IB/mlx5: Reset flow support for IB kernel ULPs
[cascardo/linux.git] / mm / compaction.c
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/backing-dev.h>
16 #include <linux/sysctl.h>
17 #include <linux/sysfs.h>
18 #include <linux/balloon_compaction.h>
19 #include <linux/page-isolation.h>
20 #include <linux/kasan.h>
21 #include <linux/kthread.h>
22 #include <linux/freezer.h>
23 #include "internal.h"
24
25 #ifdef CONFIG_COMPACTION
26 static inline void count_compact_event(enum vm_event_item item)
27 {
28         count_vm_event(item);
29 }
30
31 static inline void count_compact_events(enum vm_event_item item, long delta)
32 {
33         count_vm_events(item, delta);
34 }
35 #else
36 #define count_compact_event(item) do { } while (0)
37 #define count_compact_events(item, delta) do { } while (0)
38 #endif
39
40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/compaction.h>
44
45 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
46 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
47 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
48 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
49
50 static unsigned long release_freepages(struct list_head *freelist)
51 {
52         struct page *page, *next;
53         unsigned long high_pfn = 0;
54
55         list_for_each_entry_safe(page, next, freelist, lru) {
56                 unsigned long pfn = page_to_pfn(page);
57                 list_del(&page->lru);
58                 __free_page(page);
59                 if (pfn > high_pfn)
60                         high_pfn = pfn;
61         }
62
63         return high_pfn;
64 }
65
66 static void map_pages(struct list_head *list)
67 {
68         struct page *page;
69
70         list_for_each_entry(page, list, lru) {
71                 arch_alloc_page(page, 0);
72                 kernel_map_pages(page, 1, 1);
73                 kasan_alloc_pages(page, 0);
74         }
75 }
76
77 static inline bool migrate_async_suitable(int migratetype)
78 {
79         return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
80 }
81
82 #ifdef CONFIG_COMPACTION
83
84 /* Do not skip compaction more than 64 times */
85 #define COMPACT_MAX_DEFER_SHIFT 6
86
87 /*
88  * Compaction is deferred when compaction fails to result in a page
89  * allocation success. 1 << compact_defer_limit compactions are skipped up
90  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
91  */
92 void defer_compaction(struct zone *zone, int order)
93 {
94         zone->compact_considered = 0;
95         zone->compact_defer_shift++;
96
97         if (order < zone->compact_order_failed)
98                 zone->compact_order_failed = order;
99
100         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
101                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
102
103         trace_mm_compaction_defer_compaction(zone, order);
104 }
105
106 /* Returns true if compaction should be skipped this time */
107 bool compaction_deferred(struct zone *zone, int order)
108 {
109         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
110
111         if (order < zone->compact_order_failed)
112                 return false;
113
114         /* Avoid possible overflow */
115         if (++zone->compact_considered > defer_limit)
116                 zone->compact_considered = defer_limit;
117
118         if (zone->compact_considered >= defer_limit)
119                 return false;
120
121         trace_mm_compaction_deferred(zone, order);
122
123         return true;
124 }
125
126 /*
127  * Update defer tracking counters after successful compaction of given order,
128  * which means an allocation either succeeded (alloc_success == true) or is
129  * expected to succeed.
130  */
131 void compaction_defer_reset(struct zone *zone, int order,
132                 bool alloc_success)
133 {
134         if (alloc_success) {
135                 zone->compact_considered = 0;
136                 zone->compact_defer_shift = 0;
137         }
138         if (order >= zone->compact_order_failed)
139                 zone->compact_order_failed = order + 1;
140
141         trace_mm_compaction_defer_reset(zone, order);
142 }
143
144 /* Returns true if restarting compaction after many failures */
145 bool compaction_restarting(struct zone *zone, int order)
146 {
147         if (order < zone->compact_order_failed)
148                 return false;
149
150         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
151                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
152 }
153
154 /* Returns true if the pageblock should be scanned for pages to isolate. */
155 static inline bool isolation_suitable(struct compact_control *cc,
156                                         struct page *page)
157 {
158         if (cc->ignore_skip_hint)
159                 return true;
160
161         return !get_pageblock_skip(page);
162 }
163
164 static void reset_cached_positions(struct zone *zone)
165 {
166         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
167         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
168         zone->compact_cached_free_pfn =
169                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
170 }
171
172 /*
173  * This function is called to clear all cached information on pageblocks that
174  * should be skipped for page isolation when the migrate and free page scanner
175  * meet.
176  */
177 static void __reset_isolation_suitable(struct zone *zone)
178 {
179         unsigned long start_pfn = zone->zone_start_pfn;
180         unsigned long end_pfn = zone_end_pfn(zone);
181         unsigned long pfn;
182
183         zone->compact_blockskip_flush = false;
184
185         /* Walk the zone and mark every pageblock as suitable for isolation */
186         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
187                 struct page *page;
188
189                 cond_resched();
190
191                 if (!pfn_valid(pfn))
192                         continue;
193
194                 page = pfn_to_page(pfn);
195                 if (zone != page_zone(page))
196                         continue;
197
198                 clear_pageblock_skip(page);
199         }
200
201         reset_cached_positions(zone);
202 }
203
204 void reset_isolation_suitable(pg_data_t *pgdat)
205 {
206         int zoneid;
207
208         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
209                 struct zone *zone = &pgdat->node_zones[zoneid];
210                 if (!populated_zone(zone))
211                         continue;
212
213                 /* Only flush if a full compaction finished recently */
214                 if (zone->compact_blockskip_flush)
215                         __reset_isolation_suitable(zone);
216         }
217 }
218
219 /*
220  * If no pages were isolated then mark this pageblock to be skipped in the
221  * future. The information is later cleared by __reset_isolation_suitable().
222  */
223 static void update_pageblock_skip(struct compact_control *cc,
224                         struct page *page, unsigned long nr_isolated,
225                         bool migrate_scanner)
226 {
227         struct zone *zone = cc->zone;
228         unsigned long pfn;
229
230         if (cc->ignore_skip_hint)
231                 return;
232
233         if (!page)
234                 return;
235
236         if (nr_isolated)
237                 return;
238
239         set_pageblock_skip(page);
240
241         pfn = page_to_pfn(page);
242
243         /* Update where async and sync compaction should restart */
244         if (migrate_scanner) {
245                 if (pfn > zone->compact_cached_migrate_pfn[0])
246                         zone->compact_cached_migrate_pfn[0] = pfn;
247                 if (cc->mode != MIGRATE_ASYNC &&
248                     pfn > zone->compact_cached_migrate_pfn[1])
249                         zone->compact_cached_migrate_pfn[1] = pfn;
250         } else {
251                 if (pfn < zone->compact_cached_free_pfn)
252                         zone->compact_cached_free_pfn = pfn;
253         }
254 }
255 #else
256 static inline bool isolation_suitable(struct compact_control *cc,
257                                         struct page *page)
258 {
259         return true;
260 }
261
262 static void update_pageblock_skip(struct compact_control *cc,
263                         struct page *page, unsigned long nr_isolated,
264                         bool migrate_scanner)
265 {
266 }
267 #endif /* CONFIG_COMPACTION */
268
269 /*
270  * Compaction requires the taking of some coarse locks that are potentially
271  * very heavily contended. For async compaction, back out if the lock cannot
272  * be taken immediately. For sync compaction, spin on the lock if needed.
273  *
274  * Returns true if the lock is held
275  * Returns false if the lock is not held and compaction should abort
276  */
277 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
278                                                 struct compact_control *cc)
279 {
280         if (cc->mode == MIGRATE_ASYNC) {
281                 if (!spin_trylock_irqsave(lock, *flags)) {
282                         cc->contended = COMPACT_CONTENDED_LOCK;
283                         return false;
284                 }
285         } else {
286                 spin_lock_irqsave(lock, *flags);
287         }
288
289         return true;
290 }
291
292 /*
293  * Compaction requires the taking of some coarse locks that are potentially
294  * very heavily contended. The lock should be periodically unlocked to avoid
295  * having disabled IRQs for a long time, even when there is nobody waiting on
296  * the lock. It might also be that allowing the IRQs will result in
297  * need_resched() becoming true. If scheduling is needed, async compaction
298  * aborts. Sync compaction schedules.
299  * Either compaction type will also abort if a fatal signal is pending.
300  * In either case if the lock was locked, it is dropped and not regained.
301  *
302  * Returns true if compaction should abort due to fatal signal pending, or
303  *              async compaction due to need_resched()
304  * Returns false when compaction can continue (sync compaction might have
305  *              scheduled)
306  */
307 static bool compact_unlock_should_abort(spinlock_t *lock,
308                 unsigned long flags, bool *locked, struct compact_control *cc)
309 {
310         if (*locked) {
311                 spin_unlock_irqrestore(lock, flags);
312                 *locked = false;
313         }
314
315         if (fatal_signal_pending(current)) {
316                 cc->contended = COMPACT_CONTENDED_SCHED;
317                 return true;
318         }
319
320         if (need_resched()) {
321                 if (cc->mode == MIGRATE_ASYNC) {
322                         cc->contended = COMPACT_CONTENDED_SCHED;
323                         return true;
324                 }
325                 cond_resched();
326         }
327
328         return false;
329 }
330
331 /*
332  * Aside from avoiding lock contention, compaction also periodically checks
333  * need_resched() and either schedules in sync compaction or aborts async
334  * compaction. This is similar to what compact_unlock_should_abort() does, but
335  * is used where no lock is concerned.
336  *
337  * Returns false when no scheduling was needed, or sync compaction scheduled.
338  * Returns true when async compaction should abort.
339  */
340 static inline bool compact_should_abort(struct compact_control *cc)
341 {
342         /* async compaction aborts if contended */
343         if (need_resched()) {
344                 if (cc->mode == MIGRATE_ASYNC) {
345                         cc->contended = COMPACT_CONTENDED_SCHED;
346                         return true;
347                 }
348
349                 cond_resched();
350         }
351
352         return false;
353 }
354
355 /*
356  * Isolate free pages onto a private freelist. If @strict is true, will abort
357  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
358  * (even though it may still end up isolating some pages).
359  */
360 static unsigned long isolate_freepages_block(struct compact_control *cc,
361                                 unsigned long *start_pfn,
362                                 unsigned long end_pfn,
363                                 struct list_head *freelist,
364                                 bool strict)
365 {
366         int nr_scanned = 0, total_isolated = 0;
367         struct page *cursor, *valid_page = NULL;
368         unsigned long flags = 0;
369         bool locked = false;
370         unsigned long blockpfn = *start_pfn;
371
372         cursor = pfn_to_page(blockpfn);
373
374         /* Isolate free pages. */
375         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
376                 int isolated, i;
377                 struct page *page = cursor;
378
379                 /*
380                  * Periodically drop the lock (if held) regardless of its
381                  * contention, to give chance to IRQs. Abort if fatal signal
382                  * pending or async compaction detects need_resched()
383                  */
384                 if (!(blockpfn % SWAP_CLUSTER_MAX)
385                     && compact_unlock_should_abort(&cc->zone->lock, flags,
386                                                                 &locked, cc))
387                         break;
388
389                 nr_scanned++;
390                 if (!pfn_valid_within(blockpfn))
391                         goto isolate_fail;
392
393                 if (!valid_page)
394                         valid_page = page;
395
396                 /*
397                  * For compound pages such as THP and hugetlbfs, we can save
398                  * potentially a lot of iterations if we skip them at once.
399                  * The check is racy, but we can consider only valid values
400                  * and the only danger is skipping too much.
401                  */
402                 if (PageCompound(page)) {
403                         unsigned int comp_order = compound_order(page);
404
405                         if (likely(comp_order < MAX_ORDER)) {
406                                 blockpfn += (1UL << comp_order) - 1;
407                                 cursor += (1UL << comp_order) - 1;
408                         }
409
410                         goto isolate_fail;
411                 }
412
413                 if (!PageBuddy(page))
414                         goto isolate_fail;
415
416                 /*
417                  * If we already hold the lock, we can skip some rechecking.
418                  * Note that if we hold the lock now, checked_pageblock was
419                  * already set in some previous iteration (or strict is true),
420                  * so it is correct to skip the suitable migration target
421                  * recheck as well.
422                  */
423                 if (!locked) {
424                         /*
425                          * The zone lock must be held to isolate freepages.
426                          * Unfortunately this is a very coarse lock and can be
427                          * heavily contended if there are parallel allocations
428                          * or parallel compactions. For async compaction do not
429                          * spin on the lock and we acquire the lock as late as
430                          * possible.
431                          */
432                         locked = compact_trylock_irqsave(&cc->zone->lock,
433                                                                 &flags, cc);
434                         if (!locked)
435                                 break;
436
437                         /* Recheck this is a buddy page under lock */
438                         if (!PageBuddy(page))
439                                 goto isolate_fail;
440                 }
441
442                 /* Found a free page, break it into order-0 pages */
443                 isolated = split_free_page(page);
444                 total_isolated += isolated;
445                 for (i = 0; i < isolated; i++) {
446                         list_add(&page->lru, freelist);
447                         page++;
448                 }
449
450                 /* If a page was split, advance to the end of it */
451                 if (isolated) {
452                         cc->nr_freepages += isolated;
453                         if (!strict &&
454                                 cc->nr_migratepages <= cc->nr_freepages) {
455                                 blockpfn += isolated;
456                                 break;
457                         }
458
459                         blockpfn += isolated - 1;
460                         cursor += isolated - 1;
461                         continue;
462                 }
463
464 isolate_fail:
465                 if (strict)
466                         break;
467                 else
468                         continue;
469
470         }
471
472         /*
473          * There is a tiny chance that we have read bogus compound_order(),
474          * so be careful to not go outside of the pageblock.
475          */
476         if (unlikely(blockpfn > end_pfn))
477                 blockpfn = end_pfn;
478
479         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
480                                         nr_scanned, total_isolated);
481
482         /* Record how far we have got within the block */
483         *start_pfn = blockpfn;
484
485         /*
486          * If strict isolation is requested by CMA then check that all the
487          * pages requested were isolated. If there were any failures, 0 is
488          * returned and CMA will fail.
489          */
490         if (strict && blockpfn < end_pfn)
491                 total_isolated = 0;
492
493         if (locked)
494                 spin_unlock_irqrestore(&cc->zone->lock, flags);
495
496         /* Update the pageblock-skip if the whole pageblock was scanned */
497         if (blockpfn == end_pfn)
498                 update_pageblock_skip(cc, valid_page, total_isolated, false);
499
500         count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
501         if (total_isolated)
502                 count_compact_events(COMPACTISOLATED, total_isolated);
503         return total_isolated;
504 }
505
506 /**
507  * isolate_freepages_range() - isolate free pages.
508  * @start_pfn: The first PFN to start isolating.
509  * @end_pfn:   The one-past-last PFN.
510  *
511  * Non-free pages, invalid PFNs, or zone boundaries within the
512  * [start_pfn, end_pfn) range are considered errors, cause function to
513  * undo its actions and return zero.
514  *
515  * Otherwise, function returns one-past-the-last PFN of isolated page
516  * (which may be greater then end_pfn if end fell in a middle of
517  * a free page).
518  */
519 unsigned long
520 isolate_freepages_range(struct compact_control *cc,
521                         unsigned long start_pfn, unsigned long end_pfn)
522 {
523         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
524         LIST_HEAD(freelist);
525
526         pfn = start_pfn;
527         block_start_pfn = pageblock_start_pfn(pfn);
528         if (block_start_pfn < cc->zone->zone_start_pfn)
529                 block_start_pfn = cc->zone->zone_start_pfn;
530         block_end_pfn = pageblock_end_pfn(pfn);
531
532         for (; pfn < end_pfn; pfn += isolated,
533                                 block_start_pfn = block_end_pfn,
534                                 block_end_pfn += pageblock_nr_pages) {
535                 /* Protect pfn from changing by isolate_freepages_block */
536                 unsigned long isolate_start_pfn = pfn;
537
538                 block_end_pfn = min(block_end_pfn, end_pfn);
539
540                 /*
541                  * pfn could pass the block_end_pfn if isolated freepage
542                  * is more than pageblock order. In this case, we adjust
543                  * scanning range to right one.
544                  */
545                 if (pfn >= block_end_pfn) {
546                         block_start_pfn = pageblock_start_pfn(pfn);
547                         block_end_pfn = pageblock_end_pfn(pfn);
548                         block_end_pfn = min(block_end_pfn, end_pfn);
549                 }
550
551                 if (!pageblock_pfn_to_page(block_start_pfn,
552                                         block_end_pfn, cc->zone))
553                         break;
554
555                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
556                                                 block_end_pfn, &freelist, true);
557
558                 /*
559                  * In strict mode, isolate_freepages_block() returns 0 if
560                  * there are any holes in the block (ie. invalid PFNs or
561                  * non-free pages).
562                  */
563                 if (!isolated)
564                         break;
565
566                 /*
567                  * If we managed to isolate pages, it is always (1 << n) *
568                  * pageblock_nr_pages for some non-negative n.  (Max order
569                  * page may span two pageblocks).
570                  */
571         }
572
573         /* split_free_page does not map the pages */
574         map_pages(&freelist);
575
576         if (pfn < end_pfn) {
577                 /* Loop terminated early, cleanup. */
578                 release_freepages(&freelist);
579                 return 0;
580         }
581
582         /* We don't use freelists for anything. */
583         return pfn;
584 }
585
586 /* Update the number of anon and file isolated pages in the zone */
587 static void acct_isolated(struct zone *zone, struct compact_control *cc)
588 {
589         struct page *page;
590         unsigned int count[2] = { 0, };
591
592         if (list_empty(&cc->migratepages))
593                 return;
594
595         list_for_each_entry(page, &cc->migratepages, lru)
596                 count[!!page_is_file_cache(page)]++;
597
598         mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
599         mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
600 }
601
602 /* Similar to reclaim, but different enough that they don't share logic */
603 static bool too_many_isolated(struct zone *zone)
604 {
605         unsigned long active, inactive, isolated;
606
607         inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
608                                         zone_page_state(zone, NR_INACTIVE_ANON);
609         active = zone_page_state(zone, NR_ACTIVE_FILE) +
610                                         zone_page_state(zone, NR_ACTIVE_ANON);
611         isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
612                                         zone_page_state(zone, NR_ISOLATED_ANON);
613
614         return isolated > (inactive + active) / 2;
615 }
616
617 /**
618  * isolate_migratepages_block() - isolate all migrate-able pages within
619  *                                a single pageblock
620  * @cc:         Compaction control structure.
621  * @low_pfn:    The first PFN to isolate
622  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
623  * @isolate_mode: Isolation mode to be used.
624  *
625  * Isolate all pages that can be migrated from the range specified by
626  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
627  * Returns zero if there is a fatal signal pending, otherwise PFN of the
628  * first page that was not scanned (which may be both less, equal to or more
629  * than end_pfn).
630  *
631  * The pages are isolated on cc->migratepages list (not required to be empty),
632  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
633  * is neither read nor updated.
634  */
635 static unsigned long
636 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
637                         unsigned long end_pfn, isolate_mode_t isolate_mode)
638 {
639         struct zone *zone = cc->zone;
640         unsigned long nr_scanned = 0, nr_isolated = 0;
641         struct lruvec *lruvec;
642         unsigned long flags = 0;
643         bool locked = false;
644         struct page *page = NULL, *valid_page = NULL;
645         unsigned long start_pfn = low_pfn;
646         bool skip_on_failure = false;
647         unsigned long next_skip_pfn = 0;
648
649         /*
650          * Ensure that there are not too many pages isolated from the LRU
651          * list by either parallel reclaimers or compaction. If there are,
652          * delay for some time until fewer pages are isolated
653          */
654         while (unlikely(too_many_isolated(zone))) {
655                 /* async migration should just abort */
656                 if (cc->mode == MIGRATE_ASYNC)
657                         return 0;
658
659                 congestion_wait(BLK_RW_ASYNC, HZ/10);
660
661                 if (fatal_signal_pending(current))
662                         return 0;
663         }
664
665         if (compact_should_abort(cc))
666                 return 0;
667
668         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
669                 skip_on_failure = true;
670                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
671         }
672
673         /* Time to isolate some pages for migration */
674         for (; low_pfn < end_pfn; low_pfn++) {
675                 bool is_lru;
676
677                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
678                         /*
679                          * We have isolated all migration candidates in the
680                          * previous order-aligned block, and did not skip it due
681                          * to failure. We should migrate the pages now and
682                          * hopefully succeed compaction.
683                          */
684                         if (nr_isolated)
685                                 break;
686
687                         /*
688                          * We failed to isolate in the previous order-aligned
689                          * block. Set the new boundary to the end of the
690                          * current block. Note we can't simply increase
691                          * next_skip_pfn by 1 << order, as low_pfn might have
692                          * been incremented by a higher number due to skipping
693                          * a compound or a high-order buddy page in the
694                          * previous loop iteration.
695                          */
696                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
697                 }
698
699                 /*
700                  * Periodically drop the lock (if held) regardless of its
701                  * contention, to give chance to IRQs. Abort async compaction
702                  * if contended.
703                  */
704                 if (!(low_pfn % SWAP_CLUSTER_MAX)
705                     && compact_unlock_should_abort(&zone->lru_lock, flags,
706                                                                 &locked, cc))
707                         break;
708
709                 if (!pfn_valid_within(low_pfn))
710                         goto isolate_fail;
711                 nr_scanned++;
712
713                 page = pfn_to_page(low_pfn);
714
715                 if (!valid_page)
716                         valid_page = page;
717
718                 /*
719                  * Skip if free. We read page order here without zone lock
720                  * which is generally unsafe, but the race window is small and
721                  * the worst thing that can happen is that we skip some
722                  * potential isolation targets.
723                  */
724                 if (PageBuddy(page)) {
725                         unsigned long freepage_order = page_order_unsafe(page);
726
727                         /*
728                          * Without lock, we cannot be sure that what we got is
729                          * a valid page order. Consider only values in the
730                          * valid order range to prevent low_pfn overflow.
731                          */
732                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
733                                 low_pfn += (1UL << freepage_order) - 1;
734                         continue;
735                 }
736
737                 /*
738                  * Check may be lockless but that's ok as we recheck later.
739                  * It's possible to migrate LRU pages and balloon pages
740                  * Skip any other type of page
741                  */
742                 is_lru = PageLRU(page);
743                 if (!is_lru) {
744                         if (unlikely(balloon_page_movable(page))) {
745                                 if (balloon_page_isolate(page)) {
746                                         /* Successfully isolated */
747                                         goto isolate_success;
748                                 }
749                         }
750                 }
751
752                 /*
753                  * Regardless of being on LRU, compound pages such as THP and
754                  * hugetlbfs are not to be compacted. We can potentially save
755                  * a lot of iterations if we skip them at once. The check is
756                  * racy, but we can consider only valid values and the only
757                  * danger is skipping too much.
758                  */
759                 if (PageCompound(page)) {
760                         unsigned int comp_order = compound_order(page);
761
762                         if (likely(comp_order < MAX_ORDER))
763                                 low_pfn += (1UL << comp_order) - 1;
764
765                         goto isolate_fail;
766                 }
767
768                 if (!is_lru)
769                         goto isolate_fail;
770
771                 /*
772                  * Migration will fail if an anonymous page is pinned in memory,
773                  * so avoid taking lru_lock and isolating it unnecessarily in an
774                  * admittedly racy check.
775                  */
776                 if (!page_mapping(page) &&
777                     page_count(page) > page_mapcount(page))
778                         goto isolate_fail;
779
780                 /* If we already hold the lock, we can skip some rechecking */
781                 if (!locked) {
782                         locked = compact_trylock_irqsave(&zone->lru_lock,
783                                                                 &flags, cc);
784                         if (!locked)
785                                 break;
786
787                         /* Recheck PageLRU and PageCompound under lock */
788                         if (!PageLRU(page))
789                                 goto isolate_fail;
790
791                         /*
792                          * Page become compound since the non-locked check,
793                          * and it's on LRU. It can only be a THP so the order
794                          * is safe to read and it's 0 for tail pages.
795                          */
796                         if (unlikely(PageCompound(page))) {
797                                 low_pfn += (1UL << compound_order(page)) - 1;
798                                 goto isolate_fail;
799                         }
800                 }
801
802                 lruvec = mem_cgroup_page_lruvec(page, zone);
803
804                 /* Try isolate the page */
805                 if (__isolate_lru_page(page, isolate_mode) != 0)
806                         goto isolate_fail;
807
808                 VM_BUG_ON_PAGE(PageCompound(page), page);
809
810                 /* Successfully isolated */
811                 del_page_from_lru_list(page, lruvec, page_lru(page));
812
813 isolate_success:
814                 list_add(&page->lru, &cc->migratepages);
815                 cc->nr_migratepages++;
816                 nr_isolated++;
817
818                 /*
819                  * Record where we could have freed pages by migration and not
820                  * yet flushed them to buddy allocator.
821                  * - this is the lowest page that was isolated and likely be
822                  * then freed by migration.
823                  */
824                 if (!cc->last_migrated_pfn)
825                         cc->last_migrated_pfn = low_pfn;
826
827                 /* Avoid isolating too much */
828                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
829                         ++low_pfn;
830                         break;
831                 }
832
833                 continue;
834 isolate_fail:
835                 if (!skip_on_failure)
836                         continue;
837
838                 /*
839                  * We have isolated some pages, but then failed. Release them
840                  * instead of migrating, as we cannot form the cc->order buddy
841                  * page anyway.
842                  */
843                 if (nr_isolated) {
844                         if (locked) {
845                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
846                                 locked = false;
847                         }
848                         acct_isolated(zone, cc);
849                         putback_movable_pages(&cc->migratepages);
850                         cc->nr_migratepages = 0;
851                         cc->last_migrated_pfn = 0;
852                         nr_isolated = 0;
853                 }
854
855                 if (low_pfn < next_skip_pfn) {
856                         low_pfn = next_skip_pfn - 1;
857                         /*
858                          * The check near the loop beginning would have updated
859                          * next_skip_pfn too, but this is a bit simpler.
860                          */
861                         next_skip_pfn += 1UL << cc->order;
862                 }
863         }
864
865         /*
866          * The PageBuddy() check could have potentially brought us outside
867          * the range to be scanned.
868          */
869         if (unlikely(low_pfn > end_pfn))
870                 low_pfn = end_pfn;
871
872         if (locked)
873                 spin_unlock_irqrestore(&zone->lru_lock, flags);
874
875         /*
876          * Update the pageblock-skip information and cached scanner pfn,
877          * if the whole pageblock was scanned without isolating any page.
878          */
879         if (low_pfn == end_pfn)
880                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
881
882         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
883                                                 nr_scanned, nr_isolated);
884
885         count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
886         if (nr_isolated)
887                 count_compact_events(COMPACTISOLATED, nr_isolated);
888
889         return low_pfn;
890 }
891
892 /**
893  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
894  * @cc:        Compaction control structure.
895  * @start_pfn: The first PFN to start isolating.
896  * @end_pfn:   The one-past-last PFN.
897  *
898  * Returns zero if isolation fails fatally due to e.g. pending signal.
899  * Otherwise, function returns one-past-the-last PFN of isolated page
900  * (which may be greater than end_pfn if end fell in a middle of a THP page).
901  */
902 unsigned long
903 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
904                                                         unsigned long end_pfn)
905 {
906         unsigned long pfn, block_start_pfn, block_end_pfn;
907
908         /* Scan block by block. First and last block may be incomplete */
909         pfn = start_pfn;
910         block_start_pfn = pageblock_start_pfn(pfn);
911         if (block_start_pfn < cc->zone->zone_start_pfn)
912                 block_start_pfn = cc->zone->zone_start_pfn;
913         block_end_pfn = pageblock_end_pfn(pfn);
914
915         for (; pfn < end_pfn; pfn = block_end_pfn,
916                                 block_start_pfn = block_end_pfn,
917                                 block_end_pfn += pageblock_nr_pages) {
918
919                 block_end_pfn = min(block_end_pfn, end_pfn);
920
921                 if (!pageblock_pfn_to_page(block_start_pfn,
922                                         block_end_pfn, cc->zone))
923                         continue;
924
925                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
926                                                         ISOLATE_UNEVICTABLE);
927
928                 if (!pfn)
929                         break;
930
931                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
932                         break;
933         }
934         acct_isolated(cc->zone, cc);
935
936         return pfn;
937 }
938
939 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
940 #ifdef CONFIG_COMPACTION
941
942 /* Returns true if the page is within a block suitable for migration to */
943 static bool suitable_migration_target(struct page *page)
944 {
945         /* If the page is a large free page, then disallow migration */
946         if (PageBuddy(page)) {
947                 /*
948                  * We are checking page_order without zone->lock taken. But
949                  * the only small danger is that we skip a potentially suitable
950                  * pageblock, so it's not worth to check order for valid range.
951                  */
952                 if (page_order_unsafe(page) >= pageblock_order)
953                         return false;
954         }
955
956         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
957         if (migrate_async_suitable(get_pageblock_migratetype(page)))
958                 return true;
959
960         /* Otherwise skip the block */
961         return false;
962 }
963
964 /*
965  * Test whether the free scanner has reached the same or lower pageblock than
966  * the migration scanner, and compaction should thus terminate.
967  */
968 static inline bool compact_scanners_met(struct compact_control *cc)
969 {
970         return (cc->free_pfn >> pageblock_order)
971                 <= (cc->migrate_pfn >> pageblock_order);
972 }
973
974 /*
975  * Based on information in the current compact_control, find blocks
976  * suitable for isolating free pages from and then isolate them.
977  */
978 static void isolate_freepages(struct compact_control *cc)
979 {
980         struct zone *zone = cc->zone;
981         struct page *page;
982         unsigned long block_start_pfn;  /* start of current pageblock */
983         unsigned long isolate_start_pfn; /* exact pfn we start at */
984         unsigned long block_end_pfn;    /* end of current pageblock */
985         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
986         struct list_head *freelist = &cc->freepages;
987
988         /*
989          * Initialise the free scanner. The starting point is where we last
990          * successfully isolated from, zone-cached value, or the end of the
991          * zone when isolating for the first time. For looping we also need
992          * this pfn aligned down to the pageblock boundary, because we do
993          * block_start_pfn -= pageblock_nr_pages in the for loop.
994          * For ending point, take care when isolating in last pageblock of a
995          * a zone which ends in the middle of a pageblock.
996          * The low boundary is the end of the pageblock the migration scanner
997          * is using.
998          */
999         isolate_start_pfn = cc->free_pfn;
1000         block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1001         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1002                                                 zone_end_pfn(zone));
1003         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1004
1005         /*
1006          * Isolate free pages until enough are available to migrate the
1007          * pages on cc->migratepages. We stop searching if the migrate
1008          * and free page scanners meet or enough free pages are isolated.
1009          */
1010         for (; block_start_pfn >= low_pfn;
1011                                 block_end_pfn = block_start_pfn,
1012                                 block_start_pfn -= pageblock_nr_pages,
1013                                 isolate_start_pfn = block_start_pfn) {
1014
1015                 /*
1016                  * This can iterate a massively long zone without finding any
1017                  * suitable migration targets, so periodically check if we need
1018                  * to schedule, or even abort async compaction.
1019                  */
1020                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1021                                                 && compact_should_abort(cc))
1022                         break;
1023
1024                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1025                                                                         zone);
1026                 if (!page)
1027                         continue;
1028
1029                 /* Check the block is suitable for migration */
1030                 if (!suitable_migration_target(page))
1031                         continue;
1032
1033                 /* If isolation recently failed, do not retry */
1034                 if (!isolation_suitable(cc, page))
1035                         continue;
1036
1037                 /* Found a block suitable for isolating free pages from. */
1038                 isolate_freepages_block(cc, &isolate_start_pfn,
1039                                         block_end_pfn, freelist, false);
1040
1041                 /*
1042                  * If we isolated enough freepages, or aborted due to async
1043                  * compaction being contended, terminate the loop.
1044                  * Remember where the free scanner should restart next time,
1045                  * which is where isolate_freepages_block() left off.
1046                  * But if it scanned the whole pageblock, isolate_start_pfn
1047                  * now points at block_end_pfn, which is the start of the next
1048                  * pageblock.
1049                  * In that case we will however want to restart at the start
1050                  * of the previous pageblock.
1051                  */
1052                 if ((cc->nr_freepages >= cc->nr_migratepages)
1053                                                         || cc->contended) {
1054                         if (isolate_start_pfn >= block_end_pfn)
1055                                 isolate_start_pfn =
1056                                         block_start_pfn - pageblock_nr_pages;
1057                         break;
1058                 } else {
1059                         /*
1060                          * isolate_freepages_block() should not terminate
1061                          * prematurely unless contended, or isolated enough
1062                          */
1063                         VM_BUG_ON(isolate_start_pfn < block_end_pfn);
1064                 }
1065         }
1066
1067         /* split_free_page does not map the pages */
1068         map_pages(freelist);
1069
1070         /*
1071          * Record where the free scanner will restart next time. Either we
1072          * broke from the loop and set isolate_start_pfn based on the last
1073          * call to isolate_freepages_block(), or we met the migration scanner
1074          * and the loop terminated due to isolate_start_pfn < low_pfn
1075          */
1076         cc->free_pfn = isolate_start_pfn;
1077 }
1078
1079 /*
1080  * This is a migrate-callback that "allocates" freepages by taking pages
1081  * from the isolated freelists in the block we are migrating to.
1082  */
1083 static struct page *compaction_alloc(struct page *migratepage,
1084                                         unsigned long data,
1085                                         int **result)
1086 {
1087         struct compact_control *cc = (struct compact_control *)data;
1088         struct page *freepage;
1089
1090         /*
1091          * Isolate free pages if necessary, and if we are not aborting due to
1092          * contention.
1093          */
1094         if (list_empty(&cc->freepages)) {
1095                 if (!cc->contended)
1096                         isolate_freepages(cc);
1097
1098                 if (list_empty(&cc->freepages))
1099                         return NULL;
1100         }
1101
1102         freepage = list_entry(cc->freepages.next, struct page, lru);
1103         list_del(&freepage->lru);
1104         cc->nr_freepages--;
1105
1106         return freepage;
1107 }
1108
1109 /*
1110  * This is a migrate-callback that "frees" freepages back to the isolated
1111  * freelist.  All pages on the freelist are from the same zone, so there is no
1112  * special handling needed for NUMA.
1113  */
1114 static void compaction_free(struct page *page, unsigned long data)
1115 {
1116         struct compact_control *cc = (struct compact_control *)data;
1117
1118         list_add(&page->lru, &cc->freepages);
1119         cc->nr_freepages++;
1120 }
1121
1122 /* possible outcome of isolate_migratepages */
1123 typedef enum {
1124         ISOLATE_ABORT,          /* Abort compaction now */
1125         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1126         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1127 } isolate_migrate_t;
1128
1129 /*
1130  * Allow userspace to control policy on scanning the unevictable LRU for
1131  * compactable pages.
1132  */
1133 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1134
1135 /*
1136  * Isolate all pages that can be migrated from the first suitable block,
1137  * starting at the block pointed to by the migrate scanner pfn within
1138  * compact_control.
1139  */
1140 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1141                                         struct compact_control *cc)
1142 {
1143         unsigned long block_start_pfn;
1144         unsigned long block_end_pfn;
1145         unsigned long low_pfn;
1146         struct page *page;
1147         const isolate_mode_t isolate_mode =
1148                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1149                 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1150
1151         /*
1152          * Start at where we last stopped, or beginning of the zone as
1153          * initialized by compact_zone()
1154          */
1155         low_pfn = cc->migrate_pfn;
1156         block_start_pfn = pageblock_start_pfn(low_pfn);
1157         if (block_start_pfn < zone->zone_start_pfn)
1158                 block_start_pfn = zone->zone_start_pfn;
1159
1160         /* Only scan within a pageblock boundary */
1161         block_end_pfn = pageblock_end_pfn(low_pfn);
1162
1163         /*
1164          * Iterate over whole pageblocks until we find the first suitable.
1165          * Do not cross the free scanner.
1166          */
1167         for (; block_end_pfn <= cc->free_pfn;
1168                         low_pfn = block_end_pfn,
1169                         block_start_pfn = block_end_pfn,
1170                         block_end_pfn += pageblock_nr_pages) {
1171
1172                 /*
1173                  * This can potentially iterate a massively long zone with
1174                  * many pageblocks unsuitable, so periodically check if we
1175                  * need to schedule, or even abort async compaction.
1176                  */
1177                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1178                                                 && compact_should_abort(cc))
1179                         break;
1180
1181                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1182                                                                         zone);
1183                 if (!page)
1184                         continue;
1185
1186                 /* If isolation recently failed, do not retry */
1187                 if (!isolation_suitable(cc, page))
1188                         continue;
1189
1190                 /*
1191                  * For async compaction, also only scan in MOVABLE blocks.
1192                  * Async compaction is optimistic to see if the minimum amount
1193                  * of work satisfies the allocation.
1194                  */
1195                 if (cc->mode == MIGRATE_ASYNC &&
1196                     !migrate_async_suitable(get_pageblock_migratetype(page)))
1197                         continue;
1198
1199                 /* Perform the isolation */
1200                 low_pfn = isolate_migratepages_block(cc, low_pfn,
1201                                                 block_end_pfn, isolate_mode);
1202
1203                 if (!low_pfn || cc->contended) {
1204                         acct_isolated(zone, cc);
1205                         return ISOLATE_ABORT;
1206                 }
1207
1208                 /*
1209                  * Either we isolated something and proceed with migration. Or
1210                  * we failed and compact_zone should decide if we should
1211                  * continue or not.
1212                  */
1213                 break;
1214         }
1215
1216         acct_isolated(zone, cc);
1217         /* Record where migration scanner will be restarted. */
1218         cc->migrate_pfn = low_pfn;
1219
1220         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1221 }
1222
1223 /*
1224  * order == -1 is expected when compacting via
1225  * /proc/sys/vm/compact_memory
1226  */
1227 static inline bool is_via_compact_memory(int order)
1228 {
1229         return order == -1;
1230 }
1231
1232 static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1233                             const int migratetype)
1234 {
1235         unsigned int order;
1236         unsigned long watermark;
1237
1238         if (cc->contended || fatal_signal_pending(current))
1239                 return COMPACT_CONTENDED;
1240
1241         /* Compaction run completes if the migrate and free scanner meet */
1242         if (compact_scanners_met(cc)) {
1243                 /* Let the next compaction start anew. */
1244                 reset_cached_positions(zone);
1245
1246                 /*
1247                  * Mark that the PG_migrate_skip information should be cleared
1248                  * by kswapd when it goes to sleep. kcompactd does not set the
1249                  * flag itself as the decision to be clear should be directly
1250                  * based on an allocation request.
1251                  */
1252                 if (cc->direct_compaction)
1253                         zone->compact_blockskip_flush = true;
1254
1255                 if (cc->whole_zone)
1256                         return COMPACT_COMPLETE;
1257                 else
1258                         return COMPACT_PARTIAL_SKIPPED;
1259         }
1260
1261         if (is_via_compact_memory(cc->order))
1262                 return COMPACT_CONTINUE;
1263
1264         /* Compaction run is not finished if the watermark is not met */
1265         watermark = low_wmark_pages(zone);
1266
1267         if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1268                                                         cc->alloc_flags))
1269                 return COMPACT_CONTINUE;
1270
1271         /* Direct compactor: Is a suitable page free? */
1272         for (order = cc->order; order < MAX_ORDER; order++) {
1273                 struct free_area *area = &zone->free_area[order];
1274                 bool can_steal;
1275
1276                 /* Job done if page is free of the right migratetype */
1277                 if (!list_empty(&area->free_list[migratetype]))
1278                         return COMPACT_PARTIAL;
1279
1280 #ifdef CONFIG_CMA
1281                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1282                 if (migratetype == MIGRATE_MOVABLE &&
1283                         !list_empty(&area->free_list[MIGRATE_CMA]))
1284                         return COMPACT_PARTIAL;
1285 #endif
1286                 /*
1287                  * Job done if allocation would steal freepages from
1288                  * other migratetype buddy lists.
1289                  */
1290                 if (find_suitable_fallback(area, order, migratetype,
1291                                                 true, &can_steal) != -1)
1292                         return COMPACT_PARTIAL;
1293         }
1294
1295         return COMPACT_NO_SUITABLE_PAGE;
1296 }
1297
1298 static enum compact_result compact_finished(struct zone *zone,
1299                         struct compact_control *cc,
1300                         const int migratetype)
1301 {
1302         int ret;
1303
1304         ret = __compact_finished(zone, cc, migratetype);
1305         trace_mm_compaction_finished(zone, cc->order, ret);
1306         if (ret == COMPACT_NO_SUITABLE_PAGE)
1307                 ret = COMPACT_CONTINUE;
1308
1309         return ret;
1310 }
1311
1312 /*
1313  * compaction_suitable: Is this suitable to run compaction on this zone now?
1314  * Returns
1315  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1316  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1317  *   COMPACT_CONTINUE - If compaction should run now
1318  */
1319 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1320                                         unsigned int alloc_flags,
1321                                         int classzone_idx,
1322                                         unsigned long wmark_target)
1323 {
1324         int fragindex;
1325         unsigned long watermark;
1326
1327         if (is_via_compact_memory(order))
1328                 return COMPACT_CONTINUE;
1329
1330         watermark = low_wmark_pages(zone);
1331         /*
1332          * If watermarks for high-order allocation are already met, there
1333          * should be no need for compaction at all.
1334          */
1335         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1336                                                                 alloc_flags))
1337                 return COMPACT_PARTIAL;
1338
1339         /*
1340          * Watermarks for order-0 must be met for compaction. Note the 2UL.
1341          * This is because during migration, copies of pages need to be
1342          * allocated and for a short time, the footprint is higher
1343          */
1344         watermark += (2UL << order);
1345         if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1346                                  alloc_flags, wmark_target))
1347                 return COMPACT_SKIPPED;
1348
1349         /*
1350          * fragmentation index determines if allocation failures are due to
1351          * low memory or external fragmentation
1352          *
1353          * index of -1000 would imply allocations might succeed depending on
1354          * watermarks, but we already failed the high-order watermark check
1355          * index towards 0 implies failure is due to lack of memory
1356          * index towards 1000 implies failure is due to fragmentation
1357          *
1358          * Only compact if a failure would be due to fragmentation.
1359          */
1360         fragindex = fragmentation_index(zone, order);
1361         if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1362                 return COMPACT_NOT_SUITABLE_ZONE;
1363
1364         return COMPACT_CONTINUE;
1365 }
1366
1367 enum compact_result compaction_suitable(struct zone *zone, int order,
1368                                         unsigned int alloc_flags,
1369                                         int classzone_idx)
1370 {
1371         enum compact_result ret;
1372
1373         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1374                                     zone_page_state(zone, NR_FREE_PAGES));
1375         trace_mm_compaction_suitable(zone, order, ret);
1376         if (ret == COMPACT_NOT_SUITABLE_ZONE)
1377                 ret = COMPACT_SKIPPED;
1378
1379         return ret;
1380 }
1381
1382 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1383                 int alloc_flags)
1384 {
1385         struct zone *zone;
1386         struct zoneref *z;
1387
1388         /*
1389          * Make sure at least one zone would pass __compaction_suitable if we continue
1390          * retrying the reclaim.
1391          */
1392         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1393                                         ac->nodemask) {
1394                 unsigned long available;
1395                 enum compact_result compact_result;
1396
1397                 /*
1398                  * Do not consider all the reclaimable memory because we do not
1399                  * want to trash just for a single high order allocation which
1400                  * is even not guaranteed to appear even if __compaction_suitable
1401                  * is happy about the watermark check.
1402                  */
1403                 available = zone_reclaimable_pages(zone) / order;
1404                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1405                 compact_result = __compaction_suitable(zone, order, alloc_flags,
1406                                 ac_classzone_idx(ac), available);
1407                 if (compact_result != COMPACT_SKIPPED &&
1408                                 compact_result != COMPACT_NOT_SUITABLE_ZONE)
1409                         return true;
1410         }
1411
1412         return false;
1413 }
1414
1415 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1416 {
1417         enum compact_result ret;
1418         unsigned long start_pfn = zone->zone_start_pfn;
1419         unsigned long end_pfn = zone_end_pfn(zone);
1420         const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1421         const bool sync = cc->mode != MIGRATE_ASYNC;
1422
1423         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1424                                                         cc->classzone_idx);
1425         /* Compaction is likely to fail */
1426         if (ret == COMPACT_PARTIAL || ret == COMPACT_SKIPPED)
1427                 return ret;
1428
1429         /* huh, compaction_suitable is returning something unexpected */
1430         VM_BUG_ON(ret != COMPACT_CONTINUE);
1431
1432         /*
1433          * Clear pageblock skip if there were failures recently and compaction
1434          * is about to be retried after being deferred.
1435          */
1436         if (compaction_restarting(zone, cc->order))
1437                 __reset_isolation_suitable(zone);
1438
1439         /*
1440          * Setup to move all movable pages to the end of the zone. Used cached
1441          * information on where the scanners should start but check that it
1442          * is initialised by ensuring the values are within zone boundaries.
1443          */
1444         cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1445         cc->free_pfn = zone->compact_cached_free_pfn;
1446         if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1447                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1448                 zone->compact_cached_free_pfn = cc->free_pfn;
1449         }
1450         if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1451                 cc->migrate_pfn = start_pfn;
1452                 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1453                 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1454         }
1455
1456         if (cc->migrate_pfn == start_pfn)
1457                 cc->whole_zone = true;
1458
1459         cc->last_migrated_pfn = 0;
1460
1461         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1462                                 cc->free_pfn, end_pfn, sync);
1463
1464         migrate_prep_local();
1465
1466         while ((ret = compact_finished(zone, cc, migratetype)) ==
1467                                                 COMPACT_CONTINUE) {
1468                 int err;
1469
1470                 switch (isolate_migratepages(zone, cc)) {
1471                 case ISOLATE_ABORT:
1472                         ret = COMPACT_CONTENDED;
1473                         putback_movable_pages(&cc->migratepages);
1474                         cc->nr_migratepages = 0;
1475                         goto out;
1476                 case ISOLATE_NONE:
1477                         /*
1478                          * We haven't isolated and migrated anything, but
1479                          * there might still be unflushed migrations from
1480                          * previous cc->order aligned block.
1481                          */
1482                         goto check_drain;
1483                 case ISOLATE_SUCCESS:
1484                         ;
1485                 }
1486
1487                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1488                                 compaction_free, (unsigned long)cc, cc->mode,
1489                                 MR_COMPACTION);
1490
1491                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1492                                                         &cc->migratepages);
1493
1494                 /* All pages were either migrated or will be released */
1495                 cc->nr_migratepages = 0;
1496                 if (err) {
1497                         putback_movable_pages(&cc->migratepages);
1498                         /*
1499                          * migrate_pages() may return -ENOMEM when scanners meet
1500                          * and we want compact_finished() to detect it
1501                          */
1502                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
1503                                 ret = COMPACT_CONTENDED;
1504                                 goto out;
1505                         }
1506                         /*
1507                          * We failed to migrate at least one page in the current
1508                          * order-aligned block, so skip the rest of it.
1509                          */
1510                         if (cc->direct_compaction &&
1511                                                 (cc->mode == MIGRATE_ASYNC)) {
1512                                 cc->migrate_pfn = block_end_pfn(
1513                                                 cc->migrate_pfn - 1, cc->order);
1514                                 /* Draining pcplists is useless in this case */
1515                                 cc->last_migrated_pfn = 0;
1516
1517                         }
1518                 }
1519
1520 check_drain:
1521                 /*
1522                  * Has the migration scanner moved away from the previous
1523                  * cc->order aligned block where we migrated from? If yes,
1524                  * flush the pages that were freed, so that they can merge and
1525                  * compact_finished() can detect immediately if allocation
1526                  * would succeed.
1527                  */
1528                 if (cc->order > 0 && cc->last_migrated_pfn) {
1529                         int cpu;
1530                         unsigned long current_block_start =
1531                                 block_start_pfn(cc->migrate_pfn, cc->order);
1532
1533                         if (cc->last_migrated_pfn < current_block_start) {
1534                                 cpu = get_cpu();
1535                                 lru_add_drain_cpu(cpu);
1536                                 drain_local_pages(zone);
1537                                 put_cpu();
1538                                 /* No more flushing until we migrate again */
1539                                 cc->last_migrated_pfn = 0;
1540                         }
1541                 }
1542
1543         }
1544
1545 out:
1546         /*
1547          * Release free pages and update where the free scanner should restart,
1548          * so we don't leave any returned pages behind in the next attempt.
1549          */
1550         if (cc->nr_freepages > 0) {
1551                 unsigned long free_pfn = release_freepages(&cc->freepages);
1552
1553                 cc->nr_freepages = 0;
1554                 VM_BUG_ON(free_pfn == 0);
1555                 /* The cached pfn is always the first in a pageblock */
1556                 free_pfn = pageblock_start_pfn(free_pfn);
1557                 /*
1558                  * Only go back, not forward. The cached pfn might have been
1559                  * already reset to zone end in compact_finished()
1560                  */
1561                 if (free_pfn > zone->compact_cached_free_pfn)
1562                         zone->compact_cached_free_pfn = free_pfn;
1563         }
1564
1565         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1566                                 cc->free_pfn, end_pfn, sync, ret);
1567
1568         if (ret == COMPACT_CONTENDED)
1569                 ret = COMPACT_PARTIAL;
1570
1571         return ret;
1572 }
1573
1574 static enum compact_result compact_zone_order(struct zone *zone, int order,
1575                 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1576                 unsigned int alloc_flags, int classzone_idx)
1577 {
1578         enum compact_result ret;
1579         struct compact_control cc = {
1580                 .nr_freepages = 0,
1581                 .nr_migratepages = 0,
1582                 .order = order,
1583                 .gfp_mask = gfp_mask,
1584                 .zone = zone,
1585                 .mode = mode,
1586                 .alloc_flags = alloc_flags,
1587                 .classzone_idx = classzone_idx,
1588                 .direct_compaction = true,
1589         };
1590         INIT_LIST_HEAD(&cc.freepages);
1591         INIT_LIST_HEAD(&cc.migratepages);
1592
1593         ret = compact_zone(zone, &cc);
1594
1595         VM_BUG_ON(!list_empty(&cc.freepages));
1596         VM_BUG_ON(!list_empty(&cc.migratepages));
1597
1598         *contended = cc.contended;
1599         return ret;
1600 }
1601
1602 int sysctl_extfrag_threshold = 500;
1603
1604 /**
1605  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1606  * @gfp_mask: The GFP mask of the current allocation
1607  * @order: The order of the current allocation
1608  * @alloc_flags: The allocation flags of the current allocation
1609  * @ac: The context of current allocation
1610  * @mode: The migration mode for async, sync light, or sync migration
1611  * @contended: Return value that determines if compaction was aborted due to
1612  *             need_resched() or lock contention
1613  *
1614  * This is the main entry point for direct page compaction.
1615  */
1616 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1617                 unsigned int alloc_flags, const struct alloc_context *ac,
1618                 enum migrate_mode mode, int *contended)
1619 {
1620         int may_enter_fs = gfp_mask & __GFP_FS;
1621         int may_perform_io = gfp_mask & __GFP_IO;
1622         struct zoneref *z;
1623         struct zone *zone;
1624         enum compact_result rc = COMPACT_SKIPPED;
1625         int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1626
1627         *contended = COMPACT_CONTENDED_NONE;
1628
1629         /* Check if the GFP flags allow compaction */
1630         if (!order || !may_enter_fs || !may_perform_io)
1631                 return COMPACT_SKIPPED;
1632
1633         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1634
1635         /* Compact each zone in the list */
1636         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1637                                                                 ac->nodemask) {
1638                 enum compact_result status;
1639                 int zone_contended;
1640
1641                 if (compaction_deferred(zone, order)) {
1642                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1643                         continue;
1644                 }
1645
1646                 status = compact_zone_order(zone, order, gfp_mask, mode,
1647                                 &zone_contended, alloc_flags,
1648                                 ac_classzone_idx(ac));
1649                 rc = max(status, rc);
1650                 /*
1651                  * It takes at least one zone that wasn't lock contended
1652                  * to clear all_zones_contended.
1653                  */
1654                 all_zones_contended &= zone_contended;
1655
1656                 /* If a normal allocation would succeed, stop compacting */
1657                 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1658                                         ac_classzone_idx(ac), alloc_flags)) {
1659                         /*
1660                          * We think the allocation will succeed in this zone,
1661                          * but it is not certain, hence the false. The caller
1662                          * will repeat this with true if allocation indeed
1663                          * succeeds in this zone.
1664                          */
1665                         compaction_defer_reset(zone, order, false);
1666                         /*
1667                          * It is possible that async compaction aborted due to
1668                          * need_resched() and the watermarks were ok thanks to
1669                          * somebody else freeing memory. The allocation can
1670                          * however still fail so we better signal the
1671                          * need_resched() contention anyway (this will not
1672                          * prevent the allocation attempt).
1673                          */
1674                         if (zone_contended == COMPACT_CONTENDED_SCHED)
1675                                 *contended = COMPACT_CONTENDED_SCHED;
1676
1677                         goto break_loop;
1678                 }
1679
1680                 if (mode != MIGRATE_ASYNC && (status == COMPACT_COMPLETE ||
1681                                         status == COMPACT_PARTIAL_SKIPPED)) {
1682                         /*
1683                          * We think that allocation won't succeed in this zone
1684                          * so we defer compaction there. If it ends up
1685                          * succeeding after all, it will be reset.
1686                          */
1687                         defer_compaction(zone, order);
1688                 }
1689
1690                 /*
1691                  * We might have stopped compacting due to need_resched() in
1692                  * async compaction, or due to a fatal signal detected. In that
1693                  * case do not try further zones and signal need_resched()
1694                  * contention.
1695                  */
1696                 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1697                                         || fatal_signal_pending(current)) {
1698                         *contended = COMPACT_CONTENDED_SCHED;
1699                         goto break_loop;
1700                 }
1701
1702                 continue;
1703 break_loop:
1704                 /*
1705                  * We might not have tried all the zones, so  be conservative
1706                  * and assume they are not all lock contended.
1707                  */
1708                 all_zones_contended = 0;
1709                 break;
1710         }
1711
1712         /*
1713          * If at least one zone wasn't deferred or skipped, we report if all
1714          * zones that were tried were lock contended.
1715          */
1716         if (rc > COMPACT_INACTIVE && all_zones_contended)
1717                 *contended = COMPACT_CONTENDED_LOCK;
1718
1719         return rc;
1720 }
1721
1722
1723 /* Compact all zones within a node */
1724 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1725 {
1726         int zoneid;
1727         struct zone *zone;
1728
1729         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1730
1731                 zone = &pgdat->node_zones[zoneid];
1732                 if (!populated_zone(zone))
1733                         continue;
1734
1735                 cc->nr_freepages = 0;
1736                 cc->nr_migratepages = 0;
1737                 cc->zone = zone;
1738                 INIT_LIST_HEAD(&cc->freepages);
1739                 INIT_LIST_HEAD(&cc->migratepages);
1740
1741                 /*
1742                  * When called via /proc/sys/vm/compact_memory
1743                  * this makes sure we compact the whole zone regardless of
1744                  * cached scanner positions.
1745                  */
1746                 if (is_via_compact_memory(cc->order))
1747                         __reset_isolation_suitable(zone);
1748
1749                 if (is_via_compact_memory(cc->order) ||
1750                                 !compaction_deferred(zone, cc->order))
1751                         compact_zone(zone, cc);
1752
1753                 VM_BUG_ON(!list_empty(&cc->freepages));
1754                 VM_BUG_ON(!list_empty(&cc->migratepages));
1755
1756                 if (is_via_compact_memory(cc->order))
1757                         continue;
1758
1759                 if (zone_watermark_ok(zone, cc->order,
1760                                 low_wmark_pages(zone), 0, 0))
1761                         compaction_defer_reset(zone, cc->order, false);
1762         }
1763 }
1764
1765 void compact_pgdat(pg_data_t *pgdat, int order)
1766 {
1767         struct compact_control cc = {
1768                 .order = order,
1769                 .mode = MIGRATE_ASYNC,
1770         };
1771
1772         if (!order)
1773                 return;
1774
1775         __compact_pgdat(pgdat, &cc);
1776 }
1777
1778 static void compact_node(int nid)
1779 {
1780         struct compact_control cc = {
1781                 .order = -1,
1782                 .mode = MIGRATE_SYNC,
1783                 .ignore_skip_hint = true,
1784         };
1785
1786         __compact_pgdat(NODE_DATA(nid), &cc);
1787 }
1788
1789 /* Compact all nodes in the system */
1790 static void compact_nodes(void)
1791 {
1792         int nid;
1793
1794         /* Flush pending updates to the LRU lists */
1795         lru_add_drain_all();
1796
1797         for_each_online_node(nid)
1798                 compact_node(nid);
1799 }
1800
1801 /* The written value is actually unused, all memory is compacted */
1802 int sysctl_compact_memory;
1803
1804 /*
1805  * This is the entry point for compacting all nodes via
1806  * /proc/sys/vm/compact_memory
1807  */
1808 int sysctl_compaction_handler(struct ctl_table *table, int write,
1809                         void __user *buffer, size_t *length, loff_t *ppos)
1810 {
1811         if (write)
1812                 compact_nodes();
1813
1814         return 0;
1815 }
1816
1817 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1818                         void __user *buffer, size_t *length, loff_t *ppos)
1819 {
1820         proc_dointvec_minmax(table, write, buffer, length, ppos);
1821
1822         return 0;
1823 }
1824
1825 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1826 static ssize_t sysfs_compact_node(struct device *dev,
1827                         struct device_attribute *attr,
1828                         const char *buf, size_t count)
1829 {
1830         int nid = dev->id;
1831
1832         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1833                 /* Flush pending updates to the LRU lists */
1834                 lru_add_drain_all();
1835
1836                 compact_node(nid);
1837         }
1838
1839         return count;
1840 }
1841 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1842
1843 int compaction_register_node(struct node *node)
1844 {
1845         return device_create_file(&node->dev, &dev_attr_compact);
1846 }
1847
1848 void compaction_unregister_node(struct node *node)
1849 {
1850         return device_remove_file(&node->dev, &dev_attr_compact);
1851 }
1852 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1853
1854 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1855 {
1856         return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1857 }
1858
1859 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1860 {
1861         int zoneid;
1862         struct zone *zone;
1863         enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1864
1865         for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1866                 zone = &pgdat->node_zones[zoneid];
1867
1868                 if (!populated_zone(zone))
1869                         continue;
1870
1871                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1872                                         classzone_idx) == COMPACT_CONTINUE)
1873                         return true;
1874         }
1875
1876         return false;
1877 }
1878
1879 static void kcompactd_do_work(pg_data_t *pgdat)
1880 {
1881         /*
1882          * With no special task, compact all zones so that a page of requested
1883          * order is allocatable.
1884          */
1885         int zoneid;
1886         struct zone *zone;
1887         struct compact_control cc = {
1888                 .order = pgdat->kcompactd_max_order,
1889                 .classzone_idx = pgdat->kcompactd_classzone_idx,
1890                 .mode = MIGRATE_SYNC_LIGHT,
1891                 .ignore_skip_hint = true,
1892
1893         };
1894         bool success = false;
1895
1896         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1897                                                         cc.classzone_idx);
1898         count_vm_event(KCOMPACTD_WAKE);
1899
1900         for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1901                 int status;
1902
1903                 zone = &pgdat->node_zones[zoneid];
1904                 if (!populated_zone(zone))
1905                         continue;
1906
1907                 if (compaction_deferred(zone, cc.order))
1908                         continue;
1909
1910                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1911                                                         COMPACT_CONTINUE)
1912                         continue;
1913
1914                 cc.nr_freepages = 0;
1915                 cc.nr_migratepages = 0;
1916                 cc.zone = zone;
1917                 INIT_LIST_HEAD(&cc.freepages);
1918                 INIT_LIST_HEAD(&cc.migratepages);
1919
1920                 if (kthread_should_stop())
1921                         return;
1922                 status = compact_zone(zone, &cc);
1923
1924                 if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone),
1925                                                 cc.classzone_idx, 0)) {
1926                         success = true;
1927                         compaction_defer_reset(zone, cc.order, false);
1928                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1929                         /*
1930                          * We use sync migration mode here, so we defer like
1931                          * sync direct compaction does.
1932                          */
1933                         defer_compaction(zone, cc.order);
1934                 }
1935
1936                 VM_BUG_ON(!list_empty(&cc.freepages));
1937                 VM_BUG_ON(!list_empty(&cc.migratepages));
1938         }
1939
1940         /*
1941          * Regardless of success, we are done until woken up next. But remember
1942          * the requested order/classzone_idx in case it was higher/tighter than
1943          * our current ones
1944          */
1945         if (pgdat->kcompactd_max_order <= cc.order)
1946                 pgdat->kcompactd_max_order = 0;
1947         if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1948                 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1949 }
1950
1951 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1952 {
1953         if (!order)
1954                 return;
1955
1956         if (pgdat->kcompactd_max_order < order)
1957                 pgdat->kcompactd_max_order = order;
1958
1959         if (pgdat->kcompactd_classzone_idx > classzone_idx)
1960                 pgdat->kcompactd_classzone_idx = classzone_idx;
1961
1962         if (!waitqueue_active(&pgdat->kcompactd_wait))
1963                 return;
1964
1965         if (!kcompactd_node_suitable(pgdat))
1966                 return;
1967
1968         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1969                                                         classzone_idx);
1970         wake_up_interruptible(&pgdat->kcompactd_wait);
1971 }
1972
1973 /*
1974  * The background compaction daemon, started as a kernel thread
1975  * from the init process.
1976  */
1977 static int kcompactd(void *p)
1978 {
1979         pg_data_t *pgdat = (pg_data_t*)p;
1980         struct task_struct *tsk = current;
1981
1982         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1983
1984         if (!cpumask_empty(cpumask))
1985                 set_cpus_allowed_ptr(tsk, cpumask);
1986
1987         set_freezable();
1988
1989         pgdat->kcompactd_max_order = 0;
1990         pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1991
1992         while (!kthread_should_stop()) {
1993                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
1994                 wait_event_freezable(pgdat->kcompactd_wait,
1995                                 kcompactd_work_requested(pgdat));
1996
1997                 kcompactd_do_work(pgdat);
1998         }
1999
2000         return 0;
2001 }
2002
2003 /*
2004  * This kcompactd start function will be called by init and node-hot-add.
2005  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2006  */
2007 int kcompactd_run(int nid)
2008 {
2009         pg_data_t *pgdat = NODE_DATA(nid);
2010         int ret = 0;
2011
2012         if (pgdat->kcompactd)
2013                 return 0;
2014
2015         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2016         if (IS_ERR(pgdat->kcompactd)) {
2017                 pr_err("Failed to start kcompactd on node %d\n", nid);
2018                 ret = PTR_ERR(pgdat->kcompactd);
2019                 pgdat->kcompactd = NULL;
2020         }
2021         return ret;
2022 }
2023
2024 /*
2025  * Called by memory hotplug when all memory in a node is offlined. Caller must
2026  * hold mem_hotplug_begin/end().
2027  */
2028 void kcompactd_stop(int nid)
2029 {
2030         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2031
2032         if (kcompactd) {
2033                 kthread_stop(kcompactd);
2034                 NODE_DATA(nid)->kcompactd = NULL;
2035         }
2036 }
2037
2038 /*
2039  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2040  * not required for correctness. So if the last cpu in a node goes
2041  * away, we get changed to run anywhere: as the first one comes back,
2042  * restore their cpu bindings.
2043  */
2044 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
2045                         void *hcpu)
2046 {
2047         int nid;
2048
2049         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2050                 for_each_node_state(nid, N_MEMORY) {
2051                         pg_data_t *pgdat = NODE_DATA(nid);
2052                         const struct cpumask *mask;
2053
2054                         mask = cpumask_of_node(pgdat->node_id);
2055
2056                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2057                                 /* One of our CPUs online: restore mask */
2058                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2059                 }
2060         }
2061         return NOTIFY_OK;
2062 }
2063
2064 static int __init kcompactd_init(void)
2065 {
2066         int nid;
2067
2068         for_each_node_state(nid, N_MEMORY)
2069                 kcompactd_run(nid);
2070         hotcpu_notifier(cpu_callback, 0);
2071         return 0;
2072 }
2073 subsys_initcall(kcompactd_init)
2074
2075 #endif /* CONFIG_COMPACTION */