Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / kernel / time / tick-broadcast.c
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
23
24 #include "tick-internal.h"
25
26 /*
27  * Broadcast support for broken x86 hardware, where the local apic
28  * timer stops in C3 state.
29  */
30
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask;
33 static cpumask_var_t tick_broadcast_on;
34 static cpumask_var_t tmpmask;
35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36 static int tick_broadcast_force;
37
38 #ifdef CONFIG_TICK_ONESHOT
39 static void tick_broadcast_clear_oneshot(int cpu);
40 #else
41 static inline void tick_broadcast_clear_oneshot(int cpu) { }
42 #endif
43
44 /*
45  * Debugging: see timer_list.c
46  */
47 struct tick_device *tick_get_broadcast_device(void)
48 {
49         return &tick_broadcast_device;
50 }
51
52 struct cpumask *tick_get_broadcast_mask(void)
53 {
54         return tick_broadcast_mask;
55 }
56
57 /*
58  * Start the device in periodic mode
59  */
60 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
61 {
62         if (bc)
63                 tick_setup_periodic(bc, 1);
64 }
65
66 /*
67  * Check, if the device can be utilized as broadcast device:
68  */
69 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
70                                         struct clock_event_device *newdev)
71 {
72         if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
73             (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
74             (newdev->features & CLOCK_EVT_FEAT_C3STOP))
75                 return false;
76
77         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
78             !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
79                 return false;
80
81         return !curdev || newdev->rating > curdev->rating;
82 }
83
84 /*
85  * Conditionally install/replace broadcast device
86  */
87 void tick_install_broadcast_device(struct clock_event_device *dev)
88 {
89         struct clock_event_device *cur = tick_broadcast_device.evtdev;
90
91         if (!tick_check_broadcast_device(cur, dev))
92                 return;
93
94         if (!try_module_get(dev->owner))
95                 return;
96
97         clockevents_exchange_device(cur, dev);
98         if (cur)
99                 cur->event_handler = clockevents_handle_noop;
100         tick_broadcast_device.evtdev = dev;
101         if (!cpumask_empty(tick_broadcast_mask))
102                 tick_broadcast_start_periodic(dev);
103         /*
104          * Inform all cpus about this. We might be in a situation
105          * where we did not switch to oneshot mode because the per cpu
106          * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
107          * of a oneshot capable broadcast device. Without that
108          * notification the systems stays stuck in periodic mode
109          * forever.
110          */
111         if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
112                 tick_clock_notify();
113 }
114
115 /*
116  * Check, if the device is the broadcast device
117  */
118 int tick_is_broadcast_device(struct clock_event_device *dev)
119 {
120         return (dev && tick_broadcast_device.evtdev == dev);
121 }
122
123 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
124 {
125         int ret = -ENODEV;
126
127         if (tick_is_broadcast_device(dev)) {
128                 raw_spin_lock(&tick_broadcast_lock);
129                 ret = __clockevents_update_freq(dev, freq);
130                 raw_spin_unlock(&tick_broadcast_lock);
131         }
132         return ret;
133 }
134
135
136 static void err_broadcast(const struct cpumask *mask)
137 {
138         pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
139 }
140
141 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
142 {
143         if (!dev->broadcast)
144                 dev->broadcast = tick_broadcast;
145         if (!dev->broadcast) {
146                 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
147                              dev->name);
148                 dev->broadcast = err_broadcast;
149         }
150 }
151
152 /*
153  * Check, if the device is disfunctional and a place holder, which
154  * needs to be handled by the broadcast device.
155  */
156 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
157 {
158         struct clock_event_device *bc = tick_broadcast_device.evtdev;
159         unsigned long flags;
160         int ret;
161
162         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
163
164         /*
165          * Devices might be registered with both periodic and oneshot
166          * mode disabled. This signals, that the device needs to be
167          * operated from the broadcast device and is a placeholder for
168          * the cpu local device.
169          */
170         if (!tick_device_is_functional(dev)) {
171                 dev->event_handler = tick_handle_periodic;
172                 tick_device_setup_broadcast_func(dev);
173                 cpumask_set_cpu(cpu, tick_broadcast_mask);
174                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
175                         tick_broadcast_start_periodic(bc);
176                 else
177                         tick_broadcast_setup_oneshot(bc);
178                 ret = 1;
179         } else {
180                 /*
181                  * Clear the broadcast bit for this cpu if the
182                  * device is not power state affected.
183                  */
184                 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
185                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
186                 else
187                         tick_device_setup_broadcast_func(dev);
188
189                 /*
190                  * Clear the broadcast bit if the CPU is not in
191                  * periodic broadcast on state.
192                  */
193                 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
194                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
195
196                 switch (tick_broadcast_device.mode) {
197                 case TICKDEV_MODE_ONESHOT:
198                         /*
199                          * If the system is in oneshot mode we can
200                          * unconditionally clear the oneshot mask bit,
201                          * because the CPU is running and therefore
202                          * not in an idle state which causes the power
203                          * state affected device to stop. Let the
204                          * caller initialize the device.
205                          */
206                         tick_broadcast_clear_oneshot(cpu);
207                         ret = 0;
208                         break;
209
210                 case TICKDEV_MODE_PERIODIC:
211                         /*
212                          * If the system is in periodic mode, check
213                          * whether the broadcast device can be
214                          * switched off now.
215                          */
216                         if (cpumask_empty(tick_broadcast_mask) && bc)
217                                 clockevents_shutdown(bc);
218                         /*
219                          * If we kept the cpu in the broadcast mask,
220                          * tell the caller to leave the per cpu device
221                          * in shutdown state. The periodic interrupt
222                          * is delivered by the broadcast device.
223                          */
224                         ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
225                         break;
226                 default:
227                         /* Nothing to do */
228                         ret = 0;
229                         break;
230                 }
231         }
232         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
233         return ret;
234 }
235
236 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
237 int tick_receive_broadcast(void)
238 {
239         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
240         struct clock_event_device *evt = td->evtdev;
241
242         if (!evt)
243                 return -ENODEV;
244
245         if (!evt->event_handler)
246                 return -EINVAL;
247
248         evt->event_handler(evt);
249         return 0;
250 }
251 #endif
252
253 /*
254  * Broadcast the event to the cpus, which are set in the mask (mangled).
255  */
256 static void tick_do_broadcast(struct cpumask *mask)
257 {
258         int cpu = smp_processor_id();
259         struct tick_device *td;
260
261         /*
262          * Check, if the current cpu is in the mask
263          */
264         if (cpumask_test_cpu(cpu, mask)) {
265                 cpumask_clear_cpu(cpu, mask);
266                 td = &per_cpu(tick_cpu_device, cpu);
267                 td->evtdev->event_handler(td->evtdev);
268         }
269
270         if (!cpumask_empty(mask)) {
271                 /*
272                  * It might be necessary to actually check whether the devices
273                  * have different broadcast functions. For now, just use the
274                  * one of the first device. This works as long as we have this
275                  * misfeature only on x86 (lapic)
276                  */
277                 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
278                 td->evtdev->broadcast(mask);
279         }
280 }
281
282 /*
283  * Periodic broadcast:
284  * - invoke the broadcast handlers
285  */
286 static void tick_do_periodic_broadcast(void)
287 {
288         cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
289         tick_do_broadcast(tmpmask);
290 }
291
292 /*
293  * Event handler for periodic broadcast ticks
294  */
295 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
296 {
297         ktime_t next;
298
299         raw_spin_lock(&tick_broadcast_lock);
300
301         tick_do_periodic_broadcast();
302
303         /*
304          * The device is in periodic mode. No reprogramming necessary:
305          */
306         if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
307                 goto unlock;
308
309         /*
310          * Setup the next period for devices, which do not have
311          * periodic mode. We read dev->next_event first and add to it
312          * when the event already expired. clockevents_program_event()
313          * sets dev->next_event only when the event is really
314          * programmed to the device.
315          */
316         for (next = dev->next_event; ;) {
317                 next = ktime_add(next, tick_period);
318
319                 if (!clockevents_program_event(dev, next, false))
320                         goto unlock;
321                 tick_do_periodic_broadcast();
322         }
323 unlock:
324         raw_spin_unlock(&tick_broadcast_lock);
325 }
326
327 /*
328  * Powerstate information: The system enters/leaves a state, where
329  * affected devices might stop
330  */
331 static void tick_do_broadcast_on_off(unsigned long *reason)
332 {
333         struct clock_event_device *bc, *dev;
334         struct tick_device *td;
335         unsigned long flags;
336         int cpu, bc_stopped;
337
338         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
339
340         cpu = smp_processor_id();
341         td = &per_cpu(tick_cpu_device, cpu);
342         dev = td->evtdev;
343         bc = tick_broadcast_device.evtdev;
344
345         /*
346          * Is the device not affected by the powerstate ?
347          */
348         if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
349                 goto out;
350
351         if (!tick_device_is_functional(dev))
352                 goto out;
353
354         bc_stopped = cpumask_empty(tick_broadcast_mask);
355
356         switch (*reason) {
357         case CLOCK_EVT_NOTIFY_BROADCAST_ON:
358         case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
359                 cpumask_set_cpu(cpu, tick_broadcast_on);
360                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
361                         if (tick_broadcast_device.mode ==
362                             TICKDEV_MODE_PERIODIC)
363                                 clockevents_shutdown(dev);
364                 }
365                 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
366                         tick_broadcast_force = 1;
367                 break;
368         case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
369                 if (tick_broadcast_force)
370                         break;
371                 cpumask_clear_cpu(cpu, tick_broadcast_on);
372                 if (!tick_device_is_functional(dev))
373                         break;
374                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
375                         if (tick_broadcast_device.mode ==
376                             TICKDEV_MODE_PERIODIC)
377                                 tick_setup_periodic(dev, 0);
378                 }
379                 break;
380         }
381
382         if (cpumask_empty(tick_broadcast_mask)) {
383                 if (!bc_stopped)
384                         clockevents_shutdown(bc);
385         } else if (bc_stopped) {
386                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
387                         tick_broadcast_start_periodic(bc);
388                 else
389                         tick_broadcast_setup_oneshot(bc);
390         }
391 out:
392         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
393 }
394
395 /*
396  * Powerstate information: The system enters/leaves a state, where
397  * affected devices might stop.
398  */
399 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
400 {
401         if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
402                 printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
403                        "offline CPU #%d\n", *oncpu);
404         else
405                 tick_do_broadcast_on_off(&reason);
406 }
407
408 /*
409  * Set the periodic handler depending on broadcast on/off
410  */
411 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
412 {
413         if (!broadcast)
414                 dev->event_handler = tick_handle_periodic;
415         else
416                 dev->event_handler = tick_handle_periodic_broadcast;
417 }
418
419 /*
420  * Remove a CPU from broadcasting
421  */
422 void tick_shutdown_broadcast(unsigned int *cpup)
423 {
424         struct clock_event_device *bc;
425         unsigned long flags;
426         unsigned int cpu = *cpup;
427
428         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
429
430         bc = tick_broadcast_device.evtdev;
431         cpumask_clear_cpu(cpu, tick_broadcast_mask);
432         cpumask_clear_cpu(cpu, tick_broadcast_on);
433
434         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
435                 if (bc && cpumask_empty(tick_broadcast_mask))
436                         clockevents_shutdown(bc);
437         }
438
439         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
440 }
441
442 void tick_suspend_broadcast(void)
443 {
444         struct clock_event_device *bc;
445         unsigned long flags;
446
447         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
448
449         bc = tick_broadcast_device.evtdev;
450         if (bc)
451                 clockevents_shutdown(bc);
452
453         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
454 }
455
456 int tick_resume_broadcast(void)
457 {
458         struct clock_event_device *bc;
459         unsigned long flags;
460         int broadcast = 0;
461
462         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
463
464         bc = tick_broadcast_device.evtdev;
465
466         if (bc) {
467                 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
468
469                 switch (tick_broadcast_device.mode) {
470                 case TICKDEV_MODE_PERIODIC:
471                         if (!cpumask_empty(tick_broadcast_mask))
472                                 tick_broadcast_start_periodic(bc);
473                         broadcast = cpumask_test_cpu(smp_processor_id(),
474                                                      tick_broadcast_mask);
475                         break;
476                 case TICKDEV_MODE_ONESHOT:
477                         if (!cpumask_empty(tick_broadcast_mask))
478                                 broadcast = tick_resume_broadcast_oneshot(bc);
479                         break;
480                 }
481         }
482         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
483
484         return broadcast;
485 }
486
487
488 #ifdef CONFIG_TICK_ONESHOT
489
490 static cpumask_var_t tick_broadcast_oneshot_mask;
491 static cpumask_var_t tick_broadcast_pending_mask;
492 static cpumask_var_t tick_broadcast_force_mask;
493
494 /*
495  * Exposed for debugging: see timer_list.c
496  */
497 struct cpumask *tick_get_broadcast_oneshot_mask(void)
498 {
499         return tick_broadcast_oneshot_mask;
500 }
501
502 /*
503  * Called before going idle with interrupts disabled. Checks whether a
504  * broadcast event from the other core is about to happen. We detected
505  * that in tick_broadcast_oneshot_control(). The callsite can use this
506  * to avoid a deep idle transition as we are about to get the
507  * broadcast IPI right away.
508  */
509 int tick_check_broadcast_expired(void)
510 {
511         return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
512 }
513
514 /*
515  * Set broadcast interrupt affinity
516  */
517 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
518                                         const struct cpumask *cpumask)
519 {
520         if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
521                 return;
522
523         if (cpumask_equal(bc->cpumask, cpumask))
524                 return;
525
526         bc->cpumask = cpumask;
527         irq_set_affinity(bc->irq, bc->cpumask);
528 }
529
530 static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
531                                     ktime_t expires, int force)
532 {
533         int ret;
534
535         if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
536                 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
537
538         ret = clockevents_program_event(bc, expires, force);
539         if (!ret)
540                 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
541         return ret;
542 }
543
544 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
545 {
546         clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
547         return 0;
548 }
549
550 /*
551  * Called from irq_enter() when idle was interrupted to reenable the
552  * per cpu device.
553  */
554 void tick_check_oneshot_broadcast_this_cpu(void)
555 {
556         if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
557                 struct tick_device *td = &__get_cpu_var(tick_cpu_device);
558
559                 /*
560                  * We might be in the middle of switching over from
561                  * periodic to oneshot. If the CPU has not yet
562                  * switched over, leave the device alone.
563                  */
564                 if (td->mode == TICKDEV_MODE_ONESHOT) {
565                         clockevents_set_mode(td->evtdev,
566                                              CLOCK_EVT_MODE_ONESHOT);
567                 }
568         }
569 }
570
571 /*
572  * Handle oneshot mode broadcasting
573  */
574 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
575 {
576         struct tick_device *td;
577         ktime_t now, next_event;
578         int cpu, next_cpu = 0;
579
580         raw_spin_lock(&tick_broadcast_lock);
581 again:
582         dev->next_event.tv64 = KTIME_MAX;
583         next_event.tv64 = KTIME_MAX;
584         cpumask_clear(tmpmask);
585         now = ktime_get();
586         /* Find all expired events */
587         for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
588                 td = &per_cpu(tick_cpu_device, cpu);
589                 if (td->evtdev->next_event.tv64 <= now.tv64) {
590                         cpumask_set_cpu(cpu, tmpmask);
591                         /*
592                          * Mark the remote cpu in the pending mask, so
593                          * it can avoid reprogramming the cpu local
594                          * timer in tick_broadcast_oneshot_control().
595                          */
596                         cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
597                 } else if (td->evtdev->next_event.tv64 < next_event.tv64) {
598                         next_event.tv64 = td->evtdev->next_event.tv64;
599                         next_cpu = cpu;
600                 }
601         }
602
603         /*
604          * Remove the current cpu from the pending mask. The event is
605          * delivered immediately in tick_do_broadcast() !
606          */
607         cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
608
609         /* Take care of enforced broadcast requests */
610         cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
611         cpumask_clear(tick_broadcast_force_mask);
612
613         /*
614          * Sanity check. Catch the case where we try to broadcast to
615          * offline cpus.
616          */
617         if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
618                 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
619
620         /*
621          * Wakeup the cpus which have an expired event.
622          */
623         tick_do_broadcast(tmpmask);
624
625         /*
626          * Two reasons for reprogram:
627          *
628          * - The global event did not expire any CPU local
629          * events. This happens in dyntick mode, as the maximum PIT
630          * delta is quite small.
631          *
632          * - There are pending events on sleeping CPUs which were not
633          * in the event mask
634          */
635         if (next_event.tv64 != KTIME_MAX) {
636                 /*
637                  * Rearm the broadcast device. If event expired,
638                  * repeat the above
639                  */
640                 if (tick_broadcast_set_event(dev, next_cpu, next_event, 0))
641                         goto again;
642         }
643         raw_spin_unlock(&tick_broadcast_lock);
644 }
645
646 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
647 {
648         if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
649                 return 0;
650         if (bc->next_event.tv64 == KTIME_MAX)
651                 return 0;
652         return bc->bound_on == cpu ? -EBUSY : 0;
653 }
654
655 static void broadcast_shutdown_local(struct clock_event_device *bc,
656                                      struct clock_event_device *dev)
657 {
658         /*
659          * For hrtimer based broadcasting we cannot shutdown the cpu
660          * local device if our own event is the first one to expire or
661          * if we own the broadcast timer.
662          */
663         if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
664                 if (broadcast_needs_cpu(bc, smp_processor_id()))
665                         return;
666                 if (dev->next_event.tv64 < bc->next_event.tv64)
667                         return;
668         }
669         clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
670 }
671
672 static void broadcast_move_bc(int deadcpu)
673 {
674         struct clock_event_device *bc = tick_broadcast_device.evtdev;
675
676         if (!bc || !broadcast_needs_cpu(bc, deadcpu))
677                 return;
678         /* This moves the broadcast assignment to this cpu */
679         clockevents_program_event(bc, bc->next_event, 1);
680 }
681
682 /*
683  * Powerstate information: The system enters/leaves a state, where
684  * affected devices might stop
685  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
686  */
687 int tick_broadcast_oneshot_control(unsigned long reason)
688 {
689         struct clock_event_device *bc, *dev;
690         struct tick_device *td;
691         unsigned long flags;
692         ktime_t now;
693         int cpu, ret = 0;
694
695         /*
696          * Periodic mode does not care about the enter/exit of power
697          * states
698          */
699         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
700                 return 0;
701
702         /*
703          * We are called with preemtion disabled from the depth of the
704          * idle code, so we can't be moved away.
705          */
706         cpu = smp_processor_id();
707         td = &per_cpu(tick_cpu_device, cpu);
708         dev = td->evtdev;
709
710         if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
711                 return 0;
712
713         bc = tick_broadcast_device.evtdev;
714
715         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
716         if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
717                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
718                         WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
719                         broadcast_shutdown_local(bc, dev);
720                         /*
721                          * We only reprogram the broadcast timer if we
722                          * did not mark ourself in the force mask and
723                          * if the cpu local event is earlier than the
724                          * broadcast event. If the current CPU is in
725                          * the force mask, then we are going to be
726                          * woken by the IPI right away.
727                          */
728                         if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
729                             dev->next_event.tv64 < bc->next_event.tv64)
730                                 tick_broadcast_set_event(bc, cpu, dev->next_event, 1);
731                 }
732                 /*
733                  * If the current CPU owns the hrtimer broadcast
734                  * mechanism, it cannot go deep idle and we remove the
735                  * CPU from the broadcast mask. We don't have to go
736                  * through the EXIT path as the local timer is not
737                  * shutdown.
738                  */
739                 ret = broadcast_needs_cpu(bc, cpu);
740                 if (ret)
741                         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
742         } else {
743                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
744                         clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
745                         /*
746                          * The cpu which was handling the broadcast
747                          * timer marked this cpu in the broadcast
748                          * pending mask and fired the broadcast
749                          * IPI. So we are going to handle the expired
750                          * event anyway via the broadcast IPI
751                          * handler. No need to reprogram the timer
752                          * with an already expired event.
753                          */
754                         if (cpumask_test_and_clear_cpu(cpu,
755                                        tick_broadcast_pending_mask))
756                                 goto out;
757
758                         /*
759                          * Bail out if there is no next event.
760                          */
761                         if (dev->next_event.tv64 == KTIME_MAX)
762                                 goto out;
763                         /*
764                          * If the pending bit is not set, then we are
765                          * either the CPU handling the broadcast
766                          * interrupt or we got woken by something else.
767                          *
768                          * We are not longer in the broadcast mask, so
769                          * if the cpu local expiry time is already
770                          * reached, we would reprogram the cpu local
771                          * timer with an already expired event.
772                          *
773                          * This can lead to a ping-pong when we return
774                          * to idle and therefor rearm the broadcast
775                          * timer before the cpu local timer was able
776                          * to fire. This happens because the forced
777                          * reprogramming makes sure that the event
778                          * will happen in the future and depending on
779                          * the min_delta setting this might be far
780                          * enough out that the ping-pong starts.
781                          *
782                          * If the cpu local next_event has expired
783                          * then we know that the broadcast timer
784                          * next_event has expired as well and
785                          * broadcast is about to be handled. So we
786                          * avoid reprogramming and enforce that the
787                          * broadcast handler, which did not run yet,
788                          * will invoke the cpu local handler.
789                          *
790                          * We cannot call the handler directly from
791                          * here, because we might be in a NOHZ phase
792                          * and we did not go through the irq_enter()
793                          * nohz fixups.
794                          */
795                         now = ktime_get();
796                         if (dev->next_event.tv64 <= now.tv64) {
797                                 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
798                                 goto out;
799                         }
800                         /*
801                          * We got woken by something else. Reprogram
802                          * the cpu local timer device.
803                          */
804                         tick_program_event(dev->next_event, 1);
805                 }
806         }
807 out:
808         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
809         return ret;
810 }
811
812 /*
813  * Reset the one shot broadcast for a cpu
814  *
815  * Called with tick_broadcast_lock held
816  */
817 static void tick_broadcast_clear_oneshot(int cpu)
818 {
819         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
820         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
821 }
822
823 static void tick_broadcast_init_next_event(struct cpumask *mask,
824                                            ktime_t expires)
825 {
826         struct tick_device *td;
827         int cpu;
828
829         for_each_cpu(cpu, mask) {
830                 td = &per_cpu(tick_cpu_device, cpu);
831                 if (td->evtdev)
832                         td->evtdev->next_event = expires;
833         }
834 }
835
836 /**
837  * tick_broadcast_setup_oneshot - setup the broadcast device
838  */
839 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
840 {
841         int cpu = smp_processor_id();
842
843         /* Set it up only once ! */
844         if (bc->event_handler != tick_handle_oneshot_broadcast) {
845                 int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
846
847                 bc->event_handler = tick_handle_oneshot_broadcast;
848
849                 /*
850                  * We must be careful here. There might be other CPUs
851                  * waiting for periodic broadcast. We need to set the
852                  * oneshot_mask bits for those and program the
853                  * broadcast device to fire.
854                  */
855                 cpumask_copy(tmpmask, tick_broadcast_mask);
856                 cpumask_clear_cpu(cpu, tmpmask);
857                 cpumask_or(tick_broadcast_oneshot_mask,
858                            tick_broadcast_oneshot_mask, tmpmask);
859
860                 if (was_periodic && !cpumask_empty(tmpmask)) {
861                         clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
862                         tick_broadcast_init_next_event(tmpmask,
863                                                        tick_next_period);
864                         tick_broadcast_set_event(bc, cpu, tick_next_period, 1);
865                 } else
866                         bc->next_event.tv64 = KTIME_MAX;
867         } else {
868                 /*
869                  * The first cpu which switches to oneshot mode sets
870                  * the bit for all other cpus which are in the general
871                  * (periodic) broadcast mask. So the bit is set and
872                  * would prevent the first broadcast enter after this
873                  * to program the bc device.
874                  */
875                 tick_broadcast_clear_oneshot(cpu);
876         }
877 }
878
879 /*
880  * Select oneshot operating mode for the broadcast device
881  */
882 void tick_broadcast_switch_to_oneshot(void)
883 {
884         struct clock_event_device *bc;
885         unsigned long flags;
886
887         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
888
889         tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
890         bc = tick_broadcast_device.evtdev;
891         if (bc)
892                 tick_broadcast_setup_oneshot(bc);
893
894         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
895 }
896
897
898 /*
899  * Remove a dead CPU from broadcasting
900  */
901 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
902 {
903         unsigned long flags;
904         unsigned int cpu = *cpup;
905
906         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
907
908         /*
909          * Clear the broadcast masks for the dead cpu, but do not stop
910          * the broadcast device!
911          */
912         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
913         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
914         cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
915
916         broadcast_move_bc(cpu);
917
918         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
919 }
920
921 /*
922  * Check, whether the broadcast device is in one shot mode
923  */
924 int tick_broadcast_oneshot_active(void)
925 {
926         return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
927 }
928
929 /*
930  * Check whether the broadcast device supports oneshot.
931  */
932 bool tick_broadcast_oneshot_available(void)
933 {
934         struct clock_event_device *bc = tick_broadcast_device.evtdev;
935
936         return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
937 }
938
939 #endif
940
941 void __init tick_broadcast_init(void)
942 {
943         zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
944         zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
945         zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
946 #ifdef CONFIG_TICK_ONESHOT
947         zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
948         zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
949         zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
950 #endif
951 }