x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / kernel / sched / rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
10
11 int sched_rr_timeslice = RR_TIMESLICE;
12
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15 struct rt_bandwidth def_rt_bandwidth;
16
17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 {
19         struct rt_bandwidth *rt_b =
20                 container_of(timer, struct rt_bandwidth, rt_period_timer);
21         int idle = 0;
22         int overrun;
23
24         raw_spin_lock(&rt_b->rt_runtime_lock);
25         for (;;) {
26                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27                 if (!overrun)
28                         break;
29
30                 raw_spin_unlock(&rt_b->rt_runtime_lock);
31                 idle = do_sched_rt_period_timer(rt_b, overrun);
32                 raw_spin_lock(&rt_b->rt_runtime_lock);
33         }
34         if (idle)
35                 rt_b->rt_period_active = 0;
36         raw_spin_unlock(&rt_b->rt_runtime_lock);
37
38         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39 }
40
41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42 {
43         rt_b->rt_period = ns_to_ktime(period);
44         rt_b->rt_runtime = runtime;
45
46         raw_spin_lock_init(&rt_b->rt_runtime_lock);
47
48         hrtimer_init(&rt_b->rt_period_timer,
49                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
50         rt_b->rt_period_timer.function = sched_rt_period_timer;
51 }
52
53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54 {
55         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56                 return;
57
58         raw_spin_lock(&rt_b->rt_runtime_lock);
59         if (!rt_b->rt_period_active) {
60                 rt_b->rt_period_active = 1;
61                 /*
62                  * SCHED_DEADLINE updates the bandwidth, as a run away
63                  * RT task with a DL task could hog a CPU. But DL does
64                  * not reset the period. If a deadline task was running
65                  * without an RT task running, it can cause RT tasks to
66                  * throttle when they start up. Kick the timer right away
67                  * to update the period.
68                  */
69                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
70                 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
71         }
72         raw_spin_unlock(&rt_b->rt_runtime_lock);
73 }
74
75 #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
76 static void push_irq_work_func(struct irq_work *work);
77 #endif
78
79 void init_rt_rq(struct rt_rq *rt_rq)
80 {
81         struct rt_prio_array *array;
82         int i;
83
84         array = &rt_rq->active;
85         for (i = 0; i < MAX_RT_PRIO; i++) {
86                 INIT_LIST_HEAD(array->queue + i);
87                 __clear_bit(i, array->bitmap);
88         }
89         /* delimiter for bitsearch: */
90         __set_bit(MAX_RT_PRIO, array->bitmap);
91
92 #if defined CONFIG_SMP
93         rt_rq->highest_prio.curr = MAX_RT_PRIO;
94         rt_rq->highest_prio.next = MAX_RT_PRIO;
95         rt_rq->rt_nr_migratory = 0;
96         rt_rq->overloaded = 0;
97         plist_head_init(&rt_rq->pushable_tasks);
98
99 #ifdef HAVE_RT_PUSH_IPI
100         rt_rq->push_flags = 0;
101         rt_rq->push_cpu = nr_cpu_ids;
102         raw_spin_lock_init(&rt_rq->push_lock);
103         init_irq_work(&rt_rq->push_work, push_irq_work_func);
104 #endif
105 #endif /* CONFIG_SMP */
106         /* We start is dequeued state, because no RT tasks are queued */
107         rt_rq->rt_queued = 0;
108
109         rt_rq->rt_time = 0;
110         rt_rq->rt_throttled = 0;
111         rt_rq->rt_runtime = 0;
112         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
113 }
114
115 #ifdef CONFIG_RT_GROUP_SCHED
116 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
117 {
118         hrtimer_cancel(&rt_b->rt_period_timer);
119 }
120
121 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
122
123 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
124 {
125 #ifdef CONFIG_SCHED_DEBUG
126         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
127 #endif
128         return container_of(rt_se, struct task_struct, rt);
129 }
130
131 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
132 {
133         return rt_rq->rq;
134 }
135
136 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
137 {
138         return rt_se->rt_rq;
139 }
140
141 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
142 {
143         struct rt_rq *rt_rq = rt_se->rt_rq;
144
145         return rt_rq->rq;
146 }
147
148 void free_rt_sched_group(struct task_group *tg)
149 {
150         int i;
151
152         if (tg->rt_se)
153                 destroy_rt_bandwidth(&tg->rt_bandwidth);
154
155         for_each_possible_cpu(i) {
156                 if (tg->rt_rq)
157                         kfree(tg->rt_rq[i]);
158                 if (tg->rt_se)
159                         kfree(tg->rt_se[i]);
160         }
161
162         kfree(tg->rt_rq);
163         kfree(tg->rt_se);
164 }
165
166 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
167                 struct sched_rt_entity *rt_se, int cpu,
168                 struct sched_rt_entity *parent)
169 {
170         struct rq *rq = cpu_rq(cpu);
171
172         rt_rq->highest_prio.curr = MAX_RT_PRIO;
173         rt_rq->rt_nr_boosted = 0;
174         rt_rq->rq = rq;
175         rt_rq->tg = tg;
176
177         tg->rt_rq[cpu] = rt_rq;
178         tg->rt_se[cpu] = rt_se;
179
180         if (!rt_se)
181                 return;
182
183         if (!parent)
184                 rt_se->rt_rq = &rq->rt;
185         else
186                 rt_se->rt_rq = parent->my_q;
187
188         rt_se->my_q = rt_rq;
189         rt_se->parent = parent;
190         INIT_LIST_HEAD(&rt_se->run_list);
191 }
192
193 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
194 {
195         struct rt_rq *rt_rq;
196         struct sched_rt_entity *rt_se;
197         int i;
198
199         tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
200         if (!tg->rt_rq)
201                 goto err;
202         tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
203         if (!tg->rt_se)
204                 goto err;
205
206         init_rt_bandwidth(&tg->rt_bandwidth,
207                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
208
209         for_each_possible_cpu(i) {
210                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
211                                      GFP_KERNEL, cpu_to_node(i));
212                 if (!rt_rq)
213                         goto err;
214
215                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
216                                      GFP_KERNEL, cpu_to_node(i));
217                 if (!rt_se)
218                         goto err_free_rq;
219
220                 init_rt_rq(rt_rq);
221                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
222                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
223         }
224
225         return 1;
226
227 err_free_rq:
228         kfree(rt_rq);
229 err:
230         return 0;
231 }
232
233 #else /* CONFIG_RT_GROUP_SCHED */
234
235 #define rt_entity_is_task(rt_se) (1)
236
237 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
238 {
239         return container_of(rt_se, struct task_struct, rt);
240 }
241
242 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
243 {
244         return container_of(rt_rq, struct rq, rt);
245 }
246
247 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
248 {
249         struct task_struct *p = rt_task_of(rt_se);
250
251         return task_rq(p);
252 }
253
254 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
255 {
256         struct rq *rq = rq_of_rt_se(rt_se);
257
258         return &rq->rt;
259 }
260
261 void free_rt_sched_group(struct task_group *tg) { }
262
263 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
264 {
265         return 1;
266 }
267 #endif /* CONFIG_RT_GROUP_SCHED */
268
269 #ifdef CONFIG_SMP
270
271 static void pull_rt_task(struct rq *this_rq);
272
273 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
274 {
275         /* Try to pull RT tasks here if we lower this rq's prio */
276         return rq->rt.highest_prio.curr > prev->prio;
277 }
278
279 static inline int rt_overloaded(struct rq *rq)
280 {
281         return atomic_read(&rq->rd->rto_count);
282 }
283
284 static inline void rt_set_overload(struct rq *rq)
285 {
286         if (!rq->online)
287                 return;
288
289         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
290         /*
291          * Make sure the mask is visible before we set
292          * the overload count. That is checked to determine
293          * if we should look at the mask. It would be a shame
294          * if we looked at the mask, but the mask was not
295          * updated yet.
296          *
297          * Matched by the barrier in pull_rt_task().
298          */
299         smp_wmb();
300         atomic_inc(&rq->rd->rto_count);
301 }
302
303 static inline void rt_clear_overload(struct rq *rq)
304 {
305         if (!rq->online)
306                 return;
307
308         /* the order here really doesn't matter */
309         atomic_dec(&rq->rd->rto_count);
310         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
311 }
312
313 static void update_rt_migration(struct rt_rq *rt_rq)
314 {
315         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
316                 if (!rt_rq->overloaded) {
317                         rt_set_overload(rq_of_rt_rq(rt_rq));
318                         rt_rq->overloaded = 1;
319                 }
320         } else if (rt_rq->overloaded) {
321                 rt_clear_overload(rq_of_rt_rq(rt_rq));
322                 rt_rq->overloaded = 0;
323         }
324 }
325
326 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
327 {
328         struct task_struct *p;
329
330         if (!rt_entity_is_task(rt_se))
331                 return;
332
333         p = rt_task_of(rt_se);
334         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
335
336         rt_rq->rt_nr_total++;
337         if (tsk_nr_cpus_allowed(p) > 1)
338                 rt_rq->rt_nr_migratory++;
339
340         update_rt_migration(rt_rq);
341 }
342
343 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
344 {
345         struct task_struct *p;
346
347         if (!rt_entity_is_task(rt_se))
348                 return;
349
350         p = rt_task_of(rt_se);
351         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
352
353         rt_rq->rt_nr_total--;
354         if (tsk_nr_cpus_allowed(p) > 1)
355                 rt_rq->rt_nr_migratory--;
356
357         update_rt_migration(rt_rq);
358 }
359
360 static inline int has_pushable_tasks(struct rq *rq)
361 {
362         return !plist_head_empty(&rq->rt.pushable_tasks);
363 }
364
365 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
366 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
367
368 static void push_rt_tasks(struct rq *);
369 static void pull_rt_task(struct rq *);
370
371 static inline void queue_push_tasks(struct rq *rq)
372 {
373         if (!has_pushable_tasks(rq))
374                 return;
375
376         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
377 }
378
379 static inline void queue_pull_task(struct rq *rq)
380 {
381         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
382 }
383
384 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
385 {
386         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
387         plist_node_init(&p->pushable_tasks, p->prio);
388         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
389
390         /* Update the highest prio pushable task */
391         if (p->prio < rq->rt.highest_prio.next)
392                 rq->rt.highest_prio.next = p->prio;
393 }
394
395 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
396 {
397         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
398
399         /* Update the new highest prio pushable task */
400         if (has_pushable_tasks(rq)) {
401                 p = plist_first_entry(&rq->rt.pushable_tasks,
402                                       struct task_struct, pushable_tasks);
403                 rq->rt.highest_prio.next = p->prio;
404         } else
405                 rq->rt.highest_prio.next = MAX_RT_PRIO;
406 }
407
408 #else
409
410 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
411 {
412 }
413
414 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
415 {
416 }
417
418 static inline
419 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
420 {
421 }
422
423 static inline
424 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
425 {
426 }
427
428 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
429 {
430         return false;
431 }
432
433 static inline void pull_rt_task(struct rq *this_rq)
434 {
435 }
436
437 static inline void queue_push_tasks(struct rq *rq)
438 {
439 }
440 #endif /* CONFIG_SMP */
441
442 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
443 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
444
445 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
446 {
447         return rt_se->on_rq;
448 }
449
450 #ifdef CONFIG_RT_GROUP_SCHED
451
452 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
453 {
454         if (!rt_rq->tg)
455                 return RUNTIME_INF;
456
457         return rt_rq->rt_runtime;
458 }
459
460 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
461 {
462         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
463 }
464
465 typedef struct task_group *rt_rq_iter_t;
466
467 static inline struct task_group *next_task_group(struct task_group *tg)
468 {
469         do {
470                 tg = list_entry_rcu(tg->list.next,
471                         typeof(struct task_group), list);
472         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
473
474         if (&tg->list == &task_groups)
475                 tg = NULL;
476
477         return tg;
478 }
479
480 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
481         for (iter = container_of(&task_groups, typeof(*iter), list);    \
482                 (iter = next_task_group(iter)) &&                       \
483                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
484
485 #define for_each_sched_rt_entity(rt_se) \
486         for (; rt_se; rt_se = rt_se->parent)
487
488 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
489 {
490         return rt_se->my_q;
491 }
492
493 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
494 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
495
496 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
497 {
498         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
499         struct rq *rq = rq_of_rt_rq(rt_rq);
500         struct sched_rt_entity *rt_se;
501
502         int cpu = cpu_of(rq);
503
504         rt_se = rt_rq->tg->rt_se[cpu];
505
506         if (rt_rq->rt_nr_running) {
507                 if (!rt_se)
508                         enqueue_top_rt_rq(rt_rq);
509                 else if (!on_rt_rq(rt_se))
510                         enqueue_rt_entity(rt_se, 0);
511
512                 if (rt_rq->highest_prio.curr < curr->prio)
513                         resched_curr(rq);
514         }
515 }
516
517 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
518 {
519         struct sched_rt_entity *rt_se;
520         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
521
522         rt_se = rt_rq->tg->rt_se[cpu];
523
524         if (!rt_se)
525                 dequeue_top_rt_rq(rt_rq);
526         else if (on_rt_rq(rt_se))
527                 dequeue_rt_entity(rt_se, 0);
528 }
529
530 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
531 {
532         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
533 }
534
535 static int rt_se_boosted(struct sched_rt_entity *rt_se)
536 {
537         struct rt_rq *rt_rq = group_rt_rq(rt_se);
538         struct task_struct *p;
539
540         if (rt_rq)
541                 return !!rt_rq->rt_nr_boosted;
542
543         p = rt_task_of(rt_se);
544         return p->prio != p->normal_prio;
545 }
546
547 #ifdef CONFIG_SMP
548 static inline const struct cpumask *sched_rt_period_mask(void)
549 {
550         return this_rq()->rd->span;
551 }
552 #else
553 static inline const struct cpumask *sched_rt_period_mask(void)
554 {
555         return cpu_online_mask;
556 }
557 #endif
558
559 static inline
560 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
561 {
562         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
563 }
564
565 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
566 {
567         return &rt_rq->tg->rt_bandwidth;
568 }
569
570 #else /* !CONFIG_RT_GROUP_SCHED */
571
572 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
573 {
574         return rt_rq->rt_runtime;
575 }
576
577 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
578 {
579         return ktime_to_ns(def_rt_bandwidth.rt_period);
580 }
581
582 typedef struct rt_rq *rt_rq_iter_t;
583
584 #define for_each_rt_rq(rt_rq, iter, rq) \
585         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
586
587 #define for_each_sched_rt_entity(rt_se) \
588         for (; rt_se; rt_se = NULL)
589
590 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
591 {
592         return NULL;
593 }
594
595 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
596 {
597         struct rq *rq = rq_of_rt_rq(rt_rq);
598
599         if (!rt_rq->rt_nr_running)
600                 return;
601
602         enqueue_top_rt_rq(rt_rq);
603         resched_curr(rq);
604 }
605
606 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
607 {
608         dequeue_top_rt_rq(rt_rq);
609 }
610
611 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
612 {
613         return rt_rq->rt_throttled;
614 }
615
616 static inline const struct cpumask *sched_rt_period_mask(void)
617 {
618         return cpu_online_mask;
619 }
620
621 static inline
622 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
623 {
624         return &cpu_rq(cpu)->rt;
625 }
626
627 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
628 {
629         return &def_rt_bandwidth;
630 }
631
632 #endif /* CONFIG_RT_GROUP_SCHED */
633
634 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
635 {
636         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
637
638         return (hrtimer_active(&rt_b->rt_period_timer) ||
639                 rt_rq->rt_time < rt_b->rt_runtime);
640 }
641
642 #ifdef CONFIG_SMP
643 /*
644  * We ran out of runtime, see if we can borrow some from our neighbours.
645  */
646 static void do_balance_runtime(struct rt_rq *rt_rq)
647 {
648         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
649         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
650         int i, weight;
651         u64 rt_period;
652
653         weight = cpumask_weight(rd->span);
654
655         raw_spin_lock(&rt_b->rt_runtime_lock);
656         rt_period = ktime_to_ns(rt_b->rt_period);
657         for_each_cpu(i, rd->span) {
658                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
659                 s64 diff;
660
661                 if (iter == rt_rq)
662                         continue;
663
664                 raw_spin_lock(&iter->rt_runtime_lock);
665                 /*
666                  * Either all rqs have inf runtime and there's nothing to steal
667                  * or __disable_runtime() below sets a specific rq to inf to
668                  * indicate its been disabled and disalow stealing.
669                  */
670                 if (iter->rt_runtime == RUNTIME_INF)
671                         goto next;
672
673                 /*
674                  * From runqueues with spare time, take 1/n part of their
675                  * spare time, but no more than our period.
676                  */
677                 diff = iter->rt_runtime - iter->rt_time;
678                 if (diff > 0) {
679                         diff = div_u64((u64)diff, weight);
680                         if (rt_rq->rt_runtime + diff > rt_period)
681                                 diff = rt_period - rt_rq->rt_runtime;
682                         iter->rt_runtime -= diff;
683                         rt_rq->rt_runtime += diff;
684                         if (rt_rq->rt_runtime == rt_period) {
685                                 raw_spin_unlock(&iter->rt_runtime_lock);
686                                 break;
687                         }
688                 }
689 next:
690                 raw_spin_unlock(&iter->rt_runtime_lock);
691         }
692         raw_spin_unlock(&rt_b->rt_runtime_lock);
693 }
694
695 /*
696  * Ensure this RQ takes back all the runtime it lend to its neighbours.
697  */
698 static void __disable_runtime(struct rq *rq)
699 {
700         struct root_domain *rd = rq->rd;
701         rt_rq_iter_t iter;
702         struct rt_rq *rt_rq;
703
704         if (unlikely(!scheduler_running))
705                 return;
706
707         for_each_rt_rq(rt_rq, iter, rq) {
708                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
709                 s64 want;
710                 int i;
711
712                 raw_spin_lock(&rt_b->rt_runtime_lock);
713                 raw_spin_lock(&rt_rq->rt_runtime_lock);
714                 /*
715                  * Either we're all inf and nobody needs to borrow, or we're
716                  * already disabled and thus have nothing to do, or we have
717                  * exactly the right amount of runtime to take out.
718                  */
719                 if (rt_rq->rt_runtime == RUNTIME_INF ||
720                                 rt_rq->rt_runtime == rt_b->rt_runtime)
721                         goto balanced;
722                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
723
724                 /*
725                  * Calculate the difference between what we started out with
726                  * and what we current have, that's the amount of runtime
727                  * we lend and now have to reclaim.
728                  */
729                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
730
731                 /*
732                  * Greedy reclaim, take back as much as we can.
733                  */
734                 for_each_cpu(i, rd->span) {
735                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
736                         s64 diff;
737
738                         /*
739                          * Can't reclaim from ourselves or disabled runqueues.
740                          */
741                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
742                                 continue;
743
744                         raw_spin_lock(&iter->rt_runtime_lock);
745                         if (want > 0) {
746                                 diff = min_t(s64, iter->rt_runtime, want);
747                                 iter->rt_runtime -= diff;
748                                 want -= diff;
749                         } else {
750                                 iter->rt_runtime -= want;
751                                 want -= want;
752                         }
753                         raw_spin_unlock(&iter->rt_runtime_lock);
754
755                         if (!want)
756                                 break;
757                 }
758
759                 raw_spin_lock(&rt_rq->rt_runtime_lock);
760                 /*
761                  * We cannot be left wanting - that would mean some runtime
762                  * leaked out of the system.
763                  */
764                 BUG_ON(want);
765 balanced:
766                 /*
767                  * Disable all the borrow logic by pretending we have inf
768                  * runtime - in which case borrowing doesn't make sense.
769                  */
770                 rt_rq->rt_runtime = RUNTIME_INF;
771                 rt_rq->rt_throttled = 0;
772                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
773                 raw_spin_unlock(&rt_b->rt_runtime_lock);
774
775                 /* Make rt_rq available for pick_next_task() */
776                 sched_rt_rq_enqueue(rt_rq);
777         }
778 }
779
780 static void __enable_runtime(struct rq *rq)
781 {
782         rt_rq_iter_t iter;
783         struct rt_rq *rt_rq;
784
785         if (unlikely(!scheduler_running))
786                 return;
787
788         /*
789          * Reset each runqueue's bandwidth settings
790          */
791         for_each_rt_rq(rt_rq, iter, rq) {
792                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
793
794                 raw_spin_lock(&rt_b->rt_runtime_lock);
795                 raw_spin_lock(&rt_rq->rt_runtime_lock);
796                 rt_rq->rt_runtime = rt_b->rt_runtime;
797                 rt_rq->rt_time = 0;
798                 rt_rq->rt_throttled = 0;
799                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
800                 raw_spin_unlock(&rt_b->rt_runtime_lock);
801         }
802 }
803
804 static void balance_runtime(struct rt_rq *rt_rq)
805 {
806         if (!sched_feat(RT_RUNTIME_SHARE))
807                 return;
808
809         if (rt_rq->rt_time > rt_rq->rt_runtime) {
810                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
811                 do_balance_runtime(rt_rq);
812                 raw_spin_lock(&rt_rq->rt_runtime_lock);
813         }
814 }
815 #else /* !CONFIG_SMP */
816 static inline void balance_runtime(struct rt_rq *rt_rq) {}
817 #endif /* CONFIG_SMP */
818
819 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
820 {
821         int i, idle = 1, throttled = 0;
822         const struct cpumask *span;
823
824         span = sched_rt_period_mask();
825 #ifdef CONFIG_RT_GROUP_SCHED
826         /*
827          * FIXME: isolated CPUs should really leave the root task group,
828          * whether they are isolcpus or were isolated via cpusets, lest
829          * the timer run on a CPU which does not service all runqueues,
830          * potentially leaving other CPUs indefinitely throttled.  If
831          * isolation is really required, the user will turn the throttle
832          * off to kill the perturbations it causes anyway.  Meanwhile,
833          * this maintains functionality for boot and/or troubleshooting.
834          */
835         if (rt_b == &root_task_group.rt_bandwidth)
836                 span = cpu_online_mask;
837 #endif
838         for_each_cpu(i, span) {
839                 int enqueue = 0;
840                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
841                 struct rq *rq = rq_of_rt_rq(rt_rq);
842
843                 raw_spin_lock(&rq->lock);
844                 if (rt_rq->rt_time) {
845                         u64 runtime;
846
847                         raw_spin_lock(&rt_rq->rt_runtime_lock);
848                         if (rt_rq->rt_throttled)
849                                 balance_runtime(rt_rq);
850                         runtime = rt_rq->rt_runtime;
851                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
852                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
853                                 rt_rq->rt_throttled = 0;
854                                 enqueue = 1;
855
856                                 /*
857                                  * When we're idle and a woken (rt) task is
858                                  * throttled check_preempt_curr() will set
859                                  * skip_update and the time between the wakeup
860                                  * and this unthrottle will get accounted as
861                                  * 'runtime'.
862                                  */
863                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
864                                         rq_clock_skip_update(rq, false);
865                         }
866                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
867                                 idle = 0;
868                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
869                 } else if (rt_rq->rt_nr_running) {
870                         idle = 0;
871                         if (!rt_rq_throttled(rt_rq))
872                                 enqueue = 1;
873                 }
874                 if (rt_rq->rt_throttled)
875                         throttled = 1;
876
877                 if (enqueue)
878                         sched_rt_rq_enqueue(rt_rq);
879                 raw_spin_unlock(&rq->lock);
880         }
881
882         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
883                 return 1;
884
885         return idle;
886 }
887
888 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
889 {
890 #ifdef CONFIG_RT_GROUP_SCHED
891         struct rt_rq *rt_rq = group_rt_rq(rt_se);
892
893         if (rt_rq)
894                 return rt_rq->highest_prio.curr;
895 #endif
896
897         return rt_task_of(rt_se)->prio;
898 }
899
900 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
901 {
902         u64 runtime = sched_rt_runtime(rt_rq);
903
904         if (rt_rq->rt_throttled)
905                 return rt_rq_throttled(rt_rq);
906
907         if (runtime >= sched_rt_period(rt_rq))
908                 return 0;
909
910         balance_runtime(rt_rq);
911         runtime = sched_rt_runtime(rt_rq);
912         if (runtime == RUNTIME_INF)
913                 return 0;
914
915         if (rt_rq->rt_time > runtime) {
916                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
917
918                 /*
919                  * Don't actually throttle groups that have no runtime assigned
920                  * but accrue some time due to boosting.
921                  */
922                 if (likely(rt_b->rt_runtime)) {
923                         rt_rq->rt_throttled = 1;
924                         printk_deferred_once("sched: RT throttling activated\n");
925                 } else {
926                         /*
927                          * In case we did anyway, make it go away,
928                          * replenishment is a joke, since it will replenish us
929                          * with exactly 0 ns.
930                          */
931                         rt_rq->rt_time = 0;
932                 }
933
934                 if (rt_rq_throttled(rt_rq)) {
935                         sched_rt_rq_dequeue(rt_rq);
936                         return 1;
937                 }
938         }
939
940         return 0;
941 }
942
943 /*
944  * Update the current task's runtime statistics. Skip current tasks that
945  * are not in our scheduling class.
946  */
947 static void update_curr_rt(struct rq *rq)
948 {
949         struct task_struct *curr = rq->curr;
950         struct sched_rt_entity *rt_se = &curr->rt;
951         u64 delta_exec;
952
953         if (curr->sched_class != &rt_sched_class)
954                 return;
955
956         delta_exec = rq_clock_task(rq) - curr->se.exec_start;
957         if (unlikely((s64)delta_exec <= 0))
958                 return;
959
960         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
961         cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_RT);
962
963         schedstat_set(curr->se.statistics.exec_max,
964                       max(curr->se.statistics.exec_max, delta_exec));
965
966         curr->se.sum_exec_runtime += delta_exec;
967         account_group_exec_runtime(curr, delta_exec);
968
969         curr->se.exec_start = rq_clock_task(rq);
970         cpuacct_charge(curr, delta_exec);
971
972         sched_rt_avg_update(rq, delta_exec);
973
974         if (!rt_bandwidth_enabled())
975                 return;
976
977         for_each_sched_rt_entity(rt_se) {
978                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
979
980                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
981                         raw_spin_lock(&rt_rq->rt_runtime_lock);
982                         rt_rq->rt_time += delta_exec;
983                         if (sched_rt_runtime_exceeded(rt_rq))
984                                 resched_curr(rq);
985                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
986                 }
987         }
988 }
989
990 static void
991 dequeue_top_rt_rq(struct rt_rq *rt_rq)
992 {
993         struct rq *rq = rq_of_rt_rq(rt_rq);
994
995         BUG_ON(&rq->rt != rt_rq);
996
997         if (!rt_rq->rt_queued)
998                 return;
999
1000         BUG_ON(!rq->nr_running);
1001
1002         sub_nr_running(rq, rt_rq->rt_nr_running);
1003         rt_rq->rt_queued = 0;
1004 }
1005
1006 static void
1007 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1008 {
1009         struct rq *rq = rq_of_rt_rq(rt_rq);
1010
1011         BUG_ON(&rq->rt != rt_rq);
1012
1013         if (rt_rq->rt_queued)
1014                 return;
1015         if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1016                 return;
1017
1018         add_nr_running(rq, rt_rq->rt_nr_running);
1019         rt_rq->rt_queued = 1;
1020 }
1021
1022 #if defined CONFIG_SMP
1023
1024 static void
1025 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1026 {
1027         struct rq *rq = rq_of_rt_rq(rt_rq);
1028
1029 #ifdef CONFIG_RT_GROUP_SCHED
1030         /*
1031          * Change rq's cpupri only if rt_rq is the top queue.
1032          */
1033         if (&rq->rt != rt_rq)
1034                 return;
1035 #endif
1036         if (rq->online && prio < prev_prio)
1037                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1038 }
1039
1040 static void
1041 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1042 {
1043         struct rq *rq = rq_of_rt_rq(rt_rq);
1044
1045 #ifdef CONFIG_RT_GROUP_SCHED
1046         /*
1047          * Change rq's cpupri only if rt_rq is the top queue.
1048          */
1049         if (&rq->rt != rt_rq)
1050                 return;
1051 #endif
1052         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1053                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1054 }
1055
1056 #else /* CONFIG_SMP */
1057
1058 static inline
1059 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1060 static inline
1061 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1062
1063 #endif /* CONFIG_SMP */
1064
1065 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1066 static void
1067 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1068 {
1069         int prev_prio = rt_rq->highest_prio.curr;
1070
1071         if (prio < prev_prio)
1072                 rt_rq->highest_prio.curr = prio;
1073
1074         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1075 }
1076
1077 static void
1078 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1079 {
1080         int prev_prio = rt_rq->highest_prio.curr;
1081
1082         if (rt_rq->rt_nr_running) {
1083
1084                 WARN_ON(prio < prev_prio);
1085
1086                 /*
1087                  * This may have been our highest task, and therefore
1088                  * we may have some recomputation to do
1089                  */
1090                 if (prio == prev_prio) {
1091                         struct rt_prio_array *array = &rt_rq->active;
1092
1093                         rt_rq->highest_prio.curr =
1094                                 sched_find_first_bit(array->bitmap);
1095                 }
1096
1097         } else
1098                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1099
1100         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1101 }
1102
1103 #else
1104
1105 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1106 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1107
1108 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1109
1110 #ifdef CONFIG_RT_GROUP_SCHED
1111
1112 static void
1113 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1114 {
1115         if (rt_se_boosted(rt_se))
1116                 rt_rq->rt_nr_boosted++;
1117
1118         if (rt_rq->tg)
1119                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1120 }
1121
1122 static void
1123 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1124 {
1125         if (rt_se_boosted(rt_se))
1126                 rt_rq->rt_nr_boosted--;
1127
1128         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1129 }
1130
1131 #else /* CONFIG_RT_GROUP_SCHED */
1132
1133 static void
1134 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1135 {
1136         start_rt_bandwidth(&def_rt_bandwidth);
1137 }
1138
1139 static inline
1140 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1141
1142 #endif /* CONFIG_RT_GROUP_SCHED */
1143
1144 static inline
1145 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1146 {
1147         struct rt_rq *group_rq = group_rt_rq(rt_se);
1148
1149         if (group_rq)
1150                 return group_rq->rt_nr_running;
1151         else
1152                 return 1;
1153 }
1154
1155 static inline
1156 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1157 {
1158         struct rt_rq *group_rq = group_rt_rq(rt_se);
1159         struct task_struct *tsk;
1160
1161         if (group_rq)
1162                 return group_rq->rr_nr_running;
1163
1164         tsk = rt_task_of(rt_se);
1165
1166         return (tsk->policy == SCHED_RR) ? 1 : 0;
1167 }
1168
1169 static inline
1170 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1171 {
1172         int prio = rt_se_prio(rt_se);
1173
1174         WARN_ON(!rt_prio(prio));
1175         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1176         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1177
1178         inc_rt_prio(rt_rq, prio);
1179         inc_rt_migration(rt_se, rt_rq);
1180         inc_rt_group(rt_se, rt_rq);
1181 }
1182
1183 static inline
1184 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1185 {
1186         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1187         WARN_ON(!rt_rq->rt_nr_running);
1188         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1189         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1190
1191         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1192         dec_rt_migration(rt_se, rt_rq);
1193         dec_rt_group(rt_se, rt_rq);
1194 }
1195
1196 /*
1197  * Change rt_se->run_list location unless SAVE && !MOVE
1198  *
1199  * assumes ENQUEUE/DEQUEUE flags match
1200  */
1201 static inline bool move_entity(unsigned int flags)
1202 {
1203         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1204                 return false;
1205
1206         return true;
1207 }
1208
1209 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1210 {
1211         list_del_init(&rt_se->run_list);
1212
1213         if (list_empty(array->queue + rt_se_prio(rt_se)))
1214                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1215
1216         rt_se->on_list = 0;
1217 }
1218
1219 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1220 {
1221         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1222         struct rt_prio_array *array = &rt_rq->active;
1223         struct rt_rq *group_rq = group_rt_rq(rt_se);
1224         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1225
1226         /*
1227          * Don't enqueue the group if its throttled, or when empty.
1228          * The latter is a consequence of the former when a child group
1229          * get throttled and the current group doesn't have any other
1230          * active members.
1231          */
1232         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1233                 if (rt_se->on_list)
1234                         __delist_rt_entity(rt_se, array);
1235                 return;
1236         }
1237
1238         if (move_entity(flags)) {
1239                 WARN_ON_ONCE(rt_se->on_list);
1240                 if (flags & ENQUEUE_HEAD)
1241                         list_add(&rt_se->run_list, queue);
1242                 else
1243                         list_add_tail(&rt_se->run_list, queue);
1244
1245                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1246                 rt_se->on_list = 1;
1247         }
1248         rt_se->on_rq = 1;
1249
1250         inc_rt_tasks(rt_se, rt_rq);
1251 }
1252
1253 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1254 {
1255         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1256         struct rt_prio_array *array = &rt_rq->active;
1257
1258         if (move_entity(flags)) {
1259                 WARN_ON_ONCE(!rt_se->on_list);
1260                 __delist_rt_entity(rt_se, array);
1261         }
1262         rt_se->on_rq = 0;
1263
1264         dec_rt_tasks(rt_se, rt_rq);
1265 }
1266
1267 /*
1268  * Because the prio of an upper entry depends on the lower
1269  * entries, we must remove entries top - down.
1270  */
1271 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1272 {
1273         struct sched_rt_entity *back = NULL;
1274
1275         for_each_sched_rt_entity(rt_se) {
1276                 rt_se->back = back;
1277                 back = rt_se;
1278         }
1279
1280         dequeue_top_rt_rq(rt_rq_of_se(back));
1281
1282         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1283                 if (on_rt_rq(rt_se))
1284                         __dequeue_rt_entity(rt_se, flags);
1285         }
1286 }
1287
1288 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1289 {
1290         struct rq *rq = rq_of_rt_se(rt_se);
1291
1292         dequeue_rt_stack(rt_se, flags);
1293         for_each_sched_rt_entity(rt_se)
1294                 __enqueue_rt_entity(rt_se, flags);
1295         enqueue_top_rt_rq(&rq->rt);
1296 }
1297
1298 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1299 {
1300         struct rq *rq = rq_of_rt_se(rt_se);
1301
1302         dequeue_rt_stack(rt_se, flags);
1303
1304         for_each_sched_rt_entity(rt_se) {
1305                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1306
1307                 if (rt_rq && rt_rq->rt_nr_running)
1308                         __enqueue_rt_entity(rt_se, flags);
1309         }
1310         enqueue_top_rt_rq(&rq->rt);
1311 }
1312
1313 /*
1314  * Adding/removing a task to/from a priority array:
1315  */
1316 static void
1317 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1318 {
1319         struct sched_rt_entity *rt_se = &p->rt;
1320
1321         if (flags & ENQUEUE_WAKEUP)
1322                 rt_se->timeout = 0;
1323
1324         enqueue_rt_entity(rt_se, flags);
1325
1326         if (!task_current(rq, p) && tsk_nr_cpus_allowed(p) > 1)
1327                 enqueue_pushable_task(rq, p);
1328 }
1329
1330 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1331 {
1332         struct sched_rt_entity *rt_se = &p->rt;
1333
1334         update_curr_rt(rq);
1335         dequeue_rt_entity(rt_se, flags);
1336
1337         dequeue_pushable_task(rq, p);
1338 }
1339
1340 /*
1341  * Put task to the head or the end of the run list without the overhead of
1342  * dequeue followed by enqueue.
1343  */
1344 static void
1345 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1346 {
1347         if (on_rt_rq(rt_se)) {
1348                 struct rt_prio_array *array = &rt_rq->active;
1349                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1350
1351                 if (head)
1352                         list_move(&rt_se->run_list, queue);
1353                 else
1354                         list_move_tail(&rt_se->run_list, queue);
1355         }
1356 }
1357
1358 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1359 {
1360         struct sched_rt_entity *rt_se = &p->rt;
1361         struct rt_rq *rt_rq;
1362
1363         for_each_sched_rt_entity(rt_se) {
1364                 rt_rq = rt_rq_of_se(rt_se);
1365                 requeue_rt_entity(rt_rq, rt_se, head);
1366         }
1367 }
1368
1369 static void yield_task_rt(struct rq *rq)
1370 {
1371         requeue_task_rt(rq, rq->curr, 0);
1372 }
1373
1374 #ifdef CONFIG_SMP
1375 static int find_lowest_rq(struct task_struct *task);
1376
1377 static int
1378 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1379 {
1380         struct task_struct *curr;
1381         struct rq *rq;
1382
1383         /* For anything but wake ups, just return the task_cpu */
1384         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1385                 goto out;
1386
1387         rq = cpu_rq(cpu);
1388
1389         rcu_read_lock();
1390         curr = READ_ONCE(rq->curr); /* unlocked access */
1391
1392         /*
1393          * If the current task on @p's runqueue is an RT task, then
1394          * try to see if we can wake this RT task up on another
1395          * runqueue. Otherwise simply start this RT task
1396          * on its current runqueue.
1397          *
1398          * We want to avoid overloading runqueues. If the woken
1399          * task is a higher priority, then it will stay on this CPU
1400          * and the lower prio task should be moved to another CPU.
1401          * Even though this will probably make the lower prio task
1402          * lose its cache, we do not want to bounce a higher task
1403          * around just because it gave up its CPU, perhaps for a
1404          * lock?
1405          *
1406          * For equal prio tasks, we just let the scheduler sort it out.
1407          *
1408          * Otherwise, just let it ride on the affined RQ and the
1409          * post-schedule router will push the preempted task away
1410          *
1411          * This test is optimistic, if we get it wrong the load-balancer
1412          * will have to sort it out.
1413          */
1414         if (curr && unlikely(rt_task(curr)) &&
1415             (tsk_nr_cpus_allowed(curr) < 2 ||
1416              curr->prio <= p->prio)) {
1417                 int target = find_lowest_rq(p);
1418
1419                 /*
1420                  * Don't bother moving it if the destination CPU is
1421                  * not running a lower priority task.
1422                  */
1423                 if (target != -1 &&
1424                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1425                         cpu = target;
1426         }
1427         rcu_read_unlock();
1428
1429 out:
1430         return cpu;
1431 }
1432
1433 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1434 {
1435         /*
1436          * Current can't be migrated, useless to reschedule,
1437          * let's hope p can move out.
1438          */
1439         if (tsk_nr_cpus_allowed(rq->curr) == 1 ||
1440             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1441                 return;
1442
1443         /*
1444          * p is migratable, so let's not schedule it and
1445          * see if it is pushed or pulled somewhere else.
1446          */
1447         if (tsk_nr_cpus_allowed(p) != 1
1448             && cpupri_find(&rq->rd->cpupri, p, NULL))
1449                 return;
1450
1451         /*
1452          * There appears to be other cpus that can accept
1453          * current and none to run 'p', so lets reschedule
1454          * to try and push current away:
1455          */
1456         requeue_task_rt(rq, p, 1);
1457         resched_curr(rq);
1458 }
1459
1460 #endif /* CONFIG_SMP */
1461
1462 /*
1463  * Preempt the current task with a newly woken task if needed:
1464  */
1465 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1466 {
1467         if (p->prio < rq->curr->prio) {
1468                 resched_curr(rq);
1469                 return;
1470         }
1471
1472 #ifdef CONFIG_SMP
1473         /*
1474          * If:
1475          *
1476          * - the newly woken task is of equal priority to the current task
1477          * - the newly woken task is non-migratable while current is migratable
1478          * - current will be preempted on the next reschedule
1479          *
1480          * we should check to see if current can readily move to a different
1481          * cpu.  If so, we will reschedule to allow the push logic to try
1482          * to move current somewhere else, making room for our non-migratable
1483          * task.
1484          */
1485         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1486                 check_preempt_equal_prio(rq, p);
1487 #endif
1488 }
1489
1490 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1491                                                    struct rt_rq *rt_rq)
1492 {
1493         struct rt_prio_array *array = &rt_rq->active;
1494         struct sched_rt_entity *next = NULL;
1495         struct list_head *queue;
1496         int idx;
1497
1498         idx = sched_find_first_bit(array->bitmap);
1499         BUG_ON(idx >= MAX_RT_PRIO);
1500
1501         queue = array->queue + idx;
1502         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1503
1504         return next;
1505 }
1506
1507 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1508 {
1509         struct sched_rt_entity *rt_se;
1510         struct task_struct *p;
1511         struct rt_rq *rt_rq  = &rq->rt;
1512
1513         do {
1514                 rt_se = pick_next_rt_entity(rq, rt_rq);
1515                 BUG_ON(!rt_se);
1516                 rt_rq = group_rt_rq(rt_se);
1517         } while (rt_rq);
1518
1519         p = rt_task_of(rt_se);
1520         p->se.exec_start = rq_clock_task(rq);
1521
1522         return p;
1523 }
1524
1525 static struct task_struct *
1526 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
1527 {
1528         struct task_struct *p;
1529         struct rt_rq *rt_rq = &rq->rt;
1530
1531         if (need_pull_rt_task(rq, prev)) {
1532                 /*
1533                  * This is OK, because current is on_cpu, which avoids it being
1534                  * picked for load-balance and preemption/IRQs are still
1535                  * disabled avoiding further scheduler activity on it and we're
1536                  * being very careful to re-start the picking loop.
1537                  */
1538                 lockdep_unpin_lock(&rq->lock, cookie);
1539                 pull_rt_task(rq);
1540                 lockdep_repin_lock(&rq->lock, cookie);
1541                 /*
1542                  * pull_rt_task() can drop (and re-acquire) rq->lock; this
1543                  * means a dl or stop task can slip in, in which case we need
1544                  * to re-start task selection.
1545                  */
1546                 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1547                              rq->dl.dl_nr_running))
1548                         return RETRY_TASK;
1549         }
1550
1551         /*
1552          * We may dequeue prev's rt_rq in put_prev_task().
1553          * So, we update time before rt_nr_running check.
1554          */
1555         if (prev->sched_class == &rt_sched_class)
1556                 update_curr_rt(rq);
1557
1558         if (!rt_rq->rt_queued)
1559                 return NULL;
1560
1561         put_prev_task(rq, prev);
1562
1563         p = _pick_next_task_rt(rq);
1564
1565         /* The running task is never eligible for pushing */
1566         dequeue_pushable_task(rq, p);
1567
1568         queue_push_tasks(rq);
1569
1570         return p;
1571 }
1572
1573 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1574 {
1575         update_curr_rt(rq);
1576
1577         /*
1578          * The previous task needs to be made eligible for pushing
1579          * if it is still active
1580          */
1581         if (on_rt_rq(&p->rt) && tsk_nr_cpus_allowed(p) > 1)
1582                 enqueue_pushable_task(rq, p);
1583 }
1584
1585 #ifdef CONFIG_SMP
1586
1587 /* Only try algorithms three times */
1588 #define RT_MAX_TRIES 3
1589
1590 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1591 {
1592         if (!task_running(rq, p) &&
1593             cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1594                 return 1;
1595         return 0;
1596 }
1597
1598 /*
1599  * Return the highest pushable rq's task, which is suitable to be executed
1600  * on the cpu, NULL otherwise
1601  */
1602 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1603 {
1604         struct plist_head *head = &rq->rt.pushable_tasks;
1605         struct task_struct *p;
1606
1607         if (!has_pushable_tasks(rq))
1608                 return NULL;
1609
1610         plist_for_each_entry(p, head, pushable_tasks) {
1611                 if (pick_rt_task(rq, p, cpu))
1612                         return p;
1613         }
1614
1615         return NULL;
1616 }
1617
1618 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1619
1620 static int find_lowest_rq(struct task_struct *task)
1621 {
1622         struct sched_domain *sd;
1623         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1624         int this_cpu = smp_processor_id();
1625         int cpu      = task_cpu(task);
1626
1627         /* Make sure the mask is initialized first */
1628         if (unlikely(!lowest_mask))
1629                 return -1;
1630
1631         if (tsk_nr_cpus_allowed(task) == 1)
1632                 return -1; /* No other targets possible */
1633
1634         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1635                 return -1; /* No targets found */
1636
1637         /*
1638          * At this point we have built a mask of cpus representing the
1639          * lowest priority tasks in the system.  Now we want to elect
1640          * the best one based on our affinity and topology.
1641          *
1642          * We prioritize the last cpu that the task executed on since
1643          * it is most likely cache-hot in that location.
1644          */
1645         if (cpumask_test_cpu(cpu, lowest_mask))
1646                 return cpu;
1647
1648         /*
1649          * Otherwise, we consult the sched_domains span maps to figure
1650          * out which cpu is logically closest to our hot cache data.
1651          */
1652         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1653                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1654
1655         rcu_read_lock();
1656         for_each_domain(cpu, sd) {
1657                 if (sd->flags & SD_WAKE_AFFINE) {
1658                         int best_cpu;
1659
1660                         /*
1661                          * "this_cpu" is cheaper to preempt than a
1662                          * remote processor.
1663                          */
1664                         if (this_cpu != -1 &&
1665                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1666                                 rcu_read_unlock();
1667                                 return this_cpu;
1668                         }
1669
1670                         best_cpu = cpumask_first_and(lowest_mask,
1671                                                      sched_domain_span(sd));
1672                         if (best_cpu < nr_cpu_ids) {
1673                                 rcu_read_unlock();
1674                                 return best_cpu;
1675                         }
1676                 }
1677         }
1678         rcu_read_unlock();
1679
1680         /*
1681          * And finally, if there were no matches within the domains
1682          * just give the caller *something* to work with from the compatible
1683          * locations.
1684          */
1685         if (this_cpu != -1)
1686                 return this_cpu;
1687
1688         cpu = cpumask_any(lowest_mask);
1689         if (cpu < nr_cpu_ids)
1690                 return cpu;
1691         return -1;
1692 }
1693
1694 /* Will lock the rq it finds */
1695 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1696 {
1697         struct rq *lowest_rq = NULL;
1698         int tries;
1699         int cpu;
1700
1701         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1702                 cpu = find_lowest_rq(task);
1703
1704                 if ((cpu == -1) || (cpu == rq->cpu))
1705                         break;
1706
1707                 lowest_rq = cpu_rq(cpu);
1708
1709                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1710                         /*
1711                          * Target rq has tasks of equal or higher priority,
1712                          * retrying does not release any lock and is unlikely
1713                          * to yield a different result.
1714                          */
1715                         lowest_rq = NULL;
1716                         break;
1717                 }
1718
1719                 /* if the prio of this runqueue changed, try again */
1720                 if (double_lock_balance(rq, lowest_rq)) {
1721                         /*
1722                          * We had to unlock the run queue. In
1723                          * the mean time, task could have
1724                          * migrated already or had its affinity changed.
1725                          * Also make sure that it wasn't scheduled on its rq.
1726                          */
1727                         if (unlikely(task_rq(task) != rq ||
1728                                      !cpumask_test_cpu(lowest_rq->cpu,
1729                                                        tsk_cpus_allowed(task)) ||
1730                                      task_running(rq, task) ||
1731                                      !rt_task(task) ||
1732                                      !task_on_rq_queued(task))) {
1733
1734                                 double_unlock_balance(rq, lowest_rq);
1735                                 lowest_rq = NULL;
1736                                 break;
1737                         }
1738                 }
1739
1740                 /* If this rq is still suitable use it. */
1741                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1742                         break;
1743
1744                 /* try again */
1745                 double_unlock_balance(rq, lowest_rq);
1746                 lowest_rq = NULL;
1747         }
1748
1749         return lowest_rq;
1750 }
1751
1752 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1753 {
1754         struct task_struct *p;
1755
1756         if (!has_pushable_tasks(rq))
1757                 return NULL;
1758
1759         p = plist_first_entry(&rq->rt.pushable_tasks,
1760                               struct task_struct, pushable_tasks);
1761
1762         BUG_ON(rq->cpu != task_cpu(p));
1763         BUG_ON(task_current(rq, p));
1764         BUG_ON(tsk_nr_cpus_allowed(p) <= 1);
1765
1766         BUG_ON(!task_on_rq_queued(p));
1767         BUG_ON(!rt_task(p));
1768
1769         return p;
1770 }
1771
1772 /*
1773  * If the current CPU has more than one RT task, see if the non
1774  * running task can migrate over to a CPU that is running a task
1775  * of lesser priority.
1776  */
1777 static int push_rt_task(struct rq *rq)
1778 {
1779         struct task_struct *next_task;
1780         struct rq *lowest_rq;
1781         int ret = 0;
1782
1783         if (!rq->rt.overloaded)
1784                 return 0;
1785
1786         next_task = pick_next_pushable_task(rq);
1787         if (!next_task)
1788                 return 0;
1789
1790 retry:
1791         if (unlikely(next_task == rq->curr)) {
1792                 WARN_ON(1);
1793                 return 0;
1794         }
1795
1796         /*
1797          * It's possible that the next_task slipped in of
1798          * higher priority than current. If that's the case
1799          * just reschedule current.
1800          */
1801         if (unlikely(next_task->prio < rq->curr->prio)) {
1802                 resched_curr(rq);
1803                 return 0;
1804         }
1805
1806         /* We might release rq lock */
1807         get_task_struct(next_task);
1808
1809         /* find_lock_lowest_rq locks the rq if found */
1810         lowest_rq = find_lock_lowest_rq(next_task, rq);
1811         if (!lowest_rq) {
1812                 struct task_struct *task;
1813                 /*
1814                  * find_lock_lowest_rq releases rq->lock
1815                  * so it is possible that next_task has migrated.
1816                  *
1817                  * We need to make sure that the task is still on the same
1818                  * run-queue and is also still the next task eligible for
1819                  * pushing.
1820                  */
1821                 task = pick_next_pushable_task(rq);
1822                 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1823                         /*
1824                          * The task hasn't migrated, and is still the next
1825                          * eligible task, but we failed to find a run-queue
1826                          * to push it to.  Do not retry in this case, since
1827                          * other cpus will pull from us when ready.
1828                          */
1829                         goto out;
1830                 }
1831
1832                 if (!task)
1833                         /* No more tasks, just exit */
1834                         goto out;
1835
1836                 /*
1837                  * Something has shifted, try again.
1838                  */
1839                 put_task_struct(next_task);
1840                 next_task = task;
1841                 goto retry;
1842         }
1843
1844         deactivate_task(rq, next_task, 0);
1845         set_task_cpu(next_task, lowest_rq->cpu);
1846         activate_task(lowest_rq, next_task, 0);
1847         ret = 1;
1848
1849         resched_curr(lowest_rq);
1850
1851         double_unlock_balance(rq, lowest_rq);
1852
1853 out:
1854         put_task_struct(next_task);
1855
1856         return ret;
1857 }
1858
1859 static void push_rt_tasks(struct rq *rq)
1860 {
1861         /* push_rt_task will return true if it moved an RT */
1862         while (push_rt_task(rq))
1863                 ;
1864 }
1865
1866 #ifdef HAVE_RT_PUSH_IPI
1867 /*
1868  * The search for the next cpu always starts at rq->cpu and ends
1869  * when we reach rq->cpu again. It will never return rq->cpu.
1870  * This returns the next cpu to check, or nr_cpu_ids if the loop
1871  * is complete.
1872  *
1873  * rq->rt.push_cpu holds the last cpu returned by this function,
1874  * or if this is the first instance, it must hold rq->cpu.
1875  */
1876 static int rto_next_cpu(struct rq *rq)
1877 {
1878         int prev_cpu = rq->rt.push_cpu;
1879         int cpu;
1880
1881         cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1882
1883         /*
1884          * If the previous cpu is less than the rq's CPU, then it already
1885          * passed the end of the mask, and has started from the beginning.
1886          * We end if the next CPU is greater or equal to rq's CPU.
1887          */
1888         if (prev_cpu < rq->cpu) {
1889                 if (cpu >= rq->cpu)
1890                         return nr_cpu_ids;
1891
1892         } else if (cpu >= nr_cpu_ids) {
1893                 /*
1894                  * We passed the end of the mask, start at the beginning.
1895                  * If the result is greater or equal to the rq's CPU, then
1896                  * the loop is finished.
1897                  */
1898                 cpu = cpumask_first(rq->rd->rto_mask);
1899                 if (cpu >= rq->cpu)
1900                         return nr_cpu_ids;
1901         }
1902         rq->rt.push_cpu = cpu;
1903
1904         /* Return cpu to let the caller know if the loop is finished or not */
1905         return cpu;
1906 }
1907
1908 static int find_next_push_cpu(struct rq *rq)
1909 {
1910         struct rq *next_rq;
1911         int cpu;
1912
1913         while (1) {
1914                 cpu = rto_next_cpu(rq);
1915                 if (cpu >= nr_cpu_ids)
1916                         break;
1917                 next_rq = cpu_rq(cpu);
1918
1919                 /* Make sure the next rq can push to this rq */
1920                 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1921                         break;
1922         }
1923
1924         return cpu;
1925 }
1926
1927 #define RT_PUSH_IPI_EXECUTING           1
1928 #define RT_PUSH_IPI_RESTART             2
1929
1930 static void tell_cpu_to_push(struct rq *rq)
1931 {
1932         int cpu;
1933
1934         if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1935                 raw_spin_lock(&rq->rt.push_lock);
1936                 /* Make sure it's still executing */
1937                 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1938                         /*
1939                          * Tell the IPI to restart the loop as things have
1940                          * changed since it started.
1941                          */
1942                         rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1943                         raw_spin_unlock(&rq->rt.push_lock);
1944                         return;
1945                 }
1946                 raw_spin_unlock(&rq->rt.push_lock);
1947         }
1948
1949         /* When here, there's no IPI going around */
1950
1951         rq->rt.push_cpu = rq->cpu;
1952         cpu = find_next_push_cpu(rq);
1953         if (cpu >= nr_cpu_ids)
1954                 return;
1955
1956         rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1957
1958         irq_work_queue_on(&rq->rt.push_work, cpu);
1959 }
1960
1961 /* Called from hardirq context */
1962 static void try_to_push_tasks(void *arg)
1963 {
1964         struct rt_rq *rt_rq = arg;
1965         struct rq *rq, *src_rq;
1966         int this_cpu;
1967         int cpu;
1968
1969         this_cpu = rt_rq->push_cpu;
1970
1971         /* Paranoid check */
1972         BUG_ON(this_cpu != smp_processor_id());
1973
1974         rq = cpu_rq(this_cpu);
1975         src_rq = rq_of_rt_rq(rt_rq);
1976
1977 again:
1978         if (has_pushable_tasks(rq)) {
1979                 raw_spin_lock(&rq->lock);
1980                 push_rt_task(rq);
1981                 raw_spin_unlock(&rq->lock);
1982         }
1983
1984         /* Pass the IPI to the next rt overloaded queue */
1985         raw_spin_lock(&rt_rq->push_lock);
1986         /*
1987          * If the source queue changed since the IPI went out,
1988          * we need to restart the search from that CPU again.
1989          */
1990         if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1991                 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1992                 rt_rq->push_cpu = src_rq->cpu;
1993         }
1994
1995         cpu = find_next_push_cpu(src_rq);
1996
1997         if (cpu >= nr_cpu_ids)
1998                 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
1999         raw_spin_unlock(&rt_rq->push_lock);
2000
2001         if (cpu >= nr_cpu_ids)
2002                 return;
2003
2004         /*
2005          * It is possible that a restart caused this CPU to be
2006          * chosen again. Don't bother with an IPI, just see if we
2007          * have more to push.
2008          */
2009         if (unlikely(cpu == rq->cpu))
2010                 goto again;
2011
2012         /* Try the next RT overloaded CPU */
2013         irq_work_queue_on(&rt_rq->push_work, cpu);
2014 }
2015
2016 static void push_irq_work_func(struct irq_work *work)
2017 {
2018         struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
2019
2020         try_to_push_tasks(rt_rq);
2021 }
2022 #endif /* HAVE_RT_PUSH_IPI */
2023
2024 static void pull_rt_task(struct rq *this_rq)
2025 {
2026         int this_cpu = this_rq->cpu, cpu;
2027         bool resched = false;
2028         struct task_struct *p;
2029         struct rq *src_rq;
2030
2031         if (likely(!rt_overloaded(this_rq)))
2032                 return;
2033
2034         /*
2035          * Match the barrier from rt_set_overloaded; this guarantees that if we
2036          * see overloaded we must also see the rto_mask bit.
2037          */
2038         smp_rmb();
2039
2040 #ifdef HAVE_RT_PUSH_IPI
2041         if (sched_feat(RT_PUSH_IPI)) {
2042                 tell_cpu_to_push(this_rq);
2043                 return;
2044         }
2045 #endif
2046
2047         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2048                 if (this_cpu == cpu)
2049                         continue;
2050
2051                 src_rq = cpu_rq(cpu);
2052
2053                 /*
2054                  * Don't bother taking the src_rq->lock if the next highest
2055                  * task is known to be lower-priority than our current task.
2056                  * This may look racy, but if this value is about to go
2057                  * logically higher, the src_rq will push this task away.
2058                  * And if its going logically lower, we do not care
2059                  */
2060                 if (src_rq->rt.highest_prio.next >=
2061                     this_rq->rt.highest_prio.curr)
2062                         continue;
2063
2064                 /*
2065                  * We can potentially drop this_rq's lock in
2066                  * double_lock_balance, and another CPU could
2067                  * alter this_rq
2068                  */
2069                 double_lock_balance(this_rq, src_rq);
2070
2071                 /*
2072                  * We can pull only a task, which is pushable
2073                  * on its rq, and no others.
2074                  */
2075                 p = pick_highest_pushable_task(src_rq, this_cpu);
2076
2077                 /*
2078                  * Do we have an RT task that preempts
2079                  * the to-be-scheduled task?
2080                  */
2081                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2082                         WARN_ON(p == src_rq->curr);
2083                         WARN_ON(!task_on_rq_queued(p));
2084
2085                         /*
2086                          * There's a chance that p is higher in priority
2087                          * than what's currently running on its cpu.
2088                          * This is just that p is wakeing up and hasn't
2089                          * had a chance to schedule. We only pull
2090                          * p if it is lower in priority than the
2091                          * current task on the run queue
2092                          */
2093                         if (p->prio < src_rq->curr->prio)
2094                                 goto skip;
2095
2096                         resched = true;
2097
2098                         deactivate_task(src_rq, p, 0);
2099                         set_task_cpu(p, this_cpu);
2100                         activate_task(this_rq, p, 0);
2101                         /*
2102                          * We continue with the search, just in
2103                          * case there's an even higher prio task
2104                          * in another runqueue. (low likelihood
2105                          * but possible)
2106                          */
2107                 }
2108 skip:
2109                 double_unlock_balance(this_rq, src_rq);
2110         }
2111
2112         if (resched)
2113                 resched_curr(this_rq);
2114 }
2115
2116 /*
2117  * If we are not running and we are not going to reschedule soon, we should
2118  * try to push tasks away now
2119  */
2120 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2121 {
2122         if (!task_running(rq, p) &&
2123             !test_tsk_need_resched(rq->curr) &&
2124             tsk_nr_cpus_allowed(p) > 1 &&
2125             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2126             (tsk_nr_cpus_allowed(rq->curr) < 2 ||
2127              rq->curr->prio <= p->prio))
2128                 push_rt_tasks(rq);
2129 }
2130
2131 /* Assumes rq->lock is held */
2132 static void rq_online_rt(struct rq *rq)
2133 {
2134         if (rq->rt.overloaded)
2135                 rt_set_overload(rq);
2136
2137         __enable_runtime(rq);
2138
2139         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2140 }
2141
2142 /* Assumes rq->lock is held */
2143 static void rq_offline_rt(struct rq *rq)
2144 {
2145         if (rq->rt.overloaded)
2146                 rt_clear_overload(rq);
2147
2148         __disable_runtime(rq);
2149
2150         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2151 }
2152
2153 /*
2154  * When switch from the rt queue, we bring ourselves to a position
2155  * that we might want to pull RT tasks from other runqueues.
2156  */
2157 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2158 {
2159         /*
2160          * If there are other RT tasks then we will reschedule
2161          * and the scheduling of the other RT tasks will handle
2162          * the balancing. But if we are the last RT task
2163          * we may need to handle the pulling of RT tasks
2164          * now.
2165          */
2166         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2167                 return;
2168
2169         queue_pull_task(rq);
2170 }
2171
2172 void __init init_sched_rt_class(void)
2173 {
2174         unsigned int i;
2175
2176         for_each_possible_cpu(i) {
2177                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2178                                         GFP_KERNEL, cpu_to_node(i));
2179         }
2180 }
2181 #endif /* CONFIG_SMP */
2182
2183 /*
2184  * When switching a task to RT, we may overload the runqueue
2185  * with RT tasks. In this case we try to push them off to
2186  * other runqueues.
2187  */
2188 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2189 {
2190         /*
2191          * If we are already running, then there's nothing
2192          * that needs to be done. But if we are not running
2193          * we may need to preempt the current running task.
2194          * If that current running task is also an RT task
2195          * then see if we can move to another run queue.
2196          */
2197         if (task_on_rq_queued(p) && rq->curr != p) {
2198 #ifdef CONFIG_SMP
2199                 if (tsk_nr_cpus_allowed(p) > 1 && rq->rt.overloaded)
2200                         queue_push_tasks(rq);
2201 #else
2202                 if (p->prio < rq->curr->prio)
2203                         resched_curr(rq);
2204 #endif /* CONFIG_SMP */
2205         }
2206 }
2207
2208 /*
2209  * Priority of the task has changed. This may cause
2210  * us to initiate a push or pull.
2211  */
2212 static void
2213 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2214 {
2215         if (!task_on_rq_queued(p))
2216                 return;
2217
2218         if (rq->curr == p) {
2219 #ifdef CONFIG_SMP
2220                 /*
2221                  * If our priority decreases while running, we
2222                  * may need to pull tasks to this runqueue.
2223                  */
2224                 if (oldprio < p->prio)
2225                         queue_pull_task(rq);
2226
2227                 /*
2228                  * If there's a higher priority task waiting to run
2229                  * then reschedule.
2230                  */
2231                 if (p->prio > rq->rt.highest_prio.curr)
2232                         resched_curr(rq);
2233 #else
2234                 /* For UP simply resched on drop of prio */
2235                 if (oldprio < p->prio)
2236                         resched_curr(rq);
2237 #endif /* CONFIG_SMP */
2238         } else {
2239                 /*
2240                  * This task is not running, but if it is
2241                  * greater than the current running task
2242                  * then reschedule.
2243                  */
2244                 if (p->prio < rq->curr->prio)
2245                         resched_curr(rq);
2246         }
2247 }
2248
2249 static void watchdog(struct rq *rq, struct task_struct *p)
2250 {
2251         unsigned long soft, hard;
2252
2253         /* max may change after cur was read, this will be fixed next tick */
2254         soft = task_rlimit(p, RLIMIT_RTTIME);
2255         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2256
2257         if (soft != RLIM_INFINITY) {
2258                 unsigned long next;
2259
2260                 if (p->rt.watchdog_stamp != jiffies) {
2261                         p->rt.timeout++;
2262                         p->rt.watchdog_stamp = jiffies;
2263                 }
2264
2265                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2266                 if (p->rt.timeout > next)
2267                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2268         }
2269 }
2270
2271 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2272 {
2273         struct sched_rt_entity *rt_se = &p->rt;
2274
2275         update_curr_rt(rq);
2276
2277         watchdog(rq, p);
2278
2279         /*
2280          * RR tasks need a special form of timeslice management.
2281          * FIFO tasks have no timeslices.
2282          */
2283         if (p->policy != SCHED_RR)
2284                 return;
2285
2286         if (--p->rt.time_slice)
2287                 return;
2288
2289         p->rt.time_slice = sched_rr_timeslice;
2290
2291         /*
2292          * Requeue to the end of queue if we (and all of our ancestors) are not
2293          * the only element on the queue
2294          */
2295         for_each_sched_rt_entity(rt_se) {
2296                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2297                         requeue_task_rt(rq, p, 0);
2298                         resched_curr(rq);
2299                         return;
2300                 }
2301         }
2302 }
2303
2304 static void set_curr_task_rt(struct rq *rq)
2305 {
2306         struct task_struct *p = rq->curr;
2307
2308         p->se.exec_start = rq_clock_task(rq);
2309
2310         /* The running task is never eligible for pushing */
2311         dequeue_pushable_task(rq, p);
2312 }
2313
2314 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2315 {
2316         /*
2317          * Time slice is 0 for SCHED_FIFO tasks
2318          */
2319         if (task->policy == SCHED_RR)
2320                 return sched_rr_timeslice;
2321         else
2322                 return 0;
2323 }
2324
2325 const struct sched_class rt_sched_class = {
2326         .next                   = &fair_sched_class,
2327         .enqueue_task           = enqueue_task_rt,
2328         .dequeue_task           = dequeue_task_rt,
2329         .yield_task             = yield_task_rt,
2330
2331         .check_preempt_curr     = check_preempt_curr_rt,
2332
2333         .pick_next_task         = pick_next_task_rt,
2334         .put_prev_task          = put_prev_task_rt,
2335
2336 #ifdef CONFIG_SMP
2337         .select_task_rq         = select_task_rq_rt,
2338
2339         .set_cpus_allowed       = set_cpus_allowed_common,
2340         .rq_online              = rq_online_rt,
2341         .rq_offline             = rq_offline_rt,
2342         .task_woken             = task_woken_rt,
2343         .switched_from          = switched_from_rt,
2344 #endif
2345
2346         .set_curr_task          = set_curr_task_rt,
2347         .task_tick              = task_tick_rt,
2348
2349         .get_rr_interval        = get_rr_interval_rt,
2350
2351         .prio_changed           = prio_changed_rt,
2352         .switched_to            = switched_to_rt,
2353
2354         .update_curr            = update_curr_rt,
2355 };
2356
2357 #ifdef CONFIG_SCHED_DEBUG
2358 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2359
2360 void print_rt_stats(struct seq_file *m, int cpu)
2361 {
2362         rt_rq_iter_t iter;
2363         struct rt_rq *rt_rq;
2364
2365         rcu_read_lock();
2366         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2367                 print_rt_rq(m, cpu, rt_rq);
2368         rcu_read_unlock();
2369 }
2370 #endif /* CONFIG_SCHED_DEBUG */