29a7d6709da18d07ade60dfc8a0cf1e63aca670f
[cascardo/linux.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP            (1 << 0)
32 #define TK_MIRROR               (1 << 1)
33 #define TK_CLOCK_WAS_SET        (1 << 2)
34
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40         seqcount_t              seq;
41         struct timekeeper       timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:        Sequence counter for protecting updates. The lowest bit
50  *              is the index for the tk_read_base array
51  * @base:       tk_read_base array. Access is indexed by the lowest bit of
52  *              @seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57         seqcount_t              seq;
58         struct tk_read_base     base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62
63 /* flag for if timekeeping is suspended */
64 int __read_mostly timekeeping_suspended;
65
66 /* Flag for if there is a persistent clock on this platform */
67 bool __read_mostly persistent_clock_exist = false;
68
69 static inline void tk_normalize_xtime(struct timekeeper *tk)
70 {
71         while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
72                 tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73                 tk->xtime_sec++;
74         }
75 }
76
77 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78 {
79         struct timespec64 ts;
80
81         ts.tv_sec = tk->xtime_sec;
82         ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83         return ts;
84 }
85
86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 {
88         tk->xtime_sec = ts->tv_sec;
89         tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 }
91
92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 {
94         tk->xtime_sec += ts->tv_sec;
95         tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96         tk_normalize_xtime(tk);
97 }
98
99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100 {
101         struct timespec64 tmp;
102
103         /*
104          * Verify consistency of: offset_real = -wall_to_monotonic
105          * before modifying anything
106          */
107         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108                                         -tk->wall_to_monotonic.tv_nsec);
109         WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110         tk->wall_to_monotonic = wtm;
111         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112         tk->offs_real = timespec64_to_ktime(tmp);
113         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 }
115
116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117 {
118         tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 }
120
121 /**
122  * tk_setup_internals - Set up internals to use clocksource clock.
123  *
124  * @tk:         The target timekeeper to setup.
125  * @clock:              Pointer to clocksource.
126  *
127  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
128  * pair and interval request.
129  *
130  * Unless you're the timekeeping code, you should not be using this!
131  */
132 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
133 {
134         cycle_t interval;
135         u64 tmp, ntpinterval;
136         struct clocksource *old_clock;
137
138         old_clock = tk->tkr.clock;
139         tk->tkr.clock = clock;
140         tk->tkr.read = clock->read;
141         tk->tkr.mask = clock->mask;
142         tk->tkr.cycle_last = tk->tkr.read(clock);
143
144         /* Do the ns -> cycle conversion first, using original mult */
145         tmp = NTP_INTERVAL_LENGTH;
146         tmp <<= clock->shift;
147         ntpinterval = tmp;
148         tmp += clock->mult/2;
149         do_div(tmp, clock->mult);
150         if (tmp == 0)
151                 tmp = 1;
152
153         interval = (cycle_t) tmp;
154         tk->cycle_interval = interval;
155
156         /* Go back from cycles -> shifted ns */
157         tk->xtime_interval = (u64) interval * clock->mult;
158         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
159         tk->raw_interval =
160                 ((u64) interval * clock->mult) >> clock->shift;
161
162          /* if changing clocks, convert xtime_nsec shift units */
163         if (old_clock) {
164                 int shift_change = clock->shift - old_clock->shift;
165                 if (shift_change < 0)
166                         tk->tkr.xtime_nsec >>= -shift_change;
167                 else
168                         tk->tkr.xtime_nsec <<= shift_change;
169         }
170         tk->tkr.shift = clock->shift;
171
172         tk->ntp_error = 0;
173         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
174         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
175
176         /*
177          * The timekeeper keeps its own mult values for the currently
178          * active clocksource. These value will be adjusted via NTP
179          * to counteract clock drifting.
180          */
181         tk->tkr.mult = clock->mult;
182         tk->ntp_err_mult = 0;
183 }
184
185 /* Timekeeper helper functions. */
186
187 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
188 static u32 default_arch_gettimeoffset(void) { return 0; }
189 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
190 #else
191 static inline u32 arch_gettimeoffset(void) { return 0; }
192 #endif
193
194 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
195 {
196         cycle_t cycle_now, delta;
197         s64 nsec;
198
199         /* read clocksource: */
200         cycle_now = tkr->read(tkr->clock);
201
202         /* calculate the delta since the last update_wall_time: */
203         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
204
205         nsec = delta * tkr->mult + tkr->xtime_nsec;
206         nsec >>= tkr->shift;
207
208         /* If arch requires, add in get_arch_timeoffset() */
209         return nsec + arch_gettimeoffset();
210 }
211
212 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
213 {
214         struct clocksource *clock = tk->tkr.clock;
215         cycle_t cycle_now, delta;
216         s64 nsec;
217
218         /* read clocksource: */
219         cycle_now = tk->tkr.read(clock);
220
221         /* calculate the delta since the last update_wall_time: */
222         delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
223
224         /* convert delta to nanoseconds. */
225         nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
226
227         /* If arch requires, add in get_arch_timeoffset() */
228         return nsec + arch_gettimeoffset();
229 }
230
231 /**
232  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
233  * @tk:         The timekeeper from which we take the update
234  * @tkf:        The fast timekeeper to update
235  * @tbase:      The time base for the fast timekeeper (mono/raw)
236  *
237  * We want to use this from any context including NMI and tracing /
238  * instrumenting the timekeeping code itself.
239  *
240  * So we handle this differently than the other timekeeping accessor
241  * functions which retry when the sequence count has changed. The
242  * update side does:
243  *
244  * smp_wmb();   <- Ensure that the last base[1] update is visible
245  * tkf->seq++;
246  * smp_wmb();   <- Ensure that the seqcount update is visible
247  * update(tkf->base[0], tk);
248  * smp_wmb();   <- Ensure that the base[0] update is visible
249  * tkf->seq++;
250  * smp_wmb();   <- Ensure that the seqcount update is visible
251  * update(tkf->base[1], tk);
252  *
253  * The reader side does:
254  *
255  * do {
256  *      seq = tkf->seq;
257  *      smp_rmb();
258  *      idx = seq & 0x01;
259  *      now = now(tkf->base[idx]);
260  *      smp_rmb();
261  * } while (seq != tkf->seq)
262  *
263  * As long as we update base[0] readers are forced off to
264  * base[1]. Once base[0] is updated readers are redirected to base[0]
265  * and the base[1] update takes place.
266  *
267  * So if a NMI hits the update of base[0] then it will use base[1]
268  * which is still consistent. In the worst case this can result is a
269  * slightly wrong timestamp (a few nanoseconds). See
270  * @ktime_get_mono_fast_ns.
271  */
272 static void update_fast_timekeeper(struct timekeeper *tk)
273 {
274         struct tk_read_base *base = tk_fast_mono.base;
275
276         /* Force readers off to base[1] */
277         raw_write_seqcount_latch(&tk_fast_mono.seq);
278
279         /* Update base[0] */
280         memcpy(base, &tk->tkr, sizeof(*base));
281
282         /* Force readers back to base[0] */
283         raw_write_seqcount_latch(&tk_fast_mono.seq);
284
285         /* Update base[1] */
286         memcpy(base + 1, base, sizeof(*base));
287 }
288
289 /**
290  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
291  *
292  * This timestamp is not guaranteed to be monotonic across an update.
293  * The timestamp is calculated by:
294  *
295  *      now = base_mono + clock_delta * slope
296  *
297  * So if the update lowers the slope, readers who are forced to the
298  * not yet updated second array are still using the old steeper slope.
299  *
300  * tmono
301  * ^
302  * |    o  n
303  * |   o n
304  * |  u
305  * | o
306  * |o
307  * |12345678---> reader order
308  *
309  * o = old slope
310  * u = update
311  * n = new slope
312  *
313  * So reader 6 will observe time going backwards versus reader 5.
314  *
315  * While other CPUs are likely to be able observe that, the only way
316  * for a CPU local observation is when an NMI hits in the middle of
317  * the update. Timestamps taken from that NMI context might be ahead
318  * of the following timestamps. Callers need to be aware of that and
319  * deal with it.
320  */
321 u64 notrace ktime_get_mono_fast_ns(void)
322 {
323         struct tk_read_base *tkr;
324         unsigned int seq;
325         u64 now;
326
327         do {
328                 seq = raw_read_seqcount(&tk_fast_mono.seq);
329                 tkr = tk_fast_mono.base + (seq & 0x01);
330                 now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);
331
332         } while (read_seqcount_retry(&tk_fast_mono.seq, seq));
333         return now;
334 }
335 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
336
337 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
338
339 static inline void update_vsyscall(struct timekeeper *tk)
340 {
341         struct timespec xt, wm;
342
343         xt = timespec64_to_timespec(tk_xtime(tk));
344         wm = timespec64_to_timespec(tk->wall_to_monotonic);
345         update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
346                             tk->tkr.cycle_last);
347 }
348
349 static inline void old_vsyscall_fixup(struct timekeeper *tk)
350 {
351         s64 remainder;
352
353         /*
354         * Store only full nanoseconds into xtime_nsec after rounding
355         * it up and add the remainder to the error difference.
356         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
357         * by truncating the remainder in vsyscalls. However, it causes
358         * additional work to be done in timekeeping_adjust(). Once
359         * the vsyscall implementations are converted to use xtime_nsec
360         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
361         * users are removed, this can be killed.
362         */
363         remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
364         tk->tkr.xtime_nsec -= remainder;
365         tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
366         tk->ntp_error += remainder << tk->ntp_error_shift;
367         tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
368 }
369 #else
370 #define old_vsyscall_fixup(tk)
371 #endif
372
373 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
374
375 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
376 {
377         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
378 }
379
380 /**
381  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
382  */
383 int pvclock_gtod_register_notifier(struct notifier_block *nb)
384 {
385         struct timekeeper *tk = &tk_core.timekeeper;
386         unsigned long flags;
387         int ret;
388
389         raw_spin_lock_irqsave(&timekeeper_lock, flags);
390         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
391         update_pvclock_gtod(tk, true);
392         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
393
394         return ret;
395 }
396 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
397
398 /**
399  * pvclock_gtod_unregister_notifier - unregister a pvclock
400  * timedata update listener
401  */
402 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
403 {
404         unsigned long flags;
405         int ret;
406
407         raw_spin_lock_irqsave(&timekeeper_lock, flags);
408         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
409         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
410
411         return ret;
412 }
413 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
414
415 /*
416  * Update the ktime_t based scalar nsec members of the timekeeper
417  */
418 static inline void tk_update_ktime_data(struct timekeeper *tk)
419 {
420         s64 nsec;
421
422         /*
423          * The xtime based monotonic readout is:
424          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
425          * The ktime based monotonic readout is:
426          *      nsec = base_mono + now();
427          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
428          */
429         nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
430         nsec *= NSEC_PER_SEC;
431         nsec += tk->wall_to_monotonic.tv_nsec;
432         tk->tkr.base_mono = ns_to_ktime(nsec);
433
434         /* Update the monotonic raw base */
435         tk->base_raw = timespec64_to_ktime(tk->raw_time);
436 }
437
438 /* must hold timekeeper_lock */
439 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
440 {
441         if (action & TK_CLEAR_NTP) {
442                 tk->ntp_error = 0;
443                 ntp_clear();
444         }
445
446         tk_update_ktime_data(tk);
447
448         update_vsyscall(tk);
449         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
450
451         if (action & TK_MIRROR)
452                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
453                        sizeof(tk_core.timekeeper));
454
455         update_fast_timekeeper(tk);
456 }
457
458 /**
459  * timekeeping_forward_now - update clock to the current time
460  *
461  * Forward the current clock to update its state since the last call to
462  * update_wall_time(). This is useful before significant clock changes,
463  * as it avoids having to deal with this time offset explicitly.
464  */
465 static void timekeeping_forward_now(struct timekeeper *tk)
466 {
467         struct clocksource *clock = tk->tkr.clock;
468         cycle_t cycle_now, delta;
469         s64 nsec;
470
471         cycle_now = tk->tkr.read(clock);
472         delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
473         tk->tkr.cycle_last = cycle_now;
474
475         tk->tkr.xtime_nsec += delta * tk->tkr.mult;
476
477         /* If arch requires, add in get_arch_timeoffset() */
478         tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
479
480         tk_normalize_xtime(tk);
481
482         nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
483         timespec64_add_ns(&tk->raw_time, nsec);
484 }
485
486 /**
487  * __getnstimeofday64 - Returns the time of day in a timespec64.
488  * @ts:         pointer to the timespec to be set
489  *
490  * Updates the time of day in the timespec.
491  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
492  */
493 int __getnstimeofday64(struct timespec64 *ts)
494 {
495         struct timekeeper *tk = &tk_core.timekeeper;
496         unsigned long seq;
497         s64 nsecs = 0;
498
499         do {
500                 seq = read_seqcount_begin(&tk_core.seq);
501
502                 ts->tv_sec = tk->xtime_sec;
503                 nsecs = timekeeping_get_ns(&tk->tkr);
504
505         } while (read_seqcount_retry(&tk_core.seq, seq));
506
507         ts->tv_nsec = 0;
508         timespec64_add_ns(ts, nsecs);
509
510         /*
511          * Do not bail out early, in case there were callers still using
512          * the value, even in the face of the WARN_ON.
513          */
514         if (unlikely(timekeeping_suspended))
515                 return -EAGAIN;
516         return 0;
517 }
518 EXPORT_SYMBOL(__getnstimeofday64);
519
520 /**
521  * getnstimeofday64 - Returns the time of day in a timespec64.
522  * @ts:         pointer to the timespec64 to be set
523  *
524  * Returns the time of day in a timespec64 (WARN if suspended).
525  */
526 void getnstimeofday64(struct timespec64 *ts)
527 {
528         WARN_ON(__getnstimeofday64(ts));
529 }
530 EXPORT_SYMBOL(getnstimeofday64);
531
532 ktime_t ktime_get(void)
533 {
534         struct timekeeper *tk = &tk_core.timekeeper;
535         unsigned int seq;
536         ktime_t base;
537         s64 nsecs;
538
539         WARN_ON(timekeeping_suspended);
540
541         do {
542                 seq = read_seqcount_begin(&tk_core.seq);
543                 base = tk->tkr.base_mono;
544                 nsecs = timekeeping_get_ns(&tk->tkr);
545
546         } while (read_seqcount_retry(&tk_core.seq, seq));
547
548         return ktime_add_ns(base, nsecs);
549 }
550 EXPORT_SYMBOL_GPL(ktime_get);
551
552 static ktime_t *offsets[TK_OFFS_MAX] = {
553         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
554         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
555         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
556 };
557
558 ktime_t ktime_get_with_offset(enum tk_offsets offs)
559 {
560         struct timekeeper *tk = &tk_core.timekeeper;
561         unsigned int seq;
562         ktime_t base, *offset = offsets[offs];
563         s64 nsecs;
564
565         WARN_ON(timekeeping_suspended);
566
567         do {
568                 seq = read_seqcount_begin(&tk_core.seq);
569                 base = ktime_add(tk->tkr.base_mono, *offset);
570                 nsecs = timekeeping_get_ns(&tk->tkr);
571
572         } while (read_seqcount_retry(&tk_core.seq, seq));
573
574         return ktime_add_ns(base, nsecs);
575
576 }
577 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
578
579 /**
580  * ktime_mono_to_any() - convert mononotic time to any other time
581  * @tmono:      time to convert.
582  * @offs:       which offset to use
583  */
584 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
585 {
586         ktime_t *offset = offsets[offs];
587         unsigned long seq;
588         ktime_t tconv;
589
590         do {
591                 seq = read_seqcount_begin(&tk_core.seq);
592                 tconv = ktime_add(tmono, *offset);
593         } while (read_seqcount_retry(&tk_core.seq, seq));
594
595         return tconv;
596 }
597 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
598
599 /**
600  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
601  */
602 ktime_t ktime_get_raw(void)
603 {
604         struct timekeeper *tk = &tk_core.timekeeper;
605         unsigned int seq;
606         ktime_t base;
607         s64 nsecs;
608
609         do {
610                 seq = read_seqcount_begin(&tk_core.seq);
611                 base = tk->base_raw;
612                 nsecs = timekeeping_get_ns_raw(tk);
613
614         } while (read_seqcount_retry(&tk_core.seq, seq));
615
616         return ktime_add_ns(base, nsecs);
617 }
618 EXPORT_SYMBOL_GPL(ktime_get_raw);
619
620 /**
621  * ktime_get_ts64 - get the monotonic clock in timespec64 format
622  * @ts:         pointer to timespec variable
623  *
624  * The function calculates the monotonic clock from the realtime
625  * clock and the wall_to_monotonic offset and stores the result
626  * in normalized timespec64 format in the variable pointed to by @ts.
627  */
628 void ktime_get_ts64(struct timespec64 *ts)
629 {
630         struct timekeeper *tk = &tk_core.timekeeper;
631         struct timespec64 tomono;
632         s64 nsec;
633         unsigned int seq;
634
635         WARN_ON(timekeeping_suspended);
636
637         do {
638                 seq = read_seqcount_begin(&tk_core.seq);
639                 ts->tv_sec = tk->xtime_sec;
640                 nsec = timekeeping_get_ns(&tk->tkr);
641                 tomono = tk->wall_to_monotonic;
642
643         } while (read_seqcount_retry(&tk_core.seq, seq));
644
645         ts->tv_sec += tomono.tv_sec;
646         ts->tv_nsec = 0;
647         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
648 }
649 EXPORT_SYMBOL_GPL(ktime_get_ts64);
650
651 #ifdef CONFIG_NTP_PPS
652
653 /**
654  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
655  * @ts_raw:     pointer to the timespec to be set to raw monotonic time
656  * @ts_real:    pointer to the timespec to be set to the time of day
657  *
658  * This function reads both the time of day and raw monotonic time at the
659  * same time atomically and stores the resulting timestamps in timespec
660  * format.
661  */
662 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
663 {
664         struct timekeeper *tk = &tk_core.timekeeper;
665         unsigned long seq;
666         s64 nsecs_raw, nsecs_real;
667
668         WARN_ON_ONCE(timekeeping_suspended);
669
670         do {
671                 seq = read_seqcount_begin(&tk_core.seq);
672
673                 *ts_raw = timespec64_to_timespec(tk->raw_time);
674                 ts_real->tv_sec = tk->xtime_sec;
675                 ts_real->tv_nsec = 0;
676
677                 nsecs_raw = timekeeping_get_ns_raw(tk);
678                 nsecs_real = timekeeping_get_ns(&tk->tkr);
679
680         } while (read_seqcount_retry(&tk_core.seq, seq));
681
682         timespec_add_ns(ts_raw, nsecs_raw);
683         timespec_add_ns(ts_real, nsecs_real);
684 }
685 EXPORT_SYMBOL(getnstime_raw_and_real);
686
687 #endif /* CONFIG_NTP_PPS */
688
689 /**
690  * do_gettimeofday - Returns the time of day in a timeval
691  * @tv:         pointer to the timeval to be set
692  *
693  * NOTE: Users should be converted to using getnstimeofday()
694  */
695 void do_gettimeofday(struct timeval *tv)
696 {
697         struct timespec64 now;
698
699         getnstimeofday64(&now);
700         tv->tv_sec = now.tv_sec;
701         tv->tv_usec = now.tv_nsec/1000;
702 }
703 EXPORT_SYMBOL(do_gettimeofday);
704
705 /**
706  * do_settimeofday64 - Sets the time of day.
707  * @ts:     pointer to the timespec64 variable containing the new time
708  *
709  * Sets the time of day to the new time and update NTP and notify hrtimers
710  */
711 int do_settimeofday64(const struct timespec64 *ts)
712 {
713         struct timekeeper *tk = &tk_core.timekeeper;
714         struct timespec64 ts_delta, xt;
715         unsigned long flags;
716
717         if (!timespec64_valid_strict(ts))
718                 return -EINVAL;
719
720         raw_spin_lock_irqsave(&timekeeper_lock, flags);
721         write_seqcount_begin(&tk_core.seq);
722
723         timekeeping_forward_now(tk);
724
725         xt = tk_xtime(tk);
726         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
727         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
728
729         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
730
731         tk_set_xtime(tk, ts);
732
733         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
734
735         write_seqcount_end(&tk_core.seq);
736         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
737
738         /* signal hrtimers about time change */
739         clock_was_set();
740
741         return 0;
742 }
743 EXPORT_SYMBOL(do_settimeofday64);
744
745 /**
746  * timekeeping_inject_offset - Adds or subtracts from the current time.
747  * @tv:         pointer to the timespec variable containing the offset
748  *
749  * Adds or subtracts an offset value from the current time.
750  */
751 int timekeeping_inject_offset(struct timespec *ts)
752 {
753         struct timekeeper *tk = &tk_core.timekeeper;
754         unsigned long flags;
755         struct timespec64 ts64, tmp;
756         int ret = 0;
757
758         if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
759                 return -EINVAL;
760
761         ts64 = timespec_to_timespec64(*ts);
762
763         raw_spin_lock_irqsave(&timekeeper_lock, flags);
764         write_seqcount_begin(&tk_core.seq);
765
766         timekeeping_forward_now(tk);
767
768         /* Make sure the proposed value is valid */
769         tmp = timespec64_add(tk_xtime(tk),  ts64);
770         if (!timespec64_valid_strict(&tmp)) {
771                 ret = -EINVAL;
772                 goto error;
773         }
774
775         tk_xtime_add(tk, &ts64);
776         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
777
778 error: /* even if we error out, we forwarded the time, so call update */
779         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
780
781         write_seqcount_end(&tk_core.seq);
782         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
783
784         /* signal hrtimers about time change */
785         clock_was_set();
786
787         return ret;
788 }
789 EXPORT_SYMBOL(timekeeping_inject_offset);
790
791
792 /**
793  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
794  *
795  */
796 s32 timekeeping_get_tai_offset(void)
797 {
798         struct timekeeper *tk = &tk_core.timekeeper;
799         unsigned int seq;
800         s32 ret;
801
802         do {
803                 seq = read_seqcount_begin(&tk_core.seq);
804                 ret = tk->tai_offset;
805         } while (read_seqcount_retry(&tk_core.seq, seq));
806
807         return ret;
808 }
809
810 /**
811  * __timekeeping_set_tai_offset - Lock free worker function
812  *
813  */
814 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
815 {
816         tk->tai_offset = tai_offset;
817         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
818 }
819
820 /**
821  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
822  *
823  */
824 void timekeeping_set_tai_offset(s32 tai_offset)
825 {
826         struct timekeeper *tk = &tk_core.timekeeper;
827         unsigned long flags;
828
829         raw_spin_lock_irqsave(&timekeeper_lock, flags);
830         write_seqcount_begin(&tk_core.seq);
831         __timekeeping_set_tai_offset(tk, tai_offset);
832         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
833         write_seqcount_end(&tk_core.seq);
834         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
835         clock_was_set();
836 }
837
838 /**
839  * change_clocksource - Swaps clocksources if a new one is available
840  *
841  * Accumulates current time interval and initializes new clocksource
842  */
843 static int change_clocksource(void *data)
844 {
845         struct timekeeper *tk = &tk_core.timekeeper;
846         struct clocksource *new, *old;
847         unsigned long flags;
848
849         new = (struct clocksource *) data;
850
851         raw_spin_lock_irqsave(&timekeeper_lock, flags);
852         write_seqcount_begin(&tk_core.seq);
853
854         timekeeping_forward_now(tk);
855         /*
856          * If the cs is in module, get a module reference. Succeeds
857          * for built-in code (owner == NULL) as well.
858          */
859         if (try_module_get(new->owner)) {
860                 if (!new->enable || new->enable(new) == 0) {
861                         old = tk->tkr.clock;
862                         tk_setup_internals(tk, new);
863                         if (old->disable)
864                                 old->disable(old);
865                         module_put(old->owner);
866                 } else {
867                         module_put(new->owner);
868                 }
869         }
870         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
871
872         write_seqcount_end(&tk_core.seq);
873         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
874
875         return 0;
876 }
877
878 /**
879  * timekeeping_notify - Install a new clock source
880  * @clock:              pointer to the clock source
881  *
882  * This function is called from clocksource.c after a new, better clock
883  * source has been registered. The caller holds the clocksource_mutex.
884  */
885 int timekeeping_notify(struct clocksource *clock)
886 {
887         struct timekeeper *tk = &tk_core.timekeeper;
888
889         if (tk->tkr.clock == clock)
890                 return 0;
891         stop_machine(change_clocksource, clock, NULL);
892         tick_clock_notify();
893         return tk->tkr.clock == clock ? 0 : -1;
894 }
895
896 /**
897  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
898  * @ts:         pointer to the timespec64 to be set
899  *
900  * Returns the raw monotonic time (completely un-modified by ntp)
901  */
902 void getrawmonotonic64(struct timespec64 *ts)
903 {
904         struct timekeeper *tk = &tk_core.timekeeper;
905         struct timespec64 ts64;
906         unsigned long seq;
907         s64 nsecs;
908
909         do {
910                 seq = read_seqcount_begin(&tk_core.seq);
911                 nsecs = timekeeping_get_ns_raw(tk);
912                 ts64 = tk->raw_time;
913
914         } while (read_seqcount_retry(&tk_core.seq, seq));
915
916         timespec64_add_ns(&ts64, nsecs);
917         *ts = ts64;
918 }
919 EXPORT_SYMBOL(getrawmonotonic64);
920
921
922 /**
923  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
924  */
925 int timekeeping_valid_for_hres(void)
926 {
927         struct timekeeper *tk = &tk_core.timekeeper;
928         unsigned long seq;
929         int ret;
930
931         do {
932                 seq = read_seqcount_begin(&tk_core.seq);
933
934                 ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
935
936         } while (read_seqcount_retry(&tk_core.seq, seq));
937
938         return ret;
939 }
940
941 /**
942  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
943  */
944 u64 timekeeping_max_deferment(void)
945 {
946         struct timekeeper *tk = &tk_core.timekeeper;
947         unsigned long seq;
948         u64 ret;
949
950         do {
951                 seq = read_seqcount_begin(&tk_core.seq);
952
953                 ret = tk->tkr.clock->max_idle_ns;
954
955         } while (read_seqcount_retry(&tk_core.seq, seq));
956
957         return ret;
958 }
959
960 /**
961  * read_persistent_clock -  Return time from the persistent clock.
962  *
963  * Weak dummy function for arches that do not yet support it.
964  * Reads the time from the battery backed persistent clock.
965  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
966  *
967  *  XXX - Do be sure to remove it once all arches implement it.
968  */
969 void __weak read_persistent_clock(struct timespec *ts)
970 {
971         ts->tv_sec = 0;
972         ts->tv_nsec = 0;
973 }
974
975 /**
976  * read_boot_clock -  Return time of the system start.
977  *
978  * Weak dummy function for arches that do not yet support it.
979  * Function to read the exact time the system has been started.
980  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
981  *
982  *  XXX - Do be sure to remove it once all arches implement it.
983  */
984 void __weak read_boot_clock(struct timespec *ts)
985 {
986         ts->tv_sec = 0;
987         ts->tv_nsec = 0;
988 }
989
990 /*
991  * timekeeping_init - Initializes the clocksource and common timekeeping values
992  */
993 void __init timekeeping_init(void)
994 {
995         struct timekeeper *tk = &tk_core.timekeeper;
996         struct clocksource *clock;
997         unsigned long flags;
998         struct timespec64 now, boot, tmp;
999         struct timespec ts;
1000
1001         read_persistent_clock(&ts);
1002         now = timespec_to_timespec64(ts);
1003         if (!timespec64_valid_strict(&now)) {
1004                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1005                         "         Check your CMOS/BIOS settings.\n");
1006                 now.tv_sec = 0;
1007                 now.tv_nsec = 0;
1008         } else if (now.tv_sec || now.tv_nsec)
1009                 persistent_clock_exist = true;
1010
1011         read_boot_clock(&ts);
1012         boot = timespec_to_timespec64(ts);
1013         if (!timespec64_valid_strict(&boot)) {
1014                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1015                         "         Check your CMOS/BIOS settings.\n");
1016                 boot.tv_sec = 0;
1017                 boot.tv_nsec = 0;
1018         }
1019
1020         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1021         write_seqcount_begin(&tk_core.seq);
1022         ntp_init();
1023
1024         clock = clocksource_default_clock();
1025         if (clock->enable)
1026                 clock->enable(clock);
1027         tk_setup_internals(tk, clock);
1028
1029         tk_set_xtime(tk, &now);
1030         tk->raw_time.tv_sec = 0;
1031         tk->raw_time.tv_nsec = 0;
1032         tk->base_raw.tv64 = 0;
1033         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1034                 boot = tk_xtime(tk);
1035
1036         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1037         tk_set_wall_to_mono(tk, tmp);
1038
1039         timekeeping_update(tk, TK_MIRROR);
1040
1041         write_seqcount_end(&tk_core.seq);
1042         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1043 }
1044
1045 /* time in seconds when suspend began */
1046 static struct timespec64 timekeeping_suspend_time;
1047
1048 /**
1049  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1050  * @delta: pointer to a timespec delta value
1051  *
1052  * Takes a timespec offset measuring a suspend interval and properly
1053  * adds the sleep offset to the timekeeping variables.
1054  */
1055 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1056                                            struct timespec64 *delta)
1057 {
1058         if (!timespec64_valid_strict(delta)) {
1059                 printk_deferred(KERN_WARNING
1060                                 "__timekeeping_inject_sleeptime: Invalid "
1061                                 "sleep delta value!\n");
1062                 return;
1063         }
1064         tk_xtime_add(tk, delta);
1065         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1066         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1067         tk_debug_account_sleep_time(delta);
1068 }
1069
1070 /**
1071  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1072  * @delta: pointer to a timespec64 delta value
1073  *
1074  * This hook is for architectures that cannot support read_persistent_clock
1075  * because their RTC/persistent clock is only accessible when irqs are enabled.
1076  *
1077  * This function should only be called by rtc_resume(), and allows
1078  * a suspend offset to be injected into the timekeeping values.
1079  */
1080 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1081 {
1082         struct timekeeper *tk = &tk_core.timekeeper;
1083         unsigned long flags;
1084
1085         /*
1086          * Make sure we don't set the clock twice, as timekeeping_resume()
1087          * already did it
1088          */
1089         if (has_persistent_clock())
1090                 return;
1091
1092         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1093         write_seqcount_begin(&tk_core.seq);
1094
1095         timekeeping_forward_now(tk);
1096
1097         __timekeeping_inject_sleeptime(tk, delta);
1098
1099         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1100
1101         write_seqcount_end(&tk_core.seq);
1102         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1103
1104         /* signal hrtimers about time change */
1105         clock_was_set();
1106 }
1107
1108 /**
1109  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1110  *
1111  * This is for the generic clocksource timekeeping.
1112  * xtime/wall_to_monotonic/jiffies/etc are
1113  * still managed by arch specific suspend/resume code.
1114  */
1115 static void timekeeping_resume(void)
1116 {
1117         struct timekeeper *tk = &tk_core.timekeeper;
1118         struct clocksource *clock = tk->tkr.clock;
1119         unsigned long flags;
1120         struct timespec64 ts_new, ts_delta;
1121         struct timespec tmp;
1122         cycle_t cycle_now, cycle_delta;
1123         bool suspendtime_found = false;
1124
1125         read_persistent_clock(&tmp);
1126         ts_new = timespec_to_timespec64(tmp);
1127
1128         clockevents_resume();
1129         clocksource_resume();
1130
1131         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1132         write_seqcount_begin(&tk_core.seq);
1133
1134         /*
1135          * After system resumes, we need to calculate the suspended time and
1136          * compensate it for the OS time. There are 3 sources that could be
1137          * used: Nonstop clocksource during suspend, persistent clock and rtc
1138          * device.
1139          *
1140          * One specific platform may have 1 or 2 or all of them, and the
1141          * preference will be:
1142          *      suspend-nonstop clocksource -> persistent clock -> rtc
1143          * The less preferred source will only be tried if there is no better
1144          * usable source. The rtc part is handled separately in rtc core code.
1145          */
1146         cycle_now = tk->tkr.read(clock);
1147         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1148                 cycle_now > tk->tkr.cycle_last) {
1149                 u64 num, max = ULLONG_MAX;
1150                 u32 mult = clock->mult;
1151                 u32 shift = clock->shift;
1152                 s64 nsec = 0;
1153
1154                 cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
1155                                                 tk->tkr.mask);
1156
1157                 /*
1158                  * "cycle_delta * mutl" may cause 64 bits overflow, if the
1159                  * suspended time is too long. In that case we need do the
1160                  * 64 bits math carefully
1161                  */
1162                 do_div(max, mult);
1163                 if (cycle_delta > max) {
1164                         num = div64_u64(cycle_delta, max);
1165                         nsec = (((u64) max * mult) >> shift) * num;
1166                         cycle_delta -= num * max;
1167                 }
1168                 nsec += ((u64) cycle_delta * mult) >> shift;
1169
1170                 ts_delta = ns_to_timespec64(nsec);
1171                 suspendtime_found = true;
1172         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1173                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1174                 suspendtime_found = true;
1175         }
1176
1177         if (suspendtime_found)
1178                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1179
1180         /* Re-base the last cycle value */
1181         tk->tkr.cycle_last = cycle_now;
1182         tk->ntp_error = 0;
1183         timekeeping_suspended = 0;
1184         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1185         write_seqcount_end(&tk_core.seq);
1186         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1187
1188         touch_softlockup_watchdog();
1189
1190         clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1191
1192         /* Resume hrtimers */
1193         hrtimers_resume();
1194 }
1195
1196 static int timekeeping_suspend(void)
1197 {
1198         struct timekeeper *tk = &tk_core.timekeeper;
1199         unsigned long flags;
1200         struct timespec64               delta, delta_delta;
1201         static struct timespec64        old_delta;
1202         struct timespec tmp;
1203
1204         read_persistent_clock(&tmp);
1205         timekeeping_suspend_time = timespec_to_timespec64(tmp);
1206
1207         /*
1208          * On some systems the persistent_clock can not be detected at
1209          * timekeeping_init by its return value, so if we see a valid
1210          * value returned, update the persistent_clock_exists flag.
1211          */
1212         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1213                 persistent_clock_exist = true;
1214
1215         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1216         write_seqcount_begin(&tk_core.seq);
1217         timekeeping_forward_now(tk);
1218         timekeeping_suspended = 1;
1219
1220         /*
1221          * To avoid drift caused by repeated suspend/resumes,
1222          * which each can add ~1 second drift error,
1223          * try to compensate so the difference in system time
1224          * and persistent_clock time stays close to constant.
1225          */
1226         delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1227         delta_delta = timespec64_sub(delta, old_delta);
1228         if (abs(delta_delta.tv_sec)  >= 2) {
1229                 /*
1230                  * if delta_delta is too large, assume time correction
1231                  * has occured and set old_delta to the current delta.
1232                  */
1233                 old_delta = delta;
1234         } else {
1235                 /* Otherwise try to adjust old_system to compensate */
1236                 timekeeping_suspend_time =
1237                         timespec64_add(timekeeping_suspend_time, delta_delta);
1238         }
1239
1240         timekeeping_update(tk, TK_MIRROR);
1241         write_seqcount_end(&tk_core.seq);
1242         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1243
1244         clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1245         clocksource_suspend();
1246         clockevents_suspend();
1247
1248         return 0;
1249 }
1250
1251 /* sysfs resume/suspend bits for timekeeping */
1252 static struct syscore_ops timekeeping_syscore_ops = {
1253         .resume         = timekeeping_resume,
1254         .suspend        = timekeeping_suspend,
1255 };
1256
1257 static int __init timekeeping_init_ops(void)
1258 {
1259         register_syscore_ops(&timekeeping_syscore_ops);
1260         return 0;
1261 }
1262 device_initcall(timekeeping_init_ops);
1263
1264 /*
1265  * Apply a multiplier adjustment to the timekeeper
1266  */
1267 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1268                                                          s64 offset,
1269                                                          bool negative,
1270                                                          int adj_scale)
1271 {
1272         s64 interval = tk->cycle_interval;
1273         s32 mult_adj = 1;
1274
1275         if (negative) {
1276                 mult_adj = -mult_adj;
1277                 interval = -interval;
1278                 offset  = -offset;
1279         }
1280         mult_adj <<= adj_scale;
1281         interval <<= adj_scale;
1282         offset <<= adj_scale;
1283
1284         /*
1285          * So the following can be confusing.
1286          *
1287          * To keep things simple, lets assume mult_adj == 1 for now.
1288          *
1289          * When mult_adj != 1, remember that the interval and offset values
1290          * have been appropriately scaled so the math is the same.
1291          *
1292          * The basic idea here is that we're increasing the multiplier
1293          * by one, this causes the xtime_interval to be incremented by
1294          * one cycle_interval. This is because:
1295          *      xtime_interval = cycle_interval * mult
1296          * So if mult is being incremented by one:
1297          *      xtime_interval = cycle_interval * (mult + 1)
1298          * Its the same as:
1299          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1300          * Which can be shortened to:
1301          *      xtime_interval += cycle_interval
1302          *
1303          * So offset stores the non-accumulated cycles. Thus the current
1304          * time (in shifted nanoseconds) is:
1305          *      now = (offset * adj) + xtime_nsec
1306          * Now, even though we're adjusting the clock frequency, we have
1307          * to keep time consistent. In other words, we can't jump back
1308          * in time, and we also want to avoid jumping forward in time.
1309          *
1310          * So given the same offset value, we need the time to be the same
1311          * both before and after the freq adjustment.
1312          *      now = (offset * adj_1) + xtime_nsec_1
1313          *      now = (offset * adj_2) + xtime_nsec_2
1314          * So:
1315          *      (offset * adj_1) + xtime_nsec_1 =
1316          *              (offset * adj_2) + xtime_nsec_2
1317          * And we know:
1318          *      adj_2 = adj_1 + 1
1319          * So:
1320          *      (offset * adj_1) + xtime_nsec_1 =
1321          *              (offset * (adj_1+1)) + xtime_nsec_2
1322          *      (offset * adj_1) + xtime_nsec_1 =
1323          *              (offset * adj_1) + offset + xtime_nsec_2
1324          * Canceling the sides:
1325          *      xtime_nsec_1 = offset + xtime_nsec_2
1326          * Which gives us:
1327          *      xtime_nsec_2 = xtime_nsec_1 - offset
1328          * Which simplfies to:
1329          *      xtime_nsec -= offset
1330          *
1331          * XXX - TODO: Doc ntp_error calculation.
1332          */
1333         if (tk->tkr.mult + mult_adj < mult_adj) {
1334                 /* NTP adjustment caused clocksource mult overflow */
1335                 WARN_ON_ONCE(1);
1336                 return;
1337         }
1338
1339         tk->tkr.mult += mult_adj;
1340         tk->xtime_interval += interval;
1341         tk->tkr.xtime_nsec -= offset;
1342         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1343 }
1344
1345 /*
1346  * Calculate the multiplier adjustment needed to match the frequency
1347  * specified by NTP
1348  */
1349 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1350                                                         s64 offset)
1351 {
1352         s64 interval = tk->cycle_interval;
1353         s64 xinterval = tk->xtime_interval;
1354         s64 tick_error;
1355         bool negative;
1356         u32 adj;
1357
1358         /* Remove any current error adj from freq calculation */
1359         if (tk->ntp_err_mult)
1360                 xinterval -= tk->cycle_interval;
1361
1362         tk->ntp_tick = ntp_tick_length();
1363
1364         /* Calculate current error per tick */
1365         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1366         tick_error -= (xinterval + tk->xtime_remainder);
1367
1368         /* Don't worry about correcting it if its small */
1369         if (likely((tick_error >= 0) && (tick_error <= interval)))
1370                 return;
1371
1372         /* preserve the direction of correction */
1373         negative = (tick_error < 0);
1374
1375         /* Sort out the magnitude of the correction */
1376         tick_error = abs(tick_error);
1377         for (adj = 0; tick_error > interval; adj++)
1378                 tick_error >>= 1;
1379
1380         /* scale the corrections */
1381         timekeeping_apply_adjustment(tk, offset, negative, adj);
1382 }
1383
1384 /*
1385  * Adjust the timekeeper's multiplier to the correct frequency
1386  * and also to reduce the accumulated error value.
1387  */
1388 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1389 {
1390         /* Correct for the current frequency error */
1391         timekeeping_freqadjust(tk, offset);
1392
1393         /* Next make a small adjustment to fix any cumulative error */
1394         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1395                 tk->ntp_err_mult = 1;
1396                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1397         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1398                 /* Undo any existing error adjustment */
1399                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1400                 tk->ntp_err_mult = 0;
1401         }
1402
1403         if (unlikely(tk->tkr.clock->maxadj &&
1404                 (abs(tk->tkr.mult - tk->tkr.clock->mult)
1405                         > tk->tkr.clock->maxadj))) {
1406                 printk_once(KERN_WARNING
1407                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1408                         tk->tkr.clock->name, (long)tk->tkr.mult,
1409                         (long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
1410         }
1411
1412         /*
1413          * It may be possible that when we entered this function, xtime_nsec
1414          * was very small.  Further, if we're slightly speeding the clocksource
1415          * in the code above, its possible the required corrective factor to
1416          * xtime_nsec could cause it to underflow.
1417          *
1418          * Now, since we already accumulated the second, cannot simply roll
1419          * the accumulated second back, since the NTP subsystem has been
1420          * notified via second_overflow. So instead we push xtime_nsec forward
1421          * by the amount we underflowed, and add that amount into the error.
1422          *
1423          * We'll correct this error next time through this function, when
1424          * xtime_nsec is not as small.
1425          */
1426         if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
1427                 s64 neg = -(s64)tk->tkr.xtime_nsec;
1428                 tk->tkr.xtime_nsec = 0;
1429                 tk->ntp_error += neg << tk->ntp_error_shift;
1430         }
1431 }
1432
1433 /**
1434  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1435  *
1436  * Helper function that accumulates a the nsecs greater then a second
1437  * from the xtime_nsec field to the xtime_secs field.
1438  * It also calls into the NTP code to handle leapsecond processing.
1439  *
1440  */
1441 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1442 {
1443         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1444         unsigned int clock_set = 0;
1445
1446         while (tk->tkr.xtime_nsec >= nsecps) {
1447                 int leap;
1448
1449                 tk->tkr.xtime_nsec -= nsecps;
1450                 tk->xtime_sec++;
1451
1452                 /* Figure out if its a leap sec and apply if needed */
1453                 leap = second_overflow(tk->xtime_sec);
1454                 if (unlikely(leap)) {
1455                         struct timespec64 ts;
1456
1457                         tk->xtime_sec += leap;
1458
1459                         ts.tv_sec = leap;
1460                         ts.tv_nsec = 0;
1461                         tk_set_wall_to_mono(tk,
1462                                 timespec64_sub(tk->wall_to_monotonic, ts));
1463
1464                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1465
1466                         clock_set = TK_CLOCK_WAS_SET;
1467                 }
1468         }
1469         return clock_set;
1470 }
1471
1472 /**
1473  * logarithmic_accumulation - shifted accumulation of cycles
1474  *
1475  * This functions accumulates a shifted interval of cycles into
1476  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1477  * loop.
1478  *
1479  * Returns the unconsumed cycles.
1480  */
1481 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1482                                                 u32 shift,
1483                                                 unsigned int *clock_set)
1484 {
1485         cycle_t interval = tk->cycle_interval << shift;
1486         u64 raw_nsecs;
1487
1488         /* If the offset is smaller then a shifted interval, do nothing */
1489         if (offset < interval)
1490                 return offset;
1491
1492         /* Accumulate one shifted interval */
1493         offset -= interval;
1494         tk->tkr.cycle_last += interval;
1495
1496         tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1497         *clock_set |= accumulate_nsecs_to_secs(tk);
1498
1499         /* Accumulate raw time */
1500         raw_nsecs = (u64)tk->raw_interval << shift;
1501         raw_nsecs += tk->raw_time.tv_nsec;
1502         if (raw_nsecs >= NSEC_PER_SEC) {
1503                 u64 raw_secs = raw_nsecs;
1504                 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1505                 tk->raw_time.tv_sec += raw_secs;
1506         }
1507         tk->raw_time.tv_nsec = raw_nsecs;
1508
1509         /* Accumulate error between NTP and clock interval */
1510         tk->ntp_error += tk->ntp_tick << shift;
1511         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1512                                                 (tk->ntp_error_shift + shift);
1513
1514         return offset;
1515 }
1516
1517 /**
1518  * update_wall_time - Uses the current clocksource to increment the wall time
1519  *
1520  */
1521 void update_wall_time(void)
1522 {
1523         struct timekeeper *real_tk = &tk_core.timekeeper;
1524         struct timekeeper *tk = &shadow_timekeeper;
1525         cycle_t offset;
1526         int shift = 0, maxshift;
1527         unsigned int clock_set = 0;
1528         unsigned long flags;
1529
1530         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1531
1532         /* Make sure we're fully resumed: */
1533         if (unlikely(timekeeping_suspended))
1534                 goto out;
1535
1536 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1537         offset = real_tk->cycle_interval;
1538 #else
1539         offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
1540                                    tk->tkr.cycle_last, tk->tkr.mask);
1541 #endif
1542
1543         /* Check if there's really nothing to do */
1544         if (offset < real_tk->cycle_interval)
1545                 goto out;
1546
1547         /*
1548          * With NO_HZ we may have to accumulate many cycle_intervals
1549          * (think "ticks") worth of time at once. To do this efficiently,
1550          * we calculate the largest doubling multiple of cycle_intervals
1551          * that is smaller than the offset.  We then accumulate that
1552          * chunk in one go, and then try to consume the next smaller
1553          * doubled multiple.
1554          */
1555         shift = ilog2(offset) - ilog2(tk->cycle_interval);
1556         shift = max(0, shift);
1557         /* Bound shift to one less than what overflows tick_length */
1558         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1559         shift = min(shift, maxshift);
1560         while (offset >= tk->cycle_interval) {
1561                 offset = logarithmic_accumulation(tk, offset, shift,
1562                                                         &clock_set);
1563                 if (offset < tk->cycle_interval<<shift)
1564                         shift--;
1565         }
1566
1567         /* correct the clock when NTP error is too big */
1568         timekeeping_adjust(tk, offset);
1569
1570         /*
1571          * XXX This can be killed once everyone converts
1572          * to the new update_vsyscall.
1573          */
1574         old_vsyscall_fixup(tk);
1575
1576         /*
1577          * Finally, make sure that after the rounding
1578          * xtime_nsec isn't larger than NSEC_PER_SEC
1579          */
1580         clock_set |= accumulate_nsecs_to_secs(tk);
1581
1582         write_seqcount_begin(&tk_core.seq);
1583         /*
1584          * Update the real timekeeper.
1585          *
1586          * We could avoid this memcpy by switching pointers, but that
1587          * requires changes to all other timekeeper usage sites as
1588          * well, i.e. move the timekeeper pointer getter into the
1589          * spinlocked/seqcount protected sections. And we trade this
1590          * memcpy under the tk_core.seq against one before we start
1591          * updating.
1592          */
1593         memcpy(real_tk, tk, sizeof(*tk));
1594         timekeeping_update(real_tk, clock_set);
1595         write_seqcount_end(&tk_core.seq);
1596 out:
1597         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1598         if (clock_set)
1599                 /* Have to call _delayed version, since in irq context*/
1600                 clock_was_set_delayed();
1601 }
1602
1603 /**
1604  * getboottime - Return the real time of system boot.
1605  * @ts:         pointer to the timespec to be set
1606  *
1607  * Returns the wall-time of boot in a timespec.
1608  *
1609  * This is based on the wall_to_monotonic offset and the total suspend
1610  * time. Calls to settimeofday will affect the value returned (which
1611  * basically means that however wrong your real time clock is at boot time,
1612  * you get the right time here).
1613  */
1614 void getboottime(struct timespec *ts)
1615 {
1616         struct timekeeper *tk = &tk_core.timekeeper;
1617         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1618
1619         *ts = ktime_to_timespec(t);
1620 }
1621 EXPORT_SYMBOL_GPL(getboottime);
1622
1623 unsigned long get_seconds(void)
1624 {
1625         struct timekeeper *tk = &tk_core.timekeeper;
1626
1627         return tk->xtime_sec;
1628 }
1629 EXPORT_SYMBOL(get_seconds);
1630
1631 struct timespec __current_kernel_time(void)
1632 {
1633         struct timekeeper *tk = &tk_core.timekeeper;
1634
1635         return timespec64_to_timespec(tk_xtime(tk));
1636 }
1637
1638 struct timespec current_kernel_time(void)
1639 {
1640         struct timekeeper *tk = &tk_core.timekeeper;
1641         struct timespec64 now;
1642         unsigned long seq;
1643
1644         do {
1645                 seq = read_seqcount_begin(&tk_core.seq);
1646
1647                 now = tk_xtime(tk);
1648         } while (read_seqcount_retry(&tk_core.seq, seq));
1649
1650         return timespec64_to_timespec(now);
1651 }
1652 EXPORT_SYMBOL(current_kernel_time);
1653
1654 struct timespec64 get_monotonic_coarse64(void)
1655 {
1656         struct timekeeper *tk = &tk_core.timekeeper;
1657         struct timespec64 now, mono;
1658         unsigned long seq;
1659
1660         do {
1661                 seq = read_seqcount_begin(&tk_core.seq);
1662
1663                 now = tk_xtime(tk);
1664                 mono = tk->wall_to_monotonic;
1665         } while (read_seqcount_retry(&tk_core.seq, seq));
1666
1667         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1668                                 now.tv_nsec + mono.tv_nsec);
1669
1670         return now;
1671 }
1672
1673 /*
1674  * Must hold jiffies_lock
1675  */
1676 void do_timer(unsigned long ticks)
1677 {
1678         jiffies_64 += ticks;
1679         calc_global_load(ticks);
1680 }
1681
1682 /**
1683  * ktime_get_update_offsets_tick - hrtimer helper
1684  * @offs_real:  pointer to storage for monotonic -> realtime offset
1685  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1686  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1687  *
1688  * Returns monotonic time at last tick and various offsets
1689  */
1690 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1691                                                         ktime_t *offs_tai)
1692 {
1693         struct timekeeper *tk = &tk_core.timekeeper;
1694         unsigned int seq;
1695         ktime_t base;
1696         u64 nsecs;
1697
1698         do {
1699                 seq = read_seqcount_begin(&tk_core.seq);
1700
1701                 base = tk->tkr.base_mono;
1702                 nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1703
1704                 *offs_real = tk->offs_real;
1705                 *offs_boot = tk->offs_boot;
1706                 *offs_tai = tk->offs_tai;
1707         } while (read_seqcount_retry(&tk_core.seq, seq));
1708
1709         return ktime_add_ns(base, nsecs);
1710 }
1711
1712 #ifdef CONFIG_HIGH_RES_TIMERS
1713 /**
1714  * ktime_get_update_offsets_now - hrtimer helper
1715  * @offs_real:  pointer to storage for monotonic -> realtime offset
1716  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1717  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1718  *
1719  * Returns current monotonic time and updates the offsets
1720  * Called from hrtimer_interrupt() or retrigger_next_event()
1721  */
1722 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1723                                                         ktime_t *offs_tai)
1724 {
1725         struct timekeeper *tk = &tk_core.timekeeper;
1726         unsigned int seq;
1727         ktime_t base;
1728         u64 nsecs;
1729
1730         do {
1731                 seq = read_seqcount_begin(&tk_core.seq);
1732
1733                 base = tk->tkr.base_mono;
1734                 nsecs = timekeeping_get_ns(&tk->tkr);
1735
1736                 *offs_real = tk->offs_real;
1737                 *offs_boot = tk->offs_boot;
1738                 *offs_tai = tk->offs_tai;
1739         } while (read_seqcount_retry(&tk_core.seq, seq));
1740
1741         return ktime_add_ns(base, nsecs);
1742 }
1743 #endif
1744
1745 /**
1746  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1747  */
1748 int do_adjtimex(struct timex *txc)
1749 {
1750         struct timekeeper *tk = &tk_core.timekeeper;
1751         unsigned long flags;
1752         struct timespec64 ts;
1753         s32 orig_tai, tai;
1754         int ret;
1755
1756         /* Validate the data before disabling interrupts */
1757         ret = ntp_validate_timex(txc);
1758         if (ret)
1759                 return ret;
1760
1761         if (txc->modes & ADJ_SETOFFSET) {
1762                 struct timespec delta;
1763                 delta.tv_sec  = txc->time.tv_sec;
1764                 delta.tv_nsec = txc->time.tv_usec;
1765                 if (!(txc->modes & ADJ_NANO))
1766                         delta.tv_nsec *= 1000;
1767                 ret = timekeeping_inject_offset(&delta);
1768                 if (ret)
1769                         return ret;
1770         }
1771
1772         getnstimeofday64(&ts);
1773
1774         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1775         write_seqcount_begin(&tk_core.seq);
1776
1777         orig_tai = tai = tk->tai_offset;
1778         ret = __do_adjtimex(txc, &ts, &tai);
1779
1780         if (tai != orig_tai) {
1781                 __timekeeping_set_tai_offset(tk, tai);
1782                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1783         }
1784         write_seqcount_end(&tk_core.seq);
1785         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1786
1787         if (tai != orig_tai)
1788                 clock_was_set();
1789
1790         ntp_notify_cmos_timer();
1791
1792         return ret;
1793 }
1794
1795 #ifdef CONFIG_NTP_PPS
1796 /**
1797  * hardpps() - Accessor function to NTP __hardpps function
1798  */
1799 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1800 {
1801         unsigned long flags;
1802
1803         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1804         write_seqcount_begin(&tk_core.seq);
1805
1806         __hardpps(phase_ts, raw_ts);
1807
1808         write_seqcount_end(&tk_core.seq);
1809         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1810 }
1811 EXPORT_SYMBOL(hardpps);
1812 #endif
1813
1814 /**
1815  * xtime_update() - advances the timekeeping infrastructure
1816  * @ticks:      number of ticks, that have elapsed since the last call.
1817  *
1818  * Must be called with interrupts disabled.
1819  */
1820 void xtime_update(unsigned long ticks)
1821 {
1822         write_seqlock(&jiffies_lock);
1823         do_timer(ticks);
1824         write_sequnlock(&jiffies_lock);
1825         update_wall_time();
1826 }