Merge remote-tracking branch 'asoc/topic/max98371' into asoc-next
[cascardo/linux.git] / mm / compaction.c
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/backing-dev.h>
16 #include <linux/sysctl.h>
17 #include <linux/sysfs.h>
18 #include <linux/balloon_compaction.h>
19 #include <linux/page-isolation.h>
20 #include <linux/kasan.h>
21 #include <linux/kthread.h>
22 #include <linux/freezer.h>
23 #include "internal.h"
24
25 #ifdef CONFIG_COMPACTION
26 static inline void count_compact_event(enum vm_event_item item)
27 {
28         count_vm_event(item);
29 }
30
31 static inline void count_compact_events(enum vm_event_item item, long delta)
32 {
33         count_vm_events(item, delta);
34 }
35 #else
36 #define count_compact_event(item) do { } while (0)
37 #define count_compact_events(item, delta) do { } while (0)
38 #endif
39
40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/compaction.h>
44
45 static unsigned long release_freepages(struct list_head *freelist)
46 {
47         struct page *page, *next;
48         unsigned long high_pfn = 0;
49
50         list_for_each_entry_safe(page, next, freelist, lru) {
51                 unsigned long pfn = page_to_pfn(page);
52                 list_del(&page->lru);
53                 __free_page(page);
54                 if (pfn > high_pfn)
55                         high_pfn = pfn;
56         }
57
58         return high_pfn;
59 }
60
61 static void map_pages(struct list_head *list)
62 {
63         struct page *page;
64
65         list_for_each_entry(page, list, lru) {
66                 arch_alloc_page(page, 0);
67                 kernel_map_pages(page, 1, 1);
68                 kasan_alloc_pages(page, 0);
69         }
70 }
71
72 static inline bool migrate_async_suitable(int migratetype)
73 {
74         return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
75 }
76
77 #ifdef CONFIG_COMPACTION
78
79 /* Do not skip compaction more than 64 times */
80 #define COMPACT_MAX_DEFER_SHIFT 6
81
82 /*
83  * Compaction is deferred when compaction fails to result in a page
84  * allocation success. 1 << compact_defer_limit compactions are skipped up
85  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
86  */
87 void defer_compaction(struct zone *zone, int order)
88 {
89         zone->compact_considered = 0;
90         zone->compact_defer_shift++;
91
92         if (order < zone->compact_order_failed)
93                 zone->compact_order_failed = order;
94
95         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
96                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
97
98         trace_mm_compaction_defer_compaction(zone, order);
99 }
100
101 /* Returns true if compaction should be skipped this time */
102 bool compaction_deferred(struct zone *zone, int order)
103 {
104         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
105
106         if (order < zone->compact_order_failed)
107                 return false;
108
109         /* Avoid possible overflow */
110         if (++zone->compact_considered > defer_limit)
111                 zone->compact_considered = defer_limit;
112
113         if (zone->compact_considered >= defer_limit)
114                 return false;
115
116         trace_mm_compaction_deferred(zone, order);
117
118         return true;
119 }
120
121 /*
122  * Update defer tracking counters after successful compaction of given order,
123  * which means an allocation either succeeded (alloc_success == true) or is
124  * expected to succeed.
125  */
126 void compaction_defer_reset(struct zone *zone, int order,
127                 bool alloc_success)
128 {
129         if (alloc_success) {
130                 zone->compact_considered = 0;
131                 zone->compact_defer_shift = 0;
132         }
133         if (order >= zone->compact_order_failed)
134                 zone->compact_order_failed = order + 1;
135
136         trace_mm_compaction_defer_reset(zone, order);
137 }
138
139 /* Returns true if restarting compaction after many failures */
140 bool compaction_restarting(struct zone *zone, int order)
141 {
142         if (order < zone->compact_order_failed)
143                 return false;
144
145         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
146                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
147 }
148
149 /* Returns true if the pageblock should be scanned for pages to isolate. */
150 static inline bool isolation_suitable(struct compact_control *cc,
151                                         struct page *page)
152 {
153         if (cc->ignore_skip_hint)
154                 return true;
155
156         return !get_pageblock_skip(page);
157 }
158
159 static void reset_cached_positions(struct zone *zone)
160 {
161         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
162         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
163         zone->compact_cached_free_pfn =
164                         round_down(zone_end_pfn(zone) - 1, pageblock_nr_pages);
165 }
166
167 /*
168  * This function is called to clear all cached information on pageblocks that
169  * should be skipped for page isolation when the migrate and free page scanner
170  * meet.
171  */
172 static void __reset_isolation_suitable(struct zone *zone)
173 {
174         unsigned long start_pfn = zone->zone_start_pfn;
175         unsigned long end_pfn = zone_end_pfn(zone);
176         unsigned long pfn;
177
178         zone->compact_blockskip_flush = false;
179
180         /* Walk the zone and mark every pageblock as suitable for isolation */
181         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
182                 struct page *page;
183
184                 cond_resched();
185
186                 if (!pfn_valid(pfn))
187                         continue;
188
189                 page = pfn_to_page(pfn);
190                 if (zone != page_zone(page))
191                         continue;
192
193                 clear_pageblock_skip(page);
194         }
195
196         reset_cached_positions(zone);
197 }
198
199 void reset_isolation_suitable(pg_data_t *pgdat)
200 {
201         int zoneid;
202
203         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
204                 struct zone *zone = &pgdat->node_zones[zoneid];
205                 if (!populated_zone(zone))
206                         continue;
207
208                 /* Only flush if a full compaction finished recently */
209                 if (zone->compact_blockskip_flush)
210                         __reset_isolation_suitable(zone);
211         }
212 }
213
214 /*
215  * If no pages were isolated then mark this pageblock to be skipped in the
216  * future. The information is later cleared by __reset_isolation_suitable().
217  */
218 static void update_pageblock_skip(struct compact_control *cc,
219                         struct page *page, unsigned long nr_isolated,
220                         bool migrate_scanner)
221 {
222         struct zone *zone = cc->zone;
223         unsigned long pfn;
224
225         if (cc->ignore_skip_hint)
226                 return;
227
228         if (!page)
229                 return;
230
231         if (nr_isolated)
232                 return;
233
234         set_pageblock_skip(page);
235
236         pfn = page_to_pfn(page);
237
238         /* Update where async and sync compaction should restart */
239         if (migrate_scanner) {
240                 if (pfn > zone->compact_cached_migrate_pfn[0])
241                         zone->compact_cached_migrate_pfn[0] = pfn;
242                 if (cc->mode != MIGRATE_ASYNC &&
243                     pfn > zone->compact_cached_migrate_pfn[1])
244                         zone->compact_cached_migrate_pfn[1] = pfn;
245         } else {
246                 if (pfn < zone->compact_cached_free_pfn)
247                         zone->compact_cached_free_pfn = pfn;
248         }
249 }
250 #else
251 static inline bool isolation_suitable(struct compact_control *cc,
252                                         struct page *page)
253 {
254         return true;
255 }
256
257 static void update_pageblock_skip(struct compact_control *cc,
258                         struct page *page, unsigned long nr_isolated,
259                         bool migrate_scanner)
260 {
261 }
262 #endif /* CONFIG_COMPACTION */
263
264 /*
265  * Compaction requires the taking of some coarse locks that are potentially
266  * very heavily contended. For async compaction, back out if the lock cannot
267  * be taken immediately. For sync compaction, spin on the lock if needed.
268  *
269  * Returns true if the lock is held
270  * Returns false if the lock is not held and compaction should abort
271  */
272 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
273                                                 struct compact_control *cc)
274 {
275         if (cc->mode == MIGRATE_ASYNC) {
276                 if (!spin_trylock_irqsave(lock, *flags)) {
277                         cc->contended = COMPACT_CONTENDED_LOCK;
278                         return false;
279                 }
280         } else {
281                 spin_lock_irqsave(lock, *flags);
282         }
283
284         return true;
285 }
286
287 /*
288  * Compaction requires the taking of some coarse locks that are potentially
289  * very heavily contended. The lock should be periodically unlocked to avoid
290  * having disabled IRQs for a long time, even when there is nobody waiting on
291  * the lock. It might also be that allowing the IRQs will result in
292  * need_resched() becoming true. If scheduling is needed, async compaction
293  * aborts. Sync compaction schedules.
294  * Either compaction type will also abort if a fatal signal is pending.
295  * In either case if the lock was locked, it is dropped and not regained.
296  *
297  * Returns true if compaction should abort due to fatal signal pending, or
298  *              async compaction due to need_resched()
299  * Returns false when compaction can continue (sync compaction might have
300  *              scheduled)
301  */
302 static bool compact_unlock_should_abort(spinlock_t *lock,
303                 unsigned long flags, bool *locked, struct compact_control *cc)
304 {
305         if (*locked) {
306                 spin_unlock_irqrestore(lock, flags);
307                 *locked = false;
308         }
309
310         if (fatal_signal_pending(current)) {
311                 cc->contended = COMPACT_CONTENDED_SCHED;
312                 return true;
313         }
314
315         if (need_resched()) {
316                 if (cc->mode == MIGRATE_ASYNC) {
317                         cc->contended = COMPACT_CONTENDED_SCHED;
318                         return true;
319                 }
320                 cond_resched();
321         }
322
323         return false;
324 }
325
326 /*
327  * Aside from avoiding lock contention, compaction also periodically checks
328  * need_resched() and either schedules in sync compaction or aborts async
329  * compaction. This is similar to what compact_unlock_should_abort() does, but
330  * is used where no lock is concerned.
331  *
332  * Returns false when no scheduling was needed, or sync compaction scheduled.
333  * Returns true when async compaction should abort.
334  */
335 static inline bool compact_should_abort(struct compact_control *cc)
336 {
337         /* async compaction aborts if contended */
338         if (need_resched()) {
339                 if (cc->mode == MIGRATE_ASYNC) {
340                         cc->contended = COMPACT_CONTENDED_SCHED;
341                         return true;
342                 }
343
344                 cond_resched();
345         }
346
347         return false;
348 }
349
350 /*
351  * Isolate free pages onto a private freelist. If @strict is true, will abort
352  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
353  * (even though it may still end up isolating some pages).
354  */
355 static unsigned long isolate_freepages_block(struct compact_control *cc,
356                                 unsigned long *start_pfn,
357                                 unsigned long end_pfn,
358                                 struct list_head *freelist,
359                                 bool strict)
360 {
361         int nr_scanned = 0, total_isolated = 0;
362         struct page *cursor, *valid_page = NULL;
363         unsigned long flags = 0;
364         bool locked = false;
365         unsigned long blockpfn = *start_pfn;
366
367         cursor = pfn_to_page(blockpfn);
368
369         /* Isolate free pages. */
370         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
371                 int isolated, i;
372                 struct page *page = cursor;
373
374                 /*
375                  * Periodically drop the lock (if held) regardless of its
376                  * contention, to give chance to IRQs. Abort if fatal signal
377                  * pending or async compaction detects need_resched()
378                  */
379                 if (!(blockpfn % SWAP_CLUSTER_MAX)
380                     && compact_unlock_should_abort(&cc->zone->lock, flags,
381                                                                 &locked, cc))
382                         break;
383
384                 nr_scanned++;
385                 if (!pfn_valid_within(blockpfn))
386                         goto isolate_fail;
387
388                 if (!valid_page)
389                         valid_page = page;
390
391                 /*
392                  * For compound pages such as THP and hugetlbfs, we can save
393                  * potentially a lot of iterations if we skip them at once.
394                  * The check is racy, but we can consider only valid values
395                  * and the only danger is skipping too much.
396                  */
397                 if (PageCompound(page)) {
398                         unsigned int comp_order = compound_order(page);
399
400                         if (likely(comp_order < MAX_ORDER)) {
401                                 blockpfn += (1UL << comp_order) - 1;
402                                 cursor += (1UL << comp_order) - 1;
403                         }
404
405                         goto isolate_fail;
406                 }
407
408                 if (!PageBuddy(page))
409                         goto isolate_fail;
410
411                 /*
412                  * If we already hold the lock, we can skip some rechecking.
413                  * Note that if we hold the lock now, checked_pageblock was
414                  * already set in some previous iteration (or strict is true),
415                  * so it is correct to skip the suitable migration target
416                  * recheck as well.
417                  */
418                 if (!locked) {
419                         /*
420                          * The zone lock must be held to isolate freepages.
421                          * Unfortunately this is a very coarse lock and can be
422                          * heavily contended if there are parallel allocations
423                          * or parallel compactions. For async compaction do not
424                          * spin on the lock and we acquire the lock as late as
425                          * possible.
426                          */
427                         locked = compact_trylock_irqsave(&cc->zone->lock,
428                                                                 &flags, cc);
429                         if (!locked)
430                                 break;
431
432                         /* Recheck this is a buddy page under lock */
433                         if (!PageBuddy(page))
434                                 goto isolate_fail;
435                 }
436
437                 /* Found a free page, break it into order-0 pages */
438                 isolated = split_free_page(page);
439                 total_isolated += isolated;
440                 for (i = 0; i < isolated; i++) {
441                         list_add(&page->lru, freelist);
442                         page++;
443                 }
444
445                 /* If a page was split, advance to the end of it */
446                 if (isolated) {
447                         cc->nr_freepages += isolated;
448                         if (!strict &&
449                                 cc->nr_migratepages <= cc->nr_freepages) {
450                                 blockpfn += isolated;
451                                 break;
452                         }
453
454                         blockpfn += isolated - 1;
455                         cursor += isolated - 1;
456                         continue;
457                 }
458
459 isolate_fail:
460                 if (strict)
461                         break;
462                 else
463                         continue;
464
465         }
466
467         /*
468          * There is a tiny chance that we have read bogus compound_order(),
469          * so be careful to not go outside of the pageblock.
470          */
471         if (unlikely(blockpfn > end_pfn))
472                 blockpfn = end_pfn;
473
474         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
475                                         nr_scanned, total_isolated);
476
477         /* Record how far we have got within the block */
478         *start_pfn = blockpfn;
479
480         /*
481          * If strict isolation is requested by CMA then check that all the
482          * pages requested were isolated. If there were any failures, 0 is
483          * returned and CMA will fail.
484          */
485         if (strict && blockpfn < end_pfn)
486                 total_isolated = 0;
487
488         if (locked)
489                 spin_unlock_irqrestore(&cc->zone->lock, flags);
490
491         /* Update the pageblock-skip if the whole pageblock was scanned */
492         if (blockpfn == end_pfn)
493                 update_pageblock_skip(cc, valid_page, total_isolated, false);
494
495         count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
496         if (total_isolated)
497                 count_compact_events(COMPACTISOLATED, total_isolated);
498         return total_isolated;
499 }
500
501 /**
502  * isolate_freepages_range() - isolate free pages.
503  * @start_pfn: The first PFN to start isolating.
504  * @end_pfn:   The one-past-last PFN.
505  *
506  * Non-free pages, invalid PFNs, or zone boundaries within the
507  * [start_pfn, end_pfn) range are considered errors, cause function to
508  * undo its actions and return zero.
509  *
510  * Otherwise, function returns one-past-the-last PFN of isolated page
511  * (which may be greater then end_pfn if end fell in a middle of
512  * a free page).
513  */
514 unsigned long
515 isolate_freepages_range(struct compact_control *cc,
516                         unsigned long start_pfn, unsigned long end_pfn)
517 {
518         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
519         LIST_HEAD(freelist);
520
521         pfn = start_pfn;
522         block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
523         if (block_start_pfn < cc->zone->zone_start_pfn)
524                 block_start_pfn = cc->zone->zone_start_pfn;
525         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
526
527         for (; pfn < end_pfn; pfn += isolated,
528                                 block_start_pfn = block_end_pfn,
529                                 block_end_pfn += pageblock_nr_pages) {
530                 /* Protect pfn from changing by isolate_freepages_block */
531                 unsigned long isolate_start_pfn = pfn;
532
533                 block_end_pfn = min(block_end_pfn, end_pfn);
534
535                 /*
536                  * pfn could pass the block_end_pfn if isolated freepage
537                  * is more than pageblock order. In this case, we adjust
538                  * scanning range to right one.
539                  */
540                 if (pfn >= block_end_pfn) {
541                         block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
542                         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
543                         block_end_pfn = min(block_end_pfn, end_pfn);
544                 }
545
546                 if (!pageblock_pfn_to_page(block_start_pfn,
547                                         block_end_pfn, cc->zone))
548                         break;
549
550                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
551                                                 block_end_pfn, &freelist, true);
552
553                 /*
554                  * In strict mode, isolate_freepages_block() returns 0 if
555                  * there are any holes in the block (ie. invalid PFNs or
556                  * non-free pages).
557                  */
558                 if (!isolated)
559                         break;
560
561                 /*
562                  * If we managed to isolate pages, it is always (1 << n) *
563                  * pageblock_nr_pages for some non-negative n.  (Max order
564                  * page may span two pageblocks).
565                  */
566         }
567
568         /* split_free_page does not map the pages */
569         map_pages(&freelist);
570
571         if (pfn < end_pfn) {
572                 /* Loop terminated early, cleanup. */
573                 release_freepages(&freelist);
574                 return 0;
575         }
576
577         /* We don't use freelists for anything. */
578         return pfn;
579 }
580
581 /* Update the number of anon and file isolated pages in the zone */
582 static void acct_isolated(struct zone *zone, struct compact_control *cc)
583 {
584         struct page *page;
585         unsigned int count[2] = { 0, };
586
587         if (list_empty(&cc->migratepages))
588                 return;
589
590         list_for_each_entry(page, &cc->migratepages, lru)
591                 count[!!page_is_file_cache(page)]++;
592
593         mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
594         mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
595 }
596
597 /* Similar to reclaim, but different enough that they don't share logic */
598 static bool too_many_isolated(struct zone *zone)
599 {
600         unsigned long active, inactive, isolated;
601
602         inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
603                                         zone_page_state(zone, NR_INACTIVE_ANON);
604         active = zone_page_state(zone, NR_ACTIVE_FILE) +
605                                         zone_page_state(zone, NR_ACTIVE_ANON);
606         isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
607                                         zone_page_state(zone, NR_ISOLATED_ANON);
608
609         return isolated > (inactive + active) / 2;
610 }
611
612 /**
613  * isolate_migratepages_block() - isolate all migrate-able pages within
614  *                                a single pageblock
615  * @cc:         Compaction control structure.
616  * @low_pfn:    The first PFN to isolate
617  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
618  * @isolate_mode: Isolation mode to be used.
619  *
620  * Isolate all pages that can be migrated from the range specified by
621  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
622  * Returns zero if there is a fatal signal pending, otherwise PFN of the
623  * first page that was not scanned (which may be both less, equal to or more
624  * than end_pfn).
625  *
626  * The pages are isolated on cc->migratepages list (not required to be empty),
627  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
628  * is neither read nor updated.
629  */
630 static unsigned long
631 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
632                         unsigned long end_pfn, isolate_mode_t isolate_mode)
633 {
634         struct zone *zone = cc->zone;
635         unsigned long nr_scanned = 0, nr_isolated = 0;
636         struct list_head *migratelist = &cc->migratepages;
637         struct lruvec *lruvec;
638         unsigned long flags = 0;
639         bool locked = false;
640         struct page *page = NULL, *valid_page = NULL;
641         unsigned long start_pfn = low_pfn;
642
643         /*
644          * Ensure that there are not too many pages isolated from the LRU
645          * list by either parallel reclaimers or compaction. If there are,
646          * delay for some time until fewer pages are isolated
647          */
648         while (unlikely(too_many_isolated(zone))) {
649                 /* async migration should just abort */
650                 if (cc->mode == MIGRATE_ASYNC)
651                         return 0;
652
653                 congestion_wait(BLK_RW_ASYNC, HZ/10);
654
655                 if (fatal_signal_pending(current))
656                         return 0;
657         }
658
659         if (compact_should_abort(cc))
660                 return 0;
661
662         /* Time to isolate some pages for migration */
663         for (; low_pfn < end_pfn; low_pfn++) {
664                 bool is_lru;
665
666                 /*
667                  * Periodically drop the lock (if held) regardless of its
668                  * contention, to give chance to IRQs. Abort async compaction
669                  * if contended.
670                  */
671                 if (!(low_pfn % SWAP_CLUSTER_MAX)
672                     && compact_unlock_should_abort(&zone->lru_lock, flags,
673                                                                 &locked, cc))
674                         break;
675
676                 if (!pfn_valid_within(low_pfn))
677                         continue;
678                 nr_scanned++;
679
680                 page = pfn_to_page(low_pfn);
681
682                 if (!valid_page)
683                         valid_page = page;
684
685                 /*
686                  * Skip if free. We read page order here without zone lock
687                  * which is generally unsafe, but the race window is small and
688                  * the worst thing that can happen is that we skip some
689                  * potential isolation targets.
690                  */
691                 if (PageBuddy(page)) {
692                         unsigned long freepage_order = page_order_unsafe(page);
693
694                         /*
695                          * Without lock, we cannot be sure that what we got is
696                          * a valid page order. Consider only values in the
697                          * valid order range to prevent low_pfn overflow.
698                          */
699                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
700                                 low_pfn += (1UL << freepage_order) - 1;
701                         continue;
702                 }
703
704                 /*
705                  * Check may be lockless but that's ok as we recheck later.
706                  * It's possible to migrate LRU pages and balloon pages
707                  * Skip any other type of page
708                  */
709                 is_lru = PageLRU(page);
710                 if (!is_lru) {
711                         if (unlikely(balloon_page_movable(page))) {
712                                 if (balloon_page_isolate(page)) {
713                                         /* Successfully isolated */
714                                         goto isolate_success;
715                                 }
716                         }
717                 }
718
719                 /*
720                  * Regardless of being on LRU, compound pages such as THP and
721                  * hugetlbfs are not to be compacted. We can potentially save
722                  * a lot of iterations if we skip them at once. The check is
723                  * racy, but we can consider only valid values and the only
724                  * danger is skipping too much.
725                  */
726                 if (PageCompound(page)) {
727                         unsigned int comp_order = compound_order(page);
728
729                         if (likely(comp_order < MAX_ORDER))
730                                 low_pfn += (1UL << comp_order) - 1;
731
732                         continue;
733                 }
734
735                 if (!is_lru)
736                         continue;
737
738                 /*
739                  * Migration will fail if an anonymous page is pinned in memory,
740                  * so avoid taking lru_lock and isolating it unnecessarily in an
741                  * admittedly racy check.
742                  */
743                 if (!page_mapping(page) &&
744                     page_count(page) > page_mapcount(page))
745                         continue;
746
747                 /* If we already hold the lock, we can skip some rechecking */
748                 if (!locked) {
749                         locked = compact_trylock_irqsave(&zone->lru_lock,
750                                                                 &flags, cc);
751                         if (!locked)
752                                 break;
753
754                         /* Recheck PageLRU and PageCompound under lock */
755                         if (!PageLRU(page))
756                                 continue;
757
758                         /*
759                          * Page become compound since the non-locked check,
760                          * and it's on LRU. It can only be a THP so the order
761                          * is safe to read and it's 0 for tail pages.
762                          */
763                         if (unlikely(PageCompound(page))) {
764                                 low_pfn += (1UL << compound_order(page)) - 1;
765                                 continue;
766                         }
767                 }
768
769                 lruvec = mem_cgroup_page_lruvec(page, zone);
770
771                 /* Try isolate the page */
772                 if (__isolate_lru_page(page, isolate_mode) != 0)
773                         continue;
774
775                 VM_BUG_ON_PAGE(PageCompound(page), page);
776
777                 /* Successfully isolated */
778                 del_page_from_lru_list(page, lruvec, page_lru(page));
779
780 isolate_success:
781                 list_add(&page->lru, migratelist);
782                 cc->nr_migratepages++;
783                 nr_isolated++;
784
785                 /* Avoid isolating too much */
786                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
787                         ++low_pfn;
788                         break;
789                 }
790         }
791
792         /*
793          * The PageBuddy() check could have potentially brought us outside
794          * the range to be scanned.
795          */
796         if (unlikely(low_pfn > end_pfn))
797                 low_pfn = end_pfn;
798
799         if (locked)
800                 spin_unlock_irqrestore(&zone->lru_lock, flags);
801
802         /*
803          * Update the pageblock-skip information and cached scanner pfn,
804          * if the whole pageblock was scanned without isolating any page.
805          */
806         if (low_pfn == end_pfn)
807                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
808
809         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
810                                                 nr_scanned, nr_isolated);
811
812         count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
813         if (nr_isolated)
814                 count_compact_events(COMPACTISOLATED, nr_isolated);
815
816         return low_pfn;
817 }
818
819 /**
820  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
821  * @cc:        Compaction control structure.
822  * @start_pfn: The first PFN to start isolating.
823  * @end_pfn:   The one-past-last PFN.
824  *
825  * Returns zero if isolation fails fatally due to e.g. pending signal.
826  * Otherwise, function returns one-past-the-last PFN of isolated page
827  * (which may be greater than end_pfn if end fell in a middle of a THP page).
828  */
829 unsigned long
830 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
831                                                         unsigned long end_pfn)
832 {
833         unsigned long pfn, block_start_pfn, block_end_pfn;
834
835         /* Scan block by block. First and last block may be incomplete */
836         pfn = start_pfn;
837         block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
838         if (block_start_pfn < cc->zone->zone_start_pfn)
839                 block_start_pfn = cc->zone->zone_start_pfn;
840         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
841
842         for (; pfn < end_pfn; pfn = block_end_pfn,
843                                 block_start_pfn = block_end_pfn,
844                                 block_end_pfn += pageblock_nr_pages) {
845
846                 block_end_pfn = min(block_end_pfn, end_pfn);
847
848                 if (!pageblock_pfn_to_page(block_start_pfn,
849                                         block_end_pfn, cc->zone))
850                         continue;
851
852                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
853                                                         ISOLATE_UNEVICTABLE);
854
855                 if (!pfn)
856                         break;
857
858                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
859                         break;
860         }
861         acct_isolated(cc->zone, cc);
862
863         return pfn;
864 }
865
866 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
867 #ifdef CONFIG_COMPACTION
868
869 /* Returns true if the page is within a block suitable for migration to */
870 static bool suitable_migration_target(struct page *page)
871 {
872         /* If the page is a large free page, then disallow migration */
873         if (PageBuddy(page)) {
874                 /*
875                  * We are checking page_order without zone->lock taken. But
876                  * the only small danger is that we skip a potentially suitable
877                  * pageblock, so it's not worth to check order for valid range.
878                  */
879                 if (page_order_unsafe(page) >= pageblock_order)
880                         return false;
881         }
882
883         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
884         if (migrate_async_suitable(get_pageblock_migratetype(page)))
885                 return true;
886
887         /* Otherwise skip the block */
888         return false;
889 }
890
891 /*
892  * Test whether the free scanner has reached the same or lower pageblock than
893  * the migration scanner, and compaction should thus terminate.
894  */
895 static inline bool compact_scanners_met(struct compact_control *cc)
896 {
897         return (cc->free_pfn >> pageblock_order)
898                 <= (cc->migrate_pfn >> pageblock_order);
899 }
900
901 /*
902  * Based on information in the current compact_control, find blocks
903  * suitable for isolating free pages from and then isolate them.
904  */
905 static void isolate_freepages(struct compact_control *cc)
906 {
907         struct zone *zone = cc->zone;
908         struct page *page;
909         unsigned long block_start_pfn;  /* start of current pageblock */
910         unsigned long isolate_start_pfn; /* exact pfn we start at */
911         unsigned long block_end_pfn;    /* end of current pageblock */
912         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
913         struct list_head *freelist = &cc->freepages;
914
915         /*
916          * Initialise the free scanner. The starting point is where we last
917          * successfully isolated from, zone-cached value, or the end of the
918          * zone when isolating for the first time. For looping we also need
919          * this pfn aligned down to the pageblock boundary, because we do
920          * block_start_pfn -= pageblock_nr_pages in the for loop.
921          * For ending point, take care when isolating in last pageblock of a
922          * a zone which ends in the middle of a pageblock.
923          * The low boundary is the end of the pageblock the migration scanner
924          * is using.
925          */
926         isolate_start_pfn = cc->free_pfn;
927         block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
928         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
929                                                 zone_end_pfn(zone));
930         low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
931
932         /*
933          * Isolate free pages until enough are available to migrate the
934          * pages on cc->migratepages. We stop searching if the migrate
935          * and free page scanners meet or enough free pages are isolated.
936          */
937         for (; block_start_pfn >= low_pfn;
938                                 block_end_pfn = block_start_pfn,
939                                 block_start_pfn -= pageblock_nr_pages,
940                                 isolate_start_pfn = block_start_pfn) {
941
942                 /*
943                  * This can iterate a massively long zone without finding any
944                  * suitable migration targets, so periodically check if we need
945                  * to schedule, or even abort async compaction.
946                  */
947                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
948                                                 && compact_should_abort(cc))
949                         break;
950
951                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
952                                                                         zone);
953                 if (!page)
954                         continue;
955
956                 /* Check the block is suitable for migration */
957                 if (!suitable_migration_target(page))
958                         continue;
959
960                 /* If isolation recently failed, do not retry */
961                 if (!isolation_suitable(cc, page))
962                         continue;
963
964                 /* Found a block suitable for isolating free pages from. */
965                 isolate_freepages_block(cc, &isolate_start_pfn,
966                                         block_end_pfn, freelist, false);
967
968                 /*
969                  * If we isolated enough freepages, or aborted due to async
970                  * compaction being contended, terminate the loop.
971                  * Remember where the free scanner should restart next time,
972                  * which is where isolate_freepages_block() left off.
973                  * But if it scanned the whole pageblock, isolate_start_pfn
974                  * now points at block_end_pfn, which is the start of the next
975                  * pageblock.
976                  * In that case we will however want to restart at the start
977                  * of the previous pageblock.
978                  */
979                 if ((cc->nr_freepages >= cc->nr_migratepages)
980                                                         || cc->contended) {
981                         if (isolate_start_pfn >= block_end_pfn)
982                                 isolate_start_pfn =
983                                         block_start_pfn - pageblock_nr_pages;
984                         break;
985                 } else {
986                         /*
987                          * isolate_freepages_block() should not terminate
988                          * prematurely unless contended, or isolated enough
989                          */
990                         VM_BUG_ON(isolate_start_pfn < block_end_pfn);
991                 }
992         }
993
994         /* split_free_page does not map the pages */
995         map_pages(freelist);
996
997         /*
998          * Record where the free scanner will restart next time. Either we
999          * broke from the loop and set isolate_start_pfn based on the last
1000          * call to isolate_freepages_block(), or we met the migration scanner
1001          * and the loop terminated due to isolate_start_pfn < low_pfn
1002          */
1003         cc->free_pfn = isolate_start_pfn;
1004 }
1005
1006 /*
1007  * This is a migrate-callback that "allocates" freepages by taking pages
1008  * from the isolated freelists in the block we are migrating to.
1009  */
1010 static struct page *compaction_alloc(struct page *migratepage,
1011                                         unsigned long data,
1012                                         int **result)
1013 {
1014         struct compact_control *cc = (struct compact_control *)data;
1015         struct page *freepage;
1016
1017         /*
1018          * Isolate free pages if necessary, and if we are not aborting due to
1019          * contention.
1020          */
1021         if (list_empty(&cc->freepages)) {
1022                 if (!cc->contended)
1023                         isolate_freepages(cc);
1024
1025                 if (list_empty(&cc->freepages))
1026                         return NULL;
1027         }
1028
1029         freepage = list_entry(cc->freepages.next, struct page, lru);
1030         list_del(&freepage->lru);
1031         cc->nr_freepages--;
1032
1033         return freepage;
1034 }
1035
1036 /*
1037  * This is a migrate-callback that "frees" freepages back to the isolated
1038  * freelist.  All pages on the freelist are from the same zone, so there is no
1039  * special handling needed for NUMA.
1040  */
1041 static void compaction_free(struct page *page, unsigned long data)
1042 {
1043         struct compact_control *cc = (struct compact_control *)data;
1044
1045         list_add(&page->lru, &cc->freepages);
1046         cc->nr_freepages++;
1047 }
1048
1049 /* possible outcome of isolate_migratepages */
1050 typedef enum {
1051         ISOLATE_ABORT,          /* Abort compaction now */
1052         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1053         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1054 } isolate_migrate_t;
1055
1056 /*
1057  * Allow userspace to control policy on scanning the unevictable LRU for
1058  * compactable pages.
1059  */
1060 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1061
1062 /*
1063  * Isolate all pages that can be migrated from the first suitable block,
1064  * starting at the block pointed to by the migrate scanner pfn within
1065  * compact_control.
1066  */
1067 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1068                                         struct compact_control *cc)
1069 {
1070         unsigned long block_start_pfn;
1071         unsigned long block_end_pfn;
1072         unsigned long low_pfn;
1073         unsigned long isolate_start_pfn;
1074         struct page *page;
1075         const isolate_mode_t isolate_mode =
1076                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1077                 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1078
1079         /*
1080          * Start at where we last stopped, or beginning of the zone as
1081          * initialized by compact_zone()
1082          */
1083         low_pfn = cc->migrate_pfn;
1084         block_start_pfn = cc->migrate_pfn & ~(pageblock_nr_pages - 1);
1085         if (block_start_pfn < zone->zone_start_pfn)
1086                 block_start_pfn = zone->zone_start_pfn;
1087
1088         /* Only scan within a pageblock boundary */
1089         block_end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1090
1091         /*
1092          * Iterate over whole pageblocks until we find the first suitable.
1093          * Do not cross the free scanner.
1094          */
1095         for (; block_end_pfn <= cc->free_pfn;
1096                         low_pfn = block_end_pfn,
1097                         block_start_pfn = block_end_pfn,
1098                         block_end_pfn += pageblock_nr_pages) {
1099
1100                 /*
1101                  * This can potentially iterate a massively long zone with
1102                  * many pageblocks unsuitable, so periodically check if we
1103                  * need to schedule, or even abort async compaction.
1104                  */
1105                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1106                                                 && compact_should_abort(cc))
1107                         break;
1108
1109                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1110                                                                         zone);
1111                 if (!page)
1112                         continue;
1113
1114                 /* If isolation recently failed, do not retry */
1115                 if (!isolation_suitable(cc, page))
1116                         continue;
1117
1118                 /*
1119                  * For async compaction, also only scan in MOVABLE blocks.
1120                  * Async compaction is optimistic to see if the minimum amount
1121                  * of work satisfies the allocation.
1122                  */
1123                 if (cc->mode == MIGRATE_ASYNC &&
1124                     !migrate_async_suitable(get_pageblock_migratetype(page)))
1125                         continue;
1126
1127                 /* Perform the isolation */
1128                 isolate_start_pfn = low_pfn;
1129                 low_pfn = isolate_migratepages_block(cc, low_pfn,
1130                                                 block_end_pfn, isolate_mode);
1131
1132                 if (!low_pfn || cc->contended) {
1133                         acct_isolated(zone, cc);
1134                         return ISOLATE_ABORT;
1135                 }
1136
1137                 /*
1138                  * Record where we could have freed pages by migration and not
1139                  * yet flushed them to buddy allocator.
1140                  * - this is the lowest page that could have been isolated and
1141                  * then freed by migration.
1142                  */
1143                 if (cc->nr_migratepages && !cc->last_migrated_pfn)
1144                         cc->last_migrated_pfn = isolate_start_pfn;
1145
1146                 /*
1147                  * Either we isolated something and proceed with migration. Or
1148                  * we failed and compact_zone should decide if we should
1149                  * continue or not.
1150                  */
1151                 break;
1152         }
1153
1154         acct_isolated(zone, cc);
1155         /* Record where migration scanner will be restarted. */
1156         cc->migrate_pfn = low_pfn;
1157
1158         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1159 }
1160
1161 /*
1162  * order == -1 is expected when compacting via
1163  * /proc/sys/vm/compact_memory
1164  */
1165 static inline bool is_via_compact_memory(int order)
1166 {
1167         return order == -1;
1168 }
1169
1170 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1171                             const int migratetype)
1172 {
1173         unsigned int order;
1174         unsigned long watermark;
1175
1176         if (cc->contended || fatal_signal_pending(current))
1177                 return COMPACT_CONTENDED;
1178
1179         /* Compaction run completes if the migrate and free scanner meet */
1180         if (compact_scanners_met(cc)) {
1181                 /* Let the next compaction start anew. */
1182                 reset_cached_positions(zone);
1183
1184                 /*
1185                  * Mark that the PG_migrate_skip information should be cleared
1186                  * by kswapd when it goes to sleep. kcompactd does not set the
1187                  * flag itself as the decision to be clear should be directly
1188                  * based on an allocation request.
1189                  */
1190                 if (cc->direct_compaction)
1191                         zone->compact_blockskip_flush = true;
1192
1193                 return COMPACT_COMPLETE;
1194         }
1195
1196         if (is_via_compact_memory(cc->order))
1197                 return COMPACT_CONTINUE;
1198
1199         /* Compaction run is not finished if the watermark is not met */
1200         watermark = low_wmark_pages(zone);
1201
1202         if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1203                                                         cc->alloc_flags))
1204                 return COMPACT_CONTINUE;
1205
1206         /* Direct compactor: Is a suitable page free? */
1207         for (order = cc->order; order < MAX_ORDER; order++) {
1208                 struct free_area *area = &zone->free_area[order];
1209                 bool can_steal;
1210
1211                 /* Job done if page is free of the right migratetype */
1212                 if (!list_empty(&area->free_list[migratetype]))
1213                         return COMPACT_PARTIAL;
1214
1215 #ifdef CONFIG_CMA
1216                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1217                 if (migratetype == MIGRATE_MOVABLE &&
1218                         !list_empty(&area->free_list[MIGRATE_CMA]))
1219                         return COMPACT_PARTIAL;
1220 #endif
1221                 /*
1222                  * Job done if allocation would steal freepages from
1223                  * other migratetype buddy lists.
1224                  */
1225                 if (find_suitable_fallback(area, order, migratetype,
1226                                                 true, &can_steal) != -1)
1227                         return COMPACT_PARTIAL;
1228         }
1229
1230         return COMPACT_NO_SUITABLE_PAGE;
1231 }
1232
1233 static int compact_finished(struct zone *zone, struct compact_control *cc,
1234                             const int migratetype)
1235 {
1236         int ret;
1237
1238         ret = __compact_finished(zone, cc, migratetype);
1239         trace_mm_compaction_finished(zone, cc->order, ret);
1240         if (ret == COMPACT_NO_SUITABLE_PAGE)
1241                 ret = COMPACT_CONTINUE;
1242
1243         return ret;
1244 }
1245
1246 /*
1247  * compaction_suitable: Is this suitable to run compaction on this zone now?
1248  * Returns
1249  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1250  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1251  *   COMPACT_CONTINUE - If compaction should run now
1252  */
1253 static unsigned long __compaction_suitable(struct zone *zone, int order,
1254                                         int alloc_flags, int classzone_idx)
1255 {
1256         int fragindex;
1257         unsigned long watermark;
1258
1259         if (is_via_compact_memory(order))
1260                 return COMPACT_CONTINUE;
1261
1262         watermark = low_wmark_pages(zone);
1263         /*
1264          * If watermarks for high-order allocation are already met, there
1265          * should be no need for compaction at all.
1266          */
1267         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1268                                                                 alloc_flags))
1269                 return COMPACT_PARTIAL;
1270
1271         /*
1272          * Watermarks for order-0 must be met for compaction. Note the 2UL.
1273          * This is because during migration, copies of pages need to be
1274          * allocated and for a short time, the footprint is higher
1275          */
1276         watermark += (2UL << order);
1277         if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1278                 return COMPACT_SKIPPED;
1279
1280         /*
1281          * fragmentation index determines if allocation failures are due to
1282          * low memory or external fragmentation
1283          *
1284          * index of -1000 would imply allocations might succeed depending on
1285          * watermarks, but we already failed the high-order watermark check
1286          * index towards 0 implies failure is due to lack of memory
1287          * index towards 1000 implies failure is due to fragmentation
1288          *
1289          * Only compact if a failure would be due to fragmentation.
1290          */
1291         fragindex = fragmentation_index(zone, order);
1292         if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1293                 return COMPACT_NOT_SUITABLE_ZONE;
1294
1295         return COMPACT_CONTINUE;
1296 }
1297
1298 unsigned long compaction_suitable(struct zone *zone, int order,
1299                                         int alloc_flags, int classzone_idx)
1300 {
1301         unsigned long ret;
1302
1303         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1304         trace_mm_compaction_suitable(zone, order, ret);
1305         if (ret == COMPACT_NOT_SUITABLE_ZONE)
1306                 ret = COMPACT_SKIPPED;
1307
1308         return ret;
1309 }
1310
1311 static int compact_zone(struct zone *zone, struct compact_control *cc)
1312 {
1313         int ret;
1314         unsigned long start_pfn = zone->zone_start_pfn;
1315         unsigned long end_pfn = zone_end_pfn(zone);
1316         const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1317         const bool sync = cc->mode != MIGRATE_ASYNC;
1318
1319         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1320                                                         cc->classzone_idx);
1321         switch (ret) {
1322         case COMPACT_PARTIAL:
1323         case COMPACT_SKIPPED:
1324                 /* Compaction is likely to fail */
1325                 return ret;
1326         case COMPACT_CONTINUE:
1327                 /* Fall through to compaction */
1328                 ;
1329         }
1330
1331         /*
1332          * Clear pageblock skip if there were failures recently and compaction
1333          * is about to be retried after being deferred.
1334          */
1335         if (compaction_restarting(zone, cc->order))
1336                 __reset_isolation_suitable(zone);
1337
1338         /*
1339          * Setup to move all movable pages to the end of the zone. Used cached
1340          * information on where the scanners should start but check that it
1341          * is initialised by ensuring the values are within zone boundaries.
1342          */
1343         cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1344         cc->free_pfn = zone->compact_cached_free_pfn;
1345         if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1346                 cc->free_pfn = round_down(end_pfn - 1, pageblock_nr_pages);
1347                 zone->compact_cached_free_pfn = cc->free_pfn;
1348         }
1349         if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1350                 cc->migrate_pfn = start_pfn;
1351                 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1352                 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1353         }
1354         cc->last_migrated_pfn = 0;
1355
1356         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1357                                 cc->free_pfn, end_pfn, sync);
1358
1359         migrate_prep_local();
1360
1361         while ((ret = compact_finished(zone, cc, migratetype)) ==
1362                                                 COMPACT_CONTINUE) {
1363                 int err;
1364
1365                 switch (isolate_migratepages(zone, cc)) {
1366                 case ISOLATE_ABORT:
1367                         ret = COMPACT_CONTENDED;
1368                         putback_movable_pages(&cc->migratepages);
1369                         cc->nr_migratepages = 0;
1370                         goto out;
1371                 case ISOLATE_NONE:
1372                         /*
1373                          * We haven't isolated and migrated anything, but
1374                          * there might still be unflushed migrations from
1375                          * previous cc->order aligned block.
1376                          */
1377                         goto check_drain;
1378                 case ISOLATE_SUCCESS:
1379                         ;
1380                 }
1381
1382                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1383                                 compaction_free, (unsigned long)cc, cc->mode,
1384                                 MR_COMPACTION);
1385
1386                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1387                                                         &cc->migratepages);
1388
1389                 /* All pages were either migrated or will be released */
1390                 cc->nr_migratepages = 0;
1391                 if (err) {
1392                         putback_movable_pages(&cc->migratepages);
1393                         /*
1394                          * migrate_pages() may return -ENOMEM when scanners meet
1395                          * and we want compact_finished() to detect it
1396                          */
1397                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
1398                                 ret = COMPACT_CONTENDED;
1399                                 goto out;
1400                         }
1401                 }
1402
1403 check_drain:
1404                 /*
1405                  * Has the migration scanner moved away from the previous
1406                  * cc->order aligned block where we migrated from? If yes,
1407                  * flush the pages that were freed, so that they can merge and
1408                  * compact_finished() can detect immediately if allocation
1409                  * would succeed.
1410                  */
1411                 if (cc->order > 0 && cc->last_migrated_pfn) {
1412                         int cpu;
1413                         unsigned long current_block_start =
1414                                 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1415
1416                         if (cc->last_migrated_pfn < current_block_start) {
1417                                 cpu = get_cpu();
1418                                 lru_add_drain_cpu(cpu);
1419                                 drain_local_pages(zone);
1420                                 put_cpu();
1421                                 /* No more flushing until we migrate again */
1422                                 cc->last_migrated_pfn = 0;
1423                         }
1424                 }
1425
1426         }
1427
1428 out:
1429         /*
1430          * Release free pages and update where the free scanner should restart,
1431          * so we don't leave any returned pages behind in the next attempt.
1432          */
1433         if (cc->nr_freepages > 0) {
1434                 unsigned long free_pfn = release_freepages(&cc->freepages);
1435
1436                 cc->nr_freepages = 0;
1437                 VM_BUG_ON(free_pfn == 0);
1438                 /* The cached pfn is always the first in a pageblock */
1439                 free_pfn &= ~(pageblock_nr_pages-1);
1440                 /*
1441                  * Only go back, not forward. The cached pfn might have been
1442                  * already reset to zone end in compact_finished()
1443                  */
1444                 if (free_pfn > zone->compact_cached_free_pfn)
1445                         zone->compact_cached_free_pfn = free_pfn;
1446         }
1447
1448         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1449                                 cc->free_pfn, end_pfn, sync, ret);
1450
1451         if (ret == COMPACT_CONTENDED)
1452                 ret = COMPACT_PARTIAL;
1453
1454         return ret;
1455 }
1456
1457 static unsigned long compact_zone_order(struct zone *zone, int order,
1458                 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1459                 int alloc_flags, int classzone_idx)
1460 {
1461         unsigned long ret;
1462         struct compact_control cc = {
1463                 .nr_freepages = 0,
1464                 .nr_migratepages = 0,
1465                 .order = order,
1466                 .gfp_mask = gfp_mask,
1467                 .zone = zone,
1468                 .mode = mode,
1469                 .alloc_flags = alloc_flags,
1470                 .classzone_idx = classzone_idx,
1471                 .direct_compaction = true,
1472         };
1473         INIT_LIST_HEAD(&cc.freepages);
1474         INIT_LIST_HEAD(&cc.migratepages);
1475
1476         ret = compact_zone(zone, &cc);
1477
1478         VM_BUG_ON(!list_empty(&cc.freepages));
1479         VM_BUG_ON(!list_empty(&cc.migratepages));
1480
1481         *contended = cc.contended;
1482         return ret;
1483 }
1484
1485 int sysctl_extfrag_threshold = 500;
1486
1487 /**
1488  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1489  * @gfp_mask: The GFP mask of the current allocation
1490  * @order: The order of the current allocation
1491  * @alloc_flags: The allocation flags of the current allocation
1492  * @ac: The context of current allocation
1493  * @mode: The migration mode for async, sync light, or sync migration
1494  * @contended: Return value that determines if compaction was aborted due to
1495  *             need_resched() or lock contention
1496  *
1497  * This is the main entry point for direct page compaction.
1498  */
1499 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1500                         int alloc_flags, const struct alloc_context *ac,
1501                         enum migrate_mode mode, int *contended)
1502 {
1503         int may_enter_fs = gfp_mask & __GFP_FS;
1504         int may_perform_io = gfp_mask & __GFP_IO;
1505         struct zoneref *z;
1506         struct zone *zone;
1507         int rc = COMPACT_DEFERRED;
1508         int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1509
1510         *contended = COMPACT_CONTENDED_NONE;
1511
1512         /* Check if the GFP flags allow compaction */
1513         if (!order || !may_enter_fs || !may_perform_io)
1514                 return COMPACT_SKIPPED;
1515
1516         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1517
1518         /* Compact each zone in the list */
1519         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1520                                                                 ac->nodemask) {
1521                 int status;
1522                 int zone_contended;
1523
1524                 if (compaction_deferred(zone, order))
1525                         continue;
1526
1527                 status = compact_zone_order(zone, order, gfp_mask, mode,
1528                                 &zone_contended, alloc_flags,
1529                                 ac->classzone_idx);
1530                 rc = max(status, rc);
1531                 /*
1532                  * It takes at least one zone that wasn't lock contended
1533                  * to clear all_zones_contended.
1534                  */
1535                 all_zones_contended &= zone_contended;
1536
1537                 /* If a normal allocation would succeed, stop compacting */
1538                 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1539                                         ac->classzone_idx, alloc_flags)) {
1540                         /*
1541                          * We think the allocation will succeed in this zone,
1542                          * but it is not certain, hence the false. The caller
1543                          * will repeat this with true if allocation indeed
1544                          * succeeds in this zone.
1545                          */
1546                         compaction_defer_reset(zone, order, false);
1547                         /*
1548                          * It is possible that async compaction aborted due to
1549                          * need_resched() and the watermarks were ok thanks to
1550                          * somebody else freeing memory. The allocation can
1551                          * however still fail so we better signal the
1552                          * need_resched() contention anyway (this will not
1553                          * prevent the allocation attempt).
1554                          */
1555                         if (zone_contended == COMPACT_CONTENDED_SCHED)
1556                                 *contended = COMPACT_CONTENDED_SCHED;
1557
1558                         goto break_loop;
1559                 }
1560
1561                 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1562                         /*
1563                          * We think that allocation won't succeed in this zone
1564                          * so we defer compaction there. If it ends up
1565                          * succeeding after all, it will be reset.
1566                          */
1567                         defer_compaction(zone, order);
1568                 }
1569
1570                 /*
1571                  * We might have stopped compacting due to need_resched() in
1572                  * async compaction, or due to a fatal signal detected. In that
1573                  * case do not try further zones and signal need_resched()
1574                  * contention.
1575                  */
1576                 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1577                                         || fatal_signal_pending(current)) {
1578                         *contended = COMPACT_CONTENDED_SCHED;
1579                         goto break_loop;
1580                 }
1581
1582                 continue;
1583 break_loop:
1584                 /*
1585                  * We might not have tried all the zones, so  be conservative
1586                  * and assume they are not all lock contended.
1587                  */
1588                 all_zones_contended = 0;
1589                 break;
1590         }
1591
1592         /*
1593          * If at least one zone wasn't deferred or skipped, we report if all
1594          * zones that were tried were lock contended.
1595          */
1596         if (rc > COMPACT_SKIPPED && all_zones_contended)
1597                 *contended = COMPACT_CONTENDED_LOCK;
1598
1599         return rc;
1600 }
1601
1602
1603 /* Compact all zones within a node */
1604 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1605 {
1606         int zoneid;
1607         struct zone *zone;
1608
1609         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1610
1611                 zone = &pgdat->node_zones[zoneid];
1612                 if (!populated_zone(zone))
1613                         continue;
1614
1615                 cc->nr_freepages = 0;
1616                 cc->nr_migratepages = 0;
1617                 cc->zone = zone;
1618                 INIT_LIST_HEAD(&cc->freepages);
1619                 INIT_LIST_HEAD(&cc->migratepages);
1620
1621                 /*
1622                  * When called via /proc/sys/vm/compact_memory
1623                  * this makes sure we compact the whole zone regardless of
1624                  * cached scanner positions.
1625                  */
1626                 if (is_via_compact_memory(cc->order))
1627                         __reset_isolation_suitable(zone);
1628
1629                 if (is_via_compact_memory(cc->order) ||
1630                                 !compaction_deferred(zone, cc->order))
1631                         compact_zone(zone, cc);
1632
1633                 VM_BUG_ON(!list_empty(&cc->freepages));
1634                 VM_BUG_ON(!list_empty(&cc->migratepages));
1635
1636                 if (is_via_compact_memory(cc->order))
1637                         continue;
1638
1639                 if (zone_watermark_ok(zone, cc->order,
1640                                 low_wmark_pages(zone), 0, 0))
1641                         compaction_defer_reset(zone, cc->order, false);
1642         }
1643 }
1644
1645 void compact_pgdat(pg_data_t *pgdat, int order)
1646 {
1647         struct compact_control cc = {
1648                 .order = order,
1649                 .mode = MIGRATE_ASYNC,
1650         };
1651
1652         if (!order)
1653                 return;
1654
1655         __compact_pgdat(pgdat, &cc);
1656 }
1657
1658 static void compact_node(int nid)
1659 {
1660         struct compact_control cc = {
1661                 .order = -1,
1662                 .mode = MIGRATE_SYNC,
1663                 .ignore_skip_hint = true,
1664         };
1665
1666         __compact_pgdat(NODE_DATA(nid), &cc);
1667 }
1668
1669 /* Compact all nodes in the system */
1670 static void compact_nodes(void)
1671 {
1672         int nid;
1673
1674         /* Flush pending updates to the LRU lists */
1675         lru_add_drain_all();
1676
1677         for_each_online_node(nid)
1678                 compact_node(nid);
1679 }
1680
1681 /* The written value is actually unused, all memory is compacted */
1682 int sysctl_compact_memory;
1683
1684 /*
1685  * This is the entry point for compacting all nodes via
1686  * /proc/sys/vm/compact_memory
1687  */
1688 int sysctl_compaction_handler(struct ctl_table *table, int write,
1689                         void __user *buffer, size_t *length, loff_t *ppos)
1690 {
1691         if (write)
1692                 compact_nodes();
1693
1694         return 0;
1695 }
1696
1697 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1698                         void __user *buffer, size_t *length, loff_t *ppos)
1699 {
1700         proc_dointvec_minmax(table, write, buffer, length, ppos);
1701
1702         return 0;
1703 }
1704
1705 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1706 static ssize_t sysfs_compact_node(struct device *dev,
1707                         struct device_attribute *attr,
1708                         const char *buf, size_t count)
1709 {
1710         int nid = dev->id;
1711
1712         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1713                 /* Flush pending updates to the LRU lists */
1714                 lru_add_drain_all();
1715
1716                 compact_node(nid);
1717         }
1718
1719         return count;
1720 }
1721 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1722
1723 int compaction_register_node(struct node *node)
1724 {
1725         return device_create_file(&node->dev, &dev_attr_compact);
1726 }
1727
1728 void compaction_unregister_node(struct node *node)
1729 {
1730         return device_remove_file(&node->dev, &dev_attr_compact);
1731 }
1732 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1733
1734 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1735 {
1736         return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1737 }
1738
1739 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1740 {
1741         int zoneid;
1742         struct zone *zone;
1743         enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1744
1745         for (zoneid = 0; zoneid < classzone_idx; zoneid++) {
1746                 zone = &pgdat->node_zones[zoneid];
1747
1748                 if (!populated_zone(zone))
1749                         continue;
1750
1751                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1752                                         classzone_idx) == COMPACT_CONTINUE)
1753                         return true;
1754         }
1755
1756         return false;
1757 }
1758
1759 static void kcompactd_do_work(pg_data_t *pgdat)
1760 {
1761         /*
1762          * With no special task, compact all zones so that a page of requested
1763          * order is allocatable.
1764          */
1765         int zoneid;
1766         struct zone *zone;
1767         struct compact_control cc = {
1768                 .order = pgdat->kcompactd_max_order,
1769                 .classzone_idx = pgdat->kcompactd_classzone_idx,
1770                 .mode = MIGRATE_SYNC_LIGHT,
1771                 .ignore_skip_hint = true,
1772
1773         };
1774         bool success = false;
1775
1776         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1777                                                         cc.classzone_idx);
1778         count_vm_event(KCOMPACTD_WAKE);
1779
1780         for (zoneid = 0; zoneid < cc.classzone_idx; zoneid++) {
1781                 int status;
1782
1783                 zone = &pgdat->node_zones[zoneid];
1784                 if (!populated_zone(zone))
1785                         continue;
1786
1787                 if (compaction_deferred(zone, cc.order))
1788                         continue;
1789
1790                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1791                                                         COMPACT_CONTINUE)
1792                         continue;
1793
1794                 cc.nr_freepages = 0;
1795                 cc.nr_migratepages = 0;
1796                 cc.zone = zone;
1797                 INIT_LIST_HEAD(&cc.freepages);
1798                 INIT_LIST_HEAD(&cc.migratepages);
1799
1800                 if (kthread_should_stop())
1801                         return;
1802                 status = compact_zone(zone, &cc);
1803
1804                 if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone),
1805                                                 cc.classzone_idx, 0)) {
1806                         success = true;
1807                         compaction_defer_reset(zone, cc.order, false);
1808                 } else if (status == COMPACT_COMPLETE) {
1809                         /*
1810                          * We use sync migration mode here, so we defer like
1811                          * sync direct compaction does.
1812                          */
1813                         defer_compaction(zone, cc.order);
1814                 }
1815
1816                 VM_BUG_ON(!list_empty(&cc.freepages));
1817                 VM_BUG_ON(!list_empty(&cc.migratepages));
1818         }
1819
1820         /*
1821          * Regardless of success, we are done until woken up next. But remember
1822          * the requested order/classzone_idx in case it was higher/tighter than
1823          * our current ones
1824          */
1825         if (pgdat->kcompactd_max_order <= cc.order)
1826                 pgdat->kcompactd_max_order = 0;
1827         if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1828                 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1829 }
1830
1831 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1832 {
1833         if (!order)
1834                 return;
1835
1836         if (pgdat->kcompactd_max_order < order)
1837                 pgdat->kcompactd_max_order = order;
1838
1839         if (pgdat->kcompactd_classzone_idx > classzone_idx)
1840                 pgdat->kcompactd_classzone_idx = classzone_idx;
1841
1842         if (!waitqueue_active(&pgdat->kcompactd_wait))
1843                 return;
1844
1845         if (!kcompactd_node_suitable(pgdat))
1846                 return;
1847
1848         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1849                                                         classzone_idx);
1850         wake_up_interruptible(&pgdat->kcompactd_wait);
1851 }
1852
1853 /*
1854  * The background compaction daemon, started as a kernel thread
1855  * from the init process.
1856  */
1857 static int kcompactd(void *p)
1858 {
1859         pg_data_t *pgdat = (pg_data_t*)p;
1860         struct task_struct *tsk = current;
1861
1862         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1863
1864         if (!cpumask_empty(cpumask))
1865                 set_cpus_allowed_ptr(tsk, cpumask);
1866
1867         set_freezable();
1868
1869         pgdat->kcompactd_max_order = 0;
1870         pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1871
1872         while (!kthread_should_stop()) {
1873                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
1874                 wait_event_freezable(pgdat->kcompactd_wait,
1875                                 kcompactd_work_requested(pgdat));
1876
1877                 kcompactd_do_work(pgdat);
1878         }
1879
1880         return 0;
1881 }
1882
1883 /*
1884  * This kcompactd start function will be called by init and node-hot-add.
1885  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
1886  */
1887 int kcompactd_run(int nid)
1888 {
1889         pg_data_t *pgdat = NODE_DATA(nid);
1890         int ret = 0;
1891
1892         if (pgdat->kcompactd)
1893                 return 0;
1894
1895         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
1896         if (IS_ERR(pgdat->kcompactd)) {
1897                 pr_err("Failed to start kcompactd on node %d\n", nid);
1898                 ret = PTR_ERR(pgdat->kcompactd);
1899                 pgdat->kcompactd = NULL;
1900         }
1901         return ret;
1902 }
1903
1904 /*
1905  * Called by memory hotplug when all memory in a node is offlined. Caller must
1906  * hold mem_hotplug_begin/end().
1907  */
1908 void kcompactd_stop(int nid)
1909 {
1910         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
1911
1912         if (kcompactd) {
1913                 kthread_stop(kcompactd);
1914                 NODE_DATA(nid)->kcompactd = NULL;
1915         }
1916 }
1917
1918 /*
1919  * It's optimal to keep kcompactd on the same CPUs as their memory, but
1920  * not required for correctness. So if the last cpu in a node goes
1921  * away, we get changed to run anywhere: as the first one comes back,
1922  * restore their cpu bindings.
1923  */
1924 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
1925                         void *hcpu)
1926 {
1927         int nid;
1928
1929         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1930                 for_each_node_state(nid, N_MEMORY) {
1931                         pg_data_t *pgdat = NODE_DATA(nid);
1932                         const struct cpumask *mask;
1933
1934                         mask = cpumask_of_node(pgdat->node_id);
1935
1936                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1937                                 /* One of our CPUs online: restore mask */
1938                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
1939                 }
1940         }
1941         return NOTIFY_OK;
1942 }
1943
1944 static int __init kcompactd_init(void)
1945 {
1946         int nid;
1947
1948         for_each_node_state(nid, N_MEMORY)
1949                 kcompactd_run(nid);
1950         hotcpu_notifier(cpu_callback, 0);
1951         return 0;
1952 }
1953 subsys_initcall(kcompactd_init)
1954
1955 #endif /* CONFIG_COMPACTION */