x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / kernel / time / time.c
1 /*
2  *  linux/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  This file contains the interface functions for the various
7  *  time related system calls: time, stime, gettimeofday, settimeofday,
8  *                             adjtime
9  */
10 /*
11  * Modification history kernel/time.c
12  *
13  * 1993-09-02    Philip Gladstone
14  *      Created file with time related functions from sched/core.c and adjtimex()
15  * 1993-10-08    Torsten Duwe
16  *      adjtime interface update and CMOS clock write code
17  * 1995-08-13    Torsten Duwe
18  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
19  * 1999-01-16    Ulrich Windl
20  *      Introduced error checking for many cases in adjtimex().
21  *      Updated NTP code according to technical memorandum Jan '96
22  *      "A Kernel Model for Precision Timekeeping" by Dave Mills
23  *      Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24  *      (Even though the technical memorandum forbids it)
25  * 2004-07-14    Christoph Lameter
26  *      Added getnstimeofday to allow the posix timer functions to return
27  *      with nanosecond accuracy
28  */
29
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43
44 #include <generated/timeconst.h>
45 #include "timekeeping.h"
46
47 /*
48  * The timezone where the local system is located.  Used as a default by some
49  * programs who obtain this value by using gettimeofday.
50  */
51 struct timezone sys_tz;
52
53 EXPORT_SYMBOL(sys_tz);
54
55 #ifdef __ARCH_WANT_SYS_TIME
56
57 /*
58  * sys_time() can be implemented in user-level using
59  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
60  * why not move it into the appropriate arch directory (for those
61  * architectures that need it).
62  */
63 SYSCALL_DEFINE1(time, time_t __user *, tloc)
64 {
65         time_t i = get_seconds();
66
67         if (tloc) {
68                 if (put_user(i,tloc))
69                         return -EFAULT;
70         }
71         force_successful_syscall_return();
72         return i;
73 }
74
75 /*
76  * sys_stime() can be implemented in user-level using
77  * sys_settimeofday().  Is this for backwards compatibility?  If so,
78  * why not move it into the appropriate arch directory (for those
79  * architectures that need it).
80  */
81
82 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
83 {
84         struct timespec tv;
85         int err;
86
87         if (get_user(tv.tv_sec, tptr))
88                 return -EFAULT;
89
90         tv.tv_nsec = 0;
91
92         err = security_settime(&tv, NULL);
93         if (err)
94                 return err;
95
96         do_settimeofday(&tv);
97         return 0;
98 }
99
100 #endif /* __ARCH_WANT_SYS_TIME */
101
102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103                 struct timezone __user *, tz)
104 {
105         if (likely(tv != NULL)) {
106                 struct timeval ktv;
107                 do_gettimeofday(&ktv);
108                 if (copy_to_user(tv, &ktv, sizeof(ktv)))
109                         return -EFAULT;
110         }
111         if (unlikely(tz != NULL)) {
112                 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113                         return -EFAULT;
114         }
115         return 0;
116 }
117
118 /*
119  * Indicates if there is an offset between the system clock and the hardware
120  * clock/persistent clock/rtc.
121  */
122 int persistent_clock_is_local;
123
124 /*
125  * Adjust the time obtained from the CMOS to be UTC time instead of
126  * local time.
127  *
128  * This is ugly, but preferable to the alternatives.  Otherwise we
129  * would either need to write a program to do it in /etc/rc (and risk
130  * confusion if the program gets run more than once; it would also be
131  * hard to make the program warp the clock precisely n hours)  or
132  * compile in the timezone information into the kernel.  Bad, bad....
133  *
134  *                                              - TYT, 1992-01-01
135  *
136  * The best thing to do is to keep the CMOS clock in universal time (UTC)
137  * as real UNIX machines always do it. This avoids all headaches about
138  * daylight saving times and warping kernel clocks.
139  */
140 static inline void warp_clock(void)
141 {
142         if (sys_tz.tz_minuteswest != 0) {
143                 struct timespec adjust;
144
145                 persistent_clock_is_local = 1;
146                 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147                 adjust.tv_nsec = 0;
148                 timekeeping_inject_offset(&adjust);
149         }
150 }
151
152 /*
153  * In case for some reason the CMOS clock has not already been running
154  * in UTC, but in some local time: The first time we set the timezone,
155  * we will warp the clock so that it is ticking UTC time instead of
156  * local time. Presumably, if someone is setting the timezone then we
157  * are running in an environment where the programs understand about
158  * timezones. This should be done at boot time in the /etc/rc script,
159  * as soon as possible, so that the clock can be set right. Otherwise,
160  * various programs will get confused when the clock gets warped.
161  */
162
163 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
164 {
165         static int firsttime = 1;
166         int error = 0;
167
168         if (tv && !timespec64_valid(tv))
169                 return -EINVAL;
170
171         error = security_settime64(tv, tz);
172         if (error)
173                 return error;
174
175         if (tz) {
176                 /* Verify we're witin the +-15 hrs range */
177                 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
178                         return -EINVAL;
179
180                 sys_tz = *tz;
181                 update_vsyscall_tz();
182                 if (firsttime) {
183                         firsttime = 0;
184                         if (!tv)
185                                 warp_clock();
186                 }
187         }
188         if (tv)
189                 return do_settimeofday64(tv);
190         return 0;
191 }
192
193 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
194                 struct timezone __user *, tz)
195 {
196         struct timeval user_tv;
197         struct timespec new_ts;
198         struct timezone new_tz;
199
200         if (tv) {
201                 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
202                         return -EFAULT;
203
204                 if (!timeval_valid(&user_tv))
205                         return -EINVAL;
206
207                 new_ts.tv_sec = user_tv.tv_sec;
208                 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
209         }
210         if (tz) {
211                 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
212                         return -EFAULT;
213         }
214
215         return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
216 }
217
218 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
219 {
220         struct timex txc;               /* Local copy of parameter */
221         int ret;
222
223         /* Copy the user data space into the kernel copy
224          * structure. But bear in mind that the structures
225          * may change
226          */
227         if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
228                 return -EFAULT;
229         ret = do_adjtimex(&txc);
230         return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
231 }
232
233 /**
234  * current_fs_time - Return FS time
235  * @sb: Superblock.
236  *
237  * Return the current time truncated to the time granularity supported by
238  * the fs.
239  */
240 struct timespec current_fs_time(struct super_block *sb)
241 {
242         struct timespec now = current_kernel_time();
243         return timespec_trunc(now, sb->s_time_gran);
244 }
245 EXPORT_SYMBOL(current_fs_time);
246
247 /*
248  * Convert jiffies to milliseconds and back.
249  *
250  * Avoid unnecessary multiplications/divisions in the
251  * two most common HZ cases:
252  */
253 unsigned int jiffies_to_msecs(const unsigned long j)
254 {
255 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
256         return (MSEC_PER_SEC / HZ) * j;
257 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
258         return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
259 #else
260 # if BITS_PER_LONG == 32
261         return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
262 # else
263         return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
264 # endif
265 #endif
266 }
267 EXPORT_SYMBOL(jiffies_to_msecs);
268
269 unsigned int jiffies_to_usecs(const unsigned long j)
270 {
271         /*
272          * Hz usually doesn't go much further MSEC_PER_SEC.
273          * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
274          */
275         BUILD_BUG_ON(HZ > USEC_PER_SEC);
276
277 #if !(USEC_PER_SEC % HZ)
278         return (USEC_PER_SEC / HZ) * j;
279 #else
280 # if BITS_PER_LONG == 32
281         return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
282 # else
283         return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
284 # endif
285 #endif
286 }
287 EXPORT_SYMBOL(jiffies_to_usecs);
288
289 /**
290  * timespec_trunc - Truncate timespec to a granularity
291  * @t: Timespec
292  * @gran: Granularity in ns.
293  *
294  * Truncate a timespec to a granularity. Always rounds down. gran must
295  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
296  */
297 struct timespec timespec_trunc(struct timespec t, unsigned gran)
298 {
299         /* Avoid division in the common cases 1 ns and 1 s. */
300         if (gran == 1) {
301                 /* nothing */
302         } else if (gran == NSEC_PER_SEC) {
303                 t.tv_nsec = 0;
304         } else if (gran > 1 && gran < NSEC_PER_SEC) {
305                 t.tv_nsec -= t.tv_nsec % gran;
306         } else {
307                 WARN(1, "illegal file time granularity: %u", gran);
308         }
309         return t;
310 }
311 EXPORT_SYMBOL(timespec_trunc);
312
313 /*
314  * mktime64 - Converts date to seconds.
315  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
316  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
317  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
318  *
319  * [For the Julian calendar (which was used in Russia before 1917,
320  * Britain & colonies before 1752, anywhere else before 1582,
321  * and is still in use by some communities) leave out the
322  * -year/100+year/400 terms, and add 10.]
323  *
324  * This algorithm was first published by Gauss (I think).
325  *
326  * A leap second can be indicated by calling this function with sec as
327  * 60 (allowable under ISO 8601).  The leap second is treated the same
328  * as the following second since they don't exist in UNIX time.
329  *
330  * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
331  * tomorrow - (allowable under ISO 8601) is supported.
332  */
333 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
334                 const unsigned int day, const unsigned int hour,
335                 const unsigned int min, const unsigned int sec)
336 {
337         unsigned int mon = mon0, year = year0;
338
339         /* 1..12 -> 11,12,1..10 */
340         if (0 >= (int) (mon -= 2)) {
341                 mon += 12;      /* Puts Feb last since it has leap day */
342                 year -= 1;
343         }
344
345         return ((((time64_t)
346                   (year/4 - year/100 + year/400 + 367*mon/12 + day) +
347                   year*365 - 719499
348             )*24 + hour /* now have hours - midnight tomorrow handled here */
349           )*60 + min /* now have minutes */
350         )*60 + sec; /* finally seconds */
351 }
352 EXPORT_SYMBOL(mktime64);
353
354 /**
355  * set_normalized_timespec - set timespec sec and nsec parts and normalize
356  *
357  * @ts:         pointer to timespec variable to be set
358  * @sec:        seconds to set
359  * @nsec:       nanoseconds to set
360  *
361  * Set seconds and nanoseconds field of a timespec variable and
362  * normalize to the timespec storage format
363  *
364  * Note: The tv_nsec part is always in the range of
365  *      0 <= tv_nsec < NSEC_PER_SEC
366  * For negative values only the tv_sec field is negative !
367  */
368 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
369 {
370         while (nsec >= NSEC_PER_SEC) {
371                 /*
372                  * The following asm() prevents the compiler from
373                  * optimising this loop into a modulo operation. See
374                  * also __iter_div_u64_rem() in include/linux/time.h
375                  */
376                 asm("" : "+rm"(nsec));
377                 nsec -= NSEC_PER_SEC;
378                 ++sec;
379         }
380         while (nsec < 0) {
381                 asm("" : "+rm"(nsec));
382                 nsec += NSEC_PER_SEC;
383                 --sec;
384         }
385         ts->tv_sec = sec;
386         ts->tv_nsec = nsec;
387 }
388 EXPORT_SYMBOL(set_normalized_timespec);
389
390 /**
391  * ns_to_timespec - Convert nanoseconds to timespec
392  * @nsec:       the nanoseconds value to be converted
393  *
394  * Returns the timespec representation of the nsec parameter.
395  */
396 struct timespec ns_to_timespec(const s64 nsec)
397 {
398         struct timespec ts;
399         s32 rem;
400
401         if (!nsec)
402                 return (struct timespec) {0, 0};
403
404         ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
405         if (unlikely(rem < 0)) {
406                 ts.tv_sec--;
407                 rem += NSEC_PER_SEC;
408         }
409         ts.tv_nsec = rem;
410
411         return ts;
412 }
413 EXPORT_SYMBOL(ns_to_timespec);
414
415 /**
416  * ns_to_timeval - Convert nanoseconds to timeval
417  * @nsec:       the nanoseconds value to be converted
418  *
419  * Returns the timeval representation of the nsec parameter.
420  */
421 struct timeval ns_to_timeval(const s64 nsec)
422 {
423         struct timespec ts = ns_to_timespec(nsec);
424         struct timeval tv;
425
426         tv.tv_sec = ts.tv_sec;
427         tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
428
429         return tv;
430 }
431 EXPORT_SYMBOL(ns_to_timeval);
432
433 #if BITS_PER_LONG == 32
434 /**
435  * set_normalized_timespec - set timespec sec and nsec parts and normalize
436  *
437  * @ts:         pointer to timespec variable to be set
438  * @sec:        seconds to set
439  * @nsec:       nanoseconds to set
440  *
441  * Set seconds and nanoseconds field of a timespec variable and
442  * normalize to the timespec storage format
443  *
444  * Note: The tv_nsec part is always in the range of
445  *      0 <= tv_nsec < NSEC_PER_SEC
446  * For negative values only the tv_sec field is negative !
447  */
448 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
449 {
450         while (nsec >= NSEC_PER_SEC) {
451                 /*
452                  * The following asm() prevents the compiler from
453                  * optimising this loop into a modulo operation. See
454                  * also __iter_div_u64_rem() in include/linux/time.h
455                  */
456                 asm("" : "+rm"(nsec));
457                 nsec -= NSEC_PER_SEC;
458                 ++sec;
459         }
460         while (nsec < 0) {
461                 asm("" : "+rm"(nsec));
462                 nsec += NSEC_PER_SEC;
463                 --sec;
464         }
465         ts->tv_sec = sec;
466         ts->tv_nsec = nsec;
467 }
468 EXPORT_SYMBOL(set_normalized_timespec64);
469
470 /**
471  * ns_to_timespec64 - Convert nanoseconds to timespec64
472  * @nsec:       the nanoseconds value to be converted
473  *
474  * Returns the timespec64 representation of the nsec parameter.
475  */
476 struct timespec64 ns_to_timespec64(const s64 nsec)
477 {
478         struct timespec64 ts;
479         s32 rem;
480
481         if (!nsec)
482                 return (struct timespec64) {0, 0};
483
484         ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
485         if (unlikely(rem < 0)) {
486                 ts.tv_sec--;
487                 rem += NSEC_PER_SEC;
488         }
489         ts.tv_nsec = rem;
490
491         return ts;
492 }
493 EXPORT_SYMBOL(ns_to_timespec64);
494 #endif
495 /**
496  * msecs_to_jiffies: - convert milliseconds to jiffies
497  * @m:  time in milliseconds
498  *
499  * conversion is done as follows:
500  *
501  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
502  *
503  * - 'too large' values [that would result in larger than
504  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
505  *
506  * - all other values are converted to jiffies by either multiplying
507  *   the input value by a factor or dividing it with a factor and
508  *   handling any 32-bit overflows.
509  *   for the details see __msecs_to_jiffies()
510  *
511  * msecs_to_jiffies() checks for the passed in value being a constant
512  * via __builtin_constant_p() allowing gcc to eliminate most of the
513  * code, __msecs_to_jiffies() is called if the value passed does not
514  * allow constant folding and the actual conversion must be done at
515  * runtime.
516  * the _msecs_to_jiffies helpers are the HZ dependent conversion
517  * routines found in include/linux/jiffies.h
518  */
519 unsigned long __msecs_to_jiffies(const unsigned int m)
520 {
521         /*
522          * Negative value, means infinite timeout:
523          */
524         if ((int)m < 0)
525                 return MAX_JIFFY_OFFSET;
526         return _msecs_to_jiffies(m);
527 }
528 EXPORT_SYMBOL(__msecs_to_jiffies);
529
530 unsigned long __usecs_to_jiffies(const unsigned int u)
531 {
532         if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
533                 return MAX_JIFFY_OFFSET;
534         return _usecs_to_jiffies(u);
535 }
536 EXPORT_SYMBOL(__usecs_to_jiffies);
537
538 /*
539  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
540  * that a remainder subtract here would not do the right thing as the
541  * resolution values don't fall on second boundries.  I.e. the line:
542  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
543  * Note that due to the small error in the multiplier here, this
544  * rounding is incorrect for sufficiently large values of tv_nsec, but
545  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
546  * OK.
547  *
548  * Rather, we just shift the bits off the right.
549  *
550  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
551  * value to a scaled second value.
552  */
553 static unsigned long
554 __timespec64_to_jiffies(u64 sec, long nsec)
555 {
556         nsec = nsec + TICK_NSEC - 1;
557
558         if (sec >= MAX_SEC_IN_JIFFIES){
559                 sec = MAX_SEC_IN_JIFFIES;
560                 nsec = 0;
561         }
562         return ((sec * SEC_CONVERSION) +
563                 (((u64)nsec * NSEC_CONVERSION) >>
564                  (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
565
566 }
567
568 static unsigned long
569 __timespec_to_jiffies(unsigned long sec, long nsec)
570 {
571         return __timespec64_to_jiffies((u64)sec, nsec);
572 }
573
574 unsigned long
575 timespec64_to_jiffies(const struct timespec64 *value)
576 {
577         return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
578 }
579 EXPORT_SYMBOL(timespec64_to_jiffies);
580
581 void
582 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
583 {
584         /*
585          * Convert jiffies to nanoseconds and separate with
586          * one divide.
587          */
588         u32 rem;
589         value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
590                                     NSEC_PER_SEC, &rem);
591         value->tv_nsec = rem;
592 }
593 EXPORT_SYMBOL(jiffies_to_timespec64);
594
595 /*
596  * We could use a similar algorithm to timespec_to_jiffies (with a
597  * different multiplier for usec instead of nsec). But this has a
598  * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
599  * usec value, since it's not necessarily integral.
600  *
601  * We could instead round in the intermediate scaled representation
602  * (i.e. in units of 1/2^(large scale) jiffies) but that's also
603  * perilous: the scaling introduces a small positive error, which
604  * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
605  * units to the intermediate before shifting) leads to accidental
606  * overflow and overestimates.
607  *
608  * At the cost of one additional multiplication by a constant, just
609  * use the timespec implementation.
610  */
611 unsigned long
612 timeval_to_jiffies(const struct timeval *value)
613 {
614         return __timespec_to_jiffies(value->tv_sec,
615                                      value->tv_usec * NSEC_PER_USEC);
616 }
617 EXPORT_SYMBOL(timeval_to_jiffies);
618
619 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
620 {
621         /*
622          * Convert jiffies to nanoseconds and separate with
623          * one divide.
624          */
625         u32 rem;
626
627         value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
628                                     NSEC_PER_SEC, &rem);
629         value->tv_usec = rem / NSEC_PER_USEC;
630 }
631 EXPORT_SYMBOL(jiffies_to_timeval);
632
633 /*
634  * Convert jiffies/jiffies_64 to clock_t and back.
635  */
636 clock_t jiffies_to_clock_t(unsigned long x)
637 {
638 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
639 # if HZ < USER_HZ
640         return x * (USER_HZ / HZ);
641 # else
642         return x / (HZ / USER_HZ);
643 # endif
644 #else
645         return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
646 #endif
647 }
648 EXPORT_SYMBOL(jiffies_to_clock_t);
649
650 unsigned long clock_t_to_jiffies(unsigned long x)
651 {
652 #if (HZ % USER_HZ)==0
653         if (x >= ~0UL / (HZ / USER_HZ))
654                 return ~0UL;
655         return x * (HZ / USER_HZ);
656 #else
657         /* Don't worry about loss of precision here .. */
658         if (x >= ~0UL / HZ * USER_HZ)
659                 return ~0UL;
660
661         /* .. but do try to contain it here */
662         return div_u64((u64)x * HZ, USER_HZ);
663 #endif
664 }
665 EXPORT_SYMBOL(clock_t_to_jiffies);
666
667 u64 jiffies_64_to_clock_t(u64 x)
668 {
669 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
670 # if HZ < USER_HZ
671         x = div_u64(x * USER_HZ, HZ);
672 # elif HZ > USER_HZ
673         x = div_u64(x, HZ / USER_HZ);
674 # else
675         /* Nothing to do */
676 # endif
677 #else
678         /*
679          * There are better ways that don't overflow early,
680          * but even this doesn't overflow in hundreds of years
681          * in 64 bits, so..
682          */
683         x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
684 #endif
685         return x;
686 }
687 EXPORT_SYMBOL(jiffies_64_to_clock_t);
688
689 u64 nsec_to_clock_t(u64 x)
690 {
691 #if (NSEC_PER_SEC % USER_HZ) == 0
692         return div_u64(x, NSEC_PER_SEC / USER_HZ);
693 #elif (USER_HZ % 512) == 0
694         return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
695 #else
696         /*
697          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
698          * overflow after 64.99 years.
699          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
700          */
701         return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
702 #endif
703 }
704
705 /**
706  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
707  *
708  * @n:  nsecs in u64
709  *
710  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
711  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
712  * for scheduler, not for use in device drivers to calculate timeout value.
713  *
714  * note:
715  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
716  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
717  */
718 u64 nsecs_to_jiffies64(u64 n)
719 {
720 #if (NSEC_PER_SEC % HZ) == 0
721         /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
722         return div_u64(n, NSEC_PER_SEC / HZ);
723 #elif (HZ % 512) == 0
724         /* overflow after 292 years if HZ = 1024 */
725         return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
726 #else
727         /*
728          * Generic case - optimized for cases where HZ is a multiple of 3.
729          * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
730          */
731         return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
732 #endif
733 }
734 EXPORT_SYMBOL(nsecs_to_jiffies64);
735
736 /**
737  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
738  *
739  * @n:  nsecs in u64
740  *
741  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
742  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
743  * for scheduler, not for use in device drivers to calculate timeout value.
744  *
745  * note:
746  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
747  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
748  */
749 unsigned long nsecs_to_jiffies(u64 n)
750 {
751         return (unsigned long)nsecs_to_jiffies64(n);
752 }
753 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
754
755 /*
756  * Add two timespec values and do a safety check for overflow.
757  * It's assumed that both values are valid (>= 0)
758  */
759 struct timespec timespec_add_safe(const struct timespec lhs,
760                                   const struct timespec rhs)
761 {
762         struct timespec res;
763
764         set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
765                                 lhs.tv_nsec + rhs.tv_nsec);
766
767         if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
768                 res.tv_sec = TIME_T_MAX;
769
770         return res;
771 }
772
773 /*
774  * Add two timespec64 values and do a safety check for overflow.
775  * It's assumed that both values are valid (>= 0).
776  * And, each timespec64 is in normalized form.
777  */
778 struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
779                                 const struct timespec64 rhs)
780 {
781         struct timespec64 res;
782
783         set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
784                         lhs.tv_nsec + rhs.tv_nsec);
785
786         if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
787                 res.tv_sec = TIME64_MAX;
788                 res.tv_nsec = 0;
789         }
790
791         return res;
792 }