Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[cascardo/linux.git] / kernel / smpboot.c
1 /*
2  * Common SMP CPU bringup/teardown functions
3  */
4 #include <linux/cpu.h>
5 #include <linux/err.h>
6 #include <linux/smp.h>
7 #include <linux/delay.h>
8 #include <linux/init.h>
9 #include <linux/list.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/export.h>
13 #include <linux/percpu.h>
14 #include <linux/kthread.h>
15 #include <linux/smpboot.h>
16
17 #include "smpboot.h"
18
19 #ifdef CONFIG_SMP
20
21 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
22 /*
23  * For the hotplug case we keep the task structs around and reuse
24  * them.
25  */
26 static DEFINE_PER_CPU(struct task_struct *, idle_threads);
27
28 struct task_struct *idle_thread_get(unsigned int cpu)
29 {
30         struct task_struct *tsk = per_cpu(idle_threads, cpu);
31
32         if (!tsk)
33                 return ERR_PTR(-ENOMEM);
34         init_idle(tsk, cpu);
35         return tsk;
36 }
37
38 void __init idle_thread_set_boot_cpu(void)
39 {
40         per_cpu(idle_threads, smp_processor_id()) = current;
41 }
42
43 /**
44  * idle_init - Initialize the idle thread for a cpu
45  * @cpu:        The cpu for which the idle thread should be initialized
46  *
47  * Creates the thread if it does not exist.
48  */
49 static inline void idle_init(unsigned int cpu)
50 {
51         struct task_struct *tsk = per_cpu(idle_threads, cpu);
52
53         if (!tsk) {
54                 tsk = fork_idle(cpu);
55                 if (IS_ERR(tsk))
56                         pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
57                 else
58                         per_cpu(idle_threads, cpu) = tsk;
59         }
60 }
61
62 /**
63  * idle_threads_init - Initialize idle threads for all cpus
64  */
65 void __init idle_threads_init(void)
66 {
67         unsigned int cpu, boot_cpu;
68
69         boot_cpu = smp_processor_id();
70
71         for_each_possible_cpu(cpu) {
72                 if (cpu != boot_cpu)
73                         idle_init(cpu);
74         }
75 }
76 #endif
77
78 #endif /* #ifdef CONFIG_SMP */
79
80 static LIST_HEAD(hotplug_threads);
81 static DEFINE_MUTEX(smpboot_threads_lock);
82
83 struct smpboot_thread_data {
84         unsigned int                    cpu;
85         unsigned int                    status;
86         struct smp_hotplug_thread       *ht;
87 };
88
89 enum {
90         HP_THREAD_NONE = 0,
91         HP_THREAD_ACTIVE,
92         HP_THREAD_PARKED,
93 };
94
95 /**
96  * smpboot_thread_fn - percpu hotplug thread loop function
97  * @data:       thread data pointer
98  *
99  * Checks for thread stop and park conditions. Calls the necessary
100  * setup, cleanup, park and unpark functions for the registered
101  * thread.
102  *
103  * Returns 1 when the thread should exit, 0 otherwise.
104  */
105 static int smpboot_thread_fn(void *data)
106 {
107         struct smpboot_thread_data *td = data;
108         struct smp_hotplug_thread *ht = td->ht;
109
110         while (1) {
111                 set_current_state(TASK_INTERRUPTIBLE);
112                 preempt_disable();
113                 if (kthread_should_stop()) {
114                         __set_current_state(TASK_RUNNING);
115                         preempt_enable();
116                         /* cleanup must mirror setup */
117                         if (ht->cleanup && td->status != HP_THREAD_NONE)
118                                 ht->cleanup(td->cpu, cpu_online(td->cpu));
119                         kfree(td);
120                         return 0;
121                 }
122
123                 if (kthread_should_park()) {
124                         __set_current_state(TASK_RUNNING);
125                         preempt_enable();
126                         if (ht->park && td->status == HP_THREAD_ACTIVE) {
127                                 BUG_ON(td->cpu != smp_processor_id());
128                                 ht->park(td->cpu);
129                                 td->status = HP_THREAD_PARKED;
130                         }
131                         kthread_parkme();
132                         /* We might have been woken for stop */
133                         continue;
134                 }
135
136                 BUG_ON(td->cpu != smp_processor_id());
137
138                 /* Check for state change setup */
139                 switch (td->status) {
140                 case HP_THREAD_NONE:
141                         __set_current_state(TASK_RUNNING);
142                         preempt_enable();
143                         if (ht->setup)
144                                 ht->setup(td->cpu);
145                         td->status = HP_THREAD_ACTIVE;
146                         continue;
147
148                 case HP_THREAD_PARKED:
149                         __set_current_state(TASK_RUNNING);
150                         preempt_enable();
151                         if (ht->unpark)
152                                 ht->unpark(td->cpu);
153                         td->status = HP_THREAD_ACTIVE;
154                         continue;
155                 }
156
157                 if (!ht->thread_should_run(td->cpu)) {
158                         preempt_enable_no_resched();
159                         schedule();
160                 } else {
161                         __set_current_state(TASK_RUNNING);
162                         preempt_enable();
163                         ht->thread_fn(td->cpu);
164                 }
165         }
166 }
167
168 static int
169 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
170 {
171         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
172         struct smpboot_thread_data *td;
173
174         if (tsk)
175                 return 0;
176
177         td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
178         if (!td)
179                 return -ENOMEM;
180         td->cpu = cpu;
181         td->ht = ht;
182
183         tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
184                                     ht->thread_comm);
185         if (IS_ERR(tsk)) {
186                 kfree(td);
187                 return PTR_ERR(tsk);
188         }
189         get_task_struct(tsk);
190         *per_cpu_ptr(ht->store, cpu) = tsk;
191         if (ht->create) {
192                 /*
193                  * Make sure that the task has actually scheduled out
194                  * into park position, before calling the create
195                  * callback. At least the migration thread callback
196                  * requires that the task is off the runqueue.
197                  */
198                 if (!wait_task_inactive(tsk, TASK_PARKED))
199                         WARN_ON(1);
200                 else
201                         ht->create(cpu);
202         }
203         return 0;
204 }
205
206 int smpboot_create_threads(unsigned int cpu)
207 {
208         struct smp_hotplug_thread *cur;
209         int ret = 0;
210
211         mutex_lock(&smpboot_threads_lock);
212         list_for_each_entry(cur, &hotplug_threads, list) {
213                 ret = __smpboot_create_thread(cur, cpu);
214                 if (ret)
215                         break;
216         }
217         mutex_unlock(&smpboot_threads_lock);
218         return ret;
219 }
220
221 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
222 {
223         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
224
225         if (!ht->selfparking)
226                 kthread_unpark(tsk);
227 }
228
229 int smpboot_unpark_threads(unsigned int cpu)
230 {
231         struct smp_hotplug_thread *cur;
232
233         mutex_lock(&smpboot_threads_lock);
234         list_for_each_entry(cur, &hotplug_threads, list)
235                 if (cpumask_test_cpu(cpu, cur->cpumask))
236                         smpboot_unpark_thread(cur, cpu);
237         mutex_unlock(&smpboot_threads_lock);
238         return 0;
239 }
240
241 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
242 {
243         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
244
245         if (tsk && !ht->selfparking)
246                 kthread_park(tsk);
247 }
248
249 int smpboot_park_threads(unsigned int cpu)
250 {
251         struct smp_hotplug_thread *cur;
252
253         mutex_lock(&smpboot_threads_lock);
254         list_for_each_entry_reverse(cur, &hotplug_threads, list)
255                 smpboot_park_thread(cur, cpu);
256         mutex_unlock(&smpboot_threads_lock);
257         return 0;
258 }
259
260 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
261 {
262         unsigned int cpu;
263
264         /* We need to destroy also the parked threads of offline cpus */
265         for_each_possible_cpu(cpu) {
266                 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
267
268                 if (tsk) {
269                         kthread_stop(tsk);
270                         put_task_struct(tsk);
271                         *per_cpu_ptr(ht->store, cpu) = NULL;
272                 }
273         }
274 }
275
276 /**
277  * smpboot_register_percpu_thread_cpumask - Register a per_cpu thread related
278  *                                          to hotplug
279  * @plug_thread:        Hotplug thread descriptor
280  * @cpumask:            The cpumask where threads run
281  *
282  * Creates and starts the threads on all online cpus.
283  */
284 int smpboot_register_percpu_thread_cpumask(struct smp_hotplug_thread *plug_thread,
285                                            const struct cpumask *cpumask)
286 {
287         unsigned int cpu;
288         int ret = 0;
289
290         if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL))
291                 return -ENOMEM;
292         cpumask_copy(plug_thread->cpumask, cpumask);
293
294         get_online_cpus();
295         mutex_lock(&smpboot_threads_lock);
296         for_each_online_cpu(cpu) {
297                 ret = __smpboot_create_thread(plug_thread, cpu);
298                 if (ret) {
299                         smpboot_destroy_threads(plug_thread);
300                         free_cpumask_var(plug_thread->cpumask);
301                         goto out;
302                 }
303                 if (cpumask_test_cpu(cpu, cpumask))
304                         smpboot_unpark_thread(plug_thread, cpu);
305         }
306         list_add(&plug_thread->list, &hotplug_threads);
307 out:
308         mutex_unlock(&smpboot_threads_lock);
309         put_online_cpus();
310         return ret;
311 }
312 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread_cpumask);
313
314 /**
315  * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
316  * @plug_thread:        Hotplug thread descriptor
317  *
318  * Stops all threads on all possible cpus.
319  */
320 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
321 {
322         get_online_cpus();
323         mutex_lock(&smpboot_threads_lock);
324         list_del(&plug_thread->list);
325         smpboot_destroy_threads(plug_thread);
326         mutex_unlock(&smpboot_threads_lock);
327         put_online_cpus();
328         free_cpumask_var(plug_thread->cpumask);
329 }
330 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
331
332 /**
333  * smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked
334  * @plug_thread:        Hotplug thread descriptor
335  * @new:                Revised mask to use
336  *
337  * The cpumask field in the smp_hotplug_thread must not be updated directly
338  * by the client, but only by calling this function.
339  * This function can only be called on a registered smp_hotplug_thread.
340  */
341 int smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread,
342                                          const struct cpumask *new)
343 {
344         struct cpumask *old = plug_thread->cpumask;
345         cpumask_var_t tmp;
346         unsigned int cpu;
347
348         if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
349                 return -ENOMEM;
350
351         get_online_cpus();
352         mutex_lock(&smpboot_threads_lock);
353
354         /* Park threads that were exclusively enabled on the old mask. */
355         cpumask_andnot(tmp, old, new);
356         for_each_cpu_and(cpu, tmp, cpu_online_mask)
357                 smpboot_park_thread(plug_thread, cpu);
358
359         /* Unpark threads that are exclusively enabled on the new mask. */
360         cpumask_andnot(tmp, new, old);
361         for_each_cpu_and(cpu, tmp, cpu_online_mask)
362                 smpboot_unpark_thread(plug_thread, cpu);
363
364         cpumask_copy(old, new);
365
366         mutex_unlock(&smpboot_threads_lock);
367         put_online_cpus();
368
369         free_cpumask_var(tmp);
370
371         return 0;
372 }
373 EXPORT_SYMBOL_GPL(smpboot_update_cpumask_percpu_thread);
374
375 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
376
377 /*
378  * Called to poll specified CPU's state, for example, when waiting for
379  * a CPU to come online.
380  */
381 int cpu_report_state(int cpu)
382 {
383         return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
384 }
385
386 /*
387  * If CPU has died properly, set its state to CPU_UP_PREPARE and
388  * return success.  Otherwise, return -EBUSY if the CPU died after
389  * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
390  * if cpu_wait_death() timed out and the CPU still hasn't gotten around
391  * to dying.  In the latter two cases, the CPU might not be set up
392  * properly, but it is up to the arch-specific code to decide.
393  * Finally, -EIO indicates an unanticipated problem.
394  *
395  * Note that it is permissible to omit this call entirely, as is
396  * done in architectures that do no CPU-hotplug error checking.
397  */
398 int cpu_check_up_prepare(int cpu)
399 {
400         if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
401                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
402                 return 0;
403         }
404
405         switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
406
407         case CPU_POST_DEAD:
408
409                 /* The CPU died properly, so just start it up again. */
410                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
411                 return 0;
412
413         case CPU_DEAD_FROZEN:
414
415                 /*
416                  * Timeout during CPU death, so let caller know.
417                  * The outgoing CPU completed its processing, but after
418                  * cpu_wait_death() timed out and reported the error. The
419                  * caller is free to proceed, in which case the state
420                  * will be reset properly by cpu_set_state_online().
421                  * Proceeding despite this -EBUSY return makes sense
422                  * for systems where the outgoing CPUs take themselves
423                  * offline, with no post-death manipulation required from
424                  * a surviving CPU.
425                  */
426                 return -EBUSY;
427
428         case CPU_BROKEN:
429
430                 /*
431                  * The most likely reason we got here is that there was
432                  * a timeout during CPU death, and the outgoing CPU never
433                  * did complete its processing.  This could happen on
434                  * a virtualized system if the outgoing VCPU gets preempted
435                  * for more than five seconds, and the user attempts to
436                  * immediately online that same CPU.  Trying again later
437                  * might return -EBUSY above, hence -EAGAIN.
438                  */
439                 return -EAGAIN;
440
441         default:
442
443                 /* Should not happen.  Famous last words. */
444                 return -EIO;
445         }
446 }
447
448 /*
449  * Mark the specified CPU online.
450  *
451  * Note that it is permissible to omit this call entirely, as is
452  * done in architectures that do no CPU-hotplug error checking.
453  */
454 void cpu_set_state_online(int cpu)
455 {
456         (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
457 }
458
459 #ifdef CONFIG_HOTPLUG_CPU
460
461 /*
462  * Wait for the specified CPU to exit the idle loop and die.
463  */
464 bool cpu_wait_death(unsigned int cpu, int seconds)
465 {
466         int jf_left = seconds * HZ;
467         int oldstate;
468         bool ret = true;
469         int sleep_jf = 1;
470
471         might_sleep();
472
473         /* The outgoing CPU will normally get done quite quickly. */
474         if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
475                 goto update_state;
476         udelay(5);
477
478         /* But if the outgoing CPU dawdles, wait increasingly long times. */
479         while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
480                 schedule_timeout_uninterruptible(sleep_jf);
481                 jf_left -= sleep_jf;
482                 if (jf_left <= 0)
483                         break;
484                 sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
485         }
486 update_state:
487         oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
488         if (oldstate == CPU_DEAD) {
489                 /* Outgoing CPU died normally, update state. */
490                 smp_mb(); /* atomic_read() before update. */
491                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
492         } else {
493                 /* Outgoing CPU still hasn't died, set state accordingly. */
494                 if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
495                                    oldstate, CPU_BROKEN) != oldstate)
496                         goto update_state;
497                 ret = false;
498         }
499         return ret;
500 }
501
502 /*
503  * Called by the outgoing CPU to report its successful death.  Return
504  * false if this report follows the surviving CPU's timing out.
505  *
506  * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
507  * timed out.  This approach allows architectures to omit calls to
508  * cpu_check_up_prepare() and cpu_set_state_online() without defeating
509  * the next cpu_wait_death()'s polling loop.
510  */
511 bool cpu_report_death(void)
512 {
513         int oldstate;
514         int newstate;
515         int cpu = smp_processor_id();
516
517         do {
518                 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
519                 if (oldstate != CPU_BROKEN)
520                         newstate = CPU_DEAD;
521                 else
522                         newstate = CPU_DEAD_FROZEN;
523         } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
524                                 oldstate, newstate) != oldstate);
525         return newstate == CPU_DEAD;
526 }
527
528 #endif /* #ifdef CONFIG_HOTPLUG_CPU */