x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / kernel / time / alarmtimer.c
1 /*
2  * Alarmtimer interface
3  *
4  * This interface provides a timer which is similarto hrtimers,
5  * but triggers a RTC alarm if the box is suspend.
6  *
7  * This interface is influenced by the Android RTC Alarm timer
8  * interface.
9  *
10  * Copyright (C) 2010 IBM Corperation
11  *
12  * Author: John Stultz <john.stultz@linaro.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/alarmtimer.h>
23 #include <linux/mutex.h>
24 #include <linux/platform_device.h>
25 #include <linux/posix-timers.h>
26 #include <linux/workqueue.h>
27 #include <linux/freezer.h>
28
29 /**
30  * struct alarm_base - Alarm timer bases
31  * @lock:               Lock for syncrhonized access to the base
32  * @timerqueue:         Timerqueue head managing the list of events
33  * @gettime:            Function to read the time correlating to the base
34  * @base_clockid:       clockid for the base
35  */
36 static struct alarm_base {
37         spinlock_t              lock;
38         struct timerqueue_head  timerqueue;
39         ktime_t                 (*gettime)(void);
40         clockid_t               base_clockid;
41 } alarm_bases[ALARM_NUMTYPE];
42
43 /* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
44 static ktime_t freezer_delta;
45 static DEFINE_SPINLOCK(freezer_delta_lock);
46
47 static struct wakeup_source *ws;
48
49 #ifdef CONFIG_RTC_CLASS
50 /* rtc timer and device for setting alarm wakeups at suspend */
51 static struct rtc_timer         rtctimer;
52 static struct rtc_device        *rtcdev;
53 static DEFINE_SPINLOCK(rtcdev_lock);
54
55 /**
56  * alarmtimer_get_rtcdev - Return selected rtcdevice
57  *
58  * This function returns the rtc device to use for wakealarms.
59  * If one has not already been chosen, it checks to see if a
60  * functional rtc device is available.
61  */
62 struct rtc_device *alarmtimer_get_rtcdev(void)
63 {
64         unsigned long flags;
65         struct rtc_device *ret;
66
67         spin_lock_irqsave(&rtcdev_lock, flags);
68         ret = rtcdev;
69         spin_unlock_irqrestore(&rtcdev_lock, flags);
70
71         return ret;
72 }
73 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
74
75 static int alarmtimer_rtc_add_device(struct device *dev,
76                                 struct class_interface *class_intf)
77 {
78         unsigned long flags;
79         struct rtc_device *rtc = to_rtc_device(dev);
80
81         if (rtcdev)
82                 return -EBUSY;
83
84         if (!rtc->ops->set_alarm)
85                 return -1;
86         if (!device_may_wakeup(rtc->dev.parent))
87                 return -1;
88
89         spin_lock_irqsave(&rtcdev_lock, flags);
90         if (!rtcdev) {
91                 rtcdev = rtc;
92                 /* hold a reference so it doesn't go away */
93                 get_device(dev);
94         }
95         spin_unlock_irqrestore(&rtcdev_lock, flags);
96         return 0;
97 }
98
99 static inline void alarmtimer_rtc_timer_init(void)
100 {
101         rtc_timer_init(&rtctimer, NULL, NULL);
102 }
103
104 static struct class_interface alarmtimer_rtc_interface = {
105         .add_dev = &alarmtimer_rtc_add_device,
106 };
107
108 static int alarmtimer_rtc_interface_setup(void)
109 {
110         alarmtimer_rtc_interface.class = rtc_class;
111         return class_interface_register(&alarmtimer_rtc_interface);
112 }
113 static void alarmtimer_rtc_interface_remove(void)
114 {
115         class_interface_unregister(&alarmtimer_rtc_interface);
116 }
117 #else
118 struct rtc_device *alarmtimer_get_rtcdev(void)
119 {
120         return NULL;
121 }
122 #define rtcdev (NULL)
123 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
124 static inline void alarmtimer_rtc_interface_remove(void) { }
125 static inline void alarmtimer_rtc_timer_init(void) { }
126 #endif
127
128 /**
129  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
130  * @base: pointer to the base where the timer is being run
131  * @alarm: pointer to alarm being enqueued.
132  *
133  * Adds alarm to a alarm_base timerqueue
134  *
135  * Must hold base->lock when calling.
136  */
137 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
138 {
139         if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
140                 timerqueue_del(&base->timerqueue, &alarm->node);
141
142         timerqueue_add(&base->timerqueue, &alarm->node);
143         alarm->state |= ALARMTIMER_STATE_ENQUEUED;
144 }
145
146 /**
147  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
148  * @base: pointer to the base where the timer is running
149  * @alarm: pointer to alarm being removed
150  *
151  * Removes alarm to a alarm_base timerqueue
152  *
153  * Must hold base->lock when calling.
154  */
155 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
156 {
157         if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
158                 return;
159
160         timerqueue_del(&base->timerqueue, &alarm->node);
161         alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
162 }
163
164
165 /**
166  * alarmtimer_fired - Handles alarm hrtimer being fired.
167  * @timer: pointer to hrtimer being run
168  *
169  * When a alarm timer fires, this runs through the timerqueue to
170  * see which alarms expired, and runs those. If there are more alarm
171  * timers queued for the future, we set the hrtimer to fire when
172  * when the next future alarm timer expires.
173  */
174 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
175 {
176         struct alarm *alarm = container_of(timer, struct alarm, timer);
177         struct alarm_base *base = &alarm_bases[alarm->type];
178         unsigned long flags;
179         int ret = HRTIMER_NORESTART;
180         int restart = ALARMTIMER_NORESTART;
181
182         spin_lock_irqsave(&base->lock, flags);
183         alarmtimer_dequeue(base, alarm);
184         spin_unlock_irqrestore(&base->lock, flags);
185
186         if (alarm->function)
187                 restart = alarm->function(alarm, base->gettime());
188
189         spin_lock_irqsave(&base->lock, flags);
190         if (restart != ALARMTIMER_NORESTART) {
191                 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
192                 alarmtimer_enqueue(base, alarm);
193                 ret = HRTIMER_RESTART;
194         }
195         spin_unlock_irqrestore(&base->lock, flags);
196
197         return ret;
198
199 }
200
201 ktime_t alarm_expires_remaining(const struct alarm *alarm)
202 {
203         struct alarm_base *base = &alarm_bases[alarm->type];
204         return ktime_sub(alarm->node.expires, base->gettime());
205 }
206 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
207
208 #ifdef CONFIG_RTC_CLASS
209 /**
210  * alarmtimer_suspend - Suspend time callback
211  * @dev: unused
212  * @state: unused
213  *
214  * When we are going into suspend, we look through the bases
215  * to see which is the soonest timer to expire. We then
216  * set an rtc timer to fire that far into the future, which
217  * will wake us from suspend.
218  */
219 static int alarmtimer_suspend(struct device *dev)
220 {
221         struct rtc_time tm;
222         ktime_t min, now;
223         unsigned long flags;
224         struct rtc_device *rtc;
225         int i;
226         int ret;
227
228         spin_lock_irqsave(&freezer_delta_lock, flags);
229         min = freezer_delta;
230         freezer_delta = ktime_set(0, 0);
231         spin_unlock_irqrestore(&freezer_delta_lock, flags);
232
233         rtc = alarmtimer_get_rtcdev();
234         /* If we have no rtcdev, just return */
235         if (!rtc)
236                 return 0;
237
238         /* Find the soonest timer to expire*/
239         for (i = 0; i < ALARM_NUMTYPE; i++) {
240                 struct alarm_base *base = &alarm_bases[i];
241                 struct timerqueue_node *next;
242                 ktime_t delta;
243
244                 spin_lock_irqsave(&base->lock, flags);
245                 next = timerqueue_getnext(&base->timerqueue);
246                 spin_unlock_irqrestore(&base->lock, flags);
247                 if (!next)
248                         continue;
249                 delta = ktime_sub(next->expires, base->gettime());
250                 if (!min.tv64 || (delta.tv64 < min.tv64))
251                         min = delta;
252         }
253         if (min.tv64 == 0)
254                 return 0;
255
256         if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
257                 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
258                 return -EBUSY;
259         }
260
261         /* Setup an rtc timer to fire that far in the future */
262         rtc_timer_cancel(rtc, &rtctimer);
263         rtc_read_time(rtc, &tm);
264         now = rtc_tm_to_ktime(tm);
265         now = ktime_add(now, min);
266
267         /* Set alarm, if in the past reject suspend briefly to handle */
268         ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
269         if (ret < 0)
270                 __pm_wakeup_event(ws, MSEC_PER_SEC);
271         return ret;
272 }
273
274 static int alarmtimer_resume(struct device *dev)
275 {
276         struct rtc_device *rtc;
277
278         rtc = alarmtimer_get_rtcdev();
279         if (rtc)
280                 rtc_timer_cancel(rtc, &rtctimer);
281         return 0;
282 }
283
284 #else
285 static int alarmtimer_suspend(struct device *dev)
286 {
287         return 0;
288 }
289
290 static int alarmtimer_resume(struct device *dev)
291 {
292         return 0;
293 }
294 #endif
295
296 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
297 {
298         ktime_t delta;
299         unsigned long flags;
300         struct alarm_base *base = &alarm_bases[type];
301
302         delta = ktime_sub(absexp, base->gettime());
303
304         spin_lock_irqsave(&freezer_delta_lock, flags);
305         if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
306                 freezer_delta = delta;
307         spin_unlock_irqrestore(&freezer_delta_lock, flags);
308 }
309
310
311 /**
312  * alarm_init - Initialize an alarm structure
313  * @alarm: ptr to alarm to be initialized
314  * @type: the type of the alarm
315  * @function: callback that is run when the alarm fires
316  */
317 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
318                 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
319 {
320         timerqueue_init(&alarm->node);
321         hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
322                         HRTIMER_MODE_ABS);
323         alarm->timer.function = alarmtimer_fired;
324         alarm->function = function;
325         alarm->type = type;
326         alarm->state = ALARMTIMER_STATE_INACTIVE;
327 }
328 EXPORT_SYMBOL_GPL(alarm_init);
329
330 /**
331  * alarm_start - Sets an absolute alarm to fire
332  * @alarm: ptr to alarm to set
333  * @start: time to run the alarm
334  */
335 void alarm_start(struct alarm *alarm, ktime_t start)
336 {
337         struct alarm_base *base = &alarm_bases[alarm->type];
338         unsigned long flags;
339
340         spin_lock_irqsave(&base->lock, flags);
341         alarm->node.expires = start;
342         alarmtimer_enqueue(base, alarm);
343         hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
344         spin_unlock_irqrestore(&base->lock, flags);
345 }
346 EXPORT_SYMBOL_GPL(alarm_start);
347
348 /**
349  * alarm_start_relative - Sets a relative alarm to fire
350  * @alarm: ptr to alarm to set
351  * @start: time relative to now to run the alarm
352  */
353 void alarm_start_relative(struct alarm *alarm, ktime_t start)
354 {
355         struct alarm_base *base = &alarm_bases[alarm->type];
356
357         start = ktime_add(start, base->gettime());
358         alarm_start(alarm, start);
359 }
360 EXPORT_SYMBOL_GPL(alarm_start_relative);
361
362 void alarm_restart(struct alarm *alarm)
363 {
364         struct alarm_base *base = &alarm_bases[alarm->type];
365         unsigned long flags;
366
367         spin_lock_irqsave(&base->lock, flags);
368         hrtimer_set_expires(&alarm->timer, alarm->node.expires);
369         hrtimer_restart(&alarm->timer);
370         alarmtimer_enqueue(base, alarm);
371         spin_unlock_irqrestore(&base->lock, flags);
372 }
373 EXPORT_SYMBOL_GPL(alarm_restart);
374
375 /**
376  * alarm_try_to_cancel - Tries to cancel an alarm timer
377  * @alarm: ptr to alarm to be canceled
378  *
379  * Returns 1 if the timer was canceled, 0 if it was not running,
380  * and -1 if the callback was running
381  */
382 int alarm_try_to_cancel(struct alarm *alarm)
383 {
384         struct alarm_base *base = &alarm_bases[alarm->type];
385         unsigned long flags;
386         int ret;
387
388         spin_lock_irqsave(&base->lock, flags);
389         ret = hrtimer_try_to_cancel(&alarm->timer);
390         if (ret >= 0)
391                 alarmtimer_dequeue(base, alarm);
392         spin_unlock_irqrestore(&base->lock, flags);
393         return ret;
394 }
395 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
396
397
398 /**
399  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
400  * @alarm: ptr to alarm to be canceled
401  *
402  * Returns 1 if the timer was canceled, 0 if it was not active.
403  */
404 int alarm_cancel(struct alarm *alarm)
405 {
406         for (;;) {
407                 int ret = alarm_try_to_cancel(alarm);
408                 if (ret >= 0)
409                         return ret;
410                 cpu_relax();
411         }
412 }
413 EXPORT_SYMBOL_GPL(alarm_cancel);
414
415
416 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
417 {
418         u64 overrun = 1;
419         ktime_t delta;
420
421         delta = ktime_sub(now, alarm->node.expires);
422
423         if (delta.tv64 < 0)
424                 return 0;
425
426         if (unlikely(delta.tv64 >= interval.tv64)) {
427                 s64 incr = ktime_to_ns(interval);
428
429                 overrun = ktime_divns(delta, incr);
430
431                 alarm->node.expires = ktime_add_ns(alarm->node.expires,
432                                                         incr*overrun);
433
434                 if (alarm->node.expires.tv64 > now.tv64)
435                         return overrun;
436                 /*
437                  * This (and the ktime_add() below) is the
438                  * correction for exact:
439                  */
440                 overrun++;
441         }
442
443         alarm->node.expires = ktime_add(alarm->node.expires, interval);
444         return overrun;
445 }
446 EXPORT_SYMBOL_GPL(alarm_forward);
447
448 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
449 {
450         struct alarm_base *base = &alarm_bases[alarm->type];
451
452         return alarm_forward(alarm, base->gettime(), interval);
453 }
454 EXPORT_SYMBOL_GPL(alarm_forward_now);
455
456
457 /**
458  * clock2alarm - helper that converts from clockid to alarmtypes
459  * @clockid: clockid.
460  */
461 static enum alarmtimer_type clock2alarm(clockid_t clockid)
462 {
463         if (clockid == CLOCK_REALTIME_ALARM)
464                 return ALARM_REALTIME;
465         if (clockid == CLOCK_BOOTTIME_ALARM)
466                 return ALARM_BOOTTIME;
467         return -1;
468 }
469
470 /**
471  * alarm_handle_timer - Callback for posix timers
472  * @alarm: alarm that fired
473  *
474  * Posix timer callback for expired alarm timers.
475  */
476 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
477                                                         ktime_t now)
478 {
479         unsigned long flags;
480         struct k_itimer *ptr = container_of(alarm, struct k_itimer,
481                                                 it.alarm.alarmtimer);
482         enum alarmtimer_restart result = ALARMTIMER_NORESTART;
483
484         spin_lock_irqsave(&ptr->it_lock, flags);
485         if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) {
486                 if (posix_timer_event(ptr, 0) != 0)
487                         ptr->it_overrun++;
488         }
489
490         /* Re-add periodic timers */
491         if (ptr->it.alarm.interval.tv64) {
492                 ptr->it_overrun += alarm_forward(alarm, now,
493                                                 ptr->it.alarm.interval);
494                 result = ALARMTIMER_RESTART;
495         }
496         spin_unlock_irqrestore(&ptr->it_lock, flags);
497
498         return result;
499 }
500
501 /**
502  * alarm_clock_getres - posix getres interface
503  * @which_clock: clockid
504  * @tp: timespec to fill
505  *
506  * Returns the granularity of underlying alarm base clock
507  */
508 static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
509 {
510         if (!alarmtimer_get_rtcdev())
511                 return -EINVAL;
512
513         tp->tv_sec = 0;
514         tp->tv_nsec = hrtimer_resolution;
515         return 0;
516 }
517
518 /**
519  * alarm_clock_get - posix clock_get interface
520  * @which_clock: clockid
521  * @tp: timespec to fill.
522  *
523  * Provides the underlying alarm base time.
524  */
525 static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
526 {
527         struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
528
529         if (!alarmtimer_get_rtcdev())
530                 return -EINVAL;
531
532         *tp = ktime_to_timespec(base->gettime());
533         return 0;
534 }
535
536 /**
537  * alarm_timer_create - posix timer_create interface
538  * @new_timer: k_itimer pointer to manage
539  *
540  * Initializes the k_itimer structure.
541  */
542 static int alarm_timer_create(struct k_itimer *new_timer)
543 {
544         enum  alarmtimer_type type;
545
546         if (!alarmtimer_get_rtcdev())
547                 return -ENOTSUPP;
548
549         if (!capable(CAP_WAKE_ALARM))
550                 return -EPERM;
551
552         type = clock2alarm(new_timer->it_clock);
553         alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
554         return 0;
555 }
556
557 /**
558  * alarm_timer_get - posix timer_get interface
559  * @new_timer: k_itimer pointer
560  * @cur_setting: itimerspec data to fill
561  *
562  * Copies out the current itimerspec data
563  */
564 static void alarm_timer_get(struct k_itimer *timr,
565                                 struct itimerspec *cur_setting)
566 {
567         ktime_t relative_expiry_time =
568                 alarm_expires_remaining(&(timr->it.alarm.alarmtimer));
569
570         if (ktime_to_ns(relative_expiry_time) > 0) {
571                 cur_setting->it_value = ktime_to_timespec(relative_expiry_time);
572         } else {
573                 cur_setting->it_value.tv_sec = 0;
574                 cur_setting->it_value.tv_nsec = 0;
575         }
576
577         cur_setting->it_interval = ktime_to_timespec(timr->it.alarm.interval);
578 }
579
580 /**
581  * alarm_timer_del - posix timer_del interface
582  * @timr: k_itimer pointer to be deleted
583  *
584  * Cancels any programmed alarms for the given timer.
585  */
586 static int alarm_timer_del(struct k_itimer *timr)
587 {
588         if (!rtcdev)
589                 return -ENOTSUPP;
590
591         if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
592                 return TIMER_RETRY;
593
594         return 0;
595 }
596
597 /**
598  * alarm_timer_set - posix timer_set interface
599  * @timr: k_itimer pointer to be deleted
600  * @flags: timer flags
601  * @new_setting: itimerspec to be used
602  * @old_setting: itimerspec being replaced
603  *
604  * Sets the timer to new_setting, and starts the timer.
605  */
606 static int alarm_timer_set(struct k_itimer *timr, int flags,
607                                 struct itimerspec *new_setting,
608                                 struct itimerspec *old_setting)
609 {
610         ktime_t exp;
611
612         if (!rtcdev)
613                 return -ENOTSUPP;
614
615         if (flags & ~TIMER_ABSTIME)
616                 return -EINVAL;
617
618         if (old_setting)
619                 alarm_timer_get(timr, old_setting);
620
621         /* If the timer was already set, cancel it */
622         if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
623                 return TIMER_RETRY;
624
625         /* start the timer */
626         timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
627         exp = timespec_to_ktime(new_setting->it_value);
628         /* Convert (if necessary) to absolute time */
629         if (flags != TIMER_ABSTIME) {
630                 ktime_t now;
631
632                 now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime();
633                 exp = ktime_add(now, exp);
634         }
635
636         alarm_start(&timr->it.alarm.alarmtimer, exp);
637         return 0;
638 }
639
640 /**
641  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
642  * @alarm: ptr to alarm that fired
643  *
644  * Wakes up the task that set the alarmtimer
645  */
646 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
647                                                                 ktime_t now)
648 {
649         struct task_struct *task = (struct task_struct *)alarm->data;
650
651         alarm->data = NULL;
652         if (task)
653                 wake_up_process(task);
654         return ALARMTIMER_NORESTART;
655 }
656
657 /**
658  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
659  * @alarm: ptr to alarmtimer
660  * @absexp: absolute expiration time
661  *
662  * Sets the alarm timer and sleeps until it is fired or interrupted.
663  */
664 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
665 {
666         alarm->data = (void *)current;
667         do {
668                 set_current_state(TASK_INTERRUPTIBLE);
669                 alarm_start(alarm, absexp);
670                 if (likely(alarm->data))
671                         schedule();
672
673                 alarm_cancel(alarm);
674         } while (alarm->data && !signal_pending(current));
675
676         __set_current_state(TASK_RUNNING);
677
678         return (alarm->data == NULL);
679 }
680
681
682 /**
683  * update_rmtp - Update remaining timespec value
684  * @exp: expiration time
685  * @type: timer type
686  * @rmtp: user pointer to remaining timepsec value
687  *
688  * Helper function that fills in rmtp value with time between
689  * now and the exp value
690  */
691 static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
692                         struct timespec __user *rmtp)
693 {
694         struct timespec rmt;
695         ktime_t rem;
696
697         rem = ktime_sub(exp, alarm_bases[type].gettime());
698
699         if (rem.tv64 <= 0)
700                 return 0;
701         rmt = ktime_to_timespec(rem);
702
703         if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
704                 return -EFAULT;
705
706         return 1;
707
708 }
709
710 /**
711  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
712  * @restart: ptr to restart block
713  *
714  * Handles restarted clock_nanosleep calls
715  */
716 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
717 {
718         enum  alarmtimer_type type = restart->nanosleep.clockid;
719         ktime_t exp;
720         struct timespec __user  *rmtp;
721         struct alarm alarm;
722         int ret = 0;
723
724         exp.tv64 = restart->nanosleep.expires;
725         alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
726
727         if (alarmtimer_do_nsleep(&alarm, exp))
728                 goto out;
729
730         if (freezing(current))
731                 alarmtimer_freezerset(exp, type);
732
733         rmtp = restart->nanosleep.rmtp;
734         if (rmtp) {
735                 ret = update_rmtp(exp, type, rmtp);
736                 if (ret <= 0)
737                         goto out;
738         }
739
740
741         /* The other values in restart are already filled in */
742         ret = -ERESTART_RESTARTBLOCK;
743 out:
744         return ret;
745 }
746
747 /**
748  * alarm_timer_nsleep - alarmtimer nanosleep
749  * @which_clock: clockid
750  * @flags: determins abstime or relative
751  * @tsreq: requested sleep time (abs or rel)
752  * @rmtp: remaining sleep time saved
753  *
754  * Handles clock_nanosleep calls against _ALARM clockids
755  */
756 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
757                      struct timespec *tsreq, struct timespec __user *rmtp)
758 {
759         enum  alarmtimer_type type = clock2alarm(which_clock);
760         struct alarm alarm;
761         ktime_t exp;
762         int ret = 0;
763         struct restart_block *restart;
764
765         if (!alarmtimer_get_rtcdev())
766                 return -ENOTSUPP;
767
768         if (flags & ~TIMER_ABSTIME)
769                 return -EINVAL;
770
771         if (!capable(CAP_WAKE_ALARM))
772                 return -EPERM;
773
774         alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
775
776         exp = timespec_to_ktime(*tsreq);
777         /* Convert (if necessary) to absolute time */
778         if (flags != TIMER_ABSTIME) {
779                 ktime_t now = alarm_bases[type].gettime();
780                 exp = ktime_add(now, exp);
781         }
782
783         if (alarmtimer_do_nsleep(&alarm, exp))
784                 goto out;
785
786         if (freezing(current))
787                 alarmtimer_freezerset(exp, type);
788
789         /* abs timers don't set remaining time or restart */
790         if (flags == TIMER_ABSTIME) {
791                 ret = -ERESTARTNOHAND;
792                 goto out;
793         }
794
795         if (rmtp) {
796                 ret = update_rmtp(exp, type, rmtp);
797                 if (ret <= 0)
798                         goto out;
799         }
800
801         restart = &current->restart_block;
802         restart->fn = alarm_timer_nsleep_restart;
803         restart->nanosleep.clockid = type;
804         restart->nanosleep.expires = exp.tv64;
805         restart->nanosleep.rmtp = rmtp;
806         ret = -ERESTART_RESTARTBLOCK;
807
808 out:
809         return ret;
810 }
811
812
813 /* Suspend hook structures */
814 static const struct dev_pm_ops alarmtimer_pm_ops = {
815         .suspend = alarmtimer_suspend,
816         .resume = alarmtimer_resume,
817 };
818
819 static struct platform_driver alarmtimer_driver = {
820         .driver = {
821                 .name = "alarmtimer",
822                 .pm = &alarmtimer_pm_ops,
823         }
824 };
825
826 /**
827  * alarmtimer_init - Initialize alarm timer code
828  *
829  * This function initializes the alarm bases and registers
830  * the posix clock ids.
831  */
832 static int __init alarmtimer_init(void)
833 {
834         struct platform_device *pdev;
835         int error = 0;
836         int i;
837         struct k_clock alarm_clock = {
838                 .clock_getres   = alarm_clock_getres,
839                 .clock_get      = alarm_clock_get,
840                 .timer_create   = alarm_timer_create,
841                 .timer_set      = alarm_timer_set,
842                 .timer_del      = alarm_timer_del,
843                 .timer_get      = alarm_timer_get,
844                 .nsleep         = alarm_timer_nsleep,
845         };
846
847         alarmtimer_rtc_timer_init();
848
849         posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
850         posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
851
852         /* Initialize alarm bases */
853         alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
854         alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
855         alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
856         alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
857         for (i = 0; i < ALARM_NUMTYPE; i++) {
858                 timerqueue_init_head(&alarm_bases[i].timerqueue);
859                 spin_lock_init(&alarm_bases[i].lock);
860         }
861
862         error = alarmtimer_rtc_interface_setup();
863         if (error)
864                 return error;
865
866         error = platform_driver_register(&alarmtimer_driver);
867         if (error)
868                 goto out_if;
869
870         pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
871         if (IS_ERR(pdev)) {
872                 error = PTR_ERR(pdev);
873                 goto out_drv;
874         }
875         ws = wakeup_source_register("alarmtimer");
876         return 0;
877
878 out_drv:
879         platform_driver_unregister(&alarmtimer_driver);
880 out_if:
881         alarmtimer_rtc_interface_remove();
882         return error;
883 }
884 device_initcall(alarmtimer_init);