Merge branch 'misc' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[cascardo/linux.git] / kernel / time / posix-cpu-timers.c
1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15
16 /*
17  * Called after updating RLIMIT_CPU to run cpu timer and update
18  * tsk->signal->cputime_expires expiration cache if necessary. Needs
19  * siglock protection since other code may update expiration cache as
20  * well.
21  */
22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
23 {
24         cputime_t cputime = secs_to_cputime(rlim_new);
25
26         spin_lock_irq(&task->sighand->siglock);
27         set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
28         spin_unlock_irq(&task->sighand->siglock);
29 }
30
31 static int check_clock(const clockid_t which_clock)
32 {
33         int error = 0;
34         struct task_struct *p;
35         const pid_t pid = CPUCLOCK_PID(which_clock);
36
37         if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38                 return -EINVAL;
39
40         if (pid == 0)
41                 return 0;
42
43         rcu_read_lock();
44         p = find_task_by_vpid(pid);
45         if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
46                    same_thread_group(p, current) : has_group_leader_pid(p))) {
47                 error = -EINVAL;
48         }
49         rcu_read_unlock();
50
51         return error;
52 }
53
54 static inline unsigned long long
55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
56 {
57         unsigned long long ret;
58
59         ret = 0;                /* high half always zero when .cpu used */
60         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
61                 ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
62         } else {
63                 ret = cputime_to_expires(timespec_to_cputime(tp));
64         }
65         return ret;
66 }
67
68 static void sample_to_timespec(const clockid_t which_clock,
69                                unsigned long long expires,
70                                struct timespec *tp)
71 {
72         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
73                 *tp = ns_to_timespec(expires);
74         else
75                 cputime_to_timespec((__force cputime_t)expires, tp);
76 }
77
78 /*
79  * Update expiry time from increment, and increase overrun count,
80  * given the current clock sample.
81  */
82 static void bump_cpu_timer(struct k_itimer *timer,
83                            unsigned long long now)
84 {
85         int i;
86         unsigned long long delta, incr;
87
88         if (timer->it.cpu.incr == 0)
89                 return;
90
91         if (now < timer->it.cpu.expires)
92                 return;
93
94         incr = timer->it.cpu.incr;
95         delta = now + incr - timer->it.cpu.expires;
96
97         /* Don't use (incr*2 < delta), incr*2 might overflow. */
98         for (i = 0; incr < delta - incr; i++)
99                 incr = incr << 1;
100
101         for (; i >= 0; incr >>= 1, i--) {
102                 if (delta < incr)
103                         continue;
104
105                 timer->it.cpu.expires += incr;
106                 timer->it_overrun += 1 << i;
107                 delta -= incr;
108         }
109 }
110
111 /**
112  * task_cputime_zero - Check a task_cputime struct for all zero fields.
113  *
114  * @cputime:    The struct to compare.
115  *
116  * Checks @cputime to see if all fields are zero.  Returns true if all fields
117  * are zero, false if any field is nonzero.
118  */
119 static inline int task_cputime_zero(const struct task_cputime *cputime)
120 {
121         if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
122                 return 1;
123         return 0;
124 }
125
126 static inline unsigned long long prof_ticks(struct task_struct *p)
127 {
128         cputime_t utime, stime;
129
130         task_cputime(p, &utime, &stime);
131
132         return cputime_to_expires(utime + stime);
133 }
134 static inline unsigned long long virt_ticks(struct task_struct *p)
135 {
136         cputime_t utime;
137
138         task_cputime(p, &utime, NULL);
139
140         return cputime_to_expires(utime);
141 }
142
143 static int
144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
145 {
146         int error = check_clock(which_clock);
147         if (!error) {
148                 tp->tv_sec = 0;
149                 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
150                 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
151                         /*
152                          * If sched_clock is using a cycle counter, we
153                          * don't have any idea of its true resolution
154                          * exported, but it is much more than 1s/HZ.
155                          */
156                         tp->tv_nsec = 1;
157                 }
158         }
159         return error;
160 }
161
162 static int
163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
164 {
165         /*
166          * You can never reset a CPU clock, but we check for other errors
167          * in the call before failing with EPERM.
168          */
169         int error = check_clock(which_clock);
170         if (error == 0) {
171                 error = -EPERM;
172         }
173         return error;
174 }
175
176
177 /*
178  * Sample a per-thread clock for the given task.
179  */
180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
181                             unsigned long long *sample)
182 {
183         switch (CPUCLOCK_WHICH(which_clock)) {
184         default:
185                 return -EINVAL;
186         case CPUCLOCK_PROF:
187                 *sample = prof_ticks(p);
188                 break;
189         case CPUCLOCK_VIRT:
190                 *sample = virt_ticks(p);
191                 break;
192         case CPUCLOCK_SCHED:
193                 *sample = task_sched_runtime(p);
194                 break;
195         }
196         return 0;
197 }
198
199 /*
200  * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
201  * to avoid race conditions with concurrent updates to cputime.
202  */
203 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
204 {
205         u64 curr_cputime;
206 retry:
207         curr_cputime = atomic64_read(cputime);
208         if (sum_cputime > curr_cputime) {
209                 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
210                         goto retry;
211         }
212 }
213
214 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
215 {
216         __update_gt_cputime(&cputime_atomic->utime, sum->utime);
217         __update_gt_cputime(&cputime_atomic->stime, sum->stime);
218         __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
219 }
220
221 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
222 static inline void sample_cputime_atomic(struct task_cputime *times,
223                                          struct task_cputime_atomic *atomic_times)
224 {
225         times->utime = atomic64_read(&atomic_times->utime);
226         times->stime = atomic64_read(&atomic_times->stime);
227         times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
228 }
229
230 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
231 {
232         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
233         struct task_cputime sum;
234
235         /* Check if cputimer isn't running. This is accessed without locking. */
236         if (!READ_ONCE(cputimer->running)) {
237                 /*
238                  * The POSIX timer interface allows for absolute time expiry
239                  * values through the TIMER_ABSTIME flag, therefore we have
240                  * to synchronize the timer to the clock every time we start it.
241                  */
242                 thread_group_cputime(tsk, &sum);
243                 update_gt_cputime(&cputimer->cputime_atomic, &sum);
244
245                 /*
246                  * We're setting cputimer->running without a lock. Ensure
247                  * this only gets written to in one operation. We set
248                  * running after update_gt_cputime() as a small optimization,
249                  * but barriers are not required because update_gt_cputime()
250                  * can handle concurrent updates.
251                  */
252                 WRITE_ONCE(cputimer->running, true);
253         }
254         sample_cputime_atomic(times, &cputimer->cputime_atomic);
255 }
256
257 /*
258  * Sample a process (thread group) clock for the given group_leader task.
259  * Must be called with task sighand lock held for safe while_each_thread()
260  * traversal.
261  */
262 static int cpu_clock_sample_group(const clockid_t which_clock,
263                                   struct task_struct *p,
264                                   unsigned long long *sample)
265 {
266         struct task_cputime cputime;
267
268         switch (CPUCLOCK_WHICH(which_clock)) {
269         default:
270                 return -EINVAL;
271         case CPUCLOCK_PROF:
272                 thread_group_cputime(p, &cputime);
273                 *sample = cputime_to_expires(cputime.utime + cputime.stime);
274                 break;
275         case CPUCLOCK_VIRT:
276                 thread_group_cputime(p, &cputime);
277                 *sample = cputime_to_expires(cputime.utime);
278                 break;
279         case CPUCLOCK_SCHED:
280                 thread_group_cputime(p, &cputime);
281                 *sample = cputime.sum_exec_runtime;
282                 break;
283         }
284         return 0;
285 }
286
287 static int posix_cpu_clock_get_task(struct task_struct *tsk,
288                                     const clockid_t which_clock,
289                                     struct timespec *tp)
290 {
291         int err = -EINVAL;
292         unsigned long long rtn;
293
294         if (CPUCLOCK_PERTHREAD(which_clock)) {
295                 if (same_thread_group(tsk, current))
296                         err = cpu_clock_sample(which_clock, tsk, &rtn);
297         } else {
298                 if (tsk == current || thread_group_leader(tsk))
299                         err = cpu_clock_sample_group(which_clock, tsk, &rtn);
300         }
301
302         if (!err)
303                 sample_to_timespec(which_clock, rtn, tp);
304
305         return err;
306 }
307
308
309 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
310 {
311         const pid_t pid = CPUCLOCK_PID(which_clock);
312         int err = -EINVAL;
313
314         if (pid == 0) {
315                 /*
316                  * Special case constant value for our own clocks.
317                  * We don't have to do any lookup to find ourselves.
318                  */
319                 err = posix_cpu_clock_get_task(current, which_clock, tp);
320         } else {
321                 /*
322                  * Find the given PID, and validate that the caller
323                  * should be able to see it.
324                  */
325                 struct task_struct *p;
326                 rcu_read_lock();
327                 p = find_task_by_vpid(pid);
328                 if (p)
329                         err = posix_cpu_clock_get_task(p, which_clock, tp);
330                 rcu_read_unlock();
331         }
332
333         return err;
334 }
335
336 /*
337  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
338  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
339  * new timer already all-zeros initialized.
340  */
341 static int posix_cpu_timer_create(struct k_itimer *new_timer)
342 {
343         int ret = 0;
344         const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
345         struct task_struct *p;
346
347         if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
348                 return -EINVAL;
349
350         INIT_LIST_HEAD(&new_timer->it.cpu.entry);
351
352         rcu_read_lock();
353         if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
354                 if (pid == 0) {
355                         p = current;
356                 } else {
357                         p = find_task_by_vpid(pid);
358                         if (p && !same_thread_group(p, current))
359                                 p = NULL;
360                 }
361         } else {
362                 if (pid == 0) {
363                         p = current->group_leader;
364                 } else {
365                         p = find_task_by_vpid(pid);
366                         if (p && !has_group_leader_pid(p))
367                                 p = NULL;
368                 }
369         }
370         new_timer->it.cpu.task = p;
371         if (p) {
372                 get_task_struct(p);
373         } else {
374                 ret = -EINVAL;
375         }
376         rcu_read_unlock();
377
378         return ret;
379 }
380
381 /*
382  * Clean up a CPU-clock timer that is about to be destroyed.
383  * This is called from timer deletion with the timer already locked.
384  * If we return TIMER_RETRY, it's necessary to release the timer's lock
385  * and try again.  (This happens when the timer is in the middle of firing.)
386  */
387 static int posix_cpu_timer_del(struct k_itimer *timer)
388 {
389         int ret = 0;
390         unsigned long flags;
391         struct sighand_struct *sighand;
392         struct task_struct *p = timer->it.cpu.task;
393
394         WARN_ON_ONCE(p == NULL);
395
396         /*
397          * Protect against sighand release/switch in exit/exec and process/
398          * thread timer list entry concurrent read/writes.
399          */
400         sighand = lock_task_sighand(p, &flags);
401         if (unlikely(sighand == NULL)) {
402                 /*
403                  * We raced with the reaping of the task.
404                  * The deletion should have cleared us off the list.
405                  */
406                 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
407         } else {
408                 if (timer->it.cpu.firing)
409                         ret = TIMER_RETRY;
410                 else
411                         list_del(&timer->it.cpu.entry);
412
413                 unlock_task_sighand(p, &flags);
414         }
415
416         if (!ret)
417                 put_task_struct(p);
418
419         return ret;
420 }
421
422 static void cleanup_timers_list(struct list_head *head)
423 {
424         struct cpu_timer_list *timer, *next;
425
426         list_for_each_entry_safe(timer, next, head, entry)
427                 list_del_init(&timer->entry);
428 }
429
430 /*
431  * Clean out CPU timers still ticking when a thread exited.  The task
432  * pointer is cleared, and the expiry time is replaced with the residual
433  * time for later timer_gettime calls to return.
434  * This must be called with the siglock held.
435  */
436 static void cleanup_timers(struct list_head *head)
437 {
438         cleanup_timers_list(head);
439         cleanup_timers_list(++head);
440         cleanup_timers_list(++head);
441 }
442
443 /*
444  * These are both called with the siglock held, when the current thread
445  * is being reaped.  When the final (leader) thread in the group is reaped,
446  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
447  */
448 void posix_cpu_timers_exit(struct task_struct *tsk)
449 {
450         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
451                                                 sizeof(unsigned long long));
452         cleanup_timers(tsk->cpu_timers);
453
454 }
455 void posix_cpu_timers_exit_group(struct task_struct *tsk)
456 {
457         cleanup_timers(tsk->signal->cpu_timers);
458 }
459
460 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
461 {
462         return expires == 0 || expires > new_exp;
463 }
464
465 /*
466  * Insert the timer on the appropriate list before any timers that
467  * expire later.  This must be called with the sighand lock held.
468  */
469 static void arm_timer(struct k_itimer *timer)
470 {
471         struct task_struct *p = timer->it.cpu.task;
472         struct list_head *head, *listpos;
473         struct task_cputime *cputime_expires;
474         struct cpu_timer_list *const nt = &timer->it.cpu;
475         struct cpu_timer_list *next;
476
477         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
478                 head = p->cpu_timers;
479                 cputime_expires = &p->cputime_expires;
480         } else {
481                 head = p->signal->cpu_timers;
482                 cputime_expires = &p->signal->cputime_expires;
483         }
484         head += CPUCLOCK_WHICH(timer->it_clock);
485
486         listpos = head;
487         list_for_each_entry(next, head, entry) {
488                 if (nt->expires < next->expires)
489                         break;
490                 listpos = &next->entry;
491         }
492         list_add(&nt->entry, listpos);
493
494         if (listpos == head) {
495                 unsigned long long exp = nt->expires;
496
497                 /*
498                  * We are the new earliest-expiring POSIX 1.b timer, hence
499                  * need to update expiration cache. Take into account that
500                  * for process timers we share expiration cache with itimers
501                  * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
502                  */
503
504                 switch (CPUCLOCK_WHICH(timer->it_clock)) {
505                 case CPUCLOCK_PROF:
506                         if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
507                                 cputime_expires->prof_exp = expires_to_cputime(exp);
508                         break;
509                 case CPUCLOCK_VIRT:
510                         if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
511                                 cputime_expires->virt_exp = expires_to_cputime(exp);
512                         break;
513                 case CPUCLOCK_SCHED:
514                         if (cputime_expires->sched_exp == 0 ||
515                             cputime_expires->sched_exp > exp)
516                                 cputime_expires->sched_exp = exp;
517                         break;
518                 }
519                 if (CPUCLOCK_PERTHREAD(timer->it_clock))
520                         tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
521                 else
522                         tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
523         }
524 }
525
526 /*
527  * The timer is locked, fire it and arrange for its reload.
528  */
529 static void cpu_timer_fire(struct k_itimer *timer)
530 {
531         if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
532                 /*
533                  * User don't want any signal.
534                  */
535                 timer->it.cpu.expires = 0;
536         } else if (unlikely(timer->sigq == NULL)) {
537                 /*
538                  * This a special case for clock_nanosleep,
539                  * not a normal timer from sys_timer_create.
540                  */
541                 wake_up_process(timer->it_process);
542                 timer->it.cpu.expires = 0;
543         } else if (timer->it.cpu.incr == 0) {
544                 /*
545                  * One-shot timer.  Clear it as soon as it's fired.
546                  */
547                 posix_timer_event(timer, 0);
548                 timer->it.cpu.expires = 0;
549         } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
550                 /*
551                  * The signal did not get queued because the signal
552                  * was ignored, so we won't get any callback to
553                  * reload the timer.  But we need to keep it
554                  * ticking in case the signal is deliverable next time.
555                  */
556                 posix_cpu_timer_schedule(timer);
557         }
558 }
559
560 /*
561  * Sample a process (thread group) timer for the given group_leader task.
562  * Must be called with task sighand lock held for safe while_each_thread()
563  * traversal.
564  */
565 static int cpu_timer_sample_group(const clockid_t which_clock,
566                                   struct task_struct *p,
567                                   unsigned long long *sample)
568 {
569         struct task_cputime cputime;
570
571         thread_group_cputimer(p, &cputime);
572         switch (CPUCLOCK_WHICH(which_clock)) {
573         default:
574                 return -EINVAL;
575         case CPUCLOCK_PROF:
576                 *sample = cputime_to_expires(cputime.utime + cputime.stime);
577                 break;
578         case CPUCLOCK_VIRT:
579                 *sample = cputime_to_expires(cputime.utime);
580                 break;
581         case CPUCLOCK_SCHED:
582                 *sample = cputime.sum_exec_runtime;
583                 break;
584         }
585         return 0;
586 }
587
588 /*
589  * Guts of sys_timer_settime for CPU timers.
590  * This is called with the timer locked and interrupts disabled.
591  * If we return TIMER_RETRY, it's necessary to release the timer's lock
592  * and try again.  (This happens when the timer is in the middle of firing.)
593  */
594 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
595                                struct itimerspec *new, struct itimerspec *old)
596 {
597         unsigned long flags;
598         struct sighand_struct *sighand;
599         struct task_struct *p = timer->it.cpu.task;
600         unsigned long long old_expires, new_expires, old_incr, val;
601         int ret;
602
603         WARN_ON_ONCE(p == NULL);
604
605         new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
606
607         /*
608          * Protect against sighand release/switch in exit/exec and p->cpu_timers
609          * and p->signal->cpu_timers read/write in arm_timer()
610          */
611         sighand = lock_task_sighand(p, &flags);
612         /*
613          * If p has just been reaped, we can no
614          * longer get any information about it at all.
615          */
616         if (unlikely(sighand == NULL)) {
617                 return -ESRCH;
618         }
619
620         /*
621          * Disarm any old timer after extracting its expiry time.
622          */
623         WARN_ON_ONCE(!irqs_disabled());
624
625         ret = 0;
626         old_incr = timer->it.cpu.incr;
627         old_expires = timer->it.cpu.expires;
628         if (unlikely(timer->it.cpu.firing)) {
629                 timer->it.cpu.firing = -1;
630                 ret = TIMER_RETRY;
631         } else
632                 list_del_init(&timer->it.cpu.entry);
633
634         /*
635          * We need to sample the current value to convert the new
636          * value from to relative and absolute, and to convert the
637          * old value from absolute to relative.  To set a process
638          * timer, we need a sample to balance the thread expiry
639          * times (in arm_timer).  With an absolute time, we must
640          * check if it's already passed.  In short, we need a sample.
641          */
642         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
643                 cpu_clock_sample(timer->it_clock, p, &val);
644         } else {
645                 cpu_timer_sample_group(timer->it_clock, p, &val);
646         }
647
648         if (old) {
649                 if (old_expires == 0) {
650                         old->it_value.tv_sec = 0;
651                         old->it_value.tv_nsec = 0;
652                 } else {
653                         /*
654                          * Update the timer in case it has
655                          * overrun already.  If it has,
656                          * we'll report it as having overrun
657                          * and with the next reloaded timer
658                          * already ticking, though we are
659                          * swallowing that pending
660                          * notification here to install the
661                          * new setting.
662                          */
663                         bump_cpu_timer(timer, val);
664                         if (val < timer->it.cpu.expires) {
665                                 old_expires = timer->it.cpu.expires - val;
666                                 sample_to_timespec(timer->it_clock,
667                                                    old_expires,
668                                                    &old->it_value);
669                         } else {
670                                 old->it_value.tv_nsec = 1;
671                                 old->it_value.tv_sec = 0;
672                         }
673                 }
674         }
675
676         if (unlikely(ret)) {
677                 /*
678                  * We are colliding with the timer actually firing.
679                  * Punt after filling in the timer's old value, and
680                  * disable this firing since we are already reporting
681                  * it as an overrun (thanks to bump_cpu_timer above).
682                  */
683                 unlock_task_sighand(p, &flags);
684                 goto out;
685         }
686
687         if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
688                 new_expires += val;
689         }
690
691         /*
692          * Install the new expiry time (or zero).
693          * For a timer with no notification action, we don't actually
694          * arm the timer (we'll just fake it for timer_gettime).
695          */
696         timer->it.cpu.expires = new_expires;
697         if (new_expires != 0 && val < new_expires) {
698                 arm_timer(timer);
699         }
700
701         unlock_task_sighand(p, &flags);
702         /*
703          * Install the new reload setting, and
704          * set up the signal and overrun bookkeeping.
705          */
706         timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
707                                                 &new->it_interval);
708
709         /*
710          * This acts as a modification timestamp for the timer,
711          * so any automatic reload attempt will punt on seeing
712          * that we have reset the timer manually.
713          */
714         timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
715                 ~REQUEUE_PENDING;
716         timer->it_overrun_last = 0;
717         timer->it_overrun = -1;
718
719         if (new_expires != 0 && !(val < new_expires)) {
720                 /*
721                  * The designated time already passed, so we notify
722                  * immediately, even if the thread never runs to
723                  * accumulate more time on this clock.
724                  */
725                 cpu_timer_fire(timer);
726         }
727
728         ret = 0;
729  out:
730         if (old) {
731                 sample_to_timespec(timer->it_clock,
732                                    old_incr, &old->it_interval);
733         }
734
735         return ret;
736 }
737
738 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
739 {
740         unsigned long long now;
741         struct task_struct *p = timer->it.cpu.task;
742
743         WARN_ON_ONCE(p == NULL);
744
745         /*
746          * Easy part: convert the reload time.
747          */
748         sample_to_timespec(timer->it_clock,
749                            timer->it.cpu.incr, &itp->it_interval);
750
751         if (timer->it.cpu.expires == 0) {       /* Timer not armed at all.  */
752                 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
753                 return;
754         }
755
756         /*
757          * Sample the clock to take the difference with the expiry time.
758          */
759         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
760                 cpu_clock_sample(timer->it_clock, p, &now);
761         } else {
762                 struct sighand_struct *sighand;
763                 unsigned long flags;
764
765                 /*
766                  * Protect against sighand release/switch in exit/exec and
767                  * also make timer sampling safe if it ends up calling
768                  * thread_group_cputime().
769                  */
770                 sighand = lock_task_sighand(p, &flags);
771                 if (unlikely(sighand == NULL)) {
772                         /*
773                          * The process has been reaped.
774                          * We can't even collect a sample any more.
775                          * Call the timer disarmed, nothing else to do.
776                          */
777                         timer->it.cpu.expires = 0;
778                         sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
779                                            &itp->it_value);
780                 } else {
781                         cpu_timer_sample_group(timer->it_clock, p, &now);
782                         unlock_task_sighand(p, &flags);
783                 }
784         }
785
786         if (now < timer->it.cpu.expires) {
787                 sample_to_timespec(timer->it_clock,
788                                    timer->it.cpu.expires - now,
789                                    &itp->it_value);
790         } else {
791                 /*
792                  * The timer should have expired already, but the firing
793                  * hasn't taken place yet.  Say it's just about to expire.
794                  */
795                 itp->it_value.tv_nsec = 1;
796                 itp->it_value.tv_sec = 0;
797         }
798 }
799
800 static unsigned long long
801 check_timers_list(struct list_head *timers,
802                   struct list_head *firing,
803                   unsigned long long curr)
804 {
805         int maxfire = 20;
806
807         while (!list_empty(timers)) {
808                 struct cpu_timer_list *t;
809
810                 t = list_first_entry(timers, struct cpu_timer_list, entry);
811
812                 if (!--maxfire || curr < t->expires)
813                         return t->expires;
814
815                 t->firing = 1;
816                 list_move_tail(&t->entry, firing);
817         }
818
819         return 0;
820 }
821
822 /*
823  * Check for any per-thread CPU timers that have fired and move them off
824  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
825  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
826  */
827 static void check_thread_timers(struct task_struct *tsk,
828                                 struct list_head *firing)
829 {
830         struct list_head *timers = tsk->cpu_timers;
831         struct signal_struct *const sig = tsk->signal;
832         struct task_cputime *tsk_expires = &tsk->cputime_expires;
833         unsigned long long expires;
834         unsigned long soft;
835
836         /*
837          * If cputime_expires is zero, then there are no active
838          * per thread CPU timers.
839          */
840         if (task_cputime_zero(&tsk->cputime_expires))
841                 return;
842
843         expires = check_timers_list(timers, firing, prof_ticks(tsk));
844         tsk_expires->prof_exp = expires_to_cputime(expires);
845
846         expires = check_timers_list(++timers, firing, virt_ticks(tsk));
847         tsk_expires->virt_exp = expires_to_cputime(expires);
848
849         tsk_expires->sched_exp = check_timers_list(++timers, firing,
850                                                    tsk->se.sum_exec_runtime);
851
852         /*
853          * Check for the special case thread timers.
854          */
855         soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
856         if (soft != RLIM_INFINITY) {
857                 unsigned long hard =
858                         READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
859
860                 if (hard != RLIM_INFINITY &&
861                     tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
862                         /*
863                          * At the hard limit, we just die.
864                          * No need to calculate anything else now.
865                          */
866                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
867                         return;
868                 }
869                 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
870                         /*
871                          * At the soft limit, send a SIGXCPU every second.
872                          */
873                         if (soft < hard) {
874                                 soft += USEC_PER_SEC;
875                                 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
876                         }
877                         printk(KERN_INFO
878                                 "RT Watchdog Timeout: %s[%d]\n",
879                                 tsk->comm, task_pid_nr(tsk));
880                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
881                 }
882         }
883         if (task_cputime_zero(tsk_expires))
884                 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
885 }
886
887 static inline void stop_process_timers(struct signal_struct *sig)
888 {
889         struct thread_group_cputimer *cputimer = &sig->cputimer;
890
891         /* Turn off cputimer->running. This is done without locking. */
892         WRITE_ONCE(cputimer->running, false);
893         tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
894 }
895
896 static u32 onecputick;
897
898 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
899                              unsigned long long *expires,
900                              unsigned long long cur_time, int signo)
901 {
902         if (!it->expires)
903                 return;
904
905         if (cur_time >= it->expires) {
906                 if (it->incr) {
907                         it->expires += it->incr;
908                         it->error += it->incr_error;
909                         if (it->error >= onecputick) {
910                                 it->expires -= cputime_one_jiffy;
911                                 it->error -= onecputick;
912                         }
913                 } else {
914                         it->expires = 0;
915                 }
916
917                 trace_itimer_expire(signo == SIGPROF ?
918                                     ITIMER_PROF : ITIMER_VIRTUAL,
919                                     tsk->signal->leader_pid, cur_time);
920                 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
921         }
922
923         if (it->expires && (!*expires || it->expires < *expires)) {
924                 *expires = it->expires;
925         }
926 }
927
928 /*
929  * Check for any per-thread CPU timers that have fired and move them
930  * off the tsk->*_timers list onto the firing list.  Per-thread timers
931  * have already been taken off.
932  */
933 static void check_process_timers(struct task_struct *tsk,
934                                  struct list_head *firing)
935 {
936         struct signal_struct *const sig = tsk->signal;
937         unsigned long long utime, ptime, virt_expires, prof_expires;
938         unsigned long long sum_sched_runtime, sched_expires;
939         struct list_head *timers = sig->cpu_timers;
940         struct task_cputime cputime;
941         unsigned long soft;
942
943         /*
944          * If cputimer is not running, then there are no active
945          * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
946          */
947         if (!READ_ONCE(tsk->signal->cputimer.running))
948                 return;
949
950         /*
951          * Signify that a thread is checking for process timers.
952          * Write access to this field is protected by the sighand lock.
953          */
954         sig->cputimer.checking_timer = true;
955
956         /*
957          * Collect the current process totals.
958          */
959         thread_group_cputimer(tsk, &cputime);
960         utime = cputime_to_expires(cputime.utime);
961         ptime = utime + cputime_to_expires(cputime.stime);
962         sum_sched_runtime = cputime.sum_exec_runtime;
963
964         prof_expires = check_timers_list(timers, firing, ptime);
965         virt_expires = check_timers_list(++timers, firing, utime);
966         sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
967
968         /*
969          * Check for the special case process timers.
970          */
971         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
972                          SIGPROF);
973         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
974                          SIGVTALRM);
975         soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
976         if (soft != RLIM_INFINITY) {
977                 unsigned long psecs = cputime_to_secs(ptime);
978                 unsigned long hard =
979                         READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
980                 cputime_t x;
981                 if (psecs >= hard) {
982                         /*
983                          * At the hard limit, we just die.
984                          * No need to calculate anything else now.
985                          */
986                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
987                         return;
988                 }
989                 if (psecs >= soft) {
990                         /*
991                          * At the soft limit, send a SIGXCPU every second.
992                          */
993                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
994                         if (soft < hard) {
995                                 soft++;
996                                 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
997                         }
998                 }
999                 x = secs_to_cputime(soft);
1000                 if (!prof_expires || x < prof_expires) {
1001                         prof_expires = x;
1002                 }
1003         }
1004
1005         sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
1006         sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
1007         sig->cputime_expires.sched_exp = sched_expires;
1008         if (task_cputime_zero(&sig->cputime_expires))
1009                 stop_process_timers(sig);
1010
1011         sig->cputimer.checking_timer = false;
1012 }
1013
1014 /*
1015  * This is called from the signal code (via do_schedule_next_timer)
1016  * when the last timer signal was delivered and we have to reload the timer.
1017  */
1018 void posix_cpu_timer_schedule(struct k_itimer *timer)
1019 {
1020         struct sighand_struct *sighand;
1021         unsigned long flags;
1022         struct task_struct *p = timer->it.cpu.task;
1023         unsigned long long now;
1024
1025         WARN_ON_ONCE(p == NULL);
1026
1027         /*
1028          * Fetch the current sample and update the timer's expiry time.
1029          */
1030         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1031                 cpu_clock_sample(timer->it_clock, p, &now);
1032                 bump_cpu_timer(timer, now);
1033                 if (unlikely(p->exit_state))
1034                         goto out;
1035
1036                 /* Protect timer list r/w in arm_timer() */
1037                 sighand = lock_task_sighand(p, &flags);
1038                 if (!sighand)
1039                         goto out;
1040         } else {
1041                 /*
1042                  * Protect arm_timer() and timer sampling in case of call to
1043                  * thread_group_cputime().
1044                  */
1045                 sighand = lock_task_sighand(p, &flags);
1046                 if (unlikely(sighand == NULL)) {
1047                         /*
1048                          * The process has been reaped.
1049                          * We can't even collect a sample any more.
1050                          */
1051                         timer->it.cpu.expires = 0;
1052                         goto out;
1053                 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1054                         unlock_task_sighand(p, &flags);
1055                         /* Optimizations: if the process is dying, no need to rearm */
1056                         goto out;
1057                 }
1058                 cpu_timer_sample_group(timer->it_clock, p, &now);
1059                 bump_cpu_timer(timer, now);
1060                 /* Leave the sighand locked for the call below.  */
1061         }
1062
1063         /*
1064          * Now re-arm for the new expiry time.
1065          */
1066         WARN_ON_ONCE(!irqs_disabled());
1067         arm_timer(timer);
1068         unlock_task_sighand(p, &flags);
1069
1070 out:
1071         timer->it_overrun_last = timer->it_overrun;
1072         timer->it_overrun = -1;
1073         ++timer->it_requeue_pending;
1074 }
1075
1076 /**
1077  * task_cputime_expired - Compare two task_cputime entities.
1078  *
1079  * @sample:     The task_cputime structure to be checked for expiration.
1080  * @expires:    Expiration times, against which @sample will be checked.
1081  *
1082  * Checks @sample against @expires to see if any field of @sample has expired.
1083  * Returns true if any field of the former is greater than the corresponding
1084  * field of the latter if the latter field is set.  Otherwise returns false.
1085  */
1086 static inline int task_cputime_expired(const struct task_cputime *sample,
1087                                         const struct task_cputime *expires)
1088 {
1089         if (expires->utime && sample->utime >= expires->utime)
1090                 return 1;
1091         if (expires->stime && sample->utime + sample->stime >= expires->stime)
1092                 return 1;
1093         if (expires->sum_exec_runtime != 0 &&
1094             sample->sum_exec_runtime >= expires->sum_exec_runtime)
1095                 return 1;
1096         return 0;
1097 }
1098
1099 /**
1100  * fastpath_timer_check - POSIX CPU timers fast path.
1101  *
1102  * @tsk:        The task (thread) being checked.
1103  *
1104  * Check the task and thread group timers.  If both are zero (there are no
1105  * timers set) return false.  Otherwise snapshot the task and thread group
1106  * timers and compare them with the corresponding expiration times.  Return
1107  * true if a timer has expired, else return false.
1108  */
1109 static inline int fastpath_timer_check(struct task_struct *tsk)
1110 {
1111         struct signal_struct *sig;
1112
1113         if (!task_cputime_zero(&tsk->cputime_expires)) {
1114                 struct task_cputime task_sample;
1115
1116                 task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1117                 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1118                 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1119                         return 1;
1120         }
1121
1122         sig = tsk->signal;
1123         /*
1124          * Check if thread group timers expired when the cputimer is
1125          * running and no other thread in the group is already checking
1126          * for thread group cputimers. These fields are read without the
1127          * sighand lock. However, this is fine because this is meant to
1128          * be a fastpath heuristic to determine whether we should try to
1129          * acquire the sighand lock to check/handle timers.
1130          *
1131          * In the worst case scenario, if 'running' or 'checking_timer' gets
1132          * set but the current thread doesn't see the change yet, we'll wait
1133          * until the next thread in the group gets a scheduler interrupt to
1134          * handle the timer. This isn't an issue in practice because these
1135          * types of delays with signals actually getting sent are expected.
1136          */
1137         if (READ_ONCE(sig->cputimer.running) &&
1138             !READ_ONCE(sig->cputimer.checking_timer)) {
1139                 struct task_cputime group_sample;
1140
1141                 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1142
1143                 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1144                         return 1;
1145         }
1146
1147         return 0;
1148 }
1149
1150 /*
1151  * This is called from the timer interrupt handler.  The irq handler has
1152  * already updated our counts.  We need to check if any timers fire now.
1153  * Interrupts are disabled.
1154  */
1155 void run_posix_cpu_timers(struct task_struct *tsk)
1156 {
1157         LIST_HEAD(firing);
1158         struct k_itimer *timer, *next;
1159         unsigned long flags;
1160
1161         WARN_ON_ONCE(!irqs_disabled());
1162
1163         /*
1164          * The fast path checks that there are no expired thread or thread
1165          * group timers.  If that's so, just return.
1166          */
1167         if (!fastpath_timer_check(tsk))
1168                 return;
1169
1170         if (!lock_task_sighand(tsk, &flags))
1171                 return;
1172         /*
1173          * Here we take off tsk->signal->cpu_timers[N] and
1174          * tsk->cpu_timers[N] all the timers that are firing, and
1175          * put them on the firing list.
1176          */
1177         check_thread_timers(tsk, &firing);
1178
1179         check_process_timers(tsk, &firing);
1180
1181         /*
1182          * We must release these locks before taking any timer's lock.
1183          * There is a potential race with timer deletion here, as the
1184          * siglock now protects our private firing list.  We have set
1185          * the firing flag in each timer, so that a deletion attempt
1186          * that gets the timer lock before we do will give it up and
1187          * spin until we've taken care of that timer below.
1188          */
1189         unlock_task_sighand(tsk, &flags);
1190
1191         /*
1192          * Now that all the timers on our list have the firing flag,
1193          * no one will touch their list entries but us.  We'll take
1194          * each timer's lock before clearing its firing flag, so no
1195          * timer call will interfere.
1196          */
1197         list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1198                 int cpu_firing;
1199
1200                 spin_lock(&timer->it_lock);
1201                 list_del_init(&timer->it.cpu.entry);
1202                 cpu_firing = timer->it.cpu.firing;
1203                 timer->it.cpu.firing = 0;
1204                 /*
1205                  * The firing flag is -1 if we collided with a reset
1206                  * of the timer, which already reported this
1207                  * almost-firing as an overrun.  So don't generate an event.
1208                  */
1209                 if (likely(cpu_firing >= 0))
1210                         cpu_timer_fire(timer);
1211                 spin_unlock(&timer->it_lock);
1212         }
1213 }
1214
1215 /*
1216  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1217  * The tsk->sighand->siglock must be held by the caller.
1218  */
1219 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1220                            cputime_t *newval, cputime_t *oldval)
1221 {
1222         unsigned long long now;
1223
1224         WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1225         cpu_timer_sample_group(clock_idx, tsk, &now);
1226
1227         if (oldval) {
1228                 /*
1229                  * We are setting itimer. The *oldval is absolute and we update
1230                  * it to be relative, *newval argument is relative and we update
1231                  * it to be absolute.
1232                  */
1233                 if (*oldval) {
1234                         if (*oldval <= now) {
1235                                 /* Just about to fire. */
1236                                 *oldval = cputime_one_jiffy;
1237                         } else {
1238                                 *oldval -= now;
1239                         }
1240                 }
1241
1242                 if (!*newval)
1243                         return;
1244                 *newval += now;
1245         }
1246
1247         /*
1248          * Update expiration cache if we are the earliest timer, or eventually
1249          * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1250          */
1251         switch (clock_idx) {
1252         case CPUCLOCK_PROF:
1253                 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1254                         tsk->signal->cputime_expires.prof_exp = *newval;
1255                 break;
1256         case CPUCLOCK_VIRT:
1257                 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1258                         tsk->signal->cputime_expires.virt_exp = *newval;
1259                 break;
1260         }
1261
1262         tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1263 }
1264
1265 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1266                             struct timespec *rqtp, struct itimerspec *it)
1267 {
1268         struct k_itimer timer;
1269         int error;
1270
1271         /*
1272          * Set up a temporary timer and then wait for it to go off.
1273          */
1274         memset(&timer, 0, sizeof timer);
1275         spin_lock_init(&timer.it_lock);
1276         timer.it_clock = which_clock;
1277         timer.it_overrun = -1;
1278         error = posix_cpu_timer_create(&timer);
1279         timer.it_process = current;
1280         if (!error) {
1281                 static struct itimerspec zero_it;
1282
1283                 memset(it, 0, sizeof *it);
1284                 it->it_value = *rqtp;
1285
1286                 spin_lock_irq(&timer.it_lock);
1287                 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1288                 if (error) {
1289                         spin_unlock_irq(&timer.it_lock);
1290                         return error;
1291                 }
1292
1293                 while (!signal_pending(current)) {
1294                         if (timer.it.cpu.expires == 0) {
1295                                 /*
1296                                  * Our timer fired and was reset, below
1297                                  * deletion can not fail.
1298                                  */
1299                                 posix_cpu_timer_del(&timer);
1300                                 spin_unlock_irq(&timer.it_lock);
1301                                 return 0;
1302                         }
1303
1304                         /*
1305                          * Block until cpu_timer_fire (or a signal) wakes us.
1306                          */
1307                         __set_current_state(TASK_INTERRUPTIBLE);
1308                         spin_unlock_irq(&timer.it_lock);
1309                         schedule();
1310                         spin_lock_irq(&timer.it_lock);
1311                 }
1312
1313                 /*
1314                  * We were interrupted by a signal.
1315                  */
1316                 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1317                 error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1318                 if (!error) {
1319                         /*
1320                          * Timer is now unarmed, deletion can not fail.
1321                          */
1322                         posix_cpu_timer_del(&timer);
1323                 }
1324                 spin_unlock_irq(&timer.it_lock);
1325
1326                 while (error == TIMER_RETRY) {
1327                         /*
1328                          * We need to handle case when timer was or is in the
1329                          * middle of firing. In other cases we already freed
1330                          * resources.
1331                          */
1332                         spin_lock_irq(&timer.it_lock);
1333                         error = posix_cpu_timer_del(&timer);
1334                         spin_unlock_irq(&timer.it_lock);
1335                 }
1336
1337                 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1338                         /*
1339                          * It actually did fire already.
1340                          */
1341                         return 0;
1342                 }
1343
1344                 error = -ERESTART_RESTARTBLOCK;
1345         }
1346
1347         return error;
1348 }
1349
1350 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1351
1352 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1353                             struct timespec *rqtp, struct timespec __user *rmtp)
1354 {
1355         struct restart_block *restart_block = &current->restart_block;
1356         struct itimerspec it;
1357         int error;
1358
1359         /*
1360          * Diagnose required errors first.
1361          */
1362         if (CPUCLOCK_PERTHREAD(which_clock) &&
1363             (CPUCLOCK_PID(which_clock) == 0 ||
1364              CPUCLOCK_PID(which_clock) == current->pid))
1365                 return -EINVAL;
1366
1367         error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1368
1369         if (error == -ERESTART_RESTARTBLOCK) {
1370
1371                 if (flags & TIMER_ABSTIME)
1372                         return -ERESTARTNOHAND;
1373                 /*
1374                  * Report back to the user the time still remaining.
1375                  */
1376                 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1377                         return -EFAULT;
1378
1379                 restart_block->fn = posix_cpu_nsleep_restart;
1380                 restart_block->nanosleep.clockid = which_clock;
1381                 restart_block->nanosleep.rmtp = rmtp;
1382                 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1383         }
1384         return error;
1385 }
1386
1387 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1388 {
1389         clockid_t which_clock = restart_block->nanosleep.clockid;
1390         struct timespec t;
1391         struct itimerspec it;
1392         int error;
1393
1394         t = ns_to_timespec(restart_block->nanosleep.expires);
1395
1396         error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1397
1398         if (error == -ERESTART_RESTARTBLOCK) {
1399                 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1400                 /*
1401                  * Report back to the user the time still remaining.
1402                  */
1403                 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1404                         return -EFAULT;
1405
1406                 restart_block->nanosleep.expires = timespec_to_ns(&t);
1407         }
1408         return error;
1409
1410 }
1411
1412 #define PROCESS_CLOCK   MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1413 #define THREAD_CLOCK    MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1414
1415 static int process_cpu_clock_getres(const clockid_t which_clock,
1416                                     struct timespec *tp)
1417 {
1418         return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1419 }
1420 static int process_cpu_clock_get(const clockid_t which_clock,
1421                                  struct timespec *tp)
1422 {
1423         return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1424 }
1425 static int process_cpu_timer_create(struct k_itimer *timer)
1426 {
1427         timer->it_clock = PROCESS_CLOCK;
1428         return posix_cpu_timer_create(timer);
1429 }
1430 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1431                               struct timespec *rqtp,
1432                               struct timespec __user *rmtp)
1433 {
1434         return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1435 }
1436 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1437 {
1438         return -EINVAL;
1439 }
1440 static int thread_cpu_clock_getres(const clockid_t which_clock,
1441                                    struct timespec *tp)
1442 {
1443         return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1444 }
1445 static int thread_cpu_clock_get(const clockid_t which_clock,
1446                                 struct timespec *tp)
1447 {
1448         return posix_cpu_clock_get(THREAD_CLOCK, tp);
1449 }
1450 static int thread_cpu_timer_create(struct k_itimer *timer)
1451 {
1452         timer->it_clock = THREAD_CLOCK;
1453         return posix_cpu_timer_create(timer);
1454 }
1455
1456 struct k_clock clock_posix_cpu = {
1457         .clock_getres   = posix_cpu_clock_getres,
1458         .clock_set      = posix_cpu_clock_set,
1459         .clock_get      = posix_cpu_clock_get,
1460         .timer_create   = posix_cpu_timer_create,
1461         .nsleep         = posix_cpu_nsleep,
1462         .nsleep_restart = posix_cpu_nsleep_restart,
1463         .timer_set      = posix_cpu_timer_set,
1464         .timer_del      = posix_cpu_timer_del,
1465         .timer_get      = posix_cpu_timer_get,
1466 };
1467
1468 static __init int init_posix_cpu_timers(void)
1469 {
1470         struct k_clock process = {
1471                 .clock_getres   = process_cpu_clock_getres,
1472                 .clock_get      = process_cpu_clock_get,
1473                 .timer_create   = process_cpu_timer_create,
1474                 .nsleep         = process_cpu_nsleep,
1475                 .nsleep_restart = process_cpu_nsleep_restart,
1476         };
1477         struct k_clock thread = {
1478                 .clock_getres   = thread_cpu_clock_getres,
1479                 .clock_get      = thread_cpu_clock_get,
1480                 .timer_create   = thread_cpu_timer_create,
1481         };
1482         struct timespec ts;
1483
1484         posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1485         posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1486
1487         cputime_to_timespec(cputime_one_jiffy, &ts);
1488         onecputick = ts.tv_nsec;
1489         WARN_ON(ts.tv_sec != 0);
1490
1491         return 0;
1492 }
1493 __initcall(init_posix_cpu_timers);