAP))
6640                                         free_sched_groups(sd->groups, 0);
6641                                 kfree(*per_cpu_ptr(sdd->sd, j));
6642                         }
6643
6644                         if (sdd->sg)
6645                                 kfree(*per_cpu_ptr(sdd->sg, j));
6646                         if (sdd->sgc)
6647                                 kfree(*per_cpu_ptr(sdd->sgc, j));
6648                 }
6649                 free_percpu(sdd->sd);
6650                 sdd->sd = NULL;
6651                 free_percpu(sdd->sg);
6652                 sdd->sg = NULL;
6653                 free_percpu(sdd->sgc);
6654                 sdd->sgc = NULL;
6655         }
6656 }
6657
6658 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6659                 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6660                 struct sched_domain *child, int cpu)
6661 {
6662         struct sched_domain *sd = sd_init(tl, cpu);
6663         if (!sd)
6664                 return child;
6665
6666         cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6667         if (child) {
6668                 sd->level = child->level + 1;
6669                 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6670                 child->parent = sd;
6671                 sd->child = child;
6672
6673                 if (!cpumask_subset(sched_domain_span(child),
6674                                     sched_domain_span(sd))) {
6675                         pr_err("BUG: arch topology borken\n");
6676 #ifdef CONFIG_SCHED_DEBUG
6677                         pr_err("     the %s domain not a subset of the %s domain\n",
6678                                         child->name, sd->name);
6679 #endif
6680                         /* Fixup, ensure @sd has at least @child cpus. */
6681                         cpumask_or(sched_domain_span(sd),
6682                                    sched_domain_span(sd),
6683                                    sched_domain_span(child));
6684                 }
6685
6686         }
6687         set_domain_attribute(sd, attr);
6688
6689         return sd;
6690 }
6691
6692 /*
6693  * Build sched domains for a given set of cpus and attach the sched domains
6694  * to the individual cpus
6695  */
6696 static int build_sched_domains(const struct cpumask *cpu_map,
6697                                struct sched_domain_attr *attr)
6698 {
6699         enum s_alloc alloc_state;
6700         struct sched_domain *sd;
6701         struct s_data d;
6702         int i, ret = -ENOMEM;
6703
6704         alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6705         if (alloc_state != sa_rootdomain)
6706                 goto error;
6707
6708         /* Set up domains for cpus specified by the cpu_map. */
6709         for_each_cpu(i, cpu_map) {
6710                 struct sched_domain_topology_level *tl;
6711
6712                 sd = NULL;
6713                 for_each_sd_topology(tl) {
6714                         sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6715                         if (tl == sched_domain_topology)
6716                                 *per_cpu_ptr(d.sd, i) = sd;
6717                         if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6718                                 sd->flags |= SD_OVERLAP;
6719                         if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6720                                 break;
6721                 }
6722         }
6723
6724         /* Build the groups for the domains */
6725         for_each_cpu(i, cpu_map) {
6726                 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6727                         sd->span_weight = cpumask_weight(sched_domain_span(sd));
6728                         if (sd->flags & SD_OVERLAP) {
6729                                 if (build_overlap_sched_groups(sd, i))
6730                                         goto error;
6731                         } else {
6732                                 if (build_sched_groups(sd, i))
6733                                         goto error;
6734                         }
6735                 }
6736         }
6737
6738         /* Calculate CPU capacity for physical packages and nodes */
6739         for (i = nr_cpumask_bits-1; i >= 0; i--) {
6740                 if (!cpumask_test_cpu(i, cpu_map))
6741                         continue;
6742
6743                 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6744                         claim_allocations(i, sd);
6745                         init_sched_groups_capacity(i, sd);
6746                 }
6747         }
6748
6749         /* Attach the domains */
6750         rcu_read_lock();
6751         for_each_cpu(i, cpu_map) {
6752                 sd = *per_cpu_ptr(d.sd, i);
6753                 cpu_attach_domain(sd, d.rd, i);
6754         }
6755         rcu_read_unlock();
6756
6757         ret = 0;
6758 error:
6759         __free_domain_allocs(&d, alloc_state, cpu_map);
6760         return ret;
6761 }
6762
6763 static cpumask_var_t *doms_cur; /* current sched domains */
6764 static int ndoms_cur;           /* number of sched domains in 'doms_cur' */
6765 static struct sched_domain_attr *dattr_cur;
6766                                 /* attribues of custom domains in 'doms_cur' */
6767
6768 /*
6769  * Special case: If a kmalloc of a doms_cur partition (array of
6770  * cpumask) fails, then fallback to a single sched domain,
6771  * as determined by the single cpumask fallback_doms.
6772  */
6773 static cpumask_var_t fallback_doms;
6774
6775 /*
6776  * arch_update_cpu_topology lets virtualized architectures update the
6777  * cpu core maps. It is supposed to return 1 if the topology changed
6778  * or 0 if it stayed the same.
6779  */
6780 int __weak arch_update_cpu_topology(void)
6781 {
6782         return 0;
6783 }
6784
6785 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6786 {
6787         int i;
6788         cpumask_var_t *doms;
6789
6790         doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6791         if (!doms)
6792                 return NULL;
6793         for (i = 0; i < ndoms; i++) {
6794                 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6795                         free_sched_domains(doms, i);
6796                         return NULL;
6797                 }
6798         }
6799         return doms;
6800 }
6801
6802 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6803 {
6804         unsigned int i;
6805         for (i = 0; i < ndoms; i++)
6806                 free_cpumask_var(doms[i]);
6807         kfree(doms);
6808 }
6809
6810 /*
6811  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6812  * For now this just excludes isolated cpus, but could be used to
6813  * exclude other special cases in the future.
6814  */
6815 static int init_sched_domains(const struct cpumask *cpu_map)
6816 {
6817         int err;
6818
6819         arch_update_cpu_topology();
6820         ndoms_cur = 1;
6821         doms_cur = alloc_sched_domains(ndoms_cur);
6822         if (!doms_cur)
6823                 doms_cur = &fallback_doms;
6824         cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6825         err = build_sched_domains(doms_cur[0], NULL);
6826         register_sched_domain_sysctl();
6827
6828         return err;
6829 }
6830
6831 /*
6832  * Detach sched domains from a group of cpus specified in cpu_map
6833  * These cpus will now be attached to the NULL domain
6834  */
6835 static void detach_destroy_domains(const struct cpumask *cpu_map)
6836 {
6837         int i;
6838
6839         rcu_read_lock();
6840         for_each_cpu(i, cpu_map)
6841                 cpu_attach_domain(NULL, &def_root_domain, i);
6842         rcu_read_unlock();
6843 }
6844
6845 /* handle null as "default" */
6846 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6847                         struct sched_domain_attr *new, int idx_new)
6848 {
6849         struct sched_domain_attr tmp;
6850
6851         /* fast path */
6852         if (!new && !cur)
6853                 return 1;
6854
6855         tmp = SD_ATTR_INIT;
6856         return !memcmp(cur ? (cur + idx_cur) : &tmp,
6857                         new ? (new + idx_new) : &tmp,
6858                         sizeof(struct sched_domain_attr));
6859 }
6860
6861 /*
6862  * Partition sched domains as specified by the 'ndoms_new'
6863  * cpumasks in the array doms_new[] of cpumasks. This compares
6864  * doms_new[] to the current sched domain partitioning, doms_cur[].
6865  * It destroys each deleted domain and builds each new domain.
6866  *
6867  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6868  * The masks don't intersect (don't overlap.) We should setup one
6869  * sched domain for each mask. CPUs not in any of the cpumasks will
6870  * not be load balanced. If the same cpumask appears both in the
6871  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6872  * it as it is.
6873  *
6874  * The passed in 'doms_new' should be allocated using
6875  * alloc_sched_domains.  This routine takes ownership of it and will
6876  * free_sched_domains it when done with it. If the caller failed the
6877  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6878  * and partition_sched_domains() will fallback to the single partition
6879  * 'fallback_doms', it also forces the domains to be rebuilt.
6880  *
6881  * If doms_new == NULL it will be replaced with cpu_online_mask.
6882  * ndoms_new == 0 is a special case for destroying existing domains,
6883  * and it will not create the default domain.
6884  *
6885  * Call with hotplug lock held
6886  */
6887 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6888                              struct sched_domain_attr *dattr_new)
6889 {
6890         int i, j, n;
6891         int new_topology;
6892
6893         mutex_lock(&sched_domains_mutex);
6894
6895         /* always unregister in case we don't destroy any domains */
6896         unregister_sched_domain_sysctl();
6897
6898         /* Let architecture update cpu core mappings. */
6899         new_topology = arch_update_cpu_topology();
6900
6901         n = doms_new ? ndoms_new : 0;
6902
6903         /* Destroy deleted domains */
6904         for (i = 0; i < ndoms_cur; i++) {
6905                 for (j = 0; j < n && !new_topology; j++) {
6906                         if (cpumask_equal(doms_cur[i], doms_new[j])
6907                             && dattrs_equal(dattr_cur, i, dattr_new, j))
6908                                 goto match1;
6909                 }
6910                 /* no match - a current sched domain not in new doms_new[] */
6911                 detach_destroy_domains(doms_cur[i]);
6912 match1:
6913                 ;
6914         }
6915
6916         n = ndoms_cur;
6917         if (doms_new == NULL) {
6918                 n = 0;
6919                 doms_new = &fallback_doms;
6920                 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6921                 WARN_ON_ONCE(dattr_new);
6922         }
6923
6924         /* Build new domains */
6925         for (i = 0; i < ndoms_new; i++) {
6926                 for (j = 0; j < n && !new_topology; j++) {
6927                         if (cpumask_equal(doms_new[i], doms_cur[j])
6928                             && dattrs_equal(dattr_new, i, dattr_cur, j))
6929                                 goto match2;
6930                 }
6931                 /* no match - add a new doms_new */
6932                 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6933 match2:
6934                 ;
6935         }
6936
6937         /* Remember the new sched domains */
6938         if (doms_cur != &fallback_doms)
6939                 free_sched_domains(doms_cur, ndoms_cur);
6940         kfree(dattr_cur);       /* kfree(NULL) is safe */
6941         doms_cur = doms_new;
6942         dattr_cur = dattr_new;
6943         ndoms_cur = ndoms_new;
6944
6945         register_sched_domain_sysctl();
6946
6947         mutex_unlock(&sched_domains_mutex);
6948 }
6949
6950 static int num_cpus_frozen;     /* used to mark begin/end of suspend/resume */
6951
6952 /*
6953  * Update cpusets according to cpu_active mask.  If cpusets are
6954  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6955  * around partition_sched_domains().
6956  *
6957  * If we come here as part of a suspend/resume, don't touch cpusets because we
6958  * want to restore it back to its original state upon resume anyway.
6959  */
6960 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6961                              void *hcpu)
6962 {
6963         switch (action) {
6964         case CPU_ONLINE_FROZEN:
6965         case CPU_DOWN_FAILED_FROZEN:
6966
6967                 /*
6968                  * num_cpus_frozen tracks how many CPUs are involved in suspend
6969                  * resume sequence. As long as this is not the last online
6970                  * operation in the resume sequence, just build a single sched
6971                  * domain, ignoring cpusets.
6972                  */
6973                 num_cpus_frozen--;
6974                 if (likely(num_cpus_frozen)) {
6975                         partition_sched_domains(1, NULL, NULL);
6976                         break;
6977                 }
6978
6979                 /*
6980                  * This is the last CPU online operation. So fall through and
6981                  * restore the original sched domains by considering the
6982                  * cpuset configurations.
6983                  */
6984
6985         case CPU_ONLINE:
6986                 cpuset_update_active_cpus(true);
6987                 break;
6988         default:
6989                 return NOTIFY_DONE;
6990         }
6991         return NOTIFY_OK;
6992 }
6993
6994 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6995                                void *hcpu)
6996 {
6997         unsigned long flags;
6998         long cpu = (long)hcpu;
6999         struct dl_bw *dl_b;
7000
7001         switch (action & ~CPU_TASKS_FROZEN) {
7002         case CPU_DOWN_PREPARE:
7003                 /* explicitly allow suspend */
7004                 if (!(action & CPU_TASKS_FROZEN)) {
7005                         bool overflow;
7006                         int cpus;
7007
7008                         rcu_read_lock_sched();
7009                         dl_b = dl_bw_of(cpu);
7010
7011                         raw_spin_lock_irqsave(&dl_b->lock, flags);
7012                         cpus = dl_bw_cpus(cpu);
7013                         overflow = __dl_overflow(dl_b, cpus, 0, 0);
7014                         raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7015
7016                         rcu_read_unlock_sched();
7017
7018                         if (overflow)
7019                                 return notifier_from_errno(-EBUSY);
7020                 }
7021                 cpuset_update_active_cpus(false);
7022                 break;
7023         case CPU_DOWN_PREPARE_FROZEN:
7024                 num_cpus_frozen++;
7025                 partition_sched_domains(1, NULL, NULL);
7026                 break;
7027         default:
7028                 return NOTIFY_DONE;
7029         }
7030         return NOTIFY_OK;
7031 }
7032
7033 void __init sched_init_smp(void)
7034 {
7035         cpumask_var_t non_isolated_cpus;
7036
7037         alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7038         alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7039
7040         sched_init_numa();
7041
7042         /*
7043          * There's no userspace yet to cause hotplug operations; hence all the
7044          * cpu masks are stable and all blatant races in the below code cannot
7045          * happen.
7046          */
7047         mutex_lock(&sched_domains_mutex);
7048         init_sched_domains(cpu_active_mask);
7049         cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7050         if (cpumask_empty(non_isolated_cpus))
7051                 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7052         mutex_unlock(&sched_domains_mutex);
7053
7054         hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7055         hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7056         hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7057
7058         init_hrtick();
7059
7060         /* Move init over to a non-isolated CPU */
7061         if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7062                 BUG();
7063         sched_init_granularity();
7064         free_cpumask_var(non_isolated_cpus);
7065
7066         init_sched_rt_class();
7067         init_sched_dl_class();
7068 }
7069 #else
7070 void __init sched_init_smp(void)
7071 {
7072         sched_init_granularity();
7073 }
7074 #endif /* CONFIG_SMP */
7075
7076 const_debug unsigned int sysctl_timer_migration = 1;
7077
7078 int in_sched_functions(unsigned long addr)
7079 {
7080         return in_lock_functions(addr) ||
7081                 (addr >= (unsigned long)__sched_text_start
7082                 && addr < (unsigned long)__sched_text_end);
7083 }
7084
7085 #ifdef CONFIG_CGROUP_SCHED
7086 /*
7087  * Default task group.
7088  * Every task in system belongs to this group at bootup.
7089  */
7090 struct task_group root_task_group;
7091 LIST_HEAD(task_groups);
7092 #endif
7093
7094 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7095
7096 void __init sched_init(void)
7097 {
7098         int i, j;
7099         unsigned long alloc_size = 0, ptr;
7100
7101 #ifdef CONFIG_FAIR_GROUP_SCHED
7102         alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7103 #endif
7104 #ifdef CONFIG_RT_GROUP_SCHED
7105         alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7106 #endif
7107         if (alloc_size) {
7108                 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7109
7110 #ifdef CONFIG_FAIR_GROUP_SCHED
7111                 root_task_group.se = (struct sched_entity **)ptr;
7112                 ptr += nr_cpu_ids * sizeof(void **);
7113
7114                 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7115                 ptr += nr_cpu_ids * sizeof(void **);
7116
7117 #endif /* CONFIG_FAIR_GROUP_SCHED */
7118 #ifdef CONFIG_RT_GROUP_SCHED
7119                 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7120                 ptr += nr_cpu_ids * sizeof(void **);
7121
7122                 root_task_group.rt_rq = (struct rt_rq **)ptr;
7123                 ptr += nr_cpu_ids * sizeof(void **);
7124
7125 #endif /* CONFIG_RT_GROUP_SCHED */
7126         }
7127 #ifdef CONFIG_CPUMASK_OFFSTACK
7128         for_each_possible_cpu(i) {
7129                 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7130                         cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7131         }
7132 #endif /* CONFIG_CPUMASK_OFFSTACK */
7133
7134         init_rt_bandwidth(&def_rt_bandwidth,
7135                         global_rt_period(), global_rt_runtime());
7136         init_dl_bandwidth(&def_dl_bandwidth,
7137                         global_rt_period(), global_rt_runtime());
7138
7139 #ifdef CONFIG_SMP
7140         init_defrootdomain();
7141 #endif
7142
7143 #ifdef CONFIG_RT_GROUP_SCHED
7144         init_rt_bandwidth(&root_task_group.rt_bandwidth,
7145                         global_rt_period(), global_rt_runtime());
7146 #endif /* CONFIG_RT_GROUP_SCHED */
7147
7148 #ifdef CONFIG_CGROUP_SCHED
7149         list_add(&root_task_group.list, &task_groups);
7150         INIT_LIST_HEAD(&root_task_group.children);
7151         INIT_LIST_HEAD(&root_task_group.siblings);
7152         autogroup_init(&init_task);
7153
7154 #endif /* CONFIG_CGROUP_SCHED */
7155
7156         for_each_possible_cpu(i) {
7157                 struct rq *rq;
7158
7159                 rq = cpu_rq(i);
7160                 raw_spin_lock_init(&rq->lock);
7161                 rq->nr_running = 0;
7162                 rq->calc_load_active = 0;
7163                 rq->calc_load_update = jiffies + LOAD_FREQ;
7164                 init_cfs_rq(&rq->cfs);
7165                 init_rt_rq(&rq->rt);
7166                 init_dl_rq(&rq->dl);
7167 #ifdef CONFIG_FAIR_GROUP_SCHED
7168                 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7169                 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7170                 /*
7171                  * How much cpu bandwidth does root_task_group get?
7172                  *
7173                  * In case of task-groups formed thr' the cgroup filesystem, it
7174                  * gets 100% of the cpu resources in the system. This overall
7175                  * system cpu resource is divided among the tasks of
7176                  * root_task_group and its child task-groups in a fair manner,
7177                  * based on each entity's (task or task-group's) weight
7178                  * (se->load.weight).
7179                  *
7180                  * In other words, if root_task_group has 10 tasks of weight
7181                  * 1024) and two child groups A0 and A1 (of weight 1024 each),
7182                  * then A0's share of the cpu resource is:
7183                  *
7184                  *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7185                  *
7186                  * We achieve this by letting root_task_group's tasks sit
7187                  * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7188                  */
7189                 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7190                 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7191 #endif /* CONFIG_FAIR_GROUP_SCHED */
7192
7193                 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7194 #ifdef CONFIG_RT_GROUP_SCHED
7195                 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7196 #endif
7197
7198                 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7199                         rq->cpu_load[j] = 0;
7200
7201                 rq->last_load_update_tick = jiffies;
7202
7203 #ifdef CONFIG_SMP
7204                 rq->sd = NULL;
7205                 rq->rd = NULL;
7206                 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7207                 rq->post_schedule = 0;
7208                 rq->active_balance = 0;
7209                 rq->next_balance = jiffies;
7210                 rq->push_cpu = 0;
7211                 rq->cpu = i;
7212                 rq->online = 0;
7213                 rq->idle_stamp = 0;
7214                 rq->avg_idle = 2*sysctl_sched_migration_cost;
7215                 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7216
7217                 INIT_LIST_HEAD(&rq->cfs_tasks);
7218
7219                 rq_attach_root(rq, &def_root_domain);
7220 #ifdef CONFIG_NO_HZ_COMMON
7221                 rq->nohz_flags = 0;
7222 #endif
7223 #ifdef CONFIG_NO_HZ_FULL
7224                 rq->last_sched_tick = 0;
7225 #endif
7226 #endif
7227                 init_rq_hrtick(rq);
7228                 atomic_set(&rq->nr_iowait, 0);
7229         }
7230
7231         set_load_weight(&init_task);
7232
7233 #ifdef CONFIG_PREEMPT_NOTIFIERS
7234         INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7235 #endif
7236
7237         /*
7238          * The boot idle thread does lazy MMU switching as well:
7239          */
7240         atomic_inc(&init_mm.mm_count);
7241         enter_lazy_tlb(&init_mm, current);
7242
7243         /*
7244          * During early bootup we pretend to be a normal task:
7245          */
7246         current->sched_class = &fair_sched_class;
7247
7248         /*
7249          * Make us the idle thread. Technically, schedule() should not be
7250          * called from this thread, however somewhere below it might be,
7251          * but because we are the idle thread, we just pick up running again
7252          * when this runqueue becomes "idle".
7253          */
7254         init_idle(current, smp_processor_id());
7255
7256         calc_load_update = jiffies + LOAD_FREQ;
7257
7258 #ifdef CONFIG_SMP
7259         zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7260         /* May be allocated at isolcpus cmdline parse time */
7261         if (cpu_isolated_map == NULL)
7262                 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7263         idle_thread_set_boot_cpu();
7264         set_cpu_rq_start_time();
7265 #endif
7266         init_sched_fair_class();
7267
7268         scheduler_running = 1;
7269 }
7270
7271 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7272 static inline int preempt_count_equals(int preempt_offset)
7273 {
7274         int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7275
7276         return (nested == preempt_offset);
7277 }
7278
7279 void __might_sleep(const char *file, int line, int preempt_offset)
7280 {
7281         /*
7282          * Blocking primitives will set (and therefore destroy) current->state,
7283          * since we will exit with TASK_RUNNING make sure we enter with it,
7284          * otherwise we will destroy state.
7285          */
7286         WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7287                         "do not call blocking ops when !TASK_RUNNING; "
7288                         "state=%lx set at [<%p>] %pS\n",
7289                         current->state,
7290                         (void *)current->task_state_change,
7291                         (void *)current->task_state_change);
7292
7293         ___might_sleep(file, line, preempt_offset);
7294 }
7295 EXPORT_SYMBOL(__might_sleep);
7296
7297 void ___might_sleep(const char *file, int line, int preempt_offset)
7298 {
7299         static unsigned long prev_jiffy;        /* ratelimiting */
7300
7301         rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7302         if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7303              !is_idle_task(current)) ||
7304             system_state != SYSTEM_RUNNING || oops_in_progress)
7305                 return;
7306         if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7307                 return;
7308         prev_jiffy = jiffies;
7309
7310         printk(KERN_ERR
7311                 "BUG: sleeping function called from invalid context at %s:%d\n",
7312                         file, line);
7313         printk(KERN_ERR
7314                 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7315                         in_atomic(), irqs_disabled(),
7316                         current->pid, current->comm);
7317
7318         if (task_stack_end_corrupted(current))
7319                 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7320
7321         debug_show_held_locks(current);
7322         if (irqs_disabled())
7323                 print_irqtrace_events(current);
7324 #ifdef CONFIG_DEBUG_PREEMPT
7325         if (!preempt_count_equals(preempt_offset)) {
7326                 pr_err("Preemption disabled at:");
7327                 print_ip_sym(current->preempt_disable_ip);
7328                 pr_cont("\n");
7329         }
7330 #endif
7331         dump_stack();
7332 }
7333 EXPORT_SYMBOL(___might_sleep);
7334 #endif
7335
7336 #ifdef CONFIG_MAGIC_SYSRQ
7337 static void normalize_task(struct rq *rq, struct task_struct *p)
7338 {
7339         const struct sched_class *prev_class = p->sched_class;
7340         struct sched_attr attr = {
7341                 .sched_policy = SCHED_NORMAL,
7342         };
7343         int old_prio = p->prio;
7344         int queued;
7345
7346         queued = task_on_rq_queued(p);
7347         if (queued)
7348                 dequeue_task(rq, p, 0);
7349         __setscheduler(rq, p, &attr);
7350         if (queued) {
7351                 enqueue_task(rq, p, 0);
7352                 resched_curr(rq);
7353         }
7354
7355         check_class_changed(rq, p, prev_class, old_prio);
7356 }
7357
7358 void normalize_rt_tasks(void)
7359 {
7360         struct task_struct *g, *p;
7361         unsigned long flags;
7362         struct rq *rq;
7363
7364         read_lock(&tasklist_lock);
7365         for_each_process_thread(g, p) {
7366                 /*
7367                  * Only normalize user tasks:
7368                  */
7369                 if (p->flags & PF_KTHREAD)
7370                         continue;
7371
7372                 p->se.exec_start                = 0;
7373 #ifdef CONFIG_SCHEDSTATS
7374                 p->se.statistics.wait_start     = 0;
7375                 p->se.statistics.sleep_start    = 0;
7376                 p->se.statistics.block_start    = 0;
7377 #endif
7378
7379                 if (!dl_task(p) && !rt_task(p)) {
7380                         /*
7381                          * Renice negative nice level userspace
7382                          * tasks back to 0:
7383                          */
7384                         if (task_nice(p) < 0)
7385                                 set_user_nice(p, 0);
7386                         continue;
7387                 }
7388
7389                 rq = task_rq_lock(p, &flags);
7390                 normalize_task(rq, p);
7391                 task_rq_unlock(rq, p, &flags);
7392         }
7393         read_unlock(&tasklist_lock);
7394 }
7395
7396 #endif /* CONFIG_MAGIC_SYSRQ */
7397
7398 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7399 /*
7400  * These functions are only useful for the IA64 MCA handling, or kdb.
7401  *
7402  * They can only be called when the whole system has been
7403  * stopped - every CPU needs to be quiescent, and no scheduling
7404  * activity can take place. Using them for anything else would
7405  * be a serious bug, and as a result, they aren't even visible
7406  * under any other configuration.
7407  */
7408
7409 /**
7410  * curr_task - return the current task for a given cpu.
7411  * @cpu: the processor in question.
7412  *
7413  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7414  *
7415  * Return: The current task for @cpu.
7416  */
7417 struct task_struct *curr_task(int cpu)
7418 {
7419         return cpu_curr(cpu);
7420 }
7421
7422 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7423
7424 #ifdef CONFIG_IA64
7425 /**
7426  * set_curr_task - set the current task for a given cpu.
7427  * @cpu: the processor in question.
7428  * @p: the task pointer to set.
7429  *
7430  * Description: This function must only be used when non-maskable interrupts
7431  * are serviced on a separate stack. It allows the architecture to switch the
7432  * notion of the current task on a cpu in a non-blocking manner. This function
7433  * must be called with all CPU's synchronized, and interrupts disabled, the
7434  * and caller must save the original value of the current task (see
7435  * curr_task() above) and restore that value before reenabling interrupts and
7436  * re-starting the system.
7437  *
7438  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7439  */
7440 void set_curr_task(int cpu, struct task_struct *p)
7441 {
7442         cpu_curr(cpu) = p;
7443 }
7444
7445 #endif
7446
7447 #ifdef CONFIG_CGROUP_SCHED
7448 /* task_group_lock serializes the addition/removal of task groups */
7449 static DEFINE_SPINLOCK(task_group_lock);
7450
7451 static void free_sched_group(struct task_group *tg)
7452 {
7453         free_fair_sched_group(tg);
7454         free_rt_sched_group(tg);
7455         autogroup_free(tg);
7456         kfree(tg);
7457 }
7458
7459 /* allocate runqueue etc for a new task group */
7460 struct task_group *sched_create_group(struct task_group *parent)
7461 {
7462         struct task_group *tg;
7463
7464         tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7465         if (!tg)
7466                 return ERR_PTR(-ENOMEM);
7467
7468         if (!alloc_fair_sched_group(tg, parent))
7469                 goto err;
7470
7471         if (!alloc_rt_sched_group(tg, parent))
7472                 goto err;
7473
7474         return tg;
7475
7476 err:
7477         free_sched_group(tg);
7478         return ERR_PTR(-ENOMEM);
7479 }
7480
7481 void sched_online_group(struct task_group *tg, struct task_group *parent)
7482 {
7483         unsigned long flags;
7484
7485         spin_lock_irqsave(&task_group_lock, flags);
7486         list_add_rcu(&tg->list, &task_groups);
7487
7488         WARN_ON(!parent); /* root should already exist */
7489
7490         tg->parent = parent;
7491         INIT_LIST_HEAD(&tg->children);
7492         list_add_rcu(&tg->siblings, &parent->children);
7493         spin_unlock_irqrestore(&task_group_lock, flags);
7494 }
7495
7496 /* rcu callback to free various structures associated with a task group */
7497 static void free_sched_group_rcu(struct rcu_head *rhp)
7498 {
7499         /* now it should be safe to free those cfs_rqs */
7500         free_sched_group(container_of(rhp, struct task_group, rcu));
7501 }
7502
7503 /* Destroy runqueue etc associated with a task group */
7504 void sched_destroy_group(struct task_group *tg)
7505 {
7506         /* wait for possible concurrent references to cfs_rqs complete */
7507         call_rcu(&tg->rcu, free_sched_group_rcu);
7508 }
7509
7510 void sched_offline_group(struct task_group *tg)
7511 {
7512         unsigned long flags;
7513         int i;
7514
7515         /* end participation in shares distribution */
7516         for_each_possible_cpu(i)
7517                 unregister_fair_sched_group(tg, i);
7518
7519         spin_lock_irqsave(&task_group_lock, flags);
7520         list_del_rcu(&tg->list);
7521         list_del_rcu(&tg->siblings);
7522         spin_unlock_irqrestore(&task_group_lock, flags);
7523 }
7524
7525 /* change task's runqueue when it moves between groups.
7526  *      The caller of this function should have put the task in its new group
7527  *      by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7528  *      reflect its new group.
7529  */
7530 void sched_move_task(struct task_struct *tsk)
7531 {
7532         struct task_group *tg;
7533         int queued, running;
7534         unsigned long flags;
7535         struct rq *rq;
7536
7537         rq = task_rq_lock(tsk, &flags);
7538
7539         running = task_current(rq, tsk);
7540         queued = task_on_rq_queued(tsk);
7541
7542         if (queued)
7543                 dequeue_task(rq, tsk, 0);
7544         if (unlikely(running))
7545                 put_prev_task(rq, tsk);
7546
7547         /*
7548          * All callers are synchronized by task_rq_lock(); we do not use RCU
7549          * which is pointless here. Thus, we pass "true" to task_css_check()
7550          * to prevent lockdep warnings.
7551          */
7552         tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7553                           struct task_group, css);
7554         tg = autogroup_task_group(tsk, tg);
7555         tsk->sched_task_group = tg;
7556
7557 #ifdef CONFIG_FAIR_GROUP_SCHED
7558         if (tsk->sched_class->task_move_group)
7559                 tsk->sched_class->task_move_group(tsk, queued);
7560         else
7561 #endif
7562                 set_task_rq(tsk, task_cpu(tsk));
7563
7564         if (unlikely(running))
7565                 tsk->sched_class->set_curr_task(rq);
7566         if (queued)
7567                 enqueue_task(rq, tsk, 0);
7568
7569         task_rq_unlock(rq, tsk, &flags);
7570 }
7571 #endif /* CONFIG_CGROUP_SCHED */
7572
7573 #ifdef CONFIG_RT_GROUP_SCHED
7574 /*
7575  * Ensure that the real time constraints are schedulable.
7576  */
7577 static DEFINE_MUTEX(rt_constraints_mutex);
7578
7579 /* Must be called with tasklist_lock held */
7580 static inline int tg_has_rt_tasks(struct task_group *tg)
7581 {
7582         struct task_struct *g, *p;
7583
7584         /*
7585          * Autogroups do not have RT tasks; see autogroup_create().
7586          */
7587         if (task_group_is_autogroup(tg))
7588                 return 0;
7589
7590         for_each_process_thread(g, p) {
7591                 if (rt_task(p) && task_group(p) == tg)
7592                         return 1;
7593         }
7594
7595         return 0;
7596 }
7597
7598 struct rt_schedulable_data {
7599         struct task_group *tg;
7600         u64 rt_period;
7601         u64 rt_runtime;
7602 };
7603
7604 static int tg_rt_schedulable(struct task_group *tg, void *data)
7605 {
7606         struct rt_schedulable_data *d = data;
7607         struct task_group *child;
7608         unsigned long total, sum = 0;
7609         u64 period, runtime;
7610
7611         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7612         runtime = tg->rt_bandwidth.rt_runtime;
7613
7614         if (tg == d->tg) {
7615                 period = d->rt_period;
7616                 runtime = d->rt_runtime;
7617         }
7618
7619         /*
7620          * Cannot have more runtime than the period.
7621          */
7622         if (runtime > period && runtime != RUNTIME_INF)
7623                 return -EINVAL;
7624
7625         /*
7626          * Ensure we don't starve existing RT tasks.
7627          */
7628         if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7629                 return -EBUSY;
7630
7631         total = to_ratio(period, runtime);
7632
7633         /*
7634          * Nobody can have more than the global setting allows.
7635          */
7636         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7637                 return -EINVAL;
7638
7639         /*
7640          * The sum of our children's runtime should not exceed our own.
7641          */
7642         list_for_each_entry_rcu(child, &tg->children, siblings) {
7643                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7644                 runtime = child->rt_bandwidth.rt_runtime;
7645
7646                 if (child == d->tg) {
7647                         period = d->rt_period;
7648                         runtime = d->rt_runtime;
7649                 }
7650
7651                 sum += to_ratio(period, runtime);
7652         }
7653
7654         if (sum > total)
7655                 return -EINVAL;
7656
7657         return 0;
7658 }
7659
7660 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7661 {
7662         int ret;
7663
7664         struct rt_schedulable_data data = {
7665                 .tg = tg,
7666                 .rt_period = period,
7667                 .rt_runtime = runtime,
7668         };
7669
7670         rcu_read_lock();
7671         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7672         rcu_read_unlock();
7673
7674         return ret;
7675 }
7676
7677 static int tg_set_rt_bandwidth(struct task_group *tg,
7678                 u64 rt_period, u64 rt_runtime)
7679 {
7680         int i, err = 0;
7681
7682         /*
7683          * Disallowing the root group RT runtime is BAD, it would disallow the
7684          * kernel creating (and or operating) RT threads.
7685          */
7686         if (tg == &root_task_group && rt_runtime == 0)
7687                 return -EINVAL;
7688
7689         /* No period doesn't make any sense. */
7690         if (rt_period == 0)
7691                 return -EINVAL;
7692
7693         mutex_lock(&rt_constraints_mutex);
7694         read_lock(&tasklist_lock);
7695         err = __rt_schedulable(tg, rt_period, rt_runtime);
7696         if (err)
7697                 goto unlock;
7698
7699         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7700         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7701         tg->rt_bandwidth.rt_runtime = rt_runtime;
7702
7703         for_each_possible_cpu(i) {
7704                 struct rt_rq *rt_rq = tg->rt_rq[i];
7705
7706                 raw_spin_lock(&rt_rq->rt_runtime_lock);
7707                 rt_rq->rt_runtime = rt_runtime;
7708                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7709         }
7710         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7711 unlock:
7712         read_unlock(&tasklist_lock);
7713         mutex_unlock(&rt_constraints_mutex);
7714
7715         return err;
7716 }
7717
7718 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7719 {
7720         u64 rt_runtime, rt_period;
7721
7722         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7723         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7724         if (rt_runtime_us < 0)
7725                 rt_runtime = RUNTIME_INF;
7726
7727         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7728 }
7729
7730 static long sched_group_rt_runtime(struct task_group *tg)
7731 {
7732         u64 rt_runtime_us;
7733
7734         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7735                 return -1;
7736
7737         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7738         do_div(rt_runtime_us, NSEC_PER_USEC);
7739         return rt_runtime_us;
7740 }
7741
7742 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7743 {
7744         u64 rt_runtime, rt_period;
7745
7746         rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7747         rt_runtime = tg->rt_bandwidth.rt_runtime;
7748
7749         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7750 }
7751
7752 static long sched_group_rt_period(struct task_group *tg)
7753 {
7754         u64 rt_period_us;
7755
7756         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7757         do_div(rt_period_us, NSEC_PER_USEC);
7758         return rt_period_us;
7759 }
7760 #endif /* CONFIG_RT_GROUP_SCHED */
7761
7762 #ifdef CONFIG_RT_GROUP_SCHED
7763 static int sched_rt_global_constraints(void)
7764 {
7765         int ret = 0;
7766
7767         mutex_lock(&rt_constraints_mutex);
7768         read_lock(&tasklist_lock);
7769         ret = __rt_schedulable(NULL, 0, 0);
7770         read_unlock(&tasklist_lock);
7771         mutex_unlock(&rt_constraints_mutex);
7772
7773         return ret;
7774 }
7775
7776 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7777 {
7778         /* Don't accept realtime tasks when there is no way for them to run */
7779         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7780                 return 0;
7781
7782         return 1;
7783 }
7784
7785 #else /* !CONFIG_RT_GROUP_SCHED */
7786 static int sched_rt_global_constraints(void)
7787 {
7788         unsigned long flags;
7789         int i, ret = 0;
7790
7791         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7792         for_each_possible_cpu(i) {
7793                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7794
7795                 raw_spin_lock(&rt_rq->rt_runtime_lock);
7796                 rt_rq->rt_runtime = global_rt_runtime();
7797                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7798         }
7799         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7800
7801         return ret;
7802 }
7803 #endif /* CONFIG_RT_GROUP_SCHED */
7804
7805 static int sched_dl_global_validate(void)
7806 {
7807         u64 runtime = global_rt_runtime();
7808         u64 period = global_rt_period();
7809         u64 new_bw = to_ratio(period, runtime);
7810         struct dl_bw *dl_b;
7811         int cpu, ret = 0;
7812         unsigned long flags;
7813
7814         /*
7815          * Here we want to check the bandwidth not being set to some
7816          * value smaller than the currently allocated bandwidth in
7817          * any of the root_domains.
7818          *
7819          * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7820          * cycling on root_domains... Discussion on different/better
7821          * solutions is welcome!
7822          */
7823         for_each_possible_cpu(cpu) {
7824                 rcu_read_lock_sched();
7825                 dl_b = dl_bw_of(cpu);
7826
7827                 raw_spin_lock_irqsave(&dl_b->lock, flags);
7828                 if (new_bw < dl_b->total_bw)
7829                         ret = -EBUSY;
7830                 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7831
7832                 rcu_read_unlock_sched();
7833
7834                 if (ret)
7835                         break;
7836         }
7837
7838         return ret;
7839 }
7840
7841 static void sched_dl_do_global(void)
7842 {
7843         u64 new_bw = -1;
7844         struct dl_bw *dl_b;
7845         int cpu;
7846         unsigned long flags;
7847
7848         def_dl_bandwidth.dl_period = global_rt_period();
7849         def_dl_bandwidth.dl_runtime = global_rt_runtime();
7850
7851         if (global_rt_runtime() != RUNTIME_INF)
7852                 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7853
7854         /*
7855          * FIXME: As above...
7856          */
7857         for_each_possible_cpu(cpu) {
7858                 rcu_read_lock_sched();
7859                 dl_b = dl_bw_of(cpu);
7860
7861                 raw_spin_lock_irqsave(&dl_b->lock, flags);
7862                 dl_b->bw = new_bw;
7863                 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7864
7865                 rcu_read_unlock_sched();
7866         }
7867 }
7868
7869 static int sched_rt_global_validate(void)
7870 {
7871         if (sysctl_sched_rt_period <= 0)
7872                 return -EINVAL;
7873
7874         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7875                 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7876                 return -EINVAL;
7877
7878         return 0;
7879 }
7880
7881 static void sched_rt_do_global(void)
7882 {
7883         def_rt_bandwidth.rt_runtime = global_rt_runtime();
7884         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7885 }
7886
7887 int sched_rt_handler(struct ctl_table *table, int write,
7888                 void __user *buffer, size_t *lenp,
7889                 loff_t *ppos)
7890 {
7891         int old_period, old_runtime;
7892         static DEFINE_MUTEX(mutex);
7893         int ret;
7894
7895         mutex_lock(&mutex);
7896         old_period = sysctl_sched_rt_period;
7897         old_runtime = sysctl_sched_rt_runtime;
7898
7899         ret = proc_dointvec(table, write, buffer, lenp, ppos);
7900
7901         if (!ret && write) {
7902                 ret = sched_rt_global_validate();
7903                 if (ret)
7904                         goto undo;
7905
7906                 ret = sched_dl_global_validate();
7907                 if (ret)
7908                         goto undo;
7909
7910                 ret = sched_rt_global_constraints();
7911                 if (ret)
7912                         goto undo;
7913
7914                 sched_rt_do_global();
7915                 sched_dl_do_global();
7916         }
7917         if (0) {
7918 undo:
7919                 sysctl_sched_rt_period = old_period;
7920                 sysctl_sched_rt_runtime = old_runtime;
7921         }
7922         mutex_unlock(&mutex);
7923
7924         return ret;
7925 }
7926
7927 int sched_rr_handler(struct ctl_table *table, int write,
7928                 void __user *buffer, size_t *lenp,
7929                 loff_t *ppos)
7930 {
7931         int ret;
7932         static DEFINE_MUTEX(mutex);
7933
7934         mutex_lock(&mutex);
7935         ret = proc_dointvec(table, write, buffer, lenp, ppos);
7936         /* make sure that internally we keep jiffies */
7937         /* also, writing zero resets timeslice to default */
7938         if (!ret && write) {
7939                 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7940                         RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7941         }
7942         mutex_unlock(&mutex);
7943         return ret;
7944 }
7945
7946 #ifdef CONFIG_CGROUP_SCHED
7947
7948 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7949 {
7950         return css ? container_of(css, struct task_group, css) : NULL;
7951 }
7952
7953 static struct cgroup_subsys_state *
7954 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7955 {
7956         struct task_group *parent = css_tg(parent_css);
7957         struct task_group *tg;
7958
7959         if (!parent) {
7960                 /* This is early initialization for the top cgroup */
7961                 return &root_task_group.css;
7962         }
7963
7964         tg = sched_create_group(parent);
7965         if (IS_ERR(tg))
7966                 return ERR_PTR(-ENOMEM);
7967
7968         return &tg->css;
7969 }
7970
7971 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7972 {
7973         struct task_group *tg = css_tg(css);
7974         struct task_group *parent = css_tg(css->parent);
7975
7976         if (parent)
7977                 sched_online_group(tg, parent);
7978         return 0;
7979 }
7980
7981 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7982 {
7983         struct task_group *tg = css_tg(css);
7984
7985         sched_destroy_group(tg);
7986 }
7987
7988 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7989 {
7990         struct task_group *tg = css_tg(css);
7991
7992         sched_offline_group(tg);
7993 }
7994
7995 static void cpu_cgroup_fork(struct task_struct *task)
7996 {
7997         sched_move_task(task);
7998 }
7999
8000 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8001                                  struct cgroup_taskset *tset)
8002 {
8003         struct task_struct *task;
8004
8005         cgroup_taskset_for_each(task, tset) {
8006 #ifdef CONFIG_RT_GROUP_SCHED
8007                 if (!sched_rt_can_attach(css_tg(css), task))
8008                         return -EINVAL;
8009 #else
8010                 /* We don't support RT-tasks being in separate groups */
8011                 if (task->sched_class != &fair_sched_class)
8012                         return -EINVAL;
8013 #endif
8014         }
8015         return 0;
8016 }
8017
8018 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8019                               struct cgroup_taskset *tset)
8020 {
8021         struct task_struct *task;
8022
8023         cgroup_taskset_for_each(task, tset)
8024                 sched_move_task(task);
8025 }
8026
8027 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8028                             struct cgroup_subsys_state *old_css,
8029                             struct task_struct *task)
8030 {
8031         /*
8032          * cgroup_exit() is called in the copy_process() failure path.
8033          * Ignore this case since the task hasn't ran yet, this avoids
8034          * trying to poke a half freed task state from generic code.
8035          */
8036         if (!(task->flags & PF_EXITING))
8037                 return;
8038
8039         sched_move_task(task);
8040 }
8041
8042 #ifdef CONFIG_FAIR_GROUP_SCHED
8043 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8044                                 struct cftype *cftype, u64 shareval)
8045 {
8046         return sched_group_set_shares(css_tg(css), scale_load(shareval));
8047 }
8048
8049 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8050                                struct cftype *cft)
8051 {
8052         struct task_group *tg = css_tg(css);
8053
8054         return (u64) scale_load_down(tg->shares);
8055 }
8056
8057 #ifdef CONFIG_CFS_BANDWIDTH
8058 static DEFINE_MUTEX(cfs_constraints_mutex);
8059
8060 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8061 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8062
8063 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8064
8065 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8066 {
8067         int i, ret = 0, runtime_enabled, runtime_was_enabled;
8068         struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8069
8070         if (tg == &root_task_group)
8071                 return -EINVAL;
8072
8073         /*
8074          * Ensure we have at some amount of bandwidth every period.  This is
8075          * to prevent reaching a state of large arrears when throttled via
8076          * entity_tick() resulting in prolonged exit starvation.
8077          */
8078         if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8079                 return -EINVAL;
8080
8081         /*
8082          * Likewise, bound things on the otherside by preventing insane quota
8083          * periods.  This also allows us to normalize in computing quota
8084          * feasibility.
8085          */
8086         if (period > max_cfs_quota_period)
8087                 return -EINVAL;
8088
8089         /*
8090          * Prevent race between setting of cfs_rq->runtime_enabled and
8091          * unthrottle_offline_cfs_rqs().
8092          */
8093         get_online_cpus();
8094         mutex_lock(&cfs_constraints_mutex);
8095         ret = __cfs_schedulable(tg, period, quota);
8096         if (ret)
8097                 goto out_unlock;
8098
8099         runtime_enabled = quota != RUNTIME_INF;
8100         runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8101         /*
8102          * If we need to toggle cfs_bandwidth_used, off->on must occur
8103          * before making related changes, and on->off must occur afterwards
8104          */
8105         if (runtime_enabled && !runtime_was_enabled)
8106                 cfs_bandwidth_usage_inc();
8107         raw_spin_lock_irq(&cfs_b->lock);
8108         cfs_b->period = ns_to_ktime(period);
8109         cfs_b->quota = quota;
8110
8111         __refill_cfs_bandwidth_runtime(cfs_b);
8112         /* restart the period timer (if active) to handle new period expiry */
8113         if (runtime_enabled && cfs_b->timer_active) {
8114                 /* force a reprogram */
8115                 __start_cfs_bandwidth(cfs_b, true);
8116         }
8117         raw_spin_unlock_irq(&cfs_b->lock);
8118
8119         for_each_online_cpu(i) {
8120                 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8121                 struct rq *rq = cfs_rq->rq;
8122
8123                 raw_spin_lock_irq(&rq->lock);
8124                 cfs_rq->runtime_enabled = runtime_enabled;
8125                 cfs_rq->runtime_remaining = 0;
8126
8127                 if (cfs_rq->throttled)
8128                         unthrottle_cfs_rq(cfs_rq);
8129                 raw_spin_unlock_irq(&rq->lock);
8130         }
8131         if (runtime_was_enabled && !runtime_enabled)
8132                 cfs_bandwidth_usage_dec();
8133 out_unlock:
8134         mutex_unlock(&cfs_constraints_mutex);
8135         put_online_cpus();
8136
8137         return ret;
8138 }
8139
8140 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8141 {
8142         u64 quota, period;
8143
8144         period = ktime_to_ns(tg->cfs_bandwidth.period);
8145         if (cfs_quota_us < 0)
8146                 quota = RUNTIME_INF;
8147         else
8148                 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8149
8150         return tg_set_cfs_bandwidth(tg, period, quota);
8151 }
8152
8153 long tg_get_cfs_quota(struct task_group *tg)
8154 {
8155         u64 quota_us;
8156
8157         if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8158                 return -1;
8159
8160         quota_us = tg->cfs_bandwidth.quota;
8161         do_div(quota_us, NSEC_PER_USEC);
8162
8163         return quota_us;
8164 }
8165
8166 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8167 {
8168         u64 quota, period;
8169
8170         period = (u64)cfs_period_us * NSEC_PER_USEC;
8171         quota = tg->cfs_bandwidth.quota;
8172
8173         return tg_set_cfs_bandwidth(tg, period, quota);
8174 }
8175
8176 long tg_get_cfs_period(struct task_group *tg)
8177 {
8178         u64 cfs_period_us;
8179
8180         cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8181         do_div(cfs_period_us, NSEC_PER_USEC);
8182
8183         return cfs_period_us;
8184 }
8185
8186 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8187                                   struct cftype *cft)
8188 {
8189         return tg_get_cfs_quota(css_tg(css));
8190 }
8191
8192 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8193                                    struct cftype *cftype, s64 cfs_quota_us)
8194 {
8195         return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8196 }
8197
8198 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8199                                    struct cftype *cft)
8200 {
8201         return tg_get_cfs_period(css_tg(css));
8202 }
8203
8204 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8205                                     struct cftype *cftype, u64 cfs_period_us)
8206 {
8207         return tg_set_cfs_period(css_tg(css), cfs_period_us);
8208 }
8209
8210 struct cfs_schedulable_data {
8211         struct task_group *tg;
8212         u64 period, quota;
8213 };
8214
8215 /*
8216  * normalize group quota/period to be quota/max_period
8217  * note: units are usecs
8218  */
8219 static u64 normalize_cfs_quota(struct task_group *tg,
8220                                struct cfs_schedulable_data *d)
8221 {
8222         u64 quota, period;
8223
8224         if (tg == d->tg) {
8225                 period = d->period;
8226                 quota = d->quota;
8227         } else {
8228                 period = tg_get_cfs_period(tg);
8229                 quota = tg_get_cfs_quota(tg);
8230         }
8231
8232         /* note: these should typically be equivalent */
8233         if (quota == RUNTIME_INF || quota == -1)
8234                 return RUNTIME_INF;
8235
8236         return to_ratio(period, quota);
8237 }
8238
8239 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8240 {
8241         struct cfs_schedulable_data *d = data;
8242         struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8243         s64 quota = 0, parent_quota = -1;
8244
8245         if (!tg->parent) {
8246                 quota = RUNTIME_INF;
8247         } else {
8248                 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8249
8250                 quota = normalize_cfs_quota(tg, d);
8251                 parent_quota = parent_b->hierarchical_quota;
8252
8253                 /*
8254                  * ensure max(child_quota) <= parent_quota, inherit when no
8255                  * limit is set
8256                  */
8257                 if (quota == RUNTIME_INF)
8258                         quota = parent_quota;
8259                 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8260                         return -EINVAL;
8261         }
8262         cfs_b->hierarchical_quota = quota;
8263
8264         return 0;
8265 }
8266
8267 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8268 {
8269         int ret;
8270         struct cfs_schedulable_data data = {
8271                 .tg = tg,
8272                 .period = period,
8273                 .quota = quota,
8274         };
8275
8276         if (quota != RUNTIME_INF) {
8277                 do_div(data.period, NSEC_PER_USEC);
8278                 do_div(data.quota, NSEC_PER_USEC);
8279         }
8280
8281         rcu_read_lock();
8282         ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8283         rcu_read_unlock();
8284
8285         return ret;
8286 }
8287
8288 static int cpu_stats_show(struct seq_file *sf, void *v)
8289 {
8290         struct task_group *tg = css_tg(seq_css(sf));
8291         struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8292
8293         seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8294         seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8295         seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8296
8297         return 0;
8298 }
8299 #endif /* CONFIG_CFS_BANDWIDTH */
8300 #endif /* CONFIG_FAIR_GROUP_SCHED */
8301
8302 #ifdef CONFIG_RT_GROUP_SCHED
8303 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8304                                 struct cftype *cft, s64 val)
8305 {
8306         return sched_group_set_rt_runtime(css_tg(css), val);
8307 }
8308
8309 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8310                                struct cftype *cft)
8311 {
8312         return sched_group_rt_runtime(css_tg(css));
8313 }
8314
8315 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8316                                     struct cftype *cftype, u64 rt_period_us)
8317 {
8318         return sched_group_set_rt_period(css_tg(css), rt_period_us);
8319 }
8320
8321 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8322                                    struct cftype *cft)
8323 {
8324         return sched_group_rt_period(css_tg(css));
8325 }
8326 #endif /* CONFIG_RT_GROUP_SCHED */
8327
8328 static struct cftype cpu_files[] = {
8329 #ifdef CONFIG_FAIR_GROUP_SCHED
8330         {
8331                 .name = "shares",
8332                 .read_u64 = cpu_shares_read_u64,
8333                 .write_u64 = cpu_shares_write_u64,
8334         },
8335 #endif
8336 #ifdef CONFIG_CFS_BANDWIDTH
8337         {
8338                 .name = "cfs_quota_us",
8339                 .read_s64 = cpu_cfs_quota_read_s64,
8340                 .write_s64 = cpu_cfs_quota_write_s64,
8341         },
8342         {
8343                 .name = "cfs_period_us",
8344                 .read_u64 = cpu_cfs_period_read_u64,
8345                 .write_u64 = cpu_cfs_period_write_u64,
8346         },
8347         {
8348                 .name = "stat",
8349                 .seq_show = cpu_stats_show,
8350         },
8351 #endif
8352 #ifdef CONFIG_RT_GROUP_SCHED
8353         {
8354                 .name = "rt_runtime_us",
8355                 .read_s64 = cpu_rt_runtime_read,
8356                 .write_s64 = cpu_rt_runtime_write,
8357         },
8358         {
8359                 .name = "rt_period_us",
8360                 .read_u64 = cpu_rt_period_read_uint,
8361                 .write_u64 = cpu_rt_period_write_uint,
8362         },
8363 #endif
8364         { }     /* terminate */
8365 };
8366
8367 struct cgroup_subsys cpu_cgrp_subsys = {
8368         .css_alloc      = cpu_cgroup_css_alloc,
8369         .css_free       = cpu_cgroup_css_free,
8370         .css_online     = cpu_cgroup_css_online,
8371         .css_offline    = cpu_cgroup_css_offline,
8372         .fork           = cpu_cgroup_fork,
8373         .can_attach     = cpu_cgroup_can_attach,
8374         .attach         = cpu_cgroup_attach,
8375         .exit           = cpu_cgroup_exit,
8376         .legacy_cftypes = cpu_files,
8377         .early_init     = 1,
8378 };
8379
8380 #endif  /* CONFIG_CGROUP_SCHED */
8381
8382 void dump_cpu_task(int cpu)
8383 {
8384         pr_info("Task dump for CPU %d:\n", cpu);
8385         sched_show_task(cpu_curr(cpu));
8386 }