Merge back earlier cpufreq material for v4.8.
[cascardo/linux.git] / mm / compaction.c
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/backing-dev.h>
16 #include <linux/sysctl.h>
17 #include <linux/sysfs.h>
18 #include <linux/balloon_compaction.h>
19 #include <linux/page-isolation.h>
20 #include <linux/kasan.h>
21 #include <linux/kthread.h>
22 #include <linux/freezer.h>
23 #include "internal.h"
24
25 #ifdef CONFIG_COMPACTION
26 static inline void count_compact_event(enum vm_event_item item)
27 {
28         count_vm_event(item);
29 }
30
31 static inline void count_compact_events(enum vm_event_item item, long delta)
32 {
33         count_vm_events(item, delta);
34 }
35 #else
36 #define count_compact_event(item) do { } while (0)
37 #define count_compact_events(item, delta) do { } while (0)
38 #endif
39
40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/compaction.h>
44
45 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
46 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
47 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
48 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
49
50 static unsigned long release_freepages(struct list_head *freelist)
51 {
52         struct page *page, *next;
53         unsigned long high_pfn = 0;
54
55         list_for_each_entry_safe(page, next, freelist, lru) {
56                 unsigned long pfn = page_to_pfn(page);
57                 list_del(&page->lru);
58                 __free_page(page);
59                 if (pfn > high_pfn)
60                         high_pfn = pfn;
61         }
62
63         return high_pfn;
64 }
65
66 static void map_pages(struct list_head *list)
67 {
68         struct page *page;
69
70         list_for_each_entry(page, list, lru) {
71                 arch_alloc_page(page, 0);
72                 kernel_map_pages(page, 1, 1);
73                 kasan_alloc_pages(page, 0);
74         }
75 }
76
77 static inline bool migrate_async_suitable(int migratetype)
78 {
79         return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
80 }
81
82 #ifdef CONFIG_COMPACTION
83
84 /* Do not skip compaction more than 64 times */
85 #define COMPACT_MAX_DEFER_SHIFT 6
86
87 /*
88  * Compaction is deferred when compaction fails to result in a page
89  * allocation success. 1 << compact_defer_limit compactions are skipped up
90  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
91  */
92 void defer_compaction(struct zone *zone, int order)
93 {
94         zone->compact_considered = 0;
95         zone->compact_defer_shift++;
96
97         if (order < zone->compact_order_failed)
98                 zone->compact_order_failed = order;
99
100         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
101                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
102
103         trace_mm_compaction_defer_compaction(zone, order);
104 }
105
106 /* Returns true if compaction should be skipped this time */
107 bool compaction_deferred(struct zone *zone, int order)
108 {
109         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
110
111         if (order < zone->compact_order_failed)
112                 return false;
113
114         /* Avoid possible overflow */
115         if (++zone->compact_considered > defer_limit)
116                 zone->compact_considered = defer_limit;
117
118         if (zone->compact_considered >= defer_limit)
119                 return false;
120
121         trace_mm_compaction_deferred(zone, order);
122
123         return true;
124 }
125
126 /*
127  * Update defer tracking counters after successful compaction of given order,
128  * which means an allocation either succeeded (alloc_success == true) or is
129  * expected to succeed.
130  */
131 void compaction_defer_reset(struct zone *zone, int order,
132                 bool alloc_success)
133 {
134         if (alloc_success) {
135                 zone->compact_considered = 0;
136                 zone->compact_defer_shift = 0;
137         }
138         if (order >= zone->compact_order_failed)
139                 zone->compact_order_failed = order + 1;
140
141         trace_mm_compaction_defer_reset(zone, order);
142 }
143
144 /* Returns true if restarting compaction after many failures */
145 bool compaction_restarting(struct zone *zone, int order)
146 {
147         if (order < zone->compact_order_failed)
148                 return false;
149
150         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
151                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
152 }
153
154 /* Returns true if the pageblock should be scanned for pages to isolate. */
155 static inline bool isolation_suitable(struct compact_control *cc,
156                                         struct page *page)
157 {
158         if (cc->ignore_skip_hint)
159                 return true;
160
161         return !get_pageblock_skip(page);
162 }
163
164 static void reset_cached_positions(struct zone *zone)
165 {
166         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
167         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
168         zone->compact_cached_free_pfn =
169                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
170 }
171
172 /*
173  * This function is called to clear all cached information on pageblocks that
174  * should be skipped for page isolation when the migrate and free page scanner
175  * meet.
176  */
177 static void __reset_isolation_suitable(struct zone *zone)
178 {
179         unsigned long start_pfn = zone->zone_start_pfn;
180         unsigned long end_pfn = zone_end_pfn(zone);
181         unsigned long pfn;
182
183         zone->compact_blockskip_flush = false;
184
185         /* Walk the zone and mark every pageblock as suitable for isolation */
186         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
187                 struct page *page;
188
189                 cond_resched();
190
191                 if (!pfn_valid(pfn))
192                         continue;
193
194                 page = pfn_to_page(pfn);
195                 if (zone != page_zone(page))
196                         continue;
197
198                 clear_pageblock_skip(page);
199         }
200
201         reset_cached_positions(zone);
202 }
203
204 void reset_isolation_suitable(pg_data_t *pgdat)
205 {
206         int zoneid;
207
208         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
209                 struct zone *zone = &pgdat->node_zones[zoneid];
210                 if (!populated_zone(zone))
211                         continue;
212
213                 /* Only flush if a full compaction finished recently */
214                 if (zone->compact_blockskip_flush)
215                         __reset_isolation_suitable(zone);
216         }
217 }
218
219 /*
220  * If no pages were isolated then mark this pageblock to be skipped in the
221  * future. The information is later cleared by __reset_isolation_suitable().
222  */
223 static void update_pageblock_skip(struct compact_control *cc,
224                         struct page *page, unsigned long nr_isolated,
225                         bool migrate_scanner)
226 {
227         struct zone *zone = cc->zone;
228         unsigned long pfn;
229
230         if (cc->ignore_skip_hint)
231                 return;
232
233         if (!page)
234                 return;
235
236         if (nr_isolated)
237                 return;
238
239         set_pageblock_skip(page);
240
241         pfn = page_to_pfn(page);
242
243         /* Update where async and sync compaction should restart */
244         if (migrate_scanner) {
245                 if (pfn > zone->compact_cached_migrate_pfn[0])
246                         zone->compact_cached_migrate_pfn[0] = pfn;
247                 if (cc->mode != MIGRATE_ASYNC &&
248                     pfn > zone->compact_cached_migrate_pfn[1])
249                         zone->compact_cached_migrate_pfn[1] = pfn;
250         } else {
251                 if (pfn < zone->compact_cached_free_pfn)
252                         zone->compact_cached_free_pfn = pfn;
253         }
254 }
255 #else
256 static inline bool isolation_suitable(struct compact_control *cc,
257                                         struct page *page)
258 {
259         return true;
260 }
261
262 static void update_pageblock_skip(struct compact_control *cc,
263                         struct page *page, unsigned long nr_isolated,
264                         bool migrate_scanner)
265 {
266 }
267 #endif /* CONFIG_COMPACTION */
268
269 /*
270  * Compaction requires the taking of some coarse locks that are potentially
271  * very heavily contended. For async compaction, back out if the lock cannot
272  * be taken immediately. For sync compaction, spin on the lock if needed.
273  *
274  * Returns true if the lock is held
275  * Returns false if the lock is not held and compaction should abort
276  */
277 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
278                                                 struct compact_control *cc)
279 {
280         if (cc->mode == MIGRATE_ASYNC) {
281                 if (!spin_trylock_irqsave(lock, *flags)) {
282                         cc->contended = COMPACT_CONTENDED_LOCK;
283                         return false;
284                 }
285         } else {
286                 spin_lock_irqsave(lock, *flags);
287         }
288
289         return true;
290 }
291
292 /*
293  * Compaction requires the taking of some coarse locks that are potentially
294  * very heavily contended. The lock should be periodically unlocked to avoid
295  * having disabled IRQs for a long time, even when there is nobody waiting on
296  * the lock. It might also be that allowing the IRQs will result in
297  * need_resched() becoming true. If scheduling is needed, async compaction
298  * aborts. Sync compaction schedules.
299  * Either compaction type will also abort if a fatal signal is pending.
300  * In either case if the lock was locked, it is dropped and not regained.
301  *
302  * Returns true if compaction should abort due to fatal signal pending, or
303  *              async compaction due to need_resched()
304  * Returns false when compaction can continue (sync compaction might have
305  *              scheduled)
306  */
307 static bool compact_unlock_should_abort(spinlock_t *lock,
308                 unsigned long flags, bool *locked, struct compact_control *cc)
309 {
310         if (*locked) {
311                 spin_unlock_irqrestore(lock, flags);
312                 *locked = false;
313         }
314
315         if (fatal_signal_pending(current)) {
316                 cc->contended = COMPACT_CONTENDED_SCHED;
317                 return true;
318         }
319
320         if (need_resched()) {
321                 if (cc->mode == MIGRATE_ASYNC) {
322                         cc->contended = COMPACT_CONTENDED_SCHED;
323                         return true;
324                 }
325                 cond_resched();
326         }
327
328         return false;
329 }
330
331 /*
332  * Aside from avoiding lock contention, compaction also periodically checks
333  * need_resched() and either schedules in sync compaction or aborts async
334  * compaction. This is similar to what compact_unlock_should_abort() does, but
335  * is used where no lock is concerned.
336  *
337  * Returns false when no scheduling was needed, or sync compaction scheduled.
338  * Returns true when async compaction should abort.
339  */
340 static inline bool compact_should_abort(struct compact_control *cc)
341 {
342         /* async compaction aborts if contended */
343         if (need_resched()) {
344                 if (cc->mode == MIGRATE_ASYNC) {
345                         cc->contended = COMPACT_CONTENDED_SCHED;
346                         return true;
347                 }
348
349                 cond_resched();
350         }
351
352         return false;
353 }
354
355 /*
356  * Isolate free pages onto a private freelist. If @strict is true, will abort
357  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
358  * (even though it may still end up isolating some pages).
359  */
360 static unsigned long isolate_freepages_block(struct compact_control *cc,
361                                 unsigned long *start_pfn,
362                                 unsigned long end_pfn,
363                                 struct list_head *freelist,
364                                 bool strict)
365 {
366         int nr_scanned = 0, total_isolated = 0;
367         struct page *cursor, *valid_page = NULL;
368         unsigned long flags = 0;
369         bool locked = false;
370         unsigned long blockpfn = *start_pfn;
371
372         cursor = pfn_to_page(blockpfn);
373
374         /* Isolate free pages. */
375         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
376                 int isolated, i;
377                 struct page *page = cursor;
378
379                 /*
380                  * Periodically drop the lock (if held) regardless of its
381                  * contention, to give chance to IRQs. Abort if fatal signal
382                  * pending or async compaction detects need_resched()
383                  */
384                 if (!(blockpfn % SWAP_CLUSTER_MAX)
385                     && compact_unlock_should_abort(&cc->zone->lock, flags,
386                                                                 &locked, cc))
387                         break;
388
389                 nr_scanned++;
390                 if (!pfn_valid_within(blockpfn))
391                         goto isolate_fail;
392
393                 if (!valid_page)
394                         valid_page = page;
395
396                 /*
397                  * For compound pages such as THP and hugetlbfs, we can save
398                  * potentially a lot of iterations if we skip them at once.
399                  * The check is racy, but we can consider only valid values
400                  * and the only danger is skipping too much.
401                  */
402                 if (PageCompound(page)) {
403                         unsigned int comp_order = compound_order(page);
404
405                         if (likely(comp_order < MAX_ORDER)) {
406                                 blockpfn += (1UL << comp_order) - 1;
407                                 cursor += (1UL << comp_order) - 1;
408                         }
409
410                         goto isolate_fail;
411                 }
412
413                 if (!PageBuddy(page))
414                         goto isolate_fail;
415
416                 /*
417                  * If we already hold the lock, we can skip some rechecking.
418                  * Note that if we hold the lock now, checked_pageblock was
419                  * already set in some previous iteration (or strict is true),
420                  * so it is correct to skip the suitable migration target
421                  * recheck as well.
422                  */
423                 if (!locked) {
424                         /*
425                          * The zone lock must be held to isolate freepages.
426                          * Unfortunately this is a very coarse lock and can be
427                          * heavily contended if there are parallel allocations
428                          * or parallel compactions. For async compaction do not
429                          * spin on the lock and we acquire the lock as late as
430                          * possible.
431                          */
432                         locked = compact_trylock_irqsave(&cc->zone->lock,
433                                                                 &flags, cc);
434                         if (!locked)
435                                 break;
436
437                         /* Recheck this is a buddy page under lock */
438                         if (!PageBuddy(page))
439                                 goto isolate_fail;
440                 }
441
442                 /* Found a free page, break it into order-0 pages */
443                 isolated = split_free_page(page);
444                 if (!isolated)
445                         break;
446
447                 total_isolated += isolated;
448                 cc->nr_freepages += isolated;
449                 for (i = 0; i < isolated; i++) {
450                         list_add(&page->lru, freelist);
451                         page++;
452                 }
453                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
454                         blockpfn += isolated;
455                         break;
456                 }
457                 /* Advance to the end of split page */
458                 blockpfn += isolated - 1;
459                 cursor += isolated - 1;
460                 continue;
461
462 isolate_fail:
463                 if (strict)
464                         break;
465                 else
466                         continue;
467
468         }
469
470         if (locked)
471                 spin_unlock_irqrestore(&cc->zone->lock, flags);
472
473         /*
474          * There is a tiny chance that we have read bogus compound_order(),
475          * so be careful to not go outside of the pageblock.
476          */
477         if (unlikely(blockpfn > end_pfn))
478                 blockpfn = end_pfn;
479
480         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
481                                         nr_scanned, total_isolated);
482
483         /* Record how far we have got within the block */
484         *start_pfn = blockpfn;
485
486         /*
487          * If strict isolation is requested by CMA then check that all the
488          * pages requested were isolated. If there were any failures, 0 is
489          * returned and CMA will fail.
490          */
491         if (strict && blockpfn < end_pfn)
492                 total_isolated = 0;
493
494         /* Update the pageblock-skip if the whole pageblock was scanned */
495         if (blockpfn == end_pfn)
496                 update_pageblock_skip(cc, valid_page, total_isolated, false);
497
498         count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
499         if (total_isolated)
500                 count_compact_events(COMPACTISOLATED, total_isolated);
501         return total_isolated;
502 }
503
504 /**
505  * isolate_freepages_range() - isolate free pages.
506  * @start_pfn: The first PFN to start isolating.
507  * @end_pfn:   The one-past-last PFN.
508  *
509  * Non-free pages, invalid PFNs, or zone boundaries within the
510  * [start_pfn, end_pfn) range are considered errors, cause function to
511  * undo its actions and return zero.
512  *
513  * Otherwise, function returns one-past-the-last PFN of isolated page
514  * (which may be greater then end_pfn if end fell in a middle of
515  * a free page).
516  */
517 unsigned long
518 isolate_freepages_range(struct compact_control *cc,
519                         unsigned long start_pfn, unsigned long end_pfn)
520 {
521         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
522         LIST_HEAD(freelist);
523
524         pfn = start_pfn;
525         block_start_pfn = pageblock_start_pfn(pfn);
526         if (block_start_pfn < cc->zone->zone_start_pfn)
527                 block_start_pfn = cc->zone->zone_start_pfn;
528         block_end_pfn = pageblock_end_pfn(pfn);
529
530         for (; pfn < end_pfn; pfn += isolated,
531                                 block_start_pfn = block_end_pfn,
532                                 block_end_pfn += pageblock_nr_pages) {
533                 /* Protect pfn from changing by isolate_freepages_block */
534                 unsigned long isolate_start_pfn = pfn;
535
536                 block_end_pfn = min(block_end_pfn, end_pfn);
537
538                 /*
539                  * pfn could pass the block_end_pfn if isolated freepage
540                  * is more than pageblock order. In this case, we adjust
541                  * scanning range to right one.
542                  */
543                 if (pfn >= block_end_pfn) {
544                         block_start_pfn = pageblock_start_pfn(pfn);
545                         block_end_pfn = pageblock_end_pfn(pfn);
546                         block_end_pfn = min(block_end_pfn, end_pfn);
547                 }
548
549                 if (!pageblock_pfn_to_page(block_start_pfn,
550                                         block_end_pfn, cc->zone))
551                         break;
552
553                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
554                                                 block_end_pfn, &freelist, true);
555
556                 /*
557                  * In strict mode, isolate_freepages_block() returns 0 if
558                  * there are any holes in the block (ie. invalid PFNs or
559                  * non-free pages).
560                  */
561                 if (!isolated)
562                         break;
563
564                 /*
565                  * If we managed to isolate pages, it is always (1 << n) *
566                  * pageblock_nr_pages for some non-negative n.  (Max order
567                  * page may span two pageblocks).
568                  */
569         }
570
571         /* split_free_page does not map the pages */
572         map_pages(&freelist);
573
574         if (pfn < end_pfn) {
575                 /* Loop terminated early, cleanup. */
576                 release_freepages(&freelist);
577                 return 0;
578         }
579
580         /* We don't use freelists for anything. */
581         return pfn;
582 }
583
584 /* Update the number of anon and file isolated pages in the zone */
585 static void acct_isolated(struct zone *zone, struct compact_control *cc)
586 {
587         struct page *page;
588         unsigned int count[2] = { 0, };
589
590         if (list_empty(&cc->migratepages))
591                 return;
592
593         list_for_each_entry(page, &cc->migratepages, lru)
594                 count[!!page_is_file_cache(page)]++;
595
596         mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
597         mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
598 }
599
600 /* Similar to reclaim, but different enough that they don't share logic */
601 static bool too_many_isolated(struct zone *zone)
602 {
603         unsigned long active, inactive, isolated;
604
605         inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
606                                         zone_page_state(zone, NR_INACTIVE_ANON);
607         active = zone_page_state(zone, NR_ACTIVE_FILE) +
608                                         zone_page_state(zone, NR_ACTIVE_ANON);
609         isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
610                                         zone_page_state(zone, NR_ISOLATED_ANON);
611
612         return isolated > (inactive + active) / 2;
613 }
614
615 /**
616  * isolate_migratepages_block() - isolate all migrate-able pages within
617  *                                a single pageblock
618  * @cc:         Compaction control structure.
619  * @low_pfn:    The first PFN to isolate
620  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
621  * @isolate_mode: Isolation mode to be used.
622  *
623  * Isolate all pages that can be migrated from the range specified by
624  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
625  * Returns zero if there is a fatal signal pending, otherwise PFN of the
626  * first page that was not scanned (which may be both less, equal to or more
627  * than end_pfn).
628  *
629  * The pages are isolated on cc->migratepages list (not required to be empty),
630  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
631  * is neither read nor updated.
632  */
633 static unsigned long
634 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
635                         unsigned long end_pfn, isolate_mode_t isolate_mode)
636 {
637         struct zone *zone = cc->zone;
638         unsigned long nr_scanned = 0, nr_isolated = 0;
639         struct lruvec *lruvec;
640         unsigned long flags = 0;
641         bool locked = false;
642         struct page *page = NULL, *valid_page = NULL;
643         unsigned long start_pfn = low_pfn;
644         bool skip_on_failure = false;
645         unsigned long next_skip_pfn = 0;
646
647         /*
648          * Ensure that there are not too many pages isolated from the LRU
649          * list by either parallel reclaimers or compaction. If there are,
650          * delay for some time until fewer pages are isolated
651          */
652         while (unlikely(too_many_isolated(zone))) {
653                 /* async migration should just abort */
654                 if (cc->mode == MIGRATE_ASYNC)
655                         return 0;
656
657                 congestion_wait(BLK_RW_ASYNC, HZ/10);
658
659                 if (fatal_signal_pending(current))
660                         return 0;
661         }
662
663         if (compact_should_abort(cc))
664                 return 0;
665
666         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
667                 skip_on_failure = true;
668                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
669         }
670
671         /* Time to isolate some pages for migration */
672         for (; low_pfn < end_pfn; low_pfn++) {
673                 bool is_lru;
674
675                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
676                         /*
677                          * We have isolated all migration candidates in the
678                          * previous order-aligned block, and did not skip it due
679                          * to failure. We should migrate the pages now and
680                          * hopefully succeed compaction.
681                          */
682                         if (nr_isolated)
683                                 break;
684
685                         /*
686                          * We failed to isolate in the previous order-aligned
687                          * block. Set the new boundary to the end of the
688                          * current block. Note we can't simply increase
689                          * next_skip_pfn by 1 << order, as low_pfn might have
690                          * been incremented by a higher number due to skipping
691                          * a compound or a high-order buddy page in the
692                          * previous loop iteration.
693                          */
694                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
695                 }
696
697                 /*
698                  * Periodically drop the lock (if held) regardless of its
699                  * contention, to give chance to IRQs. Abort async compaction
700                  * if contended.
701                  */
702                 if (!(low_pfn % SWAP_CLUSTER_MAX)
703                     && compact_unlock_should_abort(&zone->lru_lock, flags,
704                                                                 &locked, cc))
705                         break;
706
707                 if (!pfn_valid_within(low_pfn))
708                         goto isolate_fail;
709                 nr_scanned++;
710
711                 page = pfn_to_page(low_pfn);
712
713                 if (!valid_page)
714                         valid_page = page;
715
716                 /*
717                  * Skip if free. We read page order here without zone lock
718                  * which is generally unsafe, but the race window is small and
719                  * the worst thing that can happen is that we skip some
720                  * potential isolation targets.
721                  */
722                 if (PageBuddy(page)) {
723                         unsigned long freepage_order = page_order_unsafe(page);
724
725                         /*
726                          * Without lock, we cannot be sure that what we got is
727                          * a valid page order. Consider only values in the
728                          * valid order range to prevent low_pfn overflow.
729                          */
730                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
731                                 low_pfn += (1UL << freepage_order) - 1;
732                         continue;
733                 }
734
735                 /*
736                  * Check may be lockless but that's ok as we recheck later.
737                  * It's possible to migrate LRU pages and balloon pages
738                  * Skip any other type of page
739                  */
740                 is_lru = PageLRU(page);
741                 if (!is_lru) {
742                         if (unlikely(balloon_page_movable(page))) {
743                                 if (balloon_page_isolate(page)) {
744                                         /* Successfully isolated */
745                                         goto isolate_success;
746                                 }
747                         }
748                 }
749
750                 /*
751                  * Regardless of being on LRU, compound pages such as THP and
752                  * hugetlbfs are not to be compacted. We can potentially save
753                  * a lot of iterations if we skip them at once. The check is
754                  * racy, but we can consider only valid values and the only
755                  * danger is skipping too much.
756                  */
757                 if (PageCompound(page)) {
758                         unsigned int comp_order = compound_order(page);
759
760                         if (likely(comp_order < MAX_ORDER))
761                                 low_pfn += (1UL << comp_order) - 1;
762
763                         goto isolate_fail;
764                 }
765
766                 if (!is_lru)
767                         goto isolate_fail;
768
769                 /*
770                  * Migration will fail if an anonymous page is pinned in memory,
771                  * so avoid taking lru_lock and isolating it unnecessarily in an
772                  * admittedly racy check.
773                  */
774                 if (!page_mapping(page) &&
775                     page_count(page) > page_mapcount(page))
776                         goto isolate_fail;
777
778                 /* If we already hold the lock, we can skip some rechecking */
779                 if (!locked) {
780                         locked = compact_trylock_irqsave(&zone->lru_lock,
781                                                                 &flags, cc);
782                         if (!locked)
783                                 break;
784
785                         /* Recheck PageLRU and PageCompound under lock */
786                         if (!PageLRU(page))
787                                 goto isolate_fail;
788
789                         /*
790                          * Page become compound since the non-locked check,
791                          * and it's on LRU. It can only be a THP so the order
792                          * is safe to read and it's 0 for tail pages.
793                          */
794                         if (unlikely(PageCompound(page))) {
795                                 low_pfn += (1UL << compound_order(page)) - 1;
796                                 goto isolate_fail;
797                         }
798                 }
799
800                 lruvec = mem_cgroup_page_lruvec(page, zone);
801
802                 /* Try isolate the page */
803                 if (__isolate_lru_page(page, isolate_mode) != 0)
804                         goto isolate_fail;
805
806                 VM_BUG_ON_PAGE(PageCompound(page), page);
807
808                 /* Successfully isolated */
809                 del_page_from_lru_list(page, lruvec, page_lru(page));
810
811 isolate_success:
812                 list_add(&page->lru, &cc->migratepages);
813                 cc->nr_migratepages++;
814                 nr_isolated++;
815
816                 /*
817                  * Record where we could have freed pages by migration and not
818                  * yet flushed them to buddy allocator.
819                  * - this is the lowest page that was isolated and likely be
820                  * then freed by migration.
821                  */
822                 if (!cc->last_migrated_pfn)
823                         cc->last_migrated_pfn = low_pfn;
824
825                 /* Avoid isolating too much */
826                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
827                         ++low_pfn;
828                         break;
829                 }
830
831                 continue;
832 isolate_fail:
833                 if (!skip_on_failure)
834                         continue;
835
836                 /*
837                  * We have isolated some pages, but then failed. Release them
838                  * instead of migrating, as we cannot form the cc->order buddy
839                  * page anyway.
840                  */
841                 if (nr_isolated) {
842                         if (locked) {
843                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
844                                 locked = false;
845                         }
846                         acct_isolated(zone, cc);
847                         putback_movable_pages(&cc->migratepages);
848                         cc->nr_migratepages = 0;
849                         cc->last_migrated_pfn = 0;
850                         nr_isolated = 0;
851                 }
852
853                 if (low_pfn < next_skip_pfn) {
854                         low_pfn = next_skip_pfn - 1;
855                         /*
856                          * The check near the loop beginning would have updated
857                          * next_skip_pfn too, but this is a bit simpler.
858                          */
859                         next_skip_pfn += 1UL << cc->order;
860                 }
861         }
862
863         /*
864          * The PageBuddy() check could have potentially brought us outside
865          * the range to be scanned.
866          */
867         if (unlikely(low_pfn > end_pfn))
868                 low_pfn = end_pfn;
869
870         if (locked)
871                 spin_unlock_irqrestore(&zone->lru_lock, flags);
872
873         /*
874          * Update the pageblock-skip information and cached scanner pfn,
875          * if the whole pageblock was scanned without isolating any page.
876          */
877         if (low_pfn == end_pfn)
878                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
879
880         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
881                                                 nr_scanned, nr_isolated);
882
883         count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
884         if (nr_isolated)
885                 count_compact_events(COMPACTISOLATED, nr_isolated);
886
887         return low_pfn;
888 }
889
890 /**
891  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
892  * @cc:        Compaction control structure.
893  * @start_pfn: The first PFN to start isolating.
894  * @end_pfn:   The one-past-last PFN.
895  *
896  * Returns zero if isolation fails fatally due to e.g. pending signal.
897  * Otherwise, function returns one-past-the-last PFN of isolated page
898  * (which may be greater than end_pfn if end fell in a middle of a THP page).
899  */
900 unsigned long
901 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
902                                                         unsigned long end_pfn)
903 {
904         unsigned long pfn, block_start_pfn, block_end_pfn;
905
906         /* Scan block by block. First and last block may be incomplete */
907         pfn = start_pfn;
908         block_start_pfn = pageblock_start_pfn(pfn);
909         if (block_start_pfn < cc->zone->zone_start_pfn)
910                 block_start_pfn = cc->zone->zone_start_pfn;
911         block_end_pfn = pageblock_end_pfn(pfn);
912
913         for (; pfn < end_pfn; pfn = block_end_pfn,
914                                 block_start_pfn = block_end_pfn,
915                                 block_end_pfn += pageblock_nr_pages) {
916
917                 block_end_pfn = min(block_end_pfn, end_pfn);
918
919                 if (!pageblock_pfn_to_page(block_start_pfn,
920                                         block_end_pfn, cc->zone))
921                         continue;
922
923                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
924                                                         ISOLATE_UNEVICTABLE);
925
926                 if (!pfn)
927                         break;
928
929                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
930                         break;
931         }
932         acct_isolated(cc->zone, cc);
933
934         return pfn;
935 }
936
937 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
938 #ifdef CONFIG_COMPACTION
939
940 /* Returns true if the page is within a block suitable for migration to */
941 static bool suitable_migration_target(struct page *page)
942 {
943         /* If the page is a large free page, then disallow migration */
944         if (PageBuddy(page)) {
945                 /*
946                  * We are checking page_order without zone->lock taken. But
947                  * the only small danger is that we skip a potentially suitable
948                  * pageblock, so it's not worth to check order for valid range.
949                  */
950                 if (page_order_unsafe(page) >= pageblock_order)
951                         return false;
952         }
953
954         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
955         if (migrate_async_suitable(get_pageblock_migratetype(page)))
956                 return true;
957
958         /* Otherwise skip the block */
959         return false;
960 }
961
962 /*
963  * Test whether the free scanner has reached the same or lower pageblock than
964  * the migration scanner, and compaction should thus terminate.
965  */
966 static inline bool compact_scanners_met(struct compact_control *cc)
967 {
968         return (cc->free_pfn >> pageblock_order)
969                 <= (cc->migrate_pfn >> pageblock_order);
970 }
971
972 /*
973  * Based on information in the current compact_control, find blocks
974  * suitable for isolating free pages from and then isolate them.
975  */
976 static void isolate_freepages(struct compact_control *cc)
977 {
978         struct zone *zone = cc->zone;
979         struct page *page;
980         unsigned long block_start_pfn;  /* start of current pageblock */
981         unsigned long isolate_start_pfn; /* exact pfn we start at */
982         unsigned long block_end_pfn;    /* end of current pageblock */
983         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
984         struct list_head *freelist = &cc->freepages;
985
986         /*
987          * Initialise the free scanner. The starting point is where we last
988          * successfully isolated from, zone-cached value, or the end of the
989          * zone when isolating for the first time. For looping we also need
990          * this pfn aligned down to the pageblock boundary, because we do
991          * block_start_pfn -= pageblock_nr_pages in the for loop.
992          * For ending point, take care when isolating in last pageblock of a
993          * a zone which ends in the middle of a pageblock.
994          * The low boundary is the end of the pageblock the migration scanner
995          * is using.
996          */
997         isolate_start_pfn = cc->free_pfn;
998         block_start_pfn = pageblock_start_pfn(cc->free_pfn);
999         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1000                                                 zone_end_pfn(zone));
1001         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1002
1003         /*
1004          * Isolate free pages until enough are available to migrate the
1005          * pages on cc->migratepages. We stop searching if the migrate
1006          * and free page scanners meet or enough free pages are isolated.
1007          */
1008         for (; block_start_pfn >= low_pfn;
1009                                 block_end_pfn = block_start_pfn,
1010                                 block_start_pfn -= pageblock_nr_pages,
1011                                 isolate_start_pfn = block_start_pfn) {
1012                 unsigned long isolated;
1013
1014                 /*
1015                  * This can iterate a massively long zone without finding any
1016                  * suitable migration targets, so periodically check if we need
1017                  * to schedule, or even abort async compaction.
1018                  */
1019                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1020                                                 && compact_should_abort(cc))
1021                         break;
1022
1023                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1024                                                                         zone);
1025                 if (!page)
1026                         continue;
1027
1028                 /* Check the block is suitable for migration */
1029                 if (!suitable_migration_target(page))
1030                         continue;
1031
1032                 /* If isolation recently failed, do not retry */
1033                 if (!isolation_suitable(cc, page))
1034                         continue;
1035
1036                 /* Found a block suitable for isolating free pages from. */
1037                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1038                                                 block_end_pfn, freelist, false);
1039                 /* If isolation failed early, do not continue needlessly */
1040                 if (!isolated && isolate_start_pfn < block_end_pfn &&
1041                     cc->nr_migratepages > cc->nr_freepages)
1042                         break;
1043
1044                 /*
1045                  * If we isolated enough freepages, or aborted due to async
1046                  * compaction being contended, terminate the loop.
1047                  * Remember where the free scanner should restart next time,
1048                  * which is where isolate_freepages_block() left off.
1049                  * But if it scanned the whole pageblock, isolate_start_pfn
1050                  * now points at block_end_pfn, which is the start of the next
1051                  * pageblock.
1052                  * In that case we will however want to restart at the start
1053                  * of the previous pageblock.
1054                  */
1055                 if ((cc->nr_freepages >= cc->nr_migratepages)
1056                                                         || cc->contended) {
1057                         if (isolate_start_pfn >= block_end_pfn)
1058                                 isolate_start_pfn =
1059                                         block_start_pfn - pageblock_nr_pages;
1060                         break;
1061                 } else {
1062                         /*
1063                          * isolate_freepages_block() should not terminate
1064                          * prematurely unless contended, or isolated enough
1065                          */
1066                         VM_BUG_ON(isolate_start_pfn < block_end_pfn);
1067                 }
1068         }
1069
1070         /* split_free_page does not map the pages */
1071         map_pages(freelist);
1072
1073         /*
1074          * Record where the free scanner will restart next time. Either we
1075          * broke from the loop and set isolate_start_pfn based on the last
1076          * call to isolate_freepages_block(), or we met the migration scanner
1077          * and the loop terminated due to isolate_start_pfn < low_pfn
1078          */
1079         cc->free_pfn = isolate_start_pfn;
1080 }
1081
1082 /*
1083  * This is a migrate-callback that "allocates" freepages by taking pages
1084  * from the isolated freelists in the block we are migrating to.
1085  */
1086 static struct page *compaction_alloc(struct page *migratepage,
1087                                         unsigned long data,
1088                                         int **result)
1089 {
1090         struct compact_control *cc = (struct compact_control *)data;
1091         struct page *freepage;
1092
1093         /*
1094          * Isolate free pages if necessary, and if we are not aborting due to
1095          * contention.
1096          */
1097         if (list_empty(&cc->freepages)) {
1098                 if (!cc->contended)
1099                         isolate_freepages(cc);
1100
1101                 if (list_empty(&cc->freepages))
1102                         return NULL;
1103         }
1104
1105         freepage = list_entry(cc->freepages.next, struct page, lru);
1106         list_del(&freepage->lru);
1107         cc->nr_freepages--;
1108
1109         return freepage;
1110 }
1111
1112 /*
1113  * This is a migrate-callback that "frees" freepages back to the isolated
1114  * freelist.  All pages on the freelist are from the same zone, so there is no
1115  * special handling needed for NUMA.
1116  */
1117 static void compaction_free(struct page *page, unsigned long data)
1118 {
1119         struct compact_control *cc = (struct compact_control *)data;
1120
1121         list_add(&page->lru, &cc->freepages);
1122         cc->nr_freepages++;
1123 }
1124
1125 /* possible outcome of isolate_migratepages */
1126 typedef enum {
1127         ISOLATE_ABORT,          /* Abort compaction now */
1128         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1129         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1130 } isolate_migrate_t;
1131
1132 /*
1133  * Allow userspace to control policy on scanning the unevictable LRU for
1134  * compactable pages.
1135  */
1136 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1137
1138 /*
1139  * Isolate all pages that can be migrated from the first suitable block,
1140  * starting at the block pointed to by the migrate scanner pfn within
1141  * compact_control.
1142  */
1143 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1144                                         struct compact_control *cc)
1145 {
1146         unsigned long block_start_pfn;
1147         unsigned long block_end_pfn;
1148         unsigned long low_pfn;
1149         struct page *page;
1150         const isolate_mode_t isolate_mode =
1151                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1152                 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1153
1154         /*
1155          * Start at where we last stopped, or beginning of the zone as
1156          * initialized by compact_zone()
1157          */
1158         low_pfn = cc->migrate_pfn;
1159         block_start_pfn = pageblock_start_pfn(low_pfn);
1160         if (block_start_pfn < zone->zone_start_pfn)
1161                 block_start_pfn = zone->zone_start_pfn;
1162
1163         /* Only scan within a pageblock boundary */
1164         block_end_pfn = pageblock_end_pfn(low_pfn);
1165
1166         /*
1167          * Iterate over whole pageblocks until we find the first suitable.
1168          * Do not cross the free scanner.
1169          */
1170         for (; block_end_pfn <= cc->free_pfn;
1171                         low_pfn = block_end_pfn,
1172                         block_start_pfn = block_end_pfn,
1173                         block_end_pfn += pageblock_nr_pages) {
1174
1175                 /*
1176                  * This can potentially iterate a massively long zone with
1177                  * many pageblocks unsuitable, so periodically check if we
1178                  * need to schedule, or even abort async compaction.
1179                  */
1180                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1181                                                 && compact_should_abort(cc))
1182                         break;
1183
1184                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1185                                                                         zone);
1186                 if (!page)
1187                         continue;
1188
1189                 /* If isolation recently failed, do not retry */
1190                 if (!isolation_suitable(cc, page))
1191                         continue;
1192
1193                 /*
1194                  * For async compaction, also only scan in MOVABLE blocks.
1195                  * Async compaction is optimistic to see if the minimum amount
1196                  * of work satisfies the allocation.
1197                  */
1198                 if (cc->mode == MIGRATE_ASYNC &&
1199                     !migrate_async_suitable(get_pageblock_migratetype(page)))
1200                         continue;
1201
1202                 /* Perform the isolation */
1203                 low_pfn = isolate_migratepages_block(cc, low_pfn,
1204                                                 block_end_pfn, isolate_mode);
1205
1206                 if (!low_pfn || cc->contended) {
1207                         acct_isolated(zone, cc);
1208                         return ISOLATE_ABORT;
1209                 }
1210
1211                 /*
1212                  * Either we isolated something and proceed with migration. Or
1213                  * we failed and compact_zone should decide if we should
1214                  * continue or not.
1215                  */
1216                 break;
1217         }
1218
1219         acct_isolated(zone, cc);
1220         /* Record where migration scanner will be restarted. */
1221         cc->migrate_pfn = low_pfn;
1222
1223         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1224 }
1225
1226 /*
1227  * order == -1 is expected when compacting via
1228  * /proc/sys/vm/compact_memory
1229  */
1230 static inline bool is_via_compact_memory(int order)
1231 {
1232         return order == -1;
1233 }
1234
1235 static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1236                             const int migratetype)
1237 {
1238         unsigned int order;
1239         unsigned long watermark;
1240
1241         if (cc->contended || fatal_signal_pending(current))
1242                 return COMPACT_CONTENDED;
1243
1244         /* Compaction run completes if the migrate and free scanner meet */
1245         if (compact_scanners_met(cc)) {
1246                 /* Let the next compaction start anew. */
1247                 reset_cached_positions(zone);
1248
1249                 /*
1250                  * Mark that the PG_migrate_skip information should be cleared
1251                  * by kswapd when it goes to sleep. kcompactd does not set the
1252                  * flag itself as the decision to be clear should be directly
1253                  * based on an allocation request.
1254                  */
1255                 if (cc->direct_compaction)
1256                         zone->compact_blockskip_flush = true;
1257
1258                 if (cc->whole_zone)
1259                         return COMPACT_COMPLETE;
1260                 else
1261                         return COMPACT_PARTIAL_SKIPPED;
1262         }
1263
1264         if (is_via_compact_memory(cc->order))
1265                 return COMPACT_CONTINUE;
1266
1267         /* Compaction run is not finished if the watermark is not met */
1268         watermark = low_wmark_pages(zone);
1269
1270         if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1271                                                         cc->alloc_flags))
1272                 return COMPACT_CONTINUE;
1273
1274         /* Direct compactor: Is a suitable page free? */
1275         for (order = cc->order; order < MAX_ORDER; order++) {
1276                 struct free_area *area = &zone->free_area[order];
1277                 bool can_steal;
1278
1279                 /* Job done if page is free of the right migratetype */
1280                 if (!list_empty(&area->free_list[migratetype]))
1281                         return COMPACT_PARTIAL;
1282
1283 #ifdef CONFIG_CMA
1284                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1285                 if (migratetype == MIGRATE_MOVABLE &&
1286                         !list_empty(&area->free_list[MIGRATE_CMA]))
1287                         return COMPACT_PARTIAL;
1288 #endif
1289                 /*
1290                  * Job done if allocation would steal freepages from
1291                  * other migratetype buddy lists.
1292                  */
1293                 if (find_suitable_fallback(area, order, migratetype,
1294                                                 true, &can_steal) != -1)
1295                         return COMPACT_PARTIAL;
1296         }
1297
1298         return COMPACT_NO_SUITABLE_PAGE;
1299 }
1300
1301 static enum compact_result compact_finished(struct zone *zone,
1302                         struct compact_control *cc,
1303                         const int migratetype)
1304 {
1305         int ret;
1306
1307         ret = __compact_finished(zone, cc, migratetype);
1308         trace_mm_compaction_finished(zone, cc->order, ret);
1309         if (ret == COMPACT_NO_SUITABLE_PAGE)
1310                 ret = COMPACT_CONTINUE;
1311
1312         return ret;
1313 }
1314
1315 /*
1316  * compaction_suitable: Is this suitable to run compaction on this zone now?
1317  * Returns
1318  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1319  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1320  *   COMPACT_CONTINUE - If compaction should run now
1321  */
1322 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1323                                         unsigned int alloc_flags,
1324                                         int classzone_idx,
1325                                         unsigned long wmark_target)
1326 {
1327         int fragindex;
1328         unsigned long watermark;
1329
1330         if (is_via_compact_memory(order))
1331                 return COMPACT_CONTINUE;
1332
1333         watermark = low_wmark_pages(zone);
1334         /*
1335          * If watermarks for high-order allocation are already met, there
1336          * should be no need for compaction at all.
1337          */
1338         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1339                                                                 alloc_flags))
1340                 return COMPACT_PARTIAL;
1341
1342         /*
1343          * Watermarks for order-0 must be met for compaction. Note the 2UL.
1344          * This is because during migration, copies of pages need to be
1345          * allocated and for a short time, the footprint is higher
1346          */
1347         watermark += (2UL << order);
1348         if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1349                                  alloc_flags, wmark_target))
1350                 return COMPACT_SKIPPED;
1351
1352         /*
1353          * fragmentation index determines if allocation failures are due to
1354          * low memory or external fragmentation
1355          *
1356          * index of -1000 would imply allocations might succeed depending on
1357          * watermarks, but we already failed the high-order watermark check
1358          * index towards 0 implies failure is due to lack of memory
1359          * index towards 1000 implies failure is due to fragmentation
1360          *
1361          * Only compact if a failure would be due to fragmentation.
1362          */
1363         fragindex = fragmentation_index(zone, order);
1364         if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1365                 return COMPACT_NOT_SUITABLE_ZONE;
1366
1367         return COMPACT_CONTINUE;
1368 }
1369
1370 enum compact_result compaction_suitable(struct zone *zone, int order,
1371                                         unsigned int alloc_flags,
1372                                         int classzone_idx)
1373 {
1374         enum compact_result ret;
1375
1376         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1377                                     zone_page_state(zone, NR_FREE_PAGES));
1378         trace_mm_compaction_suitable(zone, order, ret);
1379         if (ret == COMPACT_NOT_SUITABLE_ZONE)
1380                 ret = COMPACT_SKIPPED;
1381
1382         return ret;
1383 }
1384
1385 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1386                 int alloc_flags)
1387 {
1388         struct zone *zone;
1389         struct zoneref *z;
1390
1391         /*
1392          * Make sure at least one zone would pass __compaction_suitable if we continue
1393          * retrying the reclaim.
1394          */
1395         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1396                                         ac->nodemask) {
1397                 unsigned long available;
1398                 enum compact_result compact_result;
1399
1400                 /*
1401                  * Do not consider all the reclaimable memory because we do not
1402                  * want to trash just for a single high order allocation which
1403                  * is even not guaranteed to appear even if __compaction_suitable
1404                  * is happy about the watermark check.
1405                  */
1406                 available = zone_reclaimable_pages(zone) / order;
1407                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1408                 compact_result = __compaction_suitable(zone, order, alloc_flags,
1409                                 ac_classzone_idx(ac), available);
1410                 if (compact_result != COMPACT_SKIPPED &&
1411                                 compact_result != COMPACT_NOT_SUITABLE_ZONE)
1412                         return true;
1413         }
1414
1415         return false;
1416 }
1417
1418 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1419 {
1420         enum compact_result ret;
1421         unsigned long start_pfn = zone->zone_start_pfn;
1422         unsigned long end_pfn = zone_end_pfn(zone);
1423         const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1424         const bool sync = cc->mode != MIGRATE_ASYNC;
1425
1426         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1427                                                         cc->classzone_idx);
1428         /* Compaction is likely to fail */
1429         if (ret == COMPACT_PARTIAL || ret == COMPACT_SKIPPED)
1430                 return ret;
1431
1432         /* huh, compaction_suitable is returning something unexpected */
1433         VM_BUG_ON(ret != COMPACT_CONTINUE);
1434
1435         /*
1436          * Clear pageblock skip if there were failures recently and compaction
1437          * is about to be retried after being deferred.
1438          */
1439         if (compaction_restarting(zone, cc->order))
1440                 __reset_isolation_suitable(zone);
1441
1442         /*
1443          * Setup to move all movable pages to the end of the zone. Used cached
1444          * information on where the scanners should start but check that it
1445          * is initialised by ensuring the values are within zone boundaries.
1446          */
1447         cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1448         cc->free_pfn = zone->compact_cached_free_pfn;
1449         if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1450                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1451                 zone->compact_cached_free_pfn = cc->free_pfn;
1452         }
1453         if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1454                 cc->migrate_pfn = start_pfn;
1455                 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1456                 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1457         }
1458
1459         if (cc->migrate_pfn == start_pfn)
1460                 cc->whole_zone = true;
1461
1462         cc->last_migrated_pfn = 0;
1463
1464         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1465                                 cc->free_pfn, end_pfn, sync);
1466
1467         migrate_prep_local();
1468
1469         while ((ret = compact_finished(zone, cc, migratetype)) ==
1470                                                 COMPACT_CONTINUE) {
1471                 int err;
1472
1473                 switch (isolate_migratepages(zone, cc)) {
1474                 case ISOLATE_ABORT:
1475                         ret = COMPACT_CONTENDED;
1476                         putback_movable_pages(&cc->migratepages);
1477                         cc->nr_migratepages = 0;
1478                         goto out;
1479                 case ISOLATE_NONE:
1480                         /*
1481                          * We haven't isolated and migrated anything, but
1482                          * there might still be unflushed migrations from
1483                          * previous cc->order aligned block.
1484                          */
1485                         goto check_drain;
1486                 case ISOLATE_SUCCESS:
1487                         ;
1488                 }
1489
1490                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1491                                 compaction_free, (unsigned long)cc, cc->mode,
1492                                 MR_COMPACTION);
1493
1494                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1495                                                         &cc->migratepages);
1496
1497                 /* All pages were either migrated or will be released */
1498                 cc->nr_migratepages = 0;
1499                 if (err) {
1500                         putback_movable_pages(&cc->migratepages);
1501                         /*
1502                          * migrate_pages() may return -ENOMEM when scanners meet
1503                          * and we want compact_finished() to detect it
1504                          */
1505                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
1506                                 ret = COMPACT_CONTENDED;
1507                                 goto out;
1508                         }
1509                         /*
1510                          * We failed to migrate at least one page in the current
1511                          * order-aligned block, so skip the rest of it.
1512                          */
1513                         if (cc->direct_compaction &&
1514                                                 (cc->mode == MIGRATE_ASYNC)) {
1515                                 cc->migrate_pfn = block_end_pfn(
1516                                                 cc->migrate_pfn - 1, cc->order);
1517                                 /* Draining pcplists is useless in this case */
1518                                 cc->last_migrated_pfn = 0;
1519
1520                         }
1521                 }
1522
1523 check_drain:
1524                 /*
1525                  * Has the migration scanner moved away from the previous
1526                  * cc->order aligned block where we migrated from? If yes,
1527                  * flush the pages that were freed, so that they can merge and
1528                  * compact_finished() can detect immediately if allocation
1529                  * would succeed.
1530                  */
1531                 if (cc->order > 0 && cc->last_migrated_pfn) {
1532                         int cpu;
1533                         unsigned long current_block_start =
1534                                 block_start_pfn(cc->migrate_pfn, cc->order);
1535
1536                         if (cc->last_migrated_pfn < current_block_start) {
1537                                 cpu = get_cpu();
1538                                 lru_add_drain_cpu(cpu);
1539                                 drain_local_pages(zone);
1540                                 put_cpu();
1541                                 /* No more flushing until we migrate again */
1542                                 cc->last_migrated_pfn = 0;
1543                         }
1544                 }
1545
1546         }
1547
1548 out:
1549         /*
1550          * Release free pages and update where the free scanner should restart,
1551          * so we don't leave any returned pages behind in the next attempt.
1552          */
1553         if (cc->nr_freepages > 0) {
1554                 unsigned long free_pfn = release_freepages(&cc->freepages);
1555
1556                 cc->nr_freepages = 0;
1557                 VM_BUG_ON(free_pfn == 0);
1558                 /* The cached pfn is always the first in a pageblock */
1559                 free_pfn = pageblock_start_pfn(free_pfn);
1560                 /*
1561                  * Only go back, not forward. The cached pfn might have been
1562                  * already reset to zone end in compact_finished()
1563                  */
1564                 if (free_pfn > zone->compact_cached_free_pfn)
1565                         zone->compact_cached_free_pfn = free_pfn;
1566         }
1567
1568         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1569                                 cc->free_pfn, end_pfn, sync, ret);
1570
1571         if (ret == COMPACT_CONTENDED)
1572                 ret = COMPACT_PARTIAL;
1573
1574         return ret;
1575 }
1576
1577 static enum compact_result compact_zone_order(struct zone *zone, int order,
1578                 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1579                 unsigned int alloc_flags, int classzone_idx)
1580 {
1581         enum compact_result ret;
1582         struct compact_control cc = {
1583                 .nr_freepages = 0,
1584                 .nr_migratepages = 0,
1585                 .order = order,
1586                 .gfp_mask = gfp_mask,
1587                 .zone = zone,
1588                 .mode = mode,
1589                 .alloc_flags = alloc_flags,
1590                 .classzone_idx = classzone_idx,
1591                 .direct_compaction = true,
1592         };
1593         INIT_LIST_HEAD(&cc.freepages);
1594         INIT_LIST_HEAD(&cc.migratepages);
1595
1596         ret = compact_zone(zone, &cc);
1597
1598         VM_BUG_ON(!list_empty(&cc.freepages));
1599         VM_BUG_ON(!list_empty(&cc.migratepages));
1600
1601         *contended = cc.contended;
1602         return ret;
1603 }
1604
1605 int sysctl_extfrag_threshold = 500;
1606
1607 /**
1608  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1609  * @gfp_mask: The GFP mask of the current allocation
1610  * @order: The order of the current allocation
1611  * @alloc_flags: The allocation flags of the current allocation
1612  * @ac: The context of current allocation
1613  * @mode: The migration mode for async, sync light, or sync migration
1614  * @contended: Return value that determines if compaction was aborted due to
1615  *             need_resched() or lock contention
1616  *
1617  * This is the main entry point for direct page compaction.
1618  */
1619 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1620                 unsigned int alloc_flags, const struct alloc_context *ac,
1621                 enum migrate_mode mode, int *contended)
1622 {
1623         int may_enter_fs = gfp_mask & __GFP_FS;
1624         int may_perform_io = gfp_mask & __GFP_IO;
1625         struct zoneref *z;
1626         struct zone *zone;
1627         enum compact_result rc = COMPACT_SKIPPED;
1628         int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1629
1630         *contended = COMPACT_CONTENDED_NONE;
1631
1632         /* Check if the GFP flags allow compaction */
1633         if (!order || !may_enter_fs || !may_perform_io)
1634                 return COMPACT_SKIPPED;
1635
1636         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1637
1638         /* Compact each zone in the list */
1639         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1640                                                                 ac->nodemask) {
1641                 enum compact_result status;
1642                 int zone_contended;
1643
1644                 if (compaction_deferred(zone, order)) {
1645                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1646                         continue;
1647                 }
1648
1649                 status = compact_zone_order(zone, order, gfp_mask, mode,
1650                                 &zone_contended, alloc_flags,
1651                                 ac_classzone_idx(ac));
1652                 rc = max(status, rc);
1653                 /*
1654                  * It takes at least one zone that wasn't lock contended
1655                  * to clear all_zones_contended.
1656                  */
1657                 all_zones_contended &= zone_contended;
1658
1659                 /* If a normal allocation would succeed, stop compacting */
1660                 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1661                                         ac_classzone_idx(ac), alloc_flags)) {
1662                         /*
1663                          * We think the allocation will succeed in this zone,
1664                          * but it is not certain, hence the false. The caller
1665                          * will repeat this with true if allocation indeed
1666                          * succeeds in this zone.
1667                          */
1668                         compaction_defer_reset(zone, order, false);
1669                         /*
1670                          * It is possible that async compaction aborted due to
1671                          * need_resched() and the watermarks were ok thanks to
1672                          * somebody else freeing memory. The allocation can
1673                          * however still fail so we better signal the
1674                          * need_resched() contention anyway (this will not
1675                          * prevent the allocation attempt).
1676                          */
1677                         if (zone_contended == COMPACT_CONTENDED_SCHED)
1678                                 *contended = COMPACT_CONTENDED_SCHED;
1679
1680                         goto break_loop;
1681                 }
1682
1683                 if (mode != MIGRATE_ASYNC && (status == COMPACT_COMPLETE ||
1684                                         status == COMPACT_PARTIAL_SKIPPED)) {
1685                         /*
1686                          * We think that allocation won't succeed in this zone
1687                          * so we defer compaction there. If it ends up
1688                          * succeeding after all, it will be reset.
1689                          */
1690                         defer_compaction(zone, order);
1691                 }
1692
1693                 /*
1694                  * We might have stopped compacting due to need_resched() in
1695                  * async compaction, or due to a fatal signal detected. In that
1696                  * case do not try further zones and signal need_resched()
1697                  * contention.
1698                  */
1699                 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1700                                         || fatal_signal_pending(current)) {
1701                         *contended = COMPACT_CONTENDED_SCHED;
1702                         goto break_loop;
1703                 }
1704
1705                 continue;
1706 break_loop:
1707                 /*
1708                  * We might not have tried all the zones, so  be conservative
1709                  * and assume they are not all lock contended.
1710                  */
1711                 all_zones_contended = 0;
1712                 break;
1713         }
1714
1715         /*
1716          * If at least one zone wasn't deferred or skipped, we report if all
1717          * zones that were tried were lock contended.
1718          */
1719         if (rc > COMPACT_INACTIVE && all_zones_contended)
1720                 *contended = COMPACT_CONTENDED_LOCK;
1721
1722         return rc;
1723 }
1724
1725
1726 /* Compact all zones within a node */
1727 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1728 {
1729         int zoneid;
1730         struct zone *zone;
1731
1732         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1733
1734                 zone = &pgdat->node_zones[zoneid];
1735                 if (!populated_zone(zone))
1736                         continue;
1737
1738                 cc->nr_freepages = 0;
1739                 cc->nr_migratepages = 0;
1740                 cc->zone = zone;
1741                 INIT_LIST_HEAD(&cc->freepages);
1742                 INIT_LIST_HEAD(&cc->migratepages);
1743
1744                 /*
1745                  * When called via /proc/sys/vm/compact_memory
1746                  * this makes sure we compact the whole zone regardless of
1747                  * cached scanner positions.
1748                  */
1749                 if (is_via_compact_memory(cc->order))
1750                         __reset_isolation_suitable(zone);
1751
1752                 if (is_via_compact_memory(cc->order) ||
1753                                 !compaction_deferred(zone, cc->order))
1754                         compact_zone(zone, cc);
1755
1756                 VM_BUG_ON(!list_empty(&cc->freepages));
1757                 VM_BUG_ON(!list_empty(&cc->migratepages));
1758
1759                 if (is_via_compact_memory(cc->order))
1760                         continue;
1761
1762                 if (zone_watermark_ok(zone, cc->order,
1763                                 low_wmark_pages(zone), 0, 0))
1764                         compaction_defer_reset(zone, cc->order, false);
1765         }
1766 }
1767
1768 void compact_pgdat(pg_data_t *pgdat, int order)
1769 {
1770         struct compact_control cc = {
1771                 .order = order,
1772                 .mode = MIGRATE_ASYNC,
1773         };
1774
1775         if (!order)
1776                 return;
1777
1778         __compact_pgdat(pgdat, &cc);
1779 }
1780
1781 static void compact_node(int nid)
1782 {
1783         struct compact_control cc = {
1784                 .order = -1,
1785                 .mode = MIGRATE_SYNC,
1786                 .ignore_skip_hint = true,
1787         };
1788
1789         __compact_pgdat(NODE_DATA(nid), &cc);
1790 }
1791
1792 /* Compact all nodes in the system */
1793 static void compact_nodes(void)
1794 {
1795         int nid;
1796
1797         /* Flush pending updates to the LRU lists */
1798         lru_add_drain_all();
1799
1800         for_each_online_node(nid)
1801                 compact_node(nid);
1802 }
1803
1804 /* The written value is actually unused, all memory is compacted */
1805 int sysctl_compact_memory;
1806
1807 /*
1808  * This is the entry point for compacting all nodes via
1809  * /proc/sys/vm/compact_memory
1810  */
1811 int sysctl_compaction_handler(struct ctl_table *table, int write,
1812                         void __user *buffer, size_t *length, loff_t *ppos)
1813 {
1814         if (write)
1815                 compact_nodes();
1816
1817         return 0;
1818 }
1819
1820 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1821                         void __user *buffer, size_t *length, loff_t *ppos)
1822 {
1823         proc_dointvec_minmax(table, write, buffer, length, ppos);
1824
1825         return 0;
1826 }
1827
1828 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1829 static ssize_t sysfs_compact_node(struct device *dev,
1830                         struct device_attribute *attr,
1831                         const char *buf, size_t count)
1832 {
1833         int nid = dev->id;
1834
1835         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1836                 /* Flush pending updates to the LRU lists */
1837                 lru_add_drain_all();
1838
1839                 compact_node(nid);
1840         }
1841
1842         return count;
1843 }
1844 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1845
1846 int compaction_register_node(struct node *node)
1847 {
1848         return device_create_file(&node->dev, &dev_attr_compact);
1849 }
1850
1851 void compaction_unregister_node(struct node *node)
1852 {
1853         return device_remove_file(&node->dev, &dev_attr_compact);
1854 }
1855 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1856
1857 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1858 {
1859         return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1860 }
1861
1862 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1863 {
1864         int zoneid;
1865         struct zone *zone;
1866         enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1867
1868         for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1869                 zone = &pgdat->node_zones[zoneid];
1870
1871                 if (!populated_zone(zone))
1872                         continue;
1873
1874                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1875                                         classzone_idx) == COMPACT_CONTINUE)
1876                         return true;
1877         }
1878
1879         return false;
1880 }
1881
1882 static void kcompactd_do_work(pg_data_t *pgdat)
1883 {
1884         /*
1885          * With no special task, compact all zones so that a page of requested
1886          * order is allocatable.
1887          */
1888         int zoneid;
1889         struct zone *zone;
1890         struct compact_control cc = {
1891                 .order = pgdat->kcompactd_max_order,
1892                 .classzone_idx = pgdat->kcompactd_classzone_idx,
1893                 .mode = MIGRATE_SYNC_LIGHT,
1894                 .ignore_skip_hint = true,
1895
1896         };
1897         bool success = false;
1898
1899         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1900                                                         cc.classzone_idx);
1901         count_vm_event(KCOMPACTD_WAKE);
1902
1903         for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1904                 int status;
1905
1906                 zone = &pgdat->node_zones[zoneid];
1907                 if (!populated_zone(zone))
1908                         continue;
1909
1910                 if (compaction_deferred(zone, cc.order))
1911                         continue;
1912
1913                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1914                                                         COMPACT_CONTINUE)
1915                         continue;
1916
1917                 cc.nr_freepages = 0;
1918                 cc.nr_migratepages = 0;
1919                 cc.zone = zone;
1920                 INIT_LIST_HEAD(&cc.freepages);
1921                 INIT_LIST_HEAD(&cc.migratepages);
1922
1923                 if (kthread_should_stop())
1924                         return;
1925                 status = compact_zone(zone, &cc);
1926
1927                 if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone),
1928                                                 cc.classzone_idx, 0)) {
1929                         success = true;
1930                         compaction_defer_reset(zone, cc.order, false);
1931                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1932                         /*
1933                          * We use sync migration mode here, so we defer like
1934                          * sync direct compaction does.
1935                          */
1936                         defer_compaction(zone, cc.order);
1937                 }
1938
1939                 VM_BUG_ON(!list_empty(&cc.freepages));
1940                 VM_BUG_ON(!list_empty(&cc.migratepages));
1941         }
1942
1943         /*
1944          * Regardless of success, we are done until woken up next. But remember
1945          * the requested order/classzone_idx in case it was higher/tighter than
1946          * our current ones
1947          */
1948         if (pgdat->kcompactd_max_order <= cc.order)
1949                 pgdat->kcompactd_max_order = 0;
1950         if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1951                 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1952 }
1953
1954 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1955 {
1956         if (!order)
1957                 return;
1958
1959         if (pgdat->kcompactd_max_order < order)
1960                 pgdat->kcompactd_max_order = order;
1961
1962         if (pgdat->kcompactd_classzone_idx > classzone_idx)
1963                 pgdat->kcompactd_classzone_idx = classzone_idx;
1964
1965         if (!waitqueue_active(&pgdat->kcompactd_wait))
1966                 return;
1967
1968         if (!kcompactd_node_suitable(pgdat))
1969                 return;
1970
1971         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1972                                                         classzone_idx);
1973         wake_up_interruptible(&pgdat->kcompactd_wait);
1974 }
1975
1976 /*
1977  * The background compaction daemon, started as a kernel thread
1978  * from the init process.
1979  */
1980 static int kcompactd(void *p)
1981 {
1982         pg_data_t *pgdat = (pg_data_t*)p;
1983         struct task_struct *tsk = current;
1984
1985         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1986
1987         if (!cpumask_empty(cpumask))
1988                 set_cpus_allowed_ptr(tsk, cpumask);
1989
1990         set_freezable();
1991
1992         pgdat->kcompactd_max_order = 0;
1993         pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1994
1995         while (!kthread_should_stop()) {
1996                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
1997                 wait_event_freezable(pgdat->kcompactd_wait,
1998                                 kcompactd_work_requested(pgdat));
1999
2000                 kcompactd_do_work(pgdat);
2001         }
2002
2003         return 0;
2004 }
2005
2006 /*
2007  * This kcompactd start function will be called by init and node-hot-add.
2008  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2009  */
2010 int kcompactd_run(int nid)
2011 {
2012         pg_data_t *pgdat = NODE_DATA(nid);
2013         int ret = 0;
2014
2015         if (pgdat->kcompactd)
2016                 return 0;
2017
2018         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2019         if (IS_ERR(pgdat->kcompactd)) {
2020                 pr_err("Failed to start kcompactd on node %d\n", nid);
2021                 ret = PTR_ERR(pgdat->kcompactd);
2022                 pgdat->kcompactd = NULL;
2023         }
2024         return ret;
2025 }
2026
2027 /*
2028  * Called by memory hotplug when all memory in a node is offlined. Caller must
2029  * hold mem_hotplug_begin/end().
2030  */
2031 void kcompactd_stop(int nid)
2032 {
2033         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2034
2035         if (kcompactd) {
2036                 kthread_stop(kcompactd);
2037                 NODE_DATA(nid)->kcompactd = NULL;
2038         }
2039 }
2040
2041 /*
2042  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2043  * not required for correctness. So if the last cpu in a node goes
2044  * away, we get changed to run anywhere: as the first one comes back,
2045  * restore their cpu bindings.
2046  */
2047 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
2048                         void *hcpu)
2049 {
2050         int nid;
2051
2052         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2053                 for_each_node_state(nid, N_MEMORY) {
2054                         pg_data_t *pgdat = NODE_DATA(nid);
2055                         const struct cpumask *mask;
2056
2057                         mask = cpumask_of_node(pgdat->node_id);
2058
2059                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2060                                 /* One of our CPUs online: restore mask */
2061                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2062                 }
2063         }
2064         return NOTIFY_OK;
2065 }
2066
2067 static int __init kcompactd_init(void)
2068 {
2069         int nid;
2070
2071         for_each_node_state(nid, N_MEMORY)
2072                 kcompactd_run(nid);
2073         hotcpu_notifier(cpu_callback, 0);
2074         return 0;
2075 }
2076 subsys_initcall(kcompactd_init)
2077
2078 #endif /* CONFIG_COMPACTION */