x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP            (1 << 0)
32 #define TK_MIRROR               (1 << 1)
33 #define TK_CLOCK_WAS_SET        (1 << 2)
34
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40         seqcount_t              seq;
41         struct timekeeper       timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:        Sequence counter for protecting updates. The lowest bit
50  *              is the index for the tk_read_base array
51  * @base:       tk_read_base array. Access is indexed by the lowest bit of
52  *              @seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57         seqcount_t              seq;
58         struct tk_read_base     base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71                 tk->xtime_sec++;
72         }
73 }
74
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77         struct timespec64 ts;
78
79         ts.tv_sec = tk->xtime_sec;
80         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81         return ts;
82 }
83
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86         tk->xtime_sec = ts->tv_sec;
87         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92         tk->xtime_sec += ts->tv_sec;
93         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94         tk_normalize_xtime(tk);
95 }
96
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99         struct timespec64 tmp;
100
101         /*
102          * Verify consistency of: offset_real = -wall_to_monotonic
103          * before modifying anything
104          */
105         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106                                         -tk->wall_to_monotonic.tv_nsec);
107         WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108         tk->wall_to_monotonic = wtm;
109         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110         tk->offs_real = timespec64_to_ktime(tmp);
111         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116         tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121
122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123 {
124
125         cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126         const char *name = tk->tkr_mono.clock->name;
127
128         if (offset > max_cycles) {
129                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130                                 offset, name, max_cycles);
131                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132         } else {
133                 if (offset > (max_cycles >> 1)) {
134                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
135                                         offset, name, max_cycles >> 1);
136                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137                 }
138         }
139
140         if (tk->underflow_seen) {
141                 if (jiffies - tk->last_warning > WARNING_FREQ) {
142                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
144                         printk_deferred("         Your kernel is probably still fine.\n");
145                         tk->last_warning = jiffies;
146                 }
147                 tk->underflow_seen = 0;
148         }
149
150         if (tk->overflow_seen) {
151                 if (jiffies - tk->last_warning > WARNING_FREQ) {
152                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
154                         printk_deferred("         Your kernel is probably still fine.\n");
155                         tk->last_warning = jiffies;
156                 }
157                 tk->overflow_seen = 0;
158         }
159 }
160
161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163         struct timekeeper *tk = &tk_core.timekeeper;
164         cycle_t now, last, mask, max, delta;
165         unsigned int seq;
166
167         /*
168          * Since we're called holding a seqlock, the data may shift
169          * under us while we're doing the calculation. This can cause
170          * false positives, since we'd note a problem but throw the
171          * results away. So nest another seqlock here to atomically
172          * grab the points we are checking with.
173          */
174         do {
175                 seq = read_seqcount_begin(&tk_core.seq);
176                 now = tkr->read(tkr->clock);
177                 last = tkr->cycle_last;
178                 mask = tkr->mask;
179                 max = tkr->clock->max_cycles;
180         } while (read_seqcount_retry(&tk_core.seq, seq));
181
182         delta = clocksource_delta(now, last, mask);
183
184         /*
185          * Try to catch underflows by checking if we are seeing small
186          * mask-relative negative values.
187          */
188         if (unlikely((~delta & mask) < (mask >> 3))) {
189                 tk->underflow_seen = 1;
190                 delta = 0;
191         }
192
193         /* Cap delta value to the max_cycles values to avoid mult overflows */
194         if (unlikely(delta > max)) {
195                 tk->overflow_seen = 1;
196                 delta = tkr->clock->max_cycles;
197         }
198
199         return delta;
200 }
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203 {
204 }
205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206 {
207         cycle_t cycle_now, delta;
208
209         /* read clocksource */
210         cycle_now = tkr->read(tkr->clock);
211
212         /* calculate the delta since the last update_wall_time */
213         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215         return delta;
216 }
217 #endif
218
219 /**
220  * tk_setup_internals - Set up internals to use clocksource clock.
221  *
222  * @tk:         The target timekeeper to setup.
223  * @clock:              Pointer to clocksource.
224  *
225  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226  * pair and interval request.
227  *
228  * Unless you're the timekeeping code, you should not be using this!
229  */
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 {
232         cycle_t interval;
233         u64 tmp, ntpinterval;
234         struct clocksource *old_clock;
235
236         ++tk->cs_was_changed_seq;
237         old_clock = tk->tkr_mono.clock;
238         tk->tkr_mono.clock = clock;
239         tk->tkr_mono.read = clock->read;
240         tk->tkr_mono.mask = clock->mask;
241         tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
242
243         tk->tkr_raw.clock = clock;
244         tk->tkr_raw.read = clock->read;
245         tk->tkr_raw.mask = clock->mask;
246         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
247
248         /* Do the ns -> cycle conversion first, using original mult */
249         tmp = NTP_INTERVAL_LENGTH;
250         tmp <<= clock->shift;
251         ntpinterval = tmp;
252         tmp += clock->mult/2;
253         do_div(tmp, clock->mult);
254         if (tmp == 0)
255                 tmp = 1;
256
257         interval = (cycle_t) tmp;
258         tk->cycle_interval = interval;
259
260         /* Go back from cycles -> shifted ns */
261         tk->xtime_interval = (u64) interval * clock->mult;
262         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
263         tk->raw_interval =
264                 ((u64) interval * clock->mult) >> clock->shift;
265
266          /* if changing clocks, convert xtime_nsec shift units */
267         if (old_clock) {
268                 int shift_change = clock->shift - old_clock->shift;
269                 if (shift_change < 0)
270                         tk->tkr_mono.xtime_nsec >>= -shift_change;
271                 else
272                         tk->tkr_mono.xtime_nsec <<= shift_change;
273         }
274         tk->tkr_raw.xtime_nsec = 0;
275
276         tk->tkr_mono.shift = clock->shift;
277         tk->tkr_raw.shift = clock->shift;
278
279         tk->ntp_error = 0;
280         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
281         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
282
283         /*
284          * The timekeeper keeps its own mult values for the currently
285          * active clocksource. These value will be adjusted via NTP
286          * to counteract clock drifting.
287          */
288         tk->tkr_mono.mult = clock->mult;
289         tk->tkr_raw.mult = clock->mult;
290         tk->ntp_err_mult = 0;
291 }
292
293 /* Timekeeper helper functions. */
294
295 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
296 static u32 default_arch_gettimeoffset(void) { return 0; }
297 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
298 #else
299 static inline u32 arch_gettimeoffset(void) { return 0; }
300 #endif
301
302 static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
303                                           cycle_t delta)
304 {
305         s64 nsec;
306
307         nsec = delta * tkr->mult + tkr->xtime_nsec;
308         nsec >>= tkr->shift;
309
310         /* If arch requires, add in get_arch_timeoffset() */
311         return nsec + arch_gettimeoffset();
312 }
313
314 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
315 {
316         cycle_t delta;
317
318         delta = timekeeping_get_delta(tkr);
319         return timekeeping_delta_to_ns(tkr, delta);
320 }
321
322 static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
323                                             cycle_t cycles)
324 {
325         cycle_t delta;
326
327         /* calculate the delta since the last update_wall_time */
328         delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
329         return timekeeping_delta_to_ns(tkr, delta);
330 }
331
332 /**
333  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
334  * @tkr: Timekeeping readout base from which we take the update
335  *
336  * We want to use this from any context including NMI and tracing /
337  * instrumenting the timekeeping code itself.
338  *
339  * Employ the latch technique; see @raw_write_seqcount_latch.
340  *
341  * So if a NMI hits the update of base[0] then it will use base[1]
342  * which is still consistent. In the worst case this can result is a
343  * slightly wrong timestamp (a few nanoseconds). See
344  * @ktime_get_mono_fast_ns.
345  */
346 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
347 {
348         struct tk_read_base *base = tkf->base;
349
350         /* Force readers off to base[1] */
351         raw_write_seqcount_latch(&tkf->seq);
352
353         /* Update base[0] */
354         memcpy(base, tkr, sizeof(*base));
355
356         /* Force readers back to base[0] */
357         raw_write_seqcount_latch(&tkf->seq);
358
359         /* Update base[1] */
360         memcpy(base + 1, base, sizeof(*base));
361 }
362
363 /**
364  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
365  *
366  * This timestamp is not guaranteed to be monotonic across an update.
367  * The timestamp is calculated by:
368  *
369  *      now = base_mono + clock_delta * slope
370  *
371  * So if the update lowers the slope, readers who are forced to the
372  * not yet updated second array are still using the old steeper slope.
373  *
374  * tmono
375  * ^
376  * |    o  n
377  * |   o n
378  * |  u
379  * | o
380  * |o
381  * |12345678---> reader order
382  *
383  * o = old slope
384  * u = update
385  * n = new slope
386  *
387  * So reader 6 will observe time going backwards versus reader 5.
388  *
389  * While other CPUs are likely to be able observe that, the only way
390  * for a CPU local observation is when an NMI hits in the middle of
391  * the update. Timestamps taken from that NMI context might be ahead
392  * of the following timestamps. Callers need to be aware of that and
393  * deal with it.
394  */
395 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
396 {
397         struct tk_read_base *tkr;
398         unsigned int seq;
399         u64 now;
400
401         do {
402                 seq = raw_read_seqcount_latch(&tkf->seq);
403                 tkr = tkf->base + (seq & 0x01);
404                 now = ktime_to_ns(tkr->base);
405
406                 now += timekeeping_delta_to_ns(tkr,
407                                 clocksource_delta(
408                                         tkr->read(tkr->clock),
409                                         tkr->cycle_last,
410                                         tkr->mask));
411         } while (read_seqcount_retry(&tkf->seq, seq));
412
413         return now;
414 }
415
416 u64 ktime_get_mono_fast_ns(void)
417 {
418         return __ktime_get_fast_ns(&tk_fast_mono);
419 }
420 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
421
422 u64 ktime_get_raw_fast_ns(void)
423 {
424         return __ktime_get_fast_ns(&tk_fast_raw);
425 }
426 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
427
428 /* Suspend-time cycles value for halted fast timekeeper. */
429 static cycle_t cycles_at_suspend;
430
431 static cycle_t dummy_clock_read(struct clocksource *cs)
432 {
433         return cycles_at_suspend;
434 }
435
436 /**
437  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
438  * @tk: Timekeeper to snapshot.
439  *
440  * It generally is unsafe to access the clocksource after timekeeping has been
441  * suspended, so take a snapshot of the readout base of @tk and use it as the
442  * fast timekeeper's readout base while suspended.  It will return the same
443  * number of cycles every time until timekeeping is resumed at which time the
444  * proper readout base for the fast timekeeper will be restored automatically.
445  */
446 static void halt_fast_timekeeper(struct timekeeper *tk)
447 {
448         static struct tk_read_base tkr_dummy;
449         struct tk_read_base *tkr = &tk->tkr_mono;
450
451         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
452         cycles_at_suspend = tkr->read(tkr->clock);
453         tkr_dummy.read = dummy_clock_read;
454         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
455
456         tkr = &tk->tkr_raw;
457         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
458         tkr_dummy.read = dummy_clock_read;
459         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
460 }
461
462 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
463
464 static inline void update_vsyscall(struct timekeeper *tk)
465 {
466         struct timespec xt, wm;
467
468         xt = timespec64_to_timespec(tk_xtime(tk));
469         wm = timespec64_to_timespec(tk->wall_to_monotonic);
470         update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
471                             tk->tkr_mono.cycle_last);
472 }
473
474 static inline void old_vsyscall_fixup(struct timekeeper *tk)
475 {
476         s64 remainder;
477
478         /*
479         * Store only full nanoseconds into xtime_nsec after rounding
480         * it up and add the remainder to the error difference.
481         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
482         * by truncating the remainder in vsyscalls. However, it causes
483         * additional work to be done in timekeeping_adjust(). Once
484         * the vsyscall implementations are converted to use xtime_nsec
485         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
486         * users are removed, this can be killed.
487         */
488         remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
489         if (remainder != 0) {
490                 tk->tkr_mono.xtime_nsec -= remainder;
491                 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
492                 tk->ntp_error += remainder << tk->ntp_error_shift;
493                 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
494         }
495 }
496 #else
497 #define old_vsyscall_fixup(tk)
498 #endif
499
500 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
501
502 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
503 {
504         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
505 }
506
507 /**
508  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
509  */
510 int pvclock_gtod_register_notifier(struct notifier_block *nb)
511 {
512         struct timekeeper *tk = &tk_core.timekeeper;
513         unsigned long flags;
514         int ret;
515
516         raw_spin_lock_irqsave(&timekeeper_lock, flags);
517         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
518         update_pvclock_gtod(tk, true);
519         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
520
521         return ret;
522 }
523 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
524
525 /**
526  * pvclock_gtod_unregister_notifier - unregister a pvclock
527  * timedata update listener
528  */
529 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
530 {
531         unsigned long flags;
532         int ret;
533
534         raw_spin_lock_irqsave(&timekeeper_lock, flags);
535         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
536         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
537
538         return ret;
539 }
540 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
541
542 /*
543  * tk_update_leap_state - helper to update the next_leap_ktime
544  */
545 static inline void tk_update_leap_state(struct timekeeper *tk)
546 {
547         tk->next_leap_ktime = ntp_get_next_leap();
548         if (tk->next_leap_ktime.tv64 != KTIME_MAX)
549                 /* Convert to monotonic time */
550                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
551 }
552
553 /*
554  * Update the ktime_t based scalar nsec members of the timekeeper
555  */
556 static inline void tk_update_ktime_data(struct timekeeper *tk)
557 {
558         u64 seconds;
559         u32 nsec;
560
561         /*
562          * The xtime based monotonic readout is:
563          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
564          * The ktime based monotonic readout is:
565          *      nsec = base_mono + now();
566          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
567          */
568         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
569         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
570         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
571
572         /* Update the monotonic raw base */
573         tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
574
575         /*
576          * The sum of the nanoseconds portions of xtime and
577          * wall_to_monotonic can be greater/equal one second. Take
578          * this into account before updating tk->ktime_sec.
579          */
580         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
581         if (nsec >= NSEC_PER_SEC)
582                 seconds++;
583         tk->ktime_sec = seconds;
584 }
585
586 /* must hold timekeeper_lock */
587 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
588 {
589         if (action & TK_CLEAR_NTP) {
590                 tk->ntp_error = 0;
591                 ntp_clear();
592         }
593
594         tk_update_leap_state(tk);
595         tk_update_ktime_data(tk);
596
597         update_vsyscall(tk);
598         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
599
600         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
601         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
602
603         if (action & TK_CLOCK_WAS_SET)
604                 tk->clock_was_set_seq++;
605         /*
606          * The mirroring of the data to the shadow-timekeeper needs
607          * to happen last here to ensure we don't over-write the
608          * timekeeper structure on the next update with stale data
609          */
610         if (action & TK_MIRROR)
611                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
612                        sizeof(tk_core.timekeeper));
613 }
614
615 /**
616  * timekeeping_forward_now - update clock to the current time
617  *
618  * Forward the current clock to update its state since the last call to
619  * update_wall_time(). This is useful before significant clock changes,
620  * as it avoids having to deal with this time offset explicitly.
621  */
622 static void timekeeping_forward_now(struct timekeeper *tk)
623 {
624         struct clocksource *clock = tk->tkr_mono.clock;
625         cycle_t cycle_now, delta;
626         s64 nsec;
627
628         cycle_now = tk->tkr_mono.read(clock);
629         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
630         tk->tkr_mono.cycle_last = cycle_now;
631         tk->tkr_raw.cycle_last  = cycle_now;
632
633         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
634
635         /* If arch requires, add in get_arch_timeoffset() */
636         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
637
638         tk_normalize_xtime(tk);
639
640         nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
641         timespec64_add_ns(&tk->raw_time, nsec);
642 }
643
644 /**
645  * __getnstimeofday64 - Returns the time of day in a timespec64.
646  * @ts:         pointer to the timespec to be set
647  *
648  * Updates the time of day in the timespec.
649  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
650  */
651 int __getnstimeofday64(struct timespec64 *ts)
652 {
653         struct timekeeper *tk = &tk_core.timekeeper;
654         unsigned long seq;
655         s64 nsecs = 0;
656
657         do {
658                 seq = read_seqcount_begin(&tk_core.seq);
659
660                 ts->tv_sec = tk->xtime_sec;
661                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
662
663         } while (read_seqcount_retry(&tk_core.seq, seq));
664
665         ts->tv_nsec = 0;
666         timespec64_add_ns(ts, nsecs);
667
668         /*
669          * Do not bail out early, in case there were callers still using
670          * the value, even in the face of the WARN_ON.
671          */
672         if (unlikely(timekeeping_suspended))
673                 return -EAGAIN;
674         return 0;
675 }
676 EXPORT_SYMBOL(__getnstimeofday64);
677
678 /**
679  * getnstimeofday64 - Returns the time of day in a timespec64.
680  * @ts:         pointer to the timespec64 to be set
681  *
682  * Returns the time of day in a timespec64 (WARN if suspended).
683  */
684 void getnstimeofday64(struct timespec64 *ts)
685 {
686         WARN_ON(__getnstimeofday64(ts));
687 }
688 EXPORT_SYMBOL(getnstimeofday64);
689
690 ktime_t ktime_get(void)
691 {
692         struct timekeeper *tk = &tk_core.timekeeper;
693         unsigned int seq;
694         ktime_t base;
695         s64 nsecs;
696
697         WARN_ON(timekeeping_suspended);
698
699         do {
700                 seq = read_seqcount_begin(&tk_core.seq);
701                 base = tk->tkr_mono.base;
702                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
703
704         } while (read_seqcount_retry(&tk_core.seq, seq));
705
706         return ktime_add_ns(base, nsecs);
707 }
708 EXPORT_SYMBOL_GPL(ktime_get);
709
710 u32 ktime_get_resolution_ns(void)
711 {
712         struct timekeeper *tk = &tk_core.timekeeper;
713         unsigned int seq;
714         u32 nsecs;
715
716         WARN_ON(timekeeping_suspended);
717
718         do {
719                 seq = read_seqcount_begin(&tk_core.seq);
720                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
721         } while (read_seqcount_retry(&tk_core.seq, seq));
722
723         return nsecs;
724 }
725 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
726
727 static ktime_t *offsets[TK_OFFS_MAX] = {
728         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
729         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
730         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
731 };
732
733 ktime_t ktime_get_with_offset(enum tk_offsets offs)
734 {
735         struct timekeeper *tk = &tk_core.timekeeper;
736         unsigned int seq;
737         ktime_t base, *offset = offsets[offs];
738         s64 nsecs;
739
740         WARN_ON(timekeeping_suspended);
741
742         do {
743                 seq = read_seqcount_begin(&tk_core.seq);
744                 base = ktime_add(tk->tkr_mono.base, *offset);
745                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
746
747         } while (read_seqcount_retry(&tk_core.seq, seq));
748
749         return ktime_add_ns(base, nsecs);
750
751 }
752 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
753
754 /**
755  * ktime_mono_to_any() - convert mononotic time to any other time
756  * @tmono:      time to convert.
757  * @offs:       which offset to use
758  */
759 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
760 {
761         ktime_t *offset = offsets[offs];
762         unsigned long seq;
763         ktime_t tconv;
764
765         do {
766                 seq = read_seqcount_begin(&tk_core.seq);
767                 tconv = ktime_add(tmono, *offset);
768         } while (read_seqcount_retry(&tk_core.seq, seq));
769
770         return tconv;
771 }
772 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
773
774 /**
775  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
776  */
777 ktime_t ktime_get_raw(void)
778 {
779         struct timekeeper *tk = &tk_core.timekeeper;
780         unsigned int seq;
781         ktime_t base;
782         s64 nsecs;
783
784         do {
785                 seq = read_seqcount_begin(&tk_core.seq);
786                 base = tk->tkr_raw.base;
787                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
788
789         } while (read_seqcount_retry(&tk_core.seq, seq));
790
791         return ktime_add_ns(base, nsecs);
792 }
793 EXPORT_SYMBOL_GPL(ktime_get_raw);
794
795 /**
796  * ktime_get_ts64 - get the monotonic clock in timespec64 format
797  * @ts:         pointer to timespec variable
798  *
799  * The function calculates the monotonic clock from the realtime
800  * clock and the wall_to_monotonic offset and stores the result
801  * in normalized timespec64 format in the variable pointed to by @ts.
802  */
803 void ktime_get_ts64(struct timespec64 *ts)
804 {
805         struct timekeeper *tk = &tk_core.timekeeper;
806         struct timespec64 tomono;
807         s64 nsec;
808         unsigned int seq;
809
810         WARN_ON(timekeeping_suspended);
811
812         do {
813                 seq = read_seqcount_begin(&tk_core.seq);
814                 ts->tv_sec = tk->xtime_sec;
815                 nsec = timekeeping_get_ns(&tk->tkr_mono);
816                 tomono = tk->wall_to_monotonic;
817
818         } while (read_seqcount_retry(&tk_core.seq, seq));
819
820         ts->tv_sec += tomono.tv_sec;
821         ts->tv_nsec = 0;
822         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
823 }
824 EXPORT_SYMBOL_GPL(ktime_get_ts64);
825
826 /**
827  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
828  *
829  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
830  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
831  * works on both 32 and 64 bit systems. On 32 bit systems the readout
832  * covers ~136 years of uptime which should be enough to prevent
833  * premature wrap arounds.
834  */
835 time64_t ktime_get_seconds(void)
836 {
837         struct timekeeper *tk = &tk_core.timekeeper;
838
839         WARN_ON(timekeeping_suspended);
840         return tk->ktime_sec;
841 }
842 EXPORT_SYMBOL_GPL(ktime_get_seconds);
843
844 /**
845  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
846  *
847  * Returns the wall clock seconds since 1970. This replaces the
848  * get_seconds() interface which is not y2038 safe on 32bit systems.
849  *
850  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
851  * 32bit systems the access must be protected with the sequence
852  * counter to provide "atomic" access to the 64bit tk->xtime_sec
853  * value.
854  */
855 time64_t ktime_get_real_seconds(void)
856 {
857         struct timekeeper *tk = &tk_core.timekeeper;
858         time64_t seconds;
859         unsigned int seq;
860
861         if (IS_ENABLED(CONFIG_64BIT))
862                 return tk->xtime_sec;
863
864         do {
865                 seq = read_seqcount_begin(&tk_core.seq);
866                 seconds = tk->xtime_sec;
867
868         } while (read_seqcount_retry(&tk_core.seq, seq));
869
870         return seconds;
871 }
872 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
873
874 /**
875  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
876  * but without the sequence counter protect. This internal function
877  * is called just when timekeeping lock is already held.
878  */
879 time64_t __ktime_get_real_seconds(void)
880 {
881         struct timekeeper *tk = &tk_core.timekeeper;
882
883         return tk->xtime_sec;
884 }
885
886 /**
887  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
888  * @systime_snapshot:   pointer to struct receiving the system time snapshot
889  */
890 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
891 {
892         struct timekeeper *tk = &tk_core.timekeeper;
893         unsigned long seq;
894         ktime_t base_raw;
895         ktime_t base_real;
896         s64 nsec_raw;
897         s64 nsec_real;
898         cycle_t now;
899
900         WARN_ON_ONCE(timekeeping_suspended);
901
902         do {
903                 seq = read_seqcount_begin(&tk_core.seq);
904
905                 now = tk->tkr_mono.read(tk->tkr_mono.clock);
906                 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
907                 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
908                 base_real = ktime_add(tk->tkr_mono.base,
909                                       tk_core.timekeeper.offs_real);
910                 base_raw = tk->tkr_raw.base;
911                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
912                 nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
913         } while (read_seqcount_retry(&tk_core.seq, seq));
914
915         systime_snapshot->cycles = now;
916         systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
917         systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
918 }
919 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
920
921 /* Scale base by mult/div checking for overflow */
922 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
923 {
924         u64 tmp, rem;
925
926         tmp = div64_u64_rem(*base, div, &rem);
927
928         if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
929             ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
930                 return -EOVERFLOW;
931         tmp *= mult;
932         rem *= mult;
933
934         do_div(rem, div);
935         *base = tmp + rem;
936         return 0;
937 }
938
939 /**
940  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
941  * @history:                    Snapshot representing start of history
942  * @partial_history_cycles:     Cycle offset into history (fractional part)
943  * @total_history_cycles:       Total history length in cycles
944  * @discontinuity:              True indicates clock was set on history period
945  * @ts:                         Cross timestamp that should be adjusted using
946  *      partial/total ratio
947  *
948  * Helper function used by get_device_system_crosststamp() to correct the
949  * crosstimestamp corresponding to the start of the current interval to the
950  * system counter value (timestamp point) provided by the driver. The
951  * total_history_* quantities are the total history starting at the provided
952  * reference point and ending at the start of the current interval. The cycle
953  * count between the driver timestamp point and the start of the current
954  * interval is partial_history_cycles.
955  */
956 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
957                                          cycle_t partial_history_cycles,
958                                          cycle_t total_history_cycles,
959                                          bool discontinuity,
960                                          struct system_device_crosststamp *ts)
961 {
962         struct timekeeper *tk = &tk_core.timekeeper;
963         u64 corr_raw, corr_real;
964         bool interp_forward;
965         int ret;
966
967         if (total_history_cycles == 0 || partial_history_cycles == 0)
968                 return 0;
969
970         /* Interpolate shortest distance from beginning or end of history */
971         interp_forward = partial_history_cycles > total_history_cycles/2 ?
972                 true : false;
973         partial_history_cycles = interp_forward ?
974                 total_history_cycles - partial_history_cycles :
975                 partial_history_cycles;
976
977         /*
978          * Scale the monotonic raw time delta by:
979          *      partial_history_cycles / total_history_cycles
980          */
981         corr_raw = (u64)ktime_to_ns(
982                 ktime_sub(ts->sys_monoraw, history->raw));
983         ret = scale64_check_overflow(partial_history_cycles,
984                                      total_history_cycles, &corr_raw);
985         if (ret)
986                 return ret;
987
988         /*
989          * If there is a discontinuity in the history, scale monotonic raw
990          *      correction by:
991          *      mult(real)/mult(raw) yielding the realtime correction
992          * Otherwise, calculate the realtime correction similar to monotonic
993          *      raw calculation
994          */
995         if (discontinuity) {
996                 corr_real = mul_u64_u32_div
997                         (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
998         } else {
999                 corr_real = (u64)ktime_to_ns(
1000                         ktime_sub(ts->sys_realtime, history->real));
1001                 ret = scale64_check_overflow(partial_history_cycles,
1002                                              total_history_cycles, &corr_real);
1003                 if (ret)
1004                         return ret;
1005         }
1006
1007         /* Fixup monotonic raw and real time time values */
1008         if (interp_forward) {
1009                 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1010                 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1011         } else {
1012                 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1013                 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1014         }
1015
1016         return 0;
1017 }
1018
1019 /*
1020  * cycle_between - true if test occurs chronologically between before and after
1021  */
1022 static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
1023 {
1024         if (test > before && test < after)
1025                 return true;
1026         if (test < before && before > after)
1027                 return true;
1028         return false;
1029 }
1030
1031 /**
1032  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1033  * @get_time_fn:        Callback to get simultaneous device time and
1034  *      system counter from the device driver
1035  * @ctx:                Context passed to get_time_fn()
1036  * @history_begin:      Historical reference point used to interpolate system
1037  *      time when counter provided by the driver is before the current interval
1038  * @xtstamp:            Receives simultaneously captured system and device time
1039  *
1040  * Reads a timestamp from a device and correlates it to system time
1041  */
1042 int get_device_system_crosststamp(int (*get_time_fn)
1043                                   (ktime_t *device_time,
1044                                    struct system_counterval_t *sys_counterval,
1045                                    void *ctx),
1046                                   void *ctx,
1047                                   struct system_time_snapshot *history_begin,
1048                                   struct system_device_crosststamp *xtstamp)
1049 {
1050         struct system_counterval_t system_counterval;
1051         struct timekeeper *tk = &tk_core.timekeeper;
1052         cycle_t cycles, now, interval_start;
1053         unsigned int clock_was_set_seq = 0;
1054         ktime_t base_real, base_raw;
1055         s64 nsec_real, nsec_raw;
1056         u8 cs_was_changed_seq;
1057         unsigned long seq;
1058         bool do_interp;
1059         int ret;
1060
1061         do {
1062                 seq = read_seqcount_begin(&tk_core.seq);
1063                 /*
1064                  * Try to synchronously capture device time and a system
1065                  * counter value calling back into the device driver
1066                  */
1067                 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1068                 if (ret)
1069                         return ret;
1070
1071                 /*
1072                  * Verify that the clocksource associated with the captured
1073                  * system counter value is the same as the currently installed
1074                  * timekeeper clocksource
1075                  */
1076                 if (tk->tkr_mono.clock != system_counterval.cs)
1077                         return -ENODEV;
1078                 cycles = system_counterval.cycles;
1079
1080                 /*
1081                  * Check whether the system counter value provided by the
1082                  * device driver is on the current timekeeping interval.
1083                  */
1084                 now = tk->tkr_mono.read(tk->tkr_mono.clock);
1085                 interval_start = tk->tkr_mono.cycle_last;
1086                 if (!cycle_between(interval_start, cycles, now)) {
1087                         clock_was_set_seq = tk->clock_was_set_seq;
1088                         cs_was_changed_seq = tk->cs_was_changed_seq;
1089                         cycles = interval_start;
1090                         do_interp = true;
1091                 } else {
1092                         do_interp = false;
1093                 }
1094
1095                 base_real = ktime_add(tk->tkr_mono.base,
1096                                       tk_core.timekeeper.offs_real);
1097                 base_raw = tk->tkr_raw.base;
1098
1099                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1100                                                      system_counterval.cycles);
1101                 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1102                                                     system_counterval.cycles);
1103         } while (read_seqcount_retry(&tk_core.seq, seq));
1104
1105         xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1106         xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1107
1108         /*
1109          * Interpolate if necessary, adjusting back from the start of the
1110          * current interval
1111          */
1112         if (do_interp) {
1113                 cycle_t partial_history_cycles, total_history_cycles;
1114                 bool discontinuity;
1115
1116                 /*
1117                  * Check that the counter value occurs after the provided
1118                  * history reference and that the history doesn't cross a
1119                  * clocksource change
1120                  */
1121                 if (!history_begin ||
1122                     !cycle_between(history_begin->cycles,
1123                                    system_counterval.cycles, cycles) ||
1124                     history_begin->cs_was_changed_seq != cs_was_changed_seq)
1125                         return -EINVAL;
1126                 partial_history_cycles = cycles - system_counterval.cycles;
1127                 total_history_cycles = cycles - history_begin->cycles;
1128                 discontinuity =
1129                         history_begin->clock_was_set_seq != clock_was_set_seq;
1130
1131                 ret = adjust_historical_crosststamp(history_begin,
1132                                                     partial_history_cycles,
1133                                                     total_history_cycles,
1134                                                     discontinuity, xtstamp);
1135                 if (ret)
1136                         return ret;
1137         }
1138
1139         return 0;
1140 }
1141 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1142
1143 /**
1144  * do_gettimeofday - Returns the time of day in a timeval
1145  * @tv:         pointer to the timeval to be set
1146  *
1147  * NOTE: Users should be converted to using getnstimeofday()
1148  */
1149 void do_gettimeofday(struct timeval *tv)
1150 {
1151         struct timespec64 now;
1152
1153         getnstimeofday64(&now);
1154         tv->tv_sec = now.tv_sec;
1155         tv->tv_usec = now.tv_nsec/1000;
1156 }
1157 EXPORT_SYMBOL(do_gettimeofday);
1158
1159 /**
1160  * do_settimeofday64 - Sets the time of day.
1161  * @ts:     pointer to the timespec64 variable containing the new time
1162  *
1163  * Sets the time of day to the new time and update NTP and notify hrtimers
1164  */
1165 int do_settimeofday64(const struct timespec64 *ts)
1166 {
1167         struct timekeeper *tk = &tk_core.timekeeper;
1168         struct timespec64 ts_delta, xt;
1169         unsigned long flags;
1170         int ret = 0;
1171
1172         if (!timespec64_valid_strict(ts))
1173                 return -EINVAL;
1174
1175         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1176         write_seqcount_begin(&tk_core.seq);
1177
1178         timekeeping_forward_now(tk);
1179
1180         xt = tk_xtime(tk);
1181         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1182         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1183
1184         if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1185                 ret = -EINVAL;
1186                 goto out;
1187         }
1188
1189         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1190
1191         tk_set_xtime(tk, ts);
1192 out:
1193         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1194
1195         write_seqcount_end(&tk_core.seq);
1196         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1197
1198         /* signal hrtimers about time change */
1199         clock_was_set();
1200
1201         return ret;
1202 }
1203 EXPORT_SYMBOL(do_settimeofday64);
1204
1205 /**
1206  * timekeeping_inject_offset - Adds or subtracts from the current time.
1207  * @tv:         pointer to the timespec variable containing the offset
1208  *
1209  * Adds or subtracts an offset value from the current time.
1210  */
1211 int timekeeping_inject_offset(struct timespec *ts)
1212 {
1213         struct timekeeper *tk = &tk_core.timekeeper;
1214         unsigned long flags;
1215         struct timespec64 ts64, tmp;
1216         int ret = 0;
1217
1218         if (!timespec_inject_offset_valid(ts))
1219                 return -EINVAL;
1220
1221         ts64 = timespec_to_timespec64(*ts);
1222
1223         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1224         write_seqcount_begin(&tk_core.seq);
1225
1226         timekeeping_forward_now(tk);
1227
1228         /* Make sure the proposed value is valid */
1229         tmp = timespec64_add(tk_xtime(tk),  ts64);
1230         if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1231             !timespec64_valid_strict(&tmp)) {
1232                 ret = -EINVAL;
1233                 goto error;
1234         }
1235
1236         tk_xtime_add(tk, &ts64);
1237         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1238
1239 error: /* even if we error out, we forwarded the time, so call update */
1240         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1241
1242         write_seqcount_end(&tk_core.seq);
1243         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1244
1245         /* signal hrtimers about time change */
1246         clock_was_set();
1247
1248         return ret;
1249 }
1250 EXPORT_SYMBOL(timekeeping_inject_offset);
1251
1252
1253 /**
1254  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1255  *
1256  */
1257 s32 timekeeping_get_tai_offset(void)
1258 {
1259         struct timekeeper *tk = &tk_core.timekeeper;
1260         unsigned int seq;
1261         s32 ret;
1262
1263         do {
1264                 seq = read_seqcount_begin(&tk_core.seq);
1265                 ret = tk->tai_offset;
1266         } while (read_seqcount_retry(&tk_core.seq, seq));
1267
1268         return ret;
1269 }
1270
1271 /**
1272  * __timekeeping_set_tai_offset - Lock free worker function
1273  *
1274  */
1275 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1276 {
1277         tk->tai_offset = tai_offset;
1278         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1279 }
1280
1281 /**
1282  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1283  *
1284  */
1285 void timekeeping_set_tai_offset(s32 tai_offset)
1286 {
1287         struct timekeeper *tk = &tk_core.timekeeper;
1288         unsigned long flags;
1289
1290         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1291         write_seqcount_begin(&tk_core.seq);
1292         __timekeeping_set_tai_offset(tk, tai_offset);
1293         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1294         write_seqcount_end(&tk_core.seq);
1295         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1296         clock_was_set();
1297 }
1298
1299 /**
1300  * change_clocksource - Swaps clocksources if a new one is available
1301  *
1302  * Accumulates current time interval and initializes new clocksource
1303  */
1304 static int change_clocksource(void *data)
1305 {
1306         struct timekeeper *tk = &tk_core.timekeeper;
1307         struct clocksource *new, *old;
1308         unsigned long flags;
1309
1310         new = (struct clocksource *) data;
1311
1312         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1313         write_seqcount_begin(&tk_core.seq);
1314
1315         timekeeping_forward_now(tk);
1316         /*
1317          * If the cs is in module, get a module reference. Succeeds
1318          * for built-in code (owner == NULL) as well.
1319          */
1320         if (try_module_get(new->owner)) {
1321                 if (!new->enable || new->enable(new) == 0) {
1322                         old = tk->tkr_mono.clock;
1323                         tk_setup_internals(tk, new);
1324                         if (old->disable)
1325                                 old->disable(old);
1326                         module_put(old->owner);
1327                 } else {
1328                         module_put(new->owner);
1329                 }
1330         }
1331         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1332
1333         write_seqcount_end(&tk_core.seq);
1334         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1335
1336         return 0;
1337 }
1338
1339 /**
1340  * timekeeping_notify - Install a new clock source
1341  * @clock:              pointer to the clock source
1342  *
1343  * This function is called from clocksource.c after a new, better clock
1344  * source has been registered. The caller holds the clocksource_mutex.
1345  */
1346 int timekeeping_notify(struct clocksource *clock)
1347 {
1348         struct timekeeper *tk = &tk_core.timekeeper;
1349
1350         if (tk->tkr_mono.clock == clock)
1351                 return 0;
1352         stop_machine(change_clocksource, clock, NULL);
1353         tick_clock_notify();
1354         return tk->tkr_mono.clock == clock ? 0 : -1;
1355 }
1356
1357 /**
1358  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1359  * @ts:         pointer to the timespec64 to be set
1360  *
1361  * Returns the raw monotonic time (completely un-modified by ntp)
1362  */
1363 void getrawmonotonic64(struct timespec64 *ts)
1364 {
1365         struct timekeeper *tk = &tk_core.timekeeper;
1366         struct timespec64 ts64;
1367         unsigned long seq;
1368         s64 nsecs;
1369
1370         do {
1371                 seq = read_seqcount_begin(&tk_core.seq);
1372                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1373                 ts64 = tk->raw_time;
1374
1375         } while (read_seqcount_retry(&tk_core.seq, seq));
1376
1377         timespec64_add_ns(&ts64, nsecs);
1378         *ts = ts64;
1379 }
1380 EXPORT_SYMBOL(getrawmonotonic64);
1381
1382
1383 /**
1384  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1385  */
1386 int timekeeping_valid_for_hres(void)
1387 {
1388         struct timekeeper *tk = &tk_core.timekeeper;
1389         unsigned long seq;
1390         int ret;
1391
1392         do {
1393                 seq = read_seqcount_begin(&tk_core.seq);
1394
1395                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1396
1397         } while (read_seqcount_retry(&tk_core.seq, seq));
1398
1399         return ret;
1400 }
1401
1402 /**
1403  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1404  */
1405 u64 timekeeping_max_deferment(void)
1406 {
1407         struct timekeeper *tk = &tk_core.timekeeper;
1408         unsigned long seq;
1409         u64 ret;
1410
1411         do {
1412                 seq = read_seqcount_begin(&tk_core.seq);
1413
1414                 ret = tk->tkr_mono.clock->max_idle_ns;
1415
1416         } while (read_seqcount_retry(&tk_core.seq, seq));
1417
1418         return ret;
1419 }
1420
1421 /**
1422  * read_persistent_clock -  Return time from the persistent clock.
1423  *
1424  * Weak dummy function for arches that do not yet support it.
1425  * Reads the time from the battery backed persistent clock.
1426  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1427  *
1428  *  XXX - Do be sure to remove it once all arches implement it.
1429  */
1430 void __weak read_persistent_clock(struct timespec *ts)
1431 {
1432         ts->tv_sec = 0;
1433         ts->tv_nsec = 0;
1434 }
1435
1436 void __weak read_persistent_clock64(struct timespec64 *ts64)
1437 {
1438         struct timespec ts;
1439
1440         read_persistent_clock(&ts);
1441         *ts64 = timespec_to_timespec64(ts);
1442 }
1443
1444 /**
1445  * read_boot_clock64 -  Return time of the system start.
1446  *
1447  * Weak dummy function for arches that do not yet support it.
1448  * Function to read the exact time the system has been started.
1449  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1450  *
1451  *  XXX - Do be sure to remove it once all arches implement it.
1452  */
1453 void __weak read_boot_clock64(struct timespec64 *ts)
1454 {
1455         ts->tv_sec = 0;
1456         ts->tv_nsec = 0;
1457 }
1458
1459 /* Flag for if timekeeping_resume() has injected sleeptime */
1460 static bool sleeptime_injected;
1461
1462 /* Flag for if there is a persistent clock on this platform */
1463 static bool persistent_clock_exists;
1464
1465 /*
1466  * timekeeping_init - Initializes the clocksource and common timekeeping values
1467  */
1468 void __init timekeeping_init(void)
1469 {
1470         struct timekeeper *tk = &tk_core.timekeeper;
1471         struct clocksource *clock;
1472         unsigned long flags;
1473         struct timespec64 now, boot, tmp;
1474
1475         read_persistent_clock64(&now);
1476         if (!timespec64_valid_strict(&now)) {
1477                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1478                         "         Check your CMOS/BIOS settings.\n");
1479                 now.tv_sec = 0;
1480                 now.tv_nsec = 0;
1481         } else if (now.tv_sec || now.tv_nsec)
1482                 persistent_clock_exists = true;
1483
1484         read_boot_clock64(&boot);
1485         if (!timespec64_valid_strict(&boot)) {
1486                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1487                         "         Check your CMOS/BIOS settings.\n");
1488                 boot.tv_sec = 0;
1489                 boot.tv_nsec = 0;
1490         }
1491
1492         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1493         write_seqcount_begin(&tk_core.seq);
1494         ntp_init();
1495
1496         clock = clocksource_default_clock();
1497         if (clock->enable)
1498                 clock->enable(clock);
1499         tk_setup_internals(tk, clock);
1500
1501         tk_set_xtime(tk, &now);
1502         tk->raw_time.tv_sec = 0;
1503         tk->raw_time.tv_nsec = 0;
1504         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1505                 boot = tk_xtime(tk);
1506
1507         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1508         tk_set_wall_to_mono(tk, tmp);
1509
1510         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1511
1512         write_seqcount_end(&tk_core.seq);
1513         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1514 }
1515
1516 /* time in seconds when suspend began for persistent clock */
1517 static struct timespec64 timekeeping_suspend_time;
1518
1519 /**
1520  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1521  * @delta: pointer to a timespec delta value
1522  *
1523  * Takes a timespec offset measuring a suspend interval and properly
1524  * adds the sleep offset to the timekeeping variables.
1525  */
1526 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1527                                            struct timespec64 *delta)
1528 {
1529         if (!timespec64_valid_strict(delta)) {
1530                 printk_deferred(KERN_WARNING
1531                                 "__timekeeping_inject_sleeptime: Invalid "
1532                                 "sleep delta value!\n");
1533                 return;
1534         }
1535         tk_xtime_add(tk, delta);
1536         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1537         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1538         tk_debug_account_sleep_time(delta);
1539 }
1540
1541 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1542 /**
1543  * We have three kinds of time sources to use for sleep time
1544  * injection, the preference order is:
1545  * 1) non-stop clocksource
1546  * 2) persistent clock (ie: RTC accessible when irqs are off)
1547  * 3) RTC
1548  *
1549  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1550  * If system has neither 1) nor 2), 3) will be used finally.
1551  *
1552  *
1553  * If timekeeping has injected sleeptime via either 1) or 2),
1554  * 3) becomes needless, so in this case we don't need to call
1555  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1556  * means.
1557  */
1558 bool timekeeping_rtc_skipresume(void)
1559 {
1560         return sleeptime_injected;
1561 }
1562
1563 /**
1564  * 1) can be determined whether to use or not only when doing
1565  * timekeeping_resume() which is invoked after rtc_suspend(),
1566  * so we can't skip rtc_suspend() surely if system has 1).
1567  *
1568  * But if system has 2), 2) will definitely be used, so in this
1569  * case we don't need to call rtc_suspend(), and this is what
1570  * timekeeping_rtc_skipsuspend() means.
1571  */
1572 bool timekeeping_rtc_skipsuspend(void)
1573 {
1574         return persistent_clock_exists;
1575 }
1576
1577 /**
1578  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1579  * @delta: pointer to a timespec64 delta value
1580  *
1581  * This hook is for architectures that cannot support read_persistent_clock64
1582  * because their RTC/persistent clock is only accessible when irqs are enabled.
1583  * and also don't have an effective nonstop clocksource.
1584  *
1585  * This function should only be called by rtc_resume(), and allows
1586  * a suspend offset to be injected into the timekeeping values.
1587  */
1588 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1589 {
1590         struct timekeeper *tk = &tk_core.timekeeper;
1591         unsigned long flags;
1592
1593         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1594         write_seqcount_begin(&tk_core.seq);
1595
1596         timekeeping_forward_now(tk);
1597
1598         __timekeeping_inject_sleeptime(tk, delta);
1599
1600         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1601
1602         write_seqcount_end(&tk_core.seq);
1603         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1604
1605         /* signal hrtimers about time change */
1606         clock_was_set();
1607 }
1608 #endif
1609
1610 /**
1611  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1612  */
1613 void timekeeping_resume(void)
1614 {
1615         struct timekeeper *tk = &tk_core.timekeeper;
1616         struct clocksource *clock = tk->tkr_mono.clock;
1617         unsigned long flags;
1618         struct timespec64 ts_new, ts_delta;
1619         cycle_t cycle_now, cycle_delta;
1620
1621         sleeptime_injected = false;
1622         read_persistent_clock64(&ts_new);
1623
1624         clockevents_resume();
1625         clocksource_resume();
1626
1627         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1628         write_seqcount_begin(&tk_core.seq);
1629
1630         /*
1631          * After system resumes, we need to calculate the suspended time and
1632          * compensate it for the OS time. There are 3 sources that could be
1633          * used: Nonstop clocksource during suspend, persistent clock and rtc
1634          * device.
1635          *
1636          * One specific platform may have 1 or 2 or all of them, and the
1637          * preference will be:
1638          *      suspend-nonstop clocksource -> persistent clock -> rtc
1639          * The less preferred source will only be tried if there is no better
1640          * usable source. The rtc part is handled separately in rtc core code.
1641          */
1642         cycle_now = tk->tkr_mono.read(clock);
1643         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1644                 cycle_now > tk->tkr_mono.cycle_last) {
1645                 u64 num, max = ULLONG_MAX;
1646                 u32 mult = clock->mult;
1647                 u32 shift = clock->shift;
1648                 s64 nsec = 0;
1649
1650                 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1651                                                 tk->tkr_mono.mask);
1652
1653                 /*
1654                  * "cycle_delta * mutl" may cause 64 bits overflow, if the
1655                  * suspended time is too long. In that case we need do the
1656                  * 64 bits math carefully
1657                  */
1658                 do_div(max, mult);
1659                 if (cycle_delta > max) {
1660                         num = div64_u64(cycle_delta, max);
1661                         nsec = (((u64) max * mult) >> shift) * num;
1662                         cycle_delta -= num * max;
1663                 }
1664                 nsec += ((u64) cycle_delta * mult) >> shift;
1665
1666                 ts_delta = ns_to_timespec64(nsec);
1667                 sleeptime_injected = true;
1668         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1669                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1670                 sleeptime_injected = true;
1671         }
1672
1673         if (sleeptime_injected)
1674                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1675
1676         /* Re-base the last cycle value */
1677         tk->tkr_mono.cycle_last = cycle_now;
1678         tk->tkr_raw.cycle_last  = cycle_now;
1679
1680         tk->ntp_error = 0;
1681         timekeeping_suspended = 0;
1682         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1683         write_seqcount_end(&tk_core.seq);
1684         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1685
1686         touch_softlockup_watchdog();
1687
1688         tick_resume();
1689         hrtimers_resume();
1690 }
1691
1692 int timekeeping_suspend(void)
1693 {
1694         struct timekeeper *tk = &tk_core.timekeeper;
1695         unsigned long flags;
1696         struct timespec64               delta, delta_delta;
1697         static struct timespec64        old_delta;
1698
1699         read_persistent_clock64(&timekeeping_suspend_time);
1700
1701         /*
1702          * On some systems the persistent_clock can not be detected at
1703          * timekeeping_init by its return value, so if we see a valid
1704          * value returned, update the persistent_clock_exists flag.
1705          */
1706         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1707                 persistent_clock_exists = true;
1708
1709         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1710         write_seqcount_begin(&tk_core.seq);
1711         timekeeping_forward_now(tk);
1712         timekeeping_suspended = 1;
1713
1714         if (persistent_clock_exists) {
1715                 /*
1716                  * To avoid drift caused by repeated suspend/resumes,
1717                  * which each can add ~1 second drift error,
1718                  * try to compensate so the difference in system time
1719                  * and persistent_clock time stays close to constant.
1720                  */
1721                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1722                 delta_delta = timespec64_sub(delta, old_delta);
1723                 if (abs(delta_delta.tv_sec) >= 2) {
1724                         /*
1725                          * if delta_delta is too large, assume time correction
1726                          * has occurred and set old_delta to the current delta.
1727                          */
1728                         old_delta = delta;
1729                 } else {
1730                         /* Otherwise try to adjust old_system to compensate */
1731                         timekeeping_suspend_time =
1732                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1733                 }
1734         }
1735
1736         timekeeping_update(tk, TK_MIRROR);
1737         halt_fast_timekeeper(tk);
1738         write_seqcount_end(&tk_core.seq);
1739         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1740
1741         tick_suspend();
1742         clocksource_suspend();
1743         clockevents_suspend();
1744
1745         return 0;
1746 }
1747
1748 /* sysfs resume/suspend bits for timekeeping */
1749 static struct syscore_ops timekeeping_syscore_ops = {
1750         .resume         = timekeeping_resume,
1751         .suspend        = timekeeping_suspend,
1752 };
1753
1754 static int __init timekeeping_init_ops(void)
1755 {
1756         register_syscore_ops(&timekeeping_syscore_ops);
1757         return 0;
1758 }
1759 device_initcall(timekeeping_init_ops);
1760
1761 /*
1762  * Apply a multiplier adjustment to the timekeeper
1763  */
1764 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1765                                                          s64 offset,
1766                                                          bool negative,
1767                                                          int adj_scale)
1768 {
1769         s64 interval = tk->cycle_interval;
1770         s32 mult_adj = 1;
1771
1772         if (negative) {
1773                 mult_adj = -mult_adj;
1774                 interval = -interval;
1775                 offset  = -offset;
1776         }
1777         mult_adj <<= adj_scale;
1778         interval <<= adj_scale;
1779         offset <<= adj_scale;
1780
1781         /*
1782          * So the following can be confusing.
1783          *
1784          * To keep things simple, lets assume mult_adj == 1 for now.
1785          *
1786          * When mult_adj != 1, remember that the interval and offset values
1787          * have been appropriately scaled so the math is the same.
1788          *
1789          * The basic idea here is that we're increasing the multiplier
1790          * by one, this causes the xtime_interval to be incremented by
1791          * one cycle_interval. This is because:
1792          *      xtime_interval = cycle_interval * mult
1793          * So if mult is being incremented by one:
1794          *      xtime_interval = cycle_interval * (mult + 1)
1795          * Its the same as:
1796          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1797          * Which can be shortened to:
1798          *      xtime_interval += cycle_interval
1799          *
1800          * So offset stores the non-accumulated cycles. Thus the current
1801          * time (in shifted nanoseconds) is:
1802          *      now = (offset * adj) + xtime_nsec
1803          * Now, even though we're adjusting the clock frequency, we have
1804          * to keep time consistent. In other words, we can't jump back
1805          * in time, and we also want to avoid jumping forward in time.
1806          *
1807          * So given the same offset value, we need the time to be the same
1808          * both before and after the freq adjustment.
1809          *      now = (offset * adj_1) + xtime_nsec_1
1810          *      now = (offset * adj_2) + xtime_nsec_2
1811          * So:
1812          *      (offset * adj_1) + xtime_nsec_1 =
1813          *              (offset * adj_2) + xtime_nsec_2
1814          * And we know:
1815          *      adj_2 = adj_1 + 1
1816          * So:
1817          *      (offset * adj_1) + xtime_nsec_1 =
1818          *              (offset * (adj_1+1)) + xtime_nsec_2
1819          *      (offset * adj_1) + xtime_nsec_1 =
1820          *              (offset * adj_1) + offset + xtime_nsec_2
1821          * Canceling the sides:
1822          *      xtime_nsec_1 = offset + xtime_nsec_2
1823          * Which gives us:
1824          *      xtime_nsec_2 = xtime_nsec_1 - offset
1825          * Which simplfies to:
1826          *      xtime_nsec -= offset
1827          *
1828          * XXX - TODO: Doc ntp_error calculation.
1829          */
1830         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1831                 /* NTP adjustment caused clocksource mult overflow */
1832                 WARN_ON_ONCE(1);
1833                 return;
1834         }
1835
1836         tk->tkr_mono.mult += mult_adj;
1837         tk->xtime_interval += interval;
1838         tk->tkr_mono.xtime_nsec -= offset;
1839         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1840 }
1841
1842 /*
1843  * Calculate the multiplier adjustment needed to match the frequency
1844  * specified by NTP
1845  */
1846 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1847                                                         s64 offset)
1848 {
1849         s64 interval = tk->cycle_interval;
1850         s64 xinterval = tk->xtime_interval;
1851         u32 base = tk->tkr_mono.clock->mult;
1852         u32 max = tk->tkr_mono.clock->maxadj;
1853         u32 cur_adj = tk->tkr_mono.mult;
1854         s64 tick_error;
1855         bool negative;
1856         u32 adj_scale;
1857
1858         /* Remove any current error adj from freq calculation */
1859         if (tk->ntp_err_mult)
1860                 xinterval -= tk->cycle_interval;
1861
1862         tk->ntp_tick = ntp_tick_length();
1863
1864         /* Calculate current error per tick */
1865         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1866         tick_error -= (xinterval + tk->xtime_remainder);
1867
1868         /* Don't worry about correcting it if its small */
1869         if (likely((tick_error >= 0) && (tick_error <= interval)))
1870                 return;
1871
1872         /* preserve the direction of correction */
1873         negative = (tick_error < 0);
1874
1875         /* If any adjustment would pass the max, just return */
1876         if (negative && (cur_adj - 1) <= (base - max))
1877                 return;
1878         if (!negative && (cur_adj + 1) >= (base + max))
1879                 return;
1880         /*
1881          * Sort out the magnitude of the correction, but
1882          * avoid making so large a correction that we go
1883          * over the max adjustment.
1884          */
1885         adj_scale = 0;
1886         tick_error = abs(tick_error);
1887         while (tick_error > interval) {
1888                 u32 adj = 1 << (adj_scale + 1);
1889
1890                 /* Check if adjustment gets us within 1 unit from the max */
1891                 if (negative && (cur_adj - adj) <= (base - max))
1892                         break;
1893                 if (!negative && (cur_adj + adj) >= (base + max))
1894                         break;
1895
1896                 adj_scale++;
1897                 tick_error >>= 1;
1898         }
1899
1900         /* scale the corrections */
1901         timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1902 }
1903
1904 /*
1905  * Adjust the timekeeper's multiplier to the correct frequency
1906  * and also to reduce the accumulated error value.
1907  */
1908 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1909 {
1910         /* Correct for the current frequency error */
1911         timekeeping_freqadjust(tk, offset);
1912
1913         /* Next make a small adjustment to fix any cumulative error */
1914         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1915                 tk->ntp_err_mult = 1;
1916                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1917         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1918                 /* Undo any existing error adjustment */
1919                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1920                 tk->ntp_err_mult = 0;
1921         }
1922
1923         if (unlikely(tk->tkr_mono.clock->maxadj &&
1924                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1925                         > tk->tkr_mono.clock->maxadj))) {
1926                 printk_once(KERN_WARNING
1927                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1928                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1929                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1930         }
1931
1932         /*
1933          * It may be possible that when we entered this function, xtime_nsec
1934          * was very small.  Further, if we're slightly speeding the clocksource
1935          * in the code above, its possible the required corrective factor to
1936          * xtime_nsec could cause it to underflow.
1937          *
1938          * Now, since we already accumulated the second, cannot simply roll
1939          * the accumulated second back, since the NTP subsystem has been
1940          * notified via second_overflow. So instead we push xtime_nsec forward
1941          * by the amount we underflowed, and add that amount into the error.
1942          *
1943          * We'll correct this error next time through this function, when
1944          * xtime_nsec is not as small.
1945          */
1946         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1947                 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1948                 tk->tkr_mono.xtime_nsec = 0;
1949                 tk->ntp_error += neg << tk->ntp_error_shift;
1950         }
1951 }
1952
1953 /**
1954  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1955  *
1956  * Helper function that accumulates the nsecs greater than a second
1957  * from the xtime_nsec field to the xtime_secs field.
1958  * It also calls into the NTP code to handle leapsecond processing.
1959  *
1960  */
1961 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1962 {
1963         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1964         unsigned int clock_set = 0;
1965
1966         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1967                 int leap;
1968
1969                 tk->tkr_mono.xtime_nsec -= nsecps;
1970                 tk->xtime_sec++;
1971
1972                 /* Figure out if its a leap sec and apply if needed */
1973                 leap = second_overflow(tk->xtime_sec);
1974                 if (unlikely(leap)) {
1975                         struct timespec64 ts;
1976
1977                         tk->xtime_sec += leap;
1978
1979                         ts.tv_sec = leap;
1980                         ts.tv_nsec = 0;
1981                         tk_set_wall_to_mono(tk,
1982                                 timespec64_sub(tk->wall_to_monotonic, ts));
1983
1984                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1985
1986                         clock_set = TK_CLOCK_WAS_SET;
1987                 }
1988         }
1989         return clock_set;
1990 }
1991
1992 /**
1993  * logarithmic_accumulation - shifted accumulation of cycles
1994  *
1995  * This functions accumulates a shifted interval of cycles into
1996  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1997  * loop.
1998  *
1999  * Returns the unconsumed cycles.
2000  */
2001 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
2002                                                 u32 shift,
2003                                                 unsigned int *clock_set)
2004 {
2005         cycle_t interval = tk->cycle_interval << shift;
2006         u64 raw_nsecs;
2007
2008         /* If the offset is smaller than a shifted interval, do nothing */
2009         if (offset < interval)
2010                 return offset;
2011
2012         /* Accumulate one shifted interval */
2013         offset -= interval;
2014         tk->tkr_mono.cycle_last += interval;
2015         tk->tkr_raw.cycle_last  += interval;
2016
2017         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2018         *clock_set |= accumulate_nsecs_to_secs(tk);
2019
2020         /* Accumulate raw time */
2021         raw_nsecs = (u64)tk->raw_interval << shift;
2022         raw_nsecs += tk->raw_time.tv_nsec;
2023         if (raw_nsecs >= NSEC_PER_SEC) {
2024                 u64 raw_secs = raw_nsecs;
2025                 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2026                 tk->raw_time.tv_sec += raw_secs;
2027         }
2028         tk->raw_time.tv_nsec = raw_nsecs;
2029
2030         /* Accumulate error between NTP and clock interval */
2031         tk->ntp_error += tk->ntp_tick << shift;
2032         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2033                                                 (tk->ntp_error_shift + shift);
2034
2035         return offset;
2036 }
2037
2038 /**
2039  * update_wall_time - Uses the current clocksource to increment the wall time
2040  *
2041  */
2042 void update_wall_time(void)
2043 {
2044         struct timekeeper *real_tk = &tk_core.timekeeper;
2045         struct timekeeper *tk = &shadow_timekeeper;
2046         cycle_t offset;
2047         int shift = 0, maxshift;
2048         unsigned int clock_set = 0;
2049         unsigned long flags;
2050
2051         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2052
2053         /* Make sure we're fully resumed: */
2054         if (unlikely(timekeeping_suspended))
2055                 goto out;
2056
2057 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2058         offset = real_tk->cycle_interval;
2059 #else
2060         offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2061                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2062 #endif
2063
2064         /* Check if there's really nothing to do */
2065         if (offset < real_tk->cycle_interval)
2066                 goto out;
2067
2068         /* Do some additional sanity checking */
2069         timekeeping_check_update(real_tk, offset);
2070
2071         /*
2072          * With NO_HZ we may have to accumulate many cycle_intervals
2073          * (think "ticks") worth of time at once. To do this efficiently,
2074          * we calculate the largest doubling multiple of cycle_intervals
2075          * that is smaller than the offset.  We then accumulate that
2076          * chunk in one go, and then try to consume the next smaller
2077          * doubled multiple.
2078          */
2079         shift = ilog2(offset) - ilog2(tk->cycle_interval);
2080         shift = max(0, shift);
2081         /* Bound shift to one less than what overflows tick_length */
2082         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2083         shift = min(shift, maxshift);
2084         while (offset >= tk->cycle_interval) {
2085                 offset = logarithmic_accumulation(tk, offset, shift,
2086                                                         &clock_set);
2087                 if (offset < tk->cycle_interval<<shift)
2088                         shift--;
2089         }
2090
2091         /* correct the clock when NTP error is too big */
2092         timekeeping_adjust(tk, offset);
2093
2094         /*
2095          * XXX This can be killed once everyone converts
2096          * to the new update_vsyscall.
2097          */
2098         old_vsyscall_fixup(tk);
2099
2100         /*
2101          * Finally, make sure that after the rounding
2102          * xtime_nsec isn't larger than NSEC_PER_SEC
2103          */
2104         clock_set |= accumulate_nsecs_to_secs(tk);
2105
2106         write_seqcount_begin(&tk_core.seq);
2107         /*
2108          * Update the real timekeeper.
2109          *
2110          * We could avoid this memcpy by switching pointers, but that
2111          * requires changes to all other timekeeper usage sites as
2112          * well, i.e. move the timekeeper pointer getter into the
2113          * spinlocked/seqcount protected sections. And we trade this
2114          * memcpy under the tk_core.seq against one before we start
2115          * updating.
2116          */
2117         timekeeping_update(tk, clock_set);
2118         memcpy(real_tk, tk, sizeof(*tk));
2119         /* The memcpy must come last. Do not put anything here! */
2120         write_seqcount_end(&tk_core.seq);
2121 out:
2122         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2123         if (clock_set)
2124                 /* Have to call _delayed version, since in irq context*/
2125                 clock_was_set_delayed();
2126 }
2127
2128 /**
2129  * getboottime64 - Return the real time of system boot.
2130  * @ts:         pointer to the timespec64 to be set
2131  *
2132  * Returns the wall-time of boot in a timespec64.
2133  *
2134  * This is based on the wall_to_monotonic offset and the total suspend
2135  * time. Calls to settimeofday will affect the value returned (which
2136  * basically means that however wrong your real time clock is at boot time,
2137  * you get the right time here).
2138  */
2139 void getboottime64(struct timespec64 *ts)
2140 {
2141         struct timekeeper *tk = &tk_core.timekeeper;
2142         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2143
2144         *ts = ktime_to_timespec64(t);
2145 }
2146 EXPORT_SYMBOL_GPL(getboottime64);
2147
2148 unsigned long get_seconds(void)
2149 {
2150         struct timekeeper *tk = &tk_core.timekeeper;
2151
2152         return tk->xtime_sec;
2153 }
2154 EXPORT_SYMBOL(get_seconds);
2155
2156 struct timespec __current_kernel_time(void)
2157 {
2158         struct timekeeper *tk = &tk_core.timekeeper;
2159
2160         return timespec64_to_timespec(tk_xtime(tk));
2161 }
2162
2163 struct timespec64 current_kernel_time64(void)
2164 {
2165         struct timekeeper *tk = &tk_core.timekeeper;
2166         struct timespec64 now;
2167         unsigned long seq;
2168
2169         do {
2170                 seq = read_seqcount_begin(&tk_core.seq);
2171
2172                 now = tk_xtime(tk);
2173         } while (read_seqcount_retry(&tk_core.seq, seq));
2174
2175         return now;
2176 }
2177 EXPORT_SYMBOL(current_kernel_time64);
2178
2179 struct timespec64 get_monotonic_coarse64(void)
2180 {
2181         struct timekeeper *tk = &tk_core.timekeeper;
2182         struct timespec64 now, mono;
2183         unsigned long seq;
2184
2185         do {
2186                 seq = read_seqcount_begin(&tk_core.seq);
2187
2188                 now = tk_xtime(tk);
2189                 mono = tk->wall_to_monotonic;
2190         } while (read_seqcount_retry(&tk_core.seq, seq));
2191
2192         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2193                                 now.tv_nsec + mono.tv_nsec);
2194
2195         return now;
2196 }
2197 EXPORT_SYMBOL(get_monotonic_coarse64);
2198
2199 /*
2200  * Must hold jiffies_lock
2201  */
2202 void do_timer(unsigned long ticks)
2203 {
2204         jiffies_64 += ticks;
2205         calc_global_load(ticks);
2206 }
2207
2208 /**
2209  * ktime_get_update_offsets_now - hrtimer helper
2210  * @cwsseq:     pointer to check and store the clock was set sequence number
2211  * @offs_real:  pointer to storage for monotonic -> realtime offset
2212  * @offs_boot:  pointer to storage for monotonic -> boottime offset
2213  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2214  *
2215  * Returns current monotonic time and updates the offsets if the
2216  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2217  * different.
2218  *
2219  * Called from hrtimer_interrupt() or retrigger_next_event()
2220  */
2221 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2222                                      ktime_t *offs_boot, ktime_t *offs_tai)
2223 {
2224         struct timekeeper *tk = &tk_core.timekeeper;
2225         unsigned int seq;
2226         ktime_t base;
2227         u64 nsecs;
2228
2229         do {
2230                 seq = read_seqcount_begin(&tk_core.seq);
2231
2232                 base = tk->tkr_mono.base;
2233                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2234                 base = ktime_add_ns(base, nsecs);
2235
2236                 if (*cwsseq != tk->clock_was_set_seq) {
2237                         *cwsseq = tk->clock_was_set_seq;
2238                         *offs_real = tk->offs_real;
2239                         *offs_boot = tk->offs_boot;
2240                         *offs_tai = tk->offs_tai;
2241                 }
2242
2243                 /* Handle leapsecond insertion adjustments */
2244                 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2245                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2246
2247         } while (read_seqcount_retry(&tk_core.seq, seq));
2248
2249         return base;
2250 }
2251
2252 /**
2253  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2254  */
2255 int do_adjtimex(struct timex *txc)
2256 {
2257         struct timekeeper *tk = &tk_core.timekeeper;
2258         unsigned long flags;
2259         struct timespec64 ts;
2260         s32 orig_tai, tai;
2261         int ret;
2262
2263         /* Validate the data before disabling interrupts */
2264         ret = ntp_validate_timex(txc);
2265         if (ret)
2266                 return ret;
2267
2268         if (txc->modes & ADJ_SETOFFSET) {
2269                 struct timespec delta;
2270                 delta.tv_sec  = txc->time.tv_sec;
2271                 delta.tv_nsec = txc->time.tv_usec;
2272                 if (!(txc->modes & ADJ_NANO))
2273                         delta.tv_nsec *= 1000;
2274                 ret = timekeeping_inject_offset(&delta);
2275                 if (ret)
2276                         return ret;
2277         }
2278
2279         getnstimeofday64(&ts);
2280
2281         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2282         write_seqcount_begin(&tk_core.seq);
2283
2284         orig_tai = tai = tk->tai_offset;
2285         ret = __do_adjtimex(txc, &ts, &tai);
2286
2287         if (tai != orig_tai) {
2288                 __timekeeping_set_tai_offset(tk, tai);
2289                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2290         }
2291         tk_update_leap_state(tk);
2292
2293         write_seqcount_end(&tk_core.seq);
2294         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2295
2296         if (tai != orig_tai)
2297                 clock_was_set();
2298
2299         ntp_notify_cmos_timer();
2300
2301         return ret;
2302 }
2303
2304 #ifdef CONFIG_NTP_PPS
2305 /**
2306  * hardpps() - Accessor function to NTP __hardpps function
2307  */
2308 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2309 {
2310         unsigned long flags;
2311
2312         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2313         write_seqcount_begin(&tk_core.seq);
2314
2315         __hardpps(phase_ts, raw_ts);
2316
2317         write_seqcount_end(&tk_core.seq);
2318         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2319 }
2320 EXPORT_SYMBOL(hardpps);
2321 #endif
2322
2323 /**
2324  * xtime_update() - advances the timekeeping infrastructure
2325  * @ticks:      number of ticks, that have elapsed since the last call.
2326  *
2327  * Must be called with interrupts disabled.
2328  */
2329 void xtime_update(unsigned long ticks)
2330 {
2331         write_seqlock(&jiffies_lock);
2332         do_timer(ticks);
2333         write_sequnlock(&jiffies_lock);
2334         update_wall_time();
2335 }