657414cf2e46625a23ce91822da4ed0a71873baa
[cascardo/linux.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP            (1 << 0)
32 #define TK_MIRROR               (1 << 1)
33 #define TK_CLOCK_WAS_SET        (1 << 2)
34
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40         seqcount_t              seq;
41         struct timekeeper       timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:        Sequence counter for protecting updates. The lowest bit
50  *              is the index for the tk_read_base array
51  * @base:       tk_read_base array. Access is indexed by the lowest bit of
52  *              @seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57         seqcount_t              seq;
58         struct tk_read_base     base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62
63 /* flag for if timekeeping is suspended */
64 int __read_mostly timekeeping_suspended;
65
66 /* Flag for if there is a persistent clock on this platform */
67 bool __read_mostly persistent_clock_exist = false;
68
69 static inline void tk_normalize_xtime(struct timekeeper *tk)
70 {
71         while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
72                 tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73                 tk->xtime_sec++;
74         }
75 }
76
77 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78 {
79         struct timespec64 ts;
80
81         ts.tv_sec = tk->xtime_sec;
82         ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83         return ts;
84 }
85
86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 {
88         tk->xtime_sec = ts->tv_sec;
89         tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 }
91
92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 {
94         tk->xtime_sec += ts->tv_sec;
95         tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96         tk_normalize_xtime(tk);
97 }
98
99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100 {
101         struct timespec64 tmp;
102
103         /*
104          * Verify consistency of: offset_real = -wall_to_monotonic
105          * before modifying anything
106          */
107         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108                                         -tk->wall_to_monotonic.tv_nsec);
109         WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110         tk->wall_to_monotonic = wtm;
111         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112         tk->offs_real = timespec64_to_ktime(tmp);
113         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 }
115
116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117 {
118         tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 }
120
121 #ifdef CONFIG_DEBUG_TIMEKEEPING
122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123 {
124
125         cycle_t max_cycles = tk->tkr.clock->max_cycles;
126         const char *name = tk->tkr.clock->name;
127
128         if (offset > max_cycles) {
129                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130                                 offset, name, max_cycles);
131                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132         } else {
133                 if (offset > (max_cycles >> 1)) {
134                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
135                                         offset, name, max_cycles >> 1);
136                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137                 }
138         }
139 }
140
141 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
142 {
143         cycle_t cycle_now, delta;
144
145         /* read clocksource */
146         cycle_now = tkr->read(tkr->clock);
147
148         /* calculate the delta since the last update_wall_time */
149         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
150
151         /* Cap delta value to the max_cycles values to avoid mult overflows */
152         if (unlikely(delta > tkr->clock->max_cycles))
153                 delta = tkr->clock->max_cycles;
154
155         return delta;
156 }
157 #else
158 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
159 {
160 }
161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163         cycle_t cycle_now, delta;
164
165         /* read clocksource */
166         cycle_now = tkr->read(tkr->clock);
167
168         /* calculate the delta since the last update_wall_time */
169         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
170
171         return delta;
172 }
173 #endif
174
175 /**
176  * tk_setup_internals - Set up internals to use clocksource clock.
177  *
178  * @tk:         The target timekeeper to setup.
179  * @clock:              Pointer to clocksource.
180  *
181  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
182  * pair and interval request.
183  *
184  * Unless you're the timekeeping code, you should not be using this!
185  */
186 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
187 {
188         cycle_t interval;
189         u64 tmp, ntpinterval;
190         struct clocksource *old_clock;
191
192         old_clock = tk->tkr.clock;
193         tk->tkr.clock = clock;
194         tk->tkr.read = clock->read;
195         tk->tkr.mask = clock->mask;
196         tk->tkr.cycle_last = tk->tkr.read(clock);
197
198         /* Do the ns -> cycle conversion first, using original mult */
199         tmp = NTP_INTERVAL_LENGTH;
200         tmp <<= clock->shift;
201         ntpinterval = tmp;
202         tmp += clock->mult/2;
203         do_div(tmp, clock->mult);
204         if (tmp == 0)
205                 tmp = 1;
206
207         interval = (cycle_t) tmp;
208         tk->cycle_interval = interval;
209
210         /* Go back from cycles -> shifted ns */
211         tk->xtime_interval = (u64) interval * clock->mult;
212         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
213         tk->raw_interval =
214                 ((u64) interval * clock->mult) >> clock->shift;
215
216          /* if changing clocks, convert xtime_nsec shift units */
217         if (old_clock) {
218                 int shift_change = clock->shift - old_clock->shift;
219                 if (shift_change < 0)
220                         tk->tkr.xtime_nsec >>= -shift_change;
221                 else
222                         tk->tkr.xtime_nsec <<= shift_change;
223         }
224         tk->tkr.shift = clock->shift;
225
226         tk->ntp_error = 0;
227         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
228         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
229
230         /*
231          * The timekeeper keeps its own mult values for the currently
232          * active clocksource. These value will be adjusted via NTP
233          * to counteract clock drifting.
234          */
235         tk->tkr.mult = clock->mult;
236         tk->ntp_err_mult = 0;
237 }
238
239 /* Timekeeper helper functions. */
240
241 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
242 static u32 default_arch_gettimeoffset(void) { return 0; }
243 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
244 #else
245 static inline u32 arch_gettimeoffset(void) { return 0; }
246 #endif
247
248 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
249 {
250         cycle_t delta;
251         s64 nsec;
252
253         delta = timekeeping_get_delta(tkr);
254
255         nsec = delta * tkr->mult + tkr->xtime_nsec;
256         nsec >>= tkr->shift;
257
258         /* If arch requires, add in get_arch_timeoffset() */
259         return nsec + arch_gettimeoffset();
260 }
261
262 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
263 {
264         struct clocksource *clock = tk->tkr.clock;
265         cycle_t delta;
266         s64 nsec;
267
268         delta = timekeeping_get_delta(&tk->tkr);
269
270         /* convert delta to nanoseconds. */
271         nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
272
273         /* If arch requires, add in get_arch_timeoffset() */
274         return nsec + arch_gettimeoffset();
275 }
276
277 /**
278  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
279  * @tkr: Timekeeping readout base from which we take the update
280  *
281  * We want to use this from any context including NMI and tracing /
282  * instrumenting the timekeeping code itself.
283  *
284  * So we handle this differently than the other timekeeping accessor
285  * functions which retry when the sequence count has changed. The
286  * update side does:
287  *
288  * smp_wmb();   <- Ensure that the last base[1] update is visible
289  * tkf->seq++;
290  * smp_wmb();   <- Ensure that the seqcount update is visible
291  * update(tkf->base[0], tkr);
292  * smp_wmb();   <- Ensure that the base[0] update is visible
293  * tkf->seq++;
294  * smp_wmb();   <- Ensure that the seqcount update is visible
295  * update(tkf->base[1], tkr);
296  *
297  * The reader side does:
298  *
299  * do {
300  *      seq = tkf->seq;
301  *      smp_rmb();
302  *      idx = seq & 0x01;
303  *      now = now(tkf->base[idx]);
304  *      smp_rmb();
305  * } while (seq != tkf->seq)
306  *
307  * As long as we update base[0] readers are forced off to
308  * base[1]. Once base[0] is updated readers are redirected to base[0]
309  * and the base[1] update takes place.
310  *
311  * So if a NMI hits the update of base[0] then it will use base[1]
312  * which is still consistent. In the worst case this can result is a
313  * slightly wrong timestamp (a few nanoseconds). See
314  * @ktime_get_mono_fast_ns.
315  */
316 static void update_fast_timekeeper(struct tk_read_base *tkr)
317 {
318         struct tk_read_base *base = tk_fast_mono.base;
319
320         /* Force readers off to base[1] */
321         raw_write_seqcount_latch(&tk_fast_mono.seq);
322
323         /* Update base[0] */
324         memcpy(base, tkr, sizeof(*base));
325
326         /* Force readers back to base[0] */
327         raw_write_seqcount_latch(&tk_fast_mono.seq);
328
329         /* Update base[1] */
330         memcpy(base + 1, base, sizeof(*base));
331 }
332
333 /**
334  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
335  *
336  * This timestamp is not guaranteed to be monotonic across an update.
337  * The timestamp is calculated by:
338  *
339  *      now = base_mono + clock_delta * slope
340  *
341  * So if the update lowers the slope, readers who are forced to the
342  * not yet updated second array are still using the old steeper slope.
343  *
344  * tmono
345  * ^
346  * |    o  n
347  * |   o n
348  * |  u
349  * | o
350  * |o
351  * |12345678---> reader order
352  *
353  * o = old slope
354  * u = update
355  * n = new slope
356  *
357  * So reader 6 will observe time going backwards versus reader 5.
358  *
359  * While other CPUs are likely to be able observe that, the only way
360  * for a CPU local observation is when an NMI hits in the middle of
361  * the update. Timestamps taken from that NMI context might be ahead
362  * of the following timestamps. Callers need to be aware of that and
363  * deal with it.
364  */
365 u64 notrace ktime_get_mono_fast_ns(void)
366 {
367         struct tk_read_base *tkr;
368         unsigned int seq;
369         u64 now;
370
371         do {
372                 seq = raw_read_seqcount(&tk_fast_mono.seq);
373                 tkr = tk_fast_mono.base + (seq & 0x01);
374                 now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);
375
376         } while (read_seqcount_retry(&tk_fast_mono.seq, seq));
377         return now;
378 }
379 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
380
381 /* Suspend-time cycles value for halted fast timekeeper. */
382 static cycle_t cycles_at_suspend;
383
384 static cycle_t dummy_clock_read(struct clocksource *cs)
385 {
386         return cycles_at_suspend;
387 }
388
389 /**
390  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
391  * @tk: Timekeeper to snapshot.
392  *
393  * It generally is unsafe to access the clocksource after timekeeping has been
394  * suspended, so take a snapshot of the readout base of @tk and use it as the
395  * fast timekeeper's readout base while suspended.  It will return the same
396  * number of cycles every time until timekeeping is resumed at which time the
397  * proper readout base for the fast timekeeper will be restored automatically.
398  */
399 static void halt_fast_timekeeper(struct timekeeper *tk)
400 {
401         static struct tk_read_base tkr_dummy;
402         struct tk_read_base *tkr = &tk->tkr;
403
404         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
405         cycles_at_suspend = tkr->read(tkr->clock);
406         tkr_dummy.read = dummy_clock_read;
407         update_fast_timekeeper(&tkr_dummy);
408 }
409
410 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
411
412 static inline void update_vsyscall(struct timekeeper *tk)
413 {
414         struct timespec xt, wm;
415
416         xt = timespec64_to_timespec(tk_xtime(tk));
417         wm = timespec64_to_timespec(tk->wall_to_monotonic);
418         update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
419                             tk->tkr.cycle_last);
420 }
421
422 static inline void old_vsyscall_fixup(struct timekeeper *tk)
423 {
424         s64 remainder;
425
426         /*
427         * Store only full nanoseconds into xtime_nsec after rounding
428         * it up and add the remainder to the error difference.
429         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
430         * by truncating the remainder in vsyscalls. However, it causes
431         * additional work to be done in timekeeping_adjust(). Once
432         * the vsyscall implementations are converted to use xtime_nsec
433         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
434         * users are removed, this can be killed.
435         */
436         remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
437         tk->tkr.xtime_nsec -= remainder;
438         tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
439         tk->ntp_error += remainder << tk->ntp_error_shift;
440         tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
441 }
442 #else
443 #define old_vsyscall_fixup(tk)
444 #endif
445
446 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
447
448 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
449 {
450         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
451 }
452
453 /**
454  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
455  */
456 int pvclock_gtod_register_notifier(struct notifier_block *nb)
457 {
458         struct timekeeper *tk = &tk_core.timekeeper;
459         unsigned long flags;
460         int ret;
461
462         raw_spin_lock_irqsave(&timekeeper_lock, flags);
463         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
464         update_pvclock_gtod(tk, true);
465         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
466
467         return ret;
468 }
469 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
470
471 /**
472  * pvclock_gtod_unregister_notifier - unregister a pvclock
473  * timedata update listener
474  */
475 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
476 {
477         unsigned long flags;
478         int ret;
479
480         raw_spin_lock_irqsave(&timekeeper_lock, flags);
481         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
482         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
483
484         return ret;
485 }
486 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
487
488 /*
489  * Update the ktime_t based scalar nsec members of the timekeeper
490  */
491 static inline void tk_update_ktime_data(struct timekeeper *tk)
492 {
493         u64 seconds;
494         u32 nsec;
495
496         /*
497          * The xtime based monotonic readout is:
498          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
499          * The ktime based monotonic readout is:
500          *      nsec = base_mono + now();
501          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
502          */
503         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
504         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
505         tk->tkr.base_mono = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
506
507         /* Update the monotonic raw base */
508         tk->base_raw = timespec64_to_ktime(tk->raw_time);
509
510         /*
511          * The sum of the nanoseconds portions of xtime and
512          * wall_to_monotonic can be greater/equal one second. Take
513          * this into account before updating tk->ktime_sec.
514          */
515         nsec += (u32)(tk->tkr.xtime_nsec >> tk->tkr.shift);
516         if (nsec >= NSEC_PER_SEC)
517                 seconds++;
518         tk->ktime_sec = seconds;
519 }
520
521 /* must hold timekeeper_lock */
522 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
523 {
524         if (action & TK_CLEAR_NTP) {
525                 tk->ntp_error = 0;
526                 ntp_clear();
527         }
528
529         tk_update_ktime_data(tk);
530
531         update_vsyscall(tk);
532         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
533
534         if (action & TK_MIRROR)
535                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
536                        sizeof(tk_core.timekeeper));
537
538         update_fast_timekeeper(&tk->tkr);
539 }
540
541 /**
542  * timekeeping_forward_now - update clock to the current time
543  *
544  * Forward the current clock to update its state since the last call to
545  * update_wall_time(). This is useful before significant clock changes,
546  * as it avoids having to deal with this time offset explicitly.
547  */
548 static void timekeeping_forward_now(struct timekeeper *tk)
549 {
550         struct clocksource *clock = tk->tkr.clock;
551         cycle_t cycle_now, delta;
552         s64 nsec;
553
554         cycle_now = tk->tkr.read(clock);
555         delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
556         tk->tkr.cycle_last = cycle_now;
557
558         tk->tkr.xtime_nsec += delta * tk->tkr.mult;
559
560         /* If arch requires, add in get_arch_timeoffset() */
561         tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
562
563         tk_normalize_xtime(tk);
564
565         nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
566         timespec64_add_ns(&tk->raw_time, nsec);
567 }
568
569 /**
570  * __getnstimeofday64 - Returns the time of day in a timespec64.
571  * @ts:         pointer to the timespec to be set
572  *
573  * Updates the time of day in the timespec.
574  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
575  */
576 int __getnstimeofday64(struct timespec64 *ts)
577 {
578         struct timekeeper *tk = &tk_core.timekeeper;
579         unsigned long seq;
580         s64 nsecs = 0;
581
582         do {
583                 seq = read_seqcount_begin(&tk_core.seq);
584
585                 ts->tv_sec = tk->xtime_sec;
586                 nsecs = timekeeping_get_ns(&tk->tkr);
587
588         } while (read_seqcount_retry(&tk_core.seq, seq));
589
590         ts->tv_nsec = 0;
591         timespec64_add_ns(ts, nsecs);
592
593         /*
594          * Do not bail out early, in case there were callers still using
595          * the value, even in the face of the WARN_ON.
596          */
597         if (unlikely(timekeeping_suspended))
598                 return -EAGAIN;
599         return 0;
600 }
601 EXPORT_SYMBOL(__getnstimeofday64);
602
603 /**
604  * getnstimeofday64 - Returns the time of day in a timespec64.
605  * @ts:         pointer to the timespec64 to be set
606  *
607  * Returns the time of day in a timespec64 (WARN if suspended).
608  */
609 void getnstimeofday64(struct timespec64 *ts)
610 {
611         WARN_ON(__getnstimeofday64(ts));
612 }
613 EXPORT_SYMBOL(getnstimeofday64);
614
615 ktime_t ktime_get(void)
616 {
617         struct timekeeper *tk = &tk_core.timekeeper;
618         unsigned int seq;
619         ktime_t base;
620         s64 nsecs;
621
622         WARN_ON(timekeeping_suspended);
623
624         do {
625                 seq = read_seqcount_begin(&tk_core.seq);
626                 base = tk->tkr.base_mono;
627                 nsecs = timekeeping_get_ns(&tk->tkr);
628
629         } while (read_seqcount_retry(&tk_core.seq, seq));
630
631         return ktime_add_ns(base, nsecs);
632 }
633 EXPORT_SYMBOL_GPL(ktime_get);
634
635 static ktime_t *offsets[TK_OFFS_MAX] = {
636         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
637         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
638         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
639 };
640
641 ktime_t ktime_get_with_offset(enum tk_offsets offs)
642 {
643         struct timekeeper *tk = &tk_core.timekeeper;
644         unsigned int seq;
645         ktime_t base, *offset = offsets[offs];
646         s64 nsecs;
647
648         WARN_ON(timekeeping_suspended);
649
650         do {
651                 seq = read_seqcount_begin(&tk_core.seq);
652                 base = ktime_add(tk->tkr.base_mono, *offset);
653                 nsecs = timekeeping_get_ns(&tk->tkr);
654
655         } while (read_seqcount_retry(&tk_core.seq, seq));
656
657         return ktime_add_ns(base, nsecs);
658
659 }
660 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
661
662 /**
663  * ktime_mono_to_any() - convert mononotic time to any other time
664  * @tmono:      time to convert.
665  * @offs:       which offset to use
666  */
667 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
668 {
669         ktime_t *offset = offsets[offs];
670         unsigned long seq;
671         ktime_t tconv;
672
673         do {
674                 seq = read_seqcount_begin(&tk_core.seq);
675                 tconv = ktime_add(tmono, *offset);
676         } while (read_seqcount_retry(&tk_core.seq, seq));
677
678         return tconv;
679 }
680 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
681
682 /**
683  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
684  */
685 ktime_t ktime_get_raw(void)
686 {
687         struct timekeeper *tk = &tk_core.timekeeper;
688         unsigned int seq;
689         ktime_t base;
690         s64 nsecs;
691
692         do {
693                 seq = read_seqcount_begin(&tk_core.seq);
694                 base = tk->base_raw;
695                 nsecs = timekeeping_get_ns_raw(tk);
696
697         } while (read_seqcount_retry(&tk_core.seq, seq));
698
699         return ktime_add_ns(base, nsecs);
700 }
701 EXPORT_SYMBOL_GPL(ktime_get_raw);
702
703 /**
704  * ktime_get_ts64 - get the monotonic clock in timespec64 format
705  * @ts:         pointer to timespec variable
706  *
707  * The function calculates the monotonic clock from the realtime
708  * clock and the wall_to_monotonic offset and stores the result
709  * in normalized timespec64 format in the variable pointed to by @ts.
710  */
711 void ktime_get_ts64(struct timespec64 *ts)
712 {
713         struct timekeeper *tk = &tk_core.timekeeper;
714         struct timespec64 tomono;
715         s64 nsec;
716         unsigned int seq;
717
718         WARN_ON(timekeeping_suspended);
719
720         do {
721                 seq = read_seqcount_begin(&tk_core.seq);
722                 ts->tv_sec = tk->xtime_sec;
723                 nsec = timekeeping_get_ns(&tk->tkr);
724                 tomono = tk->wall_to_monotonic;
725
726         } while (read_seqcount_retry(&tk_core.seq, seq));
727
728         ts->tv_sec += tomono.tv_sec;
729         ts->tv_nsec = 0;
730         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
731 }
732 EXPORT_SYMBOL_GPL(ktime_get_ts64);
733
734 /**
735  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
736  *
737  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
738  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
739  * works on both 32 and 64 bit systems. On 32 bit systems the readout
740  * covers ~136 years of uptime which should be enough to prevent
741  * premature wrap arounds.
742  */
743 time64_t ktime_get_seconds(void)
744 {
745         struct timekeeper *tk = &tk_core.timekeeper;
746
747         WARN_ON(timekeeping_suspended);
748         return tk->ktime_sec;
749 }
750 EXPORT_SYMBOL_GPL(ktime_get_seconds);
751
752 /**
753  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
754  *
755  * Returns the wall clock seconds since 1970. This replaces the
756  * get_seconds() interface which is not y2038 safe on 32bit systems.
757  *
758  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
759  * 32bit systems the access must be protected with the sequence
760  * counter to provide "atomic" access to the 64bit tk->xtime_sec
761  * value.
762  */
763 time64_t ktime_get_real_seconds(void)
764 {
765         struct timekeeper *tk = &tk_core.timekeeper;
766         time64_t seconds;
767         unsigned int seq;
768
769         if (IS_ENABLED(CONFIG_64BIT))
770                 return tk->xtime_sec;
771
772         do {
773                 seq = read_seqcount_begin(&tk_core.seq);
774                 seconds = tk->xtime_sec;
775
776         } while (read_seqcount_retry(&tk_core.seq, seq));
777
778         return seconds;
779 }
780 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
781
782 #ifdef CONFIG_NTP_PPS
783
784 /**
785  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
786  * @ts_raw:     pointer to the timespec to be set to raw monotonic time
787  * @ts_real:    pointer to the timespec to be set to the time of day
788  *
789  * This function reads both the time of day and raw monotonic time at the
790  * same time atomically and stores the resulting timestamps in timespec
791  * format.
792  */
793 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
794 {
795         struct timekeeper *tk = &tk_core.timekeeper;
796         unsigned long seq;
797         s64 nsecs_raw, nsecs_real;
798
799         WARN_ON_ONCE(timekeeping_suspended);
800
801         do {
802                 seq = read_seqcount_begin(&tk_core.seq);
803
804                 *ts_raw = timespec64_to_timespec(tk->raw_time);
805                 ts_real->tv_sec = tk->xtime_sec;
806                 ts_real->tv_nsec = 0;
807
808                 nsecs_raw = timekeeping_get_ns_raw(tk);
809                 nsecs_real = timekeeping_get_ns(&tk->tkr);
810
811         } while (read_seqcount_retry(&tk_core.seq, seq));
812
813         timespec_add_ns(ts_raw, nsecs_raw);
814         timespec_add_ns(ts_real, nsecs_real);
815 }
816 EXPORT_SYMBOL(getnstime_raw_and_real);
817
818 #endif /* CONFIG_NTP_PPS */
819
820 /**
821  * do_gettimeofday - Returns the time of day in a timeval
822  * @tv:         pointer to the timeval to be set
823  *
824  * NOTE: Users should be converted to using getnstimeofday()
825  */
826 void do_gettimeofday(struct timeval *tv)
827 {
828         struct timespec64 now;
829
830         getnstimeofday64(&now);
831         tv->tv_sec = now.tv_sec;
832         tv->tv_usec = now.tv_nsec/1000;
833 }
834 EXPORT_SYMBOL(do_gettimeofday);
835
836 /**
837  * do_settimeofday64 - Sets the time of day.
838  * @ts:     pointer to the timespec64 variable containing the new time
839  *
840  * Sets the time of day to the new time and update NTP and notify hrtimers
841  */
842 int do_settimeofday64(const struct timespec64 *ts)
843 {
844         struct timekeeper *tk = &tk_core.timekeeper;
845         struct timespec64 ts_delta, xt;
846         unsigned long flags;
847
848         if (!timespec64_valid_strict(ts))
849                 return -EINVAL;
850
851         raw_spin_lock_irqsave(&timekeeper_lock, flags);
852         write_seqcount_begin(&tk_core.seq);
853
854         timekeeping_forward_now(tk);
855
856         xt = tk_xtime(tk);
857         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
858         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
859
860         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
861
862         tk_set_xtime(tk, ts);
863
864         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
865
866         write_seqcount_end(&tk_core.seq);
867         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
868
869         /* signal hrtimers about time change */
870         clock_was_set();
871
872         return 0;
873 }
874 EXPORT_SYMBOL(do_settimeofday64);
875
876 /**
877  * timekeeping_inject_offset - Adds or subtracts from the current time.
878  * @tv:         pointer to the timespec variable containing the offset
879  *
880  * Adds or subtracts an offset value from the current time.
881  */
882 int timekeeping_inject_offset(struct timespec *ts)
883 {
884         struct timekeeper *tk = &tk_core.timekeeper;
885         unsigned long flags;
886         struct timespec64 ts64, tmp;
887         int ret = 0;
888
889         if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
890                 return -EINVAL;
891
892         ts64 = timespec_to_timespec64(*ts);
893
894         raw_spin_lock_irqsave(&timekeeper_lock, flags);
895         write_seqcount_begin(&tk_core.seq);
896
897         timekeeping_forward_now(tk);
898
899         /* Make sure the proposed value is valid */
900         tmp = timespec64_add(tk_xtime(tk),  ts64);
901         if (!timespec64_valid_strict(&tmp)) {
902                 ret = -EINVAL;
903                 goto error;
904         }
905
906         tk_xtime_add(tk, &ts64);
907         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
908
909 error: /* even if we error out, we forwarded the time, so call update */
910         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
911
912         write_seqcount_end(&tk_core.seq);
913         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
914
915         /* signal hrtimers about time change */
916         clock_was_set();
917
918         return ret;
919 }
920 EXPORT_SYMBOL(timekeeping_inject_offset);
921
922
923 /**
924  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
925  *
926  */
927 s32 timekeeping_get_tai_offset(void)
928 {
929         struct timekeeper *tk = &tk_core.timekeeper;
930         unsigned int seq;
931         s32 ret;
932
933         do {
934                 seq = read_seqcount_begin(&tk_core.seq);
935                 ret = tk->tai_offset;
936         } while (read_seqcount_retry(&tk_core.seq, seq));
937
938         return ret;
939 }
940
941 /**
942  * __timekeeping_set_tai_offset - Lock free worker function
943  *
944  */
945 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
946 {
947         tk->tai_offset = tai_offset;
948         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
949 }
950
951 /**
952  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
953  *
954  */
955 void timekeeping_set_tai_offset(s32 tai_offset)
956 {
957         struct timekeeper *tk = &tk_core.timekeeper;
958         unsigned long flags;
959
960         raw_spin_lock_irqsave(&timekeeper_lock, flags);
961         write_seqcount_begin(&tk_core.seq);
962         __timekeeping_set_tai_offset(tk, tai_offset);
963         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
964         write_seqcount_end(&tk_core.seq);
965         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
966         clock_was_set();
967 }
968
969 /**
970  * change_clocksource - Swaps clocksources if a new one is available
971  *
972  * Accumulates current time interval and initializes new clocksource
973  */
974 static int change_clocksource(void *data)
975 {
976         struct timekeeper *tk = &tk_core.timekeeper;
977         struct clocksource *new, *old;
978         unsigned long flags;
979
980         new = (struct clocksource *) data;
981
982         raw_spin_lock_irqsave(&timekeeper_lock, flags);
983         write_seqcount_begin(&tk_core.seq);
984
985         timekeeping_forward_now(tk);
986         /*
987          * If the cs is in module, get a module reference. Succeeds
988          * for built-in code (owner == NULL) as well.
989          */
990         if (try_module_get(new->owner)) {
991                 if (!new->enable || new->enable(new) == 0) {
992                         old = tk->tkr.clock;
993                         tk_setup_internals(tk, new);
994                         if (old->disable)
995                                 old->disable(old);
996                         module_put(old->owner);
997                 } else {
998                         module_put(new->owner);
999                 }
1000         }
1001         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1002
1003         write_seqcount_end(&tk_core.seq);
1004         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1005
1006         return 0;
1007 }
1008
1009 /**
1010  * timekeeping_notify - Install a new clock source
1011  * @clock:              pointer to the clock source
1012  *
1013  * This function is called from clocksource.c after a new, better clock
1014  * source has been registered. The caller holds the clocksource_mutex.
1015  */
1016 int timekeeping_notify(struct clocksource *clock)
1017 {
1018         struct timekeeper *tk = &tk_core.timekeeper;
1019
1020         if (tk->tkr.clock == clock)
1021                 return 0;
1022         stop_machine(change_clocksource, clock, NULL);
1023         tick_clock_notify();
1024         return tk->tkr.clock == clock ? 0 : -1;
1025 }
1026
1027 /**
1028  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1029  * @ts:         pointer to the timespec64 to be set
1030  *
1031  * Returns the raw monotonic time (completely un-modified by ntp)
1032  */
1033 void getrawmonotonic64(struct timespec64 *ts)
1034 {
1035         struct timekeeper *tk = &tk_core.timekeeper;
1036         struct timespec64 ts64;
1037         unsigned long seq;
1038         s64 nsecs;
1039
1040         do {
1041                 seq = read_seqcount_begin(&tk_core.seq);
1042                 nsecs = timekeeping_get_ns_raw(tk);
1043                 ts64 = tk->raw_time;
1044
1045         } while (read_seqcount_retry(&tk_core.seq, seq));
1046
1047         timespec64_add_ns(&ts64, nsecs);
1048         *ts = ts64;
1049 }
1050 EXPORT_SYMBOL(getrawmonotonic64);
1051
1052
1053 /**
1054  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1055  */
1056 int timekeeping_valid_for_hres(void)
1057 {
1058         struct timekeeper *tk = &tk_core.timekeeper;
1059         unsigned long seq;
1060         int ret;
1061
1062         do {
1063                 seq = read_seqcount_begin(&tk_core.seq);
1064
1065                 ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1066
1067         } while (read_seqcount_retry(&tk_core.seq, seq));
1068
1069         return ret;
1070 }
1071
1072 /**
1073  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1074  */
1075 u64 timekeeping_max_deferment(void)
1076 {
1077         struct timekeeper *tk = &tk_core.timekeeper;
1078         unsigned long seq;
1079         u64 ret;
1080
1081         do {
1082                 seq = read_seqcount_begin(&tk_core.seq);
1083
1084                 ret = tk->tkr.clock->max_idle_ns;
1085
1086         } while (read_seqcount_retry(&tk_core.seq, seq));
1087
1088         return ret;
1089 }
1090
1091 /**
1092  * read_persistent_clock -  Return time from the persistent clock.
1093  *
1094  * Weak dummy function for arches that do not yet support it.
1095  * Reads the time from the battery backed persistent clock.
1096  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1097  *
1098  *  XXX - Do be sure to remove it once all arches implement it.
1099  */
1100 void __weak read_persistent_clock(struct timespec *ts)
1101 {
1102         ts->tv_sec = 0;
1103         ts->tv_nsec = 0;
1104 }
1105
1106 /**
1107  * read_boot_clock -  Return time of the system start.
1108  *
1109  * Weak dummy function for arches that do not yet support it.
1110  * Function to read the exact time the system has been started.
1111  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1112  *
1113  *  XXX - Do be sure to remove it once all arches implement it.
1114  */
1115 void __weak read_boot_clock(struct timespec *ts)
1116 {
1117         ts->tv_sec = 0;
1118         ts->tv_nsec = 0;
1119 }
1120
1121 /*
1122  * timekeeping_init - Initializes the clocksource and common timekeeping values
1123  */
1124 void __init timekeeping_init(void)
1125 {
1126         struct timekeeper *tk = &tk_core.timekeeper;
1127         struct clocksource *clock;
1128         unsigned long flags;
1129         struct timespec64 now, boot, tmp;
1130         struct timespec ts;
1131
1132         read_persistent_clock(&ts);
1133         now = timespec_to_timespec64(ts);
1134         if (!timespec64_valid_strict(&now)) {
1135                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1136                         "         Check your CMOS/BIOS settings.\n");
1137                 now.tv_sec = 0;
1138                 now.tv_nsec = 0;
1139         } else if (now.tv_sec || now.tv_nsec)
1140                 persistent_clock_exist = true;
1141
1142         read_boot_clock(&ts);
1143         boot = timespec_to_timespec64(ts);
1144         if (!timespec64_valid_strict(&boot)) {
1145                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1146                         "         Check your CMOS/BIOS settings.\n");
1147                 boot.tv_sec = 0;
1148                 boot.tv_nsec = 0;
1149         }
1150
1151         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1152         write_seqcount_begin(&tk_core.seq);
1153         ntp_init();
1154
1155         clock = clocksource_default_clock();
1156         if (clock->enable)
1157                 clock->enable(clock);
1158         tk_setup_internals(tk, clock);
1159
1160         tk_set_xtime(tk, &now);
1161         tk->raw_time.tv_sec = 0;
1162         tk->raw_time.tv_nsec = 0;
1163         tk->base_raw.tv64 = 0;
1164         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1165                 boot = tk_xtime(tk);
1166
1167         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1168         tk_set_wall_to_mono(tk, tmp);
1169
1170         timekeeping_update(tk, TK_MIRROR);
1171
1172         write_seqcount_end(&tk_core.seq);
1173         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1174 }
1175
1176 /* time in seconds when suspend began */
1177 static struct timespec64 timekeeping_suspend_time;
1178
1179 /**
1180  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1181  * @delta: pointer to a timespec delta value
1182  *
1183  * Takes a timespec offset measuring a suspend interval and properly
1184  * adds the sleep offset to the timekeeping variables.
1185  */
1186 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1187                                            struct timespec64 *delta)
1188 {
1189         if (!timespec64_valid_strict(delta)) {
1190                 printk_deferred(KERN_WARNING
1191                                 "__timekeeping_inject_sleeptime: Invalid "
1192                                 "sleep delta value!\n");
1193                 return;
1194         }
1195         tk_xtime_add(tk, delta);
1196         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1197         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1198         tk_debug_account_sleep_time(delta);
1199 }
1200
1201 /**
1202  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1203  * @delta: pointer to a timespec64 delta value
1204  *
1205  * This hook is for architectures that cannot support read_persistent_clock
1206  * because their RTC/persistent clock is only accessible when irqs are enabled.
1207  *
1208  * This function should only be called by rtc_resume(), and allows
1209  * a suspend offset to be injected into the timekeeping values.
1210  */
1211 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1212 {
1213         struct timekeeper *tk = &tk_core.timekeeper;
1214         unsigned long flags;
1215
1216         /*
1217          * Make sure we don't set the clock twice, as timekeeping_resume()
1218          * already did it
1219          */
1220         if (has_persistent_clock())
1221                 return;
1222
1223         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1224         write_seqcount_begin(&tk_core.seq);
1225
1226         timekeeping_forward_now(tk);
1227
1228         __timekeeping_inject_sleeptime(tk, delta);
1229
1230         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1231
1232         write_seqcount_end(&tk_core.seq);
1233         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1234
1235         /* signal hrtimers about time change */
1236         clock_was_set();
1237 }
1238
1239 /**
1240  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1241  *
1242  * This is for the generic clocksource timekeeping.
1243  * xtime/wall_to_monotonic/jiffies/etc are
1244  * still managed by arch specific suspend/resume code.
1245  */
1246 void timekeeping_resume(void)
1247 {
1248         struct timekeeper *tk = &tk_core.timekeeper;
1249         struct clocksource *clock = tk->tkr.clock;
1250         unsigned long flags;
1251         struct timespec64 ts_new, ts_delta;
1252         struct timespec tmp;
1253         cycle_t cycle_now, cycle_delta;
1254         bool suspendtime_found = false;
1255
1256         read_persistent_clock(&tmp);
1257         ts_new = timespec_to_timespec64(tmp);
1258
1259         clockevents_resume();
1260         clocksource_resume();
1261
1262         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1263         write_seqcount_begin(&tk_core.seq);
1264
1265         /*
1266          * After system resumes, we need to calculate the suspended time and
1267          * compensate it for the OS time. There are 3 sources that could be
1268          * used: Nonstop clocksource during suspend, persistent clock and rtc
1269          * device.
1270          *
1271          * One specific platform may have 1 or 2 or all of them, and the
1272          * preference will be:
1273          *      suspend-nonstop clocksource -> persistent clock -> rtc
1274          * The less preferred source will only be tried if there is no better
1275          * usable source. The rtc part is handled separately in rtc core code.
1276          */
1277         cycle_now = tk->tkr.read(clock);
1278         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1279                 cycle_now > tk->tkr.cycle_last) {
1280                 u64 num, max = ULLONG_MAX;
1281                 u32 mult = clock->mult;
1282                 u32 shift = clock->shift;
1283                 s64 nsec = 0;
1284
1285                 cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
1286                                                 tk->tkr.mask);
1287
1288                 /*
1289                  * "cycle_delta * mutl" may cause 64 bits overflow, if the
1290                  * suspended time is too long. In that case we need do the
1291                  * 64 bits math carefully
1292                  */
1293                 do_div(max, mult);
1294                 if (cycle_delta > max) {
1295                         num = div64_u64(cycle_delta, max);
1296                         nsec = (((u64) max * mult) >> shift) * num;
1297                         cycle_delta -= num * max;
1298                 }
1299                 nsec += ((u64) cycle_delta * mult) >> shift;
1300
1301                 ts_delta = ns_to_timespec64(nsec);
1302                 suspendtime_found = true;
1303         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1304                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1305                 suspendtime_found = true;
1306         }
1307
1308         if (suspendtime_found)
1309                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1310
1311         /* Re-base the last cycle value */
1312         tk->tkr.cycle_last = cycle_now;
1313         tk->ntp_error = 0;
1314         timekeeping_suspended = 0;
1315         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1316         write_seqcount_end(&tk_core.seq);
1317         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1318
1319         touch_softlockup_watchdog();
1320
1321         clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1322
1323         /* Resume hrtimers */
1324         hrtimers_resume();
1325 }
1326
1327 int timekeeping_suspend(void)
1328 {
1329         struct timekeeper *tk = &tk_core.timekeeper;
1330         unsigned long flags;
1331         struct timespec64               delta, delta_delta;
1332         static struct timespec64        old_delta;
1333         struct timespec tmp;
1334
1335         read_persistent_clock(&tmp);
1336         timekeeping_suspend_time = timespec_to_timespec64(tmp);
1337
1338         /*
1339          * On some systems the persistent_clock can not be detected at
1340          * timekeeping_init by its return value, so if we see a valid
1341          * value returned, update the persistent_clock_exists flag.
1342          */
1343         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1344                 persistent_clock_exist = true;
1345
1346         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1347         write_seqcount_begin(&tk_core.seq);
1348         timekeeping_forward_now(tk);
1349         timekeeping_suspended = 1;
1350
1351         /*
1352          * To avoid drift caused by repeated suspend/resumes,
1353          * which each can add ~1 second drift error,
1354          * try to compensate so the difference in system time
1355          * and persistent_clock time stays close to constant.
1356          */
1357         delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1358         delta_delta = timespec64_sub(delta, old_delta);
1359         if (abs(delta_delta.tv_sec)  >= 2) {
1360                 /*
1361                  * if delta_delta is too large, assume time correction
1362                  * has occured and set old_delta to the current delta.
1363                  */
1364                 old_delta = delta;
1365         } else {
1366                 /* Otherwise try to adjust old_system to compensate */
1367                 timekeeping_suspend_time =
1368                         timespec64_add(timekeeping_suspend_time, delta_delta);
1369         }
1370
1371         timekeeping_update(tk, TK_MIRROR);
1372         halt_fast_timekeeper(tk);
1373         write_seqcount_end(&tk_core.seq);
1374         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1375
1376         clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1377         clocksource_suspend();
1378         clockevents_suspend();
1379
1380         return 0;
1381 }
1382
1383 /* sysfs resume/suspend bits for timekeeping */
1384 static struct syscore_ops timekeeping_syscore_ops = {
1385         .resume         = timekeeping_resume,
1386         .suspend        = timekeeping_suspend,
1387 };
1388
1389 static int __init timekeeping_init_ops(void)
1390 {
1391         register_syscore_ops(&timekeeping_syscore_ops);
1392         return 0;
1393 }
1394 device_initcall(timekeeping_init_ops);
1395
1396 /*
1397  * Apply a multiplier adjustment to the timekeeper
1398  */
1399 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1400                                                          s64 offset,
1401                                                          bool negative,
1402                                                          int adj_scale)
1403 {
1404         s64 interval = tk->cycle_interval;
1405         s32 mult_adj = 1;
1406
1407         if (negative) {
1408                 mult_adj = -mult_adj;
1409                 interval = -interval;
1410                 offset  = -offset;
1411         }
1412         mult_adj <<= adj_scale;
1413         interval <<= adj_scale;
1414         offset <<= adj_scale;
1415
1416         /*
1417          * So the following can be confusing.
1418          *
1419          * To keep things simple, lets assume mult_adj == 1 for now.
1420          *
1421          * When mult_adj != 1, remember that the interval and offset values
1422          * have been appropriately scaled so the math is the same.
1423          *
1424          * The basic idea here is that we're increasing the multiplier
1425          * by one, this causes the xtime_interval to be incremented by
1426          * one cycle_interval. This is because:
1427          *      xtime_interval = cycle_interval * mult
1428          * So if mult is being incremented by one:
1429          *      xtime_interval = cycle_interval * (mult + 1)
1430          * Its the same as:
1431          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1432          * Which can be shortened to:
1433          *      xtime_interval += cycle_interval
1434          *
1435          * So offset stores the non-accumulated cycles. Thus the current
1436          * time (in shifted nanoseconds) is:
1437          *      now = (offset * adj) + xtime_nsec
1438          * Now, even though we're adjusting the clock frequency, we have
1439          * to keep time consistent. In other words, we can't jump back
1440          * in time, and we also want to avoid jumping forward in time.
1441          *
1442          * So given the same offset value, we need the time to be the same
1443          * both before and after the freq adjustment.
1444          *      now = (offset * adj_1) + xtime_nsec_1
1445          *      now = (offset * adj_2) + xtime_nsec_2
1446          * So:
1447          *      (offset * adj_1) + xtime_nsec_1 =
1448          *              (offset * adj_2) + xtime_nsec_2
1449          * And we know:
1450          *      adj_2 = adj_1 + 1
1451          * So:
1452          *      (offset * adj_1) + xtime_nsec_1 =
1453          *              (offset * (adj_1+1)) + xtime_nsec_2
1454          *      (offset * adj_1) + xtime_nsec_1 =
1455          *              (offset * adj_1) + offset + xtime_nsec_2
1456          * Canceling the sides:
1457          *      xtime_nsec_1 = offset + xtime_nsec_2
1458          * Which gives us:
1459          *      xtime_nsec_2 = xtime_nsec_1 - offset
1460          * Which simplfies to:
1461          *      xtime_nsec -= offset
1462          *
1463          * XXX - TODO: Doc ntp_error calculation.
1464          */
1465         if ((mult_adj > 0) && (tk->tkr.mult + mult_adj < mult_adj)) {
1466                 /* NTP adjustment caused clocksource mult overflow */
1467                 WARN_ON_ONCE(1);
1468                 return;
1469         }
1470
1471         tk->tkr.mult += mult_adj;
1472         tk->xtime_interval += interval;
1473         tk->tkr.xtime_nsec -= offset;
1474         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1475 }
1476
1477 /*
1478  * Calculate the multiplier adjustment needed to match the frequency
1479  * specified by NTP
1480  */
1481 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1482                                                         s64 offset)
1483 {
1484         s64 interval = tk->cycle_interval;
1485         s64 xinterval = tk->xtime_interval;
1486         s64 tick_error;
1487         bool negative;
1488         u32 adj;
1489
1490         /* Remove any current error adj from freq calculation */
1491         if (tk->ntp_err_mult)
1492                 xinterval -= tk->cycle_interval;
1493
1494         tk->ntp_tick = ntp_tick_length();
1495
1496         /* Calculate current error per tick */
1497         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1498         tick_error -= (xinterval + tk->xtime_remainder);
1499
1500         /* Don't worry about correcting it if its small */
1501         if (likely((tick_error >= 0) && (tick_error <= interval)))
1502                 return;
1503
1504         /* preserve the direction of correction */
1505         negative = (tick_error < 0);
1506
1507         /* Sort out the magnitude of the correction */
1508         tick_error = abs(tick_error);
1509         for (adj = 0; tick_error > interval; adj++)
1510                 tick_error >>= 1;
1511
1512         /* scale the corrections */
1513         timekeeping_apply_adjustment(tk, offset, negative, adj);
1514 }
1515
1516 /*
1517  * Adjust the timekeeper's multiplier to the correct frequency
1518  * and also to reduce the accumulated error value.
1519  */
1520 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1521 {
1522         /* Correct for the current frequency error */
1523         timekeeping_freqadjust(tk, offset);
1524
1525         /* Next make a small adjustment to fix any cumulative error */
1526         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1527                 tk->ntp_err_mult = 1;
1528                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1529         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1530                 /* Undo any existing error adjustment */
1531                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1532                 tk->ntp_err_mult = 0;
1533         }
1534
1535         if (unlikely(tk->tkr.clock->maxadj &&
1536                 (abs(tk->tkr.mult - tk->tkr.clock->mult)
1537                         > tk->tkr.clock->maxadj))) {
1538                 printk_once(KERN_WARNING
1539                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1540                         tk->tkr.clock->name, (long)tk->tkr.mult,
1541                         (long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
1542         }
1543
1544         /*
1545          * It may be possible that when we entered this function, xtime_nsec
1546          * was very small.  Further, if we're slightly speeding the clocksource
1547          * in the code above, its possible the required corrective factor to
1548          * xtime_nsec could cause it to underflow.
1549          *
1550          * Now, since we already accumulated the second, cannot simply roll
1551          * the accumulated second back, since the NTP subsystem has been
1552          * notified via second_overflow. So instead we push xtime_nsec forward
1553          * by the amount we underflowed, and add that amount into the error.
1554          *
1555          * We'll correct this error next time through this function, when
1556          * xtime_nsec is not as small.
1557          */
1558         if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
1559                 s64 neg = -(s64)tk->tkr.xtime_nsec;
1560                 tk->tkr.xtime_nsec = 0;
1561                 tk->ntp_error += neg << tk->ntp_error_shift;
1562         }
1563 }
1564
1565 /**
1566  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1567  *
1568  * Helper function that accumulates a the nsecs greater then a second
1569  * from the xtime_nsec field to the xtime_secs field.
1570  * It also calls into the NTP code to handle leapsecond processing.
1571  *
1572  */
1573 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1574 {
1575         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1576         unsigned int clock_set = 0;
1577
1578         while (tk->tkr.xtime_nsec >= nsecps) {
1579                 int leap;
1580
1581                 tk->tkr.xtime_nsec -= nsecps;
1582                 tk->xtime_sec++;
1583
1584                 /* Figure out if its a leap sec and apply if needed */
1585                 leap = second_overflow(tk->xtime_sec);
1586                 if (unlikely(leap)) {
1587                         struct timespec64 ts;
1588
1589                         tk->xtime_sec += leap;
1590
1591                         ts.tv_sec = leap;
1592                         ts.tv_nsec = 0;
1593                         tk_set_wall_to_mono(tk,
1594                                 timespec64_sub(tk->wall_to_monotonic, ts));
1595
1596                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1597
1598                         clock_set = TK_CLOCK_WAS_SET;
1599                 }
1600         }
1601         return clock_set;
1602 }
1603
1604 /**
1605  * logarithmic_accumulation - shifted accumulation of cycles
1606  *
1607  * This functions accumulates a shifted interval of cycles into
1608  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1609  * loop.
1610  *
1611  * Returns the unconsumed cycles.
1612  */
1613 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1614                                                 u32 shift,
1615                                                 unsigned int *clock_set)
1616 {
1617         cycle_t interval = tk->cycle_interval << shift;
1618         u64 raw_nsecs;
1619
1620         /* If the offset is smaller then a shifted interval, do nothing */
1621         if (offset < interval)
1622                 return offset;
1623
1624         /* Accumulate one shifted interval */
1625         offset -= interval;
1626         tk->tkr.cycle_last += interval;
1627
1628         tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1629         *clock_set |= accumulate_nsecs_to_secs(tk);
1630
1631         /* Accumulate raw time */
1632         raw_nsecs = (u64)tk->raw_interval << shift;
1633         raw_nsecs += tk->raw_time.tv_nsec;
1634         if (raw_nsecs >= NSEC_PER_SEC) {
1635                 u64 raw_secs = raw_nsecs;
1636                 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1637                 tk->raw_time.tv_sec += raw_secs;
1638         }
1639         tk->raw_time.tv_nsec = raw_nsecs;
1640
1641         /* Accumulate error between NTP and clock interval */
1642         tk->ntp_error += tk->ntp_tick << shift;
1643         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1644                                                 (tk->ntp_error_shift + shift);
1645
1646         return offset;
1647 }
1648
1649 /**
1650  * update_wall_time - Uses the current clocksource to increment the wall time
1651  *
1652  */
1653 void update_wall_time(void)
1654 {
1655         struct timekeeper *real_tk = &tk_core.timekeeper;
1656         struct timekeeper *tk = &shadow_timekeeper;
1657         cycle_t offset;
1658         int shift = 0, maxshift;
1659         unsigned int clock_set = 0;
1660         unsigned long flags;
1661
1662         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1663
1664         /* Make sure we're fully resumed: */
1665         if (unlikely(timekeeping_suspended))
1666                 goto out;
1667
1668 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1669         offset = real_tk->cycle_interval;
1670 #else
1671         offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
1672                                    tk->tkr.cycle_last, tk->tkr.mask);
1673 #endif
1674
1675         /* Check if there's really nothing to do */
1676         if (offset < real_tk->cycle_interval)
1677                 goto out;
1678
1679         /* Do some additional sanity checking */
1680         timekeeping_check_update(real_tk, offset);
1681
1682         /*
1683          * With NO_HZ we may have to accumulate many cycle_intervals
1684          * (think "ticks") worth of time at once. To do this efficiently,
1685          * we calculate the largest doubling multiple of cycle_intervals
1686          * that is smaller than the offset.  We then accumulate that
1687          * chunk in one go, and then try to consume the next smaller
1688          * doubled multiple.
1689          */
1690         shift = ilog2(offset) - ilog2(tk->cycle_interval);
1691         shift = max(0, shift);
1692         /* Bound shift to one less than what overflows tick_length */
1693         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1694         shift = min(shift, maxshift);
1695         while (offset >= tk->cycle_interval) {
1696                 offset = logarithmic_accumulation(tk, offset, shift,
1697                                                         &clock_set);
1698                 if (offset < tk->cycle_interval<<shift)
1699                         shift--;
1700         }
1701
1702         /* correct the clock when NTP error is too big */
1703         timekeeping_adjust(tk, offset);
1704
1705         /*
1706          * XXX This can be killed once everyone converts
1707          * to the new update_vsyscall.
1708          */
1709         old_vsyscall_fixup(tk);
1710
1711         /*
1712          * Finally, make sure that after the rounding
1713          * xtime_nsec isn't larger than NSEC_PER_SEC
1714          */
1715         clock_set |= accumulate_nsecs_to_secs(tk);
1716
1717         write_seqcount_begin(&tk_core.seq);
1718         /*
1719          * Update the real timekeeper.
1720          *
1721          * We could avoid this memcpy by switching pointers, but that
1722          * requires changes to all other timekeeper usage sites as
1723          * well, i.e. move the timekeeper pointer getter into the
1724          * spinlocked/seqcount protected sections. And we trade this
1725          * memcpy under the tk_core.seq against one before we start
1726          * updating.
1727          */
1728         memcpy(real_tk, tk, sizeof(*tk));
1729         timekeeping_update(real_tk, clock_set);
1730         write_seqcount_end(&tk_core.seq);
1731 out:
1732         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1733         if (clock_set)
1734                 /* Have to call _delayed version, since in irq context*/
1735                 clock_was_set_delayed();
1736 }
1737
1738 /**
1739  * getboottime64 - Return the real time of system boot.
1740  * @ts:         pointer to the timespec64 to be set
1741  *
1742  * Returns the wall-time of boot in a timespec64.
1743  *
1744  * This is based on the wall_to_monotonic offset and the total suspend
1745  * time. Calls to settimeofday will affect the value returned (which
1746  * basically means that however wrong your real time clock is at boot time,
1747  * you get the right time here).
1748  */
1749 void getboottime64(struct timespec64 *ts)
1750 {
1751         struct timekeeper *tk = &tk_core.timekeeper;
1752         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1753
1754         *ts = ktime_to_timespec64(t);
1755 }
1756 EXPORT_SYMBOL_GPL(getboottime64);
1757
1758 unsigned long get_seconds(void)
1759 {
1760         struct timekeeper *tk = &tk_core.timekeeper;
1761
1762         return tk->xtime_sec;
1763 }
1764 EXPORT_SYMBOL(get_seconds);
1765
1766 struct timespec __current_kernel_time(void)
1767 {
1768         struct timekeeper *tk = &tk_core.timekeeper;
1769
1770         return timespec64_to_timespec(tk_xtime(tk));
1771 }
1772
1773 struct timespec current_kernel_time(void)
1774 {
1775         struct timekeeper *tk = &tk_core.timekeeper;
1776         struct timespec64 now;
1777         unsigned long seq;
1778
1779         do {
1780                 seq = read_seqcount_begin(&tk_core.seq);
1781
1782                 now = tk_xtime(tk);
1783         } while (read_seqcount_retry(&tk_core.seq, seq));
1784
1785         return timespec64_to_timespec(now);
1786 }
1787 EXPORT_SYMBOL(current_kernel_time);
1788
1789 struct timespec64 get_monotonic_coarse64(void)
1790 {
1791         struct timekeeper *tk = &tk_core.timekeeper;
1792         struct timespec64 now, mono;
1793         unsigned long seq;
1794
1795         do {
1796                 seq = read_seqcount_begin(&tk_core.seq);
1797
1798                 now = tk_xtime(tk);
1799                 mono = tk->wall_to_monotonic;
1800         } while (read_seqcount_retry(&tk_core.seq, seq));
1801
1802         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1803                                 now.tv_nsec + mono.tv_nsec);
1804
1805         return now;
1806 }
1807
1808 /*
1809  * Must hold jiffies_lock
1810  */
1811 void do_timer(unsigned long ticks)
1812 {
1813         jiffies_64 += ticks;
1814         calc_global_load(ticks);
1815 }
1816
1817 /**
1818  * ktime_get_update_offsets_tick - hrtimer helper
1819  * @offs_real:  pointer to storage for monotonic -> realtime offset
1820  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1821  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1822  *
1823  * Returns monotonic time at last tick and various offsets
1824  */
1825 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1826                                                         ktime_t *offs_tai)
1827 {
1828         struct timekeeper *tk = &tk_core.timekeeper;
1829         unsigned int seq;
1830         ktime_t base;
1831         u64 nsecs;
1832
1833         do {
1834                 seq = read_seqcount_begin(&tk_core.seq);
1835
1836                 base = tk->tkr.base_mono;
1837                 nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1838
1839                 *offs_real = tk->offs_real;
1840                 *offs_boot = tk->offs_boot;
1841                 *offs_tai = tk->offs_tai;
1842         } while (read_seqcount_retry(&tk_core.seq, seq));
1843
1844         return ktime_add_ns(base, nsecs);
1845 }
1846
1847 #ifdef CONFIG_HIGH_RES_TIMERS
1848 /**
1849  * ktime_get_update_offsets_now - hrtimer helper
1850  * @offs_real:  pointer to storage for monotonic -> realtime offset
1851  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1852  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1853  *
1854  * Returns current monotonic time and updates the offsets
1855  * Called from hrtimer_interrupt() or retrigger_next_event()
1856  */
1857 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1858                                                         ktime_t *offs_tai)
1859 {
1860         struct timekeeper *tk = &tk_core.timekeeper;
1861         unsigned int seq;
1862         ktime_t base;
1863         u64 nsecs;
1864
1865         do {
1866                 seq = read_seqcount_begin(&tk_core.seq);
1867
1868                 base = tk->tkr.base_mono;
1869                 nsecs = timekeeping_get_ns(&tk->tkr);
1870
1871                 *offs_real = tk->offs_real;
1872                 *offs_boot = tk->offs_boot;
1873                 *offs_tai = tk->offs_tai;
1874         } while (read_seqcount_retry(&tk_core.seq, seq));
1875
1876         return ktime_add_ns(base, nsecs);
1877 }
1878 #endif
1879
1880 /**
1881  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1882  */
1883 int do_adjtimex(struct timex *txc)
1884 {
1885         struct timekeeper *tk = &tk_core.timekeeper;
1886         unsigned long flags;
1887         struct timespec64 ts;
1888         s32 orig_tai, tai;
1889         int ret;
1890
1891         /* Validate the data before disabling interrupts */
1892         ret = ntp_validate_timex(txc);
1893         if (ret)
1894                 return ret;
1895
1896         if (txc->modes & ADJ_SETOFFSET) {
1897                 struct timespec delta;
1898                 delta.tv_sec  = txc->time.tv_sec;
1899                 delta.tv_nsec = txc->time.tv_usec;
1900                 if (!(txc->modes & ADJ_NANO))
1901                         delta.tv_nsec *= 1000;
1902                 ret = timekeeping_inject_offset(&delta);
1903                 if (ret)
1904                         return ret;
1905         }
1906
1907         getnstimeofday64(&ts);
1908
1909         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1910         write_seqcount_begin(&tk_core.seq);
1911
1912         orig_tai = tai = tk->tai_offset;
1913         ret = __do_adjtimex(txc, &ts, &tai);
1914
1915         if (tai != orig_tai) {
1916                 __timekeeping_set_tai_offset(tk, tai);
1917                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1918         }
1919         write_seqcount_end(&tk_core.seq);
1920         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1921
1922         if (tai != orig_tai)
1923                 clock_was_set();
1924
1925         ntp_notify_cmos_timer();
1926
1927         return ret;
1928 }
1929
1930 #ifdef CONFIG_NTP_PPS
1931 /**
1932  * hardpps() - Accessor function to NTP __hardpps function
1933  */
1934 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1935 {
1936         unsigned long flags;
1937
1938         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1939         write_seqcount_begin(&tk_core.seq);
1940
1941         __hardpps(phase_ts, raw_ts);
1942
1943         write_seqcount_end(&tk_core.seq);
1944         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1945 }
1946 EXPORT_SYMBOL(hardpps);
1947 #endif
1948
1949 /**
1950  * xtime_update() - advances the timekeeping infrastructure
1951  * @ticks:      number of ticks, that have elapsed since the last call.
1952  *
1953  * Must be called with interrupts disabled.
1954  */
1955 void xtime_update(unsigned long ticks)
1956 {
1957         write_seqlock(&jiffies_lock);
1958         do_timer(ticks);
1959         write_sequnlock(&jiffies_lock);
1960         update_wall_time();
1961 }