timekeeping: Try to catch clocksource delta underflows
[cascardo/linux.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP            (1 << 0)
32 #define TK_MIRROR               (1 << 1)
33 #define TK_CLOCK_WAS_SET        (1 << 2)
34
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40         seqcount_t              seq;
41         struct timekeeper       timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:        Sequence counter for protecting updates. The lowest bit
50  *              is the index for the tk_read_base array
51  * @base:       tk_read_base array. Access is indexed by the lowest bit of
52  *              @seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57         seqcount_t              seq;
58         struct tk_read_base     base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62
63 /* flag for if timekeeping is suspended */
64 int __read_mostly timekeeping_suspended;
65
66 /* Flag for if there is a persistent clock on this platform */
67 bool __read_mostly persistent_clock_exist = false;
68
69 static inline void tk_normalize_xtime(struct timekeeper *tk)
70 {
71         while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
72                 tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73                 tk->xtime_sec++;
74         }
75 }
76
77 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78 {
79         struct timespec64 ts;
80
81         ts.tv_sec = tk->xtime_sec;
82         ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83         return ts;
84 }
85
86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 {
88         tk->xtime_sec = ts->tv_sec;
89         tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 }
91
92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 {
94         tk->xtime_sec += ts->tv_sec;
95         tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96         tk_normalize_xtime(tk);
97 }
98
99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100 {
101         struct timespec64 tmp;
102
103         /*
104          * Verify consistency of: offset_real = -wall_to_monotonic
105          * before modifying anything
106          */
107         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108                                         -tk->wall_to_monotonic.tv_nsec);
109         WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110         tk->wall_to_monotonic = wtm;
111         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112         tk->offs_real = timespec64_to_ktime(tmp);
113         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 }
115
116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117 {
118         tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 }
120
121 #ifdef CONFIG_DEBUG_TIMEKEEPING
122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123 {
124
125         cycle_t max_cycles = tk->tkr.clock->max_cycles;
126         const char *name = tk->tkr.clock->name;
127
128         if (offset > max_cycles) {
129                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130                                 offset, name, max_cycles);
131                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132         } else {
133                 if (offset > (max_cycles >> 1)) {
134                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
135                                         offset, name, max_cycles >> 1);
136                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137                 }
138         }
139 }
140
141 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
142 {
143         cycle_t cycle_now, delta;
144
145         /* read clocksource */
146         cycle_now = tkr->read(tkr->clock);
147
148         /* calculate the delta since the last update_wall_time */
149         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
150
151         /*
152          * Try to catch underflows by checking if we are seeing small
153          * mask-relative negative values.
154          */
155         if (unlikely((~delta & tkr->mask) < (tkr->mask >> 3)))
156                 delta = 0;
157
158         /* Cap delta value to the max_cycles values to avoid mult overflows */
159         if (unlikely(delta > tkr->clock->max_cycles))
160                 delta = tkr->clock->max_cycles;
161
162         return delta;
163 }
164 #else
165 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
166 {
167 }
168 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
169 {
170         cycle_t cycle_now, delta;
171
172         /* read clocksource */
173         cycle_now = tkr->read(tkr->clock);
174
175         /* calculate the delta since the last update_wall_time */
176         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
177
178         return delta;
179 }
180 #endif
181
182 /**
183  * tk_setup_internals - Set up internals to use clocksource clock.
184  *
185  * @tk:         The target timekeeper to setup.
186  * @clock:              Pointer to clocksource.
187  *
188  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
189  * pair and interval request.
190  *
191  * Unless you're the timekeeping code, you should not be using this!
192  */
193 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
194 {
195         cycle_t interval;
196         u64 tmp, ntpinterval;
197         struct clocksource *old_clock;
198
199         old_clock = tk->tkr.clock;
200         tk->tkr.clock = clock;
201         tk->tkr.read = clock->read;
202         tk->tkr.mask = clock->mask;
203         tk->tkr.cycle_last = tk->tkr.read(clock);
204
205         /* Do the ns -> cycle conversion first, using original mult */
206         tmp = NTP_INTERVAL_LENGTH;
207         tmp <<= clock->shift;
208         ntpinterval = tmp;
209         tmp += clock->mult/2;
210         do_div(tmp, clock->mult);
211         if (tmp == 0)
212                 tmp = 1;
213
214         interval = (cycle_t) tmp;
215         tk->cycle_interval = interval;
216
217         /* Go back from cycles -> shifted ns */
218         tk->xtime_interval = (u64) interval * clock->mult;
219         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
220         tk->raw_interval =
221                 ((u64) interval * clock->mult) >> clock->shift;
222
223          /* if changing clocks, convert xtime_nsec shift units */
224         if (old_clock) {
225                 int shift_change = clock->shift - old_clock->shift;
226                 if (shift_change < 0)
227                         tk->tkr.xtime_nsec >>= -shift_change;
228                 else
229                         tk->tkr.xtime_nsec <<= shift_change;
230         }
231         tk->tkr.shift = clock->shift;
232
233         tk->ntp_error = 0;
234         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
235         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
236
237         /*
238          * The timekeeper keeps its own mult values for the currently
239          * active clocksource. These value will be adjusted via NTP
240          * to counteract clock drifting.
241          */
242         tk->tkr.mult = clock->mult;
243         tk->ntp_err_mult = 0;
244 }
245
246 /* Timekeeper helper functions. */
247
248 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
249 static u32 default_arch_gettimeoffset(void) { return 0; }
250 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
251 #else
252 static inline u32 arch_gettimeoffset(void) { return 0; }
253 #endif
254
255 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
256 {
257         cycle_t delta;
258         s64 nsec;
259
260         delta = timekeeping_get_delta(tkr);
261
262         nsec = delta * tkr->mult + tkr->xtime_nsec;
263         nsec >>= tkr->shift;
264
265         /* If arch requires, add in get_arch_timeoffset() */
266         return nsec + arch_gettimeoffset();
267 }
268
269 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
270 {
271         struct clocksource *clock = tk->tkr.clock;
272         cycle_t delta;
273         s64 nsec;
274
275         delta = timekeeping_get_delta(&tk->tkr);
276
277         /* convert delta to nanoseconds. */
278         nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
279
280         /* If arch requires, add in get_arch_timeoffset() */
281         return nsec + arch_gettimeoffset();
282 }
283
284 /**
285  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
286  * @tkr: Timekeeping readout base from which we take the update
287  *
288  * We want to use this from any context including NMI and tracing /
289  * instrumenting the timekeeping code itself.
290  *
291  * So we handle this differently than the other timekeeping accessor
292  * functions which retry when the sequence count has changed. The
293  * update side does:
294  *
295  * smp_wmb();   <- Ensure that the last base[1] update is visible
296  * tkf->seq++;
297  * smp_wmb();   <- Ensure that the seqcount update is visible
298  * update(tkf->base[0], tkr);
299  * smp_wmb();   <- Ensure that the base[0] update is visible
300  * tkf->seq++;
301  * smp_wmb();   <- Ensure that the seqcount update is visible
302  * update(tkf->base[1], tkr);
303  *
304  * The reader side does:
305  *
306  * do {
307  *      seq = tkf->seq;
308  *      smp_rmb();
309  *      idx = seq & 0x01;
310  *      now = now(tkf->base[idx]);
311  *      smp_rmb();
312  * } while (seq != tkf->seq)
313  *
314  * As long as we update base[0] readers are forced off to
315  * base[1]. Once base[0] is updated readers are redirected to base[0]
316  * and the base[1] update takes place.
317  *
318  * So if a NMI hits the update of base[0] then it will use base[1]
319  * which is still consistent. In the worst case this can result is a
320  * slightly wrong timestamp (a few nanoseconds). See
321  * @ktime_get_mono_fast_ns.
322  */
323 static void update_fast_timekeeper(struct tk_read_base *tkr)
324 {
325         struct tk_read_base *base = tk_fast_mono.base;
326
327         /* Force readers off to base[1] */
328         raw_write_seqcount_latch(&tk_fast_mono.seq);
329
330         /* Update base[0] */
331         memcpy(base, tkr, sizeof(*base));
332
333         /* Force readers back to base[0] */
334         raw_write_seqcount_latch(&tk_fast_mono.seq);
335
336         /* Update base[1] */
337         memcpy(base + 1, base, sizeof(*base));
338 }
339
340 /**
341  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
342  *
343  * This timestamp is not guaranteed to be monotonic across an update.
344  * The timestamp is calculated by:
345  *
346  *      now = base_mono + clock_delta * slope
347  *
348  * So if the update lowers the slope, readers who are forced to the
349  * not yet updated second array are still using the old steeper slope.
350  *
351  * tmono
352  * ^
353  * |    o  n
354  * |   o n
355  * |  u
356  * | o
357  * |o
358  * |12345678---> reader order
359  *
360  * o = old slope
361  * u = update
362  * n = new slope
363  *
364  * So reader 6 will observe time going backwards versus reader 5.
365  *
366  * While other CPUs are likely to be able observe that, the only way
367  * for a CPU local observation is when an NMI hits in the middle of
368  * the update. Timestamps taken from that NMI context might be ahead
369  * of the following timestamps. Callers need to be aware of that and
370  * deal with it.
371  */
372 u64 notrace ktime_get_mono_fast_ns(void)
373 {
374         struct tk_read_base *tkr;
375         unsigned int seq;
376         u64 now;
377
378         do {
379                 seq = raw_read_seqcount(&tk_fast_mono.seq);
380                 tkr = tk_fast_mono.base + (seq & 0x01);
381                 now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);
382
383         } while (read_seqcount_retry(&tk_fast_mono.seq, seq));
384         return now;
385 }
386 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
387
388 /* Suspend-time cycles value for halted fast timekeeper. */
389 static cycle_t cycles_at_suspend;
390
391 static cycle_t dummy_clock_read(struct clocksource *cs)
392 {
393         return cycles_at_suspend;
394 }
395
396 /**
397  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
398  * @tk: Timekeeper to snapshot.
399  *
400  * It generally is unsafe to access the clocksource after timekeeping has been
401  * suspended, so take a snapshot of the readout base of @tk and use it as the
402  * fast timekeeper's readout base while suspended.  It will return the same
403  * number of cycles every time until timekeeping is resumed at which time the
404  * proper readout base for the fast timekeeper will be restored automatically.
405  */
406 static void halt_fast_timekeeper(struct timekeeper *tk)
407 {
408         static struct tk_read_base tkr_dummy;
409         struct tk_read_base *tkr = &tk->tkr;
410
411         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
412         cycles_at_suspend = tkr->read(tkr->clock);
413         tkr_dummy.read = dummy_clock_read;
414         update_fast_timekeeper(&tkr_dummy);
415 }
416
417 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
418
419 static inline void update_vsyscall(struct timekeeper *tk)
420 {
421         struct timespec xt, wm;
422
423         xt = timespec64_to_timespec(tk_xtime(tk));
424         wm = timespec64_to_timespec(tk->wall_to_monotonic);
425         update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
426                             tk->tkr.cycle_last);
427 }
428
429 static inline void old_vsyscall_fixup(struct timekeeper *tk)
430 {
431         s64 remainder;
432
433         /*
434         * Store only full nanoseconds into xtime_nsec after rounding
435         * it up and add the remainder to the error difference.
436         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
437         * by truncating the remainder in vsyscalls. However, it causes
438         * additional work to be done in timekeeping_adjust(). Once
439         * the vsyscall implementations are converted to use xtime_nsec
440         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
441         * users are removed, this can be killed.
442         */
443         remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
444         tk->tkr.xtime_nsec -= remainder;
445         tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
446         tk->ntp_error += remainder << tk->ntp_error_shift;
447         tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
448 }
449 #else
450 #define old_vsyscall_fixup(tk)
451 #endif
452
453 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
454
455 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
456 {
457         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
458 }
459
460 /**
461  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
462  */
463 int pvclock_gtod_register_notifier(struct notifier_block *nb)
464 {
465         struct timekeeper *tk = &tk_core.timekeeper;
466         unsigned long flags;
467         int ret;
468
469         raw_spin_lock_irqsave(&timekeeper_lock, flags);
470         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
471         update_pvclock_gtod(tk, true);
472         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
473
474         return ret;
475 }
476 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
477
478 /**
479  * pvclock_gtod_unregister_notifier - unregister a pvclock
480  * timedata update listener
481  */
482 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
483 {
484         unsigned long flags;
485         int ret;
486
487         raw_spin_lock_irqsave(&timekeeper_lock, flags);
488         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
489         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
490
491         return ret;
492 }
493 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
494
495 /*
496  * Update the ktime_t based scalar nsec members of the timekeeper
497  */
498 static inline void tk_update_ktime_data(struct timekeeper *tk)
499 {
500         u64 seconds;
501         u32 nsec;
502
503         /*
504          * The xtime based monotonic readout is:
505          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
506          * The ktime based monotonic readout is:
507          *      nsec = base_mono + now();
508          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
509          */
510         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
511         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
512         tk->tkr.base_mono = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
513
514         /* Update the monotonic raw base */
515         tk->base_raw = timespec64_to_ktime(tk->raw_time);
516
517         /*
518          * The sum of the nanoseconds portions of xtime and
519          * wall_to_monotonic can be greater/equal one second. Take
520          * this into account before updating tk->ktime_sec.
521          */
522         nsec += (u32)(tk->tkr.xtime_nsec >> tk->tkr.shift);
523         if (nsec >= NSEC_PER_SEC)
524                 seconds++;
525         tk->ktime_sec = seconds;
526 }
527
528 /* must hold timekeeper_lock */
529 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
530 {
531         if (action & TK_CLEAR_NTP) {
532                 tk->ntp_error = 0;
533                 ntp_clear();
534         }
535
536         tk_update_ktime_data(tk);
537
538         update_vsyscall(tk);
539         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
540
541         if (action & TK_MIRROR)
542                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
543                        sizeof(tk_core.timekeeper));
544
545         update_fast_timekeeper(&tk->tkr);
546 }
547
548 /**
549  * timekeeping_forward_now - update clock to the current time
550  *
551  * Forward the current clock to update its state since the last call to
552  * update_wall_time(). This is useful before significant clock changes,
553  * as it avoids having to deal with this time offset explicitly.
554  */
555 static void timekeeping_forward_now(struct timekeeper *tk)
556 {
557         struct clocksource *clock = tk->tkr.clock;
558         cycle_t cycle_now, delta;
559         s64 nsec;
560
561         cycle_now = tk->tkr.read(clock);
562         delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
563         tk->tkr.cycle_last = cycle_now;
564
565         tk->tkr.xtime_nsec += delta * tk->tkr.mult;
566
567         /* If arch requires, add in get_arch_timeoffset() */
568         tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
569
570         tk_normalize_xtime(tk);
571
572         nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
573         timespec64_add_ns(&tk->raw_time, nsec);
574 }
575
576 /**
577  * __getnstimeofday64 - Returns the time of day in a timespec64.
578  * @ts:         pointer to the timespec to be set
579  *
580  * Updates the time of day in the timespec.
581  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
582  */
583 int __getnstimeofday64(struct timespec64 *ts)
584 {
585         struct timekeeper *tk = &tk_core.timekeeper;
586         unsigned long seq;
587         s64 nsecs = 0;
588
589         do {
590                 seq = read_seqcount_begin(&tk_core.seq);
591
592                 ts->tv_sec = tk->xtime_sec;
593                 nsecs = timekeeping_get_ns(&tk->tkr);
594
595         } while (read_seqcount_retry(&tk_core.seq, seq));
596
597         ts->tv_nsec = 0;
598         timespec64_add_ns(ts, nsecs);
599
600         /*
601          * Do not bail out early, in case there were callers still using
602          * the value, even in the face of the WARN_ON.
603          */
604         if (unlikely(timekeeping_suspended))
605                 return -EAGAIN;
606         return 0;
607 }
608 EXPORT_SYMBOL(__getnstimeofday64);
609
610 /**
611  * getnstimeofday64 - Returns the time of day in a timespec64.
612  * @ts:         pointer to the timespec64 to be set
613  *
614  * Returns the time of day in a timespec64 (WARN if suspended).
615  */
616 void getnstimeofday64(struct timespec64 *ts)
617 {
618         WARN_ON(__getnstimeofday64(ts));
619 }
620 EXPORT_SYMBOL(getnstimeofday64);
621
622 ktime_t ktime_get(void)
623 {
624         struct timekeeper *tk = &tk_core.timekeeper;
625         unsigned int seq;
626         ktime_t base;
627         s64 nsecs;
628
629         WARN_ON(timekeeping_suspended);
630
631         do {
632                 seq = read_seqcount_begin(&tk_core.seq);
633                 base = tk->tkr.base_mono;
634                 nsecs = timekeeping_get_ns(&tk->tkr);
635
636         } while (read_seqcount_retry(&tk_core.seq, seq));
637
638         return ktime_add_ns(base, nsecs);
639 }
640 EXPORT_SYMBOL_GPL(ktime_get);
641
642 static ktime_t *offsets[TK_OFFS_MAX] = {
643         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
644         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
645         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
646 };
647
648 ktime_t ktime_get_with_offset(enum tk_offsets offs)
649 {
650         struct timekeeper *tk = &tk_core.timekeeper;
651         unsigned int seq;
652         ktime_t base, *offset = offsets[offs];
653         s64 nsecs;
654
655         WARN_ON(timekeeping_suspended);
656
657         do {
658                 seq = read_seqcount_begin(&tk_core.seq);
659                 base = ktime_add(tk->tkr.base_mono, *offset);
660                 nsecs = timekeeping_get_ns(&tk->tkr);
661
662         } while (read_seqcount_retry(&tk_core.seq, seq));
663
664         return ktime_add_ns(base, nsecs);
665
666 }
667 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
668
669 /**
670  * ktime_mono_to_any() - convert mononotic time to any other time
671  * @tmono:      time to convert.
672  * @offs:       which offset to use
673  */
674 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
675 {
676         ktime_t *offset = offsets[offs];
677         unsigned long seq;
678         ktime_t tconv;
679
680         do {
681                 seq = read_seqcount_begin(&tk_core.seq);
682                 tconv = ktime_add(tmono, *offset);
683         } while (read_seqcount_retry(&tk_core.seq, seq));
684
685         return tconv;
686 }
687 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
688
689 /**
690  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
691  */
692 ktime_t ktime_get_raw(void)
693 {
694         struct timekeeper *tk = &tk_core.timekeeper;
695         unsigned int seq;
696         ktime_t base;
697         s64 nsecs;
698
699         do {
700                 seq = read_seqcount_begin(&tk_core.seq);
701                 base = tk->base_raw;
702                 nsecs = timekeeping_get_ns_raw(tk);
703
704         } while (read_seqcount_retry(&tk_core.seq, seq));
705
706         return ktime_add_ns(base, nsecs);
707 }
708 EXPORT_SYMBOL_GPL(ktime_get_raw);
709
710 /**
711  * ktime_get_ts64 - get the monotonic clock in timespec64 format
712  * @ts:         pointer to timespec variable
713  *
714  * The function calculates the monotonic clock from the realtime
715  * clock and the wall_to_monotonic offset and stores the result
716  * in normalized timespec64 format in the variable pointed to by @ts.
717  */
718 void ktime_get_ts64(struct timespec64 *ts)
719 {
720         struct timekeeper *tk = &tk_core.timekeeper;
721         struct timespec64 tomono;
722         s64 nsec;
723         unsigned int seq;
724
725         WARN_ON(timekeeping_suspended);
726
727         do {
728                 seq = read_seqcount_begin(&tk_core.seq);
729                 ts->tv_sec = tk->xtime_sec;
730                 nsec = timekeeping_get_ns(&tk->tkr);
731                 tomono = tk->wall_to_monotonic;
732
733         } while (read_seqcount_retry(&tk_core.seq, seq));
734
735         ts->tv_sec += tomono.tv_sec;
736         ts->tv_nsec = 0;
737         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
738 }
739 EXPORT_SYMBOL_GPL(ktime_get_ts64);
740
741 /**
742  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
743  *
744  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
745  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
746  * works on both 32 and 64 bit systems. On 32 bit systems the readout
747  * covers ~136 years of uptime which should be enough to prevent
748  * premature wrap arounds.
749  */
750 time64_t ktime_get_seconds(void)
751 {
752         struct timekeeper *tk = &tk_core.timekeeper;
753
754         WARN_ON(timekeeping_suspended);
755         return tk->ktime_sec;
756 }
757 EXPORT_SYMBOL_GPL(ktime_get_seconds);
758
759 /**
760  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
761  *
762  * Returns the wall clock seconds since 1970. This replaces the
763  * get_seconds() interface which is not y2038 safe on 32bit systems.
764  *
765  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
766  * 32bit systems the access must be protected with the sequence
767  * counter to provide "atomic" access to the 64bit tk->xtime_sec
768  * value.
769  */
770 time64_t ktime_get_real_seconds(void)
771 {
772         struct timekeeper *tk = &tk_core.timekeeper;
773         time64_t seconds;
774         unsigned int seq;
775
776         if (IS_ENABLED(CONFIG_64BIT))
777                 return tk->xtime_sec;
778
779         do {
780                 seq = read_seqcount_begin(&tk_core.seq);
781                 seconds = tk->xtime_sec;
782
783         } while (read_seqcount_retry(&tk_core.seq, seq));
784
785         return seconds;
786 }
787 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
788
789 #ifdef CONFIG_NTP_PPS
790
791 /**
792  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
793  * @ts_raw:     pointer to the timespec to be set to raw monotonic time
794  * @ts_real:    pointer to the timespec to be set to the time of day
795  *
796  * This function reads both the time of day and raw monotonic time at the
797  * same time atomically and stores the resulting timestamps in timespec
798  * format.
799  */
800 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
801 {
802         struct timekeeper *tk = &tk_core.timekeeper;
803         unsigned long seq;
804         s64 nsecs_raw, nsecs_real;
805
806         WARN_ON_ONCE(timekeeping_suspended);
807
808         do {
809                 seq = read_seqcount_begin(&tk_core.seq);
810
811                 *ts_raw = timespec64_to_timespec(tk->raw_time);
812                 ts_real->tv_sec = tk->xtime_sec;
813                 ts_real->tv_nsec = 0;
814
815                 nsecs_raw = timekeeping_get_ns_raw(tk);
816                 nsecs_real = timekeeping_get_ns(&tk->tkr);
817
818         } while (read_seqcount_retry(&tk_core.seq, seq));
819
820         timespec_add_ns(ts_raw, nsecs_raw);
821         timespec_add_ns(ts_real, nsecs_real);
822 }
823 EXPORT_SYMBOL(getnstime_raw_and_real);
824
825 #endif /* CONFIG_NTP_PPS */
826
827 /**
828  * do_gettimeofday - Returns the time of day in a timeval
829  * @tv:         pointer to the timeval to be set
830  *
831  * NOTE: Users should be converted to using getnstimeofday()
832  */
833 void do_gettimeofday(struct timeval *tv)
834 {
835         struct timespec64 now;
836
837         getnstimeofday64(&now);
838         tv->tv_sec = now.tv_sec;
839         tv->tv_usec = now.tv_nsec/1000;
840 }
841 EXPORT_SYMBOL(do_gettimeofday);
842
843 /**
844  * do_settimeofday64 - Sets the time of day.
845  * @ts:     pointer to the timespec64 variable containing the new time
846  *
847  * Sets the time of day to the new time and update NTP and notify hrtimers
848  */
849 int do_settimeofday64(const struct timespec64 *ts)
850 {
851         struct timekeeper *tk = &tk_core.timekeeper;
852         struct timespec64 ts_delta, xt;
853         unsigned long flags;
854
855         if (!timespec64_valid_strict(ts))
856                 return -EINVAL;
857
858         raw_spin_lock_irqsave(&timekeeper_lock, flags);
859         write_seqcount_begin(&tk_core.seq);
860
861         timekeeping_forward_now(tk);
862
863         xt = tk_xtime(tk);
864         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
865         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
866
867         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
868
869         tk_set_xtime(tk, ts);
870
871         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
872
873         write_seqcount_end(&tk_core.seq);
874         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
875
876         /* signal hrtimers about time change */
877         clock_was_set();
878
879         return 0;
880 }
881 EXPORT_SYMBOL(do_settimeofday64);
882
883 /**
884  * timekeeping_inject_offset - Adds or subtracts from the current time.
885  * @tv:         pointer to the timespec variable containing the offset
886  *
887  * Adds or subtracts an offset value from the current time.
888  */
889 int timekeeping_inject_offset(struct timespec *ts)
890 {
891         struct timekeeper *tk = &tk_core.timekeeper;
892         unsigned long flags;
893         struct timespec64 ts64, tmp;
894         int ret = 0;
895
896         if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
897                 return -EINVAL;
898
899         ts64 = timespec_to_timespec64(*ts);
900
901         raw_spin_lock_irqsave(&timekeeper_lock, flags);
902         write_seqcount_begin(&tk_core.seq);
903
904         timekeeping_forward_now(tk);
905
906         /* Make sure the proposed value is valid */
907         tmp = timespec64_add(tk_xtime(tk),  ts64);
908         if (!timespec64_valid_strict(&tmp)) {
909                 ret = -EINVAL;
910                 goto error;
911         }
912
913         tk_xtime_add(tk, &ts64);
914         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
915
916 error: /* even if we error out, we forwarded the time, so call update */
917         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
918
919         write_seqcount_end(&tk_core.seq);
920         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
921
922         /* signal hrtimers about time change */
923         clock_was_set();
924
925         return ret;
926 }
927 EXPORT_SYMBOL(timekeeping_inject_offset);
928
929
930 /**
931  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
932  *
933  */
934 s32 timekeeping_get_tai_offset(void)
935 {
936         struct timekeeper *tk = &tk_core.timekeeper;
937         unsigned int seq;
938         s32 ret;
939
940         do {
941                 seq = read_seqcount_begin(&tk_core.seq);
942                 ret = tk->tai_offset;
943         } while (read_seqcount_retry(&tk_core.seq, seq));
944
945         return ret;
946 }
947
948 /**
949  * __timekeeping_set_tai_offset - Lock free worker function
950  *
951  */
952 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
953 {
954         tk->tai_offset = tai_offset;
955         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
956 }
957
958 /**
959  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
960  *
961  */
962 void timekeeping_set_tai_offset(s32 tai_offset)
963 {
964         struct timekeeper *tk = &tk_core.timekeeper;
965         unsigned long flags;
966
967         raw_spin_lock_irqsave(&timekeeper_lock, flags);
968         write_seqcount_begin(&tk_core.seq);
969         __timekeeping_set_tai_offset(tk, tai_offset);
970         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
971         write_seqcount_end(&tk_core.seq);
972         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
973         clock_was_set();
974 }
975
976 /**
977  * change_clocksource - Swaps clocksources if a new one is available
978  *
979  * Accumulates current time interval and initializes new clocksource
980  */
981 static int change_clocksource(void *data)
982 {
983         struct timekeeper *tk = &tk_core.timekeeper;
984         struct clocksource *new, *old;
985         unsigned long flags;
986
987         new = (struct clocksource *) data;
988
989         raw_spin_lock_irqsave(&timekeeper_lock, flags);
990         write_seqcount_begin(&tk_core.seq);
991
992         timekeeping_forward_now(tk);
993         /*
994          * If the cs is in module, get a module reference. Succeeds
995          * for built-in code (owner == NULL) as well.
996          */
997         if (try_module_get(new->owner)) {
998                 if (!new->enable || new->enable(new) == 0) {
999                         old = tk->tkr.clock;
1000                         tk_setup_internals(tk, new);
1001                         if (old->disable)
1002                                 old->disable(old);
1003                         module_put(old->owner);
1004                 } else {
1005                         module_put(new->owner);
1006                 }
1007         }
1008         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1009
1010         write_seqcount_end(&tk_core.seq);
1011         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1012
1013         return 0;
1014 }
1015
1016 /**
1017  * timekeeping_notify - Install a new clock source
1018  * @clock:              pointer to the clock source
1019  *
1020  * This function is called from clocksource.c after a new, better clock
1021  * source has been registered. The caller holds the clocksource_mutex.
1022  */
1023 int timekeeping_notify(struct clocksource *clock)
1024 {
1025         struct timekeeper *tk = &tk_core.timekeeper;
1026
1027         if (tk->tkr.clock == clock)
1028                 return 0;
1029         stop_machine(change_clocksource, clock, NULL);
1030         tick_clock_notify();
1031         return tk->tkr.clock == clock ? 0 : -1;
1032 }
1033
1034 /**
1035  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1036  * @ts:         pointer to the timespec64 to be set
1037  *
1038  * Returns the raw monotonic time (completely un-modified by ntp)
1039  */
1040 void getrawmonotonic64(struct timespec64 *ts)
1041 {
1042         struct timekeeper *tk = &tk_core.timekeeper;
1043         struct timespec64 ts64;
1044         unsigned long seq;
1045         s64 nsecs;
1046
1047         do {
1048                 seq = read_seqcount_begin(&tk_core.seq);
1049                 nsecs = timekeeping_get_ns_raw(tk);
1050                 ts64 = tk->raw_time;
1051
1052         } while (read_seqcount_retry(&tk_core.seq, seq));
1053
1054         timespec64_add_ns(&ts64, nsecs);
1055         *ts = ts64;
1056 }
1057 EXPORT_SYMBOL(getrawmonotonic64);
1058
1059
1060 /**
1061  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1062  */
1063 int timekeeping_valid_for_hres(void)
1064 {
1065         struct timekeeper *tk = &tk_core.timekeeper;
1066         unsigned long seq;
1067         int ret;
1068
1069         do {
1070                 seq = read_seqcount_begin(&tk_core.seq);
1071
1072                 ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1073
1074         } while (read_seqcount_retry(&tk_core.seq, seq));
1075
1076         return ret;
1077 }
1078
1079 /**
1080  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1081  */
1082 u64 timekeeping_max_deferment(void)
1083 {
1084         struct timekeeper *tk = &tk_core.timekeeper;
1085         unsigned long seq;
1086         u64 ret;
1087
1088         do {
1089                 seq = read_seqcount_begin(&tk_core.seq);
1090
1091                 ret = tk->tkr.clock->max_idle_ns;
1092
1093         } while (read_seqcount_retry(&tk_core.seq, seq));
1094
1095         return ret;
1096 }
1097
1098 /**
1099  * read_persistent_clock -  Return time from the persistent clock.
1100  *
1101  * Weak dummy function for arches that do not yet support it.
1102  * Reads the time from the battery backed persistent clock.
1103  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1104  *
1105  *  XXX - Do be sure to remove it once all arches implement it.
1106  */
1107 void __weak read_persistent_clock(struct timespec *ts)
1108 {
1109         ts->tv_sec = 0;
1110         ts->tv_nsec = 0;
1111 }
1112
1113 /**
1114  * read_boot_clock -  Return time of the system start.
1115  *
1116  * Weak dummy function for arches that do not yet support it.
1117  * Function to read the exact time the system has been started.
1118  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1119  *
1120  *  XXX - Do be sure to remove it once all arches implement it.
1121  */
1122 void __weak read_boot_clock(struct timespec *ts)
1123 {
1124         ts->tv_sec = 0;
1125         ts->tv_nsec = 0;
1126 }
1127
1128 /*
1129  * timekeeping_init - Initializes the clocksource and common timekeeping values
1130  */
1131 void __init timekeeping_init(void)
1132 {
1133         struct timekeeper *tk = &tk_core.timekeeper;
1134         struct clocksource *clock;
1135         unsigned long flags;
1136         struct timespec64 now, boot, tmp;
1137         struct timespec ts;
1138
1139         read_persistent_clock(&ts);
1140         now = timespec_to_timespec64(ts);
1141         if (!timespec64_valid_strict(&now)) {
1142                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1143                         "         Check your CMOS/BIOS settings.\n");
1144                 now.tv_sec = 0;
1145                 now.tv_nsec = 0;
1146         } else if (now.tv_sec || now.tv_nsec)
1147                 persistent_clock_exist = true;
1148
1149         read_boot_clock(&ts);
1150         boot = timespec_to_timespec64(ts);
1151         if (!timespec64_valid_strict(&boot)) {
1152                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1153                         "         Check your CMOS/BIOS settings.\n");
1154                 boot.tv_sec = 0;
1155                 boot.tv_nsec = 0;
1156         }
1157
1158         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1159         write_seqcount_begin(&tk_core.seq);
1160         ntp_init();
1161
1162         clock = clocksource_default_clock();
1163         if (clock->enable)
1164                 clock->enable(clock);
1165         tk_setup_internals(tk, clock);
1166
1167         tk_set_xtime(tk, &now);
1168         tk->raw_time.tv_sec = 0;
1169         tk->raw_time.tv_nsec = 0;
1170         tk->base_raw.tv64 = 0;
1171         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1172                 boot = tk_xtime(tk);
1173
1174         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1175         tk_set_wall_to_mono(tk, tmp);
1176
1177         timekeeping_update(tk, TK_MIRROR);
1178
1179         write_seqcount_end(&tk_core.seq);
1180         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1181 }
1182
1183 /* time in seconds when suspend began */
1184 static struct timespec64 timekeeping_suspend_time;
1185
1186 /**
1187  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1188  * @delta: pointer to a timespec delta value
1189  *
1190  * Takes a timespec offset measuring a suspend interval and properly
1191  * adds the sleep offset to the timekeeping variables.
1192  */
1193 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1194                                            struct timespec64 *delta)
1195 {
1196         if (!timespec64_valid_strict(delta)) {
1197                 printk_deferred(KERN_WARNING
1198                                 "__timekeeping_inject_sleeptime: Invalid "
1199                                 "sleep delta value!\n");
1200                 return;
1201         }
1202         tk_xtime_add(tk, delta);
1203         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1204         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1205         tk_debug_account_sleep_time(delta);
1206 }
1207
1208 /**
1209  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1210  * @delta: pointer to a timespec64 delta value
1211  *
1212  * This hook is for architectures that cannot support read_persistent_clock
1213  * because their RTC/persistent clock is only accessible when irqs are enabled.
1214  *
1215  * This function should only be called by rtc_resume(), and allows
1216  * a suspend offset to be injected into the timekeeping values.
1217  */
1218 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1219 {
1220         struct timekeeper *tk = &tk_core.timekeeper;
1221         unsigned long flags;
1222
1223         /*
1224          * Make sure we don't set the clock twice, as timekeeping_resume()
1225          * already did it
1226          */
1227         if (has_persistent_clock())
1228                 return;
1229
1230         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1231         write_seqcount_begin(&tk_core.seq);
1232
1233         timekeeping_forward_now(tk);
1234
1235         __timekeeping_inject_sleeptime(tk, delta);
1236
1237         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1238
1239         write_seqcount_end(&tk_core.seq);
1240         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1241
1242         /* signal hrtimers about time change */
1243         clock_was_set();
1244 }
1245
1246 /**
1247  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1248  *
1249  * This is for the generic clocksource timekeeping.
1250  * xtime/wall_to_monotonic/jiffies/etc are
1251  * still managed by arch specific suspend/resume code.
1252  */
1253 void timekeeping_resume(void)
1254 {
1255         struct timekeeper *tk = &tk_core.timekeeper;
1256         struct clocksource *clock = tk->tkr.clock;
1257         unsigned long flags;
1258         struct timespec64 ts_new, ts_delta;
1259         struct timespec tmp;
1260         cycle_t cycle_now, cycle_delta;
1261         bool suspendtime_found = false;
1262
1263         read_persistent_clock(&tmp);
1264         ts_new = timespec_to_timespec64(tmp);
1265
1266         clockevents_resume();
1267         clocksource_resume();
1268
1269         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1270         write_seqcount_begin(&tk_core.seq);
1271
1272         /*
1273          * After system resumes, we need to calculate the suspended time and
1274          * compensate it for the OS time. There are 3 sources that could be
1275          * used: Nonstop clocksource during suspend, persistent clock and rtc
1276          * device.
1277          *
1278          * One specific platform may have 1 or 2 or all of them, and the
1279          * preference will be:
1280          *      suspend-nonstop clocksource -> persistent clock -> rtc
1281          * The less preferred source will only be tried if there is no better
1282          * usable source. The rtc part is handled separately in rtc core code.
1283          */
1284         cycle_now = tk->tkr.read(clock);
1285         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1286                 cycle_now > tk->tkr.cycle_last) {
1287                 u64 num, max = ULLONG_MAX;
1288                 u32 mult = clock->mult;
1289                 u32 shift = clock->shift;
1290                 s64 nsec = 0;
1291
1292                 cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
1293                                                 tk->tkr.mask);
1294
1295                 /*
1296                  * "cycle_delta * mutl" may cause 64 bits overflow, if the
1297                  * suspended time is too long. In that case we need do the
1298                  * 64 bits math carefully
1299                  */
1300                 do_div(max, mult);
1301                 if (cycle_delta > max) {
1302                         num = div64_u64(cycle_delta, max);
1303                         nsec = (((u64) max * mult) >> shift) * num;
1304                         cycle_delta -= num * max;
1305                 }
1306                 nsec += ((u64) cycle_delta * mult) >> shift;
1307
1308                 ts_delta = ns_to_timespec64(nsec);
1309                 suspendtime_found = true;
1310         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1311                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1312                 suspendtime_found = true;
1313         }
1314
1315         if (suspendtime_found)
1316                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1317
1318         /* Re-base the last cycle value */
1319         tk->tkr.cycle_last = cycle_now;
1320         tk->ntp_error = 0;
1321         timekeeping_suspended = 0;
1322         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1323         write_seqcount_end(&tk_core.seq);
1324         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1325
1326         touch_softlockup_watchdog();
1327
1328         clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1329
1330         /* Resume hrtimers */
1331         hrtimers_resume();
1332 }
1333
1334 int timekeeping_suspend(void)
1335 {
1336         struct timekeeper *tk = &tk_core.timekeeper;
1337         unsigned long flags;
1338         struct timespec64               delta, delta_delta;
1339         static struct timespec64        old_delta;
1340         struct timespec tmp;
1341
1342         read_persistent_clock(&tmp);
1343         timekeeping_suspend_time = timespec_to_timespec64(tmp);
1344
1345         /*
1346          * On some systems the persistent_clock can not be detected at
1347          * timekeeping_init by its return value, so if we see a valid
1348          * value returned, update the persistent_clock_exists flag.
1349          */
1350         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1351                 persistent_clock_exist = true;
1352
1353         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1354         write_seqcount_begin(&tk_core.seq);
1355         timekeeping_forward_now(tk);
1356         timekeeping_suspended = 1;
1357
1358         /*
1359          * To avoid drift caused by repeated suspend/resumes,
1360          * which each can add ~1 second drift error,
1361          * try to compensate so the difference in system time
1362          * and persistent_clock time stays close to constant.
1363          */
1364         delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1365         delta_delta = timespec64_sub(delta, old_delta);
1366         if (abs(delta_delta.tv_sec)  >= 2) {
1367                 /*
1368                  * if delta_delta is too large, assume time correction
1369                  * has occured and set old_delta to the current delta.
1370                  */
1371                 old_delta = delta;
1372         } else {
1373                 /* Otherwise try to adjust old_system to compensate */
1374                 timekeeping_suspend_time =
1375                         timespec64_add(timekeeping_suspend_time, delta_delta);
1376         }
1377
1378         timekeeping_update(tk, TK_MIRROR);
1379         halt_fast_timekeeper(tk);
1380         write_seqcount_end(&tk_core.seq);
1381         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1382
1383         clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1384         clocksource_suspend();
1385         clockevents_suspend();
1386
1387         return 0;
1388 }
1389
1390 /* sysfs resume/suspend bits for timekeeping */
1391 static struct syscore_ops timekeeping_syscore_ops = {
1392         .resume         = timekeeping_resume,
1393         .suspend        = timekeeping_suspend,
1394 };
1395
1396 static int __init timekeeping_init_ops(void)
1397 {
1398         register_syscore_ops(&timekeeping_syscore_ops);
1399         return 0;
1400 }
1401 device_initcall(timekeeping_init_ops);
1402
1403 /*
1404  * Apply a multiplier adjustment to the timekeeper
1405  */
1406 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1407                                                          s64 offset,
1408                                                          bool negative,
1409                                                          int adj_scale)
1410 {
1411         s64 interval = tk->cycle_interval;
1412         s32 mult_adj = 1;
1413
1414         if (negative) {
1415                 mult_adj = -mult_adj;
1416                 interval = -interval;
1417                 offset  = -offset;
1418         }
1419         mult_adj <<= adj_scale;
1420         interval <<= adj_scale;
1421         offset <<= adj_scale;
1422
1423         /*
1424          * So the following can be confusing.
1425          *
1426          * To keep things simple, lets assume mult_adj == 1 for now.
1427          *
1428          * When mult_adj != 1, remember that the interval and offset values
1429          * have been appropriately scaled so the math is the same.
1430          *
1431          * The basic idea here is that we're increasing the multiplier
1432          * by one, this causes the xtime_interval to be incremented by
1433          * one cycle_interval. This is because:
1434          *      xtime_interval = cycle_interval * mult
1435          * So if mult is being incremented by one:
1436          *      xtime_interval = cycle_interval * (mult + 1)
1437          * Its the same as:
1438          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1439          * Which can be shortened to:
1440          *      xtime_interval += cycle_interval
1441          *
1442          * So offset stores the non-accumulated cycles. Thus the current
1443          * time (in shifted nanoseconds) is:
1444          *      now = (offset * adj) + xtime_nsec
1445          * Now, even though we're adjusting the clock frequency, we have
1446          * to keep time consistent. In other words, we can't jump back
1447          * in time, and we also want to avoid jumping forward in time.
1448          *
1449          * So given the same offset value, we need the time to be the same
1450          * both before and after the freq adjustment.
1451          *      now = (offset * adj_1) + xtime_nsec_1
1452          *      now = (offset * adj_2) + xtime_nsec_2
1453          * So:
1454          *      (offset * adj_1) + xtime_nsec_1 =
1455          *              (offset * adj_2) + xtime_nsec_2
1456          * And we know:
1457          *      adj_2 = adj_1 + 1
1458          * So:
1459          *      (offset * adj_1) + xtime_nsec_1 =
1460          *              (offset * (adj_1+1)) + xtime_nsec_2
1461          *      (offset * adj_1) + xtime_nsec_1 =
1462          *              (offset * adj_1) + offset + xtime_nsec_2
1463          * Canceling the sides:
1464          *      xtime_nsec_1 = offset + xtime_nsec_2
1465          * Which gives us:
1466          *      xtime_nsec_2 = xtime_nsec_1 - offset
1467          * Which simplfies to:
1468          *      xtime_nsec -= offset
1469          *
1470          * XXX - TODO: Doc ntp_error calculation.
1471          */
1472         if ((mult_adj > 0) && (tk->tkr.mult + mult_adj < mult_adj)) {
1473                 /* NTP adjustment caused clocksource mult overflow */
1474                 WARN_ON_ONCE(1);
1475                 return;
1476         }
1477
1478         tk->tkr.mult += mult_adj;
1479         tk->xtime_interval += interval;
1480         tk->tkr.xtime_nsec -= offset;
1481         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1482 }
1483
1484 /*
1485  * Calculate the multiplier adjustment needed to match the frequency
1486  * specified by NTP
1487  */
1488 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1489                                                         s64 offset)
1490 {
1491         s64 interval = tk->cycle_interval;
1492         s64 xinterval = tk->xtime_interval;
1493         s64 tick_error;
1494         bool negative;
1495         u32 adj;
1496
1497         /* Remove any current error adj from freq calculation */
1498         if (tk->ntp_err_mult)
1499                 xinterval -= tk->cycle_interval;
1500
1501         tk->ntp_tick = ntp_tick_length();
1502
1503         /* Calculate current error per tick */
1504         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1505         tick_error -= (xinterval + tk->xtime_remainder);
1506
1507         /* Don't worry about correcting it if its small */
1508         if (likely((tick_error >= 0) && (tick_error <= interval)))
1509                 return;
1510
1511         /* preserve the direction of correction */
1512         negative = (tick_error < 0);
1513
1514         /* Sort out the magnitude of the correction */
1515         tick_error = abs(tick_error);
1516         for (adj = 0; tick_error > interval; adj++)
1517                 tick_error >>= 1;
1518
1519         /* scale the corrections */
1520         timekeeping_apply_adjustment(tk, offset, negative, adj);
1521 }
1522
1523 /*
1524  * Adjust the timekeeper's multiplier to the correct frequency
1525  * and also to reduce the accumulated error value.
1526  */
1527 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1528 {
1529         /* Correct for the current frequency error */
1530         timekeeping_freqadjust(tk, offset);
1531
1532         /* Next make a small adjustment to fix any cumulative error */
1533         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1534                 tk->ntp_err_mult = 1;
1535                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1536         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1537                 /* Undo any existing error adjustment */
1538                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1539                 tk->ntp_err_mult = 0;
1540         }
1541
1542         if (unlikely(tk->tkr.clock->maxadj &&
1543                 (abs(tk->tkr.mult - tk->tkr.clock->mult)
1544                         > tk->tkr.clock->maxadj))) {
1545                 printk_once(KERN_WARNING
1546                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1547                         tk->tkr.clock->name, (long)tk->tkr.mult,
1548                         (long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
1549         }
1550
1551         /*
1552          * It may be possible that when we entered this function, xtime_nsec
1553          * was very small.  Further, if we're slightly speeding the clocksource
1554          * in the code above, its possible the required corrective factor to
1555          * xtime_nsec could cause it to underflow.
1556          *
1557          * Now, since we already accumulated the second, cannot simply roll
1558          * the accumulated second back, since the NTP subsystem has been
1559          * notified via second_overflow. So instead we push xtime_nsec forward
1560          * by the amount we underflowed, and add that amount into the error.
1561          *
1562          * We'll correct this error next time through this function, when
1563          * xtime_nsec is not as small.
1564          */
1565         if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
1566                 s64 neg = -(s64)tk->tkr.xtime_nsec;
1567                 tk->tkr.xtime_nsec = 0;
1568                 tk->ntp_error += neg << tk->ntp_error_shift;
1569         }
1570 }
1571
1572 /**
1573  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1574  *
1575  * Helper function that accumulates a the nsecs greater then a second
1576  * from the xtime_nsec field to the xtime_secs field.
1577  * It also calls into the NTP code to handle leapsecond processing.
1578  *
1579  */
1580 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1581 {
1582         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1583         unsigned int clock_set = 0;
1584
1585         while (tk->tkr.xtime_nsec >= nsecps) {
1586                 int leap;
1587
1588                 tk->tkr.xtime_nsec -= nsecps;
1589                 tk->xtime_sec++;
1590
1591                 /* Figure out if its a leap sec and apply if needed */
1592                 leap = second_overflow(tk->xtime_sec);
1593                 if (unlikely(leap)) {
1594                         struct timespec64 ts;
1595
1596                         tk->xtime_sec += leap;
1597
1598                         ts.tv_sec = leap;
1599                         ts.tv_nsec = 0;
1600                         tk_set_wall_to_mono(tk,
1601                                 timespec64_sub(tk->wall_to_monotonic, ts));
1602
1603                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1604
1605                         clock_set = TK_CLOCK_WAS_SET;
1606                 }
1607         }
1608         return clock_set;
1609 }
1610
1611 /**
1612  * logarithmic_accumulation - shifted accumulation of cycles
1613  *
1614  * This functions accumulates a shifted interval of cycles into
1615  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1616  * loop.
1617  *
1618  * Returns the unconsumed cycles.
1619  */
1620 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1621                                                 u32 shift,
1622                                                 unsigned int *clock_set)
1623 {
1624         cycle_t interval = tk->cycle_interval << shift;
1625         u64 raw_nsecs;
1626
1627         /* If the offset is smaller then a shifted interval, do nothing */
1628         if (offset < interval)
1629                 return offset;
1630
1631         /* Accumulate one shifted interval */
1632         offset -= interval;
1633         tk->tkr.cycle_last += interval;
1634
1635         tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1636         *clock_set |= accumulate_nsecs_to_secs(tk);
1637
1638         /* Accumulate raw time */
1639         raw_nsecs = (u64)tk->raw_interval << shift;
1640         raw_nsecs += tk->raw_time.tv_nsec;
1641         if (raw_nsecs >= NSEC_PER_SEC) {
1642                 u64 raw_secs = raw_nsecs;
1643                 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1644                 tk->raw_time.tv_sec += raw_secs;
1645         }
1646         tk->raw_time.tv_nsec = raw_nsecs;
1647
1648         /* Accumulate error between NTP and clock interval */
1649         tk->ntp_error += tk->ntp_tick << shift;
1650         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1651                                                 (tk->ntp_error_shift + shift);
1652
1653         return offset;
1654 }
1655
1656 /**
1657  * update_wall_time - Uses the current clocksource to increment the wall time
1658  *
1659  */
1660 void update_wall_time(void)
1661 {
1662         struct timekeeper *real_tk = &tk_core.timekeeper;
1663         struct timekeeper *tk = &shadow_timekeeper;
1664         cycle_t offset;
1665         int shift = 0, maxshift;
1666         unsigned int clock_set = 0;
1667         unsigned long flags;
1668
1669         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1670
1671         /* Make sure we're fully resumed: */
1672         if (unlikely(timekeeping_suspended))
1673                 goto out;
1674
1675 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1676         offset = real_tk->cycle_interval;
1677 #else
1678         offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
1679                                    tk->tkr.cycle_last, tk->tkr.mask);
1680 #endif
1681
1682         /* Check if there's really nothing to do */
1683         if (offset < real_tk->cycle_interval)
1684                 goto out;
1685
1686         /* Do some additional sanity checking */
1687         timekeeping_check_update(real_tk, offset);
1688
1689         /*
1690          * With NO_HZ we may have to accumulate many cycle_intervals
1691          * (think "ticks") worth of time at once. To do this efficiently,
1692          * we calculate the largest doubling multiple of cycle_intervals
1693          * that is smaller than the offset.  We then accumulate that
1694          * chunk in one go, and then try to consume the next smaller
1695          * doubled multiple.
1696          */
1697         shift = ilog2(offset) - ilog2(tk->cycle_interval);
1698         shift = max(0, shift);
1699         /* Bound shift to one less than what overflows tick_length */
1700         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1701         shift = min(shift, maxshift);
1702         while (offset >= tk->cycle_interval) {
1703                 offset = logarithmic_accumulation(tk, offset, shift,
1704                                                         &clock_set);
1705                 if (offset < tk->cycle_interval<<shift)
1706                         shift--;
1707         }
1708
1709         /* correct the clock when NTP error is too big */
1710         timekeeping_adjust(tk, offset);
1711
1712         /*
1713          * XXX This can be killed once everyone converts
1714          * to the new update_vsyscall.
1715          */
1716         old_vsyscall_fixup(tk);
1717
1718         /*
1719          * Finally, make sure that after the rounding
1720          * xtime_nsec isn't larger than NSEC_PER_SEC
1721          */
1722         clock_set |= accumulate_nsecs_to_secs(tk);
1723
1724         write_seqcount_begin(&tk_core.seq);
1725         /*
1726          * Update the real timekeeper.
1727          *
1728          * We could avoid this memcpy by switching pointers, but that
1729          * requires changes to all other timekeeper usage sites as
1730          * well, i.e. move the timekeeper pointer getter into the
1731          * spinlocked/seqcount protected sections. And we trade this
1732          * memcpy under the tk_core.seq against one before we start
1733          * updating.
1734          */
1735         memcpy(real_tk, tk, sizeof(*tk));
1736         timekeeping_update(real_tk, clock_set);
1737         write_seqcount_end(&tk_core.seq);
1738 out:
1739         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1740         if (clock_set)
1741                 /* Have to call _delayed version, since in irq context*/
1742                 clock_was_set_delayed();
1743 }
1744
1745 /**
1746  * getboottime64 - Return the real time of system boot.
1747  * @ts:         pointer to the timespec64 to be set
1748  *
1749  * Returns the wall-time of boot in a timespec64.
1750  *
1751  * This is based on the wall_to_monotonic offset and the total suspend
1752  * time. Calls to settimeofday will affect the value returned (which
1753  * basically means that however wrong your real time clock is at boot time,
1754  * you get the right time here).
1755  */
1756 void getboottime64(struct timespec64 *ts)
1757 {
1758         struct timekeeper *tk = &tk_core.timekeeper;
1759         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1760
1761         *ts = ktime_to_timespec64(t);
1762 }
1763 EXPORT_SYMBOL_GPL(getboottime64);
1764
1765 unsigned long get_seconds(void)
1766 {
1767         struct timekeeper *tk = &tk_core.timekeeper;
1768
1769         return tk->xtime_sec;
1770 }
1771 EXPORT_SYMBOL(get_seconds);
1772
1773 struct timespec __current_kernel_time(void)
1774 {
1775         struct timekeeper *tk = &tk_core.timekeeper;
1776
1777         return timespec64_to_timespec(tk_xtime(tk));
1778 }
1779
1780 struct timespec current_kernel_time(void)
1781 {
1782         struct timekeeper *tk = &tk_core.timekeeper;
1783         struct timespec64 now;
1784         unsigned long seq;
1785
1786         do {
1787                 seq = read_seqcount_begin(&tk_core.seq);
1788
1789                 now = tk_xtime(tk);
1790         } while (read_seqcount_retry(&tk_core.seq, seq));
1791
1792         return timespec64_to_timespec(now);
1793 }
1794 EXPORT_SYMBOL(current_kernel_time);
1795
1796 struct timespec64 get_monotonic_coarse64(void)
1797 {
1798         struct timekeeper *tk = &tk_core.timekeeper;
1799         struct timespec64 now, mono;
1800         unsigned long seq;
1801
1802         do {
1803                 seq = read_seqcount_begin(&tk_core.seq);
1804
1805                 now = tk_xtime(tk);
1806                 mono = tk->wall_to_monotonic;
1807         } while (read_seqcount_retry(&tk_core.seq, seq));
1808
1809         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1810                                 now.tv_nsec + mono.tv_nsec);
1811
1812         return now;
1813 }
1814
1815 /*
1816  * Must hold jiffies_lock
1817  */
1818 void do_timer(unsigned long ticks)
1819 {
1820         jiffies_64 += ticks;
1821         calc_global_load(ticks);
1822 }
1823
1824 /**
1825  * ktime_get_update_offsets_tick - hrtimer helper
1826  * @offs_real:  pointer to storage for monotonic -> realtime offset
1827  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1828  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1829  *
1830  * Returns monotonic time at last tick and various offsets
1831  */
1832 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1833                                                         ktime_t *offs_tai)
1834 {
1835         struct timekeeper *tk = &tk_core.timekeeper;
1836         unsigned int seq;
1837         ktime_t base;
1838         u64 nsecs;
1839
1840         do {
1841                 seq = read_seqcount_begin(&tk_core.seq);
1842
1843                 base = tk->tkr.base_mono;
1844                 nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1845
1846                 *offs_real = tk->offs_real;
1847                 *offs_boot = tk->offs_boot;
1848                 *offs_tai = tk->offs_tai;
1849         } while (read_seqcount_retry(&tk_core.seq, seq));
1850
1851         return ktime_add_ns(base, nsecs);
1852 }
1853
1854 #ifdef CONFIG_HIGH_RES_TIMERS
1855 /**
1856  * ktime_get_update_offsets_now - hrtimer helper
1857  * @offs_real:  pointer to storage for monotonic -> realtime offset
1858  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1859  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1860  *
1861  * Returns current monotonic time and updates the offsets
1862  * Called from hrtimer_interrupt() or retrigger_next_event()
1863  */
1864 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1865                                                         ktime_t *offs_tai)
1866 {
1867         struct timekeeper *tk = &tk_core.timekeeper;
1868         unsigned int seq;
1869         ktime_t base;
1870         u64 nsecs;
1871
1872         do {
1873                 seq = read_seqcount_begin(&tk_core.seq);
1874
1875                 base = tk->tkr.base_mono;
1876                 nsecs = timekeeping_get_ns(&tk->tkr);
1877
1878                 *offs_real = tk->offs_real;
1879                 *offs_boot = tk->offs_boot;
1880                 *offs_tai = tk->offs_tai;
1881         } while (read_seqcount_retry(&tk_core.seq, seq));
1882
1883         return ktime_add_ns(base, nsecs);
1884 }
1885 #endif
1886
1887 /**
1888  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1889  */
1890 int do_adjtimex(struct timex *txc)
1891 {
1892         struct timekeeper *tk = &tk_core.timekeeper;
1893         unsigned long flags;
1894         struct timespec64 ts;
1895         s32 orig_tai, tai;
1896         int ret;
1897
1898         /* Validate the data before disabling interrupts */
1899         ret = ntp_validate_timex(txc);
1900         if (ret)
1901                 return ret;
1902
1903         if (txc->modes & ADJ_SETOFFSET) {
1904                 struct timespec delta;
1905                 delta.tv_sec  = txc->time.tv_sec;
1906                 delta.tv_nsec = txc->time.tv_usec;
1907                 if (!(txc->modes & ADJ_NANO))
1908                         delta.tv_nsec *= 1000;
1909                 ret = timekeeping_inject_offset(&delta);
1910                 if (ret)
1911                         return ret;
1912         }
1913
1914         getnstimeofday64(&ts);
1915
1916         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1917         write_seqcount_begin(&tk_core.seq);
1918
1919         orig_tai = tai = tk->tai_offset;
1920         ret = __do_adjtimex(txc, &ts, &tai);
1921
1922         if (tai != orig_tai) {
1923                 __timekeeping_set_tai_offset(tk, tai);
1924                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1925         }
1926         write_seqcount_end(&tk_core.seq);
1927         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1928
1929         if (tai != orig_tai)
1930                 clock_was_set();
1931
1932         ntp_notify_cmos_timer();
1933
1934         return ret;
1935 }
1936
1937 #ifdef CONFIG_NTP_PPS
1938 /**
1939  * hardpps() - Accessor function to NTP __hardpps function
1940  */
1941 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1942 {
1943         unsigned long flags;
1944
1945         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1946         write_seqcount_begin(&tk_core.seq);
1947
1948         __hardpps(phase_ts, raw_ts);
1949
1950         write_seqcount_end(&tk_core.seq);
1951         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1952 }
1953 EXPORT_SYMBOL(hardpps);
1954 #endif
1955
1956 /**
1957  * xtime_update() - advances the timekeeping infrastructure
1958  * @ticks:      number of ticks, that have elapsed since the last call.
1959  *
1960  * Must be called with interrupts disabled.
1961  */
1962 void xtime_update(unsigned long ticks)
1963 {
1964         write_seqlock(&jiffies_lock);
1965         do_timer(ticks);
1966         write_sequnlock(&jiffies_lock);
1967         update_wall_time();
1968 }