849b93265904f8a5fb5e9d894a9b38f085c52890
[cascardo/linux.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP            (1 << 0)
32 #define TK_MIRROR               (1 << 1)
33 #define TK_CLOCK_WAS_SET        (1 << 2)
34
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40         seqcount_t              seq;
41         struct timekeeper       timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:        Sequence counter for protecting updates. The lowest bit
50  *              is the index for the tk_read_base array
51  * @base:       tk_read_base array. Access is indexed by the lowest bit of
52  *              @seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57         seqcount_t              seq;
58         struct tk_read_base     base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71                 tk->xtime_sec++;
72         }
73 }
74
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77         struct timespec64 ts;
78
79         ts.tv_sec = tk->xtime_sec;
80         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81         return ts;
82 }
83
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86         tk->xtime_sec = ts->tv_sec;
87         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92         tk->xtime_sec += ts->tv_sec;
93         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94         tk_normalize_xtime(tk);
95 }
96
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99         struct timespec64 tmp;
100
101         /*
102          * Verify consistency of: offset_real = -wall_to_monotonic
103          * before modifying anything
104          */
105         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106                                         -tk->wall_to_monotonic.tv_nsec);
107         WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108         tk->wall_to_monotonic = wtm;
109         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110         tk->offs_real = timespec64_to_ktime(tmp);
111         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116         tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121
122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123 {
124
125         cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126         const char *name = tk->tkr_mono.clock->name;
127
128         if (offset > max_cycles) {
129                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130                                 offset, name, max_cycles);
131                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132         } else {
133                 if (offset > (max_cycles >> 1)) {
134                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
135                                         offset, name, max_cycles >> 1);
136                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137                 }
138         }
139
140         if (tk->underflow_seen) {
141                 if (jiffies - tk->last_warning > WARNING_FREQ) {
142                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
144                         printk_deferred("         Your kernel is probably still fine.\n");
145                         tk->last_warning = jiffies;
146                 }
147                 tk->underflow_seen = 0;
148         }
149
150         if (tk->overflow_seen) {
151                 if (jiffies - tk->last_warning > WARNING_FREQ) {
152                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
154                         printk_deferred("         Your kernel is probably still fine.\n");
155                         tk->last_warning = jiffies;
156                 }
157                 tk->overflow_seen = 0;
158         }
159 }
160
161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163         struct timekeeper *tk = &tk_core.timekeeper;
164         cycle_t now, last, mask, max, delta;
165         unsigned int seq;
166
167         /*
168          * Since we're called holding a seqlock, the data may shift
169          * under us while we're doing the calculation. This can cause
170          * false positives, since we'd note a problem but throw the
171          * results away. So nest another seqlock here to atomically
172          * grab the points we are checking with.
173          */
174         do {
175                 seq = read_seqcount_begin(&tk_core.seq);
176                 now = tkr->read(tkr->clock);
177                 last = tkr->cycle_last;
178                 mask = tkr->mask;
179                 max = tkr->clock->max_cycles;
180         } while (read_seqcount_retry(&tk_core.seq, seq));
181
182         delta = clocksource_delta(now, last, mask);
183
184         /*
185          * Try to catch underflows by checking if we are seeing small
186          * mask-relative negative values.
187          */
188         if (unlikely((~delta & mask) < (mask >> 3))) {
189                 tk->underflow_seen = 1;
190                 delta = 0;
191         }
192
193         /* Cap delta value to the max_cycles values to avoid mult overflows */
194         if (unlikely(delta > max)) {
195                 tk->overflow_seen = 1;
196                 delta = tkr->clock->max_cycles;
197         }
198
199         return delta;
200 }
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203 {
204 }
205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206 {
207         cycle_t cycle_now, delta;
208
209         /* read clocksource */
210         cycle_now = tkr->read(tkr->clock);
211
212         /* calculate the delta since the last update_wall_time */
213         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215         return delta;
216 }
217 #endif
218
219 /**
220  * tk_setup_internals - Set up internals to use clocksource clock.
221  *
222  * @tk:         The target timekeeper to setup.
223  * @clock:              Pointer to clocksource.
224  *
225  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226  * pair and interval request.
227  *
228  * Unless you're the timekeeping code, you should not be using this!
229  */
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 {
232         cycle_t interval;
233         u64 tmp, ntpinterval;
234         struct clocksource *old_clock;
235
236         old_clock = tk->tkr_mono.clock;
237         tk->tkr_mono.clock = clock;
238         tk->tkr_mono.read = clock->read;
239         tk->tkr_mono.mask = clock->mask;
240         tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
241
242         tk->tkr_raw.clock = clock;
243         tk->tkr_raw.read = clock->read;
244         tk->tkr_raw.mask = clock->mask;
245         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
246
247         /* Do the ns -> cycle conversion first, using original mult */
248         tmp = NTP_INTERVAL_LENGTH;
249         tmp <<= clock->shift;
250         ntpinterval = tmp;
251         tmp += clock->mult/2;
252         do_div(tmp, clock->mult);
253         if (tmp == 0)
254                 tmp = 1;
255
256         interval = (cycle_t) tmp;
257         tk->cycle_interval = interval;
258
259         /* Go back from cycles -> shifted ns */
260         tk->xtime_interval = (u64) interval * clock->mult;
261         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
262         tk->raw_interval =
263                 ((u64) interval * clock->mult) >> clock->shift;
264
265          /* if changing clocks, convert xtime_nsec shift units */
266         if (old_clock) {
267                 int shift_change = clock->shift - old_clock->shift;
268                 if (shift_change < 0)
269                         tk->tkr_mono.xtime_nsec >>= -shift_change;
270                 else
271                         tk->tkr_mono.xtime_nsec <<= shift_change;
272         }
273         tk->tkr_raw.xtime_nsec = 0;
274
275         tk->tkr_mono.shift = clock->shift;
276         tk->tkr_raw.shift = clock->shift;
277
278         tk->ntp_error = 0;
279         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
280         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
281
282         /*
283          * The timekeeper keeps its own mult values for the currently
284          * active clocksource. These value will be adjusted via NTP
285          * to counteract clock drifting.
286          */
287         tk->tkr_mono.mult = clock->mult;
288         tk->tkr_raw.mult = clock->mult;
289         tk->ntp_err_mult = 0;
290 }
291
292 /* Timekeeper helper functions. */
293
294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 static u32 default_arch_gettimeoffset(void) { return 0; }
296 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
297 #else
298 static inline u32 arch_gettimeoffset(void) { return 0; }
299 #endif
300
301 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
302 {
303         cycle_t delta;
304         s64 nsec;
305
306         delta = timekeeping_get_delta(tkr);
307
308         nsec = delta * tkr->mult + tkr->xtime_nsec;
309         nsec >>= tkr->shift;
310
311         /* If arch requires, add in get_arch_timeoffset() */
312         return nsec + arch_gettimeoffset();
313 }
314
315 /**
316  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
317  * @tkr: Timekeeping readout base from which we take the update
318  *
319  * We want to use this from any context including NMI and tracing /
320  * instrumenting the timekeeping code itself.
321  *
322  * So we handle this differently than the other timekeeping accessor
323  * functions which retry when the sequence count has changed. The
324  * update side does:
325  *
326  * smp_wmb();   <- Ensure that the last base[1] update is visible
327  * tkf->seq++;
328  * smp_wmb();   <- Ensure that the seqcount update is visible
329  * update(tkf->base[0], tkr);
330  * smp_wmb();   <- Ensure that the base[0] update is visible
331  * tkf->seq++;
332  * smp_wmb();   <- Ensure that the seqcount update is visible
333  * update(tkf->base[1], tkr);
334  *
335  * The reader side does:
336  *
337  * do {
338  *      seq = tkf->seq;
339  *      smp_rmb();
340  *      idx = seq & 0x01;
341  *      now = now(tkf->base[idx]);
342  *      smp_rmb();
343  * } while (seq != tkf->seq)
344  *
345  * As long as we update base[0] readers are forced off to
346  * base[1]. Once base[0] is updated readers are redirected to base[0]
347  * and the base[1] update takes place.
348  *
349  * So if a NMI hits the update of base[0] then it will use base[1]
350  * which is still consistent. In the worst case this can result is a
351  * slightly wrong timestamp (a few nanoseconds). See
352  * @ktime_get_mono_fast_ns.
353  */
354 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
355 {
356         struct tk_read_base *base = tkf->base;
357
358         /* Force readers off to base[1] */
359         raw_write_seqcount_latch(&tkf->seq);
360
361         /* Update base[0] */
362         memcpy(base, tkr, sizeof(*base));
363
364         /* Force readers back to base[0] */
365         raw_write_seqcount_latch(&tkf->seq);
366
367         /* Update base[1] */
368         memcpy(base + 1, base, sizeof(*base));
369 }
370
371 /**
372  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
373  *
374  * This timestamp is not guaranteed to be monotonic across an update.
375  * The timestamp is calculated by:
376  *
377  *      now = base_mono + clock_delta * slope
378  *
379  * So if the update lowers the slope, readers who are forced to the
380  * not yet updated second array are still using the old steeper slope.
381  *
382  * tmono
383  * ^
384  * |    o  n
385  * |   o n
386  * |  u
387  * | o
388  * |o
389  * |12345678---> reader order
390  *
391  * o = old slope
392  * u = update
393  * n = new slope
394  *
395  * So reader 6 will observe time going backwards versus reader 5.
396  *
397  * While other CPUs are likely to be able observe that, the only way
398  * for a CPU local observation is when an NMI hits in the middle of
399  * the update. Timestamps taken from that NMI context might be ahead
400  * of the following timestamps. Callers need to be aware of that and
401  * deal with it.
402  */
403 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
404 {
405         struct tk_read_base *tkr;
406         unsigned int seq;
407         u64 now;
408
409         do {
410                 seq = raw_read_seqcount(&tkf->seq);
411                 tkr = tkf->base + (seq & 0x01);
412                 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
413         } while (read_seqcount_retry(&tkf->seq, seq));
414
415         return now;
416 }
417
418 u64 ktime_get_mono_fast_ns(void)
419 {
420         return __ktime_get_fast_ns(&tk_fast_mono);
421 }
422 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
423
424 u64 ktime_get_raw_fast_ns(void)
425 {
426         return __ktime_get_fast_ns(&tk_fast_raw);
427 }
428 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
429
430 /* Suspend-time cycles value for halted fast timekeeper. */
431 static cycle_t cycles_at_suspend;
432
433 static cycle_t dummy_clock_read(struct clocksource *cs)
434 {
435         return cycles_at_suspend;
436 }
437
438 /**
439  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
440  * @tk: Timekeeper to snapshot.
441  *
442  * It generally is unsafe to access the clocksource after timekeeping has been
443  * suspended, so take a snapshot of the readout base of @tk and use it as the
444  * fast timekeeper's readout base while suspended.  It will return the same
445  * number of cycles every time until timekeeping is resumed at which time the
446  * proper readout base for the fast timekeeper will be restored automatically.
447  */
448 static void halt_fast_timekeeper(struct timekeeper *tk)
449 {
450         static struct tk_read_base tkr_dummy;
451         struct tk_read_base *tkr = &tk->tkr_mono;
452
453         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
454         cycles_at_suspend = tkr->read(tkr->clock);
455         tkr_dummy.read = dummy_clock_read;
456         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
457
458         tkr = &tk->tkr_raw;
459         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
460         tkr_dummy.read = dummy_clock_read;
461         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
462 }
463
464 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
465
466 static inline void update_vsyscall(struct timekeeper *tk)
467 {
468         struct timespec xt, wm;
469
470         xt = timespec64_to_timespec(tk_xtime(tk));
471         wm = timespec64_to_timespec(tk->wall_to_monotonic);
472         update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
473                             tk->tkr_mono.cycle_last);
474 }
475
476 static inline void old_vsyscall_fixup(struct timekeeper *tk)
477 {
478         s64 remainder;
479
480         /*
481         * Store only full nanoseconds into xtime_nsec after rounding
482         * it up and add the remainder to the error difference.
483         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
484         * by truncating the remainder in vsyscalls. However, it causes
485         * additional work to be done in timekeeping_adjust(). Once
486         * the vsyscall implementations are converted to use xtime_nsec
487         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
488         * users are removed, this can be killed.
489         */
490         remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
491         tk->tkr_mono.xtime_nsec -= remainder;
492         tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
493         tk->ntp_error += remainder << tk->ntp_error_shift;
494         tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
495 }
496 #else
497 #define old_vsyscall_fixup(tk)
498 #endif
499
500 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
501
502 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
503 {
504         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
505 }
506
507 /**
508  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
509  */
510 int pvclock_gtod_register_notifier(struct notifier_block *nb)
511 {
512         struct timekeeper *tk = &tk_core.timekeeper;
513         unsigned long flags;
514         int ret;
515
516         raw_spin_lock_irqsave(&timekeeper_lock, flags);
517         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
518         update_pvclock_gtod(tk, true);
519         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
520
521         return ret;
522 }
523 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
524
525 /**
526  * pvclock_gtod_unregister_notifier - unregister a pvclock
527  * timedata update listener
528  */
529 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
530 {
531         unsigned long flags;
532         int ret;
533
534         raw_spin_lock_irqsave(&timekeeper_lock, flags);
535         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
536         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
537
538         return ret;
539 }
540 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
541
542 /*
543  * Update the ktime_t based scalar nsec members of the timekeeper
544  */
545 static inline void tk_update_ktime_data(struct timekeeper *tk)
546 {
547         u64 seconds;
548         u32 nsec;
549
550         /*
551          * The xtime based monotonic readout is:
552          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
553          * The ktime based monotonic readout is:
554          *      nsec = base_mono + now();
555          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
556          */
557         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
558         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
559         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
560
561         /* Update the monotonic raw base */
562         tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
563
564         /*
565          * The sum of the nanoseconds portions of xtime and
566          * wall_to_monotonic can be greater/equal one second. Take
567          * this into account before updating tk->ktime_sec.
568          */
569         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
570         if (nsec >= NSEC_PER_SEC)
571                 seconds++;
572         tk->ktime_sec = seconds;
573 }
574
575 /* must hold timekeeper_lock */
576 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
577 {
578         if (action & TK_CLEAR_NTP) {
579                 tk->ntp_error = 0;
580                 ntp_clear();
581         }
582
583         tk_update_ktime_data(tk);
584
585         update_vsyscall(tk);
586         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
587
588         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
589         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
590
591         if (action & TK_CLOCK_WAS_SET)
592                 tk->clock_was_set_seq++;
593         /*
594          * The mirroring of the data to the shadow-timekeeper needs
595          * to happen last here to ensure we don't over-write the
596          * timekeeper structure on the next update with stale data
597          */
598         if (action & TK_MIRROR)
599                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
600                        sizeof(tk_core.timekeeper));
601 }
602
603 /**
604  * timekeeping_forward_now - update clock to the current time
605  *
606  * Forward the current clock to update its state since the last call to
607  * update_wall_time(). This is useful before significant clock changes,
608  * as it avoids having to deal with this time offset explicitly.
609  */
610 static void timekeeping_forward_now(struct timekeeper *tk)
611 {
612         struct clocksource *clock = tk->tkr_mono.clock;
613         cycle_t cycle_now, delta;
614         s64 nsec;
615
616         cycle_now = tk->tkr_mono.read(clock);
617         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
618         tk->tkr_mono.cycle_last = cycle_now;
619         tk->tkr_raw.cycle_last  = cycle_now;
620
621         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
622
623         /* If arch requires, add in get_arch_timeoffset() */
624         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
625
626         tk_normalize_xtime(tk);
627
628         nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
629         timespec64_add_ns(&tk->raw_time, nsec);
630 }
631
632 /**
633  * __getnstimeofday64 - Returns the time of day in a timespec64.
634  * @ts:         pointer to the timespec to be set
635  *
636  * Updates the time of day in the timespec.
637  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
638  */
639 int __getnstimeofday64(struct timespec64 *ts)
640 {
641         struct timekeeper *tk = &tk_core.timekeeper;
642         unsigned long seq;
643         s64 nsecs = 0;
644
645         do {
646                 seq = read_seqcount_begin(&tk_core.seq);
647
648                 ts->tv_sec = tk->xtime_sec;
649                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
650
651         } while (read_seqcount_retry(&tk_core.seq, seq));
652
653         ts->tv_nsec = 0;
654         timespec64_add_ns(ts, nsecs);
655
656         /*
657          * Do not bail out early, in case there were callers still using
658          * the value, even in the face of the WARN_ON.
659          */
660         if (unlikely(timekeeping_suspended))
661                 return -EAGAIN;
662         return 0;
663 }
664 EXPORT_SYMBOL(__getnstimeofday64);
665
666 /**
667  * getnstimeofday64 - Returns the time of day in a timespec64.
668  * @ts:         pointer to the timespec64 to be set
669  *
670  * Returns the time of day in a timespec64 (WARN if suspended).
671  */
672 void getnstimeofday64(struct timespec64 *ts)
673 {
674         WARN_ON(__getnstimeofday64(ts));
675 }
676 EXPORT_SYMBOL(getnstimeofday64);
677
678 ktime_t ktime_get(void)
679 {
680         struct timekeeper *tk = &tk_core.timekeeper;
681         unsigned int seq;
682         ktime_t base;
683         s64 nsecs;
684
685         WARN_ON(timekeeping_suspended);
686
687         do {
688                 seq = read_seqcount_begin(&tk_core.seq);
689                 base = tk->tkr_mono.base;
690                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
691
692         } while (read_seqcount_retry(&tk_core.seq, seq));
693
694         return ktime_add_ns(base, nsecs);
695 }
696 EXPORT_SYMBOL_GPL(ktime_get);
697
698 u32 ktime_get_resolution_ns(void)
699 {
700         struct timekeeper *tk = &tk_core.timekeeper;
701         unsigned int seq;
702         u32 nsecs;
703
704         WARN_ON(timekeeping_suspended);
705
706         do {
707                 seq = read_seqcount_begin(&tk_core.seq);
708                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
709         } while (read_seqcount_retry(&tk_core.seq, seq));
710
711         return nsecs;
712 }
713 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
714
715 static ktime_t *offsets[TK_OFFS_MAX] = {
716         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
717         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
718         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
719 };
720
721 ktime_t ktime_get_with_offset(enum tk_offsets offs)
722 {
723         struct timekeeper *tk = &tk_core.timekeeper;
724         unsigned int seq;
725         ktime_t base, *offset = offsets[offs];
726         s64 nsecs;
727
728         WARN_ON(timekeeping_suspended);
729
730         do {
731                 seq = read_seqcount_begin(&tk_core.seq);
732                 base = ktime_add(tk->tkr_mono.base, *offset);
733                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
734
735         } while (read_seqcount_retry(&tk_core.seq, seq));
736
737         return ktime_add_ns(base, nsecs);
738
739 }
740 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
741
742 /**
743  * ktime_mono_to_any() - convert mononotic time to any other time
744  * @tmono:      time to convert.
745  * @offs:       which offset to use
746  */
747 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
748 {
749         ktime_t *offset = offsets[offs];
750         unsigned long seq;
751         ktime_t tconv;
752
753         do {
754                 seq = read_seqcount_begin(&tk_core.seq);
755                 tconv = ktime_add(tmono, *offset);
756         } while (read_seqcount_retry(&tk_core.seq, seq));
757
758         return tconv;
759 }
760 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
761
762 /**
763  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
764  */
765 ktime_t ktime_get_raw(void)
766 {
767         struct timekeeper *tk = &tk_core.timekeeper;
768         unsigned int seq;
769         ktime_t base;
770         s64 nsecs;
771
772         do {
773                 seq = read_seqcount_begin(&tk_core.seq);
774                 base = tk->tkr_raw.base;
775                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
776
777         } while (read_seqcount_retry(&tk_core.seq, seq));
778
779         return ktime_add_ns(base, nsecs);
780 }
781 EXPORT_SYMBOL_GPL(ktime_get_raw);
782
783 /**
784  * ktime_get_ts64 - get the monotonic clock in timespec64 format
785  * @ts:         pointer to timespec variable
786  *
787  * The function calculates the monotonic clock from the realtime
788  * clock and the wall_to_monotonic offset and stores the result
789  * in normalized timespec64 format in the variable pointed to by @ts.
790  */
791 void ktime_get_ts64(struct timespec64 *ts)
792 {
793         struct timekeeper *tk = &tk_core.timekeeper;
794         struct timespec64 tomono;
795         s64 nsec;
796         unsigned int seq;
797
798         WARN_ON(timekeeping_suspended);
799
800         do {
801                 seq = read_seqcount_begin(&tk_core.seq);
802                 ts->tv_sec = tk->xtime_sec;
803                 nsec = timekeeping_get_ns(&tk->tkr_mono);
804                 tomono = tk->wall_to_monotonic;
805
806         } while (read_seqcount_retry(&tk_core.seq, seq));
807
808         ts->tv_sec += tomono.tv_sec;
809         ts->tv_nsec = 0;
810         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
811 }
812 EXPORT_SYMBOL_GPL(ktime_get_ts64);
813
814 /**
815  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
816  *
817  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
818  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
819  * works on both 32 and 64 bit systems. On 32 bit systems the readout
820  * covers ~136 years of uptime which should be enough to prevent
821  * premature wrap arounds.
822  */
823 time64_t ktime_get_seconds(void)
824 {
825         struct timekeeper *tk = &tk_core.timekeeper;
826
827         WARN_ON(timekeeping_suspended);
828         return tk->ktime_sec;
829 }
830 EXPORT_SYMBOL_GPL(ktime_get_seconds);
831
832 /**
833  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
834  *
835  * Returns the wall clock seconds since 1970. This replaces the
836  * get_seconds() interface which is not y2038 safe on 32bit systems.
837  *
838  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
839  * 32bit systems the access must be protected with the sequence
840  * counter to provide "atomic" access to the 64bit tk->xtime_sec
841  * value.
842  */
843 time64_t ktime_get_real_seconds(void)
844 {
845         struct timekeeper *tk = &tk_core.timekeeper;
846         time64_t seconds;
847         unsigned int seq;
848
849         if (IS_ENABLED(CONFIG_64BIT))
850                 return tk->xtime_sec;
851
852         do {
853                 seq = read_seqcount_begin(&tk_core.seq);
854                 seconds = tk->xtime_sec;
855
856         } while (read_seqcount_retry(&tk_core.seq, seq));
857
858         return seconds;
859 }
860 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
861
862 #ifdef CONFIG_NTP_PPS
863
864 /**
865  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
866  * @ts_raw:     pointer to the timespec to be set to raw monotonic time
867  * @ts_real:    pointer to the timespec to be set to the time of day
868  *
869  * This function reads both the time of day and raw monotonic time at the
870  * same time atomically and stores the resulting timestamps in timespec
871  * format.
872  */
873 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
874 {
875         struct timekeeper *tk = &tk_core.timekeeper;
876         unsigned long seq;
877         s64 nsecs_raw, nsecs_real;
878
879         WARN_ON_ONCE(timekeeping_suspended);
880
881         do {
882                 seq = read_seqcount_begin(&tk_core.seq);
883
884                 *ts_raw = timespec64_to_timespec(tk->raw_time);
885                 ts_real->tv_sec = tk->xtime_sec;
886                 ts_real->tv_nsec = 0;
887
888                 nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
889                 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
890
891         } while (read_seqcount_retry(&tk_core.seq, seq));
892
893         timespec_add_ns(ts_raw, nsecs_raw);
894         timespec_add_ns(ts_real, nsecs_real);
895 }
896 EXPORT_SYMBOL(getnstime_raw_and_real);
897
898 #endif /* CONFIG_NTP_PPS */
899
900 /**
901  * do_gettimeofday - Returns the time of day in a timeval
902  * @tv:         pointer to the timeval to be set
903  *
904  * NOTE: Users should be converted to using getnstimeofday()
905  */
906 void do_gettimeofday(struct timeval *tv)
907 {
908         struct timespec64 now;
909
910         getnstimeofday64(&now);
911         tv->tv_sec = now.tv_sec;
912         tv->tv_usec = now.tv_nsec/1000;
913 }
914 EXPORT_SYMBOL(do_gettimeofday);
915
916 /**
917  * do_settimeofday64 - Sets the time of day.
918  * @ts:     pointer to the timespec64 variable containing the new time
919  *
920  * Sets the time of day to the new time and update NTP and notify hrtimers
921  */
922 int do_settimeofday64(const struct timespec64 *ts)
923 {
924         struct timekeeper *tk = &tk_core.timekeeper;
925         struct timespec64 ts_delta, xt;
926         unsigned long flags;
927
928         if (!timespec64_valid_strict(ts))
929                 return -EINVAL;
930
931         raw_spin_lock_irqsave(&timekeeper_lock, flags);
932         write_seqcount_begin(&tk_core.seq);
933
934         timekeeping_forward_now(tk);
935
936         xt = tk_xtime(tk);
937         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
938         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
939
940         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
941
942         tk_set_xtime(tk, ts);
943
944         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
945
946         write_seqcount_end(&tk_core.seq);
947         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
948
949         /* signal hrtimers about time change */
950         clock_was_set();
951
952         return 0;
953 }
954 EXPORT_SYMBOL(do_settimeofday64);
955
956 /**
957  * timekeeping_inject_offset - Adds or subtracts from the current time.
958  * @tv:         pointer to the timespec variable containing the offset
959  *
960  * Adds or subtracts an offset value from the current time.
961  */
962 int timekeeping_inject_offset(struct timespec *ts)
963 {
964         struct timekeeper *tk = &tk_core.timekeeper;
965         unsigned long flags;
966         struct timespec64 ts64, tmp;
967         int ret = 0;
968
969         if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
970                 return -EINVAL;
971
972         ts64 = timespec_to_timespec64(*ts);
973
974         raw_spin_lock_irqsave(&timekeeper_lock, flags);
975         write_seqcount_begin(&tk_core.seq);
976
977         timekeeping_forward_now(tk);
978
979         /* Make sure the proposed value is valid */
980         tmp = timespec64_add(tk_xtime(tk),  ts64);
981         if (!timespec64_valid_strict(&tmp)) {
982                 ret = -EINVAL;
983                 goto error;
984         }
985
986         tk_xtime_add(tk, &ts64);
987         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
988
989 error: /* even if we error out, we forwarded the time, so call update */
990         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
991
992         write_seqcount_end(&tk_core.seq);
993         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
994
995         /* signal hrtimers about time change */
996         clock_was_set();
997
998         return ret;
999 }
1000 EXPORT_SYMBOL(timekeeping_inject_offset);
1001
1002
1003 /**
1004  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1005  *
1006  */
1007 s32 timekeeping_get_tai_offset(void)
1008 {
1009         struct timekeeper *tk = &tk_core.timekeeper;
1010         unsigned int seq;
1011         s32 ret;
1012
1013         do {
1014                 seq = read_seqcount_begin(&tk_core.seq);
1015                 ret = tk->tai_offset;
1016         } while (read_seqcount_retry(&tk_core.seq, seq));
1017
1018         return ret;
1019 }
1020
1021 /**
1022  * __timekeeping_set_tai_offset - Lock free worker function
1023  *
1024  */
1025 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1026 {
1027         tk->tai_offset = tai_offset;
1028         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1029 }
1030
1031 /**
1032  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1033  *
1034  */
1035 void timekeeping_set_tai_offset(s32 tai_offset)
1036 {
1037         struct timekeeper *tk = &tk_core.timekeeper;
1038         unsigned long flags;
1039
1040         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1041         write_seqcount_begin(&tk_core.seq);
1042         __timekeeping_set_tai_offset(tk, tai_offset);
1043         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1044         write_seqcount_end(&tk_core.seq);
1045         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1046         clock_was_set();
1047 }
1048
1049 /**
1050  * change_clocksource - Swaps clocksources if a new one is available
1051  *
1052  * Accumulates current time interval and initializes new clocksource
1053  */
1054 static int change_clocksource(void *data)
1055 {
1056         struct timekeeper *tk = &tk_core.timekeeper;
1057         struct clocksource *new, *old;
1058         unsigned long flags;
1059
1060         new = (struct clocksource *) data;
1061
1062         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1063         write_seqcount_begin(&tk_core.seq);
1064
1065         timekeeping_forward_now(tk);
1066         /*
1067          * If the cs is in module, get a module reference. Succeeds
1068          * for built-in code (owner == NULL) as well.
1069          */
1070         if (try_module_get(new->owner)) {
1071                 if (!new->enable || new->enable(new) == 0) {
1072                         old = tk->tkr_mono.clock;
1073                         tk_setup_internals(tk, new);
1074                         if (old->disable)
1075                                 old->disable(old);
1076                         module_put(old->owner);
1077                 } else {
1078                         module_put(new->owner);
1079                 }
1080         }
1081         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1082
1083         write_seqcount_end(&tk_core.seq);
1084         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1085
1086         return 0;
1087 }
1088
1089 /**
1090  * timekeeping_notify - Install a new clock source
1091  * @clock:              pointer to the clock source
1092  *
1093  * This function is called from clocksource.c after a new, better clock
1094  * source has been registered. The caller holds the clocksource_mutex.
1095  */
1096 int timekeeping_notify(struct clocksource *clock)
1097 {
1098         struct timekeeper *tk = &tk_core.timekeeper;
1099
1100         if (tk->tkr_mono.clock == clock)
1101                 return 0;
1102         stop_machine(change_clocksource, clock, NULL);
1103         tick_clock_notify();
1104         return tk->tkr_mono.clock == clock ? 0 : -1;
1105 }
1106
1107 /**
1108  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1109  * @ts:         pointer to the timespec64 to be set
1110  *
1111  * Returns the raw monotonic time (completely un-modified by ntp)
1112  */
1113 void getrawmonotonic64(struct timespec64 *ts)
1114 {
1115         struct timekeeper *tk = &tk_core.timekeeper;
1116         struct timespec64 ts64;
1117         unsigned long seq;
1118         s64 nsecs;
1119
1120         do {
1121                 seq = read_seqcount_begin(&tk_core.seq);
1122                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1123                 ts64 = tk->raw_time;
1124
1125         } while (read_seqcount_retry(&tk_core.seq, seq));
1126
1127         timespec64_add_ns(&ts64, nsecs);
1128         *ts = ts64;
1129 }
1130 EXPORT_SYMBOL(getrawmonotonic64);
1131
1132
1133 /**
1134  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1135  */
1136 int timekeeping_valid_for_hres(void)
1137 {
1138         struct timekeeper *tk = &tk_core.timekeeper;
1139         unsigned long seq;
1140         int ret;
1141
1142         do {
1143                 seq = read_seqcount_begin(&tk_core.seq);
1144
1145                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1146
1147         } while (read_seqcount_retry(&tk_core.seq, seq));
1148
1149         return ret;
1150 }
1151
1152 /**
1153  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1154  */
1155 u64 timekeeping_max_deferment(void)
1156 {
1157         struct timekeeper *tk = &tk_core.timekeeper;
1158         unsigned long seq;
1159         u64 ret;
1160
1161         do {
1162                 seq = read_seqcount_begin(&tk_core.seq);
1163
1164                 ret = tk->tkr_mono.clock->max_idle_ns;
1165
1166         } while (read_seqcount_retry(&tk_core.seq, seq));
1167
1168         return ret;
1169 }
1170
1171 /**
1172  * read_persistent_clock -  Return time from the persistent clock.
1173  *
1174  * Weak dummy function for arches that do not yet support it.
1175  * Reads the time from the battery backed persistent clock.
1176  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1177  *
1178  *  XXX - Do be sure to remove it once all arches implement it.
1179  */
1180 void __weak read_persistent_clock(struct timespec *ts)
1181 {
1182         ts->tv_sec = 0;
1183         ts->tv_nsec = 0;
1184 }
1185
1186 void __weak read_persistent_clock64(struct timespec64 *ts64)
1187 {
1188         struct timespec ts;
1189
1190         read_persistent_clock(&ts);
1191         *ts64 = timespec_to_timespec64(ts);
1192 }
1193
1194 /**
1195  * read_boot_clock64 -  Return time of the system start.
1196  *
1197  * Weak dummy function for arches that do not yet support it.
1198  * Function to read the exact time the system has been started.
1199  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1200  *
1201  *  XXX - Do be sure to remove it once all arches implement it.
1202  */
1203 void __weak read_boot_clock64(struct timespec64 *ts)
1204 {
1205         ts->tv_sec = 0;
1206         ts->tv_nsec = 0;
1207 }
1208
1209 /* Flag for if timekeeping_resume() has injected sleeptime */
1210 static bool sleeptime_injected;
1211
1212 /* Flag for if there is a persistent clock on this platform */
1213 static bool persistent_clock_exists;
1214
1215 /*
1216  * timekeeping_init - Initializes the clocksource and common timekeeping values
1217  */
1218 void __init timekeeping_init(void)
1219 {
1220         struct timekeeper *tk = &tk_core.timekeeper;
1221         struct clocksource *clock;
1222         unsigned long flags;
1223         struct timespec64 now, boot, tmp;
1224
1225         read_persistent_clock64(&now);
1226         if (!timespec64_valid_strict(&now)) {
1227                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1228                         "         Check your CMOS/BIOS settings.\n");
1229                 now.tv_sec = 0;
1230                 now.tv_nsec = 0;
1231         } else if (now.tv_sec || now.tv_nsec)
1232                 persistent_clock_exists = true;
1233
1234         read_boot_clock64(&boot);
1235         if (!timespec64_valid_strict(&boot)) {
1236                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1237                         "         Check your CMOS/BIOS settings.\n");
1238                 boot.tv_sec = 0;
1239                 boot.tv_nsec = 0;
1240         }
1241
1242         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1243         write_seqcount_begin(&tk_core.seq);
1244         ntp_init();
1245
1246         clock = clocksource_default_clock();
1247         if (clock->enable)
1248                 clock->enable(clock);
1249         tk_setup_internals(tk, clock);
1250
1251         tk_set_xtime(tk, &now);
1252         tk->raw_time.tv_sec = 0;
1253         tk->raw_time.tv_nsec = 0;
1254         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1255                 boot = tk_xtime(tk);
1256
1257         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1258         tk_set_wall_to_mono(tk, tmp);
1259
1260         timekeeping_update(tk, TK_MIRROR);
1261
1262         write_seqcount_end(&tk_core.seq);
1263         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1264 }
1265
1266 /* time in seconds when suspend began for persistent clock */
1267 static struct timespec64 timekeeping_suspend_time;
1268
1269 /**
1270  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1271  * @delta: pointer to a timespec delta value
1272  *
1273  * Takes a timespec offset measuring a suspend interval and properly
1274  * adds the sleep offset to the timekeeping variables.
1275  */
1276 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1277                                            struct timespec64 *delta)
1278 {
1279         if (!timespec64_valid_strict(delta)) {
1280                 printk_deferred(KERN_WARNING
1281                                 "__timekeeping_inject_sleeptime: Invalid "
1282                                 "sleep delta value!\n");
1283                 return;
1284         }
1285         tk_xtime_add(tk, delta);
1286         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1287         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1288         tk_debug_account_sleep_time(delta);
1289 }
1290
1291 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1292 /**
1293  * We have three kinds of time sources to use for sleep time
1294  * injection, the preference order is:
1295  * 1) non-stop clocksource
1296  * 2) persistent clock (ie: RTC accessible when irqs are off)
1297  * 3) RTC
1298  *
1299  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1300  * If system has neither 1) nor 2), 3) will be used finally.
1301  *
1302  *
1303  * If timekeeping has injected sleeptime via either 1) or 2),
1304  * 3) becomes needless, so in this case we don't need to call
1305  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1306  * means.
1307  */
1308 bool timekeeping_rtc_skipresume(void)
1309 {
1310         return sleeptime_injected;
1311 }
1312
1313 /**
1314  * 1) can be determined whether to use or not only when doing
1315  * timekeeping_resume() which is invoked after rtc_suspend(),
1316  * so we can't skip rtc_suspend() surely if system has 1).
1317  *
1318  * But if system has 2), 2) will definitely be used, so in this
1319  * case we don't need to call rtc_suspend(), and this is what
1320  * timekeeping_rtc_skipsuspend() means.
1321  */
1322 bool timekeeping_rtc_skipsuspend(void)
1323 {
1324         return persistent_clock_exists;
1325 }
1326
1327 /**
1328  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1329  * @delta: pointer to a timespec64 delta value
1330  *
1331  * This hook is for architectures that cannot support read_persistent_clock64
1332  * because their RTC/persistent clock is only accessible when irqs are enabled.
1333  * and also don't have an effective nonstop clocksource.
1334  *
1335  * This function should only be called by rtc_resume(), and allows
1336  * a suspend offset to be injected into the timekeeping values.
1337  */
1338 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1339 {
1340         struct timekeeper *tk = &tk_core.timekeeper;
1341         unsigned long flags;
1342
1343         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1344         write_seqcount_begin(&tk_core.seq);
1345
1346         timekeeping_forward_now(tk);
1347
1348         __timekeeping_inject_sleeptime(tk, delta);
1349
1350         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1351
1352         write_seqcount_end(&tk_core.seq);
1353         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1354
1355         /* signal hrtimers about time change */
1356         clock_was_set();
1357 }
1358 #endif
1359
1360 /**
1361  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1362  */
1363 void timekeeping_resume(void)
1364 {
1365         struct timekeeper *tk = &tk_core.timekeeper;
1366         struct clocksource *clock = tk->tkr_mono.clock;
1367         unsigned long flags;
1368         struct timespec64 ts_new, ts_delta;
1369         cycle_t cycle_now, cycle_delta;
1370
1371         sleeptime_injected = false;
1372         read_persistent_clock64(&ts_new);
1373
1374         clockevents_resume();
1375         clocksource_resume();
1376
1377         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1378         write_seqcount_begin(&tk_core.seq);
1379
1380         /*
1381          * After system resumes, we need to calculate the suspended time and
1382          * compensate it for the OS time. There are 3 sources that could be
1383          * used: Nonstop clocksource during suspend, persistent clock and rtc
1384          * device.
1385          *
1386          * One specific platform may have 1 or 2 or all of them, and the
1387          * preference will be:
1388          *      suspend-nonstop clocksource -> persistent clock -> rtc
1389          * The less preferred source will only be tried if there is no better
1390          * usable source. The rtc part is handled separately in rtc core code.
1391          */
1392         cycle_now = tk->tkr_mono.read(clock);
1393         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1394                 cycle_now > tk->tkr_mono.cycle_last) {
1395                 u64 num, max = ULLONG_MAX;
1396                 u32 mult = clock->mult;
1397                 u32 shift = clock->shift;
1398                 s64 nsec = 0;
1399
1400                 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1401                                                 tk->tkr_mono.mask);
1402
1403                 /*
1404                  * "cycle_delta * mutl" may cause 64 bits overflow, if the
1405                  * suspended time is too long. In that case we need do the
1406                  * 64 bits math carefully
1407                  */
1408                 do_div(max, mult);
1409                 if (cycle_delta > max) {
1410                         num = div64_u64(cycle_delta, max);
1411                         nsec = (((u64) max * mult) >> shift) * num;
1412                         cycle_delta -= num * max;
1413                 }
1414                 nsec += ((u64) cycle_delta * mult) >> shift;
1415
1416                 ts_delta = ns_to_timespec64(nsec);
1417                 sleeptime_injected = true;
1418         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1419                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1420                 sleeptime_injected = true;
1421         }
1422
1423         if (sleeptime_injected)
1424                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1425
1426         /* Re-base the last cycle value */
1427         tk->tkr_mono.cycle_last = cycle_now;
1428         tk->tkr_raw.cycle_last  = cycle_now;
1429
1430         tk->ntp_error = 0;
1431         timekeeping_suspended = 0;
1432         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1433         write_seqcount_end(&tk_core.seq);
1434         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1435
1436         touch_softlockup_watchdog();
1437
1438         tick_resume();
1439         hrtimers_resume();
1440 }
1441
1442 int timekeeping_suspend(void)
1443 {
1444         struct timekeeper *tk = &tk_core.timekeeper;
1445         unsigned long flags;
1446         struct timespec64               delta, delta_delta;
1447         static struct timespec64        old_delta;
1448
1449         read_persistent_clock64(&timekeeping_suspend_time);
1450
1451         /*
1452          * On some systems the persistent_clock can not be detected at
1453          * timekeeping_init by its return value, so if we see a valid
1454          * value returned, update the persistent_clock_exists flag.
1455          */
1456         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1457                 persistent_clock_exists = true;
1458
1459         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1460         write_seqcount_begin(&tk_core.seq);
1461         timekeeping_forward_now(tk);
1462         timekeeping_suspended = 1;
1463
1464         if (persistent_clock_exists) {
1465                 /*
1466                  * To avoid drift caused by repeated suspend/resumes,
1467                  * which each can add ~1 second drift error,
1468                  * try to compensate so the difference in system time
1469                  * and persistent_clock time stays close to constant.
1470                  */
1471                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1472                 delta_delta = timespec64_sub(delta, old_delta);
1473                 if (abs(delta_delta.tv_sec) >= 2) {
1474                         /*
1475                          * if delta_delta is too large, assume time correction
1476                          * has occurred and set old_delta to the current delta.
1477                          */
1478                         old_delta = delta;
1479                 } else {
1480                         /* Otherwise try to adjust old_system to compensate */
1481                         timekeeping_suspend_time =
1482                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1483                 }
1484         }
1485
1486         timekeeping_update(tk, TK_MIRROR);
1487         halt_fast_timekeeper(tk);
1488         write_seqcount_end(&tk_core.seq);
1489         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1490
1491         tick_suspend();
1492         clocksource_suspend();
1493         clockevents_suspend();
1494
1495         return 0;
1496 }
1497
1498 /* sysfs resume/suspend bits for timekeeping */
1499 static struct syscore_ops timekeeping_syscore_ops = {
1500         .resume         = timekeeping_resume,
1501         .suspend        = timekeeping_suspend,
1502 };
1503
1504 static int __init timekeeping_init_ops(void)
1505 {
1506         register_syscore_ops(&timekeeping_syscore_ops);
1507         return 0;
1508 }
1509 device_initcall(timekeeping_init_ops);
1510
1511 /*
1512  * Apply a multiplier adjustment to the timekeeper
1513  */
1514 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1515                                                          s64 offset,
1516                                                          bool negative,
1517                                                          int adj_scale)
1518 {
1519         s64 interval = tk->cycle_interval;
1520         s32 mult_adj = 1;
1521
1522         if (negative) {
1523                 mult_adj = -mult_adj;
1524                 interval = -interval;
1525                 offset  = -offset;
1526         }
1527         mult_adj <<= adj_scale;
1528         interval <<= adj_scale;
1529         offset <<= adj_scale;
1530
1531         /*
1532          * So the following can be confusing.
1533          *
1534          * To keep things simple, lets assume mult_adj == 1 for now.
1535          *
1536          * When mult_adj != 1, remember that the interval and offset values
1537          * have been appropriately scaled so the math is the same.
1538          *
1539          * The basic idea here is that we're increasing the multiplier
1540          * by one, this causes the xtime_interval to be incremented by
1541          * one cycle_interval. This is because:
1542          *      xtime_interval = cycle_interval * mult
1543          * So if mult is being incremented by one:
1544          *      xtime_interval = cycle_interval * (mult + 1)
1545          * Its the same as:
1546          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1547          * Which can be shortened to:
1548          *      xtime_interval += cycle_interval
1549          *
1550          * So offset stores the non-accumulated cycles. Thus the current
1551          * time (in shifted nanoseconds) is:
1552          *      now = (offset * adj) + xtime_nsec
1553          * Now, even though we're adjusting the clock frequency, we have
1554          * to keep time consistent. In other words, we can't jump back
1555          * in time, and we also want to avoid jumping forward in time.
1556          *
1557          * So given the same offset value, we need the time to be the same
1558          * both before and after the freq adjustment.
1559          *      now = (offset * adj_1) + xtime_nsec_1
1560          *      now = (offset * adj_2) + xtime_nsec_2
1561          * So:
1562          *      (offset * adj_1) + xtime_nsec_1 =
1563          *              (offset * adj_2) + xtime_nsec_2
1564          * And we know:
1565          *      adj_2 = adj_1 + 1
1566          * So:
1567          *      (offset * adj_1) + xtime_nsec_1 =
1568          *              (offset * (adj_1+1)) + xtime_nsec_2
1569          *      (offset * adj_1) + xtime_nsec_1 =
1570          *              (offset * adj_1) + offset + xtime_nsec_2
1571          * Canceling the sides:
1572          *      xtime_nsec_1 = offset + xtime_nsec_2
1573          * Which gives us:
1574          *      xtime_nsec_2 = xtime_nsec_1 - offset
1575          * Which simplfies to:
1576          *      xtime_nsec -= offset
1577          *
1578          * XXX - TODO: Doc ntp_error calculation.
1579          */
1580         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1581                 /* NTP adjustment caused clocksource mult overflow */
1582                 WARN_ON_ONCE(1);
1583                 return;
1584         }
1585
1586         tk->tkr_mono.mult += mult_adj;
1587         tk->xtime_interval += interval;
1588         tk->tkr_mono.xtime_nsec -= offset;
1589         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1590 }
1591
1592 /*
1593  * Calculate the multiplier adjustment needed to match the frequency
1594  * specified by NTP
1595  */
1596 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1597                                                         s64 offset)
1598 {
1599         s64 interval = tk->cycle_interval;
1600         s64 xinterval = tk->xtime_interval;
1601         s64 tick_error;
1602         bool negative;
1603         u32 adj;
1604
1605         /* Remove any current error adj from freq calculation */
1606         if (tk->ntp_err_mult)
1607                 xinterval -= tk->cycle_interval;
1608
1609         tk->ntp_tick = ntp_tick_length();
1610
1611         /* Calculate current error per tick */
1612         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1613         tick_error -= (xinterval + tk->xtime_remainder);
1614
1615         /* Don't worry about correcting it if its small */
1616         if (likely((tick_error >= 0) && (tick_error <= interval)))
1617                 return;
1618
1619         /* preserve the direction of correction */
1620         negative = (tick_error < 0);
1621
1622         /* Sort out the magnitude of the correction */
1623         tick_error = abs(tick_error);
1624         for (adj = 0; tick_error > interval; adj++)
1625                 tick_error >>= 1;
1626
1627         /* scale the corrections */
1628         timekeeping_apply_adjustment(tk, offset, negative, adj);
1629 }
1630
1631 /*
1632  * Adjust the timekeeper's multiplier to the correct frequency
1633  * and also to reduce the accumulated error value.
1634  */
1635 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1636 {
1637         /* Correct for the current frequency error */
1638         timekeeping_freqadjust(tk, offset);
1639
1640         /* Next make a small adjustment to fix any cumulative error */
1641         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1642                 tk->ntp_err_mult = 1;
1643                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1644         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1645                 /* Undo any existing error adjustment */
1646                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1647                 tk->ntp_err_mult = 0;
1648         }
1649
1650         if (unlikely(tk->tkr_mono.clock->maxadj &&
1651                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1652                         > tk->tkr_mono.clock->maxadj))) {
1653                 printk_once(KERN_WARNING
1654                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1655                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1656                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1657         }
1658
1659         /*
1660          * It may be possible that when we entered this function, xtime_nsec
1661          * was very small.  Further, if we're slightly speeding the clocksource
1662          * in the code above, its possible the required corrective factor to
1663          * xtime_nsec could cause it to underflow.
1664          *
1665          * Now, since we already accumulated the second, cannot simply roll
1666          * the accumulated second back, since the NTP subsystem has been
1667          * notified via second_overflow. So instead we push xtime_nsec forward
1668          * by the amount we underflowed, and add that amount into the error.
1669          *
1670          * We'll correct this error next time through this function, when
1671          * xtime_nsec is not as small.
1672          */
1673         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1674                 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1675                 tk->tkr_mono.xtime_nsec = 0;
1676                 tk->ntp_error += neg << tk->ntp_error_shift;
1677         }
1678 }
1679
1680 /**
1681  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1682  *
1683  * Helper function that accumulates a the nsecs greater then a second
1684  * from the xtime_nsec field to the xtime_secs field.
1685  * It also calls into the NTP code to handle leapsecond processing.
1686  *
1687  */
1688 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1689 {
1690         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1691         unsigned int clock_set = 0;
1692
1693         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1694                 int leap;
1695
1696                 tk->tkr_mono.xtime_nsec -= nsecps;
1697                 tk->xtime_sec++;
1698
1699                 /* Figure out if its a leap sec and apply if needed */
1700                 leap = second_overflow(tk->xtime_sec);
1701                 if (unlikely(leap)) {
1702                         struct timespec64 ts;
1703
1704                         tk->xtime_sec += leap;
1705
1706                         ts.tv_sec = leap;
1707                         ts.tv_nsec = 0;
1708                         tk_set_wall_to_mono(tk,
1709                                 timespec64_sub(tk->wall_to_monotonic, ts));
1710
1711                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1712
1713                         clock_set = TK_CLOCK_WAS_SET;
1714                 }
1715         }
1716         return clock_set;
1717 }
1718
1719 /**
1720  * logarithmic_accumulation - shifted accumulation of cycles
1721  *
1722  * This functions accumulates a shifted interval of cycles into
1723  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1724  * loop.
1725  *
1726  * Returns the unconsumed cycles.
1727  */
1728 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1729                                                 u32 shift,
1730                                                 unsigned int *clock_set)
1731 {
1732         cycle_t interval = tk->cycle_interval << shift;
1733         u64 raw_nsecs;
1734
1735         /* If the offset is smaller then a shifted interval, do nothing */
1736         if (offset < interval)
1737                 return offset;
1738
1739         /* Accumulate one shifted interval */
1740         offset -= interval;
1741         tk->tkr_mono.cycle_last += interval;
1742         tk->tkr_raw.cycle_last  += interval;
1743
1744         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1745         *clock_set |= accumulate_nsecs_to_secs(tk);
1746
1747         /* Accumulate raw time */
1748         raw_nsecs = (u64)tk->raw_interval << shift;
1749         raw_nsecs += tk->raw_time.tv_nsec;
1750         if (raw_nsecs >= NSEC_PER_SEC) {
1751                 u64 raw_secs = raw_nsecs;
1752                 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1753                 tk->raw_time.tv_sec += raw_secs;
1754         }
1755         tk->raw_time.tv_nsec = raw_nsecs;
1756
1757         /* Accumulate error between NTP and clock interval */
1758         tk->ntp_error += tk->ntp_tick << shift;
1759         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1760                                                 (tk->ntp_error_shift + shift);
1761
1762         return offset;
1763 }
1764
1765 /**
1766  * update_wall_time - Uses the current clocksource to increment the wall time
1767  *
1768  */
1769 void update_wall_time(void)
1770 {
1771         struct timekeeper *real_tk = &tk_core.timekeeper;
1772         struct timekeeper *tk = &shadow_timekeeper;
1773         cycle_t offset;
1774         int shift = 0, maxshift;
1775         unsigned int clock_set = 0;
1776         unsigned long flags;
1777
1778         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1779
1780         /* Make sure we're fully resumed: */
1781         if (unlikely(timekeeping_suspended))
1782                 goto out;
1783
1784 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1785         offset = real_tk->cycle_interval;
1786 #else
1787         offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1788                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1789 #endif
1790
1791         /* Check if there's really nothing to do */
1792         if (offset < real_tk->cycle_interval)
1793                 goto out;
1794
1795         /* Do some additional sanity checking */
1796         timekeeping_check_update(real_tk, offset);
1797
1798         /*
1799          * With NO_HZ we may have to accumulate many cycle_intervals
1800          * (think "ticks") worth of time at once. To do this efficiently,
1801          * we calculate the largest doubling multiple of cycle_intervals
1802          * that is smaller than the offset.  We then accumulate that
1803          * chunk in one go, and then try to consume the next smaller
1804          * doubled multiple.
1805          */
1806         shift = ilog2(offset) - ilog2(tk->cycle_interval);
1807         shift = max(0, shift);
1808         /* Bound shift to one less than what overflows tick_length */
1809         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1810         shift = min(shift, maxshift);
1811         while (offset >= tk->cycle_interval) {
1812                 offset = logarithmic_accumulation(tk, offset, shift,
1813                                                         &clock_set);
1814                 if (offset < tk->cycle_interval<<shift)
1815                         shift--;
1816         }
1817
1818         /* correct the clock when NTP error is too big */
1819         timekeeping_adjust(tk, offset);
1820
1821         /*
1822          * XXX This can be killed once everyone converts
1823          * to the new update_vsyscall.
1824          */
1825         old_vsyscall_fixup(tk);
1826
1827         /*
1828          * Finally, make sure that after the rounding
1829          * xtime_nsec isn't larger than NSEC_PER_SEC
1830          */
1831         clock_set |= accumulate_nsecs_to_secs(tk);
1832
1833         write_seqcount_begin(&tk_core.seq);
1834         /*
1835          * Update the real timekeeper.
1836          *
1837          * We could avoid this memcpy by switching pointers, but that
1838          * requires changes to all other timekeeper usage sites as
1839          * well, i.e. move the timekeeper pointer getter into the
1840          * spinlocked/seqcount protected sections. And we trade this
1841          * memcpy under the tk_core.seq against one before we start
1842          * updating.
1843          */
1844         memcpy(real_tk, tk, sizeof(*tk));
1845         timekeeping_update(real_tk, clock_set);
1846         write_seqcount_end(&tk_core.seq);
1847 out:
1848         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1849         if (clock_set)
1850                 /* Have to call _delayed version, since in irq context*/
1851                 clock_was_set_delayed();
1852 }
1853
1854 /**
1855  * getboottime64 - Return the real time of system boot.
1856  * @ts:         pointer to the timespec64 to be set
1857  *
1858  * Returns the wall-time of boot in a timespec64.
1859  *
1860  * This is based on the wall_to_monotonic offset and the total suspend
1861  * time. Calls to settimeofday will affect the value returned (which
1862  * basically means that however wrong your real time clock is at boot time,
1863  * you get the right time here).
1864  */
1865 void getboottime64(struct timespec64 *ts)
1866 {
1867         struct timekeeper *tk = &tk_core.timekeeper;
1868         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1869
1870         *ts = ktime_to_timespec64(t);
1871 }
1872 EXPORT_SYMBOL_GPL(getboottime64);
1873
1874 unsigned long get_seconds(void)
1875 {
1876         struct timekeeper *tk = &tk_core.timekeeper;
1877
1878         return tk->xtime_sec;
1879 }
1880 EXPORT_SYMBOL(get_seconds);
1881
1882 struct timespec __current_kernel_time(void)
1883 {
1884         struct timekeeper *tk = &tk_core.timekeeper;
1885
1886         return timespec64_to_timespec(tk_xtime(tk));
1887 }
1888
1889 struct timespec current_kernel_time(void)
1890 {
1891         struct timekeeper *tk = &tk_core.timekeeper;
1892         struct timespec64 now;
1893         unsigned long seq;
1894
1895         do {
1896                 seq = read_seqcount_begin(&tk_core.seq);
1897
1898                 now = tk_xtime(tk);
1899         } while (read_seqcount_retry(&tk_core.seq, seq));
1900
1901         return timespec64_to_timespec(now);
1902 }
1903 EXPORT_SYMBOL(current_kernel_time);
1904
1905 struct timespec64 get_monotonic_coarse64(void)
1906 {
1907         struct timekeeper *tk = &tk_core.timekeeper;
1908         struct timespec64 now, mono;
1909         unsigned long seq;
1910
1911         do {
1912                 seq = read_seqcount_begin(&tk_core.seq);
1913
1914                 now = tk_xtime(tk);
1915                 mono = tk->wall_to_monotonic;
1916         } while (read_seqcount_retry(&tk_core.seq, seq));
1917
1918         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1919                                 now.tv_nsec + mono.tv_nsec);
1920
1921         return now;
1922 }
1923
1924 /*
1925  * Must hold jiffies_lock
1926  */
1927 void do_timer(unsigned long ticks)
1928 {
1929         jiffies_64 += ticks;
1930         calc_global_load(ticks);
1931 }
1932
1933 /**
1934  * ktime_get_update_offsets_now - hrtimer helper
1935  * @cwsseq:     pointer to check and store the clock was set sequence number
1936  * @offs_real:  pointer to storage for monotonic -> realtime offset
1937  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1938  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1939  *
1940  * Returns current monotonic time and updates the offsets if the
1941  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
1942  * different.
1943  *
1944  * Called from hrtimer_interrupt() or retrigger_next_event()
1945  */
1946 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
1947                                      ktime_t *offs_boot, ktime_t *offs_tai)
1948 {
1949         struct timekeeper *tk = &tk_core.timekeeper;
1950         unsigned int seq;
1951         ktime_t base;
1952         u64 nsecs;
1953
1954         do {
1955                 seq = read_seqcount_begin(&tk_core.seq);
1956
1957                 base = tk->tkr_mono.base;
1958                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
1959                 if (*cwsseq != tk->clock_was_set_seq) {
1960                         *cwsseq = tk->clock_was_set_seq;
1961                         *offs_real = tk->offs_real;
1962                         *offs_boot = tk->offs_boot;
1963                         *offs_tai = tk->offs_tai;
1964                 }
1965         } while (read_seqcount_retry(&tk_core.seq, seq));
1966
1967         return ktime_add_ns(base, nsecs);
1968 }
1969
1970 /**
1971  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1972  */
1973 int do_adjtimex(struct timex *txc)
1974 {
1975         struct timekeeper *tk = &tk_core.timekeeper;
1976         unsigned long flags;
1977         struct timespec64 ts;
1978         s32 orig_tai, tai;
1979         int ret;
1980
1981         /* Validate the data before disabling interrupts */
1982         ret = ntp_validate_timex(txc);
1983         if (ret)
1984                 return ret;
1985
1986         if (txc->modes & ADJ_SETOFFSET) {
1987                 struct timespec delta;
1988                 delta.tv_sec  = txc->time.tv_sec;
1989                 delta.tv_nsec = txc->time.tv_usec;
1990                 if (!(txc->modes & ADJ_NANO))
1991                         delta.tv_nsec *= 1000;
1992                 ret = timekeeping_inject_offset(&delta);
1993                 if (ret)
1994                         return ret;
1995         }
1996
1997         getnstimeofday64(&ts);
1998
1999         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2000         write_seqcount_begin(&tk_core.seq);
2001
2002         orig_tai = tai = tk->tai_offset;
2003         ret = __do_adjtimex(txc, &ts, &tai);
2004
2005         if (tai != orig_tai) {
2006                 __timekeeping_set_tai_offset(tk, tai);
2007                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2008         }
2009         write_seqcount_end(&tk_core.seq);
2010         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2011
2012         if (tai != orig_tai)
2013                 clock_was_set();
2014
2015         ntp_notify_cmos_timer();
2016
2017         return ret;
2018 }
2019
2020 #ifdef CONFIG_NTP_PPS
2021 /**
2022  * hardpps() - Accessor function to NTP __hardpps function
2023  */
2024 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
2025 {
2026         unsigned long flags;
2027
2028         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2029         write_seqcount_begin(&tk_core.seq);
2030
2031         __hardpps(phase_ts, raw_ts);
2032
2033         write_seqcount_end(&tk_core.seq);
2034         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2035 }
2036 EXPORT_SYMBOL(hardpps);
2037 #endif
2038
2039 /**
2040  * xtime_update() - advances the timekeeping infrastructure
2041  * @ticks:      number of ticks, that have elapsed since the last call.
2042  *
2043  * Must be called with interrupts disabled.
2044  */
2045 void xtime_update(unsigned long ticks)
2046 {
2047         write_seqlock(&jiffies_lock);
2048         do_timer(ticks);
2049         write_sequnlock(&jiffies_lock);
2050         update_wall_time();
2051 }