21cc23918cbdd7ae190c7b182f5d3cb6a69f869e
[cascardo/linux.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP            (1 << 0)
32 #define TK_MIRROR               (1 << 1)
33 #define TK_CLOCK_WAS_SET        (1 << 2)
34
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40         seqcount_t              seq;
41         struct timekeeper       timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:        Sequence counter for protecting updates. The lowest bit
50  *              is the index for the tk_read_base array
51  * @base:       tk_read_base array. Access is indexed by the lowest bit of
52  *              @seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57         seqcount_t              seq;
58         struct tk_read_base     base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71                 tk->xtime_sec++;
72         }
73 }
74
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77         struct timespec64 ts;
78
79         ts.tv_sec = tk->xtime_sec;
80         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81         return ts;
82 }
83
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86         tk->xtime_sec = ts->tv_sec;
87         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92         tk->xtime_sec += ts->tv_sec;
93         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94         tk_normalize_xtime(tk);
95 }
96
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99         struct timespec64 tmp;
100
101         /*
102          * Verify consistency of: offset_real = -wall_to_monotonic
103          * before modifying anything
104          */
105         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106                                         -tk->wall_to_monotonic.tv_nsec);
107         WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108         tk->wall_to_monotonic = wtm;
109         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110         tk->offs_real = timespec64_to_ktime(tmp);
111         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116         tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121
122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123 {
124
125         cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126         const char *name = tk->tkr_mono.clock->name;
127
128         if (offset > max_cycles) {
129                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130                                 offset, name, max_cycles);
131                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132         } else {
133                 if (offset > (max_cycles >> 1)) {
134                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
135                                         offset, name, max_cycles >> 1);
136                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137                 }
138         }
139
140         if (tk->underflow_seen) {
141                 if (jiffies - tk->last_warning > WARNING_FREQ) {
142                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
144                         printk_deferred("         Your kernel is probably still fine.\n");
145                         tk->last_warning = jiffies;
146                 }
147                 tk->underflow_seen = 0;
148         }
149
150         if (tk->overflow_seen) {
151                 if (jiffies - tk->last_warning > WARNING_FREQ) {
152                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
154                         printk_deferred("         Your kernel is probably still fine.\n");
155                         tk->last_warning = jiffies;
156                 }
157                 tk->overflow_seen = 0;
158         }
159 }
160
161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163         struct timekeeper *tk = &tk_core.timekeeper;
164         cycle_t now, last, mask, max, delta;
165         unsigned int seq;
166
167         /*
168          * Since we're called holding a seqlock, the data may shift
169          * under us while we're doing the calculation. This can cause
170          * false positives, since we'd note a problem but throw the
171          * results away. So nest another seqlock here to atomically
172          * grab the points we are checking with.
173          */
174         do {
175                 seq = read_seqcount_begin(&tk_core.seq);
176                 now = tkr->read(tkr->clock);
177                 last = tkr->cycle_last;
178                 mask = tkr->mask;
179                 max = tkr->clock->max_cycles;
180         } while (read_seqcount_retry(&tk_core.seq, seq));
181
182         delta = clocksource_delta(now, last, mask);
183
184         /*
185          * Try to catch underflows by checking if we are seeing small
186          * mask-relative negative values.
187          */
188         if (unlikely((~delta & mask) < (mask >> 3))) {
189                 tk->underflow_seen = 1;
190                 delta = 0;
191         }
192
193         /* Cap delta value to the max_cycles values to avoid mult overflows */
194         if (unlikely(delta > max)) {
195                 tk->overflow_seen = 1;
196                 delta = tkr->clock->max_cycles;
197         }
198
199         return delta;
200 }
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203 {
204 }
205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206 {
207         cycle_t cycle_now, delta;
208
209         /* read clocksource */
210         cycle_now = tkr->read(tkr->clock);
211
212         /* calculate the delta since the last update_wall_time */
213         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215         return delta;
216 }
217 #endif
218
219 /**
220  * tk_setup_internals - Set up internals to use clocksource clock.
221  *
222  * @tk:         The target timekeeper to setup.
223  * @clock:              Pointer to clocksource.
224  *
225  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226  * pair and interval request.
227  *
228  * Unless you're the timekeeping code, you should not be using this!
229  */
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 {
232         cycle_t interval;
233         u64 tmp, ntpinterval;
234         struct clocksource *old_clock;
235
236         old_clock = tk->tkr_mono.clock;
237         tk->tkr_mono.clock = clock;
238         tk->tkr_mono.read = clock->read;
239         tk->tkr_mono.mask = clock->mask;
240         tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
241
242         tk->tkr_raw.clock = clock;
243         tk->tkr_raw.read = clock->read;
244         tk->tkr_raw.mask = clock->mask;
245         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
246
247         /* Do the ns -> cycle conversion first, using original mult */
248         tmp = NTP_INTERVAL_LENGTH;
249         tmp <<= clock->shift;
250         ntpinterval = tmp;
251         tmp += clock->mult/2;
252         do_div(tmp, clock->mult);
253         if (tmp == 0)
254                 tmp = 1;
255
256         interval = (cycle_t) tmp;
257         tk->cycle_interval = interval;
258
259         /* Go back from cycles -> shifted ns */
260         tk->xtime_interval = (u64) interval * clock->mult;
261         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
262         tk->raw_interval =
263                 ((u64) interval * clock->mult) >> clock->shift;
264
265          /* if changing clocks, convert xtime_nsec shift units */
266         if (old_clock) {
267                 int shift_change = clock->shift - old_clock->shift;
268                 if (shift_change < 0)
269                         tk->tkr_mono.xtime_nsec >>= -shift_change;
270                 else
271                         tk->tkr_mono.xtime_nsec <<= shift_change;
272         }
273         tk->tkr_raw.xtime_nsec = 0;
274
275         tk->tkr_mono.shift = clock->shift;
276         tk->tkr_raw.shift = clock->shift;
277
278         tk->ntp_error = 0;
279         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
280         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
281
282         /*
283          * The timekeeper keeps its own mult values for the currently
284          * active clocksource. These value will be adjusted via NTP
285          * to counteract clock drifting.
286          */
287         tk->tkr_mono.mult = clock->mult;
288         tk->tkr_raw.mult = clock->mult;
289         tk->ntp_err_mult = 0;
290 }
291
292 /* Timekeeper helper functions. */
293
294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 static u32 default_arch_gettimeoffset(void) { return 0; }
296 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
297 #else
298 static inline u32 arch_gettimeoffset(void) { return 0; }
299 #endif
300
301 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
302 {
303         cycle_t delta;
304         s64 nsec;
305
306         delta = timekeeping_get_delta(tkr);
307
308         nsec = (delta * tkr->mult + tkr->xtime_nsec) >> tkr->shift;
309
310         /* If arch requires, add in get_arch_timeoffset() */
311         return nsec + arch_gettimeoffset();
312 }
313
314 /**
315  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
316  * @tkr: Timekeeping readout base from which we take the update
317  *
318  * We want to use this from any context including NMI and tracing /
319  * instrumenting the timekeeping code itself.
320  *
321  * Employ the latch technique; see @raw_write_seqcount_latch.
322  *
323  * So if a NMI hits the update of base[0] then it will use base[1]
324  * which is still consistent. In the worst case this can result is a
325  * slightly wrong timestamp (a few nanoseconds). See
326  * @ktime_get_mono_fast_ns.
327  */
328 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
329 {
330         struct tk_read_base *base = tkf->base;
331
332         /* Force readers off to base[1] */
333         raw_write_seqcount_latch(&tkf->seq);
334
335         /* Update base[0] */
336         memcpy(base, tkr, sizeof(*base));
337
338         /* Force readers back to base[0] */
339         raw_write_seqcount_latch(&tkf->seq);
340
341         /* Update base[1] */
342         memcpy(base + 1, base, sizeof(*base));
343 }
344
345 /**
346  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
347  *
348  * This timestamp is not guaranteed to be monotonic across an update.
349  * The timestamp is calculated by:
350  *
351  *      now = base_mono + clock_delta * slope
352  *
353  * So if the update lowers the slope, readers who are forced to the
354  * not yet updated second array are still using the old steeper slope.
355  *
356  * tmono
357  * ^
358  * |    o  n
359  * |   o n
360  * |  u
361  * | o
362  * |o
363  * |12345678---> reader order
364  *
365  * o = old slope
366  * u = update
367  * n = new slope
368  *
369  * So reader 6 will observe time going backwards versus reader 5.
370  *
371  * While other CPUs are likely to be able observe that, the only way
372  * for a CPU local observation is when an NMI hits in the middle of
373  * the update. Timestamps taken from that NMI context might be ahead
374  * of the following timestamps. Callers need to be aware of that and
375  * deal with it.
376  */
377 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
378 {
379         struct tk_read_base *tkr;
380         unsigned int seq;
381         u64 now;
382
383         do {
384                 seq = raw_read_seqcount_latch(&tkf->seq);
385                 tkr = tkf->base + (seq & 0x01);
386                 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
387         } while (read_seqcount_retry(&tkf->seq, seq));
388
389         return now;
390 }
391
392 u64 ktime_get_mono_fast_ns(void)
393 {
394         return __ktime_get_fast_ns(&tk_fast_mono);
395 }
396 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
397
398 u64 ktime_get_raw_fast_ns(void)
399 {
400         return __ktime_get_fast_ns(&tk_fast_raw);
401 }
402 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
403
404 /* Suspend-time cycles value for halted fast timekeeper. */
405 static cycle_t cycles_at_suspend;
406
407 static cycle_t dummy_clock_read(struct clocksource *cs)
408 {
409         return cycles_at_suspend;
410 }
411
412 /**
413  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
414  * @tk: Timekeeper to snapshot.
415  *
416  * It generally is unsafe to access the clocksource after timekeeping has been
417  * suspended, so take a snapshot of the readout base of @tk and use it as the
418  * fast timekeeper's readout base while suspended.  It will return the same
419  * number of cycles every time until timekeeping is resumed at which time the
420  * proper readout base for the fast timekeeper will be restored automatically.
421  */
422 static void halt_fast_timekeeper(struct timekeeper *tk)
423 {
424         static struct tk_read_base tkr_dummy;
425         struct tk_read_base *tkr = &tk->tkr_mono;
426
427         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
428         cycles_at_suspend = tkr->read(tkr->clock);
429         tkr_dummy.read = dummy_clock_read;
430         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
431
432         tkr = &tk->tkr_raw;
433         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
434         tkr_dummy.read = dummy_clock_read;
435         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
436 }
437
438 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
439
440 static inline void update_vsyscall(struct timekeeper *tk)
441 {
442         struct timespec xt, wm;
443
444         xt = timespec64_to_timespec(tk_xtime(tk));
445         wm = timespec64_to_timespec(tk->wall_to_monotonic);
446         update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
447                             tk->tkr_mono.cycle_last);
448 }
449
450 static inline void old_vsyscall_fixup(struct timekeeper *tk)
451 {
452         s64 remainder;
453
454         /*
455         * Store only full nanoseconds into xtime_nsec after rounding
456         * it up and add the remainder to the error difference.
457         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
458         * by truncating the remainder in vsyscalls. However, it causes
459         * additional work to be done in timekeeping_adjust(). Once
460         * the vsyscall implementations are converted to use xtime_nsec
461         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
462         * users are removed, this can be killed.
463         */
464         remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
465         tk->tkr_mono.xtime_nsec -= remainder;
466         tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
467         tk->ntp_error += remainder << tk->ntp_error_shift;
468         tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
469 }
470 #else
471 #define old_vsyscall_fixup(tk)
472 #endif
473
474 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
475
476 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
477 {
478         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
479 }
480
481 /**
482  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
483  */
484 int pvclock_gtod_register_notifier(struct notifier_block *nb)
485 {
486         struct timekeeper *tk = &tk_core.timekeeper;
487         unsigned long flags;
488         int ret;
489
490         raw_spin_lock_irqsave(&timekeeper_lock, flags);
491         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
492         update_pvclock_gtod(tk, true);
493         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
494
495         return ret;
496 }
497 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
498
499 /**
500  * pvclock_gtod_unregister_notifier - unregister a pvclock
501  * timedata update listener
502  */
503 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
504 {
505         unsigned long flags;
506         int ret;
507
508         raw_spin_lock_irqsave(&timekeeper_lock, flags);
509         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
510         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
511
512         return ret;
513 }
514 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
515
516 /*
517  * tk_update_leap_state - helper to update the next_leap_ktime
518  */
519 static inline void tk_update_leap_state(struct timekeeper *tk)
520 {
521         tk->next_leap_ktime = ntp_get_next_leap();
522         if (tk->next_leap_ktime.tv64 != KTIME_MAX)
523                 /* Convert to monotonic time */
524                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
525 }
526
527 /*
528  * Update the ktime_t based scalar nsec members of the timekeeper
529  */
530 static inline void tk_update_ktime_data(struct timekeeper *tk)
531 {
532         u64 seconds;
533         u32 nsec;
534
535         /*
536          * The xtime based monotonic readout is:
537          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
538          * The ktime based monotonic readout is:
539          *      nsec = base_mono + now();
540          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
541          */
542         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
543         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
544         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
545
546         /* Update the monotonic raw base */
547         tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
548
549         /*
550          * The sum of the nanoseconds portions of xtime and
551          * wall_to_monotonic can be greater/equal one second. Take
552          * this into account before updating tk->ktime_sec.
553          */
554         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
555         if (nsec >= NSEC_PER_SEC)
556                 seconds++;
557         tk->ktime_sec = seconds;
558 }
559
560 /* must hold timekeeper_lock */
561 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
562 {
563         if (action & TK_CLEAR_NTP) {
564                 tk->ntp_error = 0;
565                 ntp_clear();
566         }
567
568         tk_update_leap_state(tk);
569         tk_update_ktime_data(tk);
570
571         update_vsyscall(tk);
572         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
573
574         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
575         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
576
577         if (action & TK_CLOCK_WAS_SET)
578                 tk->clock_was_set_seq++;
579         /*
580          * The mirroring of the data to the shadow-timekeeper needs
581          * to happen last here to ensure we don't over-write the
582          * timekeeper structure on the next update with stale data
583          */
584         if (action & TK_MIRROR)
585                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
586                        sizeof(tk_core.timekeeper));
587 }
588
589 /**
590  * timekeeping_forward_now - update clock to the current time
591  *
592  * Forward the current clock to update its state since the last call to
593  * update_wall_time(). This is useful before significant clock changes,
594  * as it avoids having to deal with this time offset explicitly.
595  */
596 static void timekeeping_forward_now(struct timekeeper *tk)
597 {
598         struct clocksource *clock = tk->tkr_mono.clock;
599         cycle_t cycle_now, delta;
600         s64 nsec;
601
602         cycle_now = tk->tkr_mono.read(clock);
603         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
604         tk->tkr_mono.cycle_last = cycle_now;
605         tk->tkr_raw.cycle_last  = cycle_now;
606
607         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
608
609         /* If arch requires, add in get_arch_timeoffset() */
610         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
611
612         tk_normalize_xtime(tk);
613
614         nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
615         timespec64_add_ns(&tk->raw_time, nsec);
616 }
617
618 /**
619  * __getnstimeofday64 - Returns the time of day in a timespec64.
620  * @ts:         pointer to the timespec to be set
621  *
622  * Updates the time of day in the timespec.
623  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
624  */
625 int __getnstimeofday64(struct timespec64 *ts)
626 {
627         struct timekeeper *tk = &tk_core.timekeeper;
628         unsigned long seq;
629         s64 nsecs = 0;
630
631         do {
632                 seq = read_seqcount_begin(&tk_core.seq);
633
634                 ts->tv_sec = tk->xtime_sec;
635                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
636
637         } while (read_seqcount_retry(&tk_core.seq, seq));
638
639         ts->tv_nsec = 0;
640         timespec64_add_ns(ts, nsecs);
641
642         /*
643          * Do not bail out early, in case there were callers still using
644          * the value, even in the face of the WARN_ON.
645          */
646         if (unlikely(timekeeping_suspended))
647                 return -EAGAIN;
648         return 0;
649 }
650 EXPORT_SYMBOL(__getnstimeofday64);
651
652 /**
653  * getnstimeofday64 - Returns the time of day in a timespec64.
654  * @ts:         pointer to the timespec64 to be set
655  *
656  * Returns the time of day in a timespec64 (WARN if suspended).
657  */
658 void getnstimeofday64(struct timespec64 *ts)
659 {
660         WARN_ON(__getnstimeofday64(ts));
661 }
662 EXPORT_SYMBOL(getnstimeofday64);
663
664 ktime_t ktime_get(void)
665 {
666         struct timekeeper *tk = &tk_core.timekeeper;
667         unsigned int seq;
668         ktime_t base;
669         s64 nsecs;
670
671         WARN_ON(timekeeping_suspended);
672
673         do {
674                 seq = read_seqcount_begin(&tk_core.seq);
675                 base = tk->tkr_mono.base;
676                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
677
678         } while (read_seqcount_retry(&tk_core.seq, seq));
679
680         return ktime_add_ns(base, nsecs);
681 }
682 EXPORT_SYMBOL_GPL(ktime_get);
683
684 u32 ktime_get_resolution_ns(void)
685 {
686         struct timekeeper *tk = &tk_core.timekeeper;
687         unsigned int seq;
688         u32 nsecs;
689
690         WARN_ON(timekeeping_suspended);
691
692         do {
693                 seq = read_seqcount_begin(&tk_core.seq);
694                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
695         } while (read_seqcount_retry(&tk_core.seq, seq));
696
697         return nsecs;
698 }
699 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
700
701 static ktime_t *offsets[TK_OFFS_MAX] = {
702         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
703         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
704         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
705 };
706
707 ktime_t ktime_get_with_offset(enum tk_offsets offs)
708 {
709         struct timekeeper *tk = &tk_core.timekeeper;
710         unsigned int seq;
711         ktime_t base, *offset = offsets[offs];
712         s64 nsecs;
713
714         WARN_ON(timekeeping_suspended);
715
716         do {
717                 seq = read_seqcount_begin(&tk_core.seq);
718                 base = ktime_add(tk->tkr_mono.base, *offset);
719                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
720
721         } while (read_seqcount_retry(&tk_core.seq, seq));
722
723         return ktime_add_ns(base, nsecs);
724
725 }
726 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
727
728 /**
729  * ktime_mono_to_any() - convert mononotic time to any other time
730  * @tmono:      time to convert.
731  * @offs:       which offset to use
732  */
733 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
734 {
735         ktime_t *offset = offsets[offs];
736         unsigned long seq;
737         ktime_t tconv;
738
739         do {
740                 seq = read_seqcount_begin(&tk_core.seq);
741                 tconv = ktime_add(tmono, *offset);
742         } while (read_seqcount_retry(&tk_core.seq, seq));
743
744         return tconv;
745 }
746 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
747
748 /**
749  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
750  */
751 ktime_t ktime_get_raw(void)
752 {
753         struct timekeeper *tk = &tk_core.timekeeper;
754         unsigned int seq;
755         ktime_t base;
756         s64 nsecs;
757
758         do {
759                 seq = read_seqcount_begin(&tk_core.seq);
760                 base = tk->tkr_raw.base;
761                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
762
763         } while (read_seqcount_retry(&tk_core.seq, seq));
764
765         return ktime_add_ns(base, nsecs);
766 }
767 EXPORT_SYMBOL_GPL(ktime_get_raw);
768
769 /**
770  * ktime_get_ts64 - get the monotonic clock in timespec64 format
771  * @ts:         pointer to timespec variable
772  *
773  * The function calculates the monotonic clock from the realtime
774  * clock and the wall_to_monotonic offset and stores the result
775  * in normalized timespec64 format in the variable pointed to by @ts.
776  */
777 void ktime_get_ts64(struct timespec64 *ts)
778 {
779         struct timekeeper *tk = &tk_core.timekeeper;
780         struct timespec64 tomono;
781         s64 nsec;
782         unsigned int seq;
783
784         WARN_ON(timekeeping_suspended);
785
786         do {
787                 seq = read_seqcount_begin(&tk_core.seq);
788                 ts->tv_sec = tk->xtime_sec;
789                 nsec = timekeeping_get_ns(&tk->tkr_mono);
790                 tomono = tk->wall_to_monotonic;
791
792         } while (read_seqcount_retry(&tk_core.seq, seq));
793
794         ts->tv_sec += tomono.tv_sec;
795         ts->tv_nsec = 0;
796         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
797 }
798 EXPORT_SYMBOL_GPL(ktime_get_ts64);
799
800 /**
801  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
802  *
803  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
804  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
805  * works on both 32 and 64 bit systems. On 32 bit systems the readout
806  * covers ~136 years of uptime which should be enough to prevent
807  * premature wrap arounds.
808  */
809 time64_t ktime_get_seconds(void)
810 {
811         struct timekeeper *tk = &tk_core.timekeeper;
812
813         WARN_ON(timekeeping_suspended);
814         return tk->ktime_sec;
815 }
816 EXPORT_SYMBOL_GPL(ktime_get_seconds);
817
818 /**
819  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
820  *
821  * Returns the wall clock seconds since 1970. This replaces the
822  * get_seconds() interface which is not y2038 safe on 32bit systems.
823  *
824  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
825  * 32bit systems the access must be protected with the sequence
826  * counter to provide "atomic" access to the 64bit tk->xtime_sec
827  * value.
828  */
829 time64_t ktime_get_real_seconds(void)
830 {
831         struct timekeeper *tk = &tk_core.timekeeper;
832         time64_t seconds;
833         unsigned int seq;
834
835         if (IS_ENABLED(CONFIG_64BIT))
836                 return tk->xtime_sec;
837
838         do {
839                 seq = read_seqcount_begin(&tk_core.seq);
840                 seconds = tk->xtime_sec;
841
842         } while (read_seqcount_retry(&tk_core.seq, seq));
843
844         return seconds;
845 }
846 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
847
848 /**
849  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
850  * but without the sequence counter protect. This internal function
851  * is called just when timekeeping lock is already held.
852  */
853 time64_t __ktime_get_real_seconds(void)
854 {
855         struct timekeeper *tk = &tk_core.timekeeper;
856
857         return tk->xtime_sec;
858 }
859
860
861 #ifdef CONFIG_NTP_PPS
862
863 /**
864  * ktime_get_raw_and_real_ts64 - get day and raw monotonic time in timespec format
865  * @ts_raw:     pointer to the timespec to be set to raw monotonic time
866  * @ts_real:    pointer to the timespec to be set to the time of day
867  *
868  * This function reads both the time of day and raw monotonic time at the
869  * same time atomically and stores the resulting timestamps in timespec
870  * format.
871  */
872 void ktime_get_raw_and_real_ts64(struct timespec64 *ts_raw, struct timespec64 *ts_real)
873 {
874         struct timekeeper *tk = &tk_core.timekeeper;
875         unsigned long seq;
876         s64 nsecs_raw, nsecs_real;
877
878         WARN_ON_ONCE(timekeeping_suspended);
879
880         do {
881                 seq = read_seqcount_begin(&tk_core.seq);
882
883                 *ts_raw = tk->raw_time;
884                 ts_real->tv_sec = tk->xtime_sec;
885                 ts_real->tv_nsec = 0;
886
887                 nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
888                 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
889
890         } while (read_seqcount_retry(&tk_core.seq, seq));
891
892         timespec64_add_ns(ts_raw, nsecs_raw);
893         timespec64_add_ns(ts_real, nsecs_real);
894 }
895 EXPORT_SYMBOL(ktime_get_raw_and_real_ts64);
896
897 #endif /* CONFIG_NTP_PPS */
898
899 /**
900  * do_gettimeofday - Returns the time of day in a timeval
901  * @tv:         pointer to the timeval to be set
902  *
903  * NOTE: Users should be converted to using getnstimeofday()
904  */
905 void do_gettimeofday(struct timeval *tv)
906 {
907         struct timespec64 now;
908
909         getnstimeofday64(&now);
910         tv->tv_sec = now.tv_sec;
911         tv->tv_usec = now.tv_nsec/1000;
912 }
913 EXPORT_SYMBOL(do_gettimeofday);
914
915 /**
916  * do_settimeofday64 - Sets the time of day.
917  * @ts:     pointer to the timespec64 variable containing the new time
918  *
919  * Sets the time of day to the new time and update NTP and notify hrtimers
920  */
921 int do_settimeofday64(const struct timespec64 *ts)
922 {
923         struct timekeeper *tk = &tk_core.timekeeper;
924         struct timespec64 ts_delta, xt;
925         unsigned long flags;
926         int ret = 0;
927
928         if (!timespec64_valid_strict(ts))
929                 return -EINVAL;
930
931         raw_spin_lock_irqsave(&timekeeper_lock, flags);
932         write_seqcount_begin(&tk_core.seq);
933
934         timekeeping_forward_now(tk);
935
936         xt = tk_xtime(tk);
937         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
938         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
939
940         if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
941                 ret = -EINVAL;
942                 goto out;
943         }
944
945         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
946
947         tk_set_xtime(tk, ts);
948 out:
949         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
950
951         write_seqcount_end(&tk_core.seq);
952         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
953
954         /* signal hrtimers about time change */
955         clock_was_set();
956
957         return ret;
958 }
959 EXPORT_SYMBOL(do_settimeofday64);
960
961 /**
962  * timekeeping_inject_offset - Adds or subtracts from the current time.
963  * @tv:         pointer to the timespec variable containing the offset
964  *
965  * Adds or subtracts an offset value from the current time.
966  */
967 int timekeeping_inject_offset(struct timespec *ts)
968 {
969         struct timekeeper *tk = &tk_core.timekeeper;
970         unsigned long flags;
971         struct timespec64 ts64, tmp;
972         int ret = 0;
973
974         if (!timespec_inject_offset_valid(ts))
975                 return -EINVAL;
976
977         ts64 = timespec_to_timespec64(*ts);
978
979         raw_spin_lock_irqsave(&timekeeper_lock, flags);
980         write_seqcount_begin(&tk_core.seq);
981
982         timekeeping_forward_now(tk);
983
984         /* Make sure the proposed value is valid */
985         tmp = timespec64_add(tk_xtime(tk),  ts64);
986         if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
987             !timespec64_valid_strict(&tmp)) {
988                 ret = -EINVAL;
989                 goto error;
990         }
991
992         tk_xtime_add(tk, &ts64);
993         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
994
995 error: /* even if we error out, we forwarded the time, so call update */
996         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
997
998         write_seqcount_end(&tk_core.seq);
999         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1000
1001         /* signal hrtimers about time change */
1002         clock_was_set();
1003
1004         return ret;
1005 }
1006 EXPORT_SYMBOL(timekeeping_inject_offset);
1007
1008
1009 /**
1010  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1011  *
1012  */
1013 s32 timekeeping_get_tai_offset(void)
1014 {
1015         struct timekeeper *tk = &tk_core.timekeeper;
1016         unsigned int seq;
1017         s32 ret;
1018
1019         do {
1020                 seq = read_seqcount_begin(&tk_core.seq);
1021                 ret = tk->tai_offset;
1022         } while (read_seqcount_retry(&tk_core.seq, seq));
1023
1024         return ret;
1025 }
1026
1027 /**
1028  * __timekeeping_set_tai_offset - Lock free worker function
1029  *
1030  */
1031 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1032 {
1033         tk->tai_offset = tai_offset;
1034         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1035 }
1036
1037 /**
1038  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1039  *
1040  */
1041 void timekeeping_set_tai_offset(s32 tai_offset)
1042 {
1043         struct timekeeper *tk = &tk_core.timekeeper;
1044         unsigned long flags;
1045
1046         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1047         write_seqcount_begin(&tk_core.seq);
1048         __timekeeping_set_tai_offset(tk, tai_offset);
1049         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1050         write_seqcount_end(&tk_core.seq);
1051         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1052         clock_was_set();
1053 }
1054
1055 /**
1056  * change_clocksource - Swaps clocksources if a new one is available
1057  *
1058  * Accumulates current time interval and initializes new clocksource
1059  */
1060 static int change_clocksource(void *data)
1061 {
1062         struct timekeeper *tk = &tk_core.timekeeper;
1063         struct clocksource *new, *old;
1064         unsigned long flags;
1065
1066         new = (struct clocksource *) data;
1067
1068         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1069         write_seqcount_begin(&tk_core.seq);
1070
1071         timekeeping_forward_now(tk);
1072         /*
1073          * If the cs is in module, get a module reference. Succeeds
1074          * for built-in code (owner == NULL) as well.
1075          */
1076         if (try_module_get(new->owner)) {
1077                 if (!new->enable || new->enable(new) == 0) {
1078                         old = tk->tkr_mono.clock;
1079                         tk_setup_internals(tk, new);
1080                         if (old->disable)
1081                                 old->disable(old);
1082                         module_put(old->owner);
1083                 } else {
1084                         module_put(new->owner);
1085                 }
1086         }
1087         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1088
1089         write_seqcount_end(&tk_core.seq);
1090         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1091
1092         return 0;
1093 }
1094
1095 /**
1096  * timekeeping_notify - Install a new clock source
1097  * @clock:              pointer to the clock source
1098  *
1099  * This function is called from clocksource.c after a new, better clock
1100  * source has been registered. The caller holds the clocksource_mutex.
1101  */
1102 int timekeeping_notify(struct clocksource *clock)
1103 {
1104         struct timekeeper *tk = &tk_core.timekeeper;
1105
1106         if (tk->tkr_mono.clock == clock)
1107                 return 0;
1108         stop_machine(change_clocksource, clock, NULL);
1109         tick_clock_notify();
1110         return tk->tkr_mono.clock == clock ? 0 : -1;
1111 }
1112
1113 /**
1114  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1115  * @ts:         pointer to the timespec64 to be set
1116  *
1117  * Returns the raw monotonic time (completely un-modified by ntp)
1118  */
1119 void getrawmonotonic64(struct timespec64 *ts)
1120 {
1121         struct timekeeper *tk = &tk_core.timekeeper;
1122         struct timespec64 ts64;
1123         unsigned long seq;
1124         s64 nsecs;
1125
1126         do {
1127                 seq = read_seqcount_begin(&tk_core.seq);
1128                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1129                 ts64 = tk->raw_time;
1130
1131         } while (read_seqcount_retry(&tk_core.seq, seq));
1132
1133         timespec64_add_ns(&ts64, nsecs);
1134         *ts = ts64;
1135 }
1136 EXPORT_SYMBOL(getrawmonotonic64);
1137
1138
1139 /**
1140  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1141  */
1142 int timekeeping_valid_for_hres(void)
1143 {
1144         struct timekeeper *tk = &tk_core.timekeeper;
1145         unsigned long seq;
1146         int ret;
1147
1148         do {
1149                 seq = read_seqcount_begin(&tk_core.seq);
1150
1151                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1152
1153         } while (read_seqcount_retry(&tk_core.seq, seq));
1154
1155         return ret;
1156 }
1157
1158 /**
1159  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1160  */
1161 u64 timekeeping_max_deferment(void)
1162 {
1163         struct timekeeper *tk = &tk_core.timekeeper;
1164         unsigned long seq;
1165         u64 ret;
1166
1167         do {
1168                 seq = read_seqcount_begin(&tk_core.seq);
1169
1170                 ret = tk->tkr_mono.clock->max_idle_ns;
1171
1172         } while (read_seqcount_retry(&tk_core.seq, seq));
1173
1174         return ret;
1175 }
1176
1177 /**
1178  * read_persistent_clock -  Return time from the persistent clock.
1179  *
1180  * Weak dummy function for arches that do not yet support it.
1181  * Reads the time from the battery backed persistent clock.
1182  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1183  *
1184  *  XXX - Do be sure to remove it once all arches implement it.
1185  */
1186 void __weak read_persistent_clock(struct timespec *ts)
1187 {
1188         ts->tv_sec = 0;
1189         ts->tv_nsec = 0;
1190 }
1191
1192 void __weak read_persistent_clock64(struct timespec64 *ts64)
1193 {
1194         struct timespec ts;
1195
1196         read_persistent_clock(&ts);
1197         *ts64 = timespec_to_timespec64(ts);
1198 }
1199
1200 /**
1201  * read_boot_clock64 -  Return time of the system start.
1202  *
1203  * Weak dummy function for arches that do not yet support it.
1204  * Function to read the exact time the system has been started.
1205  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1206  *
1207  *  XXX - Do be sure to remove it once all arches implement it.
1208  */
1209 void __weak read_boot_clock64(struct timespec64 *ts)
1210 {
1211         ts->tv_sec = 0;
1212         ts->tv_nsec = 0;
1213 }
1214
1215 /* Flag for if timekeeping_resume() has injected sleeptime */
1216 static bool sleeptime_injected;
1217
1218 /* Flag for if there is a persistent clock on this platform */
1219 static bool persistent_clock_exists;
1220
1221 /*
1222  * timekeeping_init - Initializes the clocksource and common timekeeping values
1223  */
1224 void __init timekeeping_init(void)
1225 {
1226         struct timekeeper *tk = &tk_core.timekeeper;
1227         struct clocksource *clock;
1228         unsigned long flags;
1229         struct timespec64 now, boot, tmp;
1230
1231         read_persistent_clock64(&now);
1232         if (!timespec64_valid_strict(&now)) {
1233                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1234                         "         Check your CMOS/BIOS settings.\n");
1235                 now.tv_sec = 0;
1236                 now.tv_nsec = 0;
1237         } else if (now.tv_sec || now.tv_nsec)
1238                 persistent_clock_exists = true;
1239
1240         read_boot_clock64(&boot);
1241         if (!timespec64_valid_strict(&boot)) {
1242                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1243                         "         Check your CMOS/BIOS settings.\n");
1244                 boot.tv_sec = 0;
1245                 boot.tv_nsec = 0;
1246         }
1247
1248         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1249         write_seqcount_begin(&tk_core.seq);
1250         ntp_init();
1251
1252         clock = clocksource_default_clock();
1253         if (clock->enable)
1254                 clock->enable(clock);
1255         tk_setup_internals(tk, clock);
1256
1257         tk_set_xtime(tk, &now);
1258         tk->raw_time.tv_sec = 0;
1259         tk->raw_time.tv_nsec = 0;
1260         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1261                 boot = tk_xtime(tk);
1262
1263         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1264         tk_set_wall_to_mono(tk, tmp);
1265
1266         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1267
1268         write_seqcount_end(&tk_core.seq);
1269         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1270 }
1271
1272 /* time in seconds when suspend began for persistent clock */
1273 static struct timespec64 timekeeping_suspend_time;
1274
1275 /**
1276  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1277  * @delta: pointer to a timespec delta value
1278  *
1279  * Takes a timespec offset measuring a suspend interval and properly
1280  * adds the sleep offset to the timekeeping variables.
1281  */
1282 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1283                                            struct timespec64 *delta)
1284 {
1285         if (!timespec64_valid_strict(delta)) {
1286                 printk_deferred(KERN_WARNING
1287                                 "__timekeeping_inject_sleeptime: Invalid "
1288                                 "sleep delta value!\n");
1289                 return;
1290         }
1291         tk_xtime_add(tk, delta);
1292         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1293         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1294         tk_debug_account_sleep_time(delta);
1295 }
1296
1297 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1298 /**
1299  * We have three kinds of time sources to use for sleep time
1300  * injection, the preference order is:
1301  * 1) non-stop clocksource
1302  * 2) persistent clock (ie: RTC accessible when irqs are off)
1303  * 3) RTC
1304  *
1305  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1306  * If system has neither 1) nor 2), 3) will be used finally.
1307  *
1308  *
1309  * If timekeeping has injected sleeptime via either 1) or 2),
1310  * 3) becomes needless, so in this case we don't need to call
1311  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1312  * means.
1313  */
1314 bool timekeeping_rtc_skipresume(void)
1315 {
1316         return sleeptime_injected;
1317 }
1318
1319 /**
1320  * 1) can be determined whether to use or not only when doing
1321  * timekeeping_resume() which is invoked after rtc_suspend(),
1322  * so we can't skip rtc_suspend() surely if system has 1).
1323  *
1324  * But if system has 2), 2) will definitely be used, so in this
1325  * case we don't need to call rtc_suspend(), and this is what
1326  * timekeeping_rtc_skipsuspend() means.
1327  */
1328 bool timekeeping_rtc_skipsuspend(void)
1329 {
1330         return persistent_clock_exists;
1331 }
1332
1333 /**
1334  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1335  * @delta: pointer to a timespec64 delta value
1336  *
1337  * This hook is for architectures that cannot support read_persistent_clock64
1338  * because their RTC/persistent clock is only accessible when irqs are enabled.
1339  * and also don't have an effective nonstop clocksource.
1340  *
1341  * This function should only be called by rtc_resume(), and allows
1342  * a suspend offset to be injected into the timekeeping values.
1343  */
1344 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1345 {
1346         struct timekeeper *tk = &tk_core.timekeeper;
1347         unsigned long flags;
1348
1349         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1350         write_seqcount_begin(&tk_core.seq);
1351
1352         timekeeping_forward_now(tk);
1353
1354         __timekeeping_inject_sleeptime(tk, delta);
1355
1356         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1357
1358         write_seqcount_end(&tk_core.seq);
1359         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1360
1361         /* signal hrtimers about time change */
1362         clock_was_set();
1363 }
1364 #endif
1365
1366 /**
1367  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1368  */
1369 void timekeeping_resume(void)
1370 {
1371         struct timekeeper *tk = &tk_core.timekeeper;
1372         struct clocksource *clock = tk->tkr_mono.clock;
1373         unsigned long flags;
1374         struct timespec64 ts_new, ts_delta;
1375         cycle_t cycle_now, cycle_delta;
1376
1377         sleeptime_injected = false;
1378         read_persistent_clock64(&ts_new);
1379
1380         clockevents_resume();
1381         clocksource_resume();
1382
1383         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1384         write_seqcount_begin(&tk_core.seq);
1385
1386         /*
1387          * After system resumes, we need to calculate the suspended time and
1388          * compensate it for the OS time. There are 3 sources that could be
1389          * used: Nonstop clocksource during suspend, persistent clock and rtc
1390          * device.
1391          *
1392          * One specific platform may have 1 or 2 or all of them, and the
1393          * preference will be:
1394          *      suspend-nonstop clocksource -> persistent clock -> rtc
1395          * The less preferred source will only be tried if there is no better
1396          * usable source. The rtc part is handled separately in rtc core code.
1397          */
1398         cycle_now = tk->tkr_mono.read(clock);
1399         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1400                 cycle_now > tk->tkr_mono.cycle_last) {
1401                 u64 num, max = ULLONG_MAX;
1402                 u32 mult = clock->mult;
1403                 u32 shift = clock->shift;
1404                 s64 nsec = 0;
1405
1406                 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1407                                                 tk->tkr_mono.mask);
1408
1409                 /*
1410                  * "cycle_delta * mutl" may cause 64 bits overflow, if the
1411                  * suspended time is too long. In that case we need do the
1412                  * 64 bits math carefully
1413                  */
1414                 do_div(max, mult);
1415                 if (cycle_delta > max) {
1416                         num = div64_u64(cycle_delta, max);
1417                         nsec = (((u64) max * mult) >> shift) * num;
1418                         cycle_delta -= num * max;
1419                 }
1420                 nsec += ((u64) cycle_delta * mult) >> shift;
1421
1422                 ts_delta = ns_to_timespec64(nsec);
1423                 sleeptime_injected = true;
1424         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1425                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1426                 sleeptime_injected = true;
1427         }
1428
1429         if (sleeptime_injected)
1430                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1431
1432         /* Re-base the last cycle value */
1433         tk->tkr_mono.cycle_last = cycle_now;
1434         tk->tkr_raw.cycle_last  = cycle_now;
1435
1436         tk->ntp_error = 0;
1437         timekeeping_suspended = 0;
1438         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1439         write_seqcount_end(&tk_core.seq);
1440         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1441
1442         touch_softlockup_watchdog();
1443
1444         tick_resume();
1445         hrtimers_resume();
1446 }
1447
1448 int timekeeping_suspend(void)
1449 {
1450         struct timekeeper *tk = &tk_core.timekeeper;
1451         unsigned long flags;
1452         struct timespec64               delta, delta_delta;
1453         static struct timespec64        old_delta;
1454
1455         read_persistent_clock64(&timekeeping_suspend_time);
1456
1457         /*
1458          * On some systems the persistent_clock can not be detected at
1459          * timekeeping_init by its return value, so if we see a valid
1460          * value returned, update the persistent_clock_exists flag.
1461          */
1462         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1463                 persistent_clock_exists = true;
1464
1465         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1466         write_seqcount_begin(&tk_core.seq);
1467         timekeeping_forward_now(tk);
1468         timekeeping_suspended = 1;
1469
1470         if (persistent_clock_exists) {
1471                 /*
1472                  * To avoid drift caused by repeated suspend/resumes,
1473                  * which each can add ~1 second drift error,
1474                  * try to compensate so the difference in system time
1475                  * and persistent_clock time stays close to constant.
1476                  */
1477                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1478                 delta_delta = timespec64_sub(delta, old_delta);
1479                 if (abs(delta_delta.tv_sec) >= 2) {
1480                         /*
1481                          * if delta_delta is too large, assume time correction
1482                          * has occurred and set old_delta to the current delta.
1483                          */
1484                         old_delta = delta;
1485                 } else {
1486                         /* Otherwise try to adjust old_system to compensate */
1487                         timekeeping_suspend_time =
1488                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1489                 }
1490         }
1491
1492         timekeeping_update(tk, TK_MIRROR);
1493         halt_fast_timekeeper(tk);
1494         write_seqcount_end(&tk_core.seq);
1495         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1496
1497         tick_suspend();
1498         clocksource_suspend();
1499         clockevents_suspend();
1500
1501         return 0;
1502 }
1503
1504 /* sysfs resume/suspend bits for timekeeping */
1505 static struct syscore_ops timekeeping_syscore_ops = {
1506         .resume         = timekeeping_resume,
1507         .suspend        = timekeeping_suspend,
1508 };
1509
1510 static int __init timekeeping_init_ops(void)
1511 {
1512         register_syscore_ops(&timekeeping_syscore_ops);
1513         return 0;
1514 }
1515 device_initcall(timekeeping_init_ops);
1516
1517 /*
1518  * Apply a multiplier adjustment to the timekeeper
1519  */
1520 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1521                                                          s64 offset,
1522                                                          bool negative,
1523                                                          int adj_scale)
1524 {
1525         s64 interval = tk->cycle_interval;
1526         s32 mult_adj = 1;
1527
1528         if (negative) {
1529                 mult_adj = -mult_adj;
1530                 interval = -interval;
1531                 offset  = -offset;
1532         }
1533         mult_adj <<= adj_scale;
1534         interval <<= adj_scale;
1535         offset <<= adj_scale;
1536
1537         /*
1538          * So the following can be confusing.
1539          *
1540          * To keep things simple, lets assume mult_adj == 1 for now.
1541          *
1542          * When mult_adj != 1, remember that the interval and offset values
1543          * have been appropriately scaled so the math is the same.
1544          *
1545          * The basic idea here is that we're increasing the multiplier
1546          * by one, this causes the xtime_interval to be incremented by
1547          * one cycle_interval. This is because:
1548          *      xtime_interval = cycle_interval * mult
1549          * So if mult is being incremented by one:
1550          *      xtime_interval = cycle_interval * (mult + 1)
1551          * Its the same as:
1552          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1553          * Which can be shortened to:
1554          *      xtime_interval += cycle_interval
1555          *
1556          * So offset stores the non-accumulated cycles. Thus the current
1557          * time (in shifted nanoseconds) is:
1558          *      now = (offset * adj) + xtime_nsec
1559          * Now, even though we're adjusting the clock frequency, we have
1560          * to keep time consistent. In other words, we can't jump back
1561          * in time, and we also want to avoid jumping forward in time.
1562          *
1563          * So given the same offset value, we need the time to be the same
1564          * both before and after the freq adjustment.
1565          *      now = (offset * adj_1) + xtime_nsec_1
1566          *      now = (offset * adj_2) + xtime_nsec_2
1567          * So:
1568          *      (offset * adj_1) + xtime_nsec_1 =
1569          *              (offset * adj_2) + xtime_nsec_2
1570          * And we know:
1571          *      adj_2 = adj_1 + 1
1572          * So:
1573          *      (offset * adj_1) + xtime_nsec_1 =
1574          *              (offset * (adj_1+1)) + xtime_nsec_2
1575          *      (offset * adj_1) + xtime_nsec_1 =
1576          *              (offset * adj_1) + offset + xtime_nsec_2
1577          * Canceling the sides:
1578          *      xtime_nsec_1 = offset + xtime_nsec_2
1579          * Which gives us:
1580          *      xtime_nsec_2 = xtime_nsec_1 - offset
1581          * Which simplfies to:
1582          *      xtime_nsec -= offset
1583          *
1584          * XXX - TODO: Doc ntp_error calculation.
1585          */
1586         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1587                 /* NTP adjustment caused clocksource mult overflow */
1588                 WARN_ON_ONCE(1);
1589                 return;
1590         }
1591
1592         tk->tkr_mono.mult += mult_adj;
1593         tk->xtime_interval += interval;
1594         tk->tkr_mono.xtime_nsec -= offset;
1595         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1596 }
1597
1598 /*
1599  * Calculate the multiplier adjustment needed to match the frequency
1600  * specified by NTP
1601  */
1602 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1603                                                         s64 offset)
1604 {
1605         s64 interval = tk->cycle_interval;
1606         s64 xinterval = tk->xtime_interval;
1607         s64 tick_error;
1608         bool negative;
1609         u32 adj;
1610
1611         /* Remove any current error adj from freq calculation */
1612         if (tk->ntp_err_mult)
1613                 xinterval -= tk->cycle_interval;
1614
1615         tk->ntp_tick = ntp_tick_length();
1616
1617         /* Calculate current error per tick */
1618         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1619         tick_error -= (xinterval + tk->xtime_remainder);
1620
1621         /* Don't worry about correcting it if its small */
1622         if (likely((tick_error >= 0) && (tick_error <= interval)))
1623                 return;
1624
1625         /* preserve the direction of correction */
1626         negative = (tick_error < 0);
1627
1628         /* Sort out the magnitude of the correction */
1629         tick_error = abs(tick_error);
1630         for (adj = 0; tick_error > interval; adj++)
1631                 tick_error >>= 1;
1632
1633         /* scale the corrections */
1634         timekeeping_apply_adjustment(tk, offset, negative, adj);
1635 }
1636
1637 /*
1638  * Adjust the timekeeper's multiplier to the correct frequency
1639  * and also to reduce the accumulated error value.
1640  */
1641 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1642 {
1643         /* Correct for the current frequency error */
1644         timekeeping_freqadjust(tk, offset);
1645
1646         /* Next make a small adjustment to fix any cumulative error */
1647         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1648                 tk->ntp_err_mult = 1;
1649                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1650         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1651                 /* Undo any existing error adjustment */
1652                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1653                 tk->ntp_err_mult = 0;
1654         }
1655
1656         if (unlikely(tk->tkr_mono.clock->maxadj &&
1657                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1658                         > tk->tkr_mono.clock->maxadj))) {
1659                 printk_once(KERN_WARNING
1660                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1661                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1662                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1663         }
1664
1665         /*
1666          * It may be possible that when we entered this function, xtime_nsec
1667          * was very small.  Further, if we're slightly speeding the clocksource
1668          * in the code above, its possible the required corrective factor to
1669          * xtime_nsec could cause it to underflow.
1670          *
1671          * Now, since we already accumulated the second, cannot simply roll
1672          * the accumulated second back, since the NTP subsystem has been
1673          * notified via second_overflow. So instead we push xtime_nsec forward
1674          * by the amount we underflowed, and add that amount into the error.
1675          *
1676          * We'll correct this error next time through this function, when
1677          * xtime_nsec is not as small.
1678          */
1679         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1680                 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1681                 tk->tkr_mono.xtime_nsec = 0;
1682                 tk->ntp_error += neg << tk->ntp_error_shift;
1683         }
1684 }
1685
1686 /**
1687  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1688  *
1689  * Helper function that accumulates the nsecs greater than a second
1690  * from the xtime_nsec field to the xtime_secs field.
1691  * It also calls into the NTP code to handle leapsecond processing.
1692  *
1693  */
1694 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1695 {
1696         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1697         unsigned int clock_set = 0;
1698
1699         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1700                 int leap;
1701
1702                 tk->tkr_mono.xtime_nsec -= nsecps;
1703                 tk->xtime_sec++;
1704
1705                 /* Figure out if its a leap sec and apply if needed */
1706                 leap = second_overflow(tk->xtime_sec);
1707                 if (unlikely(leap)) {
1708                         struct timespec64 ts;
1709
1710                         tk->xtime_sec += leap;
1711
1712                         ts.tv_sec = leap;
1713                         ts.tv_nsec = 0;
1714                         tk_set_wall_to_mono(tk,
1715                                 timespec64_sub(tk->wall_to_monotonic, ts));
1716
1717                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1718
1719                         clock_set = TK_CLOCK_WAS_SET;
1720                 }
1721         }
1722         return clock_set;
1723 }
1724
1725 /**
1726  * logarithmic_accumulation - shifted accumulation of cycles
1727  *
1728  * This functions accumulates a shifted interval of cycles into
1729  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1730  * loop.
1731  *
1732  * Returns the unconsumed cycles.
1733  */
1734 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1735                                                 u32 shift,
1736                                                 unsigned int *clock_set)
1737 {
1738         cycle_t interval = tk->cycle_interval << shift;
1739         u64 raw_nsecs;
1740
1741         /* If the offset is smaller than a shifted interval, do nothing */
1742         if (offset < interval)
1743                 return offset;
1744
1745         /* Accumulate one shifted interval */
1746         offset -= interval;
1747         tk->tkr_mono.cycle_last += interval;
1748         tk->tkr_raw.cycle_last  += interval;
1749
1750         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1751         *clock_set |= accumulate_nsecs_to_secs(tk);
1752
1753         /* Accumulate raw time */
1754         raw_nsecs = (u64)tk->raw_interval << shift;
1755         raw_nsecs += tk->raw_time.tv_nsec;
1756         if (raw_nsecs >= NSEC_PER_SEC) {
1757                 u64 raw_secs = raw_nsecs;
1758                 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1759                 tk->raw_time.tv_sec += raw_secs;
1760         }
1761         tk->raw_time.tv_nsec = raw_nsecs;
1762
1763         /* Accumulate error between NTP and clock interval */
1764         tk->ntp_error += tk->ntp_tick << shift;
1765         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1766                                                 (tk->ntp_error_shift + shift);
1767
1768         return offset;
1769 }
1770
1771 /**
1772  * update_wall_time - Uses the current clocksource to increment the wall time
1773  *
1774  */
1775 void update_wall_time(void)
1776 {
1777         struct timekeeper *real_tk = &tk_core.timekeeper;
1778         struct timekeeper *tk = &shadow_timekeeper;
1779         cycle_t offset;
1780         int shift = 0, maxshift;
1781         unsigned int clock_set = 0;
1782         unsigned long flags;
1783
1784         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1785
1786         /* Make sure we're fully resumed: */
1787         if (unlikely(timekeeping_suspended))
1788                 goto out;
1789
1790 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1791         offset = real_tk->cycle_interval;
1792 #else
1793         offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1794                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1795 #endif
1796
1797         /* Check if there's really nothing to do */
1798         if (offset < real_tk->cycle_interval)
1799                 goto out;
1800
1801         /* Do some additional sanity checking */
1802         timekeeping_check_update(real_tk, offset);
1803
1804         /*
1805          * With NO_HZ we may have to accumulate many cycle_intervals
1806          * (think "ticks") worth of time at once. To do this efficiently,
1807          * we calculate the largest doubling multiple of cycle_intervals
1808          * that is smaller than the offset.  We then accumulate that
1809          * chunk in one go, and then try to consume the next smaller
1810          * doubled multiple.
1811          */
1812         shift = ilog2(offset) - ilog2(tk->cycle_interval);
1813         shift = max(0, shift);
1814         /* Bound shift to one less than what overflows tick_length */
1815         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1816         shift = min(shift, maxshift);
1817         while (offset >= tk->cycle_interval) {
1818                 offset = logarithmic_accumulation(tk, offset, shift,
1819                                                         &clock_set);
1820                 if (offset < tk->cycle_interval<<shift)
1821                         shift--;
1822         }
1823
1824         /* correct the clock when NTP error is too big */
1825         timekeeping_adjust(tk, offset);
1826
1827         /*
1828          * XXX This can be killed once everyone converts
1829          * to the new update_vsyscall.
1830          */
1831         old_vsyscall_fixup(tk);
1832
1833         /*
1834          * Finally, make sure that after the rounding
1835          * xtime_nsec isn't larger than NSEC_PER_SEC
1836          */
1837         clock_set |= accumulate_nsecs_to_secs(tk);
1838
1839         write_seqcount_begin(&tk_core.seq);
1840         /*
1841          * Update the real timekeeper.
1842          *
1843          * We could avoid this memcpy by switching pointers, but that
1844          * requires changes to all other timekeeper usage sites as
1845          * well, i.e. move the timekeeper pointer getter into the
1846          * spinlocked/seqcount protected sections. And we trade this
1847          * memcpy under the tk_core.seq against one before we start
1848          * updating.
1849          */
1850         timekeeping_update(tk, clock_set);
1851         memcpy(real_tk, tk, sizeof(*tk));
1852         /* The memcpy must come last. Do not put anything here! */
1853         write_seqcount_end(&tk_core.seq);
1854 out:
1855         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1856         if (clock_set)
1857                 /* Have to call _delayed version, since in irq context*/
1858                 clock_was_set_delayed();
1859 }
1860
1861 /**
1862  * getboottime64 - Return the real time of system boot.
1863  * @ts:         pointer to the timespec64 to be set
1864  *
1865  * Returns the wall-time of boot in a timespec64.
1866  *
1867  * This is based on the wall_to_monotonic offset and the total suspend
1868  * time. Calls to settimeofday will affect the value returned (which
1869  * basically means that however wrong your real time clock is at boot time,
1870  * you get the right time here).
1871  */
1872 void getboottime64(struct timespec64 *ts)
1873 {
1874         struct timekeeper *tk = &tk_core.timekeeper;
1875         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1876
1877         *ts = ktime_to_timespec64(t);
1878 }
1879 EXPORT_SYMBOL_GPL(getboottime64);
1880
1881 unsigned long get_seconds(void)
1882 {
1883         struct timekeeper *tk = &tk_core.timekeeper;
1884
1885         return tk->xtime_sec;
1886 }
1887 EXPORT_SYMBOL(get_seconds);
1888
1889 struct timespec __current_kernel_time(void)
1890 {
1891         struct timekeeper *tk = &tk_core.timekeeper;
1892
1893         return timespec64_to_timespec(tk_xtime(tk));
1894 }
1895
1896 struct timespec64 current_kernel_time64(void)
1897 {
1898         struct timekeeper *tk = &tk_core.timekeeper;
1899         struct timespec64 now;
1900         unsigned long seq;
1901
1902         do {
1903                 seq = read_seqcount_begin(&tk_core.seq);
1904
1905                 now = tk_xtime(tk);
1906         } while (read_seqcount_retry(&tk_core.seq, seq));
1907
1908         return now;
1909 }
1910 EXPORT_SYMBOL(current_kernel_time64);
1911
1912 struct timespec64 get_monotonic_coarse64(void)
1913 {
1914         struct timekeeper *tk = &tk_core.timekeeper;
1915         struct timespec64 now, mono;
1916         unsigned long seq;
1917
1918         do {
1919                 seq = read_seqcount_begin(&tk_core.seq);
1920
1921                 now = tk_xtime(tk);
1922                 mono = tk->wall_to_monotonic;
1923         } while (read_seqcount_retry(&tk_core.seq, seq));
1924
1925         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1926                                 now.tv_nsec + mono.tv_nsec);
1927
1928         return now;
1929 }
1930
1931 /*
1932  * Must hold jiffies_lock
1933  */
1934 void do_timer(unsigned long ticks)
1935 {
1936         jiffies_64 += ticks;
1937         calc_global_load(ticks);
1938 }
1939
1940 /**
1941  * ktime_get_update_offsets_now - hrtimer helper
1942  * @cwsseq:     pointer to check and store the clock was set sequence number
1943  * @offs_real:  pointer to storage for monotonic -> realtime offset
1944  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1945  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1946  *
1947  * Returns current monotonic time and updates the offsets if the
1948  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
1949  * different.
1950  *
1951  * Called from hrtimer_interrupt() or retrigger_next_event()
1952  */
1953 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
1954                                      ktime_t *offs_boot, ktime_t *offs_tai)
1955 {
1956         struct timekeeper *tk = &tk_core.timekeeper;
1957         unsigned int seq;
1958         ktime_t base;
1959         u64 nsecs;
1960
1961         do {
1962                 seq = read_seqcount_begin(&tk_core.seq);
1963
1964                 base = tk->tkr_mono.base;
1965                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
1966                 base = ktime_add_ns(base, nsecs);
1967
1968                 if (*cwsseq != tk->clock_was_set_seq) {
1969                         *cwsseq = tk->clock_was_set_seq;
1970                         *offs_real = tk->offs_real;
1971                         *offs_boot = tk->offs_boot;
1972                         *offs_tai = tk->offs_tai;
1973                 }
1974
1975                 /* Handle leapsecond insertion adjustments */
1976                 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
1977                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
1978
1979         } while (read_seqcount_retry(&tk_core.seq, seq));
1980
1981         return base;
1982 }
1983
1984 /**
1985  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1986  */
1987 int do_adjtimex(struct timex *txc)
1988 {
1989         struct timekeeper *tk = &tk_core.timekeeper;
1990         unsigned long flags;
1991         struct timespec64 ts;
1992         s32 orig_tai, tai;
1993         int ret;
1994
1995         /* Validate the data before disabling interrupts */
1996         ret = ntp_validate_timex(txc);
1997         if (ret)
1998                 return ret;
1999
2000         if (txc->modes & ADJ_SETOFFSET) {
2001                 struct timespec delta;
2002                 delta.tv_sec  = txc->time.tv_sec;
2003                 delta.tv_nsec = txc->time.tv_usec;
2004                 if (!(txc->modes & ADJ_NANO))
2005                         delta.tv_nsec *= 1000;
2006                 ret = timekeeping_inject_offset(&delta);
2007                 if (ret)
2008                         return ret;
2009         }
2010
2011         getnstimeofday64(&ts);
2012
2013         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2014         write_seqcount_begin(&tk_core.seq);
2015
2016         orig_tai = tai = tk->tai_offset;
2017         ret = __do_adjtimex(txc, &ts, &tai);
2018
2019         if (tai != orig_tai) {
2020                 __timekeeping_set_tai_offset(tk, tai);
2021                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2022         }
2023         tk_update_leap_state(tk);
2024
2025         write_seqcount_end(&tk_core.seq);
2026         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2027
2028         if (tai != orig_tai)
2029                 clock_was_set();
2030
2031         ntp_notify_cmos_timer();
2032
2033         return ret;
2034 }
2035
2036 #ifdef CONFIG_NTP_PPS
2037 /**
2038  * hardpps() - Accessor function to NTP __hardpps function
2039  */
2040 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2041 {
2042         unsigned long flags;
2043
2044         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2045         write_seqcount_begin(&tk_core.seq);
2046
2047         __hardpps(phase_ts, raw_ts);
2048
2049         write_seqcount_end(&tk_core.seq);
2050         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2051 }
2052 EXPORT_SYMBOL(hardpps);
2053 #endif
2054
2055 /**
2056  * xtime_update() - advances the timekeeping infrastructure
2057  * @ticks:      number of ticks, that have elapsed since the last call.
2058  *
2059  * Must be called with interrupts disabled.
2060  */
2061 void xtime_update(unsigned long ticks)
2062 {
2063         write_seqlock(&jiffies_lock);
2064         do_timer(ticks);
2065         write_sequnlock(&jiffies_lock);
2066         update_wall_time();
2067 }