spi: sh-msiof: Convert to spi core auto_runtime_pm framework
[cascardo/linux.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>      /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27
28 #include <asm/local.h>
29
30 static void update_pages_handler(struct work_struct *work);
31
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37         int ret;
38
39         ret = trace_seq_puts(s, "# compressed entry header\n");
40         ret = trace_seq_puts(s, "\ttype_len    :    5 bits\n");
41         ret = trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
42         ret = trace_seq_puts(s, "\tarray       :   32 bits\n");
43         ret = trace_seq_putc(s, '\n');
44         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
45                                RINGBUF_TYPE_PADDING);
46         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47                                RINGBUF_TYPE_TIME_EXTEND);
48         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
49                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50
51         return ret;
52 }
53
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121
122 /*
123  * A fast way to enable or disable all ring buffers is to
124  * call tracing_on or tracing_off. Turning off the ring buffers
125  * prevents all ring buffers from being recorded to.
126  * Turning this switch on, makes it OK to write to the
127  * ring buffer, if the ring buffer is enabled itself.
128  *
129  * There's three layers that must be on in order to write
130  * to the ring buffer.
131  *
132  * 1) This global flag must be set.
133  * 2) The ring buffer must be enabled for recording.
134  * 3) The per cpu buffer must be enabled for recording.
135  *
136  * In case of an anomaly, this global flag has a bit set that
137  * will permantly disable all ring buffers.
138  */
139
140 /*
141  * Global flag to disable all recording to ring buffers
142  *  This has two bits: ON, DISABLED
143  *
144  *  ON   DISABLED
145  * ---- ----------
146  *   0      0        : ring buffers are off
147  *   1      0        : ring buffers are on
148  *   X      1        : ring buffers are permanently disabled
149  */
150
151 enum {
152         RB_BUFFERS_ON_BIT       = 0,
153         RB_BUFFERS_DISABLED_BIT = 1,
154 };
155
156 enum {
157         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
158         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
159 };
160
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF           (1 << 20)
165
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167
168 /**
169  * tracing_off_permanent - permanently disable ring buffers
170  *
171  * This function, once called, will disable all ring buffers
172  * permanently.
173  */
174 void tracing_off_permanent(void)
175 {
176         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 }
178
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT            4U
181 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
183
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT       0
186 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT       1
189 # define RB_ARCH_ALIGNMENT              8U
190 #endif
191
192 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
193
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
196
197 enum {
198         RB_LEN_TIME_EXTEND = 8,
199         RB_LEN_TIME_STAMP = 16,
200 };
201
202 #define skip_time_extend(event) \
203         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204
205 static inline int rb_null_event(struct ring_buffer_event *event)
206 {
207         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208 }
209
210 static void rb_event_set_padding(struct ring_buffer_event *event)
211 {
212         /* padding has a NULL time_delta */
213         event->type_len = RINGBUF_TYPE_PADDING;
214         event->time_delta = 0;
215 }
216
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
219 {
220         unsigned length;
221
222         if (event->type_len)
223                 length = event->type_len * RB_ALIGNMENT;
224         else
225                 length = event->array[0];
226         return length + RB_EVNT_HDR_SIZE;
227 }
228
229 /*
230  * Return the length of the given event. Will return
231  * the length of the time extend if the event is a
232  * time extend.
233  */
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
236 {
237         switch (event->type_len) {
238         case RINGBUF_TYPE_PADDING:
239                 if (rb_null_event(event))
240                         /* undefined */
241                         return -1;
242                 return  event->array[0] + RB_EVNT_HDR_SIZE;
243
244         case RINGBUF_TYPE_TIME_EXTEND:
245                 return RB_LEN_TIME_EXTEND;
246
247         case RINGBUF_TYPE_TIME_STAMP:
248                 return RB_LEN_TIME_STAMP;
249
250         case RINGBUF_TYPE_DATA:
251                 return rb_event_data_length(event);
252         default:
253                 BUG();
254         }
255         /* not hit */
256         return 0;
257 }
258
259 /*
260  * Return total length of time extend and data,
261  *   or just the event length for all other events.
262  */
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
265 {
266         unsigned len = 0;
267
268         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269                 /* time extends include the data event after it */
270                 len = RB_LEN_TIME_EXTEND;
271                 event = skip_time_extend(event);
272         }
273         return len + rb_event_length(event);
274 }
275
276 /**
277  * ring_buffer_event_length - return the length of the event
278  * @event: the event to get the length of
279  *
280  * Returns the size of the data load of a data event.
281  * If the event is something other than a data event, it
282  * returns the size of the event itself. With the exception
283  * of a TIME EXTEND, where it still returns the size of the
284  * data load of the data event after it.
285  */
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287 {
288         unsigned length;
289
290         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291                 event = skip_time_extend(event);
292
293         length = rb_event_length(event);
294         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295                 return length;
296         length -= RB_EVNT_HDR_SIZE;
297         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298                 length -= sizeof(event->array[0]);
299         return length;
300 }
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
302
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
306 {
307         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308                 event = skip_time_extend(event);
309         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310         /* If length is in len field, then array[0] has the data */
311         if (event->type_len)
312                 return (void *)&event->array[0];
313         /* Otherwise length is in array[0] and array[1] has the data */
314         return (void *)&event->array[1];
315 }
316
317 /**
318  * ring_buffer_event_data - return the data of the event
319  * @event: the event to get the data from
320  */
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
322 {
323         return rb_event_data(event);
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
326
327 #define for_each_buffer_cpu(buffer, cpu)                \
328         for_each_cpu(cpu, buffer->cpumask)
329
330 #define TS_SHIFT        27
331 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST   (~TS_MASK)
333
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS        (1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED        (1 << 30)
338
339 struct buffer_data_page {
340         u64              time_stamp;    /* page time stamp */
341         local_t          commit;        /* write committed index */
342         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
343 };
344
345 /*
346  * Note, the buffer_page list must be first. The buffer pages
347  * are allocated in cache lines, which means that each buffer
348  * page will be at the beginning of a cache line, and thus
349  * the least significant bits will be zero. We use this to
350  * add flags in the list struct pointers, to make the ring buffer
351  * lockless.
352  */
353 struct buffer_page {
354         struct list_head list;          /* list of buffer pages */
355         local_t          write;         /* index for next write */
356         unsigned         read;          /* index for next read */
357         local_t          entries;       /* entries on this page */
358         unsigned long    real_end;      /* real end of data */
359         struct buffer_data_page *page;  /* Actual data page */
360 };
361
362 /*
363  * The buffer page counters, write and entries, must be reset
364  * atomically when crossing page boundaries. To synchronize this
365  * update, two counters are inserted into the number. One is
366  * the actual counter for the write position or count on the page.
367  *
368  * The other is a counter of updaters. Before an update happens
369  * the update partition of the counter is incremented. This will
370  * allow the updater to update the counter atomically.
371  *
372  * The counter is 20 bits, and the state data is 12.
373  */
374 #define RB_WRITE_MASK           0xfffff
375 #define RB_WRITE_INTCNT         (1 << 20)
376
377 static void rb_init_page(struct buffer_data_page *bpage)
378 {
379         local_set(&bpage->commit, 0);
380 }
381
382 /**
383  * ring_buffer_page_len - the size of data on the page.
384  * @page: The page to read
385  *
386  * Returns the amount of data on the page, including buffer page header.
387  */
388 size_t ring_buffer_page_len(void *page)
389 {
390         return local_read(&((struct buffer_data_page *)page)->commit)
391                 + BUF_PAGE_HDR_SIZE;
392 }
393
394 /*
395  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396  * this issue out.
397  */
398 static void free_buffer_page(struct buffer_page *bpage)
399 {
400         free_page((unsigned long)bpage->page);
401         kfree(bpage);
402 }
403
404 /*
405  * We need to fit the time_stamp delta into 27 bits.
406  */
407 static inline int test_time_stamp(u64 delta)
408 {
409         if (delta & TS_DELTA_TEST)
410                 return 1;
411         return 0;
412 }
413
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
415
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418
419 int ring_buffer_print_page_header(struct trace_seq *s)
420 {
421         struct buffer_data_page field;
422         int ret;
423
424         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425                                "offset:0;\tsize:%u;\tsigned:%u;\n",
426                                (unsigned int)sizeof(field.time_stamp),
427                                (unsigned int)is_signed_type(u64));
428
429         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
431                                (unsigned int)offsetof(typeof(field), commit),
432                                (unsigned int)sizeof(field.commit),
433                                (unsigned int)is_signed_type(long));
434
435         ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
437                                (unsigned int)offsetof(typeof(field), commit),
438                                1,
439                                (unsigned int)is_signed_type(long));
440
441         ret = trace_seq_printf(s, "\tfield: char data;\t"
442                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
443                                (unsigned int)offsetof(typeof(field), data),
444                                (unsigned int)BUF_PAGE_SIZE,
445                                (unsigned int)is_signed_type(char));
446
447         return ret;
448 }
449
450 struct rb_irq_work {
451         struct irq_work                 work;
452         wait_queue_head_t               waiters;
453         bool                            waiters_pending;
454 };
455
456 /*
457  * head_page == tail_page && head == tail then buffer is empty.
458  */
459 struct ring_buffer_per_cpu {
460         int                             cpu;
461         atomic_t                        record_disabled;
462         struct ring_buffer              *buffer;
463         raw_spinlock_t                  reader_lock;    /* serialize readers */
464         arch_spinlock_t                 lock;
465         struct lock_class_key           lock_key;
466         unsigned int                    nr_pages;
467         struct list_head                *pages;
468         struct buffer_page              *head_page;     /* read from head */
469         struct buffer_page              *tail_page;     /* write to tail */
470         struct buffer_page              *commit_page;   /* committed pages */
471         struct buffer_page              *reader_page;
472         unsigned long                   lost_events;
473         unsigned long                   last_overrun;
474         local_t                         entries_bytes;
475         local_t                         entries;
476         local_t                         overrun;
477         local_t                         commit_overrun;
478         local_t                         dropped_events;
479         local_t                         committing;
480         local_t                         commits;
481         unsigned long                   read;
482         unsigned long                   read_bytes;
483         u64                             write_stamp;
484         u64                             read_stamp;
485         /* ring buffer pages to update, > 0 to add, < 0 to remove */
486         int                             nr_pages_to_update;
487         struct list_head                new_pages; /* new pages to add */
488         struct work_struct              update_pages_work;
489         struct completion               update_done;
490
491         struct rb_irq_work              irq_work;
492 };
493
494 struct ring_buffer {
495         unsigned                        flags;
496         int                             cpus;
497         atomic_t                        record_disabled;
498         atomic_t                        resize_disabled;
499         cpumask_var_t                   cpumask;
500
501         struct lock_class_key           *reader_lock_key;
502
503         struct mutex                    mutex;
504
505         struct ring_buffer_per_cpu      **buffers;
506
507 #ifdef CONFIG_HOTPLUG_CPU
508         struct notifier_block           cpu_notify;
509 #endif
510         u64                             (*clock)(void);
511
512         struct rb_irq_work              irq_work;
513 };
514
515 struct ring_buffer_iter {
516         struct ring_buffer_per_cpu      *cpu_buffer;
517         unsigned long                   head;
518         struct buffer_page              *head_page;
519         struct buffer_page              *cache_reader_page;
520         unsigned long                   cache_read;
521         u64                             read_stamp;
522 };
523
524 /*
525  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526  *
527  * Schedules a delayed work to wake up any task that is blocked on the
528  * ring buffer waiters queue.
529  */
530 static void rb_wake_up_waiters(struct irq_work *work)
531 {
532         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533
534         wake_up_all(&rbwork->waiters);
535 }
536
537 /**
538  * ring_buffer_wait - wait for input to the ring buffer
539  * @buffer: buffer to wait on
540  * @cpu: the cpu buffer to wait on
541  *
542  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543  * as data is added to any of the @buffer's cpu buffers. Otherwise
544  * it will wait for data to be added to a specific cpu buffer.
545  */
546 void ring_buffer_wait(struct ring_buffer *buffer, int cpu)
547 {
548         struct ring_buffer_per_cpu *cpu_buffer;
549         DEFINE_WAIT(wait);
550         struct rb_irq_work *work;
551
552         /*
553          * Depending on what the caller is waiting for, either any
554          * data in any cpu buffer, or a specific buffer, put the
555          * caller on the appropriate wait queue.
556          */
557         if (cpu == RING_BUFFER_ALL_CPUS)
558                 work = &buffer->irq_work;
559         else {
560                 cpu_buffer = buffer->buffers[cpu];
561                 work = &cpu_buffer->irq_work;
562         }
563
564
565         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
566
567         /*
568          * The events can happen in critical sections where
569          * checking a work queue can cause deadlocks.
570          * After adding a task to the queue, this flag is set
571          * only to notify events to try to wake up the queue
572          * using irq_work.
573          *
574          * We don't clear it even if the buffer is no longer
575          * empty. The flag only causes the next event to run
576          * irq_work to do the work queue wake up. The worse
577          * that can happen if we race with !trace_empty() is that
578          * an event will cause an irq_work to try to wake up
579          * an empty queue.
580          *
581          * There's no reason to protect this flag either, as
582          * the work queue and irq_work logic will do the necessary
583          * synchronization for the wake ups. The only thing
584          * that is necessary is that the wake up happens after
585          * a task has been queued. It's OK for spurious wake ups.
586          */
587         work->waiters_pending = true;
588
589         if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
590             (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
591                 schedule();
592
593         finish_wait(&work->waiters, &wait);
594 }
595
596 /**
597  * ring_buffer_poll_wait - poll on buffer input
598  * @buffer: buffer to wait on
599  * @cpu: the cpu buffer to wait on
600  * @filp: the file descriptor
601  * @poll_table: The poll descriptor
602  *
603  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
604  * as data is added to any of the @buffer's cpu buffers. Otherwise
605  * it will wait for data to be added to a specific cpu buffer.
606  *
607  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
608  * zero otherwise.
609  */
610 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
611                           struct file *filp, poll_table *poll_table)
612 {
613         struct ring_buffer_per_cpu *cpu_buffer;
614         struct rb_irq_work *work;
615
616         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
617             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
618                 return POLLIN | POLLRDNORM;
619
620         if (cpu == RING_BUFFER_ALL_CPUS)
621                 work = &buffer->irq_work;
622         else {
623                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
624                         return -EINVAL;
625
626                 cpu_buffer = buffer->buffers[cpu];
627                 work = &cpu_buffer->irq_work;
628         }
629
630         work->waiters_pending = true;
631         poll_wait(filp, &work->waiters, poll_table);
632
633         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
634             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
635                 return POLLIN | POLLRDNORM;
636         return 0;
637 }
638
639 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
640 #define RB_WARN_ON(b, cond)                                             \
641         ({                                                              \
642                 int _____ret = unlikely(cond);                          \
643                 if (_____ret) {                                         \
644                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
645                                 struct ring_buffer_per_cpu *__b =       \
646                                         (void *)b;                      \
647                                 atomic_inc(&__b->buffer->record_disabled); \
648                         } else                                          \
649                                 atomic_inc(&b->record_disabled);        \
650                         WARN_ON(1);                                     \
651                 }                                                       \
652                 _____ret;                                               \
653         })
654
655 /* Up this if you want to test the TIME_EXTENTS and normalization */
656 #define DEBUG_SHIFT 0
657
658 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
659 {
660         /* shift to debug/test normalization and TIME_EXTENTS */
661         return buffer->clock() << DEBUG_SHIFT;
662 }
663
664 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
665 {
666         u64 time;
667
668         preempt_disable_notrace();
669         time = rb_time_stamp(buffer);
670         preempt_enable_no_resched_notrace();
671
672         return time;
673 }
674 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
675
676 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
677                                       int cpu, u64 *ts)
678 {
679         /* Just stupid testing the normalize function and deltas */
680         *ts >>= DEBUG_SHIFT;
681 }
682 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
683
684 /*
685  * Making the ring buffer lockless makes things tricky.
686  * Although writes only happen on the CPU that they are on,
687  * and they only need to worry about interrupts. Reads can
688  * happen on any CPU.
689  *
690  * The reader page is always off the ring buffer, but when the
691  * reader finishes with a page, it needs to swap its page with
692  * a new one from the buffer. The reader needs to take from
693  * the head (writes go to the tail). But if a writer is in overwrite
694  * mode and wraps, it must push the head page forward.
695  *
696  * Here lies the problem.
697  *
698  * The reader must be careful to replace only the head page, and
699  * not another one. As described at the top of the file in the
700  * ASCII art, the reader sets its old page to point to the next
701  * page after head. It then sets the page after head to point to
702  * the old reader page. But if the writer moves the head page
703  * during this operation, the reader could end up with the tail.
704  *
705  * We use cmpxchg to help prevent this race. We also do something
706  * special with the page before head. We set the LSB to 1.
707  *
708  * When the writer must push the page forward, it will clear the
709  * bit that points to the head page, move the head, and then set
710  * the bit that points to the new head page.
711  *
712  * We also don't want an interrupt coming in and moving the head
713  * page on another writer. Thus we use the second LSB to catch
714  * that too. Thus:
715  *
716  * head->list->prev->next        bit 1          bit 0
717  *                              -------        -------
718  * Normal page                     0              0
719  * Points to head page             0              1
720  * New head page                   1              0
721  *
722  * Note we can not trust the prev pointer of the head page, because:
723  *
724  * +----+       +-----+        +-----+
725  * |    |------>|  T  |---X--->|  N  |
726  * |    |<------|     |        |     |
727  * +----+       +-----+        +-----+
728  *   ^                           ^ |
729  *   |          +-----+          | |
730  *   +----------|  R  |----------+ |
731  *              |     |<-----------+
732  *              +-----+
733  *
734  * Key:  ---X-->  HEAD flag set in pointer
735  *         T      Tail page
736  *         R      Reader page
737  *         N      Next page
738  *
739  * (see __rb_reserve_next() to see where this happens)
740  *
741  *  What the above shows is that the reader just swapped out
742  *  the reader page with a page in the buffer, but before it
743  *  could make the new header point back to the new page added
744  *  it was preempted by a writer. The writer moved forward onto
745  *  the new page added by the reader and is about to move forward
746  *  again.
747  *
748  *  You can see, it is legitimate for the previous pointer of
749  *  the head (or any page) not to point back to itself. But only
750  *  temporarially.
751  */
752
753 #define RB_PAGE_NORMAL          0UL
754 #define RB_PAGE_HEAD            1UL
755 #define RB_PAGE_UPDATE          2UL
756
757
758 #define RB_FLAG_MASK            3UL
759
760 /* PAGE_MOVED is not part of the mask */
761 #define RB_PAGE_MOVED           4UL
762
763 /*
764  * rb_list_head - remove any bit
765  */
766 static struct list_head *rb_list_head(struct list_head *list)
767 {
768         unsigned long val = (unsigned long)list;
769
770         return (struct list_head *)(val & ~RB_FLAG_MASK);
771 }
772
773 /*
774  * rb_is_head_page - test if the given page is the head page
775  *
776  * Because the reader may move the head_page pointer, we can
777  * not trust what the head page is (it may be pointing to
778  * the reader page). But if the next page is a header page,
779  * its flags will be non zero.
780  */
781 static inline int
782 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
783                 struct buffer_page *page, struct list_head *list)
784 {
785         unsigned long val;
786
787         val = (unsigned long)list->next;
788
789         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
790                 return RB_PAGE_MOVED;
791
792         return val & RB_FLAG_MASK;
793 }
794
795 /*
796  * rb_is_reader_page
797  *
798  * The unique thing about the reader page, is that, if the
799  * writer is ever on it, the previous pointer never points
800  * back to the reader page.
801  */
802 static int rb_is_reader_page(struct buffer_page *page)
803 {
804         struct list_head *list = page->list.prev;
805
806         return rb_list_head(list->next) != &page->list;
807 }
808
809 /*
810  * rb_set_list_to_head - set a list_head to be pointing to head.
811  */
812 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
813                                 struct list_head *list)
814 {
815         unsigned long *ptr;
816
817         ptr = (unsigned long *)&list->next;
818         *ptr |= RB_PAGE_HEAD;
819         *ptr &= ~RB_PAGE_UPDATE;
820 }
821
822 /*
823  * rb_head_page_activate - sets up head page
824  */
825 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
826 {
827         struct buffer_page *head;
828
829         head = cpu_buffer->head_page;
830         if (!head)
831                 return;
832
833         /*
834          * Set the previous list pointer to have the HEAD flag.
835          */
836         rb_set_list_to_head(cpu_buffer, head->list.prev);
837 }
838
839 static void rb_list_head_clear(struct list_head *list)
840 {
841         unsigned long *ptr = (unsigned long *)&list->next;
842
843         *ptr &= ~RB_FLAG_MASK;
844 }
845
846 /*
847  * rb_head_page_dactivate - clears head page ptr (for free list)
848  */
849 static void
850 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
851 {
852         struct list_head *hd;
853
854         /* Go through the whole list and clear any pointers found. */
855         rb_list_head_clear(cpu_buffer->pages);
856
857         list_for_each(hd, cpu_buffer->pages)
858                 rb_list_head_clear(hd);
859 }
860
861 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
862                             struct buffer_page *head,
863                             struct buffer_page *prev,
864                             int old_flag, int new_flag)
865 {
866         struct list_head *list;
867         unsigned long val = (unsigned long)&head->list;
868         unsigned long ret;
869
870         list = &prev->list;
871
872         val &= ~RB_FLAG_MASK;
873
874         ret = cmpxchg((unsigned long *)&list->next,
875                       val | old_flag, val | new_flag);
876
877         /* check if the reader took the page */
878         if ((ret & ~RB_FLAG_MASK) != val)
879                 return RB_PAGE_MOVED;
880
881         return ret & RB_FLAG_MASK;
882 }
883
884 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
885                                    struct buffer_page *head,
886                                    struct buffer_page *prev,
887                                    int old_flag)
888 {
889         return rb_head_page_set(cpu_buffer, head, prev,
890                                 old_flag, RB_PAGE_UPDATE);
891 }
892
893 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
894                                  struct buffer_page *head,
895                                  struct buffer_page *prev,
896                                  int old_flag)
897 {
898         return rb_head_page_set(cpu_buffer, head, prev,
899                                 old_flag, RB_PAGE_HEAD);
900 }
901
902 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
903                                    struct buffer_page *head,
904                                    struct buffer_page *prev,
905                                    int old_flag)
906 {
907         return rb_head_page_set(cpu_buffer, head, prev,
908                                 old_flag, RB_PAGE_NORMAL);
909 }
910
911 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
912                                struct buffer_page **bpage)
913 {
914         struct list_head *p = rb_list_head((*bpage)->list.next);
915
916         *bpage = list_entry(p, struct buffer_page, list);
917 }
918
919 static struct buffer_page *
920 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
921 {
922         struct buffer_page *head;
923         struct buffer_page *page;
924         struct list_head *list;
925         int i;
926
927         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
928                 return NULL;
929
930         /* sanity check */
931         list = cpu_buffer->pages;
932         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
933                 return NULL;
934
935         page = head = cpu_buffer->head_page;
936         /*
937          * It is possible that the writer moves the header behind
938          * where we started, and we miss in one loop.
939          * A second loop should grab the header, but we'll do
940          * three loops just because I'm paranoid.
941          */
942         for (i = 0; i < 3; i++) {
943                 do {
944                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
945                                 cpu_buffer->head_page = page;
946                                 return page;
947                         }
948                         rb_inc_page(cpu_buffer, &page);
949                 } while (page != head);
950         }
951
952         RB_WARN_ON(cpu_buffer, 1);
953
954         return NULL;
955 }
956
957 static int rb_head_page_replace(struct buffer_page *old,
958                                 struct buffer_page *new)
959 {
960         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
961         unsigned long val;
962         unsigned long ret;
963
964         val = *ptr & ~RB_FLAG_MASK;
965         val |= RB_PAGE_HEAD;
966
967         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
968
969         return ret == val;
970 }
971
972 /*
973  * rb_tail_page_update - move the tail page forward
974  *
975  * Returns 1 if moved tail page, 0 if someone else did.
976  */
977 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
978                                struct buffer_page *tail_page,
979                                struct buffer_page *next_page)
980 {
981         struct buffer_page *old_tail;
982         unsigned long old_entries;
983         unsigned long old_write;
984         int ret = 0;
985
986         /*
987          * The tail page now needs to be moved forward.
988          *
989          * We need to reset the tail page, but without messing
990          * with possible erasing of data brought in by interrupts
991          * that have moved the tail page and are currently on it.
992          *
993          * We add a counter to the write field to denote this.
994          */
995         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
996         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
997
998         /*
999          * Just make sure we have seen our old_write and synchronize
1000          * with any interrupts that come in.
1001          */
1002         barrier();
1003
1004         /*
1005          * If the tail page is still the same as what we think
1006          * it is, then it is up to us to update the tail
1007          * pointer.
1008          */
1009         if (tail_page == cpu_buffer->tail_page) {
1010                 /* Zero the write counter */
1011                 unsigned long val = old_write & ~RB_WRITE_MASK;
1012                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1013
1014                 /*
1015                  * This will only succeed if an interrupt did
1016                  * not come in and change it. In which case, we
1017                  * do not want to modify it.
1018                  *
1019                  * We add (void) to let the compiler know that we do not care
1020                  * about the return value of these functions. We use the
1021                  * cmpxchg to only update if an interrupt did not already
1022                  * do it for us. If the cmpxchg fails, we don't care.
1023                  */
1024                 (void)local_cmpxchg(&next_page->write, old_write, val);
1025                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1026
1027                 /*
1028                  * No need to worry about races with clearing out the commit.
1029                  * it only can increment when a commit takes place. But that
1030                  * only happens in the outer most nested commit.
1031                  */
1032                 local_set(&next_page->page->commit, 0);
1033
1034                 old_tail = cmpxchg(&cpu_buffer->tail_page,
1035                                    tail_page, next_page);
1036
1037                 if (old_tail == tail_page)
1038                         ret = 1;
1039         }
1040
1041         return ret;
1042 }
1043
1044 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1045                           struct buffer_page *bpage)
1046 {
1047         unsigned long val = (unsigned long)bpage;
1048
1049         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1050                 return 1;
1051
1052         return 0;
1053 }
1054
1055 /**
1056  * rb_check_list - make sure a pointer to a list has the last bits zero
1057  */
1058 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1059                          struct list_head *list)
1060 {
1061         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1062                 return 1;
1063         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1064                 return 1;
1065         return 0;
1066 }
1067
1068 /**
1069  * rb_check_pages - integrity check of buffer pages
1070  * @cpu_buffer: CPU buffer with pages to test
1071  *
1072  * As a safety measure we check to make sure the data pages have not
1073  * been corrupted.
1074  */
1075 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1076 {
1077         struct list_head *head = cpu_buffer->pages;
1078         struct buffer_page *bpage, *tmp;
1079
1080         /* Reset the head page if it exists */
1081         if (cpu_buffer->head_page)
1082                 rb_set_head_page(cpu_buffer);
1083
1084         rb_head_page_deactivate(cpu_buffer);
1085
1086         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1087                 return -1;
1088         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1089                 return -1;
1090
1091         if (rb_check_list(cpu_buffer, head))
1092                 return -1;
1093
1094         list_for_each_entry_safe(bpage, tmp, head, list) {
1095                 if (RB_WARN_ON(cpu_buffer,
1096                                bpage->list.next->prev != &bpage->list))
1097                         return -1;
1098                 if (RB_WARN_ON(cpu_buffer,
1099                                bpage->list.prev->next != &bpage->list))
1100                         return -1;
1101                 if (rb_check_list(cpu_buffer, &bpage->list))
1102                         return -1;
1103         }
1104
1105         rb_head_page_activate(cpu_buffer);
1106
1107         return 0;
1108 }
1109
1110 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1111 {
1112         int i;
1113         struct buffer_page *bpage, *tmp;
1114
1115         for (i = 0; i < nr_pages; i++) {
1116                 struct page *page;
1117                 /*
1118                  * __GFP_NORETRY flag makes sure that the allocation fails
1119                  * gracefully without invoking oom-killer and the system is
1120                  * not destabilized.
1121                  */
1122                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1123                                     GFP_KERNEL | __GFP_NORETRY,
1124                                     cpu_to_node(cpu));
1125                 if (!bpage)
1126                         goto free_pages;
1127
1128                 list_add(&bpage->list, pages);
1129
1130                 page = alloc_pages_node(cpu_to_node(cpu),
1131                                         GFP_KERNEL | __GFP_NORETRY, 0);
1132                 if (!page)
1133                         goto free_pages;
1134                 bpage->page = page_address(page);
1135                 rb_init_page(bpage->page);
1136         }
1137
1138         return 0;
1139
1140 free_pages:
1141         list_for_each_entry_safe(bpage, tmp, pages, list) {
1142                 list_del_init(&bpage->list);
1143                 free_buffer_page(bpage);
1144         }
1145
1146         return -ENOMEM;
1147 }
1148
1149 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1150                              unsigned nr_pages)
1151 {
1152         LIST_HEAD(pages);
1153
1154         WARN_ON(!nr_pages);
1155
1156         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1157                 return -ENOMEM;
1158
1159         /*
1160          * The ring buffer page list is a circular list that does not
1161          * start and end with a list head. All page list items point to
1162          * other pages.
1163          */
1164         cpu_buffer->pages = pages.next;
1165         list_del(&pages);
1166
1167         cpu_buffer->nr_pages = nr_pages;
1168
1169         rb_check_pages(cpu_buffer);
1170
1171         return 0;
1172 }
1173
1174 static struct ring_buffer_per_cpu *
1175 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1176 {
1177         struct ring_buffer_per_cpu *cpu_buffer;
1178         struct buffer_page *bpage;
1179         struct page *page;
1180         int ret;
1181
1182         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1183                                   GFP_KERNEL, cpu_to_node(cpu));
1184         if (!cpu_buffer)
1185                 return NULL;
1186
1187         cpu_buffer->cpu = cpu;
1188         cpu_buffer->buffer = buffer;
1189         raw_spin_lock_init(&cpu_buffer->reader_lock);
1190         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1191         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1192         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1193         init_completion(&cpu_buffer->update_done);
1194         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1195         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1196
1197         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1198                             GFP_KERNEL, cpu_to_node(cpu));
1199         if (!bpage)
1200                 goto fail_free_buffer;
1201
1202         rb_check_bpage(cpu_buffer, bpage);
1203
1204         cpu_buffer->reader_page = bpage;
1205         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1206         if (!page)
1207                 goto fail_free_reader;
1208         bpage->page = page_address(page);
1209         rb_init_page(bpage->page);
1210
1211         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1212         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1213
1214         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1215         if (ret < 0)
1216                 goto fail_free_reader;
1217
1218         cpu_buffer->head_page
1219                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1220         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1221
1222         rb_head_page_activate(cpu_buffer);
1223
1224         return cpu_buffer;
1225
1226  fail_free_reader:
1227         free_buffer_page(cpu_buffer->reader_page);
1228
1229  fail_free_buffer:
1230         kfree(cpu_buffer);
1231         return NULL;
1232 }
1233
1234 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1235 {
1236         struct list_head *head = cpu_buffer->pages;
1237         struct buffer_page *bpage, *tmp;
1238
1239         free_buffer_page(cpu_buffer->reader_page);
1240
1241         rb_head_page_deactivate(cpu_buffer);
1242
1243         if (head) {
1244                 list_for_each_entry_safe(bpage, tmp, head, list) {
1245                         list_del_init(&bpage->list);
1246                         free_buffer_page(bpage);
1247                 }
1248                 bpage = list_entry(head, struct buffer_page, list);
1249                 free_buffer_page(bpage);
1250         }
1251
1252         kfree(cpu_buffer);
1253 }
1254
1255 #ifdef CONFIG_HOTPLUG_CPU
1256 static int rb_cpu_notify(struct notifier_block *self,
1257                          unsigned long action, void *hcpu);
1258 #endif
1259
1260 /**
1261  * __ring_buffer_alloc - allocate a new ring_buffer
1262  * @size: the size in bytes per cpu that is needed.
1263  * @flags: attributes to set for the ring buffer.
1264  *
1265  * Currently the only flag that is available is the RB_FL_OVERWRITE
1266  * flag. This flag means that the buffer will overwrite old data
1267  * when the buffer wraps. If this flag is not set, the buffer will
1268  * drop data when the tail hits the head.
1269  */
1270 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1271                                         struct lock_class_key *key)
1272 {
1273         struct ring_buffer *buffer;
1274         int bsize;
1275         int cpu, nr_pages;
1276
1277         /* keep it in its own cache line */
1278         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1279                          GFP_KERNEL);
1280         if (!buffer)
1281                 return NULL;
1282
1283         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1284                 goto fail_free_buffer;
1285
1286         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1287         buffer->flags = flags;
1288         buffer->clock = trace_clock_local;
1289         buffer->reader_lock_key = key;
1290
1291         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1292         init_waitqueue_head(&buffer->irq_work.waiters);
1293
1294         /* need at least two pages */
1295         if (nr_pages < 2)
1296                 nr_pages = 2;
1297
1298         /*
1299          * In case of non-hotplug cpu, if the ring-buffer is allocated
1300          * in early initcall, it will not be notified of secondary cpus.
1301          * In that off case, we need to allocate for all possible cpus.
1302          */
1303 #ifdef CONFIG_HOTPLUG_CPU
1304         get_online_cpus();
1305         cpumask_copy(buffer->cpumask, cpu_online_mask);
1306 #else
1307         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1308 #endif
1309         buffer->cpus = nr_cpu_ids;
1310
1311         bsize = sizeof(void *) * nr_cpu_ids;
1312         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1313                                   GFP_KERNEL);
1314         if (!buffer->buffers)
1315                 goto fail_free_cpumask;
1316
1317         for_each_buffer_cpu(buffer, cpu) {
1318                 buffer->buffers[cpu] =
1319                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1320                 if (!buffer->buffers[cpu])
1321                         goto fail_free_buffers;
1322         }
1323
1324 #ifdef CONFIG_HOTPLUG_CPU
1325         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1326         buffer->cpu_notify.priority = 0;
1327         register_cpu_notifier(&buffer->cpu_notify);
1328 #endif
1329
1330         put_online_cpus();
1331         mutex_init(&buffer->mutex);
1332
1333         return buffer;
1334
1335  fail_free_buffers:
1336         for_each_buffer_cpu(buffer, cpu) {
1337                 if (buffer->buffers[cpu])
1338                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1339         }
1340         kfree(buffer->buffers);
1341
1342  fail_free_cpumask:
1343         free_cpumask_var(buffer->cpumask);
1344         put_online_cpus();
1345
1346  fail_free_buffer:
1347         kfree(buffer);
1348         return NULL;
1349 }
1350 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1351
1352 /**
1353  * ring_buffer_free - free a ring buffer.
1354  * @buffer: the buffer to free.
1355  */
1356 void
1357 ring_buffer_free(struct ring_buffer *buffer)
1358 {
1359         int cpu;
1360
1361         get_online_cpus();
1362
1363 #ifdef CONFIG_HOTPLUG_CPU
1364         unregister_cpu_notifier(&buffer->cpu_notify);
1365 #endif
1366
1367         for_each_buffer_cpu(buffer, cpu)
1368                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1369
1370         put_online_cpus();
1371
1372         kfree(buffer->buffers);
1373         free_cpumask_var(buffer->cpumask);
1374
1375         kfree(buffer);
1376 }
1377 EXPORT_SYMBOL_GPL(ring_buffer_free);
1378
1379 void ring_buffer_set_clock(struct ring_buffer *buffer,
1380                            u64 (*clock)(void))
1381 {
1382         buffer->clock = clock;
1383 }
1384
1385 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1386
1387 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1388 {
1389         return local_read(&bpage->entries) & RB_WRITE_MASK;
1390 }
1391
1392 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1393 {
1394         return local_read(&bpage->write) & RB_WRITE_MASK;
1395 }
1396
1397 static int
1398 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1399 {
1400         struct list_head *tail_page, *to_remove, *next_page;
1401         struct buffer_page *to_remove_page, *tmp_iter_page;
1402         struct buffer_page *last_page, *first_page;
1403         unsigned int nr_removed;
1404         unsigned long head_bit;
1405         int page_entries;
1406
1407         head_bit = 0;
1408
1409         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1410         atomic_inc(&cpu_buffer->record_disabled);
1411         /*
1412          * We don't race with the readers since we have acquired the reader
1413          * lock. We also don't race with writers after disabling recording.
1414          * This makes it easy to figure out the first and the last page to be
1415          * removed from the list. We unlink all the pages in between including
1416          * the first and last pages. This is done in a busy loop so that we
1417          * lose the least number of traces.
1418          * The pages are freed after we restart recording and unlock readers.
1419          */
1420         tail_page = &cpu_buffer->tail_page->list;
1421
1422         /*
1423          * tail page might be on reader page, we remove the next page
1424          * from the ring buffer
1425          */
1426         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1427                 tail_page = rb_list_head(tail_page->next);
1428         to_remove = tail_page;
1429
1430         /* start of pages to remove */
1431         first_page = list_entry(rb_list_head(to_remove->next),
1432                                 struct buffer_page, list);
1433
1434         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1435                 to_remove = rb_list_head(to_remove)->next;
1436                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1437         }
1438
1439         next_page = rb_list_head(to_remove)->next;
1440
1441         /*
1442          * Now we remove all pages between tail_page and next_page.
1443          * Make sure that we have head_bit value preserved for the
1444          * next page
1445          */
1446         tail_page->next = (struct list_head *)((unsigned long)next_page |
1447                                                 head_bit);
1448         next_page = rb_list_head(next_page);
1449         next_page->prev = tail_page;
1450
1451         /* make sure pages points to a valid page in the ring buffer */
1452         cpu_buffer->pages = next_page;
1453
1454         /* update head page */
1455         if (head_bit)
1456                 cpu_buffer->head_page = list_entry(next_page,
1457                                                 struct buffer_page, list);
1458
1459         /*
1460          * change read pointer to make sure any read iterators reset
1461          * themselves
1462          */
1463         cpu_buffer->read = 0;
1464
1465         /* pages are removed, resume tracing and then free the pages */
1466         atomic_dec(&cpu_buffer->record_disabled);
1467         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1468
1469         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1470
1471         /* last buffer page to remove */
1472         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1473                                 list);
1474         tmp_iter_page = first_page;
1475
1476         do {
1477                 to_remove_page = tmp_iter_page;
1478                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1479
1480                 /* update the counters */
1481                 page_entries = rb_page_entries(to_remove_page);
1482                 if (page_entries) {
1483                         /*
1484                          * If something was added to this page, it was full
1485                          * since it is not the tail page. So we deduct the
1486                          * bytes consumed in ring buffer from here.
1487                          * Increment overrun to account for the lost events.
1488                          */
1489                         local_add(page_entries, &cpu_buffer->overrun);
1490                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1491                 }
1492
1493                 /*
1494                  * We have already removed references to this list item, just
1495                  * free up the buffer_page and its page
1496                  */
1497                 free_buffer_page(to_remove_page);
1498                 nr_removed--;
1499
1500         } while (to_remove_page != last_page);
1501
1502         RB_WARN_ON(cpu_buffer, nr_removed);
1503
1504         return nr_removed == 0;
1505 }
1506
1507 static int
1508 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1509 {
1510         struct list_head *pages = &cpu_buffer->new_pages;
1511         int retries, success;
1512
1513         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1514         /*
1515          * We are holding the reader lock, so the reader page won't be swapped
1516          * in the ring buffer. Now we are racing with the writer trying to
1517          * move head page and the tail page.
1518          * We are going to adapt the reader page update process where:
1519          * 1. We first splice the start and end of list of new pages between
1520          *    the head page and its previous page.
1521          * 2. We cmpxchg the prev_page->next to point from head page to the
1522          *    start of new pages list.
1523          * 3. Finally, we update the head->prev to the end of new list.
1524          *
1525          * We will try this process 10 times, to make sure that we don't keep
1526          * spinning.
1527          */
1528         retries = 10;
1529         success = 0;
1530         while (retries--) {
1531                 struct list_head *head_page, *prev_page, *r;
1532                 struct list_head *last_page, *first_page;
1533                 struct list_head *head_page_with_bit;
1534
1535                 head_page = &rb_set_head_page(cpu_buffer)->list;
1536                 if (!head_page)
1537                         break;
1538                 prev_page = head_page->prev;
1539
1540                 first_page = pages->next;
1541                 last_page  = pages->prev;
1542
1543                 head_page_with_bit = (struct list_head *)
1544                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1545
1546                 last_page->next = head_page_with_bit;
1547                 first_page->prev = prev_page;
1548
1549                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1550
1551                 if (r == head_page_with_bit) {
1552                         /*
1553                          * yay, we replaced the page pointer to our new list,
1554                          * now, we just have to update to head page's prev
1555                          * pointer to point to end of list
1556                          */
1557                         head_page->prev = last_page;
1558                         success = 1;
1559                         break;
1560                 }
1561         }
1562
1563         if (success)
1564                 INIT_LIST_HEAD(pages);
1565         /*
1566          * If we weren't successful in adding in new pages, warn and stop
1567          * tracing
1568          */
1569         RB_WARN_ON(cpu_buffer, !success);
1570         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1571
1572         /* free pages if they weren't inserted */
1573         if (!success) {
1574                 struct buffer_page *bpage, *tmp;
1575                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1576                                          list) {
1577                         list_del_init(&bpage->list);
1578                         free_buffer_page(bpage);
1579                 }
1580         }
1581         return success;
1582 }
1583
1584 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1585 {
1586         int success;
1587
1588         if (cpu_buffer->nr_pages_to_update > 0)
1589                 success = rb_insert_pages(cpu_buffer);
1590         else
1591                 success = rb_remove_pages(cpu_buffer,
1592                                         -cpu_buffer->nr_pages_to_update);
1593
1594         if (success)
1595                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1596 }
1597
1598 static void update_pages_handler(struct work_struct *work)
1599 {
1600         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1601                         struct ring_buffer_per_cpu, update_pages_work);
1602         rb_update_pages(cpu_buffer);
1603         complete(&cpu_buffer->update_done);
1604 }
1605
1606 /**
1607  * ring_buffer_resize - resize the ring buffer
1608  * @buffer: the buffer to resize.
1609  * @size: the new size.
1610  * @cpu_id: the cpu buffer to resize
1611  *
1612  * Minimum size is 2 * BUF_PAGE_SIZE.
1613  *
1614  * Returns 0 on success and < 0 on failure.
1615  */
1616 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1617                         int cpu_id)
1618 {
1619         struct ring_buffer_per_cpu *cpu_buffer;
1620         unsigned nr_pages;
1621         int cpu, err = 0;
1622
1623         /*
1624          * Always succeed at resizing a non-existent buffer:
1625          */
1626         if (!buffer)
1627                 return size;
1628
1629         /* Make sure the requested buffer exists */
1630         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1631             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1632                 return size;
1633
1634         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1635         size *= BUF_PAGE_SIZE;
1636
1637         /* we need a minimum of two pages */
1638         if (size < BUF_PAGE_SIZE * 2)
1639                 size = BUF_PAGE_SIZE * 2;
1640
1641         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1642
1643         /*
1644          * Don't succeed if resizing is disabled, as a reader might be
1645          * manipulating the ring buffer and is expecting a sane state while
1646          * this is true.
1647          */
1648         if (atomic_read(&buffer->resize_disabled))
1649                 return -EBUSY;
1650
1651         /* prevent another thread from changing buffer sizes */
1652         mutex_lock(&buffer->mutex);
1653
1654         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1655                 /* calculate the pages to update */
1656                 for_each_buffer_cpu(buffer, cpu) {
1657                         cpu_buffer = buffer->buffers[cpu];
1658
1659                         cpu_buffer->nr_pages_to_update = nr_pages -
1660                                                         cpu_buffer->nr_pages;
1661                         /*
1662                          * nothing more to do for removing pages or no update
1663                          */
1664                         if (cpu_buffer->nr_pages_to_update <= 0)
1665                                 continue;
1666                         /*
1667                          * to add pages, make sure all new pages can be
1668                          * allocated without receiving ENOMEM
1669                          */
1670                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1671                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1672                                                 &cpu_buffer->new_pages, cpu)) {
1673                                 /* not enough memory for new pages */
1674                                 err = -ENOMEM;
1675                                 goto out_err;
1676                         }
1677                 }
1678
1679                 get_online_cpus();
1680                 /*
1681                  * Fire off all the required work handlers
1682                  * We can't schedule on offline CPUs, but it's not necessary
1683                  * since we can change their buffer sizes without any race.
1684                  */
1685                 for_each_buffer_cpu(buffer, cpu) {
1686                         cpu_buffer = buffer->buffers[cpu];
1687                         if (!cpu_buffer->nr_pages_to_update)
1688                                 continue;
1689
1690                         /* The update must run on the CPU that is being updated. */
1691                         preempt_disable();
1692                         if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1693                                 rb_update_pages(cpu_buffer);
1694                                 cpu_buffer->nr_pages_to_update = 0;
1695                         } else {
1696                                 /*
1697                                  * Can not disable preemption for schedule_work_on()
1698                                  * on PREEMPT_RT.
1699                                  */
1700                                 preempt_enable();
1701                                 schedule_work_on(cpu,
1702                                                 &cpu_buffer->update_pages_work);
1703                                 preempt_disable();
1704                         }
1705                         preempt_enable();
1706                 }
1707
1708                 /* wait for all the updates to complete */
1709                 for_each_buffer_cpu(buffer, cpu) {
1710                         cpu_buffer = buffer->buffers[cpu];
1711                         if (!cpu_buffer->nr_pages_to_update)
1712                                 continue;
1713
1714                         if (cpu_online(cpu))
1715                                 wait_for_completion(&cpu_buffer->update_done);
1716                         cpu_buffer->nr_pages_to_update = 0;
1717                 }
1718
1719                 put_online_cpus();
1720         } else {
1721                 /* Make sure this CPU has been intitialized */
1722                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1723                         goto out;
1724
1725                 cpu_buffer = buffer->buffers[cpu_id];
1726
1727                 if (nr_pages == cpu_buffer->nr_pages)
1728                         goto out;
1729
1730                 cpu_buffer->nr_pages_to_update = nr_pages -
1731                                                 cpu_buffer->nr_pages;
1732
1733                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1734                 if (cpu_buffer->nr_pages_to_update > 0 &&
1735                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1736                                             &cpu_buffer->new_pages, cpu_id)) {
1737                         err = -ENOMEM;
1738                         goto out_err;
1739                 }
1740
1741                 get_online_cpus();
1742
1743                 preempt_disable();
1744                 /* The update must run on the CPU that is being updated. */
1745                 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1746                         rb_update_pages(cpu_buffer);
1747                 else {
1748                         /*
1749                          * Can not disable preemption for schedule_work_on()
1750                          * on PREEMPT_RT.
1751                          */
1752                         preempt_enable();
1753                         schedule_work_on(cpu_id,
1754                                          &cpu_buffer->update_pages_work);
1755                         wait_for_completion(&cpu_buffer->update_done);
1756                         preempt_disable();
1757                 }
1758                 preempt_enable();
1759
1760                 cpu_buffer->nr_pages_to_update = 0;
1761                 put_online_cpus();
1762         }
1763
1764  out:
1765         /*
1766          * The ring buffer resize can happen with the ring buffer
1767          * enabled, so that the update disturbs the tracing as little
1768          * as possible. But if the buffer is disabled, we do not need
1769          * to worry about that, and we can take the time to verify
1770          * that the buffer is not corrupt.
1771          */
1772         if (atomic_read(&buffer->record_disabled)) {
1773                 atomic_inc(&buffer->record_disabled);
1774                 /*
1775                  * Even though the buffer was disabled, we must make sure
1776                  * that it is truly disabled before calling rb_check_pages.
1777                  * There could have been a race between checking
1778                  * record_disable and incrementing it.
1779                  */
1780                 synchronize_sched();
1781                 for_each_buffer_cpu(buffer, cpu) {
1782                         cpu_buffer = buffer->buffers[cpu];
1783                         rb_check_pages(cpu_buffer);
1784                 }
1785                 atomic_dec(&buffer->record_disabled);
1786         }
1787
1788         mutex_unlock(&buffer->mutex);
1789         return size;
1790
1791  out_err:
1792         for_each_buffer_cpu(buffer, cpu) {
1793                 struct buffer_page *bpage, *tmp;
1794
1795                 cpu_buffer = buffer->buffers[cpu];
1796                 cpu_buffer->nr_pages_to_update = 0;
1797
1798                 if (list_empty(&cpu_buffer->new_pages))
1799                         continue;
1800
1801                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1802                                         list) {
1803                         list_del_init(&bpage->list);
1804                         free_buffer_page(bpage);
1805                 }
1806         }
1807         mutex_unlock(&buffer->mutex);
1808         return err;
1809 }
1810 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1811
1812 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1813 {
1814         mutex_lock(&buffer->mutex);
1815         if (val)
1816                 buffer->flags |= RB_FL_OVERWRITE;
1817         else
1818                 buffer->flags &= ~RB_FL_OVERWRITE;
1819         mutex_unlock(&buffer->mutex);
1820 }
1821 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1822
1823 static inline void *
1824 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1825 {
1826         return bpage->data + index;
1827 }
1828
1829 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1830 {
1831         return bpage->page->data + index;
1832 }
1833
1834 static inline struct ring_buffer_event *
1835 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1836 {
1837         return __rb_page_index(cpu_buffer->reader_page,
1838                                cpu_buffer->reader_page->read);
1839 }
1840
1841 static inline struct ring_buffer_event *
1842 rb_iter_head_event(struct ring_buffer_iter *iter)
1843 {
1844         return __rb_page_index(iter->head_page, iter->head);
1845 }
1846
1847 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1848 {
1849         return local_read(&bpage->page->commit);
1850 }
1851
1852 /* Size is determined by what has been committed */
1853 static inline unsigned rb_page_size(struct buffer_page *bpage)
1854 {
1855         return rb_page_commit(bpage);
1856 }
1857
1858 static inline unsigned
1859 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1860 {
1861         return rb_page_commit(cpu_buffer->commit_page);
1862 }
1863
1864 static inline unsigned
1865 rb_event_index(struct ring_buffer_event *event)
1866 {
1867         unsigned long addr = (unsigned long)event;
1868
1869         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1870 }
1871
1872 static inline int
1873 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1874                    struct ring_buffer_event *event)
1875 {
1876         unsigned long addr = (unsigned long)event;
1877         unsigned long index;
1878
1879         index = rb_event_index(event);
1880         addr &= PAGE_MASK;
1881
1882         return cpu_buffer->commit_page->page == (void *)addr &&
1883                 rb_commit_index(cpu_buffer) == index;
1884 }
1885
1886 static void
1887 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1888 {
1889         unsigned long max_count;
1890
1891         /*
1892          * We only race with interrupts and NMIs on this CPU.
1893          * If we own the commit event, then we can commit
1894          * all others that interrupted us, since the interruptions
1895          * are in stack format (they finish before they come
1896          * back to us). This allows us to do a simple loop to
1897          * assign the commit to the tail.
1898          */
1899  again:
1900         max_count = cpu_buffer->nr_pages * 100;
1901
1902         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1903                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1904                         return;
1905                 if (RB_WARN_ON(cpu_buffer,
1906                                rb_is_reader_page(cpu_buffer->tail_page)))
1907                         return;
1908                 local_set(&cpu_buffer->commit_page->page->commit,
1909                           rb_page_write(cpu_buffer->commit_page));
1910                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1911                 cpu_buffer->write_stamp =
1912                         cpu_buffer->commit_page->page->time_stamp;
1913                 /* add barrier to keep gcc from optimizing too much */
1914                 barrier();
1915         }
1916         while (rb_commit_index(cpu_buffer) !=
1917                rb_page_write(cpu_buffer->commit_page)) {
1918
1919                 local_set(&cpu_buffer->commit_page->page->commit,
1920                           rb_page_write(cpu_buffer->commit_page));
1921                 RB_WARN_ON(cpu_buffer,
1922                            local_read(&cpu_buffer->commit_page->page->commit) &
1923                            ~RB_WRITE_MASK);
1924                 barrier();
1925         }
1926
1927         /* again, keep gcc from optimizing */
1928         barrier();
1929
1930         /*
1931          * If an interrupt came in just after the first while loop
1932          * and pushed the tail page forward, we will be left with
1933          * a dangling commit that will never go forward.
1934          */
1935         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1936                 goto again;
1937 }
1938
1939 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1940 {
1941         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1942         cpu_buffer->reader_page->read = 0;
1943 }
1944
1945 static void rb_inc_iter(struct ring_buffer_iter *iter)
1946 {
1947         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1948
1949         /*
1950          * The iterator could be on the reader page (it starts there).
1951          * But the head could have moved, since the reader was
1952          * found. Check for this case and assign the iterator
1953          * to the head page instead of next.
1954          */
1955         if (iter->head_page == cpu_buffer->reader_page)
1956                 iter->head_page = rb_set_head_page(cpu_buffer);
1957         else
1958                 rb_inc_page(cpu_buffer, &iter->head_page);
1959
1960         iter->read_stamp = iter->head_page->page->time_stamp;
1961         iter->head = 0;
1962 }
1963
1964 /* Slow path, do not inline */
1965 static noinline struct ring_buffer_event *
1966 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1967 {
1968         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1969
1970         /* Not the first event on the page? */
1971         if (rb_event_index(event)) {
1972                 event->time_delta = delta & TS_MASK;
1973                 event->array[0] = delta >> TS_SHIFT;
1974         } else {
1975                 /* nope, just zero it */
1976                 event->time_delta = 0;
1977                 event->array[0] = 0;
1978         }
1979
1980         return skip_time_extend(event);
1981 }
1982
1983 /**
1984  * rb_update_event - update event type and data
1985  * @event: the even to update
1986  * @type: the type of event
1987  * @length: the size of the event field in the ring buffer
1988  *
1989  * Update the type and data fields of the event. The length
1990  * is the actual size that is written to the ring buffer,
1991  * and with this, we can determine what to place into the
1992  * data field.
1993  */
1994 static void
1995 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1996                 struct ring_buffer_event *event, unsigned length,
1997                 int add_timestamp, u64 delta)
1998 {
1999         /* Only a commit updates the timestamp */
2000         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2001                 delta = 0;
2002
2003         /*
2004          * If we need to add a timestamp, then we
2005          * add it to the start of the resevered space.
2006          */
2007         if (unlikely(add_timestamp)) {
2008                 event = rb_add_time_stamp(event, delta);
2009                 length -= RB_LEN_TIME_EXTEND;
2010                 delta = 0;
2011         }
2012
2013         event->time_delta = delta;
2014         length -= RB_EVNT_HDR_SIZE;
2015         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2016                 event->type_len = 0;
2017                 event->array[0] = length;
2018         } else
2019                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2020 }
2021
2022 /*
2023  * rb_handle_head_page - writer hit the head page
2024  *
2025  * Returns: +1 to retry page
2026  *           0 to continue
2027  *          -1 on error
2028  */
2029 static int
2030 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2031                     struct buffer_page *tail_page,
2032                     struct buffer_page *next_page)
2033 {
2034         struct buffer_page *new_head;
2035         int entries;
2036         int type;
2037         int ret;
2038
2039         entries = rb_page_entries(next_page);
2040
2041         /*
2042          * The hard part is here. We need to move the head
2043          * forward, and protect against both readers on
2044          * other CPUs and writers coming in via interrupts.
2045          */
2046         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2047                                        RB_PAGE_HEAD);
2048
2049         /*
2050          * type can be one of four:
2051          *  NORMAL - an interrupt already moved it for us
2052          *  HEAD   - we are the first to get here.
2053          *  UPDATE - we are the interrupt interrupting
2054          *           a current move.
2055          *  MOVED  - a reader on another CPU moved the next
2056          *           pointer to its reader page. Give up
2057          *           and try again.
2058          */
2059
2060         switch (type) {
2061         case RB_PAGE_HEAD:
2062                 /*
2063                  * We changed the head to UPDATE, thus
2064                  * it is our responsibility to update
2065                  * the counters.
2066                  */
2067                 local_add(entries, &cpu_buffer->overrun);
2068                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2069
2070                 /*
2071                  * The entries will be zeroed out when we move the
2072                  * tail page.
2073                  */
2074
2075                 /* still more to do */
2076                 break;
2077
2078         case RB_PAGE_UPDATE:
2079                 /*
2080                  * This is an interrupt that interrupt the
2081                  * previous update. Still more to do.
2082                  */
2083                 break;
2084         case RB_PAGE_NORMAL:
2085                 /*
2086                  * An interrupt came in before the update
2087                  * and processed this for us.
2088                  * Nothing left to do.
2089                  */
2090                 return 1;
2091         case RB_PAGE_MOVED:
2092                 /*
2093                  * The reader is on another CPU and just did
2094                  * a swap with our next_page.
2095                  * Try again.
2096                  */
2097                 return 1;
2098         default:
2099                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2100                 return -1;
2101         }
2102
2103         /*
2104          * Now that we are here, the old head pointer is
2105          * set to UPDATE. This will keep the reader from
2106          * swapping the head page with the reader page.
2107          * The reader (on another CPU) will spin till
2108          * we are finished.
2109          *
2110          * We just need to protect against interrupts
2111          * doing the job. We will set the next pointer
2112          * to HEAD. After that, we set the old pointer
2113          * to NORMAL, but only if it was HEAD before.
2114          * otherwise we are an interrupt, and only
2115          * want the outer most commit to reset it.
2116          */
2117         new_head = next_page;
2118         rb_inc_page(cpu_buffer, &new_head);
2119
2120         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2121                                     RB_PAGE_NORMAL);
2122
2123         /*
2124          * Valid returns are:
2125          *  HEAD   - an interrupt came in and already set it.
2126          *  NORMAL - One of two things:
2127          *            1) We really set it.
2128          *            2) A bunch of interrupts came in and moved
2129          *               the page forward again.
2130          */
2131         switch (ret) {
2132         case RB_PAGE_HEAD:
2133         case RB_PAGE_NORMAL:
2134                 /* OK */
2135                 break;
2136         default:
2137                 RB_WARN_ON(cpu_buffer, 1);
2138                 return -1;
2139         }
2140
2141         /*
2142          * It is possible that an interrupt came in,
2143          * set the head up, then more interrupts came in
2144          * and moved it again. When we get back here,
2145          * the page would have been set to NORMAL but we
2146          * just set it back to HEAD.
2147          *
2148          * How do you detect this? Well, if that happened
2149          * the tail page would have moved.
2150          */
2151         if (ret == RB_PAGE_NORMAL) {
2152                 /*
2153                  * If the tail had moved passed next, then we need
2154                  * to reset the pointer.
2155                  */
2156                 if (cpu_buffer->tail_page != tail_page &&
2157                     cpu_buffer->tail_page != next_page)
2158                         rb_head_page_set_normal(cpu_buffer, new_head,
2159                                                 next_page,
2160                                                 RB_PAGE_HEAD);
2161         }
2162
2163         /*
2164          * If this was the outer most commit (the one that
2165          * changed the original pointer from HEAD to UPDATE),
2166          * then it is up to us to reset it to NORMAL.
2167          */
2168         if (type == RB_PAGE_HEAD) {
2169                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2170                                               tail_page,
2171                                               RB_PAGE_UPDATE);
2172                 if (RB_WARN_ON(cpu_buffer,
2173                                ret != RB_PAGE_UPDATE))
2174                         return -1;
2175         }
2176
2177         return 0;
2178 }
2179
2180 static unsigned rb_calculate_event_length(unsigned length)
2181 {
2182         struct ring_buffer_event event; /* Used only for sizeof array */
2183
2184         /* zero length can cause confusions */
2185         if (!length)
2186                 length = 1;
2187
2188         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2189                 length += sizeof(event.array[0]);
2190
2191         length += RB_EVNT_HDR_SIZE;
2192         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2193
2194         return length;
2195 }
2196
2197 static inline void
2198 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2199               struct buffer_page *tail_page,
2200               unsigned long tail, unsigned long length)
2201 {
2202         struct ring_buffer_event *event;
2203
2204         /*
2205          * Only the event that crossed the page boundary
2206          * must fill the old tail_page with padding.
2207          */
2208         if (tail >= BUF_PAGE_SIZE) {
2209                 /*
2210                  * If the page was filled, then we still need
2211                  * to update the real_end. Reset it to zero
2212                  * and the reader will ignore it.
2213                  */
2214                 if (tail == BUF_PAGE_SIZE)
2215                         tail_page->real_end = 0;
2216
2217                 local_sub(length, &tail_page->write);
2218                 return;
2219         }
2220
2221         event = __rb_page_index(tail_page, tail);
2222         kmemcheck_annotate_bitfield(event, bitfield);
2223
2224         /* account for padding bytes */
2225         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2226
2227         /*
2228          * Save the original length to the meta data.
2229          * This will be used by the reader to add lost event
2230          * counter.
2231          */
2232         tail_page->real_end = tail;
2233
2234         /*
2235          * If this event is bigger than the minimum size, then
2236          * we need to be careful that we don't subtract the
2237          * write counter enough to allow another writer to slip
2238          * in on this page.
2239          * We put in a discarded commit instead, to make sure
2240          * that this space is not used again.
2241          *
2242          * If we are less than the minimum size, we don't need to
2243          * worry about it.
2244          */
2245         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2246                 /* No room for any events */
2247
2248                 /* Mark the rest of the page with padding */
2249                 rb_event_set_padding(event);
2250
2251                 /* Set the write back to the previous setting */
2252                 local_sub(length, &tail_page->write);
2253                 return;
2254         }
2255
2256         /* Put in a discarded event */
2257         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2258         event->type_len = RINGBUF_TYPE_PADDING;
2259         /* time delta must be non zero */
2260         event->time_delta = 1;
2261
2262         /* Set write to end of buffer */
2263         length = (tail + length) - BUF_PAGE_SIZE;
2264         local_sub(length, &tail_page->write);
2265 }
2266
2267 /*
2268  * This is the slow path, force gcc not to inline it.
2269  */
2270 static noinline struct ring_buffer_event *
2271 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2272              unsigned long length, unsigned long tail,
2273              struct buffer_page *tail_page, u64 ts)
2274 {
2275         struct buffer_page *commit_page = cpu_buffer->commit_page;
2276         struct ring_buffer *buffer = cpu_buffer->buffer;
2277         struct buffer_page *next_page;
2278         int ret;
2279
2280         next_page = tail_page;
2281
2282         rb_inc_page(cpu_buffer, &next_page);
2283
2284         /*
2285          * If for some reason, we had an interrupt storm that made
2286          * it all the way around the buffer, bail, and warn
2287          * about it.
2288          */
2289         if (unlikely(next_page == commit_page)) {
2290                 local_inc(&cpu_buffer->commit_overrun);
2291                 goto out_reset;
2292         }
2293
2294         /*
2295          * This is where the fun begins!
2296          *
2297          * We are fighting against races between a reader that
2298          * could be on another CPU trying to swap its reader
2299          * page with the buffer head.
2300          *
2301          * We are also fighting against interrupts coming in and
2302          * moving the head or tail on us as well.
2303          *
2304          * If the next page is the head page then we have filled
2305          * the buffer, unless the commit page is still on the
2306          * reader page.
2307          */
2308         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2309
2310                 /*
2311                  * If the commit is not on the reader page, then
2312                  * move the header page.
2313                  */
2314                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2315                         /*
2316                          * If we are not in overwrite mode,
2317                          * this is easy, just stop here.
2318                          */
2319                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2320                                 local_inc(&cpu_buffer->dropped_events);
2321                                 goto out_reset;
2322                         }
2323
2324                         ret = rb_handle_head_page(cpu_buffer,
2325                                                   tail_page,
2326                                                   next_page);
2327                         if (ret < 0)
2328                                 goto out_reset;
2329                         if (ret)
2330                                 goto out_again;
2331                 } else {
2332                         /*
2333                          * We need to be careful here too. The
2334                          * commit page could still be on the reader
2335                          * page. We could have a small buffer, and
2336                          * have filled up the buffer with events
2337                          * from interrupts and such, and wrapped.
2338                          *
2339                          * Note, if the tail page is also the on the
2340                          * reader_page, we let it move out.
2341                          */
2342                         if (unlikely((cpu_buffer->commit_page !=
2343                                       cpu_buffer->tail_page) &&
2344                                      (cpu_buffer->commit_page ==
2345                                       cpu_buffer->reader_page))) {
2346                                 local_inc(&cpu_buffer->commit_overrun);
2347                                 goto out_reset;
2348                         }
2349                 }
2350         }
2351
2352         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2353         if (ret) {
2354                 /*
2355                  * Nested commits always have zero deltas, so
2356                  * just reread the time stamp
2357                  */
2358                 ts = rb_time_stamp(buffer);
2359                 next_page->page->time_stamp = ts;
2360         }
2361
2362  out_again:
2363
2364         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2365
2366         /* fail and let the caller try again */
2367         return ERR_PTR(-EAGAIN);
2368
2369  out_reset:
2370         /* reset write */
2371         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2372
2373         return NULL;
2374 }
2375
2376 static struct ring_buffer_event *
2377 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2378                   unsigned long length, u64 ts,
2379                   u64 delta, int add_timestamp)
2380 {
2381         struct buffer_page *tail_page;
2382         struct ring_buffer_event *event;
2383         unsigned long tail, write;
2384
2385         /*
2386          * If the time delta since the last event is too big to
2387          * hold in the time field of the event, then we append a
2388          * TIME EXTEND event ahead of the data event.
2389          */
2390         if (unlikely(add_timestamp))
2391                 length += RB_LEN_TIME_EXTEND;
2392
2393         tail_page = cpu_buffer->tail_page;
2394         write = local_add_return(length, &tail_page->write);
2395
2396         /* set write to only the index of the write */
2397         write &= RB_WRITE_MASK;
2398         tail = write - length;
2399
2400         /* See if we shot pass the end of this buffer page */
2401         if (unlikely(write > BUF_PAGE_SIZE))
2402                 return rb_move_tail(cpu_buffer, length, tail,
2403                                     tail_page, ts);
2404
2405         /* We reserved something on the buffer */
2406
2407         event = __rb_page_index(tail_page, tail);
2408         kmemcheck_annotate_bitfield(event, bitfield);
2409         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2410
2411         local_inc(&tail_page->entries);
2412
2413         /*
2414          * If this is the first commit on the page, then update
2415          * its timestamp.
2416          */
2417         if (!tail)
2418                 tail_page->page->time_stamp = ts;
2419
2420         /* account for these added bytes */
2421         local_add(length, &cpu_buffer->entries_bytes);
2422
2423         return event;
2424 }
2425
2426 static inline int
2427 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2428                   struct ring_buffer_event *event)
2429 {
2430         unsigned long new_index, old_index;
2431         struct buffer_page *bpage;
2432         unsigned long index;
2433         unsigned long addr;
2434
2435         new_index = rb_event_index(event);
2436         old_index = new_index + rb_event_ts_length(event);
2437         addr = (unsigned long)event;
2438         addr &= PAGE_MASK;
2439
2440         bpage = cpu_buffer->tail_page;
2441
2442         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2443                 unsigned long write_mask =
2444                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2445                 unsigned long event_length = rb_event_length(event);
2446                 /*
2447                  * This is on the tail page. It is possible that
2448                  * a write could come in and move the tail page
2449                  * and write to the next page. That is fine
2450                  * because we just shorten what is on this page.
2451                  */
2452                 old_index += write_mask;
2453                 new_index += write_mask;
2454                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2455                 if (index == old_index) {
2456                         /* update counters */
2457                         local_sub(event_length, &cpu_buffer->entries_bytes);
2458                         return 1;
2459                 }
2460         }
2461
2462         /* could not discard */
2463         return 0;
2464 }
2465
2466 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2467 {
2468         local_inc(&cpu_buffer->committing);
2469         local_inc(&cpu_buffer->commits);
2470 }
2471
2472 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2473 {
2474         unsigned long commits;
2475
2476         if (RB_WARN_ON(cpu_buffer,
2477                        !local_read(&cpu_buffer->committing)))
2478                 return;
2479
2480  again:
2481         commits = local_read(&cpu_buffer->commits);
2482         /* synchronize with interrupts */
2483         barrier();
2484         if (local_read(&cpu_buffer->committing) == 1)
2485                 rb_set_commit_to_write(cpu_buffer);
2486
2487         local_dec(&cpu_buffer->committing);
2488
2489         /* synchronize with interrupts */
2490         barrier();
2491
2492         /*
2493          * Need to account for interrupts coming in between the
2494          * updating of the commit page and the clearing of the
2495          * committing counter.
2496          */
2497         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2498             !local_read(&cpu_buffer->committing)) {
2499                 local_inc(&cpu_buffer->committing);
2500                 goto again;
2501         }
2502 }
2503
2504 static struct ring_buffer_event *
2505 rb_reserve_next_event(struct ring_buffer *buffer,
2506                       struct ring_buffer_per_cpu *cpu_buffer,
2507                       unsigned long length)
2508 {
2509         struct ring_buffer_event *event;
2510         u64 ts, delta;
2511         int nr_loops = 0;
2512         int add_timestamp;
2513         u64 diff;
2514
2515         rb_start_commit(cpu_buffer);
2516
2517 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2518         /*
2519          * Due to the ability to swap a cpu buffer from a buffer
2520          * it is possible it was swapped before we committed.
2521          * (committing stops a swap). We check for it here and
2522          * if it happened, we have to fail the write.
2523          */
2524         barrier();
2525         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2526                 local_dec(&cpu_buffer->committing);
2527                 local_dec(&cpu_buffer->commits);
2528                 return NULL;
2529         }
2530 #endif
2531
2532         length = rb_calculate_event_length(length);
2533  again:
2534         add_timestamp = 0;
2535         delta = 0;
2536
2537         /*
2538          * We allow for interrupts to reenter here and do a trace.
2539          * If one does, it will cause this original code to loop
2540          * back here. Even with heavy interrupts happening, this
2541          * should only happen a few times in a row. If this happens
2542          * 1000 times in a row, there must be either an interrupt
2543          * storm or we have something buggy.
2544          * Bail!
2545          */
2546         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2547                 goto out_fail;
2548
2549         ts = rb_time_stamp(cpu_buffer->buffer);
2550         diff = ts - cpu_buffer->write_stamp;
2551
2552         /* make sure this diff is calculated here */
2553         barrier();
2554
2555         /* Did the write stamp get updated already? */
2556         if (likely(ts >= cpu_buffer->write_stamp)) {
2557                 delta = diff;
2558                 if (unlikely(test_time_stamp(delta))) {
2559                         int local_clock_stable = 1;
2560 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2561                         local_clock_stable = sched_clock_stable();
2562 #endif
2563                         WARN_ONCE(delta > (1ULL << 59),
2564                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2565                                   (unsigned long long)delta,
2566                                   (unsigned long long)ts,
2567                                   (unsigned long long)cpu_buffer->write_stamp,
2568                                   local_clock_stable ? "" :
2569                                   "If you just came from a suspend/resume,\n"
2570                                   "please switch to the trace global clock:\n"
2571                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2572                         add_timestamp = 1;
2573                 }
2574         }
2575
2576         event = __rb_reserve_next(cpu_buffer, length, ts,
2577                                   delta, add_timestamp);
2578         if (unlikely(PTR_ERR(event) == -EAGAIN))
2579                 goto again;
2580
2581         if (!event)
2582                 goto out_fail;
2583
2584         return event;
2585
2586  out_fail:
2587         rb_end_commit(cpu_buffer);
2588         return NULL;
2589 }
2590
2591 #ifdef CONFIG_TRACING
2592
2593 /*
2594  * The lock and unlock are done within a preempt disable section.
2595  * The current_context per_cpu variable can only be modified
2596  * by the current task between lock and unlock. But it can
2597  * be modified more than once via an interrupt. To pass this
2598  * information from the lock to the unlock without having to
2599  * access the 'in_interrupt()' functions again (which do show
2600  * a bit of overhead in something as critical as function tracing,
2601  * we use a bitmask trick.
2602  *
2603  *  bit 0 =  NMI context
2604  *  bit 1 =  IRQ context
2605  *  bit 2 =  SoftIRQ context
2606  *  bit 3 =  normal context.
2607  *
2608  * This works because this is the order of contexts that can
2609  * preempt other contexts. A SoftIRQ never preempts an IRQ
2610  * context.
2611  *
2612  * When the context is determined, the corresponding bit is
2613  * checked and set (if it was set, then a recursion of that context
2614  * happened).
2615  *
2616  * On unlock, we need to clear this bit. To do so, just subtract
2617  * 1 from the current_context and AND it to itself.
2618  *
2619  * (binary)
2620  *  101 - 1 = 100
2621  *  101 & 100 = 100 (clearing bit zero)
2622  *
2623  *  1010 - 1 = 1001
2624  *  1010 & 1001 = 1000 (clearing bit 1)
2625  *
2626  * The least significant bit can be cleared this way, and it
2627  * just so happens that it is the same bit corresponding to
2628  * the current context.
2629  */
2630 static DEFINE_PER_CPU(unsigned int, current_context);
2631
2632 static __always_inline int trace_recursive_lock(void)
2633 {
2634         unsigned int val = this_cpu_read(current_context);
2635         int bit;
2636
2637         if (in_interrupt()) {
2638                 if (in_nmi())
2639                         bit = 0;
2640                 else if (in_irq())
2641                         bit = 1;
2642                 else
2643                         bit = 2;
2644         } else
2645                 bit = 3;
2646
2647         if (unlikely(val & (1 << bit)))
2648                 return 1;
2649
2650         val |= (1 << bit);
2651         this_cpu_write(current_context, val);
2652
2653         return 0;
2654 }
2655
2656 static __always_inline void trace_recursive_unlock(void)
2657 {
2658         unsigned int val = this_cpu_read(current_context);
2659
2660         val--;
2661         val &= this_cpu_read(current_context);
2662         this_cpu_write(current_context, val);
2663 }
2664
2665 #else
2666
2667 #define trace_recursive_lock()          (0)
2668 #define trace_recursive_unlock()        do { } while (0)
2669
2670 #endif
2671
2672 /**
2673  * ring_buffer_lock_reserve - reserve a part of the buffer
2674  * @buffer: the ring buffer to reserve from
2675  * @length: the length of the data to reserve (excluding event header)
2676  *
2677  * Returns a reseverd event on the ring buffer to copy directly to.
2678  * The user of this interface will need to get the body to write into
2679  * and can use the ring_buffer_event_data() interface.
2680  *
2681  * The length is the length of the data needed, not the event length
2682  * which also includes the event header.
2683  *
2684  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2685  * If NULL is returned, then nothing has been allocated or locked.
2686  */
2687 struct ring_buffer_event *
2688 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2689 {
2690         struct ring_buffer_per_cpu *cpu_buffer;
2691         struct ring_buffer_event *event;
2692         int cpu;
2693
2694         if (ring_buffer_flags != RB_BUFFERS_ON)
2695                 return NULL;
2696
2697         /* If we are tracing schedule, we don't want to recurse */
2698         preempt_disable_notrace();
2699
2700         if (atomic_read(&buffer->record_disabled))
2701                 goto out_nocheck;
2702
2703         if (trace_recursive_lock())
2704                 goto out_nocheck;
2705
2706         cpu = raw_smp_processor_id();
2707
2708         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2709                 goto out;
2710
2711         cpu_buffer = buffer->buffers[cpu];
2712
2713         if (atomic_read(&cpu_buffer->record_disabled))
2714                 goto out;
2715
2716         if (length > BUF_MAX_DATA_SIZE)
2717                 goto out;
2718
2719         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2720         if (!event)
2721                 goto out;
2722
2723         return event;
2724
2725  out:
2726         trace_recursive_unlock();
2727
2728  out_nocheck:
2729         preempt_enable_notrace();
2730         return NULL;
2731 }
2732 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2733
2734 static void
2735 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2736                       struct ring_buffer_event *event)
2737 {
2738         u64 delta;
2739
2740         /*
2741          * The event first in the commit queue updates the
2742          * time stamp.
2743          */
2744         if (rb_event_is_commit(cpu_buffer, event)) {
2745                 /*
2746                  * A commit event that is first on a page
2747                  * updates the write timestamp with the page stamp
2748                  */
2749                 if (!rb_event_index(event))
2750                         cpu_buffer->write_stamp =
2751                                 cpu_buffer->commit_page->page->time_stamp;
2752                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2753                         delta = event->array[0];
2754                         delta <<= TS_SHIFT;
2755                         delta += event->time_delta;
2756                         cpu_buffer->write_stamp += delta;
2757                 } else
2758                         cpu_buffer->write_stamp += event->time_delta;
2759         }
2760 }
2761
2762 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2763                       struct ring_buffer_event *event)
2764 {
2765         local_inc(&cpu_buffer->entries);
2766         rb_update_write_stamp(cpu_buffer, event);
2767         rb_end_commit(cpu_buffer);
2768 }
2769
2770 static __always_inline void
2771 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2772 {
2773         if (buffer->irq_work.waiters_pending) {
2774                 buffer->irq_work.waiters_pending = false;
2775                 /* irq_work_queue() supplies it's own memory barriers */
2776                 irq_work_queue(&buffer->irq_work.work);
2777         }
2778
2779         if (cpu_buffer->irq_work.waiters_pending) {
2780                 cpu_buffer->irq_work.waiters_pending = false;
2781                 /* irq_work_queue() supplies it's own memory barriers */
2782                 irq_work_queue(&cpu_buffer->irq_work.work);
2783         }
2784 }
2785
2786 /**
2787  * ring_buffer_unlock_commit - commit a reserved
2788  * @buffer: The buffer to commit to
2789  * @event: The event pointer to commit.
2790  *
2791  * This commits the data to the ring buffer, and releases any locks held.
2792  *
2793  * Must be paired with ring_buffer_lock_reserve.
2794  */
2795 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2796                               struct ring_buffer_event *event)
2797 {
2798         struct ring_buffer_per_cpu *cpu_buffer;
2799         int cpu = raw_smp_processor_id();
2800
2801         cpu_buffer = buffer->buffers[cpu];
2802
2803         rb_commit(cpu_buffer, event);
2804
2805         rb_wakeups(buffer, cpu_buffer);
2806
2807         trace_recursive_unlock();
2808
2809         preempt_enable_notrace();
2810
2811         return 0;
2812 }
2813 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2814
2815 static inline void rb_event_discard(struct ring_buffer_event *event)
2816 {
2817         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2818                 event = skip_time_extend(event);
2819
2820         /* array[0] holds the actual length for the discarded event */
2821         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2822         event->type_len = RINGBUF_TYPE_PADDING;
2823         /* time delta must be non zero */
2824         if (!event->time_delta)
2825                 event->time_delta = 1;
2826 }
2827
2828 /*
2829  * Decrement the entries to the page that an event is on.
2830  * The event does not even need to exist, only the pointer
2831  * to the page it is on. This may only be called before the commit
2832  * takes place.
2833  */
2834 static inline void
2835 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2836                    struct ring_buffer_event *event)
2837 {
2838         unsigned long addr = (unsigned long)event;
2839         struct buffer_page *bpage = cpu_buffer->commit_page;
2840         struct buffer_page *start;
2841
2842         addr &= PAGE_MASK;
2843
2844         /* Do the likely case first */
2845         if (likely(bpage->page == (void *)addr)) {
2846                 local_dec(&bpage->entries);
2847                 return;
2848         }
2849
2850         /*
2851          * Because the commit page may be on the reader page we
2852          * start with the next page and check the end loop there.
2853          */
2854         rb_inc_page(cpu_buffer, &bpage);
2855         start = bpage;
2856         do {
2857                 if (bpage->page == (void *)addr) {
2858                         local_dec(&bpage->entries);
2859                         return;
2860                 }
2861                 rb_inc_page(cpu_buffer, &bpage);
2862         } while (bpage != start);
2863
2864         /* commit not part of this buffer?? */
2865         RB_WARN_ON(cpu_buffer, 1);
2866 }
2867
2868 /**
2869  * ring_buffer_commit_discard - discard an event that has not been committed
2870  * @buffer: the ring buffer
2871  * @event: non committed event to discard
2872  *
2873  * Sometimes an event that is in the ring buffer needs to be ignored.
2874  * This function lets the user discard an event in the ring buffer
2875  * and then that event will not be read later.
2876  *
2877  * This function only works if it is called before the the item has been
2878  * committed. It will try to free the event from the ring buffer
2879  * if another event has not been added behind it.
2880  *
2881  * If another event has been added behind it, it will set the event
2882  * up as discarded, and perform the commit.
2883  *
2884  * If this function is called, do not call ring_buffer_unlock_commit on
2885  * the event.
2886  */
2887 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2888                                 struct ring_buffer_event *event)
2889 {
2890         struct ring_buffer_per_cpu *cpu_buffer;
2891         int cpu;
2892
2893         /* The event is discarded regardless */
2894         rb_event_discard(event);
2895
2896         cpu = smp_processor_id();
2897         cpu_buffer = buffer->buffers[cpu];
2898
2899         /*
2900          * This must only be called if the event has not been
2901          * committed yet. Thus we can assume that preemption
2902          * is still disabled.
2903          */
2904         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2905
2906         rb_decrement_entry(cpu_buffer, event);
2907         if (rb_try_to_discard(cpu_buffer, event))
2908                 goto out;
2909
2910         /*
2911          * The commit is still visible by the reader, so we
2912          * must still update the timestamp.
2913          */
2914         rb_update_write_stamp(cpu_buffer, event);
2915  out:
2916         rb_end_commit(cpu_buffer);
2917
2918         trace_recursive_unlock();
2919
2920         preempt_enable_notrace();
2921
2922 }
2923 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2924
2925 /**
2926  * ring_buffer_write - write data to the buffer without reserving
2927  * @buffer: The ring buffer to write to.
2928  * @length: The length of the data being written (excluding the event header)
2929  * @data: The data to write to the buffer.
2930  *
2931  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2932  * one function. If you already have the data to write to the buffer, it
2933  * may be easier to simply call this function.
2934  *
2935  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2936  * and not the length of the event which would hold the header.
2937  */
2938 int ring_buffer_write(struct ring_buffer *buffer,
2939                       unsigned long length,
2940                       void *data)
2941 {
2942         struct ring_buffer_per_cpu *cpu_buffer;
2943         struct ring_buffer_event *event;
2944         void *body;
2945         int ret = -EBUSY;
2946         int cpu;
2947
2948         if (ring_buffer_flags != RB_BUFFERS_ON)
2949                 return -EBUSY;
2950
2951         preempt_disable_notrace();
2952
2953         if (atomic_read(&buffer->record_disabled))
2954                 goto out;
2955
2956         cpu = raw_smp_processor_id();
2957
2958         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2959                 goto out;
2960
2961         cpu_buffer = buffer->buffers[cpu];
2962
2963         if (atomic_read(&cpu_buffer->record_disabled))
2964                 goto out;
2965
2966         if (length > BUF_MAX_DATA_SIZE)
2967                 goto out;
2968
2969         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2970         if (!event)
2971                 goto out;
2972
2973         body = rb_event_data(event);
2974
2975         memcpy(body, data, length);
2976
2977         rb_commit(cpu_buffer, event);
2978
2979         rb_wakeups(buffer, cpu_buffer);
2980
2981         ret = 0;
2982  out:
2983         preempt_enable_notrace();
2984
2985         return ret;
2986 }
2987 EXPORT_SYMBOL_GPL(ring_buffer_write);
2988
2989 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2990 {
2991         struct buffer_page *reader = cpu_buffer->reader_page;
2992         struct buffer_page *head = rb_set_head_page(cpu_buffer);
2993         struct buffer_page *commit = cpu_buffer->commit_page;
2994
2995         /* In case of error, head will be NULL */
2996         if (unlikely(!head))
2997                 return 1;
2998
2999         return reader->read == rb_page_commit(reader) &&
3000                 (commit == reader ||
3001                  (commit == head &&
3002                   head->read == rb_page_commit(commit)));
3003 }
3004
3005 /**
3006  * ring_buffer_record_disable - stop all writes into the buffer
3007  * @buffer: The ring buffer to stop writes to.
3008  *
3009  * This prevents all writes to the buffer. Any attempt to write
3010  * to the buffer after this will fail and return NULL.
3011  *
3012  * The caller should call synchronize_sched() after this.
3013  */
3014 void ring_buffer_record_disable(struct ring_buffer *buffer)
3015 {
3016         atomic_inc(&buffer->record_disabled);
3017 }
3018 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3019
3020 /**
3021  * ring_buffer_record_enable - enable writes to the buffer
3022  * @buffer: The ring buffer to enable writes
3023  *
3024  * Note, multiple disables will need the same number of enables
3025  * to truly enable the writing (much like preempt_disable).
3026  */
3027 void ring_buffer_record_enable(struct ring_buffer *buffer)
3028 {
3029         atomic_dec(&buffer->record_disabled);
3030 }
3031 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3032
3033 /**
3034  * ring_buffer_record_off - stop all writes into the buffer
3035  * @buffer: The ring buffer to stop writes to.
3036  *
3037  * This prevents all writes to the buffer. Any attempt to write
3038  * to the buffer after this will fail and return NULL.
3039  *
3040  * This is different than ring_buffer_record_disable() as
3041  * it works like an on/off switch, where as the disable() version
3042  * must be paired with a enable().
3043  */
3044 void ring_buffer_record_off(struct ring_buffer *buffer)
3045 {
3046         unsigned int rd;
3047         unsigned int new_rd;
3048
3049         do {
3050                 rd = atomic_read(&buffer->record_disabled);
3051                 new_rd = rd | RB_BUFFER_OFF;
3052         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3053 }
3054 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3055
3056 /**
3057  * ring_buffer_record_on - restart writes into the buffer
3058  * @buffer: The ring buffer to start writes to.
3059  *
3060  * This enables all writes to the buffer that was disabled by
3061  * ring_buffer_record_off().
3062  *
3063  * This is different than ring_buffer_record_enable() as
3064  * it works like an on/off switch, where as the enable() version
3065  * must be paired with a disable().
3066  */
3067 void ring_buffer_record_on(struct ring_buffer *buffer)
3068 {
3069         unsigned int rd;
3070         unsigned int new_rd;
3071
3072         do {
3073                 rd = atomic_read(&buffer->record_disabled);
3074                 new_rd = rd & ~RB_BUFFER_OFF;
3075         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3076 }
3077 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3078
3079 /**
3080  * ring_buffer_record_is_on - return true if the ring buffer can write
3081  * @buffer: The ring buffer to see if write is enabled
3082  *
3083  * Returns true if the ring buffer is in a state that it accepts writes.
3084  */
3085 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3086 {
3087         return !atomic_read(&buffer->record_disabled);
3088 }
3089
3090 /**
3091  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3092  * @buffer: The ring buffer to stop writes to.
3093  * @cpu: The CPU buffer to stop
3094  *
3095  * This prevents all writes to the buffer. Any attempt to write
3096  * to the buffer after this will fail and return NULL.
3097  *
3098  * The caller should call synchronize_sched() after this.
3099  */
3100 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3101 {
3102         struct ring_buffer_per_cpu *cpu_buffer;
3103
3104         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3105                 return;
3106
3107         cpu_buffer = buffer->buffers[cpu];
3108         atomic_inc(&cpu_buffer->record_disabled);
3109 }
3110 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3111
3112 /**
3113  * ring_buffer_record_enable_cpu - enable writes to the buffer
3114  * @buffer: The ring buffer to enable writes
3115  * @cpu: The CPU to enable.
3116  *
3117  * Note, multiple disables will need the same number of enables
3118  * to truly enable the writing (much like preempt_disable).
3119  */
3120 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3121 {
3122         struct ring_buffer_per_cpu *cpu_buffer;
3123
3124         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3125                 return;
3126
3127         cpu_buffer = buffer->buffers[cpu];
3128         atomic_dec(&cpu_buffer->record_disabled);
3129 }
3130 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3131
3132 /*
3133  * The total entries in the ring buffer is the running counter
3134  * of entries entered into the ring buffer, minus the sum of
3135  * the entries read from the ring buffer and the number of
3136  * entries that were overwritten.
3137  */
3138 static inline unsigned long
3139 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3140 {
3141         return local_read(&cpu_buffer->entries) -
3142                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3143 }
3144
3145 /**
3146  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3147  * @buffer: The ring buffer
3148  * @cpu: The per CPU buffer to read from.
3149  */
3150 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3151 {
3152         unsigned long flags;
3153         struct ring_buffer_per_cpu *cpu_buffer;
3154         struct buffer_page *bpage;
3155         u64 ret = 0;
3156
3157         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3158                 return 0;
3159
3160         cpu_buffer = buffer->buffers[cpu];
3161         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3162         /*
3163          * if the tail is on reader_page, oldest time stamp is on the reader
3164          * page
3165          */
3166         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3167                 bpage = cpu_buffer->reader_page;
3168         else
3169                 bpage = rb_set_head_page(cpu_buffer);
3170         if (bpage)
3171                 ret = bpage->page->time_stamp;
3172         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3173
3174         return ret;
3175 }
3176 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3177
3178 /**
3179  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3180  * @buffer: The ring buffer
3181  * @cpu: The per CPU buffer to read from.
3182  */
3183 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3184 {
3185         struct ring_buffer_per_cpu *cpu_buffer;
3186         unsigned long ret;
3187
3188         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3189                 return 0;
3190
3191         cpu_buffer = buffer->buffers[cpu];
3192         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3193
3194         return ret;
3195 }
3196 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3197
3198 /**
3199  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3200  * @buffer: The ring buffer
3201  * @cpu: The per CPU buffer to get the entries from.
3202  */
3203 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3204 {
3205         struct ring_buffer_per_cpu *cpu_buffer;
3206
3207         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3208                 return 0;
3209
3210         cpu_buffer = buffer->buffers[cpu];
3211
3212         return rb_num_of_entries(cpu_buffer);
3213 }
3214 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3215
3216 /**
3217  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3218  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3219  * @buffer: The ring buffer
3220  * @cpu: The per CPU buffer to get the number of overruns from
3221  */
3222 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3223 {
3224         struct ring_buffer_per_cpu *cpu_buffer;
3225         unsigned long ret;
3226
3227         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3228                 return 0;
3229
3230         cpu_buffer = buffer->buffers[cpu];
3231         ret = local_read(&cpu_buffer->overrun);
3232
3233         return ret;
3234 }
3235 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3236
3237 /**
3238  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3239  * commits failing due to the buffer wrapping around while there are uncommitted
3240  * events, such as during an interrupt storm.
3241  * @buffer: The ring buffer
3242  * @cpu: The per CPU buffer to get the number of overruns from
3243  */
3244 unsigned long
3245 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3246 {
3247         struct ring_buffer_per_cpu *cpu_buffer;
3248         unsigned long ret;
3249
3250         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3251                 return 0;
3252
3253         cpu_buffer = buffer->buffers[cpu];
3254         ret = local_read(&cpu_buffer->commit_overrun);
3255
3256         return ret;
3257 }
3258 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3259
3260 /**
3261  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3262  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3263  * @buffer: The ring buffer
3264  * @cpu: The per CPU buffer to get the number of overruns from
3265  */
3266 unsigned long
3267 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3268 {
3269         struct ring_buffer_per_cpu *cpu_buffer;
3270         unsigned long ret;
3271
3272         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3273                 return 0;
3274
3275         cpu_buffer = buffer->buffers[cpu];
3276         ret = local_read(&cpu_buffer->dropped_events);
3277
3278         return ret;
3279 }
3280 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3281
3282 /**
3283  * ring_buffer_read_events_cpu - get the number of events successfully read
3284  * @buffer: The ring buffer
3285  * @cpu: The per CPU buffer to get the number of events read
3286  */
3287 unsigned long
3288 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3289 {
3290         struct ring_buffer_per_cpu *cpu_buffer;
3291
3292         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3293                 return 0;
3294
3295         cpu_buffer = buffer->buffers[cpu];
3296         return cpu_buffer->read;
3297 }
3298 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3299
3300 /**
3301  * ring_buffer_entries - get the number of entries in a buffer
3302  * @buffer: The ring buffer
3303  *
3304  * Returns the total number of entries in the ring buffer
3305  * (all CPU entries)
3306  */
3307 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3308 {
3309         struct ring_buffer_per_cpu *cpu_buffer;
3310         unsigned long entries = 0;
3311         int cpu;
3312
3313         /* if you care about this being correct, lock the buffer */
3314         for_each_buffer_cpu(buffer, cpu) {
3315                 cpu_buffer = buffer->buffers[cpu];
3316                 entries += rb_num_of_entries(cpu_buffer);
3317         }
3318
3319         return entries;
3320 }
3321 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3322
3323 /**
3324  * ring_buffer_overruns - get the number of overruns in buffer
3325  * @buffer: The ring buffer
3326  *
3327  * Returns the total number of overruns in the ring buffer
3328  * (all CPU entries)
3329  */
3330 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3331 {
3332         struct ring_buffer_per_cpu *cpu_buffer;
3333         unsigned long overruns = 0;
3334         int cpu;
3335
3336         /* if you care about this being correct, lock the buffer */
3337         for_each_buffer_cpu(buffer, cpu) {
3338                 cpu_buffer = buffer->buffers[cpu];
3339                 overruns += local_read(&cpu_buffer->overrun);
3340         }
3341
3342         return overruns;
3343 }
3344 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3345
3346 static void rb_iter_reset(struct ring_buffer_iter *iter)
3347 {
3348         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3349
3350         /* Iterator usage is expected to have record disabled */
3351         if (list_empty(&cpu_buffer->reader_page->list)) {
3352                 iter->head_page = rb_set_head_page(cpu_buffer);
3353                 if (unlikely(!iter->head_page))
3354                         return;
3355                 iter->head = iter->head_page->read;
3356         } else {
3357                 iter->head_page = cpu_buffer->reader_page;
3358                 iter->head = cpu_buffer->reader_page->read;
3359         }
3360         if (iter->head)
3361                 iter->read_stamp = cpu_buffer->read_stamp;
3362         else
3363                 iter->read_stamp = iter->head_page->page->time_stamp;
3364         iter->cache_reader_page = cpu_buffer->reader_page;
3365         iter->cache_read = cpu_buffer->read;
3366 }
3367
3368 /**
3369  * ring_buffer_iter_reset - reset an iterator
3370  * @iter: The iterator to reset
3371  *
3372  * Resets the iterator, so that it will start from the beginning
3373  * again.
3374  */
3375 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3376 {
3377         struct ring_buffer_per_cpu *cpu_buffer;
3378         unsigned long flags;
3379
3380         if (!iter)
3381                 return;
3382
3383         cpu_buffer = iter->cpu_buffer;
3384
3385         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3386         rb_iter_reset(iter);
3387         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3388 }
3389 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3390
3391 /**
3392  * ring_buffer_iter_empty - check if an iterator has no more to read
3393  * @iter: The iterator to check
3394  */
3395 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3396 {
3397         struct ring_buffer_per_cpu *cpu_buffer;
3398
3399         cpu_buffer = iter->cpu_buffer;
3400
3401         return iter->head_page == cpu_buffer->commit_page &&
3402                 iter->head == rb_commit_index(cpu_buffer);
3403 }
3404 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3405
3406 static void
3407 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3408                      struct ring_buffer_event *event)
3409 {
3410         u64 delta;
3411
3412         switch (event->type_len) {
3413         case RINGBUF_TYPE_PADDING:
3414                 return;
3415
3416         case RINGBUF_TYPE_TIME_EXTEND:
3417                 delta = event->array[0];
3418                 delta <<= TS_SHIFT;
3419                 delta += event->time_delta;
3420                 cpu_buffer->read_stamp += delta;
3421                 return;
3422
3423         case RINGBUF_TYPE_TIME_STAMP:
3424                 /* FIXME: not implemented */
3425                 return;
3426
3427         case RINGBUF_TYPE_DATA:
3428                 cpu_buffer->read_stamp += event->time_delta;
3429                 return;
3430
3431         default:
3432                 BUG();
3433         }
3434         return;
3435 }
3436
3437 static void
3438 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3439                           struct ring_buffer_event *event)
3440 {
3441         u64 delta;
3442
3443         switch (event->type_len) {
3444         case RINGBUF_TYPE_PADDING:
3445                 return;
3446
3447         case RINGBUF_TYPE_TIME_EXTEND:
3448                 delta = event->array[0];
3449                 delta <<= TS_SHIFT;
3450                 delta += event->time_delta;
3451                 iter->read_stamp += delta;
3452                 return;
3453
3454         case RINGBUF_TYPE_TIME_STAMP:
3455                 /* FIXME: not implemented */
3456                 return;
3457
3458         case RINGBUF_TYPE_DATA:
3459                 iter->read_stamp += event->time_delta;
3460                 return;
3461
3462         default:
3463                 BUG();
3464         }
3465         return;
3466 }
3467
3468 static struct buffer_page *
3469 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3470 {
3471         struct buffer_page *reader = NULL;
3472         unsigned long overwrite;
3473         unsigned long flags;
3474         int nr_loops = 0;
3475         int ret;
3476
3477         local_irq_save(flags);
3478         arch_spin_lock(&cpu_buffer->lock);
3479
3480  again:
3481         /*
3482          * This should normally only loop twice. But because the
3483          * start of the reader inserts an empty page, it causes
3484          * a case where we will loop three times. There should be no
3485          * reason to loop four times (that I know of).
3486          */
3487         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3488                 reader = NULL;
3489                 goto out;
3490         }
3491
3492         reader = cpu_buffer->reader_page;
3493
3494         /* If there's more to read, return this page */
3495         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3496                 goto out;
3497
3498         /* Never should we have an index greater than the size */
3499         if (RB_WARN_ON(cpu_buffer,
3500                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3501                 goto out;
3502
3503         /* check if we caught up to the tail */
3504         reader = NULL;
3505         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3506                 goto out;
3507
3508         /* Don't bother swapping if the ring buffer is empty */
3509         if (rb_num_of_entries(cpu_buffer) == 0)
3510                 goto out;
3511
3512         /*
3513          * Reset the reader page to size zero.
3514          */
3515         local_set(&cpu_buffer->reader_page->write, 0);
3516         local_set(&cpu_buffer->reader_page->entries, 0);
3517         local_set(&cpu_buffer->reader_page->page->commit, 0);
3518         cpu_buffer->reader_page->real_end = 0;
3519
3520  spin:
3521         /*
3522          * Splice the empty reader page into the list around the head.
3523          */
3524         reader = rb_set_head_page(cpu_buffer);
3525         if (!reader)
3526                 goto out;
3527         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3528         cpu_buffer->reader_page->list.prev = reader->list.prev;
3529
3530         /*
3531          * cpu_buffer->pages just needs to point to the buffer, it
3532          *  has no specific buffer page to point to. Lets move it out
3533          *  of our way so we don't accidentally swap it.
3534          */
3535         cpu_buffer->pages = reader->list.prev;
3536
3537         /* The reader page will be pointing to the new head */
3538         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3539
3540         /*
3541          * We want to make sure we read the overruns after we set up our
3542          * pointers to the next object. The writer side does a
3543          * cmpxchg to cross pages which acts as the mb on the writer
3544          * side. Note, the reader will constantly fail the swap
3545          * while the writer is updating the pointers, so this
3546          * guarantees that the overwrite recorded here is the one we
3547          * want to compare with the last_overrun.
3548          */
3549         smp_mb();
3550         overwrite = local_read(&(cpu_buffer->overrun));
3551
3552         /*
3553          * Here's the tricky part.
3554          *
3555          * We need to move the pointer past the header page.
3556          * But we can only do that if a writer is not currently
3557          * moving it. The page before the header page has the
3558          * flag bit '1' set if it is pointing to the page we want.
3559          * but if the writer is in the process of moving it
3560          * than it will be '2' or already moved '0'.
3561          */
3562
3563         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3564
3565         /*
3566          * If we did not convert it, then we must try again.
3567          */
3568         if (!ret)
3569                 goto spin;
3570
3571         /*
3572          * Yeah! We succeeded in replacing the page.
3573          *
3574          * Now make the new head point back to the reader page.
3575          */
3576         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3577         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3578
3579         /* Finally update the reader page to the new head */
3580         cpu_buffer->reader_page = reader;
3581         rb_reset_reader_page(cpu_buffer);
3582
3583         if (overwrite != cpu_buffer->last_overrun) {
3584                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3585                 cpu_buffer->last_overrun = overwrite;
3586         }
3587
3588         goto again;
3589
3590  out:
3591         arch_spin_unlock(&cpu_buffer->lock);
3592         local_irq_restore(flags);
3593
3594         return reader;
3595 }
3596
3597 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3598 {
3599         struct ring_buffer_event *event;
3600         struct buffer_page *reader;
3601         unsigned length;
3602
3603         reader = rb_get_reader_page(cpu_buffer);
3604
3605         /* This function should not be called when buffer is empty */
3606         if (RB_WARN_ON(cpu_buffer, !reader))
3607                 return;
3608
3609         event = rb_reader_event(cpu_buffer);
3610
3611         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3612                 cpu_buffer->read++;
3613
3614         rb_update_read_stamp(cpu_buffer, event);
3615
3616         length = rb_event_length(event);
3617         cpu_buffer->reader_page->read += length;
3618 }
3619
3620 static void rb_advance_iter(struct ring_buffer_iter *iter)
3621 {
3622         struct ring_buffer_per_cpu *cpu_buffer;
3623         struct ring_buffer_event *event;
3624         unsigned length;
3625
3626         cpu_buffer = iter->cpu_buffer;
3627
3628         /*
3629          * Check if we are at the end of the buffer.
3630          */
3631         if (iter->head >= rb_page_size(iter->head_page)) {
3632                 /* discarded commits can make the page empty */
3633                 if (iter->head_page == cpu_buffer->commit_page)
3634                         return;
3635                 rb_inc_iter(iter);
3636                 return;
3637         }
3638
3639         event = rb_iter_head_event(iter);
3640
3641         length = rb_event_length(event);
3642
3643         /*
3644          * This should not be called to advance the header if we are
3645          * at the tail of the buffer.
3646          */
3647         if (RB_WARN_ON(cpu_buffer,
3648                        (iter->head_page == cpu_buffer->commit_page) &&
3649                        (iter->head + length > rb_commit_index(cpu_buffer))))
3650                 return;
3651
3652         rb_update_iter_read_stamp(iter, event);
3653
3654         iter->head += length;
3655
3656         /* check for end of page padding */
3657         if ((iter->head >= rb_page_size(iter->head_page)) &&
3658             (iter->head_page != cpu_buffer->commit_page))
3659                 rb_inc_iter(iter);
3660 }
3661
3662 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3663 {
3664         return cpu_buffer->lost_events;
3665 }
3666
3667 static struct ring_buffer_event *
3668 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3669                unsigned long *lost_events)
3670 {
3671         struct ring_buffer_event *event;
3672         struct buffer_page *reader;
3673         int nr_loops = 0;
3674
3675  again:
3676         /*
3677          * We repeat when a time extend is encountered.
3678          * Since the time extend is always attached to a data event,
3679          * we should never loop more than once.
3680          * (We never hit the following condition more than twice).
3681          */
3682         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3683                 return NULL;
3684
3685         reader = rb_get_reader_page(cpu_buffer);
3686         if (!reader)
3687                 return NULL;
3688
3689         event = rb_reader_event(cpu_buffer);
3690
3691         switch (event->type_len) {
3692         case RINGBUF_TYPE_PADDING:
3693                 if (rb_null_event(event))
3694                         RB_WARN_ON(cpu_buffer, 1);
3695                 /*
3696                  * Because the writer could be discarding every
3697                  * event it creates (which would probably be bad)
3698                  * if we were to go back to "again" then we may never
3699                  * catch up, and will trigger the warn on, or lock
3700                  * the box. Return the padding, and we will release
3701                  * the current locks, and try again.
3702                  */
3703                 return event;
3704
3705         case RINGBUF_TYPE_TIME_EXTEND:
3706                 /* Internal data, OK to advance */
3707                 rb_advance_reader(cpu_buffer);
3708                 goto again;
3709
3710         case RINGBUF_TYPE_TIME_STAMP:
3711                 /* FIXME: not implemented */
3712                 rb_advance_reader(cpu_buffer);
3713                 goto again;
3714
3715         case RINGBUF_TYPE_DATA:
3716                 if (ts) {
3717                         *ts = cpu_buffer->read_stamp + event->time_delta;
3718                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3719                                                          cpu_buffer->cpu, ts);
3720                 }
3721                 if (lost_events)
3722                         *lost_events = rb_lost_events(cpu_buffer);
3723                 return event;
3724
3725         default:
3726                 BUG();
3727         }
3728
3729         return NULL;
3730 }
3731 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3732
3733 static struct ring_buffer_event *
3734 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3735 {
3736         struct ring_buffer *buffer;
3737         struct ring_buffer_per_cpu *cpu_buffer;
3738         struct ring_buffer_event *event;
3739         int nr_loops = 0;
3740
3741         cpu_buffer = iter->cpu_buffer;
3742         buffer = cpu_buffer->buffer;
3743
3744         /*
3745          * Check if someone performed a consuming read to
3746          * the buffer. A consuming read invalidates the iterator
3747          * and we need to reset the iterator in this case.
3748          */
3749         if (unlikely(iter->cache_read != cpu_buffer->read ||
3750                      iter->cache_reader_page != cpu_buffer->reader_page))
3751                 rb_iter_reset(iter);
3752
3753  again:
3754         if (ring_buffer_iter_empty(iter))
3755                 return NULL;
3756
3757         /*
3758          * We repeat when a time extend is encountered.
3759          * Since the time extend is always attached to a data event,
3760          * we should never loop more than once.
3761          * (We never hit the following condition more than twice).
3762          */
3763         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3764                 return NULL;
3765
3766         if (rb_per_cpu_empty(cpu_buffer))
3767                 return NULL;
3768
3769         if (iter->head >= local_read(&iter->head_page->page->commit)) {
3770                 rb_inc_iter(iter);
3771                 goto again;
3772         }
3773
3774         event = rb_iter_head_event(iter);
3775
3776         switch (event->type_len) {
3777         case RINGBUF_TYPE_PADDING:
3778                 if (rb_null_event(event)) {
3779                         rb_inc_iter(iter);
3780                         goto again;
3781                 }
3782                 rb_advance_iter(iter);
3783                 return event;
3784
3785         case RINGBUF_TYPE_TIME_EXTEND:
3786                 /* Internal data, OK to advance */
3787                 rb_advance_iter(iter);
3788                 goto again;
3789
3790         case RINGBUF_TYPE_TIME_STAMP:
3791                 /* FIXME: not implemented */
3792                 rb_advance_iter(iter);
3793                 goto again;
3794
3795         case RINGBUF_TYPE_DATA:
3796                 if (ts) {
3797                         *ts = iter->read_stamp + event->time_delta;
3798                         ring_buffer_normalize_time_stamp(buffer,
3799                                                          cpu_buffer->cpu, ts);
3800                 }
3801                 return event;
3802
3803         default:
3804                 BUG();
3805         }
3806
3807         return NULL;
3808 }
3809 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3810
3811 static inline int rb_ok_to_lock(void)
3812 {
3813         /*
3814          * If an NMI die dumps out the content of the ring buffer
3815          * do not grab locks. We also permanently disable the ring
3816          * buffer too. A one time deal is all you get from reading
3817          * the ring buffer from an NMI.
3818          */
3819         if (likely(!in_nmi()))
3820                 return 1;
3821
3822         tracing_off_permanent();
3823         return 0;
3824 }
3825
3826 /**
3827  * ring_buffer_peek - peek at the next event to be read
3828  * @buffer: The ring buffer to read
3829  * @cpu: The cpu to peak at
3830  * @ts: The timestamp counter of this event.
3831  * @lost_events: a variable to store if events were lost (may be NULL)
3832  *
3833  * This will return the event that will be read next, but does
3834  * not consume the data.
3835  */
3836 struct ring_buffer_event *
3837 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3838                  unsigned long *lost_events)
3839 {
3840         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3841         struct ring_buffer_event *event;
3842         unsigned long flags;
3843         int dolock;
3844
3845         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3846                 return NULL;
3847
3848         dolock = rb_ok_to_lock();
3849  again:
3850         local_irq_save(flags);
3851         if (dolock)
3852                 raw_spin_lock(&cpu_buffer->reader_lock);
3853         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3854         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3855                 rb_advance_reader(cpu_buffer);
3856         if (dolock)
3857                 raw_spin_unlock(&cpu_buffer->reader_lock);
3858         local_irq_restore(flags);
3859
3860         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3861                 goto again;
3862
3863         return event;
3864 }
3865
3866 /**
3867  * ring_buffer_iter_peek - peek at the next event to be read
3868  * @iter: The ring buffer iterator
3869  * @ts: The timestamp counter of this event.
3870  *
3871  * This will return the event that will be read next, but does
3872  * not increment the iterator.
3873  */
3874 struct ring_buffer_event *
3875 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3876 {
3877         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3878         struct ring_buffer_event *event;
3879         unsigned long flags;
3880
3881  again:
3882         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3883         event = rb_iter_peek(iter, ts);
3884         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3885
3886         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3887                 goto again;
3888
3889         return event;
3890 }
3891
3892 /**
3893  * ring_buffer_consume - return an event and consume it
3894  * @buffer: The ring buffer to get the next event from
3895  * @cpu: the cpu to read the buffer from
3896  * @ts: a variable to store the timestamp (may be NULL)
3897  * @lost_events: a variable to store if events were lost (may be NULL)
3898  *
3899  * Returns the next event in the ring buffer, and that event is consumed.
3900  * Meaning, that sequential reads will keep returning a different event,
3901  * and eventually empty the ring buffer if the producer is slower.
3902  */
3903 struct ring_buffer_event *
3904 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3905                     unsigned long *lost_events)
3906 {
3907         struct ring_buffer_per_cpu *cpu_buffer;
3908         struct ring_buffer_event *event = NULL;
3909         unsigned long flags;
3910         int dolock;
3911
3912         dolock = rb_ok_to_lock();
3913
3914  again:
3915         /* might be called in atomic */
3916         preempt_disable();
3917
3918         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3919                 goto out;
3920
3921         cpu_buffer = buffer->buffers[cpu];
3922         local_irq_save(flags);
3923         if (dolock)
3924                 raw_spin_lock(&cpu_buffer->reader_lock);
3925
3926         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3927         if (event) {
3928                 cpu_buffer->lost_events = 0;
3929                 rb_advance_reader(cpu_buffer);
3930         }
3931
3932         if (dolock)
3933                 raw_spin_unlock(&cpu_buffer->reader_lock);
3934         local_irq_restore(flags);
3935
3936  out:
3937         preempt_enable();
3938
3939         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3940                 goto again;
3941
3942         return event;
3943 }
3944 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3945
3946 /**
3947  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3948  * @buffer: The ring buffer to read from
3949  * @cpu: The cpu buffer to iterate over
3950  *
3951  * This performs the initial preparations necessary to iterate
3952  * through the buffer.  Memory is allocated, buffer recording
3953  * is disabled, and the iterator pointer is returned to the caller.
3954  *
3955  * Disabling buffer recordng prevents the reading from being
3956  * corrupted. This is not a consuming read, so a producer is not
3957  * expected.
3958  *
3959  * After a sequence of ring_buffer_read_prepare calls, the user is
3960  * expected to make at least one call to ring_buffer_read_prepare_sync.
3961  * Afterwards, ring_buffer_read_start is invoked to get things going
3962  * for real.
3963  *
3964  * This overall must be paired with ring_buffer_read_finish.
3965  */
3966 struct ring_buffer_iter *
3967 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3968 {
3969         struct ring_buffer_per_cpu *cpu_buffer;
3970         struct ring_buffer_iter *iter;
3971
3972         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3973                 return NULL;
3974
3975         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3976         if (!iter)
3977                 return NULL;
3978
3979         cpu_buffer = buffer->buffers[cpu];
3980
3981         iter->cpu_buffer = cpu_buffer;
3982
3983         atomic_inc(&buffer->resize_disabled);
3984         atomic_inc(&cpu_buffer->record_disabled);
3985
3986         return iter;
3987 }
3988 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3989
3990 /**
3991  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3992  *
3993  * All previously invoked ring_buffer_read_prepare calls to prepare
3994  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3995  * calls on those iterators are allowed.
3996  */
3997 void
3998 ring_buffer_read_prepare_sync(void)
3999 {
4000         synchronize_sched();
4001 }
4002 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4003
4004 /**
4005  * ring_buffer_read_start - start a non consuming read of the buffer
4006  * @iter: The iterator returned by ring_buffer_read_prepare
4007  *
4008  * This finalizes the startup of an iteration through the buffer.
4009  * The iterator comes from a call to ring_buffer_read_prepare and
4010  * an intervening ring_buffer_read_prepare_sync must have been
4011  * performed.
4012  *
4013  * Must be paired with ring_buffer_read_finish.
4014  */
4015 void
4016 ring_buffer_read_start(struct ring_buffer_iter *iter)
4017 {
4018         struct ring_buffer_per_cpu *cpu_buffer;
4019         unsigned long flags;
4020
4021         if (!iter)
4022                 return;
4023
4024         cpu_buffer = iter->cpu_buffer;
4025
4026         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4027         arch_spin_lock(&cpu_buffer->lock);
4028         rb_iter_reset(iter);
4029         arch_spin_unlock(&cpu_buffer->lock);
4030         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4031 }
4032 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4033
4034 /**
4035  * ring_buffer_read_finish - finish reading the iterator of the buffer
4036  * @iter: The iterator retrieved by ring_buffer_start
4037  *
4038  * This re-enables the recording to the buffer, and frees the
4039  * iterator.
4040  */
4041 void
4042 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4043 {
4044         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4045         unsigned long flags;
4046
4047         /*
4048          * Ring buffer is disabled from recording, here's a good place
4049          * to check the integrity of the ring buffer.
4050          * Must prevent readers from trying to read, as the check
4051          * clears the HEAD page and readers require it.
4052          */
4053         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4054         rb_check_pages(cpu_buffer);
4055         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4056
4057         atomic_dec(&cpu_buffer->record_disabled);
4058         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4059         kfree(iter);
4060 }
4061 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4062
4063 /**
4064  * ring_buffer_read - read the next item in the ring buffer by the iterator
4065  * @iter: The ring buffer iterator
4066  * @ts: The time stamp of the event read.
4067  *
4068  * This reads the next event in the ring buffer and increments the iterator.
4069  */
4070 struct ring_buffer_event *
4071 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4072 {
4073         struct ring_buffer_event *event;
4074         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4075         unsigned long flags;
4076
4077         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4078  again:
4079         event = rb_iter_peek(iter, ts);
4080         if (!event)
4081                 goto out;
4082
4083         if (event->type_len == RINGBUF_TYPE_PADDING)
4084                 goto again;
4085
4086         rb_advance_iter(iter);
4087  out:
4088         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4089
4090         return event;
4091 }
4092 EXPORT_SYMBOL_GPL(ring_buffer_read);
4093
4094 /**
4095  * ring_buffer_size - return the size of the ring buffer (in bytes)
4096  * @buffer: The ring buffer.
4097  */
4098 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4099 {
4100         /*
4101          * Earlier, this method returned
4102          *      BUF_PAGE_SIZE * buffer->nr_pages
4103          * Since the nr_pages field is now removed, we have converted this to
4104          * return the per cpu buffer value.
4105          */
4106         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4107                 return 0;
4108
4109         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4110 }
4111 EXPORT_SYMBOL_GPL(ring_buffer_size);
4112
4113 static void
4114 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4115 {
4116         rb_head_page_deactivate(cpu_buffer);
4117
4118         cpu_buffer->head_page
4119                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4120         local_set(&cpu_buffer->head_page->write, 0);
4121         local_set(&cpu_buffer->head_page->entries, 0);
4122         local_set(&cpu_buffer->head_page->page->commit, 0);
4123
4124         cpu_buffer->head_page->read = 0;
4125
4126         cpu_buffer->tail_page = cpu_buffer->head_page;
4127         cpu_buffer->commit_page = cpu_buffer->head_page;
4128
4129         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4130         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4131         local_set(&cpu_buffer->reader_page->write, 0);
4132         local_set(&cpu_buffer->reader_page->entries, 0);
4133         local_set(&cpu_buffer->reader_page->page->commit, 0);
4134         cpu_buffer->reader_page->read = 0;
4135
4136         local_set(&cpu_buffer->entries_bytes, 0);
4137         local_set(&cpu_buffer->overrun, 0);
4138         local_set(&cpu_buffer->commit_overrun, 0);
4139         local_set(&cpu_buffer->dropped_events, 0);
4140         local_set(&cpu_buffer->entries, 0);
4141         local_set(&cpu_buffer->committing, 0);
4142         local_set(&cpu_buffer->commits, 0);
4143         cpu_buffer->read = 0;
4144         cpu_buffer->read_bytes = 0;
4145
4146         cpu_buffer->write_stamp = 0;
4147         cpu_buffer->read_stamp = 0;
4148
4149         cpu_buffer->lost_events = 0;
4150         cpu_buffer->last_overrun = 0;
4151
4152         rb_head_page_activate(cpu_buffer);
4153 }
4154
4155 /**
4156  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4157  * @buffer: The ring buffer to reset a per cpu buffer of
4158  * @cpu: The CPU buffer to be reset
4159  */
4160 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4161 {
4162         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4163         unsigned long flags;
4164
4165         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4166                 return;
4167
4168         atomic_inc(&buffer->resize_disabled);
4169         atomic_inc(&cpu_buffer->record_disabled);
4170
4171         /* Make sure all commits have finished */
4172         synchronize_sched();
4173
4174         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4175
4176         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4177                 goto out;
4178
4179         arch_spin_lock(&cpu_buffer->lock);
4180
4181         rb_reset_cpu(cpu_buffer);
4182
4183         arch_spin_unlock(&cpu_buffer->lock);
4184
4185  out:
4186         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4187
4188         atomic_dec(&cpu_buffer->record_disabled);
4189         atomic_dec(&buffer->resize_disabled);
4190 }
4191 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4192
4193 /**
4194  * ring_buffer_reset - reset a ring buffer
4195  * @buffer: The ring buffer to reset all cpu buffers
4196  */
4197 void ring_buffer_reset(struct ring_buffer *buffer)
4198 {
4199         int cpu;
4200
4201         for_each_buffer_cpu(buffer, cpu)
4202                 ring_buffer_reset_cpu(buffer, cpu);
4203 }
4204 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4205
4206 /**
4207  * rind_buffer_empty - is the ring buffer empty?
4208  * @buffer: The ring buffer to test
4209  */
4210 int ring_buffer_empty(struct ring_buffer *buffer)
4211 {
4212         struct ring_buffer_per_cpu *cpu_buffer;
4213         unsigned long flags;
4214         int dolock;
4215         int cpu;
4216         int ret;
4217
4218         dolock = rb_ok_to_lock();
4219
4220         /* yes this is racy, but if you don't like the race, lock the buffer */
4221         for_each_buffer_cpu(buffer, cpu) {
4222                 cpu_buffer = buffer->buffers[cpu];
4223                 local_irq_save(flags);
4224                 if (dolock)
4225                         raw_spin_lock(&cpu_buffer->reader_lock);
4226                 ret = rb_per_cpu_empty(cpu_buffer);
4227                 if (dolock)
4228                         raw_spin_unlock(&cpu_buffer->reader_lock);
4229                 local_irq_restore(flags);
4230
4231                 if (!ret)
4232                         return 0;
4233         }
4234
4235         return 1;
4236 }
4237 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4238
4239 /**
4240  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4241  * @buffer: The ring buffer
4242  * @cpu: The CPU buffer to test
4243  */
4244 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4245 {
4246         struct ring_buffer_per_cpu *cpu_buffer;
4247         unsigned long flags;
4248         int dolock;
4249         int ret;
4250
4251         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4252                 return 1;
4253
4254         dolock = rb_ok_to_lock();
4255
4256         cpu_buffer = buffer->buffers[cpu];
4257         local_irq_save(flags);
4258         if (dolock)
4259                 raw_spin_lock(&cpu_buffer->reader_lock);
4260         ret = rb_per_cpu_empty(cpu_buffer);
4261         if (dolock)
4262                 raw_spin_unlock(&cpu_buffer->reader_lock);
4263         local_irq_restore(flags);
4264
4265         return ret;
4266 }
4267 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4268
4269 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4270 /**
4271  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4272  * @buffer_a: One buffer to swap with
4273  * @buffer_b: The other buffer to swap with
4274  *
4275  * This function is useful for tracers that want to take a "snapshot"
4276  * of a CPU buffer and has another back up buffer lying around.
4277  * it is expected that the tracer handles the cpu buffer not being
4278  * used at the moment.
4279  */
4280 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4281                          struct ring_buffer *buffer_b, int cpu)
4282 {
4283         struct ring_buffer_per_cpu *cpu_buffer_a;
4284         struct ring_buffer_per_cpu *cpu_buffer_b;
4285         int ret = -EINVAL;
4286
4287         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4288             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4289                 goto out;
4290
4291         cpu_buffer_a = buffer_a->buffers[cpu];
4292         cpu_buffer_b = buffer_b->buffers[cpu];
4293
4294         /* At least make sure the two buffers are somewhat the same */
4295         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4296                 goto out;
4297
4298         ret = -EAGAIN;
4299
4300         if (ring_buffer_flags != RB_BUFFERS_ON)
4301                 goto out;
4302
4303         if (atomic_read(&buffer_a->record_disabled))
4304                 goto out;
4305
4306         if (atomic_read(&buffer_b->record_disabled))
4307                 goto out;
4308
4309         if (atomic_read(&cpu_buffer_a->record_disabled))
4310                 goto out;
4311
4312         if (atomic_read(&cpu_buffer_b->record_disabled))
4313                 goto out;
4314
4315         /*
4316          * We can't do a synchronize_sched here because this
4317          * function can be called in atomic context.
4318          * Normally this will be called from the same CPU as cpu.
4319          * If not it's up to the caller to protect this.
4320          */
4321         atomic_inc(&cpu_buffer_a->record_disabled);
4322         atomic_inc(&cpu_buffer_b->record_disabled);
4323
4324         ret = -EBUSY;
4325         if (local_read(&cpu_buffer_a->committing))
4326                 goto out_dec;
4327         if (local_read(&cpu_buffer_b->committing))
4328                 goto out_dec;
4329
4330         buffer_a->buffers[cpu] = cpu_buffer_b;
4331         buffer_b->buffers[cpu] = cpu_buffer_a;
4332
4333         cpu_buffer_b->buffer = buffer_a;
4334         cpu_buffer_a->buffer = buffer_b;
4335
4336         ret = 0;
4337
4338 out_dec:
4339         atomic_dec(&cpu_buffer_a->record_disabled);
4340         atomic_dec(&cpu_buffer_b->record_disabled);
4341 out:
4342         return ret;
4343 }
4344 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4345 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4346
4347 /**
4348  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4349  * @buffer: the buffer to allocate for.
4350  * @cpu: the cpu buffer to allocate.
4351  *
4352  * This function is used in conjunction with ring_buffer_read_page.
4353  * When reading a full page from the ring buffer, these functions
4354  * can be used to speed up the process. The calling function should
4355  * allocate a few pages first with this function. Then when it
4356  * needs to get pages from the ring buffer, it passes the result
4357  * of this function into ring_buffer_read_page, which will swap
4358  * the page that was allocated, with the read page of the buffer.
4359  *
4360  * Returns:
4361  *  The page allocated, or NULL on error.
4362  */
4363 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4364 {
4365         struct buffer_data_page *bpage;
4366         struct page *page;
4367
4368         page = alloc_pages_node(cpu_to_node(cpu),
4369                                 GFP_KERNEL | __GFP_NORETRY, 0);
4370         if (!page)
4371                 return NULL;
4372
4373         bpage = page_address(page);
4374
4375         rb_init_page(bpage);
4376
4377         return bpage;
4378 }
4379 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4380
4381 /**
4382  * ring_buffer_free_read_page - free an allocated read page
4383  * @buffer: the buffer the page was allocate for
4384  * @data: the page to free
4385  *
4386  * Free a page allocated from ring_buffer_alloc_read_page.
4387  */
4388 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4389 {
4390         free_page((unsigned long)data);
4391 }
4392 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4393
4394 /**
4395  * ring_buffer_read_page - extract a page from the ring buffer
4396  * @buffer: buffer to extract from
4397  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4398  * @len: amount to extract
4399  * @cpu: the cpu of the buffer to extract
4400  * @full: should the extraction only happen when the page is full.
4401  *
4402  * This function will pull out a page from the ring buffer and consume it.
4403  * @data_page must be the address of the variable that was returned
4404  * from ring_buffer_alloc_read_page. This is because the page might be used
4405  * to swap with a page in the ring buffer.
4406  *
4407  * for example:
4408  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4409  *      if (!rpage)
4410  *              return error;
4411  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4412  *      if (ret >= 0)
4413  *              process_page(rpage, ret);
4414  *
4415  * When @full is set, the function will not return true unless
4416  * the writer is off the reader page.
4417  *
4418  * Note: it is up to the calling functions to handle sleeps and wakeups.
4419  *  The ring buffer can be used anywhere in the kernel and can not
4420  *  blindly call wake_up. The layer that uses the ring buffer must be
4421  *  responsible for that.
4422  *
4423  * Returns:
4424  *  >=0 if data has been transferred, returns the offset of consumed data.
4425  *  <0 if no data has been transferred.
4426  */
4427 int ring_buffer_read_page(struct ring_buffer *buffer,
4428                           void **data_page, size_t len, int cpu, int full)
4429 {
4430         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4431         struct ring_buffer_event *event;
4432         struct buffer_data_page *bpage;
4433         struct buffer_page *reader;
4434         unsigned long missed_events;
4435         unsigned long flags;
4436         unsigned int commit;
4437         unsigned int read;
4438         u64 save_timestamp;
4439         int ret = -1;
4440
4441         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4442                 goto out;
4443
4444         /*
4445          * If len is not big enough to hold the page header, then
4446          * we can not copy anything.
4447          */
4448         if (len <= BUF_PAGE_HDR_SIZE)
4449                 goto out;
4450
4451         len -= BUF_PAGE_HDR_SIZE;
4452
4453         if (!data_page)
4454                 goto out;
4455
4456         bpage = *data_page;
4457         if (!bpage)
4458                 goto out;
4459
4460         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4461
4462         reader = rb_get_reader_page(cpu_buffer);
4463         if (!reader)
4464                 goto out_unlock;
4465
4466         event = rb_reader_event(cpu_buffer);
4467
4468         read = reader->read;
4469         commit = rb_page_commit(reader);
4470
4471         /* Check if any events were dropped */
4472         missed_events = cpu_buffer->lost_events;
4473
4474         /*
4475          * If this page has been partially read or
4476          * if len is not big enough to read the rest of the page or
4477          * a writer is still on the page, then
4478          * we must copy the data from the page to the buffer.
4479          * Otherwise, we can simply swap the page with the one passed in.
4480          */
4481         if (read || (len < (commit - read)) ||
4482             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4483                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4484                 unsigned int rpos = read;
4485                 unsigned int pos = 0;
4486                 unsigned int size;
4487
4488                 if (full)
4489                         goto out_unlock;
4490
4491                 if (len > (commit - read))
4492                         len = (commit - read);
4493
4494                 /* Always keep the time extend and data together */
4495                 size = rb_event_ts_length(event);
4496
4497                 if (len < size)
4498                         goto out_unlock;
4499
4500                 /* save the current timestamp, since the user will need it */
4501                 save_timestamp = cpu_buffer->read_stamp;
4502
4503                 /* Need to copy one event at a time */
4504                 do {
4505                         /* We need the size of one event, because
4506                          * rb_advance_reader only advances by one event,
4507                          * whereas rb_event_ts_length may include the size of
4508                          * one or two events.
4509                          * We have already ensured there's enough space if this
4510                          * is a time extend. */
4511                         size = rb_event_length(event);
4512                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4513
4514                         len -= size;
4515
4516                         rb_advance_reader(cpu_buffer);
4517                         rpos = reader->read;
4518                         pos += size;
4519
4520                         if (rpos >= commit)
4521                                 break;
4522
4523                         event = rb_reader_event(cpu_buffer);
4524                         /* Always keep the time extend and data together */
4525                         size = rb_event_ts_length(event);
4526                 } while (len >= size);
4527
4528                 /* update bpage */
4529                 local_set(&bpage->commit, pos);
4530                 bpage->time_stamp = save_timestamp;
4531
4532                 /* we copied everything to the beginning */
4533                 read = 0;
4534         } else {
4535                 /* update the entry counter */
4536                 cpu_buffer->read += rb_page_entries(reader);
4537                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4538
4539                 /* swap the pages */
4540                 rb_init_page(bpage);
4541                 bpage = reader->page;
4542                 reader->page = *data_page;
4543                 local_set(&reader->write, 0);
4544                 local_set(&reader->entries, 0);
4545                 reader->read = 0;
4546                 *data_page = bpage;
4547
4548                 /*
4549                  * Use the real_end for the data size,
4550                  * This gives us a chance to store the lost events
4551                  * on the page.
4552                  */
4553                 if (reader->real_end)
4554                         local_set(&bpage->commit, reader->real_end);
4555         }
4556         ret = read;
4557
4558         cpu_buffer->lost_events = 0;
4559
4560         commit = local_read(&bpage->commit);
4561         /*
4562          * Set a flag in the commit field if we lost events
4563          */
4564         if (missed_events) {
4565                 /* If there is room at the end of the page to save the
4566                  * missed events, then record it there.
4567                  */
4568                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4569                         memcpy(&bpage->data[commit], &missed_events,
4570                                sizeof(missed_events));
4571                         local_add(RB_MISSED_STORED, &bpage->commit);
4572                         commit += sizeof(missed_events);
4573                 }
4574                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4575         }
4576
4577         /*
4578          * This page may be off to user land. Zero it out here.
4579          */
4580         if (commit < BUF_PAGE_SIZE)
4581                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4582
4583  out_unlock:
4584         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4585
4586  out:
4587         return ret;
4588 }
4589 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4590
4591 #ifdef CONFIG_HOTPLUG_CPU
4592 static int rb_cpu_notify(struct notifier_block *self,
4593                          unsigned long action, void *hcpu)
4594 {
4595         struct ring_buffer *buffer =
4596                 container_of(self, struct ring_buffer, cpu_notify);
4597         long cpu = (long)hcpu;
4598         int cpu_i, nr_pages_same;
4599         unsigned int nr_pages;
4600
4601         switch (action) {
4602         case CPU_UP_PREPARE:
4603         case CPU_UP_PREPARE_FROZEN:
4604                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4605                         return NOTIFY_OK;
4606
4607                 nr_pages = 0;
4608                 nr_pages_same = 1;
4609                 /* check if all cpu sizes are same */
4610                 for_each_buffer_cpu(buffer, cpu_i) {
4611                         /* fill in the size from first enabled cpu */
4612                         if (nr_pages == 0)
4613                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4614                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4615                                 nr_pages_same = 0;
4616                                 break;
4617                         }
4618                 }
4619                 /* allocate minimum pages, user can later expand it */
4620                 if (!nr_pages_same)
4621                         nr_pages = 2;
4622                 buffer->buffers[cpu] =
4623                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4624                 if (!buffer->buffers[cpu]) {
4625                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4626                              cpu);
4627                         return NOTIFY_OK;
4628                 }
4629                 smp_wmb();
4630                 cpumask_set_cpu(cpu, buffer->cpumask);
4631                 break;
4632         case CPU_DOWN_PREPARE:
4633         case CPU_DOWN_PREPARE_FROZEN:
4634                 /*
4635                  * Do nothing.
4636                  *  If we were to free the buffer, then the user would
4637                  *  lose any trace that was in the buffer.
4638                  */
4639                 break;
4640         default:
4641                 break;
4642         }
4643         return NOTIFY_OK;
4644 }
4645 #endif
4646
4647 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4648 /*
4649  * This is a basic integrity check of the ring buffer.
4650  * Late in the boot cycle this test will run when configured in.
4651  * It will kick off a thread per CPU that will go into a loop
4652  * writing to the per cpu ring buffer various sizes of data.
4653  * Some of the data will be large items, some small.
4654  *
4655  * Another thread is created that goes into a spin, sending out
4656  * IPIs to the other CPUs to also write into the ring buffer.
4657  * this is to test the nesting ability of the buffer.
4658  *
4659  * Basic stats are recorded and reported. If something in the
4660  * ring buffer should happen that's not expected, a big warning
4661  * is displayed and all ring buffers are disabled.
4662  */
4663 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4664
4665 struct rb_test_data {
4666         struct ring_buffer      *buffer;
4667         unsigned long           events;
4668         unsigned long           bytes_written;
4669         unsigned long           bytes_alloc;
4670         unsigned long           bytes_dropped;
4671         unsigned long           events_nested;
4672         unsigned long           bytes_written_nested;
4673         unsigned long           bytes_alloc_nested;
4674         unsigned long           bytes_dropped_nested;
4675         int                     min_size_nested;
4676         int                     max_size_nested;
4677         int                     max_size;
4678         int                     min_size;
4679         int                     cpu;
4680         int                     cnt;
4681 };
4682
4683 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4684
4685 /* 1 meg per cpu */
4686 #define RB_TEST_BUFFER_SIZE     1048576
4687
4688 static char rb_string[] __initdata =
4689         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4690         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4691         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4692
4693 static bool rb_test_started __initdata;
4694
4695 struct rb_item {
4696         int size;
4697         char str[];
4698 };
4699
4700 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4701 {
4702         struct ring_buffer_event *event;
4703         struct rb_item *item;
4704         bool started;
4705         int event_len;
4706         int size;
4707         int len;
4708         int cnt;
4709
4710         /* Have nested writes different that what is written */
4711         cnt = data->cnt + (nested ? 27 : 0);
4712
4713         /* Multiply cnt by ~e, to make some unique increment */
4714         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4715
4716         len = size + sizeof(struct rb_item);
4717
4718         started = rb_test_started;
4719         /* read rb_test_started before checking buffer enabled */
4720         smp_rmb();
4721
4722         event = ring_buffer_lock_reserve(data->buffer, len);
4723         if (!event) {
4724                 /* Ignore dropped events before test starts. */
4725                 if (started) {
4726                         if (nested)
4727                                 data->bytes_dropped += len;
4728                         else
4729                                 data->bytes_dropped_nested += len;
4730                 }
4731                 return len;
4732         }
4733
4734         event_len = ring_buffer_event_length(event);
4735
4736         if (RB_WARN_ON(data->buffer, event_len < len))
4737                 goto out;
4738
4739         item = ring_buffer_event_data(event);
4740         item->size = size;
4741         memcpy(item->str, rb_string, size);
4742
4743         if (nested) {
4744                 data->bytes_alloc_nested += event_len;
4745                 data->bytes_written_nested += len;
4746                 data->events_nested++;
4747                 if (!data->min_size_nested || len < data->min_size_nested)
4748                         data->min_size_nested = len;
4749                 if (len > data->max_size_nested)
4750                         data->max_size_nested = len;
4751         } else {
4752                 data->bytes_alloc += event_len;
4753                 data->bytes_written += len;
4754                 data->events++;
4755                 if (!data->min_size || len < data->min_size)
4756                         data->max_size = len;
4757                 if (len > data->max_size)
4758                         data->max_size = len;
4759         }
4760
4761  out:
4762         ring_buffer_unlock_commit(data->buffer, event);
4763
4764         return 0;
4765 }
4766
4767 static __init int rb_test(void *arg)
4768 {
4769         struct rb_test_data *data = arg;
4770
4771         while (!kthread_should_stop()) {
4772                 rb_write_something(data, false);
4773                 data->cnt++;
4774
4775                 set_current_state(TASK_INTERRUPTIBLE);
4776                 /* Now sleep between a min of 100-300us and a max of 1ms */
4777                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4778         }
4779
4780         return 0;
4781 }
4782
4783 static __init void rb_ipi(void *ignore)
4784 {
4785         struct rb_test_data *data;
4786         int cpu = smp_processor_id();
4787
4788         data = &rb_data[cpu];
4789         rb_write_something(data, true);
4790 }
4791
4792 static __init int rb_hammer_test(void *arg)
4793 {
4794         while (!kthread_should_stop()) {
4795
4796                 /* Send an IPI to all cpus to write data! */
4797                 smp_call_function(rb_ipi, NULL, 1);
4798                 /* No sleep, but for non preempt, let others run */
4799                 schedule();
4800         }
4801
4802         return 0;
4803 }
4804
4805 static __init int test_ringbuffer(void)
4806 {
4807         struct task_struct *rb_hammer;
4808         struct ring_buffer *buffer;
4809         int cpu;
4810         int ret = 0;
4811
4812         pr_info("Running ring buffer tests...\n");
4813
4814         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4815         if (WARN_ON(!buffer))
4816                 return 0;
4817
4818         /* Disable buffer so that threads can't write to it yet */
4819         ring_buffer_record_off(buffer);
4820
4821         for_each_online_cpu(cpu) {
4822                 rb_data[cpu].buffer = buffer;
4823                 rb_data[cpu].cpu = cpu;
4824                 rb_data[cpu].cnt = cpu;
4825                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4826                                                  "rbtester/%d", cpu);
4827                 if (WARN_ON(!rb_threads[cpu])) {
4828                         pr_cont("FAILED\n");
4829                         ret = -1;
4830                         goto out_free;
4831                 }
4832
4833                 kthread_bind(rb_threads[cpu], cpu);
4834                 wake_up_process(rb_threads[cpu]);
4835         }
4836
4837         /* Now create the rb hammer! */
4838         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4839         if (WARN_ON(!rb_hammer)) {
4840                 pr_cont("FAILED\n");
4841                 ret = -1;
4842                 goto out_free;
4843         }
4844
4845         ring_buffer_record_on(buffer);
4846         /*
4847          * Show buffer is enabled before setting rb_test_started.
4848          * Yes there's a small race window where events could be
4849          * dropped and the thread wont catch it. But when a ring
4850          * buffer gets enabled, there will always be some kind of
4851          * delay before other CPUs see it. Thus, we don't care about
4852          * those dropped events. We care about events dropped after
4853          * the threads see that the buffer is active.
4854          */
4855         smp_wmb();
4856         rb_test_started = true;
4857
4858         set_current_state(TASK_INTERRUPTIBLE);
4859         /* Just run for 10 seconds */;
4860         schedule_timeout(10 * HZ);
4861
4862         kthread_stop(rb_hammer);
4863
4864  out_free:
4865         for_each_online_cpu(cpu) {
4866                 if (!rb_threads[cpu])
4867                         break;
4868                 kthread_stop(rb_threads[cpu]);
4869         }
4870         if (ret) {
4871                 ring_buffer_free(buffer);
4872                 return ret;
4873         }
4874
4875         /* Report! */
4876         pr_info("finished\n");
4877         for_each_online_cpu(cpu) {
4878                 struct ring_buffer_event *event;
4879                 struct rb_test_data *data = &rb_data[cpu];
4880                 struct rb_item *item;
4881                 unsigned long total_events;
4882                 unsigned long total_dropped;
4883                 unsigned long total_written;
4884                 unsigned long total_alloc;
4885                 unsigned long total_read = 0;
4886                 unsigned long total_size = 0;
4887                 unsigned long total_len = 0;
4888                 unsigned long total_lost = 0;
4889                 unsigned long lost;
4890                 int big_event_size;
4891                 int small_event_size;
4892
4893                 ret = -1;
4894
4895                 total_events = data->events + data->events_nested;
4896                 total_written = data->bytes_written + data->bytes_written_nested;
4897                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4898                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4899
4900                 big_event_size = data->max_size + data->max_size_nested;
4901                 small_event_size = data->min_size + data->min_size_nested;
4902
4903                 pr_info("CPU %d:\n", cpu);
4904                 pr_info("              events:    %ld\n", total_events);
4905                 pr_info("       dropped bytes:    %ld\n", total_dropped);
4906                 pr_info("       alloced bytes:    %ld\n", total_alloc);
4907                 pr_info("       written bytes:    %ld\n", total_written);
4908                 pr_info("       biggest event:    %d\n", big_event_size);
4909                 pr_info("      smallest event:    %d\n", small_event_size);
4910
4911                 if (RB_WARN_ON(buffer, total_dropped))
4912                         break;
4913
4914                 ret = 0;
4915
4916                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4917                         total_lost += lost;
4918                         item = ring_buffer_event_data(event);
4919                         total_len += ring_buffer_event_length(event);
4920                         total_size += item->size + sizeof(struct rb_item);
4921                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4922                                 pr_info("FAILED!\n");
4923                                 pr_info("buffer had: %.*s\n", item->size, item->str);
4924                                 pr_info("expected:   %.*s\n", item->size, rb_string);
4925                                 RB_WARN_ON(buffer, 1);
4926                                 ret = -1;
4927                                 break;
4928                         }
4929                         total_read++;
4930                 }
4931                 if (ret)
4932                         break;
4933
4934                 ret = -1;
4935
4936                 pr_info("         read events:   %ld\n", total_read);
4937                 pr_info("         lost events:   %ld\n", total_lost);
4938                 pr_info("        total events:   %ld\n", total_lost + total_read);
4939                 pr_info("  recorded len bytes:   %ld\n", total_len);
4940                 pr_info(" recorded size bytes:   %ld\n", total_size);
4941                 if (total_lost)
4942                         pr_info(" With dropped events, record len and size may not match\n"
4943                                 " alloced and written from above\n");
4944                 if (!total_lost) {
4945                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
4946                                        total_size != total_written))
4947                                 break;
4948                 }
4949                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4950                         break;
4951
4952                 ret = 0;
4953         }
4954         if (!ret)
4955                 pr_info("Ring buffer PASSED!\n");
4956
4957         ring_buffer_free(buffer);
4958         return 0;
4959 }
4960
4961 late_initcall(test_ringbuffer);
4962 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */