time: Prevent early expiry of hrtimers[CLOCK_REALTIME] at the leap second edge
[cascardo/linux.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP            (1 << 0)
32 #define TK_MIRROR               (1 << 1)
33 #define TK_CLOCK_WAS_SET        (1 << 2)
34
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40         seqcount_t              seq;
41         struct timekeeper       timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:        Sequence counter for protecting updates. The lowest bit
50  *              is the index for the tk_read_base array
51  * @base:       tk_read_base array. Access is indexed by the lowest bit of
52  *              @seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57         seqcount_t              seq;
58         struct tk_read_base     base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71                 tk->xtime_sec++;
72         }
73 }
74
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77         struct timespec64 ts;
78
79         ts.tv_sec = tk->xtime_sec;
80         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81         return ts;
82 }
83
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86         tk->xtime_sec = ts->tv_sec;
87         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92         tk->xtime_sec += ts->tv_sec;
93         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94         tk_normalize_xtime(tk);
95 }
96
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99         struct timespec64 tmp;
100
101         /*
102          * Verify consistency of: offset_real = -wall_to_monotonic
103          * before modifying anything
104          */
105         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106                                         -tk->wall_to_monotonic.tv_nsec);
107         WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108         tk->wall_to_monotonic = wtm;
109         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110         tk->offs_real = timespec64_to_ktime(tmp);
111         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116         tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121
122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123 {
124
125         cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126         const char *name = tk->tkr_mono.clock->name;
127
128         if (offset > max_cycles) {
129                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130                                 offset, name, max_cycles);
131                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132         } else {
133                 if (offset > (max_cycles >> 1)) {
134                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
135                                         offset, name, max_cycles >> 1);
136                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137                 }
138         }
139
140         if (tk->underflow_seen) {
141                 if (jiffies - tk->last_warning > WARNING_FREQ) {
142                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
144                         printk_deferred("         Your kernel is probably still fine.\n");
145                         tk->last_warning = jiffies;
146                 }
147                 tk->underflow_seen = 0;
148         }
149
150         if (tk->overflow_seen) {
151                 if (jiffies - tk->last_warning > WARNING_FREQ) {
152                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
154                         printk_deferred("         Your kernel is probably still fine.\n");
155                         tk->last_warning = jiffies;
156                 }
157                 tk->overflow_seen = 0;
158         }
159 }
160
161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163         struct timekeeper *tk = &tk_core.timekeeper;
164         cycle_t now, last, mask, max, delta;
165         unsigned int seq;
166
167         /*
168          * Since we're called holding a seqlock, the data may shift
169          * under us while we're doing the calculation. This can cause
170          * false positives, since we'd note a problem but throw the
171          * results away. So nest another seqlock here to atomically
172          * grab the points we are checking with.
173          */
174         do {
175                 seq = read_seqcount_begin(&tk_core.seq);
176                 now = tkr->read(tkr->clock);
177                 last = tkr->cycle_last;
178                 mask = tkr->mask;
179                 max = tkr->clock->max_cycles;
180         } while (read_seqcount_retry(&tk_core.seq, seq));
181
182         delta = clocksource_delta(now, last, mask);
183
184         /*
185          * Try to catch underflows by checking if we are seeing small
186          * mask-relative negative values.
187          */
188         if (unlikely((~delta & mask) < (mask >> 3))) {
189                 tk->underflow_seen = 1;
190                 delta = 0;
191         }
192
193         /* Cap delta value to the max_cycles values to avoid mult overflows */
194         if (unlikely(delta > max)) {
195                 tk->overflow_seen = 1;
196                 delta = tkr->clock->max_cycles;
197         }
198
199         return delta;
200 }
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203 {
204 }
205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206 {
207         cycle_t cycle_now, delta;
208
209         /* read clocksource */
210         cycle_now = tkr->read(tkr->clock);
211
212         /* calculate the delta since the last update_wall_time */
213         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215         return delta;
216 }
217 #endif
218
219 /**
220  * tk_setup_internals - Set up internals to use clocksource clock.
221  *
222  * @tk:         The target timekeeper to setup.
223  * @clock:              Pointer to clocksource.
224  *
225  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226  * pair and interval request.
227  *
228  * Unless you're the timekeeping code, you should not be using this!
229  */
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 {
232         cycle_t interval;
233         u64 tmp, ntpinterval;
234         struct clocksource *old_clock;
235
236         old_clock = tk->tkr_mono.clock;
237         tk->tkr_mono.clock = clock;
238         tk->tkr_mono.read = clock->read;
239         tk->tkr_mono.mask = clock->mask;
240         tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
241
242         tk->tkr_raw.clock = clock;
243         tk->tkr_raw.read = clock->read;
244         tk->tkr_raw.mask = clock->mask;
245         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
246
247         /* Do the ns -> cycle conversion first, using original mult */
248         tmp = NTP_INTERVAL_LENGTH;
249         tmp <<= clock->shift;
250         ntpinterval = tmp;
251         tmp += clock->mult/2;
252         do_div(tmp, clock->mult);
253         if (tmp == 0)
254                 tmp = 1;
255
256         interval = (cycle_t) tmp;
257         tk->cycle_interval = interval;
258
259         /* Go back from cycles -> shifted ns */
260         tk->xtime_interval = (u64) interval * clock->mult;
261         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
262         tk->raw_interval =
263                 ((u64) interval * clock->mult) >> clock->shift;
264
265          /* if changing clocks, convert xtime_nsec shift units */
266         if (old_clock) {
267                 int shift_change = clock->shift - old_clock->shift;
268                 if (shift_change < 0)
269                         tk->tkr_mono.xtime_nsec >>= -shift_change;
270                 else
271                         tk->tkr_mono.xtime_nsec <<= shift_change;
272         }
273         tk->tkr_raw.xtime_nsec = 0;
274
275         tk->tkr_mono.shift = clock->shift;
276         tk->tkr_raw.shift = clock->shift;
277
278         tk->ntp_error = 0;
279         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
280         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
281
282         /*
283          * The timekeeper keeps its own mult values for the currently
284          * active clocksource. These value will be adjusted via NTP
285          * to counteract clock drifting.
286          */
287         tk->tkr_mono.mult = clock->mult;
288         tk->tkr_raw.mult = clock->mult;
289         tk->ntp_err_mult = 0;
290 }
291
292 /* Timekeeper helper functions. */
293
294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 static u32 default_arch_gettimeoffset(void) { return 0; }
296 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
297 #else
298 static inline u32 arch_gettimeoffset(void) { return 0; }
299 #endif
300
301 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
302 {
303         cycle_t delta;
304         s64 nsec;
305
306         delta = timekeeping_get_delta(tkr);
307
308         nsec = delta * tkr->mult + tkr->xtime_nsec;
309         nsec >>= tkr->shift;
310
311         /* If arch requires, add in get_arch_timeoffset() */
312         return nsec + arch_gettimeoffset();
313 }
314
315 /**
316  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
317  * @tkr: Timekeeping readout base from which we take the update
318  *
319  * We want to use this from any context including NMI and tracing /
320  * instrumenting the timekeeping code itself.
321  *
322  * So we handle this differently than the other timekeeping accessor
323  * functions which retry when the sequence count has changed. The
324  * update side does:
325  *
326  * smp_wmb();   <- Ensure that the last base[1] update is visible
327  * tkf->seq++;
328  * smp_wmb();   <- Ensure that the seqcount update is visible
329  * update(tkf->base[0], tkr);
330  * smp_wmb();   <- Ensure that the base[0] update is visible
331  * tkf->seq++;
332  * smp_wmb();   <- Ensure that the seqcount update is visible
333  * update(tkf->base[1], tkr);
334  *
335  * The reader side does:
336  *
337  * do {
338  *      seq = tkf->seq;
339  *      smp_rmb();
340  *      idx = seq & 0x01;
341  *      now = now(tkf->base[idx]);
342  *      smp_rmb();
343  * } while (seq != tkf->seq)
344  *
345  * As long as we update base[0] readers are forced off to
346  * base[1]. Once base[0] is updated readers are redirected to base[0]
347  * and the base[1] update takes place.
348  *
349  * So if a NMI hits the update of base[0] then it will use base[1]
350  * which is still consistent. In the worst case this can result is a
351  * slightly wrong timestamp (a few nanoseconds). See
352  * @ktime_get_mono_fast_ns.
353  */
354 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
355 {
356         struct tk_read_base *base = tkf->base;
357
358         /* Force readers off to base[1] */
359         raw_write_seqcount_latch(&tkf->seq);
360
361         /* Update base[0] */
362         memcpy(base, tkr, sizeof(*base));
363
364         /* Force readers back to base[0] */
365         raw_write_seqcount_latch(&tkf->seq);
366
367         /* Update base[1] */
368         memcpy(base + 1, base, sizeof(*base));
369 }
370
371 /**
372  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
373  *
374  * This timestamp is not guaranteed to be monotonic across an update.
375  * The timestamp is calculated by:
376  *
377  *      now = base_mono + clock_delta * slope
378  *
379  * So if the update lowers the slope, readers who are forced to the
380  * not yet updated second array are still using the old steeper slope.
381  *
382  * tmono
383  * ^
384  * |    o  n
385  * |   o n
386  * |  u
387  * | o
388  * |o
389  * |12345678---> reader order
390  *
391  * o = old slope
392  * u = update
393  * n = new slope
394  *
395  * So reader 6 will observe time going backwards versus reader 5.
396  *
397  * While other CPUs are likely to be able observe that, the only way
398  * for a CPU local observation is when an NMI hits in the middle of
399  * the update. Timestamps taken from that NMI context might be ahead
400  * of the following timestamps. Callers need to be aware of that and
401  * deal with it.
402  */
403 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
404 {
405         struct tk_read_base *tkr;
406         unsigned int seq;
407         u64 now;
408
409         do {
410                 seq = raw_read_seqcount(&tkf->seq);
411                 tkr = tkf->base + (seq & 0x01);
412                 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
413         } while (read_seqcount_retry(&tkf->seq, seq));
414
415         return now;
416 }
417
418 u64 ktime_get_mono_fast_ns(void)
419 {
420         return __ktime_get_fast_ns(&tk_fast_mono);
421 }
422 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
423
424 u64 ktime_get_raw_fast_ns(void)
425 {
426         return __ktime_get_fast_ns(&tk_fast_raw);
427 }
428 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
429
430 /* Suspend-time cycles value for halted fast timekeeper. */
431 static cycle_t cycles_at_suspend;
432
433 static cycle_t dummy_clock_read(struct clocksource *cs)
434 {
435         return cycles_at_suspend;
436 }
437
438 /**
439  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
440  * @tk: Timekeeper to snapshot.
441  *
442  * It generally is unsafe to access the clocksource after timekeeping has been
443  * suspended, so take a snapshot of the readout base of @tk and use it as the
444  * fast timekeeper's readout base while suspended.  It will return the same
445  * number of cycles every time until timekeeping is resumed at which time the
446  * proper readout base for the fast timekeeper will be restored automatically.
447  */
448 static void halt_fast_timekeeper(struct timekeeper *tk)
449 {
450         static struct tk_read_base tkr_dummy;
451         struct tk_read_base *tkr = &tk->tkr_mono;
452
453         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
454         cycles_at_suspend = tkr->read(tkr->clock);
455         tkr_dummy.read = dummy_clock_read;
456         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
457
458         tkr = &tk->tkr_raw;
459         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
460         tkr_dummy.read = dummy_clock_read;
461         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
462 }
463
464 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
465
466 static inline void update_vsyscall(struct timekeeper *tk)
467 {
468         struct timespec xt, wm;
469
470         xt = timespec64_to_timespec(tk_xtime(tk));
471         wm = timespec64_to_timespec(tk->wall_to_monotonic);
472         update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
473                             tk->tkr_mono.cycle_last);
474 }
475
476 static inline void old_vsyscall_fixup(struct timekeeper *tk)
477 {
478         s64 remainder;
479
480         /*
481         * Store only full nanoseconds into xtime_nsec after rounding
482         * it up and add the remainder to the error difference.
483         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
484         * by truncating the remainder in vsyscalls. However, it causes
485         * additional work to be done in timekeeping_adjust(). Once
486         * the vsyscall implementations are converted to use xtime_nsec
487         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
488         * users are removed, this can be killed.
489         */
490         remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
491         tk->tkr_mono.xtime_nsec -= remainder;
492         tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
493         tk->ntp_error += remainder << tk->ntp_error_shift;
494         tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
495 }
496 #else
497 #define old_vsyscall_fixup(tk)
498 #endif
499
500 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
501
502 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
503 {
504         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
505 }
506
507 /**
508  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
509  */
510 int pvclock_gtod_register_notifier(struct notifier_block *nb)
511 {
512         struct timekeeper *tk = &tk_core.timekeeper;
513         unsigned long flags;
514         int ret;
515
516         raw_spin_lock_irqsave(&timekeeper_lock, flags);
517         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
518         update_pvclock_gtod(tk, true);
519         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
520
521         return ret;
522 }
523 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
524
525 /**
526  * pvclock_gtod_unregister_notifier - unregister a pvclock
527  * timedata update listener
528  */
529 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
530 {
531         unsigned long flags;
532         int ret;
533
534         raw_spin_lock_irqsave(&timekeeper_lock, flags);
535         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
536         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
537
538         return ret;
539 }
540 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
541
542 /*
543  * tk_update_leap_state - helper to update the next_leap_ktime
544  */
545 static inline void tk_update_leap_state(struct timekeeper *tk)
546 {
547         tk->next_leap_ktime = ntp_get_next_leap();
548         if (tk->next_leap_ktime.tv64 != KTIME_MAX)
549                 /* Convert to monotonic time */
550                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
551 }
552
553 /*
554  * Update the ktime_t based scalar nsec members of the timekeeper
555  */
556 static inline void tk_update_ktime_data(struct timekeeper *tk)
557 {
558         u64 seconds;
559         u32 nsec;
560
561         /*
562          * The xtime based monotonic readout is:
563          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
564          * The ktime based monotonic readout is:
565          *      nsec = base_mono + now();
566          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
567          */
568         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
569         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
570         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
571
572         /* Update the monotonic raw base */
573         tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
574
575         /*
576          * The sum of the nanoseconds portions of xtime and
577          * wall_to_monotonic can be greater/equal one second. Take
578          * this into account before updating tk->ktime_sec.
579          */
580         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
581         if (nsec >= NSEC_PER_SEC)
582                 seconds++;
583         tk->ktime_sec = seconds;
584 }
585
586 /* must hold timekeeper_lock */
587 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
588 {
589         if (action & TK_CLEAR_NTP) {
590                 tk->ntp_error = 0;
591                 ntp_clear();
592         }
593
594         tk_update_leap_state(tk);
595         tk_update_ktime_data(tk);
596
597         update_vsyscall(tk);
598         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
599
600         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
601         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
602
603         if (action & TK_CLOCK_WAS_SET)
604                 tk->clock_was_set_seq++;
605         /*
606          * The mirroring of the data to the shadow-timekeeper needs
607          * to happen last here to ensure we don't over-write the
608          * timekeeper structure on the next update with stale data
609          */
610         if (action & TK_MIRROR)
611                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
612                        sizeof(tk_core.timekeeper));
613 }
614
615 /**
616  * timekeeping_forward_now - update clock to the current time
617  *
618  * Forward the current clock to update its state since the last call to
619  * update_wall_time(). This is useful before significant clock changes,
620  * as it avoids having to deal with this time offset explicitly.
621  */
622 static void timekeeping_forward_now(struct timekeeper *tk)
623 {
624         struct clocksource *clock = tk->tkr_mono.clock;
625         cycle_t cycle_now, delta;
626         s64 nsec;
627
628         cycle_now = tk->tkr_mono.read(clock);
629         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
630         tk->tkr_mono.cycle_last = cycle_now;
631         tk->tkr_raw.cycle_last  = cycle_now;
632
633         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
634
635         /* If arch requires, add in get_arch_timeoffset() */
636         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
637
638         tk_normalize_xtime(tk);
639
640         nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
641         timespec64_add_ns(&tk->raw_time, nsec);
642 }
643
644 /**
645  * __getnstimeofday64 - Returns the time of day in a timespec64.
646  * @ts:         pointer to the timespec to be set
647  *
648  * Updates the time of day in the timespec.
649  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
650  */
651 int __getnstimeofday64(struct timespec64 *ts)
652 {
653         struct timekeeper *tk = &tk_core.timekeeper;
654         unsigned long seq;
655         s64 nsecs = 0;
656
657         do {
658                 seq = read_seqcount_begin(&tk_core.seq);
659
660                 ts->tv_sec = tk->xtime_sec;
661                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
662
663         } while (read_seqcount_retry(&tk_core.seq, seq));
664
665         ts->tv_nsec = 0;
666         timespec64_add_ns(ts, nsecs);
667
668         /*
669          * Do not bail out early, in case there were callers still using
670          * the value, even in the face of the WARN_ON.
671          */
672         if (unlikely(timekeeping_suspended))
673                 return -EAGAIN;
674         return 0;
675 }
676 EXPORT_SYMBOL(__getnstimeofday64);
677
678 /**
679  * getnstimeofday64 - Returns the time of day in a timespec64.
680  * @ts:         pointer to the timespec64 to be set
681  *
682  * Returns the time of day in a timespec64 (WARN if suspended).
683  */
684 void getnstimeofday64(struct timespec64 *ts)
685 {
686         WARN_ON(__getnstimeofday64(ts));
687 }
688 EXPORT_SYMBOL(getnstimeofday64);
689
690 ktime_t ktime_get(void)
691 {
692         struct timekeeper *tk = &tk_core.timekeeper;
693         unsigned int seq;
694         ktime_t base;
695         s64 nsecs;
696
697         WARN_ON(timekeeping_suspended);
698
699         do {
700                 seq = read_seqcount_begin(&tk_core.seq);
701                 base = tk->tkr_mono.base;
702                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
703
704         } while (read_seqcount_retry(&tk_core.seq, seq));
705
706         return ktime_add_ns(base, nsecs);
707 }
708 EXPORT_SYMBOL_GPL(ktime_get);
709
710 u32 ktime_get_resolution_ns(void)
711 {
712         struct timekeeper *tk = &tk_core.timekeeper;
713         unsigned int seq;
714         u32 nsecs;
715
716         WARN_ON(timekeeping_suspended);
717
718         do {
719                 seq = read_seqcount_begin(&tk_core.seq);
720                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
721         } while (read_seqcount_retry(&tk_core.seq, seq));
722
723         return nsecs;
724 }
725 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
726
727 static ktime_t *offsets[TK_OFFS_MAX] = {
728         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
729         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
730         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
731 };
732
733 ktime_t ktime_get_with_offset(enum tk_offsets offs)
734 {
735         struct timekeeper *tk = &tk_core.timekeeper;
736         unsigned int seq;
737         ktime_t base, *offset = offsets[offs];
738         s64 nsecs;
739
740         WARN_ON(timekeeping_suspended);
741
742         do {
743                 seq = read_seqcount_begin(&tk_core.seq);
744                 base = ktime_add(tk->tkr_mono.base, *offset);
745                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
746
747         } while (read_seqcount_retry(&tk_core.seq, seq));
748
749         return ktime_add_ns(base, nsecs);
750
751 }
752 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
753
754 /**
755  * ktime_mono_to_any() - convert mononotic time to any other time
756  * @tmono:      time to convert.
757  * @offs:       which offset to use
758  */
759 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
760 {
761         ktime_t *offset = offsets[offs];
762         unsigned long seq;
763         ktime_t tconv;
764
765         do {
766                 seq = read_seqcount_begin(&tk_core.seq);
767                 tconv = ktime_add(tmono, *offset);
768         } while (read_seqcount_retry(&tk_core.seq, seq));
769
770         return tconv;
771 }
772 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
773
774 /**
775  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
776  */
777 ktime_t ktime_get_raw(void)
778 {
779         struct timekeeper *tk = &tk_core.timekeeper;
780         unsigned int seq;
781         ktime_t base;
782         s64 nsecs;
783
784         do {
785                 seq = read_seqcount_begin(&tk_core.seq);
786                 base = tk->tkr_raw.base;
787                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
788
789         } while (read_seqcount_retry(&tk_core.seq, seq));
790
791         return ktime_add_ns(base, nsecs);
792 }
793 EXPORT_SYMBOL_GPL(ktime_get_raw);
794
795 /**
796  * ktime_get_ts64 - get the monotonic clock in timespec64 format
797  * @ts:         pointer to timespec variable
798  *
799  * The function calculates the monotonic clock from the realtime
800  * clock and the wall_to_monotonic offset and stores the result
801  * in normalized timespec64 format in the variable pointed to by @ts.
802  */
803 void ktime_get_ts64(struct timespec64 *ts)
804 {
805         struct timekeeper *tk = &tk_core.timekeeper;
806         struct timespec64 tomono;
807         s64 nsec;
808         unsigned int seq;
809
810         WARN_ON(timekeeping_suspended);
811
812         do {
813                 seq = read_seqcount_begin(&tk_core.seq);
814                 ts->tv_sec = tk->xtime_sec;
815                 nsec = timekeeping_get_ns(&tk->tkr_mono);
816                 tomono = tk->wall_to_monotonic;
817
818         } while (read_seqcount_retry(&tk_core.seq, seq));
819
820         ts->tv_sec += tomono.tv_sec;
821         ts->tv_nsec = 0;
822         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
823 }
824 EXPORT_SYMBOL_GPL(ktime_get_ts64);
825
826 /**
827  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
828  *
829  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
830  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
831  * works on both 32 and 64 bit systems. On 32 bit systems the readout
832  * covers ~136 years of uptime which should be enough to prevent
833  * premature wrap arounds.
834  */
835 time64_t ktime_get_seconds(void)
836 {
837         struct timekeeper *tk = &tk_core.timekeeper;
838
839         WARN_ON(timekeeping_suspended);
840         return tk->ktime_sec;
841 }
842 EXPORT_SYMBOL_GPL(ktime_get_seconds);
843
844 /**
845  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
846  *
847  * Returns the wall clock seconds since 1970. This replaces the
848  * get_seconds() interface which is not y2038 safe on 32bit systems.
849  *
850  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
851  * 32bit systems the access must be protected with the sequence
852  * counter to provide "atomic" access to the 64bit tk->xtime_sec
853  * value.
854  */
855 time64_t ktime_get_real_seconds(void)
856 {
857         struct timekeeper *tk = &tk_core.timekeeper;
858         time64_t seconds;
859         unsigned int seq;
860
861         if (IS_ENABLED(CONFIG_64BIT))
862                 return tk->xtime_sec;
863
864         do {
865                 seq = read_seqcount_begin(&tk_core.seq);
866                 seconds = tk->xtime_sec;
867
868         } while (read_seqcount_retry(&tk_core.seq, seq));
869
870         return seconds;
871 }
872 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
873
874 #ifdef CONFIG_NTP_PPS
875
876 /**
877  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
878  * @ts_raw:     pointer to the timespec to be set to raw monotonic time
879  * @ts_real:    pointer to the timespec to be set to the time of day
880  *
881  * This function reads both the time of day and raw monotonic time at the
882  * same time atomically and stores the resulting timestamps in timespec
883  * format.
884  */
885 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
886 {
887         struct timekeeper *tk = &tk_core.timekeeper;
888         unsigned long seq;
889         s64 nsecs_raw, nsecs_real;
890
891         WARN_ON_ONCE(timekeeping_suspended);
892
893         do {
894                 seq = read_seqcount_begin(&tk_core.seq);
895
896                 *ts_raw = timespec64_to_timespec(tk->raw_time);
897                 ts_real->tv_sec = tk->xtime_sec;
898                 ts_real->tv_nsec = 0;
899
900                 nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
901                 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
902
903         } while (read_seqcount_retry(&tk_core.seq, seq));
904
905         timespec_add_ns(ts_raw, nsecs_raw);
906         timespec_add_ns(ts_real, nsecs_real);
907 }
908 EXPORT_SYMBOL(getnstime_raw_and_real);
909
910 #endif /* CONFIG_NTP_PPS */
911
912 /**
913  * do_gettimeofday - Returns the time of day in a timeval
914  * @tv:         pointer to the timeval to be set
915  *
916  * NOTE: Users should be converted to using getnstimeofday()
917  */
918 void do_gettimeofday(struct timeval *tv)
919 {
920         struct timespec64 now;
921
922         getnstimeofday64(&now);
923         tv->tv_sec = now.tv_sec;
924         tv->tv_usec = now.tv_nsec/1000;
925 }
926 EXPORT_SYMBOL(do_gettimeofday);
927
928 /**
929  * do_settimeofday64 - Sets the time of day.
930  * @ts:     pointer to the timespec64 variable containing the new time
931  *
932  * Sets the time of day to the new time and update NTP and notify hrtimers
933  */
934 int do_settimeofday64(const struct timespec64 *ts)
935 {
936         struct timekeeper *tk = &tk_core.timekeeper;
937         struct timespec64 ts_delta, xt;
938         unsigned long flags;
939
940         if (!timespec64_valid_strict(ts))
941                 return -EINVAL;
942
943         raw_spin_lock_irqsave(&timekeeper_lock, flags);
944         write_seqcount_begin(&tk_core.seq);
945
946         timekeeping_forward_now(tk);
947
948         xt = tk_xtime(tk);
949         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
950         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
951
952         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
953
954         tk_set_xtime(tk, ts);
955
956         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
957
958         write_seqcount_end(&tk_core.seq);
959         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
960
961         /* signal hrtimers about time change */
962         clock_was_set();
963
964         return 0;
965 }
966 EXPORT_SYMBOL(do_settimeofday64);
967
968 /**
969  * timekeeping_inject_offset - Adds or subtracts from the current time.
970  * @tv:         pointer to the timespec variable containing the offset
971  *
972  * Adds or subtracts an offset value from the current time.
973  */
974 int timekeeping_inject_offset(struct timespec *ts)
975 {
976         struct timekeeper *tk = &tk_core.timekeeper;
977         unsigned long flags;
978         struct timespec64 ts64, tmp;
979         int ret = 0;
980
981         if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
982                 return -EINVAL;
983
984         ts64 = timespec_to_timespec64(*ts);
985
986         raw_spin_lock_irqsave(&timekeeper_lock, flags);
987         write_seqcount_begin(&tk_core.seq);
988
989         timekeeping_forward_now(tk);
990
991         /* Make sure the proposed value is valid */
992         tmp = timespec64_add(tk_xtime(tk),  ts64);
993         if (!timespec64_valid_strict(&tmp)) {
994                 ret = -EINVAL;
995                 goto error;
996         }
997
998         tk_xtime_add(tk, &ts64);
999         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1000
1001 error: /* even if we error out, we forwarded the time, so call update */
1002         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1003
1004         write_seqcount_end(&tk_core.seq);
1005         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1006
1007         /* signal hrtimers about time change */
1008         clock_was_set();
1009
1010         return ret;
1011 }
1012 EXPORT_SYMBOL(timekeeping_inject_offset);
1013
1014
1015 /**
1016  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1017  *
1018  */
1019 s32 timekeeping_get_tai_offset(void)
1020 {
1021         struct timekeeper *tk = &tk_core.timekeeper;
1022         unsigned int seq;
1023         s32 ret;
1024
1025         do {
1026                 seq = read_seqcount_begin(&tk_core.seq);
1027                 ret = tk->tai_offset;
1028         } while (read_seqcount_retry(&tk_core.seq, seq));
1029
1030         return ret;
1031 }
1032
1033 /**
1034  * __timekeeping_set_tai_offset - Lock free worker function
1035  *
1036  */
1037 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1038 {
1039         tk->tai_offset = tai_offset;
1040         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1041 }
1042
1043 /**
1044  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1045  *
1046  */
1047 void timekeeping_set_tai_offset(s32 tai_offset)
1048 {
1049         struct timekeeper *tk = &tk_core.timekeeper;
1050         unsigned long flags;
1051
1052         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1053         write_seqcount_begin(&tk_core.seq);
1054         __timekeeping_set_tai_offset(tk, tai_offset);
1055         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1056         write_seqcount_end(&tk_core.seq);
1057         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1058         clock_was_set();
1059 }
1060
1061 /**
1062  * change_clocksource - Swaps clocksources if a new one is available
1063  *
1064  * Accumulates current time interval and initializes new clocksource
1065  */
1066 static int change_clocksource(void *data)
1067 {
1068         struct timekeeper *tk = &tk_core.timekeeper;
1069         struct clocksource *new, *old;
1070         unsigned long flags;
1071
1072         new = (struct clocksource *) data;
1073
1074         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1075         write_seqcount_begin(&tk_core.seq);
1076
1077         timekeeping_forward_now(tk);
1078         /*
1079          * If the cs is in module, get a module reference. Succeeds
1080          * for built-in code (owner == NULL) as well.
1081          */
1082         if (try_module_get(new->owner)) {
1083                 if (!new->enable || new->enable(new) == 0) {
1084                         old = tk->tkr_mono.clock;
1085                         tk_setup_internals(tk, new);
1086                         if (old->disable)
1087                                 old->disable(old);
1088                         module_put(old->owner);
1089                 } else {
1090                         module_put(new->owner);
1091                 }
1092         }
1093         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1094
1095         write_seqcount_end(&tk_core.seq);
1096         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1097
1098         return 0;
1099 }
1100
1101 /**
1102  * timekeeping_notify - Install a new clock source
1103  * @clock:              pointer to the clock source
1104  *
1105  * This function is called from clocksource.c after a new, better clock
1106  * source has been registered. The caller holds the clocksource_mutex.
1107  */
1108 int timekeeping_notify(struct clocksource *clock)
1109 {
1110         struct timekeeper *tk = &tk_core.timekeeper;
1111
1112         if (tk->tkr_mono.clock == clock)
1113                 return 0;
1114         stop_machine(change_clocksource, clock, NULL);
1115         tick_clock_notify();
1116         return tk->tkr_mono.clock == clock ? 0 : -1;
1117 }
1118
1119 /**
1120  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1121  * @ts:         pointer to the timespec64 to be set
1122  *
1123  * Returns the raw monotonic time (completely un-modified by ntp)
1124  */
1125 void getrawmonotonic64(struct timespec64 *ts)
1126 {
1127         struct timekeeper *tk = &tk_core.timekeeper;
1128         struct timespec64 ts64;
1129         unsigned long seq;
1130         s64 nsecs;
1131
1132         do {
1133                 seq = read_seqcount_begin(&tk_core.seq);
1134                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1135                 ts64 = tk->raw_time;
1136
1137         } while (read_seqcount_retry(&tk_core.seq, seq));
1138
1139         timespec64_add_ns(&ts64, nsecs);
1140         *ts = ts64;
1141 }
1142 EXPORT_SYMBOL(getrawmonotonic64);
1143
1144
1145 /**
1146  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1147  */
1148 int timekeeping_valid_for_hres(void)
1149 {
1150         struct timekeeper *tk = &tk_core.timekeeper;
1151         unsigned long seq;
1152         int ret;
1153
1154         do {
1155                 seq = read_seqcount_begin(&tk_core.seq);
1156
1157                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1158
1159         } while (read_seqcount_retry(&tk_core.seq, seq));
1160
1161         return ret;
1162 }
1163
1164 /**
1165  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1166  */
1167 u64 timekeeping_max_deferment(void)
1168 {
1169         struct timekeeper *tk = &tk_core.timekeeper;
1170         unsigned long seq;
1171         u64 ret;
1172
1173         do {
1174                 seq = read_seqcount_begin(&tk_core.seq);
1175
1176                 ret = tk->tkr_mono.clock->max_idle_ns;
1177
1178         } while (read_seqcount_retry(&tk_core.seq, seq));
1179
1180         return ret;
1181 }
1182
1183 /**
1184  * read_persistent_clock -  Return time from the persistent clock.
1185  *
1186  * Weak dummy function for arches that do not yet support it.
1187  * Reads the time from the battery backed persistent clock.
1188  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1189  *
1190  *  XXX - Do be sure to remove it once all arches implement it.
1191  */
1192 void __weak read_persistent_clock(struct timespec *ts)
1193 {
1194         ts->tv_sec = 0;
1195         ts->tv_nsec = 0;
1196 }
1197
1198 void __weak read_persistent_clock64(struct timespec64 *ts64)
1199 {
1200         struct timespec ts;
1201
1202         read_persistent_clock(&ts);
1203         *ts64 = timespec_to_timespec64(ts);
1204 }
1205
1206 /**
1207  * read_boot_clock64 -  Return time of the system start.
1208  *
1209  * Weak dummy function for arches that do not yet support it.
1210  * Function to read the exact time the system has been started.
1211  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1212  *
1213  *  XXX - Do be sure to remove it once all arches implement it.
1214  */
1215 void __weak read_boot_clock64(struct timespec64 *ts)
1216 {
1217         ts->tv_sec = 0;
1218         ts->tv_nsec = 0;
1219 }
1220
1221 /* Flag for if timekeeping_resume() has injected sleeptime */
1222 static bool sleeptime_injected;
1223
1224 /* Flag for if there is a persistent clock on this platform */
1225 static bool persistent_clock_exists;
1226
1227 /*
1228  * timekeeping_init - Initializes the clocksource and common timekeeping values
1229  */
1230 void __init timekeeping_init(void)
1231 {
1232         struct timekeeper *tk = &tk_core.timekeeper;
1233         struct clocksource *clock;
1234         unsigned long flags;
1235         struct timespec64 now, boot, tmp;
1236
1237         read_persistent_clock64(&now);
1238         if (!timespec64_valid_strict(&now)) {
1239                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1240                         "         Check your CMOS/BIOS settings.\n");
1241                 now.tv_sec = 0;
1242                 now.tv_nsec = 0;
1243         } else if (now.tv_sec || now.tv_nsec)
1244                 persistent_clock_exists = true;
1245
1246         read_boot_clock64(&boot);
1247         if (!timespec64_valid_strict(&boot)) {
1248                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1249                         "         Check your CMOS/BIOS settings.\n");
1250                 boot.tv_sec = 0;
1251                 boot.tv_nsec = 0;
1252         }
1253
1254         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1255         write_seqcount_begin(&tk_core.seq);
1256         ntp_init();
1257
1258         clock = clocksource_default_clock();
1259         if (clock->enable)
1260                 clock->enable(clock);
1261         tk_setup_internals(tk, clock);
1262
1263         tk_set_xtime(tk, &now);
1264         tk->raw_time.tv_sec = 0;
1265         tk->raw_time.tv_nsec = 0;
1266         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1267                 boot = tk_xtime(tk);
1268
1269         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1270         tk_set_wall_to_mono(tk, tmp);
1271
1272         timekeeping_update(tk, TK_MIRROR);
1273
1274         write_seqcount_end(&tk_core.seq);
1275         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1276 }
1277
1278 /* time in seconds when suspend began for persistent clock */
1279 static struct timespec64 timekeeping_suspend_time;
1280
1281 /**
1282  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1283  * @delta: pointer to a timespec delta value
1284  *
1285  * Takes a timespec offset measuring a suspend interval and properly
1286  * adds the sleep offset to the timekeeping variables.
1287  */
1288 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1289                                            struct timespec64 *delta)
1290 {
1291         if (!timespec64_valid_strict(delta)) {
1292                 printk_deferred(KERN_WARNING
1293                                 "__timekeeping_inject_sleeptime: Invalid "
1294                                 "sleep delta value!\n");
1295                 return;
1296         }
1297         tk_xtime_add(tk, delta);
1298         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1299         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1300         tk_debug_account_sleep_time(delta);
1301 }
1302
1303 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1304 /**
1305  * We have three kinds of time sources to use for sleep time
1306  * injection, the preference order is:
1307  * 1) non-stop clocksource
1308  * 2) persistent clock (ie: RTC accessible when irqs are off)
1309  * 3) RTC
1310  *
1311  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1312  * If system has neither 1) nor 2), 3) will be used finally.
1313  *
1314  *
1315  * If timekeeping has injected sleeptime via either 1) or 2),
1316  * 3) becomes needless, so in this case we don't need to call
1317  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1318  * means.
1319  */
1320 bool timekeeping_rtc_skipresume(void)
1321 {
1322         return sleeptime_injected;
1323 }
1324
1325 /**
1326  * 1) can be determined whether to use or not only when doing
1327  * timekeeping_resume() which is invoked after rtc_suspend(),
1328  * so we can't skip rtc_suspend() surely if system has 1).
1329  *
1330  * But if system has 2), 2) will definitely be used, so in this
1331  * case we don't need to call rtc_suspend(), and this is what
1332  * timekeeping_rtc_skipsuspend() means.
1333  */
1334 bool timekeeping_rtc_skipsuspend(void)
1335 {
1336         return persistent_clock_exists;
1337 }
1338
1339 /**
1340  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1341  * @delta: pointer to a timespec64 delta value
1342  *
1343  * This hook is for architectures that cannot support read_persistent_clock64
1344  * because their RTC/persistent clock is only accessible when irqs are enabled.
1345  * and also don't have an effective nonstop clocksource.
1346  *
1347  * This function should only be called by rtc_resume(), and allows
1348  * a suspend offset to be injected into the timekeeping values.
1349  */
1350 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1351 {
1352         struct timekeeper *tk = &tk_core.timekeeper;
1353         unsigned long flags;
1354
1355         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1356         write_seqcount_begin(&tk_core.seq);
1357
1358         timekeeping_forward_now(tk);
1359
1360         __timekeeping_inject_sleeptime(tk, delta);
1361
1362         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1363
1364         write_seqcount_end(&tk_core.seq);
1365         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1366
1367         /* signal hrtimers about time change */
1368         clock_was_set();
1369 }
1370 #endif
1371
1372 /**
1373  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1374  */
1375 void timekeeping_resume(void)
1376 {
1377         struct timekeeper *tk = &tk_core.timekeeper;
1378         struct clocksource *clock = tk->tkr_mono.clock;
1379         unsigned long flags;
1380         struct timespec64 ts_new, ts_delta;
1381         cycle_t cycle_now, cycle_delta;
1382
1383         sleeptime_injected = false;
1384         read_persistent_clock64(&ts_new);
1385
1386         clockevents_resume();
1387         clocksource_resume();
1388
1389         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1390         write_seqcount_begin(&tk_core.seq);
1391
1392         /*
1393          * After system resumes, we need to calculate the suspended time and
1394          * compensate it for the OS time. There are 3 sources that could be
1395          * used: Nonstop clocksource during suspend, persistent clock and rtc
1396          * device.
1397          *
1398          * One specific platform may have 1 or 2 or all of them, and the
1399          * preference will be:
1400          *      suspend-nonstop clocksource -> persistent clock -> rtc
1401          * The less preferred source will only be tried if there is no better
1402          * usable source. The rtc part is handled separately in rtc core code.
1403          */
1404         cycle_now = tk->tkr_mono.read(clock);
1405         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1406                 cycle_now > tk->tkr_mono.cycle_last) {
1407                 u64 num, max = ULLONG_MAX;
1408                 u32 mult = clock->mult;
1409                 u32 shift = clock->shift;
1410                 s64 nsec = 0;
1411
1412                 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1413                                                 tk->tkr_mono.mask);
1414
1415                 /*
1416                  * "cycle_delta * mutl" may cause 64 bits overflow, if the
1417                  * suspended time is too long. In that case we need do the
1418                  * 64 bits math carefully
1419                  */
1420                 do_div(max, mult);
1421                 if (cycle_delta > max) {
1422                         num = div64_u64(cycle_delta, max);
1423                         nsec = (((u64) max * mult) >> shift) * num;
1424                         cycle_delta -= num * max;
1425                 }
1426                 nsec += ((u64) cycle_delta * mult) >> shift;
1427
1428                 ts_delta = ns_to_timespec64(nsec);
1429                 sleeptime_injected = true;
1430         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1431                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1432                 sleeptime_injected = true;
1433         }
1434
1435         if (sleeptime_injected)
1436                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1437
1438         /* Re-base the last cycle value */
1439         tk->tkr_mono.cycle_last = cycle_now;
1440         tk->tkr_raw.cycle_last  = cycle_now;
1441
1442         tk->ntp_error = 0;
1443         timekeeping_suspended = 0;
1444         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1445         write_seqcount_end(&tk_core.seq);
1446         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1447
1448         touch_softlockup_watchdog();
1449
1450         tick_resume();
1451         hrtimers_resume();
1452 }
1453
1454 int timekeeping_suspend(void)
1455 {
1456         struct timekeeper *tk = &tk_core.timekeeper;
1457         unsigned long flags;
1458         struct timespec64               delta, delta_delta;
1459         static struct timespec64        old_delta;
1460
1461         read_persistent_clock64(&timekeeping_suspend_time);
1462
1463         /*
1464          * On some systems the persistent_clock can not be detected at
1465          * timekeeping_init by its return value, so if we see a valid
1466          * value returned, update the persistent_clock_exists flag.
1467          */
1468         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1469                 persistent_clock_exists = true;
1470
1471         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1472         write_seqcount_begin(&tk_core.seq);
1473         timekeeping_forward_now(tk);
1474         timekeeping_suspended = 1;
1475
1476         if (persistent_clock_exists) {
1477                 /*
1478                  * To avoid drift caused by repeated suspend/resumes,
1479                  * which each can add ~1 second drift error,
1480                  * try to compensate so the difference in system time
1481                  * and persistent_clock time stays close to constant.
1482                  */
1483                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1484                 delta_delta = timespec64_sub(delta, old_delta);
1485                 if (abs(delta_delta.tv_sec) >= 2) {
1486                         /*
1487                          * if delta_delta is too large, assume time correction
1488                          * has occurred and set old_delta to the current delta.
1489                          */
1490                         old_delta = delta;
1491                 } else {
1492                         /* Otherwise try to adjust old_system to compensate */
1493                         timekeeping_suspend_time =
1494                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1495                 }
1496         }
1497
1498         timekeeping_update(tk, TK_MIRROR);
1499         halt_fast_timekeeper(tk);
1500         write_seqcount_end(&tk_core.seq);
1501         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1502
1503         tick_suspend();
1504         clocksource_suspend();
1505         clockevents_suspend();
1506
1507         return 0;
1508 }
1509
1510 /* sysfs resume/suspend bits for timekeeping */
1511 static struct syscore_ops timekeeping_syscore_ops = {
1512         .resume         = timekeeping_resume,
1513         .suspend        = timekeeping_suspend,
1514 };
1515
1516 static int __init timekeeping_init_ops(void)
1517 {
1518         register_syscore_ops(&timekeeping_syscore_ops);
1519         return 0;
1520 }
1521 device_initcall(timekeeping_init_ops);
1522
1523 /*
1524  * Apply a multiplier adjustment to the timekeeper
1525  */
1526 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1527                                                          s64 offset,
1528                                                          bool negative,
1529                                                          int adj_scale)
1530 {
1531         s64 interval = tk->cycle_interval;
1532         s32 mult_adj = 1;
1533
1534         if (negative) {
1535                 mult_adj = -mult_adj;
1536                 interval = -interval;
1537                 offset  = -offset;
1538         }
1539         mult_adj <<= adj_scale;
1540         interval <<= adj_scale;
1541         offset <<= adj_scale;
1542
1543         /*
1544          * So the following can be confusing.
1545          *
1546          * To keep things simple, lets assume mult_adj == 1 for now.
1547          *
1548          * When mult_adj != 1, remember that the interval and offset values
1549          * have been appropriately scaled so the math is the same.
1550          *
1551          * The basic idea here is that we're increasing the multiplier
1552          * by one, this causes the xtime_interval to be incremented by
1553          * one cycle_interval. This is because:
1554          *      xtime_interval = cycle_interval * mult
1555          * So if mult is being incremented by one:
1556          *      xtime_interval = cycle_interval * (mult + 1)
1557          * Its the same as:
1558          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1559          * Which can be shortened to:
1560          *      xtime_interval += cycle_interval
1561          *
1562          * So offset stores the non-accumulated cycles. Thus the current
1563          * time (in shifted nanoseconds) is:
1564          *      now = (offset * adj) + xtime_nsec
1565          * Now, even though we're adjusting the clock frequency, we have
1566          * to keep time consistent. In other words, we can't jump back
1567          * in time, and we also want to avoid jumping forward in time.
1568          *
1569          * So given the same offset value, we need the time to be the same
1570          * both before and after the freq adjustment.
1571          *      now = (offset * adj_1) + xtime_nsec_1
1572          *      now = (offset * adj_2) + xtime_nsec_2
1573          * So:
1574          *      (offset * adj_1) + xtime_nsec_1 =
1575          *              (offset * adj_2) + xtime_nsec_2
1576          * And we know:
1577          *      adj_2 = adj_1 + 1
1578          * So:
1579          *      (offset * adj_1) + xtime_nsec_1 =
1580          *              (offset * (adj_1+1)) + xtime_nsec_2
1581          *      (offset * adj_1) + xtime_nsec_1 =
1582          *              (offset * adj_1) + offset + xtime_nsec_2
1583          * Canceling the sides:
1584          *      xtime_nsec_1 = offset + xtime_nsec_2
1585          * Which gives us:
1586          *      xtime_nsec_2 = xtime_nsec_1 - offset
1587          * Which simplfies to:
1588          *      xtime_nsec -= offset
1589          *
1590          * XXX - TODO: Doc ntp_error calculation.
1591          */
1592         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1593                 /* NTP adjustment caused clocksource mult overflow */
1594                 WARN_ON_ONCE(1);
1595                 return;
1596         }
1597
1598         tk->tkr_mono.mult += mult_adj;
1599         tk->xtime_interval += interval;
1600         tk->tkr_mono.xtime_nsec -= offset;
1601         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1602 }
1603
1604 /*
1605  * Calculate the multiplier adjustment needed to match the frequency
1606  * specified by NTP
1607  */
1608 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1609                                                         s64 offset)
1610 {
1611         s64 interval = tk->cycle_interval;
1612         s64 xinterval = tk->xtime_interval;
1613         s64 tick_error;
1614         bool negative;
1615         u32 adj;
1616
1617         /* Remove any current error adj from freq calculation */
1618         if (tk->ntp_err_mult)
1619                 xinterval -= tk->cycle_interval;
1620
1621         tk->ntp_tick = ntp_tick_length();
1622
1623         /* Calculate current error per tick */
1624         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1625         tick_error -= (xinterval + tk->xtime_remainder);
1626
1627         /* Don't worry about correcting it if its small */
1628         if (likely((tick_error >= 0) && (tick_error <= interval)))
1629                 return;
1630
1631         /* preserve the direction of correction */
1632         negative = (tick_error < 0);
1633
1634         /* Sort out the magnitude of the correction */
1635         tick_error = abs(tick_error);
1636         for (adj = 0; tick_error > interval; adj++)
1637                 tick_error >>= 1;
1638
1639         /* scale the corrections */
1640         timekeeping_apply_adjustment(tk, offset, negative, adj);
1641 }
1642
1643 /*
1644  * Adjust the timekeeper's multiplier to the correct frequency
1645  * and also to reduce the accumulated error value.
1646  */
1647 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1648 {
1649         /* Correct for the current frequency error */
1650         timekeeping_freqadjust(tk, offset);
1651
1652         /* Next make a small adjustment to fix any cumulative error */
1653         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1654                 tk->ntp_err_mult = 1;
1655                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1656         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1657                 /* Undo any existing error adjustment */
1658                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1659                 tk->ntp_err_mult = 0;
1660         }
1661
1662         if (unlikely(tk->tkr_mono.clock->maxadj &&
1663                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1664                         > tk->tkr_mono.clock->maxadj))) {
1665                 printk_once(KERN_WARNING
1666                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1667                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1668                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1669         }
1670
1671         /*
1672          * It may be possible that when we entered this function, xtime_nsec
1673          * was very small.  Further, if we're slightly speeding the clocksource
1674          * in the code above, its possible the required corrective factor to
1675          * xtime_nsec could cause it to underflow.
1676          *
1677          * Now, since we already accumulated the second, cannot simply roll
1678          * the accumulated second back, since the NTP subsystem has been
1679          * notified via second_overflow. So instead we push xtime_nsec forward
1680          * by the amount we underflowed, and add that amount into the error.
1681          *
1682          * We'll correct this error next time through this function, when
1683          * xtime_nsec is not as small.
1684          */
1685         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1686                 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1687                 tk->tkr_mono.xtime_nsec = 0;
1688                 tk->ntp_error += neg << tk->ntp_error_shift;
1689         }
1690 }
1691
1692 /**
1693  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1694  *
1695  * Helper function that accumulates a the nsecs greater then a second
1696  * from the xtime_nsec field to the xtime_secs field.
1697  * It also calls into the NTP code to handle leapsecond processing.
1698  *
1699  */
1700 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1701 {
1702         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1703         unsigned int clock_set = 0;
1704
1705         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1706                 int leap;
1707
1708                 tk->tkr_mono.xtime_nsec -= nsecps;
1709                 tk->xtime_sec++;
1710
1711                 /* Figure out if its a leap sec and apply if needed */
1712                 leap = second_overflow(tk->xtime_sec);
1713                 if (unlikely(leap)) {
1714                         struct timespec64 ts;
1715
1716                         tk->xtime_sec += leap;
1717
1718                         ts.tv_sec = leap;
1719                         ts.tv_nsec = 0;
1720                         tk_set_wall_to_mono(tk,
1721                                 timespec64_sub(tk->wall_to_monotonic, ts));
1722
1723                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1724
1725                         clock_set = TK_CLOCK_WAS_SET;
1726                 }
1727         }
1728         return clock_set;
1729 }
1730
1731 /**
1732  * logarithmic_accumulation - shifted accumulation of cycles
1733  *
1734  * This functions accumulates a shifted interval of cycles into
1735  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1736  * loop.
1737  *
1738  * Returns the unconsumed cycles.
1739  */
1740 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1741                                                 u32 shift,
1742                                                 unsigned int *clock_set)
1743 {
1744         cycle_t interval = tk->cycle_interval << shift;
1745         u64 raw_nsecs;
1746
1747         /* If the offset is smaller then a shifted interval, do nothing */
1748         if (offset < interval)
1749                 return offset;
1750
1751         /* Accumulate one shifted interval */
1752         offset -= interval;
1753         tk->tkr_mono.cycle_last += interval;
1754         tk->tkr_raw.cycle_last  += interval;
1755
1756         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1757         *clock_set |= accumulate_nsecs_to_secs(tk);
1758
1759         /* Accumulate raw time */
1760         raw_nsecs = (u64)tk->raw_interval << shift;
1761         raw_nsecs += tk->raw_time.tv_nsec;
1762         if (raw_nsecs >= NSEC_PER_SEC) {
1763                 u64 raw_secs = raw_nsecs;
1764                 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1765                 tk->raw_time.tv_sec += raw_secs;
1766         }
1767         tk->raw_time.tv_nsec = raw_nsecs;
1768
1769         /* Accumulate error between NTP and clock interval */
1770         tk->ntp_error += tk->ntp_tick << shift;
1771         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1772                                                 (tk->ntp_error_shift + shift);
1773
1774         return offset;
1775 }
1776
1777 /**
1778  * update_wall_time - Uses the current clocksource to increment the wall time
1779  *
1780  */
1781 void update_wall_time(void)
1782 {
1783         struct timekeeper *real_tk = &tk_core.timekeeper;
1784         struct timekeeper *tk = &shadow_timekeeper;
1785         cycle_t offset;
1786         int shift = 0, maxshift;
1787         unsigned int clock_set = 0;
1788         unsigned long flags;
1789
1790         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1791
1792         /* Make sure we're fully resumed: */
1793         if (unlikely(timekeeping_suspended))
1794                 goto out;
1795
1796 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1797         offset = real_tk->cycle_interval;
1798 #else
1799         offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1800                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1801 #endif
1802
1803         /* Check if there's really nothing to do */
1804         if (offset < real_tk->cycle_interval)
1805                 goto out;
1806
1807         /* Do some additional sanity checking */
1808         timekeeping_check_update(real_tk, offset);
1809
1810         /*
1811          * With NO_HZ we may have to accumulate many cycle_intervals
1812          * (think "ticks") worth of time at once. To do this efficiently,
1813          * we calculate the largest doubling multiple of cycle_intervals
1814          * that is smaller than the offset.  We then accumulate that
1815          * chunk in one go, and then try to consume the next smaller
1816          * doubled multiple.
1817          */
1818         shift = ilog2(offset) - ilog2(tk->cycle_interval);
1819         shift = max(0, shift);
1820         /* Bound shift to one less than what overflows tick_length */
1821         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1822         shift = min(shift, maxshift);
1823         while (offset >= tk->cycle_interval) {
1824                 offset = logarithmic_accumulation(tk, offset, shift,
1825                                                         &clock_set);
1826                 if (offset < tk->cycle_interval<<shift)
1827                         shift--;
1828         }
1829
1830         /* correct the clock when NTP error is too big */
1831         timekeeping_adjust(tk, offset);
1832
1833         /*
1834          * XXX This can be killed once everyone converts
1835          * to the new update_vsyscall.
1836          */
1837         old_vsyscall_fixup(tk);
1838
1839         /*
1840          * Finally, make sure that after the rounding
1841          * xtime_nsec isn't larger than NSEC_PER_SEC
1842          */
1843         clock_set |= accumulate_nsecs_to_secs(tk);
1844
1845         write_seqcount_begin(&tk_core.seq);
1846         /*
1847          * Update the real timekeeper.
1848          *
1849          * We could avoid this memcpy by switching pointers, but that
1850          * requires changes to all other timekeeper usage sites as
1851          * well, i.e. move the timekeeper pointer getter into the
1852          * spinlocked/seqcount protected sections. And we trade this
1853          * memcpy under the tk_core.seq against one before we start
1854          * updating.
1855          */
1856         memcpy(real_tk, tk, sizeof(*tk));
1857         timekeeping_update(real_tk, clock_set);
1858         write_seqcount_end(&tk_core.seq);
1859 out:
1860         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1861         if (clock_set)
1862                 /* Have to call _delayed version, since in irq context*/
1863                 clock_was_set_delayed();
1864 }
1865
1866 /**
1867  * getboottime64 - Return the real time of system boot.
1868  * @ts:         pointer to the timespec64 to be set
1869  *
1870  * Returns the wall-time of boot in a timespec64.
1871  *
1872  * This is based on the wall_to_monotonic offset and the total suspend
1873  * time. Calls to settimeofday will affect the value returned (which
1874  * basically means that however wrong your real time clock is at boot time,
1875  * you get the right time here).
1876  */
1877 void getboottime64(struct timespec64 *ts)
1878 {
1879         struct timekeeper *tk = &tk_core.timekeeper;
1880         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1881
1882         *ts = ktime_to_timespec64(t);
1883 }
1884 EXPORT_SYMBOL_GPL(getboottime64);
1885
1886 unsigned long get_seconds(void)
1887 {
1888         struct timekeeper *tk = &tk_core.timekeeper;
1889
1890         return tk->xtime_sec;
1891 }
1892 EXPORT_SYMBOL(get_seconds);
1893
1894 struct timespec __current_kernel_time(void)
1895 {
1896         struct timekeeper *tk = &tk_core.timekeeper;
1897
1898         return timespec64_to_timespec(tk_xtime(tk));
1899 }
1900
1901 struct timespec current_kernel_time(void)
1902 {
1903         struct timekeeper *tk = &tk_core.timekeeper;
1904         struct timespec64 now;
1905         unsigned long seq;
1906
1907         do {
1908                 seq = read_seqcount_begin(&tk_core.seq);
1909
1910                 now = tk_xtime(tk);
1911         } while (read_seqcount_retry(&tk_core.seq, seq));
1912
1913         return timespec64_to_timespec(now);
1914 }
1915 EXPORT_SYMBOL(current_kernel_time);
1916
1917 struct timespec64 get_monotonic_coarse64(void)
1918 {
1919         struct timekeeper *tk = &tk_core.timekeeper;
1920         struct timespec64 now, mono;
1921         unsigned long seq;
1922
1923         do {
1924                 seq = read_seqcount_begin(&tk_core.seq);
1925
1926                 now = tk_xtime(tk);
1927                 mono = tk->wall_to_monotonic;
1928         } while (read_seqcount_retry(&tk_core.seq, seq));
1929
1930         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1931                                 now.tv_nsec + mono.tv_nsec);
1932
1933         return now;
1934 }
1935
1936 /*
1937  * Must hold jiffies_lock
1938  */
1939 void do_timer(unsigned long ticks)
1940 {
1941         jiffies_64 += ticks;
1942         calc_global_load(ticks);
1943 }
1944
1945 /**
1946  * ktime_get_update_offsets_now - hrtimer helper
1947  * @cwsseq:     pointer to check and store the clock was set sequence number
1948  * @offs_real:  pointer to storage for monotonic -> realtime offset
1949  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1950  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1951  *
1952  * Returns current monotonic time and updates the offsets if the
1953  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
1954  * different.
1955  *
1956  * Called from hrtimer_interrupt() or retrigger_next_event()
1957  */
1958 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
1959                                      ktime_t *offs_boot, ktime_t *offs_tai)
1960 {
1961         struct timekeeper *tk = &tk_core.timekeeper;
1962         unsigned int seq;
1963         ktime_t base;
1964         u64 nsecs;
1965
1966         do {
1967                 seq = read_seqcount_begin(&tk_core.seq);
1968
1969                 base = tk->tkr_mono.base;
1970                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
1971                 base = ktime_add_ns(base, nsecs);
1972
1973                 if (*cwsseq != tk->clock_was_set_seq) {
1974                         *cwsseq = tk->clock_was_set_seq;
1975                         *offs_real = tk->offs_real;
1976                         *offs_boot = tk->offs_boot;
1977                         *offs_tai = tk->offs_tai;
1978                 }
1979
1980                 /* Handle leapsecond insertion adjustments */
1981                 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
1982                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
1983
1984         } while (read_seqcount_retry(&tk_core.seq, seq));
1985
1986         return base;
1987 }
1988
1989 /**
1990  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1991  */
1992 int do_adjtimex(struct timex *txc)
1993 {
1994         struct timekeeper *tk = &tk_core.timekeeper;
1995         unsigned long flags;
1996         struct timespec64 ts;
1997         s32 orig_tai, tai;
1998         int ret;
1999
2000         /* Validate the data before disabling interrupts */
2001         ret = ntp_validate_timex(txc);
2002         if (ret)
2003                 return ret;
2004
2005         if (txc->modes & ADJ_SETOFFSET) {
2006                 struct timespec delta;
2007                 delta.tv_sec  = txc->time.tv_sec;
2008                 delta.tv_nsec = txc->time.tv_usec;
2009                 if (!(txc->modes & ADJ_NANO))
2010                         delta.tv_nsec *= 1000;
2011                 ret = timekeeping_inject_offset(&delta);
2012                 if (ret)
2013                         return ret;
2014         }
2015
2016         getnstimeofday64(&ts);
2017
2018         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2019         write_seqcount_begin(&tk_core.seq);
2020
2021         orig_tai = tai = tk->tai_offset;
2022         ret = __do_adjtimex(txc, &ts, &tai);
2023
2024         if (tai != orig_tai) {
2025                 __timekeeping_set_tai_offset(tk, tai);
2026                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2027         }
2028         tk_update_leap_state(tk);
2029
2030         write_seqcount_end(&tk_core.seq);
2031         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2032
2033         if (tai != orig_tai)
2034                 clock_was_set();
2035
2036         ntp_notify_cmos_timer();
2037
2038         return ret;
2039 }
2040
2041 #ifdef CONFIG_NTP_PPS
2042 /**
2043  * hardpps() - Accessor function to NTP __hardpps function
2044  */
2045 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
2046 {
2047         unsigned long flags;
2048
2049         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2050         write_seqcount_begin(&tk_core.seq);
2051
2052         __hardpps(phase_ts, raw_ts);
2053
2054         write_seqcount_end(&tk_core.seq);
2055         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2056 }
2057 EXPORT_SYMBOL(hardpps);
2058 #endif
2059
2060 /**
2061  * xtime_update() - advances the timekeeping infrastructure
2062  * @ticks:      number of ticks, that have elapsed since the last call.
2063  *
2064  * Must be called with interrupts disabled.
2065  */
2066 void xtime_update(unsigned long ticks)
2067 {
2068         write_seqlock(&jiffies_lock);
2069         do_timer(ticks);
2070         write_sequnlock(&jiffies_lock);
2071         update_wall_time();
2072 }