m68k: Provide __phys_to_pfn() and __pfn_to_phys()
[cascardo/linux.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h>      /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35         trace_seq_puts(s, "# compressed entry header\n");
36         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38         trace_seq_puts(s, "\tarray       :   32 bits\n");
39         trace_seq_putc(s, '\n');
40         trace_seq_printf(s, "\tpadding     : type == %d\n",
41                          RINGBUF_TYPE_PADDING);
42         trace_seq_printf(s, "\ttime_extend : type == %d\n",
43                          RINGBUF_TYPE_TIME_EXTEND);
44         trace_seq_printf(s, "\tdata max type_len  == %d\n",
45                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47         return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF           (1 << 20)
120
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT            4U
125 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
127
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT       0
130 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT       1
133 # define RB_ARCH_ALIGNMENT              8U
134 #endif
135
136 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
137
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140
141 enum {
142         RB_LEN_TIME_EXTEND = 8,
143         RB_LEN_TIME_STAMP = 16,
144 };
145
146 #define skip_time_extend(event) \
147         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156         /* padding has a NULL time_delta */
157         event->type_len = RINGBUF_TYPE_PADDING;
158         event->time_delta = 0;
159 }
160
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164         unsigned length;
165
166         if (event->type_len)
167                 length = event->type_len * RB_ALIGNMENT;
168         else
169                 length = event->array[0];
170         return length + RB_EVNT_HDR_SIZE;
171 }
172
173 /*
174  * Return the length of the given event. Will return
175  * the length of the time extend if the event is a
176  * time extend.
177  */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181         switch (event->type_len) {
182         case RINGBUF_TYPE_PADDING:
183                 if (rb_null_event(event))
184                         /* undefined */
185                         return -1;
186                 return  event->array[0] + RB_EVNT_HDR_SIZE;
187
188         case RINGBUF_TYPE_TIME_EXTEND:
189                 return RB_LEN_TIME_EXTEND;
190
191         case RINGBUF_TYPE_TIME_STAMP:
192                 return RB_LEN_TIME_STAMP;
193
194         case RINGBUF_TYPE_DATA:
195                 return rb_event_data_length(event);
196         default:
197                 BUG();
198         }
199         /* not hit */
200         return 0;
201 }
202
203 /*
204  * Return total length of time extend and data,
205  *   or just the event length for all other events.
206  */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210         unsigned len = 0;
211
212         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213                 /* time extends include the data event after it */
214                 len = RB_LEN_TIME_EXTEND;
215                 event = skip_time_extend(event);
216         }
217         return len + rb_event_length(event);
218 }
219
220 /**
221  * ring_buffer_event_length - return the length of the event
222  * @event: the event to get the length of
223  *
224  * Returns the size of the data load of a data event.
225  * If the event is something other than a data event, it
226  * returns the size of the event itself. With the exception
227  * of a TIME EXTEND, where it still returns the size of the
228  * data load of the data event after it.
229  */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232         unsigned length;
233
234         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235                 event = skip_time_extend(event);
236
237         length = rb_event_length(event);
238         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239                 return length;
240         length -= RB_EVNT_HDR_SIZE;
241         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242                 length -= sizeof(event->array[0]);
243         return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246
247 /* inline for ring buffer fast paths */
248 static void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252                 event = skip_time_extend(event);
253         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254         /* If length is in len field, then array[0] has the data */
255         if (event->type_len)
256                 return (void *)&event->array[0];
257         /* Otherwise length is in array[0] and array[1] has the data */
258         return (void *)&event->array[1];
259 }
260
261 /**
262  * ring_buffer_event_data - return the data of the event
263  * @event: the event to get the data from
264  */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267         return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270
271 #define for_each_buffer_cpu(buffer, cpu)                \
272         for_each_cpu(cpu, buffer->cpumask)
273
274 #define TS_SHIFT        27
275 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST   (~TS_MASK)
277
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS        (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED        (1 << 30)
282
283 struct buffer_data_page {
284         u64              time_stamp;    /* page time stamp */
285         local_t          commit;        /* write committed index */
286         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
287 };
288
289 /*
290  * Note, the buffer_page list must be first. The buffer pages
291  * are allocated in cache lines, which means that each buffer
292  * page will be at the beginning of a cache line, and thus
293  * the least significant bits will be zero. We use this to
294  * add flags in the list struct pointers, to make the ring buffer
295  * lockless.
296  */
297 struct buffer_page {
298         struct list_head list;          /* list of buffer pages */
299         local_t          write;         /* index for next write */
300         unsigned         read;          /* index for next read */
301         local_t          entries;       /* entries on this page */
302         unsigned long    real_end;      /* real end of data */
303         struct buffer_data_page *page;  /* Actual data page */
304 };
305
306 /*
307  * The buffer page counters, write and entries, must be reset
308  * atomically when crossing page boundaries. To synchronize this
309  * update, two counters are inserted into the number. One is
310  * the actual counter for the write position or count on the page.
311  *
312  * The other is a counter of updaters. Before an update happens
313  * the update partition of the counter is incremented. This will
314  * allow the updater to update the counter atomically.
315  *
316  * The counter is 20 bits, and the state data is 12.
317  */
318 #define RB_WRITE_MASK           0xfffff
319 #define RB_WRITE_INTCNT         (1 << 20)
320
321 static void rb_init_page(struct buffer_data_page *bpage)
322 {
323         local_set(&bpage->commit, 0);
324 }
325
326 /**
327  * ring_buffer_page_len - the size of data on the page.
328  * @page: The page to read
329  *
330  * Returns the amount of data on the page, including buffer page header.
331  */
332 size_t ring_buffer_page_len(void *page)
333 {
334         return local_read(&((struct buffer_data_page *)page)->commit)
335                 + BUF_PAGE_HDR_SIZE;
336 }
337
338 /*
339  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
340  * this issue out.
341  */
342 static void free_buffer_page(struct buffer_page *bpage)
343 {
344         free_page((unsigned long)bpage->page);
345         kfree(bpage);
346 }
347
348 /*
349  * We need to fit the time_stamp delta into 27 bits.
350  */
351 static inline int test_time_stamp(u64 delta)
352 {
353         if (delta & TS_DELTA_TEST)
354                 return 1;
355         return 0;
356 }
357
358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
359
360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
362
363 int ring_buffer_print_page_header(struct trace_seq *s)
364 {
365         struct buffer_data_page field;
366
367         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
368                          "offset:0;\tsize:%u;\tsigned:%u;\n",
369                          (unsigned int)sizeof(field.time_stamp),
370                          (unsigned int)is_signed_type(u64));
371
372         trace_seq_printf(s, "\tfield: local_t commit;\t"
373                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
374                          (unsigned int)offsetof(typeof(field), commit),
375                          (unsigned int)sizeof(field.commit),
376                          (unsigned int)is_signed_type(long));
377
378         trace_seq_printf(s, "\tfield: int overwrite;\t"
379                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
380                          (unsigned int)offsetof(typeof(field), commit),
381                          1,
382                          (unsigned int)is_signed_type(long));
383
384         trace_seq_printf(s, "\tfield: char data;\t"
385                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
386                          (unsigned int)offsetof(typeof(field), data),
387                          (unsigned int)BUF_PAGE_SIZE,
388                          (unsigned int)is_signed_type(char));
389
390         return !trace_seq_has_overflowed(s);
391 }
392
393 struct rb_irq_work {
394         struct irq_work                 work;
395         wait_queue_head_t               waiters;
396         wait_queue_head_t               full_waiters;
397         bool                            waiters_pending;
398         bool                            full_waiters_pending;
399         bool                            wakeup_full;
400 };
401
402 /*
403  * Structure to hold event state and handle nested events.
404  */
405 struct rb_event_info {
406         u64                     ts;
407         u64                     delta;
408         unsigned long           length;
409         struct buffer_page      *tail_page;
410         int                     add_timestamp;
411 };
412
413 /*
414  * Used for which event context the event is in.
415  *  NMI     = 0
416  *  IRQ     = 1
417  *  SOFTIRQ = 2
418  *  NORMAL  = 3
419  *
420  * See trace_recursive_lock() comment below for more details.
421  */
422 enum {
423         RB_CTX_NMI,
424         RB_CTX_IRQ,
425         RB_CTX_SOFTIRQ,
426         RB_CTX_NORMAL,
427         RB_CTX_MAX
428 };
429
430 /*
431  * head_page == tail_page && head == tail then buffer is empty.
432  */
433 struct ring_buffer_per_cpu {
434         int                             cpu;
435         atomic_t                        record_disabled;
436         struct ring_buffer              *buffer;
437         raw_spinlock_t                  reader_lock;    /* serialize readers */
438         arch_spinlock_t                 lock;
439         struct lock_class_key           lock_key;
440         unsigned int                    nr_pages;
441         unsigned int                    current_context;
442         struct list_head                *pages;
443         struct buffer_page              *head_page;     /* read from head */
444         struct buffer_page              *tail_page;     /* write to tail */
445         struct buffer_page              *commit_page;   /* committed pages */
446         struct buffer_page              *reader_page;
447         unsigned long                   lost_events;
448         unsigned long                   last_overrun;
449         local_t                         entries_bytes;
450         local_t                         entries;
451         local_t                         overrun;
452         local_t                         commit_overrun;
453         local_t                         dropped_events;
454         local_t                         committing;
455         local_t                         commits;
456         unsigned long                   read;
457         unsigned long                   read_bytes;
458         u64                             write_stamp;
459         u64                             read_stamp;
460         /* ring buffer pages to update, > 0 to add, < 0 to remove */
461         int                             nr_pages_to_update;
462         struct list_head                new_pages; /* new pages to add */
463         struct work_struct              update_pages_work;
464         struct completion               update_done;
465
466         struct rb_irq_work              irq_work;
467 };
468
469 struct ring_buffer {
470         unsigned                        flags;
471         int                             cpus;
472         atomic_t                        record_disabled;
473         atomic_t                        resize_disabled;
474         cpumask_var_t                   cpumask;
475
476         struct lock_class_key           *reader_lock_key;
477
478         struct mutex                    mutex;
479
480         struct ring_buffer_per_cpu      **buffers;
481
482 #ifdef CONFIG_HOTPLUG_CPU
483         struct notifier_block           cpu_notify;
484 #endif
485         u64                             (*clock)(void);
486
487         struct rb_irq_work              irq_work;
488 };
489
490 struct ring_buffer_iter {
491         struct ring_buffer_per_cpu      *cpu_buffer;
492         unsigned long                   head;
493         struct buffer_page              *head_page;
494         struct buffer_page              *cache_reader_page;
495         unsigned long                   cache_read;
496         u64                             read_stamp;
497 };
498
499 /*
500  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
501  *
502  * Schedules a delayed work to wake up any task that is blocked on the
503  * ring buffer waiters queue.
504  */
505 static void rb_wake_up_waiters(struct irq_work *work)
506 {
507         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
508
509         wake_up_all(&rbwork->waiters);
510         if (rbwork->wakeup_full) {
511                 rbwork->wakeup_full = false;
512                 wake_up_all(&rbwork->full_waiters);
513         }
514 }
515
516 /**
517  * ring_buffer_wait - wait for input to the ring buffer
518  * @buffer: buffer to wait on
519  * @cpu: the cpu buffer to wait on
520  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
521  *
522  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
523  * as data is added to any of the @buffer's cpu buffers. Otherwise
524  * it will wait for data to be added to a specific cpu buffer.
525  */
526 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
527 {
528         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
529         DEFINE_WAIT(wait);
530         struct rb_irq_work *work;
531         int ret = 0;
532
533         /*
534          * Depending on what the caller is waiting for, either any
535          * data in any cpu buffer, or a specific buffer, put the
536          * caller on the appropriate wait queue.
537          */
538         if (cpu == RING_BUFFER_ALL_CPUS) {
539                 work = &buffer->irq_work;
540                 /* Full only makes sense on per cpu reads */
541                 full = false;
542         } else {
543                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
544                         return -ENODEV;
545                 cpu_buffer = buffer->buffers[cpu];
546                 work = &cpu_buffer->irq_work;
547         }
548
549
550         while (true) {
551                 if (full)
552                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
553                 else
554                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
555
556                 /*
557                  * The events can happen in critical sections where
558                  * checking a work queue can cause deadlocks.
559                  * After adding a task to the queue, this flag is set
560                  * only to notify events to try to wake up the queue
561                  * using irq_work.
562                  *
563                  * We don't clear it even if the buffer is no longer
564                  * empty. The flag only causes the next event to run
565                  * irq_work to do the work queue wake up. The worse
566                  * that can happen if we race with !trace_empty() is that
567                  * an event will cause an irq_work to try to wake up
568                  * an empty queue.
569                  *
570                  * There's no reason to protect this flag either, as
571                  * the work queue and irq_work logic will do the necessary
572                  * synchronization for the wake ups. The only thing
573                  * that is necessary is that the wake up happens after
574                  * a task has been queued. It's OK for spurious wake ups.
575                  */
576                 if (full)
577                         work->full_waiters_pending = true;
578                 else
579                         work->waiters_pending = true;
580
581                 if (signal_pending(current)) {
582                         ret = -EINTR;
583                         break;
584                 }
585
586                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
587                         break;
588
589                 if (cpu != RING_BUFFER_ALL_CPUS &&
590                     !ring_buffer_empty_cpu(buffer, cpu)) {
591                         unsigned long flags;
592                         bool pagebusy;
593
594                         if (!full)
595                                 break;
596
597                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
598                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
599                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
600
601                         if (!pagebusy)
602                                 break;
603                 }
604
605                 schedule();
606         }
607
608         if (full)
609                 finish_wait(&work->full_waiters, &wait);
610         else
611                 finish_wait(&work->waiters, &wait);
612
613         return ret;
614 }
615
616 /**
617  * ring_buffer_poll_wait - poll on buffer input
618  * @buffer: buffer to wait on
619  * @cpu: the cpu buffer to wait on
620  * @filp: the file descriptor
621  * @poll_table: The poll descriptor
622  *
623  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
624  * as data is added to any of the @buffer's cpu buffers. Otherwise
625  * it will wait for data to be added to a specific cpu buffer.
626  *
627  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
628  * zero otherwise.
629  */
630 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
631                           struct file *filp, poll_table *poll_table)
632 {
633         struct ring_buffer_per_cpu *cpu_buffer;
634         struct rb_irq_work *work;
635
636         if (cpu == RING_BUFFER_ALL_CPUS)
637                 work = &buffer->irq_work;
638         else {
639                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
640                         return -EINVAL;
641
642                 cpu_buffer = buffer->buffers[cpu];
643                 work = &cpu_buffer->irq_work;
644         }
645
646         poll_wait(filp, &work->waiters, poll_table);
647         work->waiters_pending = true;
648         /*
649          * There's a tight race between setting the waiters_pending and
650          * checking if the ring buffer is empty.  Once the waiters_pending bit
651          * is set, the next event will wake the task up, but we can get stuck
652          * if there's only a single event in.
653          *
654          * FIXME: Ideally, we need a memory barrier on the writer side as well,
655          * but adding a memory barrier to all events will cause too much of a
656          * performance hit in the fast path.  We only need a memory barrier when
657          * the buffer goes from empty to having content.  But as this race is
658          * extremely small, and it's not a problem if another event comes in, we
659          * will fix it later.
660          */
661         smp_mb();
662
663         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
664             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
665                 return POLLIN | POLLRDNORM;
666         return 0;
667 }
668
669 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
670 #define RB_WARN_ON(b, cond)                                             \
671         ({                                                              \
672                 int _____ret = unlikely(cond);                          \
673                 if (_____ret) {                                         \
674                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
675                                 struct ring_buffer_per_cpu *__b =       \
676                                         (void *)b;                      \
677                                 atomic_inc(&__b->buffer->record_disabled); \
678                         } else                                          \
679                                 atomic_inc(&b->record_disabled);        \
680                         WARN_ON(1);                                     \
681                 }                                                       \
682                 _____ret;                                               \
683         })
684
685 /* Up this if you want to test the TIME_EXTENTS and normalization */
686 #define DEBUG_SHIFT 0
687
688 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
689 {
690         /* shift to debug/test normalization and TIME_EXTENTS */
691         return buffer->clock() << DEBUG_SHIFT;
692 }
693
694 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
695 {
696         u64 time;
697
698         preempt_disable_notrace();
699         time = rb_time_stamp(buffer);
700         preempt_enable_no_resched_notrace();
701
702         return time;
703 }
704 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
705
706 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
707                                       int cpu, u64 *ts)
708 {
709         /* Just stupid testing the normalize function and deltas */
710         *ts >>= DEBUG_SHIFT;
711 }
712 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
713
714 /*
715  * Making the ring buffer lockless makes things tricky.
716  * Although writes only happen on the CPU that they are on,
717  * and they only need to worry about interrupts. Reads can
718  * happen on any CPU.
719  *
720  * The reader page is always off the ring buffer, but when the
721  * reader finishes with a page, it needs to swap its page with
722  * a new one from the buffer. The reader needs to take from
723  * the head (writes go to the tail). But if a writer is in overwrite
724  * mode and wraps, it must push the head page forward.
725  *
726  * Here lies the problem.
727  *
728  * The reader must be careful to replace only the head page, and
729  * not another one. As described at the top of the file in the
730  * ASCII art, the reader sets its old page to point to the next
731  * page after head. It then sets the page after head to point to
732  * the old reader page. But if the writer moves the head page
733  * during this operation, the reader could end up with the tail.
734  *
735  * We use cmpxchg to help prevent this race. We also do something
736  * special with the page before head. We set the LSB to 1.
737  *
738  * When the writer must push the page forward, it will clear the
739  * bit that points to the head page, move the head, and then set
740  * the bit that points to the new head page.
741  *
742  * We also don't want an interrupt coming in and moving the head
743  * page on another writer. Thus we use the second LSB to catch
744  * that too. Thus:
745  *
746  * head->list->prev->next        bit 1          bit 0
747  *                              -------        -------
748  * Normal page                     0              0
749  * Points to head page             0              1
750  * New head page                   1              0
751  *
752  * Note we can not trust the prev pointer of the head page, because:
753  *
754  * +----+       +-----+        +-----+
755  * |    |------>|  T  |---X--->|  N  |
756  * |    |<------|     |        |     |
757  * +----+       +-----+        +-----+
758  *   ^                           ^ |
759  *   |          +-----+          | |
760  *   +----------|  R  |----------+ |
761  *              |     |<-----------+
762  *              +-----+
763  *
764  * Key:  ---X-->  HEAD flag set in pointer
765  *         T      Tail page
766  *         R      Reader page
767  *         N      Next page
768  *
769  * (see __rb_reserve_next() to see where this happens)
770  *
771  *  What the above shows is that the reader just swapped out
772  *  the reader page with a page in the buffer, but before it
773  *  could make the new header point back to the new page added
774  *  it was preempted by a writer. The writer moved forward onto
775  *  the new page added by the reader and is about to move forward
776  *  again.
777  *
778  *  You can see, it is legitimate for the previous pointer of
779  *  the head (or any page) not to point back to itself. But only
780  *  temporarially.
781  */
782
783 #define RB_PAGE_NORMAL          0UL
784 #define RB_PAGE_HEAD            1UL
785 #define RB_PAGE_UPDATE          2UL
786
787
788 #define RB_FLAG_MASK            3UL
789
790 /* PAGE_MOVED is not part of the mask */
791 #define RB_PAGE_MOVED           4UL
792
793 /*
794  * rb_list_head - remove any bit
795  */
796 static struct list_head *rb_list_head(struct list_head *list)
797 {
798         unsigned long val = (unsigned long)list;
799
800         return (struct list_head *)(val & ~RB_FLAG_MASK);
801 }
802
803 /*
804  * rb_is_head_page - test if the given page is the head page
805  *
806  * Because the reader may move the head_page pointer, we can
807  * not trust what the head page is (it may be pointing to
808  * the reader page). But if the next page is a header page,
809  * its flags will be non zero.
810  */
811 static inline int
812 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
813                 struct buffer_page *page, struct list_head *list)
814 {
815         unsigned long val;
816
817         val = (unsigned long)list->next;
818
819         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
820                 return RB_PAGE_MOVED;
821
822         return val & RB_FLAG_MASK;
823 }
824
825 /*
826  * rb_is_reader_page
827  *
828  * The unique thing about the reader page, is that, if the
829  * writer is ever on it, the previous pointer never points
830  * back to the reader page.
831  */
832 static bool rb_is_reader_page(struct buffer_page *page)
833 {
834         struct list_head *list = page->list.prev;
835
836         return rb_list_head(list->next) != &page->list;
837 }
838
839 /*
840  * rb_set_list_to_head - set a list_head to be pointing to head.
841  */
842 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
843                                 struct list_head *list)
844 {
845         unsigned long *ptr;
846
847         ptr = (unsigned long *)&list->next;
848         *ptr |= RB_PAGE_HEAD;
849         *ptr &= ~RB_PAGE_UPDATE;
850 }
851
852 /*
853  * rb_head_page_activate - sets up head page
854  */
855 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
856 {
857         struct buffer_page *head;
858
859         head = cpu_buffer->head_page;
860         if (!head)
861                 return;
862
863         /*
864          * Set the previous list pointer to have the HEAD flag.
865          */
866         rb_set_list_to_head(cpu_buffer, head->list.prev);
867 }
868
869 static void rb_list_head_clear(struct list_head *list)
870 {
871         unsigned long *ptr = (unsigned long *)&list->next;
872
873         *ptr &= ~RB_FLAG_MASK;
874 }
875
876 /*
877  * rb_head_page_dactivate - clears head page ptr (for free list)
878  */
879 static void
880 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
881 {
882         struct list_head *hd;
883
884         /* Go through the whole list and clear any pointers found. */
885         rb_list_head_clear(cpu_buffer->pages);
886
887         list_for_each(hd, cpu_buffer->pages)
888                 rb_list_head_clear(hd);
889 }
890
891 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
892                             struct buffer_page *head,
893                             struct buffer_page *prev,
894                             int old_flag, int new_flag)
895 {
896         struct list_head *list;
897         unsigned long val = (unsigned long)&head->list;
898         unsigned long ret;
899
900         list = &prev->list;
901
902         val &= ~RB_FLAG_MASK;
903
904         ret = cmpxchg((unsigned long *)&list->next,
905                       val | old_flag, val | new_flag);
906
907         /* check if the reader took the page */
908         if ((ret & ~RB_FLAG_MASK) != val)
909                 return RB_PAGE_MOVED;
910
911         return ret & RB_FLAG_MASK;
912 }
913
914 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
915                                    struct buffer_page *head,
916                                    struct buffer_page *prev,
917                                    int old_flag)
918 {
919         return rb_head_page_set(cpu_buffer, head, prev,
920                                 old_flag, RB_PAGE_UPDATE);
921 }
922
923 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
924                                  struct buffer_page *head,
925                                  struct buffer_page *prev,
926                                  int old_flag)
927 {
928         return rb_head_page_set(cpu_buffer, head, prev,
929                                 old_flag, RB_PAGE_HEAD);
930 }
931
932 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
933                                    struct buffer_page *head,
934                                    struct buffer_page *prev,
935                                    int old_flag)
936 {
937         return rb_head_page_set(cpu_buffer, head, prev,
938                                 old_flag, RB_PAGE_NORMAL);
939 }
940
941 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
942                                struct buffer_page **bpage)
943 {
944         struct list_head *p = rb_list_head((*bpage)->list.next);
945
946         *bpage = list_entry(p, struct buffer_page, list);
947 }
948
949 static struct buffer_page *
950 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
951 {
952         struct buffer_page *head;
953         struct buffer_page *page;
954         struct list_head *list;
955         int i;
956
957         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
958                 return NULL;
959
960         /* sanity check */
961         list = cpu_buffer->pages;
962         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
963                 return NULL;
964
965         page = head = cpu_buffer->head_page;
966         /*
967          * It is possible that the writer moves the header behind
968          * where we started, and we miss in one loop.
969          * A second loop should grab the header, but we'll do
970          * three loops just because I'm paranoid.
971          */
972         for (i = 0; i < 3; i++) {
973                 do {
974                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
975                                 cpu_buffer->head_page = page;
976                                 return page;
977                         }
978                         rb_inc_page(cpu_buffer, &page);
979                 } while (page != head);
980         }
981
982         RB_WARN_ON(cpu_buffer, 1);
983
984         return NULL;
985 }
986
987 static int rb_head_page_replace(struct buffer_page *old,
988                                 struct buffer_page *new)
989 {
990         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
991         unsigned long val;
992         unsigned long ret;
993
994         val = *ptr & ~RB_FLAG_MASK;
995         val |= RB_PAGE_HEAD;
996
997         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
998
999         return ret == val;
1000 }
1001
1002 /*
1003  * rb_tail_page_update - move the tail page forward
1004  *
1005  * Returns 1 if moved tail page, 0 if someone else did.
1006  */
1007 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1008                                struct buffer_page *tail_page,
1009                                struct buffer_page *next_page)
1010 {
1011         struct buffer_page *old_tail;
1012         unsigned long old_entries;
1013         unsigned long old_write;
1014         int ret = 0;
1015
1016         /*
1017          * The tail page now needs to be moved forward.
1018          *
1019          * We need to reset the tail page, but without messing
1020          * with possible erasing of data brought in by interrupts
1021          * that have moved the tail page and are currently on it.
1022          *
1023          * We add a counter to the write field to denote this.
1024          */
1025         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1026         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1027
1028         /*
1029          * Just make sure we have seen our old_write and synchronize
1030          * with any interrupts that come in.
1031          */
1032         barrier();
1033
1034         /*
1035          * If the tail page is still the same as what we think
1036          * it is, then it is up to us to update the tail
1037          * pointer.
1038          */
1039         if (tail_page == cpu_buffer->tail_page) {
1040                 /* Zero the write counter */
1041                 unsigned long val = old_write & ~RB_WRITE_MASK;
1042                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1043
1044                 /*
1045                  * This will only succeed if an interrupt did
1046                  * not come in and change it. In which case, we
1047                  * do not want to modify it.
1048                  *
1049                  * We add (void) to let the compiler know that we do not care
1050                  * about the return value of these functions. We use the
1051                  * cmpxchg to only update if an interrupt did not already
1052                  * do it for us. If the cmpxchg fails, we don't care.
1053                  */
1054                 (void)local_cmpxchg(&next_page->write, old_write, val);
1055                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1056
1057                 /*
1058                  * No need to worry about races with clearing out the commit.
1059                  * it only can increment when a commit takes place. But that
1060                  * only happens in the outer most nested commit.
1061                  */
1062                 local_set(&next_page->page->commit, 0);
1063
1064                 old_tail = cmpxchg(&cpu_buffer->tail_page,
1065                                    tail_page, next_page);
1066
1067                 if (old_tail == tail_page)
1068                         ret = 1;
1069         }
1070
1071         return ret;
1072 }
1073
1074 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1075                           struct buffer_page *bpage)
1076 {
1077         unsigned long val = (unsigned long)bpage;
1078
1079         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1080                 return 1;
1081
1082         return 0;
1083 }
1084
1085 /**
1086  * rb_check_list - make sure a pointer to a list has the last bits zero
1087  */
1088 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1089                          struct list_head *list)
1090 {
1091         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1092                 return 1;
1093         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1094                 return 1;
1095         return 0;
1096 }
1097
1098 /**
1099  * rb_check_pages - integrity check of buffer pages
1100  * @cpu_buffer: CPU buffer with pages to test
1101  *
1102  * As a safety measure we check to make sure the data pages have not
1103  * been corrupted.
1104  */
1105 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1106 {
1107         struct list_head *head = cpu_buffer->pages;
1108         struct buffer_page *bpage, *tmp;
1109
1110         /* Reset the head page if it exists */
1111         if (cpu_buffer->head_page)
1112                 rb_set_head_page(cpu_buffer);
1113
1114         rb_head_page_deactivate(cpu_buffer);
1115
1116         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1117                 return -1;
1118         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1119                 return -1;
1120
1121         if (rb_check_list(cpu_buffer, head))
1122                 return -1;
1123
1124         list_for_each_entry_safe(bpage, tmp, head, list) {
1125                 if (RB_WARN_ON(cpu_buffer,
1126                                bpage->list.next->prev != &bpage->list))
1127                         return -1;
1128                 if (RB_WARN_ON(cpu_buffer,
1129                                bpage->list.prev->next != &bpage->list))
1130                         return -1;
1131                 if (rb_check_list(cpu_buffer, &bpage->list))
1132                         return -1;
1133         }
1134
1135         rb_head_page_activate(cpu_buffer);
1136
1137         return 0;
1138 }
1139
1140 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1141 {
1142         int i;
1143         struct buffer_page *bpage, *tmp;
1144
1145         for (i = 0; i < nr_pages; i++) {
1146                 struct page *page;
1147                 /*
1148                  * __GFP_NORETRY flag makes sure that the allocation fails
1149                  * gracefully without invoking oom-killer and the system is
1150                  * not destabilized.
1151                  */
1152                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1153                                     GFP_KERNEL | __GFP_NORETRY,
1154                                     cpu_to_node(cpu));
1155                 if (!bpage)
1156                         goto free_pages;
1157
1158                 list_add(&bpage->list, pages);
1159
1160                 page = alloc_pages_node(cpu_to_node(cpu),
1161                                         GFP_KERNEL | __GFP_NORETRY, 0);
1162                 if (!page)
1163                         goto free_pages;
1164                 bpage->page = page_address(page);
1165                 rb_init_page(bpage->page);
1166         }
1167
1168         return 0;
1169
1170 free_pages:
1171         list_for_each_entry_safe(bpage, tmp, pages, list) {
1172                 list_del_init(&bpage->list);
1173                 free_buffer_page(bpage);
1174         }
1175
1176         return -ENOMEM;
1177 }
1178
1179 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1180                              unsigned nr_pages)
1181 {
1182         LIST_HEAD(pages);
1183
1184         WARN_ON(!nr_pages);
1185
1186         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1187                 return -ENOMEM;
1188
1189         /*
1190          * The ring buffer page list is a circular list that does not
1191          * start and end with a list head. All page list items point to
1192          * other pages.
1193          */
1194         cpu_buffer->pages = pages.next;
1195         list_del(&pages);
1196
1197         cpu_buffer->nr_pages = nr_pages;
1198
1199         rb_check_pages(cpu_buffer);
1200
1201         return 0;
1202 }
1203
1204 static struct ring_buffer_per_cpu *
1205 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1206 {
1207         struct ring_buffer_per_cpu *cpu_buffer;
1208         struct buffer_page *bpage;
1209         struct page *page;
1210         int ret;
1211
1212         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1213                                   GFP_KERNEL, cpu_to_node(cpu));
1214         if (!cpu_buffer)
1215                 return NULL;
1216
1217         cpu_buffer->cpu = cpu;
1218         cpu_buffer->buffer = buffer;
1219         raw_spin_lock_init(&cpu_buffer->reader_lock);
1220         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1221         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1222         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1223         init_completion(&cpu_buffer->update_done);
1224         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1225         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1226         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1227
1228         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1229                             GFP_KERNEL, cpu_to_node(cpu));
1230         if (!bpage)
1231                 goto fail_free_buffer;
1232
1233         rb_check_bpage(cpu_buffer, bpage);
1234
1235         cpu_buffer->reader_page = bpage;
1236         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1237         if (!page)
1238                 goto fail_free_reader;
1239         bpage->page = page_address(page);
1240         rb_init_page(bpage->page);
1241
1242         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1243         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1244
1245         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1246         if (ret < 0)
1247                 goto fail_free_reader;
1248
1249         cpu_buffer->head_page
1250                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1251         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1252
1253         rb_head_page_activate(cpu_buffer);
1254
1255         return cpu_buffer;
1256
1257  fail_free_reader:
1258         free_buffer_page(cpu_buffer->reader_page);
1259
1260  fail_free_buffer:
1261         kfree(cpu_buffer);
1262         return NULL;
1263 }
1264
1265 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1266 {
1267         struct list_head *head = cpu_buffer->pages;
1268         struct buffer_page *bpage, *tmp;
1269
1270         free_buffer_page(cpu_buffer->reader_page);
1271
1272         rb_head_page_deactivate(cpu_buffer);
1273
1274         if (head) {
1275                 list_for_each_entry_safe(bpage, tmp, head, list) {
1276                         list_del_init(&bpage->list);
1277                         free_buffer_page(bpage);
1278                 }
1279                 bpage = list_entry(head, struct buffer_page, list);
1280                 free_buffer_page(bpage);
1281         }
1282
1283         kfree(cpu_buffer);
1284 }
1285
1286 #ifdef CONFIG_HOTPLUG_CPU
1287 static int rb_cpu_notify(struct notifier_block *self,
1288                          unsigned long action, void *hcpu);
1289 #endif
1290
1291 /**
1292  * __ring_buffer_alloc - allocate a new ring_buffer
1293  * @size: the size in bytes per cpu that is needed.
1294  * @flags: attributes to set for the ring buffer.
1295  *
1296  * Currently the only flag that is available is the RB_FL_OVERWRITE
1297  * flag. This flag means that the buffer will overwrite old data
1298  * when the buffer wraps. If this flag is not set, the buffer will
1299  * drop data when the tail hits the head.
1300  */
1301 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1302                                         struct lock_class_key *key)
1303 {
1304         struct ring_buffer *buffer;
1305         int bsize;
1306         int cpu, nr_pages;
1307
1308         /* keep it in its own cache line */
1309         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1310                          GFP_KERNEL);
1311         if (!buffer)
1312                 return NULL;
1313
1314         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1315                 goto fail_free_buffer;
1316
1317         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1318         buffer->flags = flags;
1319         buffer->clock = trace_clock_local;
1320         buffer->reader_lock_key = key;
1321
1322         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1323         init_waitqueue_head(&buffer->irq_work.waiters);
1324
1325         /* need at least two pages */
1326         if (nr_pages < 2)
1327                 nr_pages = 2;
1328
1329         /*
1330          * In case of non-hotplug cpu, if the ring-buffer is allocated
1331          * in early initcall, it will not be notified of secondary cpus.
1332          * In that off case, we need to allocate for all possible cpus.
1333          */
1334 #ifdef CONFIG_HOTPLUG_CPU
1335         cpu_notifier_register_begin();
1336         cpumask_copy(buffer->cpumask, cpu_online_mask);
1337 #else
1338         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1339 #endif
1340         buffer->cpus = nr_cpu_ids;
1341
1342         bsize = sizeof(void *) * nr_cpu_ids;
1343         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1344                                   GFP_KERNEL);
1345         if (!buffer->buffers)
1346                 goto fail_free_cpumask;
1347
1348         for_each_buffer_cpu(buffer, cpu) {
1349                 buffer->buffers[cpu] =
1350                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1351                 if (!buffer->buffers[cpu])
1352                         goto fail_free_buffers;
1353         }
1354
1355 #ifdef CONFIG_HOTPLUG_CPU
1356         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1357         buffer->cpu_notify.priority = 0;
1358         __register_cpu_notifier(&buffer->cpu_notify);
1359         cpu_notifier_register_done();
1360 #endif
1361
1362         mutex_init(&buffer->mutex);
1363
1364         return buffer;
1365
1366  fail_free_buffers:
1367         for_each_buffer_cpu(buffer, cpu) {
1368                 if (buffer->buffers[cpu])
1369                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1370         }
1371         kfree(buffer->buffers);
1372
1373  fail_free_cpumask:
1374         free_cpumask_var(buffer->cpumask);
1375 #ifdef CONFIG_HOTPLUG_CPU
1376         cpu_notifier_register_done();
1377 #endif
1378
1379  fail_free_buffer:
1380         kfree(buffer);
1381         return NULL;
1382 }
1383 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1384
1385 /**
1386  * ring_buffer_free - free a ring buffer.
1387  * @buffer: the buffer to free.
1388  */
1389 void
1390 ring_buffer_free(struct ring_buffer *buffer)
1391 {
1392         int cpu;
1393
1394 #ifdef CONFIG_HOTPLUG_CPU
1395         cpu_notifier_register_begin();
1396         __unregister_cpu_notifier(&buffer->cpu_notify);
1397 #endif
1398
1399         for_each_buffer_cpu(buffer, cpu)
1400                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1401
1402 #ifdef CONFIG_HOTPLUG_CPU
1403         cpu_notifier_register_done();
1404 #endif
1405
1406         kfree(buffer->buffers);
1407         free_cpumask_var(buffer->cpumask);
1408
1409         kfree(buffer);
1410 }
1411 EXPORT_SYMBOL_GPL(ring_buffer_free);
1412
1413 void ring_buffer_set_clock(struct ring_buffer *buffer,
1414                            u64 (*clock)(void))
1415 {
1416         buffer->clock = clock;
1417 }
1418
1419 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1420
1421 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1422 {
1423         return local_read(&bpage->entries) & RB_WRITE_MASK;
1424 }
1425
1426 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1427 {
1428         return local_read(&bpage->write) & RB_WRITE_MASK;
1429 }
1430
1431 static int
1432 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1433 {
1434         struct list_head *tail_page, *to_remove, *next_page;
1435         struct buffer_page *to_remove_page, *tmp_iter_page;
1436         struct buffer_page *last_page, *first_page;
1437         unsigned int nr_removed;
1438         unsigned long head_bit;
1439         int page_entries;
1440
1441         head_bit = 0;
1442
1443         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1444         atomic_inc(&cpu_buffer->record_disabled);
1445         /*
1446          * We don't race with the readers since we have acquired the reader
1447          * lock. We also don't race with writers after disabling recording.
1448          * This makes it easy to figure out the first and the last page to be
1449          * removed from the list. We unlink all the pages in between including
1450          * the first and last pages. This is done in a busy loop so that we
1451          * lose the least number of traces.
1452          * The pages are freed after we restart recording and unlock readers.
1453          */
1454         tail_page = &cpu_buffer->tail_page->list;
1455
1456         /*
1457          * tail page might be on reader page, we remove the next page
1458          * from the ring buffer
1459          */
1460         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1461                 tail_page = rb_list_head(tail_page->next);
1462         to_remove = tail_page;
1463
1464         /* start of pages to remove */
1465         first_page = list_entry(rb_list_head(to_remove->next),
1466                                 struct buffer_page, list);
1467
1468         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1469                 to_remove = rb_list_head(to_remove)->next;
1470                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1471         }
1472
1473         next_page = rb_list_head(to_remove)->next;
1474
1475         /*
1476          * Now we remove all pages between tail_page and next_page.
1477          * Make sure that we have head_bit value preserved for the
1478          * next page
1479          */
1480         tail_page->next = (struct list_head *)((unsigned long)next_page |
1481                                                 head_bit);
1482         next_page = rb_list_head(next_page);
1483         next_page->prev = tail_page;
1484
1485         /* make sure pages points to a valid page in the ring buffer */
1486         cpu_buffer->pages = next_page;
1487
1488         /* update head page */
1489         if (head_bit)
1490                 cpu_buffer->head_page = list_entry(next_page,
1491                                                 struct buffer_page, list);
1492
1493         /*
1494          * change read pointer to make sure any read iterators reset
1495          * themselves
1496          */
1497         cpu_buffer->read = 0;
1498
1499         /* pages are removed, resume tracing and then free the pages */
1500         atomic_dec(&cpu_buffer->record_disabled);
1501         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1502
1503         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1504
1505         /* last buffer page to remove */
1506         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1507                                 list);
1508         tmp_iter_page = first_page;
1509
1510         do {
1511                 to_remove_page = tmp_iter_page;
1512                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1513
1514                 /* update the counters */
1515                 page_entries = rb_page_entries(to_remove_page);
1516                 if (page_entries) {
1517                         /*
1518                          * If something was added to this page, it was full
1519                          * since it is not the tail page. So we deduct the
1520                          * bytes consumed in ring buffer from here.
1521                          * Increment overrun to account for the lost events.
1522                          */
1523                         local_add(page_entries, &cpu_buffer->overrun);
1524                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1525                 }
1526
1527                 /*
1528                  * We have already removed references to this list item, just
1529                  * free up the buffer_page and its page
1530                  */
1531                 free_buffer_page(to_remove_page);
1532                 nr_removed--;
1533
1534         } while (to_remove_page != last_page);
1535
1536         RB_WARN_ON(cpu_buffer, nr_removed);
1537
1538         return nr_removed == 0;
1539 }
1540
1541 static int
1542 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1543 {
1544         struct list_head *pages = &cpu_buffer->new_pages;
1545         int retries, success;
1546
1547         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1548         /*
1549          * We are holding the reader lock, so the reader page won't be swapped
1550          * in the ring buffer. Now we are racing with the writer trying to
1551          * move head page and the tail page.
1552          * We are going to adapt the reader page update process where:
1553          * 1. We first splice the start and end of list of new pages between
1554          *    the head page and its previous page.
1555          * 2. We cmpxchg the prev_page->next to point from head page to the
1556          *    start of new pages list.
1557          * 3. Finally, we update the head->prev to the end of new list.
1558          *
1559          * We will try this process 10 times, to make sure that we don't keep
1560          * spinning.
1561          */
1562         retries = 10;
1563         success = 0;
1564         while (retries--) {
1565                 struct list_head *head_page, *prev_page, *r;
1566                 struct list_head *last_page, *first_page;
1567                 struct list_head *head_page_with_bit;
1568
1569                 head_page = &rb_set_head_page(cpu_buffer)->list;
1570                 if (!head_page)
1571                         break;
1572                 prev_page = head_page->prev;
1573
1574                 first_page = pages->next;
1575                 last_page  = pages->prev;
1576
1577                 head_page_with_bit = (struct list_head *)
1578                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1579
1580                 last_page->next = head_page_with_bit;
1581                 first_page->prev = prev_page;
1582
1583                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1584
1585                 if (r == head_page_with_bit) {
1586                         /*
1587                          * yay, we replaced the page pointer to our new list,
1588                          * now, we just have to update to head page's prev
1589                          * pointer to point to end of list
1590                          */
1591                         head_page->prev = last_page;
1592                         success = 1;
1593                         break;
1594                 }
1595         }
1596
1597         if (success)
1598                 INIT_LIST_HEAD(pages);
1599         /*
1600          * If we weren't successful in adding in new pages, warn and stop
1601          * tracing
1602          */
1603         RB_WARN_ON(cpu_buffer, !success);
1604         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1605
1606         /* free pages if they weren't inserted */
1607         if (!success) {
1608                 struct buffer_page *bpage, *tmp;
1609                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1610                                          list) {
1611                         list_del_init(&bpage->list);
1612                         free_buffer_page(bpage);
1613                 }
1614         }
1615         return success;
1616 }
1617
1618 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1619 {
1620         int success;
1621
1622         if (cpu_buffer->nr_pages_to_update > 0)
1623                 success = rb_insert_pages(cpu_buffer);
1624         else
1625                 success = rb_remove_pages(cpu_buffer,
1626                                         -cpu_buffer->nr_pages_to_update);
1627
1628         if (success)
1629                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1630 }
1631
1632 static void update_pages_handler(struct work_struct *work)
1633 {
1634         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1635                         struct ring_buffer_per_cpu, update_pages_work);
1636         rb_update_pages(cpu_buffer);
1637         complete(&cpu_buffer->update_done);
1638 }
1639
1640 /**
1641  * ring_buffer_resize - resize the ring buffer
1642  * @buffer: the buffer to resize.
1643  * @size: the new size.
1644  * @cpu_id: the cpu buffer to resize
1645  *
1646  * Minimum size is 2 * BUF_PAGE_SIZE.
1647  *
1648  * Returns 0 on success and < 0 on failure.
1649  */
1650 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1651                         int cpu_id)
1652 {
1653         struct ring_buffer_per_cpu *cpu_buffer;
1654         unsigned nr_pages;
1655         int cpu, err = 0;
1656
1657         /*
1658          * Always succeed at resizing a non-existent buffer:
1659          */
1660         if (!buffer)
1661                 return size;
1662
1663         /* Make sure the requested buffer exists */
1664         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1665             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1666                 return size;
1667
1668         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1669         size *= BUF_PAGE_SIZE;
1670
1671         /* we need a minimum of two pages */
1672         if (size < BUF_PAGE_SIZE * 2)
1673                 size = BUF_PAGE_SIZE * 2;
1674
1675         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1676
1677         /*
1678          * Don't succeed if resizing is disabled, as a reader might be
1679          * manipulating the ring buffer and is expecting a sane state while
1680          * this is true.
1681          */
1682         if (atomic_read(&buffer->resize_disabled))
1683                 return -EBUSY;
1684
1685         /* prevent another thread from changing buffer sizes */
1686         mutex_lock(&buffer->mutex);
1687
1688         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1689                 /* calculate the pages to update */
1690                 for_each_buffer_cpu(buffer, cpu) {
1691                         cpu_buffer = buffer->buffers[cpu];
1692
1693                         cpu_buffer->nr_pages_to_update = nr_pages -
1694                                                         cpu_buffer->nr_pages;
1695                         /*
1696                          * nothing more to do for removing pages or no update
1697                          */
1698                         if (cpu_buffer->nr_pages_to_update <= 0)
1699                                 continue;
1700                         /*
1701                          * to add pages, make sure all new pages can be
1702                          * allocated without receiving ENOMEM
1703                          */
1704                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1705                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1706                                                 &cpu_buffer->new_pages, cpu)) {
1707                                 /* not enough memory for new pages */
1708                                 err = -ENOMEM;
1709                                 goto out_err;
1710                         }
1711                 }
1712
1713                 get_online_cpus();
1714                 /*
1715                  * Fire off all the required work handlers
1716                  * We can't schedule on offline CPUs, but it's not necessary
1717                  * since we can change their buffer sizes without any race.
1718                  */
1719                 for_each_buffer_cpu(buffer, cpu) {
1720                         cpu_buffer = buffer->buffers[cpu];
1721                         if (!cpu_buffer->nr_pages_to_update)
1722                                 continue;
1723
1724                         /* Can't run something on an offline CPU. */
1725                         if (!cpu_online(cpu)) {
1726                                 rb_update_pages(cpu_buffer);
1727                                 cpu_buffer->nr_pages_to_update = 0;
1728                         } else {
1729                                 schedule_work_on(cpu,
1730                                                 &cpu_buffer->update_pages_work);
1731                         }
1732                 }
1733
1734                 /* wait for all the updates to complete */
1735                 for_each_buffer_cpu(buffer, cpu) {
1736                         cpu_buffer = buffer->buffers[cpu];
1737                         if (!cpu_buffer->nr_pages_to_update)
1738                                 continue;
1739
1740                         if (cpu_online(cpu))
1741                                 wait_for_completion(&cpu_buffer->update_done);
1742                         cpu_buffer->nr_pages_to_update = 0;
1743                 }
1744
1745                 put_online_cpus();
1746         } else {
1747                 /* Make sure this CPU has been intitialized */
1748                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1749                         goto out;
1750
1751                 cpu_buffer = buffer->buffers[cpu_id];
1752
1753                 if (nr_pages == cpu_buffer->nr_pages)
1754                         goto out;
1755
1756                 cpu_buffer->nr_pages_to_update = nr_pages -
1757                                                 cpu_buffer->nr_pages;
1758
1759                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1760                 if (cpu_buffer->nr_pages_to_update > 0 &&
1761                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1762                                             &cpu_buffer->new_pages, cpu_id)) {
1763                         err = -ENOMEM;
1764                         goto out_err;
1765                 }
1766
1767                 get_online_cpus();
1768
1769                 /* Can't run something on an offline CPU. */
1770                 if (!cpu_online(cpu_id))
1771                         rb_update_pages(cpu_buffer);
1772                 else {
1773                         schedule_work_on(cpu_id,
1774                                          &cpu_buffer->update_pages_work);
1775                         wait_for_completion(&cpu_buffer->update_done);
1776                 }
1777
1778                 cpu_buffer->nr_pages_to_update = 0;
1779                 put_online_cpus();
1780         }
1781
1782  out:
1783         /*
1784          * The ring buffer resize can happen with the ring buffer
1785          * enabled, so that the update disturbs the tracing as little
1786          * as possible. But if the buffer is disabled, we do not need
1787          * to worry about that, and we can take the time to verify
1788          * that the buffer is not corrupt.
1789          */
1790         if (atomic_read(&buffer->record_disabled)) {
1791                 atomic_inc(&buffer->record_disabled);
1792                 /*
1793                  * Even though the buffer was disabled, we must make sure
1794                  * that it is truly disabled before calling rb_check_pages.
1795                  * There could have been a race between checking
1796                  * record_disable and incrementing it.
1797                  */
1798                 synchronize_sched();
1799                 for_each_buffer_cpu(buffer, cpu) {
1800                         cpu_buffer = buffer->buffers[cpu];
1801                         rb_check_pages(cpu_buffer);
1802                 }
1803                 atomic_dec(&buffer->record_disabled);
1804         }
1805
1806         mutex_unlock(&buffer->mutex);
1807         return size;
1808
1809  out_err:
1810         for_each_buffer_cpu(buffer, cpu) {
1811                 struct buffer_page *bpage, *tmp;
1812
1813                 cpu_buffer = buffer->buffers[cpu];
1814                 cpu_buffer->nr_pages_to_update = 0;
1815
1816                 if (list_empty(&cpu_buffer->new_pages))
1817                         continue;
1818
1819                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1820                                         list) {
1821                         list_del_init(&bpage->list);
1822                         free_buffer_page(bpage);
1823                 }
1824         }
1825         mutex_unlock(&buffer->mutex);
1826         return err;
1827 }
1828 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1829
1830 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1831 {
1832         mutex_lock(&buffer->mutex);
1833         if (val)
1834                 buffer->flags |= RB_FL_OVERWRITE;
1835         else
1836                 buffer->flags &= ~RB_FL_OVERWRITE;
1837         mutex_unlock(&buffer->mutex);
1838 }
1839 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1840
1841 static inline void *
1842 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1843 {
1844         return bpage->data + index;
1845 }
1846
1847 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1848 {
1849         return bpage->page->data + index;
1850 }
1851
1852 static inline struct ring_buffer_event *
1853 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1854 {
1855         return __rb_page_index(cpu_buffer->reader_page,
1856                                cpu_buffer->reader_page->read);
1857 }
1858
1859 static inline struct ring_buffer_event *
1860 rb_iter_head_event(struct ring_buffer_iter *iter)
1861 {
1862         return __rb_page_index(iter->head_page, iter->head);
1863 }
1864
1865 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1866 {
1867         return local_read(&bpage->page->commit);
1868 }
1869
1870 /* Size is determined by what has been committed */
1871 static inline unsigned rb_page_size(struct buffer_page *bpage)
1872 {
1873         return rb_page_commit(bpage);
1874 }
1875
1876 static inline unsigned
1877 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1878 {
1879         return rb_page_commit(cpu_buffer->commit_page);
1880 }
1881
1882 static inline unsigned
1883 rb_event_index(struct ring_buffer_event *event)
1884 {
1885         unsigned long addr = (unsigned long)event;
1886
1887         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1888 }
1889
1890 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1891 {
1892         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1893         cpu_buffer->reader_page->read = 0;
1894 }
1895
1896 static void rb_inc_iter(struct ring_buffer_iter *iter)
1897 {
1898         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1899
1900         /*
1901          * The iterator could be on the reader page (it starts there).
1902          * But the head could have moved, since the reader was
1903          * found. Check for this case and assign the iterator
1904          * to the head page instead of next.
1905          */
1906         if (iter->head_page == cpu_buffer->reader_page)
1907                 iter->head_page = rb_set_head_page(cpu_buffer);
1908         else
1909                 rb_inc_page(cpu_buffer, &iter->head_page);
1910
1911         iter->read_stamp = iter->head_page->page->time_stamp;
1912         iter->head = 0;
1913 }
1914
1915 /*
1916  * rb_handle_head_page - writer hit the head page
1917  *
1918  * Returns: +1 to retry page
1919  *           0 to continue
1920  *          -1 on error
1921  */
1922 static int
1923 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1924                     struct buffer_page *tail_page,
1925                     struct buffer_page *next_page)
1926 {
1927         struct buffer_page *new_head;
1928         int entries;
1929         int type;
1930         int ret;
1931
1932         entries = rb_page_entries(next_page);
1933
1934         /*
1935          * The hard part is here. We need to move the head
1936          * forward, and protect against both readers on
1937          * other CPUs and writers coming in via interrupts.
1938          */
1939         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1940                                        RB_PAGE_HEAD);
1941
1942         /*
1943          * type can be one of four:
1944          *  NORMAL - an interrupt already moved it for us
1945          *  HEAD   - we are the first to get here.
1946          *  UPDATE - we are the interrupt interrupting
1947          *           a current move.
1948          *  MOVED  - a reader on another CPU moved the next
1949          *           pointer to its reader page. Give up
1950          *           and try again.
1951          */
1952
1953         switch (type) {
1954         case RB_PAGE_HEAD:
1955                 /*
1956                  * We changed the head to UPDATE, thus
1957                  * it is our responsibility to update
1958                  * the counters.
1959                  */
1960                 local_add(entries, &cpu_buffer->overrun);
1961                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1962
1963                 /*
1964                  * The entries will be zeroed out when we move the
1965                  * tail page.
1966                  */
1967
1968                 /* still more to do */
1969                 break;
1970
1971         case RB_PAGE_UPDATE:
1972                 /*
1973                  * This is an interrupt that interrupt the
1974                  * previous update. Still more to do.
1975                  */
1976                 break;
1977         case RB_PAGE_NORMAL:
1978                 /*
1979                  * An interrupt came in before the update
1980                  * and processed this for us.
1981                  * Nothing left to do.
1982                  */
1983                 return 1;
1984         case RB_PAGE_MOVED:
1985                 /*
1986                  * The reader is on another CPU and just did
1987                  * a swap with our next_page.
1988                  * Try again.
1989                  */
1990                 return 1;
1991         default:
1992                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1993                 return -1;
1994         }
1995
1996         /*
1997          * Now that we are here, the old head pointer is
1998          * set to UPDATE. This will keep the reader from
1999          * swapping the head page with the reader page.
2000          * The reader (on another CPU) will spin till
2001          * we are finished.
2002          *
2003          * We just need to protect against interrupts
2004          * doing the job. We will set the next pointer
2005          * to HEAD. After that, we set the old pointer
2006          * to NORMAL, but only if it was HEAD before.
2007          * otherwise we are an interrupt, and only
2008          * want the outer most commit to reset it.
2009          */
2010         new_head = next_page;
2011         rb_inc_page(cpu_buffer, &new_head);
2012
2013         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2014                                     RB_PAGE_NORMAL);
2015
2016         /*
2017          * Valid returns are:
2018          *  HEAD   - an interrupt came in and already set it.
2019          *  NORMAL - One of two things:
2020          *            1) We really set it.
2021          *            2) A bunch of interrupts came in and moved
2022          *               the page forward again.
2023          */
2024         switch (ret) {
2025         case RB_PAGE_HEAD:
2026         case RB_PAGE_NORMAL:
2027                 /* OK */
2028                 break;
2029         default:
2030                 RB_WARN_ON(cpu_buffer, 1);
2031                 return -1;
2032         }
2033
2034         /*
2035          * It is possible that an interrupt came in,
2036          * set the head up, then more interrupts came in
2037          * and moved it again. When we get back here,
2038          * the page would have been set to NORMAL but we
2039          * just set it back to HEAD.
2040          *
2041          * How do you detect this? Well, if that happened
2042          * the tail page would have moved.
2043          */
2044         if (ret == RB_PAGE_NORMAL) {
2045                 /*
2046                  * If the tail had moved passed next, then we need
2047                  * to reset the pointer.
2048                  */
2049                 if (cpu_buffer->tail_page != tail_page &&
2050                     cpu_buffer->tail_page != next_page)
2051                         rb_head_page_set_normal(cpu_buffer, new_head,
2052                                                 next_page,
2053                                                 RB_PAGE_HEAD);
2054         }
2055
2056         /*
2057          * If this was the outer most commit (the one that
2058          * changed the original pointer from HEAD to UPDATE),
2059          * then it is up to us to reset it to NORMAL.
2060          */
2061         if (type == RB_PAGE_HEAD) {
2062                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2063                                               tail_page,
2064                                               RB_PAGE_UPDATE);
2065                 if (RB_WARN_ON(cpu_buffer,
2066                                ret != RB_PAGE_UPDATE))
2067                         return -1;
2068         }
2069
2070         return 0;
2071 }
2072
2073 static inline void
2074 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2075               unsigned long tail, struct rb_event_info *info)
2076 {
2077         struct buffer_page *tail_page = info->tail_page;
2078         struct ring_buffer_event *event;
2079         unsigned long length = info->length;
2080
2081         /*
2082          * Only the event that crossed the page boundary
2083          * must fill the old tail_page with padding.
2084          */
2085         if (tail >= BUF_PAGE_SIZE) {
2086                 /*
2087                  * If the page was filled, then we still need
2088                  * to update the real_end. Reset it to zero
2089                  * and the reader will ignore it.
2090                  */
2091                 if (tail == BUF_PAGE_SIZE)
2092                         tail_page->real_end = 0;
2093
2094                 local_sub(length, &tail_page->write);
2095                 return;
2096         }
2097
2098         event = __rb_page_index(tail_page, tail);
2099         kmemcheck_annotate_bitfield(event, bitfield);
2100
2101         /* account for padding bytes */
2102         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2103
2104         /*
2105          * Save the original length to the meta data.
2106          * This will be used by the reader to add lost event
2107          * counter.
2108          */
2109         tail_page->real_end = tail;
2110
2111         /*
2112          * If this event is bigger than the minimum size, then
2113          * we need to be careful that we don't subtract the
2114          * write counter enough to allow another writer to slip
2115          * in on this page.
2116          * We put in a discarded commit instead, to make sure
2117          * that this space is not used again.
2118          *
2119          * If we are less than the minimum size, we don't need to
2120          * worry about it.
2121          */
2122         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2123                 /* No room for any events */
2124
2125                 /* Mark the rest of the page with padding */
2126                 rb_event_set_padding(event);
2127
2128                 /* Set the write back to the previous setting */
2129                 local_sub(length, &tail_page->write);
2130                 return;
2131         }
2132
2133         /* Put in a discarded event */
2134         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2135         event->type_len = RINGBUF_TYPE_PADDING;
2136         /* time delta must be non zero */
2137         event->time_delta = 1;
2138
2139         /* Set write to end of buffer */
2140         length = (tail + length) - BUF_PAGE_SIZE;
2141         local_sub(length, &tail_page->write);
2142 }
2143
2144 /*
2145  * This is the slow path, force gcc not to inline it.
2146  */
2147 static noinline struct ring_buffer_event *
2148 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2149              unsigned long tail, struct rb_event_info *info)
2150 {
2151         struct buffer_page *tail_page = info->tail_page;
2152         struct buffer_page *commit_page = cpu_buffer->commit_page;
2153         struct ring_buffer *buffer = cpu_buffer->buffer;
2154         struct buffer_page *next_page;
2155         int ret;
2156         u64 ts;
2157
2158         next_page = tail_page;
2159
2160         rb_inc_page(cpu_buffer, &next_page);
2161
2162         /*
2163          * If for some reason, we had an interrupt storm that made
2164          * it all the way around the buffer, bail, and warn
2165          * about it.
2166          */
2167         if (unlikely(next_page == commit_page)) {
2168                 local_inc(&cpu_buffer->commit_overrun);
2169                 goto out_reset;
2170         }
2171
2172         /*
2173          * This is where the fun begins!
2174          *
2175          * We are fighting against races between a reader that
2176          * could be on another CPU trying to swap its reader
2177          * page with the buffer head.
2178          *
2179          * We are also fighting against interrupts coming in and
2180          * moving the head or tail on us as well.
2181          *
2182          * If the next page is the head page then we have filled
2183          * the buffer, unless the commit page is still on the
2184          * reader page.
2185          */
2186         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2187
2188                 /*
2189                  * If the commit is not on the reader page, then
2190                  * move the header page.
2191                  */
2192                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2193                         /*
2194                          * If we are not in overwrite mode,
2195                          * this is easy, just stop here.
2196                          */
2197                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2198                                 local_inc(&cpu_buffer->dropped_events);
2199                                 goto out_reset;
2200                         }
2201
2202                         ret = rb_handle_head_page(cpu_buffer,
2203                                                   tail_page,
2204                                                   next_page);
2205                         if (ret < 0)
2206                                 goto out_reset;
2207                         if (ret)
2208                                 goto out_again;
2209                 } else {
2210                         /*
2211                          * We need to be careful here too. The
2212                          * commit page could still be on the reader
2213                          * page. We could have a small buffer, and
2214                          * have filled up the buffer with events
2215                          * from interrupts and such, and wrapped.
2216                          *
2217                          * Note, if the tail page is also the on the
2218                          * reader_page, we let it move out.
2219                          */
2220                         if (unlikely((cpu_buffer->commit_page !=
2221                                       cpu_buffer->tail_page) &&
2222                                      (cpu_buffer->commit_page ==
2223                                       cpu_buffer->reader_page))) {
2224                                 local_inc(&cpu_buffer->commit_overrun);
2225                                 goto out_reset;
2226                         }
2227                 }
2228         }
2229
2230         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2231         if (ret) {
2232                 /*
2233                  * Nested commits always have zero deltas, so
2234                  * just reread the time stamp
2235                  */
2236                 ts = rb_time_stamp(buffer);
2237                 next_page->page->time_stamp = ts;
2238         }
2239
2240  out_again:
2241
2242         rb_reset_tail(cpu_buffer, tail, info);
2243
2244         /* fail and let the caller try again */
2245         return ERR_PTR(-EAGAIN);
2246
2247  out_reset:
2248         /* reset write */
2249         rb_reset_tail(cpu_buffer, tail, info);
2250
2251         return NULL;
2252 }
2253
2254 /* Slow path, do not inline */
2255 static noinline struct ring_buffer_event *
2256 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2257 {
2258         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2259
2260         /* Not the first event on the page? */
2261         if (rb_event_index(event)) {
2262                 event->time_delta = delta & TS_MASK;
2263                 event->array[0] = delta >> TS_SHIFT;
2264         } else {
2265                 /* nope, just zero it */
2266                 event->time_delta = 0;
2267                 event->array[0] = 0;
2268         }
2269
2270         return skip_time_extend(event);
2271 }
2272
2273 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2274                                      struct ring_buffer_event *event);
2275
2276 /**
2277  * rb_update_event - update event type and data
2278  * @event: the event to update
2279  * @type: the type of event
2280  * @length: the size of the event field in the ring buffer
2281  *
2282  * Update the type and data fields of the event. The length
2283  * is the actual size that is written to the ring buffer,
2284  * and with this, we can determine what to place into the
2285  * data field.
2286  */
2287 static void
2288 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2289                 struct ring_buffer_event *event,
2290                 struct rb_event_info *info)
2291 {
2292         unsigned length = info->length;
2293         u64 delta = info->delta;
2294
2295         /* Only a commit updates the timestamp */
2296         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2297                 delta = 0;
2298
2299         /*
2300          * If we need to add a timestamp, then we
2301          * add it to the start of the resevered space.
2302          */
2303         if (unlikely(info->add_timestamp)) {
2304                 event = rb_add_time_stamp(event, delta);
2305                 length -= RB_LEN_TIME_EXTEND;
2306                 delta = 0;
2307         }
2308
2309         event->time_delta = delta;
2310         length -= RB_EVNT_HDR_SIZE;
2311         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2312                 event->type_len = 0;
2313                 event->array[0] = length;
2314         } else
2315                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2316 }
2317
2318 static unsigned rb_calculate_event_length(unsigned length)
2319 {
2320         struct ring_buffer_event event; /* Used only for sizeof array */
2321
2322         /* zero length can cause confusions */
2323         if (!length)
2324                 length++;
2325
2326         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2327                 length += sizeof(event.array[0]);
2328
2329         length += RB_EVNT_HDR_SIZE;
2330         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2331
2332         /*
2333          * In case the time delta is larger than the 27 bits for it
2334          * in the header, we need to add a timestamp. If another
2335          * event comes in when trying to discard this one to increase
2336          * the length, then the timestamp will be added in the allocated
2337          * space of this event. If length is bigger than the size needed
2338          * for the TIME_EXTEND, then padding has to be used. The events
2339          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2340          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2341          * As length is a multiple of 4, we only need to worry if it
2342          * is 12 (RB_LEN_TIME_EXTEND + 4).
2343          */
2344         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2345                 length += RB_ALIGNMENT;
2346
2347         return length;
2348 }
2349
2350 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2351 static inline bool sched_clock_stable(void)
2352 {
2353         return true;
2354 }
2355 #endif
2356
2357 static inline int
2358 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2359                   struct ring_buffer_event *event)
2360 {
2361         unsigned long new_index, old_index;
2362         struct buffer_page *bpage;
2363         unsigned long index;
2364         unsigned long addr;
2365
2366         new_index = rb_event_index(event);
2367         old_index = new_index + rb_event_ts_length(event);
2368         addr = (unsigned long)event;
2369         addr &= PAGE_MASK;
2370
2371         bpage = cpu_buffer->tail_page;
2372
2373         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2374                 unsigned long write_mask =
2375                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2376                 unsigned long event_length = rb_event_length(event);
2377                 /*
2378                  * This is on the tail page. It is possible that
2379                  * a write could come in and move the tail page
2380                  * and write to the next page. That is fine
2381                  * because we just shorten what is on this page.
2382                  */
2383                 old_index += write_mask;
2384                 new_index += write_mask;
2385                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2386                 if (index == old_index) {
2387                         /* update counters */
2388                         local_sub(event_length, &cpu_buffer->entries_bytes);
2389                         return 1;
2390                 }
2391         }
2392
2393         /* could not discard */
2394         return 0;
2395 }
2396
2397 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2398 {
2399         local_inc(&cpu_buffer->committing);
2400         local_inc(&cpu_buffer->commits);
2401 }
2402
2403 static void
2404 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2405 {
2406         unsigned long max_count;
2407
2408         /*
2409          * We only race with interrupts and NMIs on this CPU.
2410          * If we own the commit event, then we can commit
2411          * all others that interrupted us, since the interruptions
2412          * are in stack format (they finish before they come
2413          * back to us). This allows us to do a simple loop to
2414          * assign the commit to the tail.
2415          */
2416  again:
2417         max_count = cpu_buffer->nr_pages * 100;
2418
2419         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
2420                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2421                         return;
2422                 if (RB_WARN_ON(cpu_buffer,
2423                                rb_is_reader_page(cpu_buffer->tail_page)))
2424                         return;
2425                 local_set(&cpu_buffer->commit_page->page->commit,
2426                           rb_page_write(cpu_buffer->commit_page));
2427                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2428                 cpu_buffer->write_stamp =
2429                         cpu_buffer->commit_page->page->time_stamp;
2430                 /* add barrier to keep gcc from optimizing too much */
2431                 barrier();
2432         }
2433         while (rb_commit_index(cpu_buffer) !=
2434                rb_page_write(cpu_buffer->commit_page)) {
2435
2436                 local_set(&cpu_buffer->commit_page->page->commit,
2437                           rb_page_write(cpu_buffer->commit_page));
2438                 RB_WARN_ON(cpu_buffer,
2439                            local_read(&cpu_buffer->commit_page->page->commit) &
2440                            ~RB_WRITE_MASK);
2441                 barrier();
2442         }
2443
2444         /* again, keep gcc from optimizing */
2445         barrier();
2446
2447         /*
2448          * If an interrupt came in just after the first while loop
2449          * and pushed the tail page forward, we will be left with
2450          * a dangling commit that will never go forward.
2451          */
2452         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
2453                 goto again;
2454 }
2455
2456 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2457 {
2458         unsigned long commits;
2459
2460         if (RB_WARN_ON(cpu_buffer,
2461                        !local_read(&cpu_buffer->committing)))
2462                 return;
2463
2464  again:
2465         commits = local_read(&cpu_buffer->commits);
2466         /* synchronize with interrupts */
2467         barrier();
2468         if (local_read(&cpu_buffer->committing) == 1)
2469                 rb_set_commit_to_write(cpu_buffer);
2470
2471         local_dec(&cpu_buffer->committing);
2472
2473         /* synchronize with interrupts */
2474         barrier();
2475
2476         /*
2477          * Need to account for interrupts coming in between the
2478          * updating of the commit page and the clearing of the
2479          * committing counter.
2480          */
2481         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2482             !local_read(&cpu_buffer->committing)) {
2483                 local_inc(&cpu_buffer->committing);
2484                 goto again;
2485         }
2486 }
2487
2488 static inline void rb_event_discard(struct ring_buffer_event *event)
2489 {
2490         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2491                 event = skip_time_extend(event);
2492
2493         /* array[0] holds the actual length for the discarded event */
2494         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2495         event->type_len = RINGBUF_TYPE_PADDING;
2496         /* time delta must be non zero */
2497         if (!event->time_delta)
2498                 event->time_delta = 1;
2499 }
2500
2501 static inline bool
2502 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2503                    struct ring_buffer_event *event)
2504 {
2505         unsigned long addr = (unsigned long)event;
2506         unsigned long index;
2507
2508         index = rb_event_index(event);
2509         addr &= PAGE_MASK;
2510
2511         return cpu_buffer->commit_page->page == (void *)addr &&
2512                 rb_commit_index(cpu_buffer) == index;
2513 }
2514
2515 static void
2516 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2517                       struct ring_buffer_event *event)
2518 {
2519         u64 delta;
2520
2521         /*
2522          * The event first in the commit queue updates the
2523          * time stamp.
2524          */
2525         if (rb_event_is_commit(cpu_buffer, event)) {
2526                 /*
2527                  * A commit event that is first on a page
2528                  * updates the write timestamp with the page stamp
2529                  */
2530                 if (!rb_event_index(event))
2531                         cpu_buffer->write_stamp =
2532                                 cpu_buffer->commit_page->page->time_stamp;
2533                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2534                         delta = event->array[0];
2535                         delta <<= TS_SHIFT;
2536                         delta += event->time_delta;
2537                         cpu_buffer->write_stamp += delta;
2538                 } else
2539                         cpu_buffer->write_stamp += event->time_delta;
2540         }
2541 }
2542
2543 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2544                       struct ring_buffer_event *event)
2545 {
2546         local_inc(&cpu_buffer->entries);
2547         rb_update_write_stamp(cpu_buffer, event);
2548         rb_end_commit(cpu_buffer);
2549 }
2550
2551 static __always_inline void
2552 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2553 {
2554         bool pagebusy;
2555
2556         if (buffer->irq_work.waiters_pending) {
2557                 buffer->irq_work.waiters_pending = false;
2558                 /* irq_work_queue() supplies it's own memory barriers */
2559                 irq_work_queue(&buffer->irq_work.work);
2560         }
2561
2562         if (cpu_buffer->irq_work.waiters_pending) {
2563                 cpu_buffer->irq_work.waiters_pending = false;
2564                 /* irq_work_queue() supplies it's own memory barriers */
2565                 irq_work_queue(&cpu_buffer->irq_work.work);
2566         }
2567
2568         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2569
2570         if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2571                 cpu_buffer->irq_work.wakeup_full = true;
2572                 cpu_buffer->irq_work.full_waiters_pending = false;
2573                 /* irq_work_queue() supplies it's own memory barriers */
2574                 irq_work_queue(&cpu_buffer->irq_work.work);
2575         }
2576 }
2577
2578 /*
2579  * The lock and unlock are done within a preempt disable section.
2580  * The current_context per_cpu variable can only be modified
2581  * by the current task between lock and unlock. But it can
2582  * be modified more than once via an interrupt. To pass this
2583  * information from the lock to the unlock without having to
2584  * access the 'in_interrupt()' functions again (which do show
2585  * a bit of overhead in something as critical as function tracing,
2586  * we use a bitmask trick.
2587  *
2588  *  bit 0 =  NMI context
2589  *  bit 1 =  IRQ context
2590  *  bit 2 =  SoftIRQ context
2591  *  bit 3 =  normal context.
2592  *
2593  * This works because this is the order of contexts that can
2594  * preempt other contexts. A SoftIRQ never preempts an IRQ
2595  * context.
2596  *
2597  * When the context is determined, the corresponding bit is
2598  * checked and set (if it was set, then a recursion of that context
2599  * happened).
2600  *
2601  * On unlock, we need to clear this bit. To do so, just subtract
2602  * 1 from the current_context and AND it to itself.
2603  *
2604  * (binary)
2605  *  101 - 1 = 100
2606  *  101 & 100 = 100 (clearing bit zero)
2607  *
2608  *  1010 - 1 = 1001
2609  *  1010 & 1001 = 1000 (clearing bit 1)
2610  *
2611  * The least significant bit can be cleared this way, and it
2612  * just so happens that it is the same bit corresponding to
2613  * the current context.
2614  */
2615
2616 static __always_inline int
2617 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2618 {
2619         unsigned int val = cpu_buffer->current_context;
2620         int bit;
2621
2622         if (in_interrupt()) {
2623                 if (in_nmi())
2624                         bit = RB_CTX_NMI;
2625                 else if (in_irq())
2626                         bit = RB_CTX_IRQ;
2627                 else
2628                         bit = RB_CTX_SOFTIRQ;
2629         } else
2630                 bit = RB_CTX_NORMAL;
2631
2632         if (unlikely(val & (1 << bit)))
2633                 return 1;
2634
2635         val |= (1 << bit);
2636         cpu_buffer->current_context = val;
2637
2638         return 0;
2639 }
2640
2641 static __always_inline void
2642 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2643 {
2644         cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2645 }
2646
2647 /**
2648  * ring_buffer_unlock_commit - commit a reserved
2649  * @buffer: The buffer to commit to
2650  * @event: The event pointer to commit.
2651  *
2652  * This commits the data to the ring buffer, and releases any locks held.
2653  *
2654  * Must be paired with ring_buffer_lock_reserve.
2655  */
2656 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2657                               struct ring_buffer_event *event)
2658 {
2659         struct ring_buffer_per_cpu *cpu_buffer;
2660         int cpu = raw_smp_processor_id();
2661
2662         cpu_buffer = buffer->buffers[cpu];
2663
2664         rb_commit(cpu_buffer, event);
2665
2666         rb_wakeups(buffer, cpu_buffer);
2667
2668         trace_recursive_unlock(cpu_buffer);
2669
2670         preempt_enable_notrace();
2671
2672         return 0;
2673 }
2674 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2675
2676 static noinline void
2677 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2678                     struct rb_event_info *info)
2679 {
2680         WARN_ONCE(info->delta > (1ULL << 59),
2681                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2682                   (unsigned long long)info->delta,
2683                   (unsigned long long)info->ts,
2684                   (unsigned long long)cpu_buffer->write_stamp,
2685                   sched_clock_stable() ? "" :
2686                   "If you just came from a suspend/resume,\n"
2687                   "please switch to the trace global clock:\n"
2688                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2689         info->add_timestamp = 1;
2690 }
2691
2692 static struct ring_buffer_event *
2693 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2694                   struct rb_event_info *info)
2695 {
2696         struct ring_buffer_event *event;
2697         struct buffer_page *tail_page;
2698         unsigned long tail, write;
2699
2700         /*
2701          * If the time delta since the last event is too big to
2702          * hold in the time field of the event, then we append a
2703          * TIME EXTEND event ahead of the data event.
2704          */
2705         if (unlikely(info->add_timestamp))
2706                 info->length += RB_LEN_TIME_EXTEND;
2707
2708         tail_page = info->tail_page = cpu_buffer->tail_page;
2709         write = local_add_return(info->length, &tail_page->write);
2710
2711         /* set write to only the index of the write */
2712         write &= RB_WRITE_MASK;
2713         tail = write - info->length;
2714
2715         /*
2716          * If this is the first commit on the page, then it has the same
2717          * timestamp as the page itself.
2718          */
2719         if (!tail)
2720                 info->delta = 0;
2721
2722         /* See if we shot pass the end of this buffer page */
2723         if (unlikely(write > BUF_PAGE_SIZE))
2724                 return rb_move_tail(cpu_buffer, tail, info);
2725
2726         /* We reserved something on the buffer */
2727
2728         event = __rb_page_index(tail_page, tail);
2729         kmemcheck_annotate_bitfield(event, bitfield);
2730         rb_update_event(cpu_buffer, event, info);
2731
2732         local_inc(&tail_page->entries);
2733
2734         /*
2735          * If this is the first commit on the page, then update
2736          * its timestamp.
2737          */
2738         if (!tail)
2739                 tail_page->page->time_stamp = info->ts;
2740
2741         /* account for these added bytes */
2742         local_add(info->length, &cpu_buffer->entries_bytes);
2743
2744         return event;
2745 }
2746
2747 static struct ring_buffer_event *
2748 rb_reserve_next_event(struct ring_buffer *buffer,
2749                       struct ring_buffer_per_cpu *cpu_buffer,
2750                       unsigned long length)
2751 {
2752         struct ring_buffer_event *event;
2753         struct rb_event_info info;
2754         int nr_loops = 0;
2755         u64 diff;
2756
2757         rb_start_commit(cpu_buffer);
2758
2759 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2760         /*
2761          * Due to the ability to swap a cpu buffer from a buffer
2762          * it is possible it was swapped before we committed.
2763          * (committing stops a swap). We check for it here and
2764          * if it happened, we have to fail the write.
2765          */
2766         barrier();
2767         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2768                 local_dec(&cpu_buffer->committing);
2769                 local_dec(&cpu_buffer->commits);
2770                 return NULL;
2771         }
2772 #endif
2773
2774         info.length = rb_calculate_event_length(length);
2775  again:
2776         info.add_timestamp = 0;
2777         info.delta = 0;
2778
2779         /*
2780          * We allow for interrupts to reenter here and do a trace.
2781          * If one does, it will cause this original code to loop
2782          * back here. Even with heavy interrupts happening, this
2783          * should only happen a few times in a row. If this happens
2784          * 1000 times in a row, there must be either an interrupt
2785          * storm or we have something buggy.
2786          * Bail!
2787          */
2788         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2789                 goto out_fail;
2790
2791         info.ts = rb_time_stamp(cpu_buffer->buffer);
2792         diff = info.ts - cpu_buffer->write_stamp;
2793
2794         /* make sure this diff is calculated here */
2795         barrier();
2796
2797         /* Did the write stamp get updated already? */
2798         if (likely(info.ts >= cpu_buffer->write_stamp)) {
2799                 info.delta = diff;
2800                 if (unlikely(test_time_stamp(info.delta)))
2801                         rb_handle_timestamp(cpu_buffer, &info);
2802         }
2803
2804         event = __rb_reserve_next(cpu_buffer, &info);
2805
2806         if (unlikely(PTR_ERR(event) == -EAGAIN))
2807                 goto again;
2808
2809         if (!event)
2810                 goto out_fail;
2811
2812         return event;
2813
2814  out_fail:
2815         rb_end_commit(cpu_buffer);
2816         return NULL;
2817 }
2818
2819 /**
2820  * ring_buffer_lock_reserve - reserve a part of the buffer
2821  * @buffer: the ring buffer to reserve from
2822  * @length: the length of the data to reserve (excluding event header)
2823  *
2824  * Returns a reseverd event on the ring buffer to copy directly to.
2825  * The user of this interface will need to get the body to write into
2826  * and can use the ring_buffer_event_data() interface.
2827  *
2828  * The length is the length of the data needed, not the event length
2829  * which also includes the event header.
2830  *
2831  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2832  * If NULL is returned, then nothing has been allocated or locked.
2833  */
2834 struct ring_buffer_event *
2835 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2836 {
2837         struct ring_buffer_per_cpu *cpu_buffer;
2838         struct ring_buffer_event *event;
2839         int cpu;
2840
2841         /* If we are tracing schedule, we don't want to recurse */
2842         preempt_disable_notrace();
2843
2844         if (unlikely(atomic_read(&buffer->record_disabled)))
2845                 goto out;
2846
2847         cpu = raw_smp_processor_id();
2848
2849         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2850                 goto out;
2851
2852         cpu_buffer = buffer->buffers[cpu];
2853
2854         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2855                 goto out;
2856
2857         if (unlikely(length > BUF_MAX_DATA_SIZE))
2858                 goto out;
2859
2860         if (unlikely(trace_recursive_lock(cpu_buffer)))
2861                 goto out;
2862
2863         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2864         if (!event)
2865                 goto out_unlock;
2866
2867         return event;
2868
2869  out_unlock:
2870         trace_recursive_unlock(cpu_buffer);
2871  out:
2872         preempt_enable_notrace();
2873         return NULL;
2874 }
2875 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2876
2877 /*
2878  * Decrement the entries to the page that an event is on.
2879  * The event does not even need to exist, only the pointer
2880  * to the page it is on. This may only be called before the commit
2881  * takes place.
2882  */
2883 static inline void
2884 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2885                    struct ring_buffer_event *event)
2886 {
2887         unsigned long addr = (unsigned long)event;
2888         struct buffer_page *bpage = cpu_buffer->commit_page;
2889         struct buffer_page *start;
2890
2891         addr &= PAGE_MASK;
2892
2893         /* Do the likely case first */
2894         if (likely(bpage->page == (void *)addr)) {
2895                 local_dec(&bpage->entries);
2896                 return;
2897         }
2898
2899         /*
2900          * Because the commit page may be on the reader page we
2901          * start with the next page and check the end loop there.
2902          */
2903         rb_inc_page(cpu_buffer, &bpage);
2904         start = bpage;
2905         do {
2906                 if (bpage->page == (void *)addr) {
2907                         local_dec(&bpage->entries);
2908                         return;
2909                 }
2910                 rb_inc_page(cpu_buffer, &bpage);
2911         } while (bpage != start);
2912
2913         /* commit not part of this buffer?? */
2914         RB_WARN_ON(cpu_buffer, 1);
2915 }
2916
2917 /**
2918  * ring_buffer_commit_discard - discard an event that has not been committed
2919  * @buffer: the ring buffer
2920  * @event: non committed event to discard
2921  *
2922  * Sometimes an event that is in the ring buffer needs to be ignored.
2923  * This function lets the user discard an event in the ring buffer
2924  * and then that event will not be read later.
2925  *
2926  * This function only works if it is called before the the item has been
2927  * committed. It will try to free the event from the ring buffer
2928  * if another event has not been added behind it.
2929  *
2930  * If another event has been added behind it, it will set the event
2931  * up as discarded, and perform the commit.
2932  *
2933  * If this function is called, do not call ring_buffer_unlock_commit on
2934  * the event.
2935  */
2936 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2937                                 struct ring_buffer_event *event)
2938 {
2939         struct ring_buffer_per_cpu *cpu_buffer;
2940         int cpu;
2941
2942         /* The event is discarded regardless */
2943         rb_event_discard(event);
2944
2945         cpu = smp_processor_id();
2946         cpu_buffer = buffer->buffers[cpu];
2947
2948         /*
2949          * This must only be called if the event has not been
2950          * committed yet. Thus we can assume that preemption
2951          * is still disabled.
2952          */
2953         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2954
2955         rb_decrement_entry(cpu_buffer, event);
2956         if (rb_try_to_discard(cpu_buffer, event))
2957                 goto out;
2958
2959         /*
2960          * The commit is still visible by the reader, so we
2961          * must still update the timestamp.
2962          */
2963         rb_update_write_stamp(cpu_buffer, event);
2964  out:
2965         rb_end_commit(cpu_buffer);
2966
2967         trace_recursive_unlock(cpu_buffer);
2968
2969         preempt_enable_notrace();
2970
2971 }
2972 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2973
2974 /**
2975  * ring_buffer_write - write data to the buffer without reserving
2976  * @buffer: The ring buffer to write to.
2977  * @length: The length of the data being written (excluding the event header)
2978  * @data: The data to write to the buffer.
2979  *
2980  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2981  * one function. If you already have the data to write to the buffer, it
2982  * may be easier to simply call this function.
2983  *
2984  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2985  * and not the length of the event which would hold the header.
2986  */
2987 int ring_buffer_write(struct ring_buffer *buffer,
2988                       unsigned long length,
2989                       void *data)
2990 {
2991         struct ring_buffer_per_cpu *cpu_buffer;
2992         struct ring_buffer_event *event;
2993         void *body;
2994         int ret = -EBUSY;
2995         int cpu;
2996
2997         preempt_disable_notrace();
2998
2999         if (atomic_read(&buffer->record_disabled))
3000                 goto out;
3001
3002         cpu = raw_smp_processor_id();
3003
3004         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3005                 goto out;
3006
3007         cpu_buffer = buffer->buffers[cpu];
3008
3009         if (atomic_read(&cpu_buffer->record_disabled))
3010                 goto out;
3011
3012         if (length > BUF_MAX_DATA_SIZE)
3013                 goto out;
3014
3015         if (unlikely(trace_recursive_lock(cpu_buffer)))
3016                 goto out;
3017
3018         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3019         if (!event)
3020                 goto out_unlock;
3021
3022         body = rb_event_data(event);
3023
3024         memcpy(body, data, length);
3025
3026         rb_commit(cpu_buffer, event);
3027
3028         rb_wakeups(buffer, cpu_buffer);
3029
3030         ret = 0;
3031
3032  out_unlock:
3033         trace_recursive_unlock(cpu_buffer);
3034
3035  out:
3036         preempt_enable_notrace();
3037
3038         return ret;
3039 }
3040 EXPORT_SYMBOL_GPL(ring_buffer_write);
3041
3042 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3043 {
3044         struct buffer_page *reader = cpu_buffer->reader_page;
3045         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3046         struct buffer_page *commit = cpu_buffer->commit_page;
3047
3048         /* In case of error, head will be NULL */
3049         if (unlikely(!head))
3050                 return true;
3051
3052         return reader->read == rb_page_commit(reader) &&
3053                 (commit == reader ||
3054                  (commit == head &&
3055                   head->read == rb_page_commit(commit)));
3056 }
3057
3058 /**
3059  * ring_buffer_record_disable - stop all writes into the buffer
3060  * @buffer: The ring buffer to stop writes to.
3061  *
3062  * This prevents all writes to the buffer. Any attempt to write
3063  * to the buffer after this will fail and return NULL.
3064  *
3065  * The caller should call synchronize_sched() after this.
3066  */
3067 void ring_buffer_record_disable(struct ring_buffer *buffer)
3068 {
3069         atomic_inc(&buffer->record_disabled);
3070 }
3071 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3072
3073 /**
3074  * ring_buffer_record_enable - enable writes to the buffer
3075  * @buffer: The ring buffer to enable writes
3076  *
3077  * Note, multiple disables will need the same number of enables
3078  * to truly enable the writing (much like preempt_disable).
3079  */
3080 void ring_buffer_record_enable(struct ring_buffer *buffer)
3081 {
3082         atomic_dec(&buffer->record_disabled);
3083 }
3084 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3085
3086 /**
3087  * ring_buffer_record_off - stop all writes into the buffer
3088  * @buffer: The ring buffer to stop writes to.
3089  *
3090  * This prevents all writes to the buffer. Any attempt to write
3091  * to the buffer after this will fail and return NULL.
3092  *
3093  * This is different than ring_buffer_record_disable() as
3094  * it works like an on/off switch, where as the disable() version
3095  * must be paired with a enable().
3096  */
3097 void ring_buffer_record_off(struct ring_buffer *buffer)
3098 {
3099         unsigned int rd;
3100         unsigned int new_rd;
3101
3102         do {
3103                 rd = atomic_read(&buffer->record_disabled);
3104                 new_rd = rd | RB_BUFFER_OFF;
3105         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3106 }
3107 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3108
3109 /**
3110  * ring_buffer_record_on - restart writes into the buffer
3111  * @buffer: The ring buffer to start writes to.
3112  *
3113  * This enables all writes to the buffer that was disabled by
3114  * ring_buffer_record_off().
3115  *
3116  * This is different than ring_buffer_record_enable() as
3117  * it works like an on/off switch, where as the enable() version
3118  * must be paired with a disable().
3119  */
3120 void ring_buffer_record_on(struct ring_buffer *buffer)
3121 {
3122         unsigned int rd;
3123         unsigned int new_rd;
3124
3125         do {
3126                 rd = atomic_read(&buffer->record_disabled);
3127                 new_rd = rd & ~RB_BUFFER_OFF;
3128         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3129 }
3130 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3131
3132 /**
3133  * ring_buffer_record_is_on - return true if the ring buffer can write
3134  * @buffer: The ring buffer to see if write is enabled
3135  *
3136  * Returns true if the ring buffer is in a state that it accepts writes.
3137  */
3138 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3139 {
3140         return !atomic_read(&buffer->record_disabled);
3141 }
3142
3143 /**
3144  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3145  * @buffer: The ring buffer to stop writes to.
3146  * @cpu: The CPU buffer to stop
3147  *
3148  * This prevents all writes to the buffer. Any attempt to write
3149  * to the buffer after this will fail and return NULL.
3150  *
3151  * The caller should call synchronize_sched() after this.
3152  */
3153 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3154 {
3155         struct ring_buffer_per_cpu *cpu_buffer;
3156
3157         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3158                 return;
3159
3160         cpu_buffer = buffer->buffers[cpu];
3161         atomic_inc(&cpu_buffer->record_disabled);
3162 }
3163 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3164
3165 /**
3166  * ring_buffer_record_enable_cpu - enable writes to the buffer
3167  * @buffer: The ring buffer to enable writes
3168  * @cpu: The CPU to enable.
3169  *
3170  * Note, multiple disables will need the same number of enables
3171  * to truly enable the writing (much like preempt_disable).
3172  */
3173 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3174 {
3175         struct ring_buffer_per_cpu *cpu_buffer;
3176
3177         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3178                 return;
3179
3180         cpu_buffer = buffer->buffers[cpu];
3181         atomic_dec(&cpu_buffer->record_disabled);
3182 }
3183 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3184
3185 /*
3186  * The total entries in the ring buffer is the running counter
3187  * of entries entered into the ring buffer, minus the sum of
3188  * the entries read from the ring buffer and the number of
3189  * entries that were overwritten.
3190  */
3191 static inline unsigned long
3192 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3193 {
3194         return local_read(&cpu_buffer->entries) -
3195                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3196 }
3197
3198 /**
3199  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3200  * @buffer: The ring buffer
3201  * @cpu: The per CPU buffer to read from.
3202  */
3203 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3204 {
3205         unsigned long flags;
3206         struct ring_buffer_per_cpu *cpu_buffer;
3207         struct buffer_page *bpage;
3208         u64 ret = 0;
3209
3210         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3211                 return 0;
3212
3213         cpu_buffer = buffer->buffers[cpu];
3214         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3215         /*
3216          * if the tail is on reader_page, oldest time stamp is on the reader
3217          * page
3218          */
3219         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3220                 bpage = cpu_buffer->reader_page;
3221         else
3222                 bpage = rb_set_head_page(cpu_buffer);
3223         if (bpage)
3224                 ret = bpage->page->time_stamp;
3225         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3226
3227         return ret;
3228 }
3229 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3230
3231 /**
3232  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3233  * @buffer: The ring buffer
3234  * @cpu: The per CPU buffer to read from.
3235  */
3236 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3237 {
3238         struct ring_buffer_per_cpu *cpu_buffer;
3239         unsigned long ret;
3240
3241         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3242                 return 0;
3243
3244         cpu_buffer = buffer->buffers[cpu];
3245         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3246
3247         return ret;
3248 }
3249 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3250
3251 /**
3252  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3253  * @buffer: The ring buffer
3254  * @cpu: The per CPU buffer to get the entries from.
3255  */
3256 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3257 {
3258         struct ring_buffer_per_cpu *cpu_buffer;
3259
3260         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3261                 return 0;
3262
3263         cpu_buffer = buffer->buffers[cpu];
3264
3265         return rb_num_of_entries(cpu_buffer);
3266 }
3267 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3268
3269 /**
3270  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3271  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3272  * @buffer: The ring buffer
3273  * @cpu: The per CPU buffer to get the number of overruns from
3274  */
3275 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3276 {
3277         struct ring_buffer_per_cpu *cpu_buffer;
3278         unsigned long ret;
3279
3280         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3281                 return 0;
3282
3283         cpu_buffer = buffer->buffers[cpu];
3284         ret = local_read(&cpu_buffer->overrun);
3285
3286         return ret;
3287 }
3288 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3289
3290 /**
3291  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3292  * commits failing due to the buffer wrapping around while there are uncommitted
3293  * events, such as during an interrupt storm.
3294  * @buffer: The ring buffer
3295  * @cpu: The per CPU buffer to get the number of overruns from
3296  */
3297 unsigned long
3298 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3299 {
3300         struct ring_buffer_per_cpu *cpu_buffer;
3301         unsigned long ret;
3302
3303         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3304                 return 0;
3305
3306         cpu_buffer = buffer->buffers[cpu];
3307         ret = local_read(&cpu_buffer->commit_overrun);
3308
3309         return ret;
3310 }
3311 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3312
3313 /**
3314  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3315  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3316  * @buffer: The ring buffer
3317  * @cpu: The per CPU buffer to get the number of overruns from
3318  */
3319 unsigned long
3320 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3321 {
3322         struct ring_buffer_per_cpu *cpu_buffer;
3323         unsigned long ret;
3324
3325         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3326                 return 0;
3327
3328         cpu_buffer = buffer->buffers[cpu];
3329         ret = local_read(&cpu_buffer->dropped_events);
3330
3331         return ret;
3332 }
3333 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3334
3335 /**
3336  * ring_buffer_read_events_cpu - get the number of events successfully read
3337  * @buffer: The ring buffer
3338  * @cpu: The per CPU buffer to get the number of events read
3339  */
3340 unsigned long
3341 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3342 {
3343         struct ring_buffer_per_cpu *cpu_buffer;
3344
3345         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3346                 return 0;
3347
3348         cpu_buffer = buffer->buffers[cpu];
3349         return cpu_buffer->read;
3350 }
3351 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3352
3353 /**
3354  * ring_buffer_entries - get the number of entries in a buffer
3355  * @buffer: The ring buffer
3356  *
3357  * Returns the total number of entries in the ring buffer
3358  * (all CPU entries)
3359  */
3360 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3361 {
3362         struct ring_buffer_per_cpu *cpu_buffer;
3363         unsigned long entries = 0;
3364         int cpu;
3365
3366         /* if you care about this being correct, lock the buffer */
3367         for_each_buffer_cpu(buffer, cpu) {
3368                 cpu_buffer = buffer->buffers[cpu];
3369                 entries += rb_num_of_entries(cpu_buffer);
3370         }
3371
3372         return entries;
3373 }
3374 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3375
3376 /**
3377  * ring_buffer_overruns - get the number of overruns in buffer
3378  * @buffer: The ring buffer
3379  *
3380  * Returns the total number of overruns in the ring buffer
3381  * (all CPU entries)
3382  */
3383 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3384 {
3385         struct ring_buffer_per_cpu *cpu_buffer;
3386         unsigned long overruns = 0;
3387         int cpu;
3388
3389         /* if you care about this being correct, lock the buffer */
3390         for_each_buffer_cpu(buffer, cpu) {
3391                 cpu_buffer = buffer->buffers[cpu];
3392                 overruns += local_read(&cpu_buffer->overrun);
3393         }
3394
3395         return overruns;
3396 }
3397 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3398
3399 static void rb_iter_reset(struct ring_buffer_iter *iter)
3400 {
3401         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3402
3403         /* Iterator usage is expected to have record disabled */
3404         iter->head_page = cpu_buffer->reader_page;
3405         iter->head = cpu_buffer->reader_page->read;
3406
3407         iter->cache_reader_page = iter->head_page;
3408         iter->cache_read = cpu_buffer->read;
3409
3410         if (iter->head)
3411                 iter->read_stamp = cpu_buffer->read_stamp;
3412         else
3413                 iter->read_stamp = iter->head_page->page->time_stamp;
3414 }
3415
3416 /**
3417  * ring_buffer_iter_reset - reset an iterator
3418  * @iter: The iterator to reset
3419  *
3420  * Resets the iterator, so that it will start from the beginning
3421  * again.
3422  */
3423 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3424 {
3425         struct ring_buffer_per_cpu *cpu_buffer;
3426         unsigned long flags;
3427
3428         if (!iter)
3429                 return;
3430
3431         cpu_buffer = iter->cpu_buffer;
3432
3433         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3434         rb_iter_reset(iter);
3435         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3436 }
3437 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3438
3439 /**
3440  * ring_buffer_iter_empty - check if an iterator has no more to read
3441  * @iter: The iterator to check
3442  */
3443 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3444 {
3445         struct ring_buffer_per_cpu *cpu_buffer;
3446
3447         cpu_buffer = iter->cpu_buffer;
3448
3449         return iter->head_page == cpu_buffer->commit_page &&
3450                 iter->head == rb_commit_index(cpu_buffer);
3451 }
3452 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3453
3454 static void
3455 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3456                      struct ring_buffer_event *event)
3457 {
3458         u64 delta;
3459
3460         switch (event->type_len) {
3461         case RINGBUF_TYPE_PADDING:
3462                 return;
3463
3464         case RINGBUF_TYPE_TIME_EXTEND:
3465                 delta = event->array[0];
3466                 delta <<= TS_SHIFT;
3467                 delta += event->time_delta;
3468                 cpu_buffer->read_stamp += delta;
3469                 return;
3470
3471         case RINGBUF_TYPE_TIME_STAMP:
3472                 /* FIXME: not implemented */
3473                 return;
3474
3475         case RINGBUF_TYPE_DATA:
3476                 cpu_buffer->read_stamp += event->time_delta;
3477                 return;
3478
3479         default:
3480                 BUG();
3481         }
3482         return;
3483 }
3484
3485 static void
3486 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3487                           struct ring_buffer_event *event)
3488 {
3489         u64 delta;
3490
3491         switch (event->type_len) {
3492         case RINGBUF_TYPE_PADDING:
3493                 return;
3494
3495         case RINGBUF_TYPE_TIME_EXTEND:
3496                 delta = event->array[0];
3497                 delta <<= TS_SHIFT;
3498                 delta += event->time_delta;
3499                 iter->read_stamp += delta;
3500                 return;
3501
3502         case RINGBUF_TYPE_TIME_STAMP:
3503                 /* FIXME: not implemented */
3504                 return;
3505
3506         case RINGBUF_TYPE_DATA:
3507                 iter->read_stamp += event->time_delta;
3508                 return;
3509
3510         default:
3511                 BUG();
3512         }
3513         return;
3514 }
3515
3516 static struct buffer_page *
3517 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3518 {
3519         struct buffer_page *reader = NULL;
3520         unsigned long overwrite;
3521         unsigned long flags;
3522         int nr_loops = 0;
3523         int ret;
3524
3525         local_irq_save(flags);
3526         arch_spin_lock(&cpu_buffer->lock);
3527
3528  again:
3529         /*
3530          * This should normally only loop twice. But because the
3531          * start of the reader inserts an empty page, it causes
3532          * a case where we will loop three times. There should be no
3533          * reason to loop four times (that I know of).
3534          */
3535         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3536                 reader = NULL;
3537                 goto out;
3538         }
3539
3540         reader = cpu_buffer->reader_page;
3541
3542         /* If there's more to read, return this page */
3543         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3544                 goto out;
3545
3546         /* Never should we have an index greater than the size */
3547         if (RB_WARN_ON(cpu_buffer,
3548                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3549                 goto out;
3550
3551         /* check if we caught up to the tail */
3552         reader = NULL;
3553         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3554                 goto out;
3555
3556         /* Don't bother swapping if the ring buffer is empty */
3557         if (rb_num_of_entries(cpu_buffer) == 0)
3558                 goto out;
3559
3560         /*
3561          * Reset the reader page to size zero.
3562          */
3563         local_set(&cpu_buffer->reader_page->write, 0);
3564         local_set(&cpu_buffer->reader_page->entries, 0);
3565         local_set(&cpu_buffer->reader_page->page->commit, 0);
3566         cpu_buffer->reader_page->real_end = 0;
3567
3568  spin:
3569         /*
3570          * Splice the empty reader page into the list around the head.
3571          */
3572         reader = rb_set_head_page(cpu_buffer);
3573         if (!reader)
3574                 goto out;
3575         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3576         cpu_buffer->reader_page->list.prev = reader->list.prev;
3577
3578         /*
3579          * cpu_buffer->pages just needs to point to the buffer, it
3580          *  has no specific buffer page to point to. Lets move it out
3581          *  of our way so we don't accidentally swap it.
3582          */
3583         cpu_buffer->pages = reader->list.prev;
3584
3585         /* The reader page will be pointing to the new head */
3586         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3587
3588         /*
3589          * We want to make sure we read the overruns after we set up our
3590          * pointers to the next object. The writer side does a
3591          * cmpxchg to cross pages which acts as the mb on the writer
3592          * side. Note, the reader will constantly fail the swap
3593          * while the writer is updating the pointers, so this
3594          * guarantees that the overwrite recorded here is the one we
3595          * want to compare with the last_overrun.
3596          */
3597         smp_mb();
3598         overwrite = local_read(&(cpu_buffer->overrun));
3599
3600         /*
3601          * Here's the tricky part.
3602          *
3603          * We need to move the pointer past the header page.
3604          * But we can only do that if a writer is not currently
3605          * moving it. The page before the header page has the
3606          * flag bit '1' set if it is pointing to the page we want.
3607          * but if the writer is in the process of moving it
3608          * than it will be '2' or already moved '0'.
3609          */
3610
3611         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3612
3613         /*
3614          * If we did not convert it, then we must try again.
3615          */
3616         if (!ret)
3617                 goto spin;
3618
3619         /*
3620          * Yeah! We succeeded in replacing the page.
3621          *
3622          * Now make the new head point back to the reader page.
3623          */
3624         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3625         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3626
3627         /* Finally update the reader page to the new head */
3628         cpu_buffer->reader_page = reader;
3629         rb_reset_reader_page(cpu_buffer);
3630
3631         if (overwrite != cpu_buffer->last_overrun) {
3632                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3633                 cpu_buffer->last_overrun = overwrite;
3634         }
3635
3636         goto again;
3637
3638  out:
3639         arch_spin_unlock(&cpu_buffer->lock);
3640         local_irq_restore(flags);
3641
3642         return reader;
3643 }
3644
3645 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3646 {
3647         struct ring_buffer_event *event;
3648         struct buffer_page *reader;
3649         unsigned length;
3650
3651         reader = rb_get_reader_page(cpu_buffer);
3652
3653         /* This function should not be called when buffer is empty */
3654         if (RB_WARN_ON(cpu_buffer, !reader))
3655                 return;
3656
3657         event = rb_reader_event(cpu_buffer);
3658
3659         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3660                 cpu_buffer->read++;
3661
3662         rb_update_read_stamp(cpu_buffer, event);
3663
3664         length = rb_event_length(event);
3665         cpu_buffer->reader_page->read += length;
3666 }
3667
3668 static void rb_advance_iter(struct ring_buffer_iter *iter)
3669 {
3670         struct ring_buffer_per_cpu *cpu_buffer;
3671         struct ring_buffer_event *event;
3672         unsigned length;
3673
3674         cpu_buffer = iter->cpu_buffer;
3675
3676         /*
3677          * Check if we are at the end of the buffer.
3678          */
3679         if (iter->head >= rb_page_size(iter->head_page)) {
3680                 /* discarded commits can make the page empty */
3681                 if (iter->head_page == cpu_buffer->commit_page)
3682                         return;
3683                 rb_inc_iter(iter);
3684                 return;
3685         }
3686
3687         event = rb_iter_head_event(iter);
3688
3689         length = rb_event_length(event);
3690
3691         /*
3692          * This should not be called to advance the header if we are
3693          * at the tail of the buffer.
3694          */
3695         if (RB_WARN_ON(cpu_buffer,
3696                        (iter->head_page == cpu_buffer->commit_page) &&
3697                        (iter->head + length > rb_commit_index(cpu_buffer))))
3698                 return;
3699
3700         rb_update_iter_read_stamp(iter, event);
3701
3702         iter->head += length;
3703
3704         /* check for end of page padding */
3705         if ((iter->head >= rb_page_size(iter->head_page)) &&
3706             (iter->head_page != cpu_buffer->commit_page))
3707                 rb_inc_iter(iter);
3708 }
3709
3710 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3711 {
3712         return cpu_buffer->lost_events;
3713 }
3714
3715 static struct ring_buffer_event *
3716 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3717                unsigned long *lost_events)
3718 {
3719         struct ring_buffer_event *event;
3720         struct buffer_page *reader;
3721         int nr_loops = 0;
3722
3723  again:
3724         /*
3725          * We repeat when a time extend is encountered.
3726          * Since the time extend is always attached to a data event,
3727          * we should never loop more than once.
3728          * (We never hit the following condition more than twice).
3729          */
3730         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3731                 return NULL;
3732
3733         reader = rb_get_reader_page(cpu_buffer);
3734         if (!reader)
3735                 return NULL;
3736
3737         event = rb_reader_event(cpu_buffer);
3738
3739         switch (event->type_len) {
3740         case RINGBUF_TYPE_PADDING:
3741                 if (rb_null_event(event))
3742                         RB_WARN_ON(cpu_buffer, 1);
3743                 /*
3744                  * Because the writer could be discarding every
3745                  * event it creates (which would probably be bad)
3746                  * if we were to go back to "again" then we may never
3747                  * catch up, and will trigger the warn on, or lock
3748                  * the box. Return the padding, and we will release
3749                  * the current locks, and try again.
3750                  */
3751                 return event;
3752
3753         case RINGBUF_TYPE_TIME_EXTEND:
3754                 /* Internal data, OK to advance */
3755                 rb_advance_reader(cpu_buffer);
3756                 goto again;
3757
3758         case RINGBUF_TYPE_TIME_STAMP:
3759                 /* FIXME: not implemented */
3760                 rb_advance_reader(cpu_buffer);
3761                 goto again;
3762
3763         case RINGBUF_TYPE_DATA:
3764                 if (ts) {
3765                         *ts = cpu_buffer->read_stamp + event->time_delta;
3766                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3767                                                          cpu_buffer->cpu, ts);
3768                 }
3769                 if (lost_events)
3770                         *lost_events = rb_lost_events(cpu_buffer);
3771                 return event;
3772
3773         default:
3774                 BUG();
3775         }
3776
3777         return NULL;
3778 }
3779 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3780
3781 static struct ring_buffer_event *
3782 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3783 {
3784         struct ring_buffer *buffer;
3785         struct ring_buffer_per_cpu *cpu_buffer;
3786         struct ring_buffer_event *event;
3787         int nr_loops = 0;
3788
3789         cpu_buffer = iter->cpu_buffer;
3790         buffer = cpu_buffer->buffer;
3791
3792         /*
3793          * Check if someone performed a consuming read to
3794          * the buffer. A consuming read invalidates the iterator
3795          * and we need to reset the iterator in this case.
3796          */
3797         if (unlikely(iter->cache_read != cpu_buffer->read ||
3798                      iter->cache_reader_page != cpu_buffer->reader_page))
3799                 rb_iter_reset(iter);
3800
3801  again:
3802         if (ring_buffer_iter_empty(iter))
3803                 return NULL;
3804
3805         /*
3806          * We repeat when a time extend is encountered or we hit
3807          * the end of the page. Since the time extend is always attached
3808          * to a data event, we should never loop more than three times.
3809          * Once for going to next page, once on time extend, and
3810          * finally once to get the event.
3811          * (We never hit the following condition more than thrice).
3812          */
3813         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3814                 return NULL;
3815
3816         if (rb_per_cpu_empty(cpu_buffer))
3817                 return NULL;
3818
3819         if (iter->head >= rb_page_size(iter->head_page)) {
3820                 rb_inc_iter(iter);
3821                 goto again;
3822         }
3823
3824         event = rb_iter_head_event(iter);
3825
3826         switch (event->type_len) {
3827         case RINGBUF_TYPE_PADDING:
3828                 if (rb_null_event(event)) {
3829                         rb_inc_iter(iter);
3830                         goto again;
3831                 }
3832                 rb_advance_iter(iter);
3833                 return event;
3834
3835         case RINGBUF_TYPE_TIME_EXTEND:
3836                 /* Internal data, OK to advance */
3837                 rb_advance_iter(iter);
3838                 goto again;
3839
3840         case RINGBUF_TYPE_TIME_STAMP:
3841                 /* FIXME: not implemented */
3842                 rb_advance_iter(iter);
3843                 goto again;
3844
3845         case RINGBUF_TYPE_DATA:
3846                 if (ts) {
3847                         *ts = iter->read_stamp + event->time_delta;
3848                         ring_buffer_normalize_time_stamp(buffer,
3849                                                          cpu_buffer->cpu, ts);
3850                 }
3851                 return event;
3852
3853         default:
3854                 BUG();
3855         }
3856
3857         return NULL;
3858 }
3859 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3860
3861 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3862 {
3863         if (likely(!in_nmi())) {
3864                 raw_spin_lock(&cpu_buffer->reader_lock);
3865                 return true;
3866         }
3867
3868         /*
3869          * If an NMI die dumps out the content of the ring buffer
3870          * trylock must be used to prevent a deadlock if the NMI
3871          * preempted a task that holds the ring buffer locks. If
3872          * we get the lock then all is fine, if not, then continue
3873          * to do the read, but this can corrupt the ring buffer,
3874          * so it must be permanently disabled from future writes.
3875          * Reading from NMI is a oneshot deal.
3876          */
3877         if (raw_spin_trylock(&cpu_buffer->reader_lock))
3878                 return true;
3879
3880         /* Continue without locking, but disable the ring buffer */
3881         atomic_inc(&cpu_buffer->record_disabled);
3882         return false;
3883 }
3884
3885 static inline void
3886 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3887 {
3888         if (likely(locked))
3889                 raw_spin_unlock(&cpu_buffer->reader_lock);
3890         return;
3891 }
3892
3893 /**
3894  * ring_buffer_peek - peek at the next event to be read
3895  * @buffer: The ring buffer to read
3896  * @cpu: The cpu to peak at
3897  * @ts: The timestamp counter of this event.
3898  * @lost_events: a variable to store if events were lost (may be NULL)
3899  *
3900  * This will return the event that will be read next, but does
3901  * not consume the data.
3902  */
3903 struct ring_buffer_event *
3904 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3905                  unsigned long *lost_events)
3906 {
3907         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3908         struct ring_buffer_event *event;
3909         unsigned long flags;
3910         bool dolock;
3911
3912         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3913                 return NULL;
3914
3915  again:
3916         local_irq_save(flags);
3917         dolock = rb_reader_lock(cpu_buffer);
3918         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3919         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3920                 rb_advance_reader(cpu_buffer);
3921         rb_reader_unlock(cpu_buffer, dolock);
3922         local_irq_restore(flags);
3923
3924         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3925                 goto again;
3926
3927         return event;
3928 }
3929
3930 /**
3931  * ring_buffer_iter_peek - peek at the next event to be read
3932  * @iter: The ring buffer iterator
3933  * @ts: The timestamp counter of this event.
3934  *
3935  * This will return the event that will be read next, but does
3936  * not increment the iterator.
3937  */
3938 struct ring_buffer_event *
3939 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3940 {
3941         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3942         struct ring_buffer_event *event;
3943         unsigned long flags;
3944
3945  again:
3946         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3947         event = rb_iter_peek(iter, ts);
3948         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3949
3950         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3951                 goto again;
3952
3953         return event;
3954 }
3955
3956 /**
3957  * ring_buffer_consume - return an event and consume it
3958  * @buffer: The ring buffer to get the next event from
3959  * @cpu: the cpu to read the buffer from
3960  * @ts: a variable to store the timestamp (may be NULL)
3961  * @lost_events: a variable to store if events were lost (may be NULL)
3962  *
3963  * Returns the next event in the ring buffer, and that event is consumed.
3964  * Meaning, that sequential reads will keep returning a different event,
3965  * and eventually empty the ring buffer if the producer is slower.
3966  */
3967 struct ring_buffer_event *
3968 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3969                     unsigned long *lost_events)
3970 {
3971         struct ring_buffer_per_cpu *cpu_buffer;
3972         struct ring_buffer_event *event = NULL;
3973         unsigned long flags;
3974         bool dolock;
3975
3976  again:
3977         /* might be called in atomic */
3978         preempt_disable();
3979
3980         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3981                 goto out;
3982
3983         cpu_buffer = buffer->buffers[cpu];
3984         local_irq_save(flags);
3985         dolock = rb_reader_lock(cpu_buffer);
3986
3987         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3988         if (event) {
3989                 cpu_buffer->lost_events = 0;
3990                 rb_advance_reader(cpu_buffer);
3991         }
3992
3993         rb_reader_unlock(cpu_buffer, dolock);
3994         local_irq_restore(flags);
3995
3996  out:
3997         preempt_enable();
3998
3999         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4000                 goto again;
4001
4002         return event;
4003 }
4004 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4005
4006 /**
4007  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4008  * @buffer: The ring buffer to read from
4009  * @cpu: The cpu buffer to iterate over
4010  *
4011  * This performs the initial preparations necessary to iterate
4012  * through the buffer.  Memory is allocated, buffer recording
4013  * is disabled, and the iterator pointer is returned to the caller.
4014  *
4015  * Disabling buffer recordng prevents the reading from being
4016  * corrupted. This is not a consuming read, so a producer is not
4017  * expected.
4018  *
4019  * After a sequence of ring_buffer_read_prepare calls, the user is
4020  * expected to make at least one call to ring_buffer_read_prepare_sync.
4021  * Afterwards, ring_buffer_read_start is invoked to get things going
4022  * for real.
4023  *
4024  * This overall must be paired with ring_buffer_read_finish.
4025  */
4026 struct ring_buffer_iter *
4027 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4028 {
4029         struct ring_buffer_per_cpu *cpu_buffer;
4030         struct ring_buffer_iter *iter;
4031
4032         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4033                 return NULL;
4034
4035         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4036         if (!iter)
4037                 return NULL;
4038
4039         cpu_buffer = buffer->buffers[cpu];
4040
4041         iter->cpu_buffer = cpu_buffer;
4042
4043         atomic_inc(&buffer->resize_disabled);
4044         atomic_inc(&cpu_buffer->record_disabled);
4045
4046         return iter;
4047 }
4048 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4049
4050 /**
4051  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4052  *
4053  * All previously invoked ring_buffer_read_prepare calls to prepare
4054  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4055  * calls on those iterators are allowed.
4056  */
4057 void
4058 ring_buffer_read_prepare_sync(void)
4059 {
4060         synchronize_sched();
4061 }
4062 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4063
4064 /**
4065  * ring_buffer_read_start - start a non consuming read of the buffer
4066  * @iter: The iterator returned by ring_buffer_read_prepare
4067  *
4068  * This finalizes the startup of an iteration through the buffer.
4069  * The iterator comes from a call to ring_buffer_read_prepare and
4070  * an intervening ring_buffer_read_prepare_sync must have been
4071  * performed.
4072  *
4073  * Must be paired with ring_buffer_read_finish.
4074  */
4075 void
4076 ring_buffer_read_start(struct ring_buffer_iter *iter)
4077 {
4078         struct ring_buffer_per_cpu *cpu_buffer;
4079         unsigned long flags;
4080
4081         if (!iter)
4082                 return;
4083
4084         cpu_buffer = iter->cpu_buffer;
4085
4086         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4087         arch_spin_lock(&cpu_buffer->lock);
4088         rb_iter_reset(iter);
4089         arch_spin_unlock(&cpu_buffer->lock);
4090         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4091 }
4092 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4093
4094 /**
4095  * ring_buffer_read_finish - finish reading the iterator of the buffer
4096  * @iter: The iterator retrieved by ring_buffer_start
4097  *
4098  * This re-enables the recording to the buffer, and frees the
4099  * iterator.
4100  */
4101 void
4102 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4103 {
4104         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4105         unsigned long flags;
4106
4107         /*
4108          * Ring buffer is disabled from recording, here's a good place
4109          * to check the integrity of the ring buffer.
4110          * Must prevent readers from trying to read, as the check
4111          * clears the HEAD page and readers require it.
4112          */
4113         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4114         rb_check_pages(cpu_buffer);
4115         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4116
4117         atomic_dec(&cpu_buffer->record_disabled);
4118         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4119         kfree(iter);
4120 }
4121 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4122
4123 /**
4124  * ring_buffer_read - read the next item in the ring buffer by the iterator
4125  * @iter: The ring buffer iterator
4126  * @ts: The time stamp of the event read.
4127  *
4128  * This reads the next event in the ring buffer and increments the iterator.
4129  */
4130 struct ring_buffer_event *
4131 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4132 {
4133         struct ring_buffer_event *event;
4134         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4135         unsigned long flags;
4136
4137         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4138  again:
4139         event = rb_iter_peek(iter, ts);
4140         if (!event)
4141                 goto out;
4142
4143         if (event->type_len == RINGBUF_TYPE_PADDING)
4144                 goto again;
4145
4146         rb_advance_iter(iter);
4147  out:
4148         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4149
4150         return event;
4151 }
4152 EXPORT_SYMBOL_GPL(ring_buffer_read);
4153
4154 /**
4155  * ring_buffer_size - return the size of the ring buffer (in bytes)
4156  * @buffer: The ring buffer.
4157  */
4158 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4159 {
4160         /*
4161          * Earlier, this method returned
4162          *      BUF_PAGE_SIZE * buffer->nr_pages
4163          * Since the nr_pages field is now removed, we have converted this to
4164          * return the per cpu buffer value.
4165          */
4166         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4167                 return 0;
4168
4169         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4170 }
4171 EXPORT_SYMBOL_GPL(ring_buffer_size);
4172
4173 static void
4174 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4175 {
4176         rb_head_page_deactivate(cpu_buffer);
4177
4178         cpu_buffer->head_page
4179                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4180         local_set(&cpu_buffer->head_page->write, 0);
4181         local_set(&cpu_buffer->head_page->entries, 0);
4182         local_set(&cpu_buffer->head_page->page->commit, 0);
4183
4184         cpu_buffer->head_page->read = 0;
4185
4186         cpu_buffer->tail_page = cpu_buffer->head_page;
4187         cpu_buffer->commit_page = cpu_buffer->head_page;
4188
4189         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4190         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4191         local_set(&cpu_buffer->reader_page->write, 0);
4192         local_set(&cpu_buffer->reader_page->entries, 0);
4193         local_set(&cpu_buffer->reader_page->page->commit, 0);
4194         cpu_buffer->reader_page->read = 0;
4195
4196         local_set(&cpu_buffer->entries_bytes, 0);
4197         local_set(&cpu_buffer->overrun, 0);
4198         local_set(&cpu_buffer->commit_overrun, 0);
4199         local_set(&cpu_buffer->dropped_events, 0);
4200         local_set(&cpu_buffer->entries, 0);
4201         local_set(&cpu_buffer->committing, 0);
4202         local_set(&cpu_buffer->commits, 0);
4203         cpu_buffer->read = 0;
4204         cpu_buffer->read_bytes = 0;
4205
4206         cpu_buffer->write_stamp = 0;
4207         cpu_buffer->read_stamp = 0;
4208
4209         cpu_buffer->lost_events = 0;
4210         cpu_buffer->last_overrun = 0;
4211
4212         rb_head_page_activate(cpu_buffer);
4213 }
4214
4215 /**
4216  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4217  * @buffer: The ring buffer to reset a per cpu buffer of
4218  * @cpu: The CPU buffer to be reset
4219  */
4220 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4221 {
4222         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4223         unsigned long flags;
4224
4225         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4226                 return;
4227
4228         atomic_inc(&buffer->resize_disabled);
4229         atomic_inc(&cpu_buffer->record_disabled);
4230
4231         /* Make sure all commits have finished */
4232         synchronize_sched();
4233
4234         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4235
4236         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4237                 goto out;
4238
4239         arch_spin_lock(&cpu_buffer->lock);
4240
4241         rb_reset_cpu(cpu_buffer);
4242
4243         arch_spin_unlock(&cpu_buffer->lock);
4244
4245  out:
4246         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4247
4248         atomic_dec(&cpu_buffer->record_disabled);
4249         atomic_dec(&buffer->resize_disabled);
4250 }
4251 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4252
4253 /**
4254  * ring_buffer_reset - reset a ring buffer
4255  * @buffer: The ring buffer to reset all cpu buffers
4256  */
4257 void ring_buffer_reset(struct ring_buffer *buffer)
4258 {
4259         int cpu;
4260
4261         for_each_buffer_cpu(buffer, cpu)
4262                 ring_buffer_reset_cpu(buffer, cpu);
4263 }
4264 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4265
4266 /**
4267  * rind_buffer_empty - is the ring buffer empty?
4268  * @buffer: The ring buffer to test
4269  */
4270 bool ring_buffer_empty(struct ring_buffer *buffer)
4271 {
4272         struct ring_buffer_per_cpu *cpu_buffer;
4273         unsigned long flags;
4274         bool dolock;
4275         int cpu;
4276         int ret;
4277
4278         /* yes this is racy, but if you don't like the race, lock the buffer */
4279         for_each_buffer_cpu(buffer, cpu) {
4280                 cpu_buffer = buffer->buffers[cpu];
4281                 local_irq_save(flags);
4282                 dolock = rb_reader_lock(cpu_buffer);
4283                 ret = rb_per_cpu_empty(cpu_buffer);
4284                 rb_reader_unlock(cpu_buffer, dolock);
4285                 local_irq_restore(flags);
4286
4287                 if (!ret)
4288                         return false;
4289         }
4290
4291         return true;
4292 }
4293 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4294
4295 /**
4296  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4297  * @buffer: The ring buffer
4298  * @cpu: The CPU buffer to test
4299  */
4300 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4301 {
4302         struct ring_buffer_per_cpu *cpu_buffer;
4303         unsigned long flags;
4304         bool dolock;
4305         int ret;
4306
4307         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4308                 return true;
4309
4310         cpu_buffer = buffer->buffers[cpu];
4311         local_irq_save(flags);
4312         dolock = rb_reader_lock(cpu_buffer);
4313         ret = rb_per_cpu_empty(cpu_buffer);
4314         rb_reader_unlock(cpu_buffer, dolock);
4315         local_irq_restore(flags);
4316
4317         return ret;
4318 }
4319 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4320
4321 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4322 /**
4323  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4324  * @buffer_a: One buffer to swap with
4325  * @buffer_b: The other buffer to swap with
4326  *
4327  * This function is useful for tracers that want to take a "snapshot"
4328  * of a CPU buffer and has another back up buffer lying around.
4329  * it is expected that the tracer handles the cpu buffer not being
4330  * used at the moment.
4331  */
4332 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4333                          struct ring_buffer *buffer_b, int cpu)
4334 {
4335         struct ring_buffer_per_cpu *cpu_buffer_a;
4336         struct ring_buffer_per_cpu *cpu_buffer_b;
4337         int ret = -EINVAL;
4338
4339         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4340             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4341                 goto out;
4342
4343         cpu_buffer_a = buffer_a->buffers[cpu];
4344         cpu_buffer_b = buffer_b->buffers[cpu];
4345
4346         /* At least make sure the two buffers are somewhat the same */
4347         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4348                 goto out;
4349
4350         ret = -EAGAIN;
4351
4352         if (atomic_read(&buffer_a->record_disabled))
4353                 goto out;
4354
4355         if (atomic_read(&buffer_b->record_disabled))
4356                 goto out;
4357
4358         if (atomic_read(&cpu_buffer_a->record_disabled))
4359                 goto out;
4360
4361         if (atomic_read(&cpu_buffer_b->record_disabled))
4362                 goto out;
4363
4364         /*
4365          * We can't do a synchronize_sched here because this
4366          * function can be called in atomic context.
4367          * Normally this will be called from the same CPU as cpu.
4368          * If not it's up to the caller to protect this.
4369          */
4370         atomic_inc(&cpu_buffer_a->record_disabled);
4371         atomic_inc(&cpu_buffer_b->record_disabled);
4372
4373         ret = -EBUSY;
4374         if (local_read(&cpu_buffer_a->committing))
4375                 goto out_dec;
4376         if (local_read(&cpu_buffer_b->committing))
4377                 goto out_dec;
4378
4379         buffer_a->buffers[cpu] = cpu_buffer_b;
4380         buffer_b->buffers[cpu] = cpu_buffer_a;
4381
4382         cpu_buffer_b->buffer = buffer_a;
4383         cpu_buffer_a->buffer = buffer_b;
4384
4385         ret = 0;
4386
4387 out_dec:
4388         atomic_dec(&cpu_buffer_a->record_disabled);
4389         atomic_dec(&cpu_buffer_b->record_disabled);
4390 out:
4391         return ret;
4392 }
4393 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4394 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4395
4396 /**
4397  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4398  * @buffer: the buffer to allocate for.
4399  * @cpu: the cpu buffer to allocate.
4400  *
4401  * This function is used in conjunction with ring_buffer_read_page.
4402  * When reading a full page from the ring buffer, these functions
4403  * can be used to speed up the process. The calling function should
4404  * allocate a few pages first with this function. Then when it
4405  * needs to get pages from the ring buffer, it passes the result
4406  * of this function into ring_buffer_read_page, which will swap
4407  * the page that was allocated, with the read page of the buffer.
4408  *
4409  * Returns:
4410  *  The page allocated, or NULL on error.
4411  */
4412 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4413 {
4414         struct buffer_data_page *bpage;
4415         struct page *page;
4416
4417         page = alloc_pages_node(cpu_to_node(cpu),
4418                                 GFP_KERNEL | __GFP_NORETRY, 0);
4419         if (!page)
4420                 return NULL;
4421
4422         bpage = page_address(page);
4423
4424         rb_init_page(bpage);
4425
4426         return bpage;
4427 }
4428 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4429
4430 /**
4431  * ring_buffer_free_read_page - free an allocated read page
4432  * @buffer: the buffer the page was allocate for
4433  * @data: the page to free
4434  *
4435  * Free a page allocated from ring_buffer_alloc_read_page.
4436  */
4437 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4438 {
4439         free_page((unsigned long)data);
4440 }
4441 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4442
4443 /**
4444  * ring_buffer_read_page - extract a page from the ring buffer
4445  * @buffer: buffer to extract from
4446  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4447  * @len: amount to extract
4448  * @cpu: the cpu of the buffer to extract
4449  * @full: should the extraction only happen when the page is full.
4450  *
4451  * This function will pull out a page from the ring buffer and consume it.
4452  * @data_page must be the address of the variable that was returned
4453  * from ring_buffer_alloc_read_page. This is because the page might be used
4454  * to swap with a page in the ring buffer.
4455  *
4456  * for example:
4457  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4458  *      if (!rpage)
4459  *              return error;
4460  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4461  *      if (ret >= 0)
4462  *              process_page(rpage, ret);
4463  *
4464  * When @full is set, the function will not return true unless
4465  * the writer is off the reader page.
4466  *
4467  * Note: it is up to the calling functions to handle sleeps and wakeups.
4468  *  The ring buffer can be used anywhere in the kernel and can not
4469  *  blindly call wake_up. The layer that uses the ring buffer must be
4470  *  responsible for that.
4471  *
4472  * Returns:
4473  *  >=0 if data has been transferred, returns the offset of consumed data.
4474  *  <0 if no data has been transferred.
4475  */
4476 int ring_buffer_read_page(struct ring_buffer *buffer,
4477                           void **data_page, size_t len, int cpu, int full)
4478 {
4479         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4480         struct ring_buffer_event *event;
4481         struct buffer_data_page *bpage;
4482         struct buffer_page *reader;
4483         unsigned long missed_events;
4484         unsigned long flags;
4485         unsigned int commit;
4486         unsigned int read;
4487         u64 save_timestamp;
4488         int ret = -1;
4489
4490         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4491                 goto out;
4492
4493         /*
4494          * If len is not big enough to hold the page header, then
4495          * we can not copy anything.
4496          */
4497         if (len <= BUF_PAGE_HDR_SIZE)
4498                 goto out;
4499
4500         len -= BUF_PAGE_HDR_SIZE;
4501
4502         if (!data_page)
4503                 goto out;
4504
4505         bpage = *data_page;
4506         if (!bpage)
4507                 goto out;
4508
4509         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4510
4511         reader = rb_get_reader_page(cpu_buffer);
4512         if (!reader)
4513                 goto out_unlock;
4514
4515         event = rb_reader_event(cpu_buffer);
4516
4517         read = reader->read;
4518         commit = rb_page_commit(reader);
4519
4520         /* Check if any events were dropped */
4521         missed_events = cpu_buffer->lost_events;
4522
4523         /*
4524          * If this page has been partially read or
4525          * if len is not big enough to read the rest of the page or
4526          * a writer is still on the page, then
4527          * we must copy the data from the page to the buffer.
4528          * Otherwise, we can simply swap the page with the one passed in.
4529          */
4530         if (read || (len < (commit - read)) ||
4531             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4532                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4533                 unsigned int rpos = read;
4534                 unsigned int pos = 0;
4535                 unsigned int size;
4536
4537                 if (full)
4538                         goto out_unlock;
4539
4540                 if (len > (commit - read))
4541                         len = (commit - read);
4542
4543                 /* Always keep the time extend and data together */
4544                 size = rb_event_ts_length(event);
4545
4546                 if (len < size)
4547                         goto out_unlock;
4548
4549                 /* save the current timestamp, since the user will need it */
4550                 save_timestamp = cpu_buffer->read_stamp;
4551
4552                 /* Need to copy one event at a time */
4553                 do {
4554                         /* We need the size of one event, because
4555                          * rb_advance_reader only advances by one event,
4556                          * whereas rb_event_ts_length may include the size of
4557                          * one or two events.
4558                          * We have already ensured there's enough space if this
4559                          * is a time extend. */
4560                         size = rb_event_length(event);
4561                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4562
4563                         len -= size;
4564
4565                         rb_advance_reader(cpu_buffer);
4566                         rpos = reader->read;
4567                         pos += size;
4568
4569                         if (rpos >= commit)
4570                                 break;
4571
4572                         event = rb_reader_event(cpu_buffer);
4573                         /* Always keep the time extend and data together */
4574                         size = rb_event_ts_length(event);
4575                 } while (len >= size);
4576
4577                 /* update bpage */
4578                 local_set(&bpage->commit, pos);
4579                 bpage->time_stamp = save_timestamp;
4580
4581                 /* we copied everything to the beginning */
4582                 read = 0;
4583         } else {
4584                 /* update the entry counter */
4585                 cpu_buffer->read += rb_page_entries(reader);
4586                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4587
4588                 /* swap the pages */
4589                 rb_init_page(bpage);
4590                 bpage = reader->page;
4591                 reader->page = *data_page;
4592                 local_set(&reader->write, 0);
4593                 local_set(&reader->entries, 0);
4594                 reader->read = 0;
4595                 *data_page = bpage;
4596
4597                 /*
4598                  * Use the real_end for the data size,
4599                  * This gives us a chance to store the lost events
4600                  * on the page.
4601                  */
4602                 if (reader->real_end)
4603                         local_set(&bpage->commit, reader->real_end);
4604         }
4605         ret = read;
4606
4607         cpu_buffer->lost_events = 0;
4608
4609         commit = local_read(&bpage->commit);
4610         /*
4611          * Set a flag in the commit field if we lost events
4612          */
4613         if (missed_events) {
4614                 /* If there is room at the end of the page to save the
4615                  * missed events, then record it there.
4616                  */
4617                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4618                         memcpy(&bpage->data[commit], &missed_events,
4619                                sizeof(missed_events));
4620                         local_add(RB_MISSED_STORED, &bpage->commit);
4621                         commit += sizeof(missed_events);
4622                 }
4623                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4624         }
4625
4626         /*
4627          * This page may be off to user land. Zero it out here.
4628          */
4629         if (commit < BUF_PAGE_SIZE)
4630                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4631
4632  out_unlock:
4633         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4634
4635  out:
4636         return ret;
4637 }
4638 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4639
4640 #ifdef CONFIG_HOTPLUG_CPU
4641 static int rb_cpu_notify(struct notifier_block *self,
4642                          unsigned long action, void *hcpu)
4643 {
4644         struct ring_buffer *buffer =
4645                 container_of(self, struct ring_buffer, cpu_notify);
4646         long cpu = (long)hcpu;
4647         int cpu_i, nr_pages_same;
4648         unsigned int nr_pages;
4649
4650         switch (action) {
4651         case CPU_UP_PREPARE:
4652         case CPU_UP_PREPARE_FROZEN:
4653                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4654                         return NOTIFY_OK;
4655
4656                 nr_pages = 0;
4657                 nr_pages_same = 1;
4658                 /* check if all cpu sizes are same */
4659                 for_each_buffer_cpu(buffer, cpu_i) {
4660                         /* fill in the size from first enabled cpu */
4661                         if (nr_pages == 0)
4662                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4663                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4664                                 nr_pages_same = 0;
4665                                 break;
4666                         }
4667                 }
4668                 /* allocate minimum pages, user can later expand it */
4669                 if (!nr_pages_same)
4670                         nr_pages = 2;
4671                 buffer->buffers[cpu] =
4672                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4673                 if (!buffer->buffers[cpu]) {
4674                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4675                              cpu);
4676                         return NOTIFY_OK;
4677                 }
4678                 smp_wmb();
4679                 cpumask_set_cpu(cpu, buffer->cpumask);
4680                 break;
4681         case CPU_DOWN_PREPARE:
4682         case CPU_DOWN_PREPARE_FROZEN:
4683                 /*
4684                  * Do nothing.
4685                  *  If we were to free the buffer, then the user would
4686                  *  lose any trace that was in the buffer.
4687                  */
4688                 break;
4689         default:
4690                 break;
4691         }
4692         return NOTIFY_OK;
4693 }
4694 #endif
4695
4696 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4697 /*
4698  * This is a basic integrity check of the ring buffer.
4699  * Late in the boot cycle this test will run when configured in.
4700  * It will kick off a thread per CPU that will go into a loop
4701  * writing to the per cpu ring buffer various sizes of data.
4702  * Some of the data will be large items, some small.
4703  *
4704  * Another thread is created that goes into a spin, sending out
4705  * IPIs to the other CPUs to also write into the ring buffer.
4706  * this is to test the nesting ability of the buffer.
4707  *
4708  * Basic stats are recorded and reported. If something in the
4709  * ring buffer should happen that's not expected, a big warning
4710  * is displayed and all ring buffers are disabled.
4711  */
4712 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4713
4714 struct rb_test_data {
4715         struct ring_buffer      *buffer;
4716         unsigned long           events;
4717         unsigned long           bytes_written;
4718         unsigned long           bytes_alloc;
4719         unsigned long           bytes_dropped;
4720         unsigned long           events_nested;
4721         unsigned long           bytes_written_nested;
4722         unsigned long           bytes_alloc_nested;
4723         unsigned long           bytes_dropped_nested;
4724         int                     min_size_nested;
4725         int                     max_size_nested;
4726         int                     max_size;
4727         int                     min_size;
4728         int                     cpu;
4729         int                     cnt;
4730 };
4731
4732 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4733
4734 /* 1 meg per cpu */
4735 #define RB_TEST_BUFFER_SIZE     1048576
4736
4737 static char rb_string[] __initdata =
4738         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4739         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4740         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4741
4742 static bool rb_test_started __initdata;
4743
4744 struct rb_item {
4745         int size;
4746         char str[];
4747 };
4748
4749 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4750 {
4751         struct ring_buffer_event *event;
4752         struct rb_item *item;
4753         bool started;
4754         int event_len;
4755         int size;
4756         int len;
4757         int cnt;
4758
4759         /* Have nested writes different that what is written */
4760         cnt = data->cnt + (nested ? 27 : 0);
4761
4762         /* Multiply cnt by ~e, to make some unique increment */
4763         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4764
4765         len = size + sizeof(struct rb_item);
4766
4767         started = rb_test_started;
4768         /* read rb_test_started before checking buffer enabled */
4769         smp_rmb();
4770
4771         event = ring_buffer_lock_reserve(data->buffer, len);
4772         if (!event) {
4773                 /* Ignore dropped events before test starts. */
4774                 if (started) {
4775                         if (nested)
4776                                 data->bytes_dropped += len;
4777                         else
4778                                 data->bytes_dropped_nested += len;
4779                 }
4780                 return len;
4781         }
4782
4783         event_len = ring_buffer_event_length(event);
4784
4785         if (RB_WARN_ON(data->buffer, event_len < len))
4786                 goto out;
4787
4788         item = ring_buffer_event_data(event);
4789         item->size = size;
4790         memcpy(item->str, rb_string, size);
4791
4792         if (nested) {
4793                 data->bytes_alloc_nested += event_len;
4794                 data->bytes_written_nested += len;
4795                 data->events_nested++;
4796                 if (!data->min_size_nested || len < data->min_size_nested)
4797                         data->min_size_nested = len;
4798                 if (len > data->max_size_nested)
4799                         data->max_size_nested = len;
4800         } else {
4801                 data->bytes_alloc += event_len;
4802                 data->bytes_written += len;
4803                 data->events++;
4804                 if (!data->min_size || len < data->min_size)
4805                         data->max_size = len;
4806                 if (len > data->max_size)
4807                         data->max_size = len;
4808         }
4809
4810  out:
4811         ring_buffer_unlock_commit(data->buffer, event);
4812
4813         return 0;
4814 }
4815
4816 static __init int rb_test(void *arg)
4817 {
4818         struct rb_test_data *data = arg;
4819
4820         while (!kthread_should_stop()) {
4821                 rb_write_something(data, false);
4822                 data->cnt++;
4823
4824                 set_current_state(TASK_INTERRUPTIBLE);
4825                 /* Now sleep between a min of 100-300us and a max of 1ms */
4826                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4827         }
4828
4829         return 0;
4830 }
4831
4832 static __init void rb_ipi(void *ignore)
4833 {
4834         struct rb_test_data *data;
4835         int cpu = smp_processor_id();
4836
4837         data = &rb_data[cpu];
4838         rb_write_something(data, true);
4839 }
4840
4841 static __init int rb_hammer_test(void *arg)
4842 {
4843         while (!kthread_should_stop()) {
4844
4845                 /* Send an IPI to all cpus to write data! */
4846                 smp_call_function(rb_ipi, NULL, 1);
4847                 /* No sleep, but for non preempt, let others run */
4848                 schedule();
4849         }
4850
4851         return 0;
4852 }
4853
4854 static __init int test_ringbuffer(void)
4855 {
4856         struct task_struct *rb_hammer;
4857         struct ring_buffer *buffer;
4858         int cpu;
4859         int ret = 0;
4860
4861         pr_info("Running ring buffer tests...\n");
4862
4863         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4864         if (WARN_ON(!buffer))
4865                 return 0;
4866
4867         /* Disable buffer so that threads can't write to it yet */
4868         ring_buffer_record_off(buffer);
4869
4870         for_each_online_cpu(cpu) {
4871                 rb_data[cpu].buffer = buffer;
4872                 rb_data[cpu].cpu = cpu;
4873                 rb_data[cpu].cnt = cpu;
4874                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4875                                                  "rbtester/%d", cpu);
4876                 if (WARN_ON(!rb_threads[cpu])) {
4877                         pr_cont("FAILED\n");
4878                         ret = -1;
4879                         goto out_free;
4880                 }
4881
4882                 kthread_bind(rb_threads[cpu], cpu);
4883                 wake_up_process(rb_threads[cpu]);
4884         }
4885
4886         /* Now create the rb hammer! */
4887         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4888         if (WARN_ON(!rb_hammer)) {
4889                 pr_cont("FAILED\n");
4890                 ret = -1;
4891                 goto out_free;
4892         }
4893
4894         ring_buffer_record_on(buffer);
4895         /*
4896          * Show buffer is enabled before setting rb_test_started.
4897          * Yes there's a small race window where events could be
4898          * dropped and the thread wont catch it. But when a ring
4899          * buffer gets enabled, there will always be some kind of
4900          * delay before other CPUs see it. Thus, we don't care about
4901          * those dropped events. We care about events dropped after
4902          * the threads see that the buffer is active.
4903          */
4904         smp_wmb();
4905         rb_test_started = true;
4906
4907         set_current_state(TASK_INTERRUPTIBLE);
4908         /* Just run for 10 seconds */;
4909         schedule_timeout(10 * HZ);
4910
4911         kthread_stop(rb_hammer);
4912
4913  out_free:
4914         for_each_online_cpu(cpu) {
4915                 if (!rb_threads[cpu])
4916                         break;
4917                 kthread_stop(rb_threads[cpu]);
4918         }
4919         if (ret) {
4920                 ring_buffer_free(buffer);
4921                 return ret;
4922         }
4923
4924         /* Report! */
4925         pr_info("finished\n");
4926         for_each_online_cpu(cpu) {
4927                 struct ring_buffer_event *event;
4928                 struct rb_test_data *data = &rb_data[cpu];
4929                 struct rb_item *item;
4930                 unsigned long total_events;
4931                 unsigned long total_dropped;
4932                 unsigned long total_written;
4933                 unsigned long total_alloc;
4934                 unsigned long total_read = 0;
4935                 unsigned long total_size = 0;
4936                 unsigned long total_len = 0;
4937                 unsigned long total_lost = 0;
4938                 unsigned long lost;
4939                 int big_event_size;
4940                 int small_event_size;
4941
4942                 ret = -1;
4943
4944                 total_events = data->events + data->events_nested;
4945                 total_written = data->bytes_written + data->bytes_written_nested;
4946                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4947                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4948
4949                 big_event_size = data->max_size + data->max_size_nested;
4950                 small_event_size = data->min_size + data->min_size_nested;
4951
4952                 pr_info("CPU %d:\n", cpu);
4953                 pr_info("              events:    %ld\n", total_events);
4954                 pr_info("       dropped bytes:    %ld\n", total_dropped);
4955                 pr_info("       alloced bytes:    %ld\n", total_alloc);
4956                 pr_info("       written bytes:    %ld\n", total_written);
4957                 pr_info("       biggest event:    %d\n", big_event_size);
4958                 pr_info("      smallest event:    %d\n", small_event_size);
4959
4960                 if (RB_WARN_ON(buffer, total_dropped))
4961                         break;
4962
4963                 ret = 0;
4964
4965                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4966                         total_lost += lost;
4967                         item = ring_buffer_event_data(event);
4968                         total_len += ring_buffer_event_length(event);
4969                         total_size += item->size + sizeof(struct rb_item);
4970                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4971                                 pr_info("FAILED!\n");
4972                                 pr_info("buffer had: %.*s\n", item->size, item->str);
4973                                 pr_info("expected:   %.*s\n", item->size, rb_string);
4974                                 RB_WARN_ON(buffer, 1);
4975                                 ret = -1;
4976                                 break;
4977                         }
4978                         total_read++;
4979                 }
4980                 if (ret)
4981                         break;
4982
4983                 ret = -1;
4984
4985                 pr_info("         read events:   %ld\n", total_read);
4986                 pr_info("         lost events:   %ld\n", total_lost);
4987                 pr_info("        total events:   %ld\n", total_lost + total_read);
4988                 pr_info("  recorded len bytes:   %ld\n", total_len);
4989                 pr_info(" recorded size bytes:   %ld\n", total_size);
4990                 if (total_lost)
4991                         pr_info(" With dropped events, record len and size may not match\n"
4992                                 " alloced and written from above\n");
4993                 if (!total_lost) {
4994                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
4995                                        total_size != total_written))
4996                                 break;
4997                 }
4998                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4999                         break;
5000
5001                 ret = 0;
5002         }
5003         if (!ret)
5004                 pr_info("Ring buffer PASSED!\n");
5005
5006         ring_buffer_free(buffer);
5007         return 0;
5008 }
5009
5010 late_initcall(test_ringbuffer);
5011 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */