x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / kernel / sched / stats.h
1
2 #ifdef CONFIG_SCHEDSTATS
3
4 /*
5  * Expects runqueue lock to be held for atomicity of update
6  */
7 static inline void
8 rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
9 {
10         if (rq) {
11                 rq->rq_sched_info.run_delay += delta;
12                 rq->rq_sched_info.pcount++;
13         }
14 }
15
16 /*
17  * Expects runqueue lock to be held for atomicity of update
18  */
19 static inline void
20 rq_sched_info_depart(struct rq *rq, unsigned long long delta)
21 {
22         if (rq)
23                 rq->rq_cpu_time += delta;
24 }
25
26 static inline void
27 rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
28 {
29         if (rq)
30                 rq->rq_sched_info.run_delay += delta;
31 }
32 #define schedstat_enabled()             static_branch_unlikely(&sched_schedstats)
33 #define schedstat_inc(var)              do { if (schedstat_enabled()) { var++; } } while (0)
34 #define schedstat_add(var, amt)         do { if (schedstat_enabled()) { var += (amt); } } while (0)
35 #define schedstat_set(var, val)         do { if (schedstat_enabled()) { var = (val); } } while (0)
36 #define schedstat_val(var)              (var)
37 #define schedstat_val_or_zero(var)      ((schedstat_enabled()) ? (var) : 0)
38
39 #else /* !CONFIG_SCHEDSTATS */
40 static inline void
41 rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
42 {}
43 static inline void
44 rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
45 {}
46 static inline void
47 rq_sched_info_depart(struct rq *rq, unsigned long long delta)
48 {}
49 #define schedstat_enabled()             0
50 #define schedstat_inc(var)              do { } while (0)
51 #define schedstat_add(var, amt)         do { } while (0)
52 #define schedstat_set(var, val)         do { } while (0)
53 #define schedstat_val(var)              0
54 #define schedstat_val_or_zero(var)      0
55 #endif /* CONFIG_SCHEDSTATS */
56
57 #ifdef CONFIG_SCHED_INFO
58 static inline void sched_info_reset_dequeued(struct task_struct *t)
59 {
60         t->sched_info.last_queued = 0;
61 }
62
63 /*
64  * We are interested in knowing how long it was from the *first* time a
65  * task was queued to the time that it finally hit a cpu, we call this routine
66  * from dequeue_task() to account for possible rq->clock skew across cpus. The
67  * delta taken on each cpu would annul the skew.
68  */
69 static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
70 {
71         unsigned long long now = rq_clock(rq), delta = 0;
72
73         if (unlikely(sched_info_on()))
74                 if (t->sched_info.last_queued)
75                         delta = now - t->sched_info.last_queued;
76         sched_info_reset_dequeued(t);
77         t->sched_info.run_delay += delta;
78
79         rq_sched_info_dequeued(rq, delta);
80 }
81
82 /*
83  * Called when a task finally hits the cpu.  We can now calculate how
84  * long it was waiting to run.  We also note when it began so that we
85  * can keep stats on how long its timeslice is.
86  */
87 static void sched_info_arrive(struct rq *rq, struct task_struct *t)
88 {
89         unsigned long long now = rq_clock(rq), delta = 0;
90
91         if (t->sched_info.last_queued)
92                 delta = now - t->sched_info.last_queued;
93         sched_info_reset_dequeued(t);
94         t->sched_info.run_delay += delta;
95         t->sched_info.last_arrival = now;
96         t->sched_info.pcount++;
97
98         rq_sched_info_arrive(rq, delta);
99 }
100
101 /*
102  * This function is only called from enqueue_task(), but also only updates
103  * the timestamp if it is already not set.  It's assumed that
104  * sched_info_dequeued() will clear that stamp when appropriate.
105  */
106 static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
107 {
108         if (unlikely(sched_info_on()))
109                 if (!t->sched_info.last_queued)
110                         t->sched_info.last_queued = rq_clock(rq);
111 }
112
113 /*
114  * Called when a process ceases being the active-running process involuntarily
115  * due, typically, to expiring its time slice (this may also be called when
116  * switching to the idle task).  Now we can calculate how long we ran.
117  * Also, if the process is still in the TASK_RUNNING state, call
118  * sched_info_queued() to mark that it has now again started waiting on
119  * the runqueue.
120  */
121 static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
122 {
123         unsigned long long delta = rq_clock(rq) -
124                                         t->sched_info.last_arrival;
125
126         rq_sched_info_depart(rq, delta);
127
128         if (t->state == TASK_RUNNING)
129                 sched_info_queued(rq, t);
130 }
131
132 /*
133  * Called when tasks are switched involuntarily due, typically, to expiring
134  * their time slice.  (This may also be called when switching to or from
135  * the idle task.)  We are only called when prev != next.
136  */
137 static inline void
138 __sched_info_switch(struct rq *rq,
139                     struct task_struct *prev, struct task_struct *next)
140 {
141         /*
142          * prev now departs the cpu.  It's not interesting to record
143          * stats about how efficient we were at scheduling the idle
144          * process, however.
145          */
146         if (prev != rq->idle)
147                 sched_info_depart(rq, prev);
148
149         if (next != rq->idle)
150                 sched_info_arrive(rq, next);
151 }
152 static inline void
153 sched_info_switch(struct rq *rq,
154                   struct task_struct *prev, struct task_struct *next)
155 {
156         if (unlikely(sched_info_on()))
157                 __sched_info_switch(rq, prev, next);
158 }
159 #else
160 #define sched_info_queued(rq, t)                do { } while (0)
161 #define sched_info_reset_dequeued(t)    do { } while (0)
162 #define sched_info_dequeued(rq, t)              do { } while (0)
163 #define sched_info_depart(rq, t)                do { } while (0)
164 #define sched_info_arrive(rq, next)             do { } while (0)
165 #define sched_info_switch(rq, t, next)          do { } while (0)
166 #endif /* CONFIG_SCHED_INFO */
167
168 /*
169  * The following are functions that support scheduler-internal time accounting.
170  * These functions are generally called at the timer tick.  None of this depends
171  * on CONFIG_SCHEDSTATS.
172  */
173
174 /**
175  * cputimer_running - return true if cputimer is running
176  *
177  * @tsk:        Pointer to target task.
178  */
179 static inline bool cputimer_running(struct task_struct *tsk)
180
181 {
182         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
183
184         /* Check if cputimer isn't running. This is accessed without locking. */
185         if (!READ_ONCE(cputimer->running))
186                 return false;
187
188         /*
189          * After we flush the task's sum_exec_runtime to sig->sum_sched_runtime
190          * in __exit_signal(), we won't account to the signal struct further
191          * cputime consumed by that task, even though the task can still be
192          * ticking after __exit_signal().
193          *
194          * In order to keep a consistent behaviour between thread group cputime
195          * and thread group cputimer accounting, lets also ignore the cputime
196          * elapsing after __exit_signal() in any thread group timer running.
197          *
198          * This makes sure that POSIX CPU clocks and timers are synchronized, so
199          * that a POSIX CPU timer won't expire while the corresponding POSIX CPU
200          * clock delta is behind the expiring timer value.
201          */
202         if (unlikely(!tsk->sighand))
203                 return false;
204
205         return true;
206 }
207
208 /**
209  * account_group_user_time - Maintain utime for a thread group.
210  *
211  * @tsk:        Pointer to task structure.
212  * @cputime:    Time value by which to increment the utime field of the
213  *              thread_group_cputime structure.
214  *
215  * If thread group time is being maintained, get the structure for the
216  * running CPU and update the utime field there.
217  */
218 static inline void account_group_user_time(struct task_struct *tsk,
219                                            cputime_t cputime)
220 {
221         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
222
223         if (!cputimer_running(tsk))
224                 return;
225
226         atomic64_add(cputime, &cputimer->cputime_atomic.utime);
227 }
228
229 /**
230  * account_group_system_time - Maintain stime for a thread group.
231  *
232  * @tsk:        Pointer to task structure.
233  * @cputime:    Time value by which to increment the stime field of the
234  *              thread_group_cputime structure.
235  *
236  * If thread group time is being maintained, get the structure for the
237  * running CPU and update the stime field there.
238  */
239 static inline void account_group_system_time(struct task_struct *tsk,
240                                              cputime_t cputime)
241 {
242         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
243
244         if (!cputimer_running(tsk))
245                 return;
246
247         atomic64_add(cputime, &cputimer->cputime_atomic.stime);
248 }
249
250 /**
251  * account_group_exec_runtime - Maintain exec runtime for a thread group.
252  *
253  * @tsk:        Pointer to task structure.
254  * @ns:         Time value by which to increment the sum_exec_runtime field
255  *              of the thread_group_cputime structure.
256  *
257  * If thread group time is being maintained, get the structure for the
258  * running CPU and update the sum_exec_runtime field there.
259  */
260 static inline void account_group_exec_runtime(struct task_struct *tsk,
261                                               unsigned long long ns)
262 {
263         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
264
265         if (!cputimer_running(tsk))
266                 return;
267
268         atomic64_add(ns, &cputimer->cputime_atomic.sum_exec_runtime);
269 }