checkpatch: warn on bare unsigned or signed declarations without int
[cascardo/linux.git] / mm / compaction.c
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
21
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item)
24 {
25         count_vm_event(item);
26 }
27
28 static inline void count_compact_events(enum vm_event_item item, long delta)
29 {
30         count_vm_events(item, delta);
31 }
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
36
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/compaction.h>
41
42 static unsigned long release_freepages(struct list_head *freelist)
43 {
44         struct page *page, *next;
45         unsigned long high_pfn = 0;
46
47         list_for_each_entry_safe(page, next, freelist, lru) {
48                 unsigned long pfn = page_to_pfn(page);
49                 list_del(&page->lru);
50                 __free_page(page);
51                 if (pfn > high_pfn)
52                         high_pfn = pfn;
53         }
54
55         return high_pfn;
56 }
57
58 static void map_pages(struct list_head *list)
59 {
60         struct page *page;
61
62         list_for_each_entry(page, list, lru) {
63                 arch_alloc_page(page, 0);
64                 kernel_map_pages(page, 1, 1);
65                 kasan_alloc_pages(page, 0);
66         }
67 }
68
69 static inline bool migrate_async_suitable(int migratetype)
70 {
71         return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
72 }
73
74 #ifdef CONFIG_COMPACTION
75
76 /* Do not skip compaction more than 64 times */
77 #define COMPACT_MAX_DEFER_SHIFT 6
78
79 /*
80  * Compaction is deferred when compaction fails to result in a page
81  * allocation success. 1 << compact_defer_limit compactions are skipped up
82  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
83  */
84 void defer_compaction(struct zone *zone, int order)
85 {
86         zone->compact_considered = 0;
87         zone->compact_defer_shift++;
88
89         if (order < zone->compact_order_failed)
90                 zone->compact_order_failed = order;
91
92         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
93                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
94
95         trace_mm_compaction_defer_compaction(zone, order);
96 }
97
98 /* Returns true if compaction should be skipped this time */
99 bool compaction_deferred(struct zone *zone, int order)
100 {
101         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
102
103         if (order < zone->compact_order_failed)
104                 return false;
105
106         /* Avoid possible overflow */
107         if (++zone->compact_considered > defer_limit)
108                 zone->compact_considered = defer_limit;
109
110         if (zone->compact_considered >= defer_limit)
111                 return false;
112
113         trace_mm_compaction_deferred(zone, order);
114
115         return true;
116 }
117
118 /*
119  * Update defer tracking counters after successful compaction of given order,
120  * which means an allocation either succeeded (alloc_success == true) or is
121  * expected to succeed.
122  */
123 void compaction_defer_reset(struct zone *zone, int order,
124                 bool alloc_success)
125 {
126         if (alloc_success) {
127                 zone->compact_considered = 0;
128                 zone->compact_defer_shift = 0;
129         }
130         if (order >= zone->compact_order_failed)
131                 zone->compact_order_failed = order + 1;
132
133         trace_mm_compaction_defer_reset(zone, order);
134 }
135
136 /* Returns true if restarting compaction after many failures */
137 bool compaction_restarting(struct zone *zone, int order)
138 {
139         if (order < zone->compact_order_failed)
140                 return false;
141
142         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
143                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
144 }
145
146 /* Returns true if the pageblock should be scanned for pages to isolate. */
147 static inline bool isolation_suitable(struct compact_control *cc,
148                                         struct page *page)
149 {
150         if (cc->ignore_skip_hint)
151                 return true;
152
153         return !get_pageblock_skip(page);
154 }
155
156 static void reset_cached_positions(struct zone *zone)
157 {
158         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
159         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
160         zone->compact_cached_free_pfn =
161                         round_down(zone_end_pfn(zone) - 1, pageblock_nr_pages);
162 }
163
164 /*
165  * This function is called to clear all cached information on pageblocks that
166  * should be skipped for page isolation when the migrate and free page scanner
167  * meet.
168  */
169 static void __reset_isolation_suitable(struct zone *zone)
170 {
171         unsigned long start_pfn = zone->zone_start_pfn;
172         unsigned long end_pfn = zone_end_pfn(zone);
173         unsigned long pfn;
174
175         zone->compact_blockskip_flush = false;
176
177         /* Walk the zone and mark every pageblock as suitable for isolation */
178         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
179                 struct page *page;
180
181                 cond_resched();
182
183                 if (!pfn_valid(pfn))
184                         continue;
185
186                 page = pfn_to_page(pfn);
187                 if (zone != page_zone(page))
188                         continue;
189
190                 clear_pageblock_skip(page);
191         }
192
193         reset_cached_positions(zone);
194 }
195
196 void reset_isolation_suitable(pg_data_t *pgdat)
197 {
198         int zoneid;
199
200         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
201                 struct zone *zone = &pgdat->node_zones[zoneid];
202                 if (!populated_zone(zone))
203                         continue;
204
205                 /* Only flush if a full compaction finished recently */
206                 if (zone->compact_blockskip_flush)
207                         __reset_isolation_suitable(zone);
208         }
209 }
210
211 /*
212  * If no pages were isolated then mark this pageblock to be skipped in the
213  * future. The information is later cleared by __reset_isolation_suitable().
214  */
215 static void update_pageblock_skip(struct compact_control *cc,
216                         struct page *page, unsigned long nr_isolated,
217                         bool migrate_scanner)
218 {
219         struct zone *zone = cc->zone;
220         unsigned long pfn;
221
222         if (cc->ignore_skip_hint)
223                 return;
224
225         if (!page)
226                 return;
227
228         if (nr_isolated)
229                 return;
230
231         set_pageblock_skip(page);
232
233         pfn = page_to_pfn(page);
234
235         /* Update where async and sync compaction should restart */
236         if (migrate_scanner) {
237                 if (pfn > zone->compact_cached_migrate_pfn[0])
238                         zone->compact_cached_migrate_pfn[0] = pfn;
239                 if (cc->mode != MIGRATE_ASYNC &&
240                     pfn > zone->compact_cached_migrate_pfn[1])
241                         zone->compact_cached_migrate_pfn[1] = pfn;
242         } else {
243                 if (pfn < zone->compact_cached_free_pfn)
244                         zone->compact_cached_free_pfn = pfn;
245         }
246 }
247 #else
248 static inline bool isolation_suitable(struct compact_control *cc,
249                                         struct page *page)
250 {
251         return true;
252 }
253
254 static void update_pageblock_skip(struct compact_control *cc,
255                         struct page *page, unsigned long nr_isolated,
256                         bool migrate_scanner)
257 {
258 }
259 #endif /* CONFIG_COMPACTION */
260
261 /*
262  * Compaction requires the taking of some coarse locks that are potentially
263  * very heavily contended. For async compaction, back out if the lock cannot
264  * be taken immediately. For sync compaction, spin on the lock if needed.
265  *
266  * Returns true if the lock is held
267  * Returns false if the lock is not held and compaction should abort
268  */
269 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
270                                                 struct compact_control *cc)
271 {
272         if (cc->mode == MIGRATE_ASYNC) {
273                 if (!spin_trylock_irqsave(lock, *flags)) {
274                         cc->contended = COMPACT_CONTENDED_LOCK;
275                         return false;
276                 }
277         } else {
278                 spin_lock_irqsave(lock, *flags);
279         }
280
281         return true;
282 }
283
284 /*
285  * Compaction requires the taking of some coarse locks that are potentially
286  * very heavily contended. The lock should be periodically unlocked to avoid
287  * having disabled IRQs for a long time, even when there is nobody waiting on
288  * the lock. It might also be that allowing the IRQs will result in
289  * need_resched() becoming true. If scheduling is needed, async compaction
290  * aborts. Sync compaction schedules.
291  * Either compaction type will also abort if a fatal signal is pending.
292  * In either case if the lock was locked, it is dropped and not regained.
293  *
294  * Returns true if compaction should abort due to fatal signal pending, or
295  *              async compaction due to need_resched()
296  * Returns false when compaction can continue (sync compaction might have
297  *              scheduled)
298  */
299 static bool compact_unlock_should_abort(spinlock_t *lock,
300                 unsigned long flags, bool *locked, struct compact_control *cc)
301 {
302         if (*locked) {
303                 spin_unlock_irqrestore(lock, flags);
304                 *locked = false;
305         }
306
307         if (fatal_signal_pending(current)) {
308                 cc->contended = COMPACT_CONTENDED_SCHED;
309                 return true;
310         }
311
312         if (need_resched()) {
313                 if (cc->mode == MIGRATE_ASYNC) {
314                         cc->contended = COMPACT_CONTENDED_SCHED;
315                         return true;
316                 }
317                 cond_resched();
318         }
319
320         return false;
321 }
322
323 /*
324  * Aside from avoiding lock contention, compaction also periodically checks
325  * need_resched() and either schedules in sync compaction or aborts async
326  * compaction. This is similar to what compact_unlock_should_abort() does, but
327  * is used where no lock is concerned.
328  *
329  * Returns false when no scheduling was needed, or sync compaction scheduled.
330  * Returns true when async compaction should abort.
331  */
332 static inline bool compact_should_abort(struct compact_control *cc)
333 {
334         /* async compaction aborts if contended */
335         if (need_resched()) {
336                 if (cc->mode == MIGRATE_ASYNC) {
337                         cc->contended = COMPACT_CONTENDED_SCHED;
338                         return true;
339                 }
340
341                 cond_resched();
342         }
343
344         return false;
345 }
346
347 /*
348  * Isolate free pages onto a private freelist. If @strict is true, will abort
349  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
350  * (even though it may still end up isolating some pages).
351  */
352 static unsigned long isolate_freepages_block(struct compact_control *cc,
353                                 unsigned long *start_pfn,
354                                 unsigned long end_pfn,
355                                 struct list_head *freelist,
356                                 bool strict)
357 {
358         int nr_scanned = 0, total_isolated = 0;
359         struct page *cursor, *valid_page = NULL;
360         unsigned long flags = 0;
361         bool locked = false;
362         unsigned long blockpfn = *start_pfn;
363
364         cursor = pfn_to_page(blockpfn);
365
366         /* Isolate free pages. */
367         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
368                 int isolated, i;
369                 struct page *page = cursor;
370
371                 /*
372                  * Periodically drop the lock (if held) regardless of its
373                  * contention, to give chance to IRQs. Abort if fatal signal
374                  * pending or async compaction detects need_resched()
375                  */
376                 if (!(blockpfn % SWAP_CLUSTER_MAX)
377                     && compact_unlock_should_abort(&cc->zone->lock, flags,
378                                                                 &locked, cc))
379                         break;
380
381                 nr_scanned++;
382                 if (!pfn_valid_within(blockpfn))
383                         goto isolate_fail;
384
385                 if (!valid_page)
386                         valid_page = page;
387
388                 /*
389                  * For compound pages such as THP and hugetlbfs, we can save
390                  * potentially a lot of iterations if we skip them at once.
391                  * The check is racy, but we can consider only valid values
392                  * and the only danger is skipping too much.
393                  */
394                 if (PageCompound(page)) {
395                         unsigned int comp_order = compound_order(page);
396
397                         if (likely(comp_order < MAX_ORDER)) {
398                                 blockpfn += (1UL << comp_order) - 1;
399                                 cursor += (1UL << comp_order) - 1;
400                         }
401
402                         goto isolate_fail;
403                 }
404
405                 if (!PageBuddy(page))
406                         goto isolate_fail;
407
408                 /*
409                  * If we already hold the lock, we can skip some rechecking.
410                  * Note that if we hold the lock now, checked_pageblock was
411                  * already set in some previous iteration (or strict is true),
412                  * so it is correct to skip the suitable migration target
413                  * recheck as well.
414                  */
415                 if (!locked) {
416                         /*
417                          * The zone lock must be held to isolate freepages.
418                          * Unfortunately this is a very coarse lock and can be
419                          * heavily contended if there are parallel allocations
420                          * or parallel compactions. For async compaction do not
421                          * spin on the lock and we acquire the lock as late as
422                          * possible.
423                          */
424                         locked = compact_trylock_irqsave(&cc->zone->lock,
425                                                                 &flags, cc);
426                         if (!locked)
427                                 break;
428
429                         /* Recheck this is a buddy page under lock */
430                         if (!PageBuddy(page))
431                                 goto isolate_fail;
432                 }
433
434                 /* Found a free page, break it into order-0 pages */
435                 isolated = split_free_page(page);
436                 total_isolated += isolated;
437                 for (i = 0; i < isolated; i++) {
438                         list_add(&page->lru, freelist);
439                         page++;
440                 }
441
442                 /* If a page was split, advance to the end of it */
443                 if (isolated) {
444                         cc->nr_freepages += isolated;
445                         if (!strict &&
446                                 cc->nr_migratepages <= cc->nr_freepages) {
447                                 blockpfn += isolated;
448                                 break;
449                         }
450
451                         blockpfn += isolated - 1;
452                         cursor += isolated - 1;
453                         continue;
454                 }
455
456 isolate_fail:
457                 if (strict)
458                         break;
459                 else
460                         continue;
461
462         }
463
464         /*
465          * There is a tiny chance that we have read bogus compound_order(),
466          * so be careful to not go outside of the pageblock.
467          */
468         if (unlikely(blockpfn > end_pfn))
469                 blockpfn = end_pfn;
470
471         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
472                                         nr_scanned, total_isolated);
473
474         /* Record how far we have got within the block */
475         *start_pfn = blockpfn;
476
477         /*
478          * If strict isolation is requested by CMA then check that all the
479          * pages requested were isolated. If there were any failures, 0 is
480          * returned and CMA will fail.
481          */
482         if (strict && blockpfn < end_pfn)
483                 total_isolated = 0;
484
485         if (locked)
486                 spin_unlock_irqrestore(&cc->zone->lock, flags);
487
488         /* Update the pageblock-skip if the whole pageblock was scanned */
489         if (blockpfn == end_pfn)
490                 update_pageblock_skip(cc, valid_page, total_isolated, false);
491
492         count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
493         if (total_isolated)
494                 count_compact_events(COMPACTISOLATED, total_isolated);
495         return total_isolated;
496 }
497
498 /**
499  * isolate_freepages_range() - isolate free pages.
500  * @start_pfn: The first PFN to start isolating.
501  * @end_pfn:   The one-past-last PFN.
502  *
503  * Non-free pages, invalid PFNs, or zone boundaries within the
504  * [start_pfn, end_pfn) range are considered errors, cause function to
505  * undo its actions and return zero.
506  *
507  * Otherwise, function returns one-past-the-last PFN of isolated page
508  * (which may be greater then end_pfn if end fell in a middle of
509  * a free page).
510  */
511 unsigned long
512 isolate_freepages_range(struct compact_control *cc,
513                         unsigned long start_pfn, unsigned long end_pfn)
514 {
515         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
516         LIST_HEAD(freelist);
517
518         pfn = start_pfn;
519         block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
520         if (block_start_pfn < cc->zone->zone_start_pfn)
521                 block_start_pfn = cc->zone->zone_start_pfn;
522         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
523
524         for (; pfn < end_pfn; pfn += isolated,
525                                 block_start_pfn = block_end_pfn,
526                                 block_end_pfn += pageblock_nr_pages) {
527                 /* Protect pfn from changing by isolate_freepages_block */
528                 unsigned long isolate_start_pfn = pfn;
529
530                 block_end_pfn = min(block_end_pfn, end_pfn);
531
532                 /*
533                  * pfn could pass the block_end_pfn if isolated freepage
534                  * is more than pageblock order. In this case, we adjust
535                  * scanning range to right one.
536                  */
537                 if (pfn >= block_end_pfn) {
538                         block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
539                         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
540                         block_end_pfn = min(block_end_pfn, end_pfn);
541                 }
542
543                 if (!pageblock_pfn_to_page(block_start_pfn,
544                                         block_end_pfn, cc->zone))
545                         break;
546
547                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
548                                                 block_end_pfn, &freelist, true);
549
550                 /*
551                  * In strict mode, isolate_freepages_block() returns 0 if
552                  * there are any holes in the block (ie. invalid PFNs or
553                  * non-free pages).
554                  */
555                 if (!isolated)
556                         break;
557
558                 /*
559                  * If we managed to isolate pages, it is always (1 << n) *
560                  * pageblock_nr_pages for some non-negative n.  (Max order
561                  * page may span two pageblocks).
562                  */
563         }
564
565         /* split_free_page does not map the pages */
566         map_pages(&freelist);
567
568         if (pfn < end_pfn) {
569                 /* Loop terminated early, cleanup. */
570                 release_freepages(&freelist);
571                 return 0;
572         }
573
574         /* We don't use freelists for anything. */
575         return pfn;
576 }
577
578 /* Update the number of anon and file isolated pages in the zone */
579 static void acct_isolated(struct zone *zone, struct compact_control *cc)
580 {
581         struct page *page;
582         unsigned int count[2] = { 0, };
583
584         if (list_empty(&cc->migratepages))
585                 return;
586
587         list_for_each_entry(page, &cc->migratepages, lru)
588                 count[!!page_is_file_cache(page)]++;
589
590         mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
591         mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
592 }
593
594 /* Similar to reclaim, but different enough that they don't share logic */
595 static bool too_many_isolated(struct zone *zone)
596 {
597         unsigned long active, inactive, isolated;
598
599         inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
600                                         zone_page_state(zone, NR_INACTIVE_ANON);
601         active = zone_page_state(zone, NR_ACTIVE_FILE) +
602                                         zone_page_state(zone, NR_ACTIVE_ANON);
603         isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
604                                         zone_page_state(zone, NR_ISOLATED_ANON);
605
606         return isolated > (inactive + active) / 2;
607 }
608
609 /**
610  * isolate_migratepages_block() - isolate all migrate-able pages within
611  *                                a single pageblock
612  * @cc:         Compaction control structure.
613  * @low_pfn:    The first PFN to isolate
614  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
615  * @isolate_mode: Isolation mode to be used.
616  *
617  * Isolate all pages that can be migrated from the range specified by
618  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
619  * Returns zero if there is a fatal signal pending, otherwise PFN of the
620  * first page that was not scanned (which may be both less, equal to or more
621  * than end_pfn).
622  *
623  * The pages are isolated on cc->migratepages list (not required to be empty),
624  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
625  * is neither read nor updated.
626  */
627 static unsigned long
628 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
629                         unsigned long end_pfn, isolate_mode_t isolate_mode)
630 {
631         struct zone *zone = cc->zone;
632         unsigned long nr_scanned = 0, nr_isolated = 0;
633         struct list_head *migratelist = &cc->migratepages;
634         struct lruvec *lruvec;
635         unsigned long flags = 0;
636         bool locked = false;
637         struct page *page = NULL, *valid_page = NULL;
638         unsigned long start_pfn = low_pfn;
639
640         /*
641          * Ensure that there are not too many pages isolated from the LRU
642          * list by either parallel reclaimers or compaction. If there are,
643          * delay for some time until fewer pages are isolated
644          */
645         while (unlikely(too_many_isolated(zone))) {
646                 /* async migration should just abort */
647                 if (cc->mode == MIGRATE_ASYNC)
648                         return 0;
649
650                 congestion_wait(BLK_RW_ASYNC, HZ/10);
651
652                 if (fatal_signal_pending(current))
653                         return 0;
654         }
655
656         if (compact_should_abort(cc))
657                 return 0;
658
659         /* Time to isolate some pages for migration */
660         for (; low_pfn < end_pfn; low_pfn++) {
661                 bool is_lru;
662
663                 /*
664                  * Periodically drop the lock (if held) regardless of its
665                  * contention, to give chance to IRQs. Abort async compaction
666                  * if contended.
667                  */
668                 if (!(low_pfn % SWAP_CLUSTER_MAX)
669                     && compact_unlock_should_abort(&zone->lru_lock, flags,
670                                                                 &locked, cc))
671                         break;
672
673                 if (!pfn_valid_within(low_pfn))
674                         continue;
675                 nr_scanned++;
676
677                 page = pfn_to_page(low_pfn);
678
679                 if (!valid_page)
680                         valid_page = page;
681
682                 /*
683                  * Skip if free. We read page order here without zone lock
684                  * which is generally unsafe, but the race window is small and
685                  * the worst thing that can happen is that we skip some
686                  * potential isolation targets.
687                  */
688                 if (PageBuddy(page)) {
689                         unsigned long freepage_order = page_order_unsafe(page);
690
691                         /*
692                          * Without lock, we cannot be sure that what we got is
693                          * a valid page order. Consider only values in the
694                          * valid order range to prevent low_pfn overflow.
695                          */
696                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
697                                 low_pfn += (1UL << freepage_order) - 1;
698                         continue;
699                 }
700
701                 /*
702                  * Check may be lockless but that's ok as we recheck later.
703                  * It's possible to migrate LRU pages and balloon pages
704                  * Skip any other type of page
705                  */
706                 is_lru = PageLRU(page);
707                 if (!is_lru) {
708                         if (unlikely(balloon_page_movable(page))) {
709                                 if (balloon_page_isolate(page)) {
710                                         /* Successfully isolated */
711                                         goto isolate_success;
712                                 }
713                         }
714                 }
715
716                 /*
717                  * Regardless of being on LRU, compound pages such as THP and
718                  * hugetlbfs are not to be compacted. We can potentially save
719                  * a lot of iterations if we skip them at once. The check is
720                  * racy, but we can consider only valid values and the only
721                  * danger is skipping too much.
722                  */
723                 if (PageCompound(page)) {
724                         unsigned int comp_order = compound_order(page);
725
726                         if (likely(comp_order < MAX_ORDER))
727                                 low_pfn += (1UL << comp_order) - 1;
728
729                         continue;
730                 }
731
732                 if (!is_lru)
733                         continue;
734
735                 /*
736                  * Migration will fail if an anonymous page is pinned in memory,
737                  * so avoid taking lru_lock and isolating it unnecessarily in an
738                  * admittedly racy check.
739                  */
740                 if (!page_mapping(page) &&
741                     page_count(page) > page_mapcount(page))
742                         continue;
743
744                 /* If we already hold the lock, we can skip some rechecking */
745                 if (!locked) {
746                         locked = compact_trylock_irqsave(&zone->lru_lock,
747                                                                 &flags, cc);
748                         if (!locked)
749                                 break;
750
751                         /* Recheck PageLRU and PageCompound under lock */
752                         if (!PageLRU(page))
753                                 continue;
754
755                         /*
756                          * Page become compound since the non-locked check,
757                          * and it's on LRU. It can only be a THP so the order
758                          * is safe to read and it's 0 for tail pages.
759                          */
760                         if (unlikely(PageCompound(page))) {
761                                 low_pfn += (1UL << compound_order(page)) - 1;
762                                 continue;
763                         }
764                 }
765
766                 lruvec = mem_cgroup_page_lruvec(page, zone);
767
768                 /* Try isolate the page */
769                 if (__isolate_lru_page(page, isolate_mode) != 0)
770                         continue;
771
772                 VM_BUG_ON_PAGE(PageCompound(page), page);
773
774                 /* Successfully isolated */
775                 del_page_from_lru_list(page, lruvec, page_lru(page));
776
777 isolate_success:
778                 list_add(&page->lru, migratelist);
779                 cc->nr_migratepages++;
780                 nr_isolated++;
781
782                 /* Avoid isolating too much */
783                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
784                         ++low_pfn;
785                         break;
786                 }
787         }
788
789         /*
790          * The PageBuddy() check could have potentially brought us outside
791          * the range to be scanned.
792          */
793         if (unlikely(low_pfn > end_pfn))
794                 low_pfn = end_pfn;
795
796         if (locked)
797                 spin_unlock_irqrestore(&zone->lru_lock, flags);
798
799         /*
800          * Update the pageblock-skip information and cached scanner pfn,
801          * if the whole pageblock was scanned without isolating any page.
802          */
803         if (low_pfn == end_pfn)
804                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
805
806         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
807                                                 nr_scanned, nr_isolated);
808
809         count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
810         if (nr_isolated)
811                 count_compact_events(COMPACTISOLATED, nr_isolated);
812
813         return low_pfn;
814 }
815
816 /**
817  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
818  * @cc:        Compaction control structure.
819  * @start_pfn: The first PFN to start isolating.
820  * @end_pfn:   The one-past-last PFN.
821  *
822  * Returns zero if isolation fails fatally due to e.g. pending signal.
823  * Otherwise, function returns one-past-the-last PFN of isolated page
824  * (which may be greater than end_pfn if end fell in a middle of a THP page).
825  */
826 unsigned long
827 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
828                                                         unsigned long end_pfn)
829 {
830         unsigned long pfn, block_start_pfn, block_end_pfn;
831
832         /* Scan block by block. First and last block may be incomplete */
833         pfn = start_pfn;
834         block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
835         if (block_start_pfn < cc->zone->zone_start_pfn)
836                 block_start_pfn = cc->zone->zone_start_pfn;
837         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
838
839         for (; pfn < end_pfn; pfn = block_end_pfn,
840                                 block_start_pfn = block_end_pfn,
841                                 block_end_pfn += pageblock_nr_pages) {
842
843                 block_end_pfn = min(block_end_pfn, end_pfn);
844
845                 if (!pageblock_pfn_to_page(block_start_pfn,
846                                         block_end_pfn, cc->zone))
847                         continue;
848
849                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
850                                                         ISOLATE_UNEVICTABLE);
851
852                 /*
853                  * In case of fatal failure, release everything that might
854                  * have been isolated in the previous iteration, and signal
855                  * the failure back to caller.
856                  */
857                 if (!pfn) {
858                         putback_movable_pages(&cc->migratepages);
859                         cc->nr_migratepages = 0;
860                         break;
861                 }
862
863                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
864                         break;
865         }
866         acct_isolated(cc->zone, cc);
867
868         return pfn;
869 }
870
871 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
872 #ifdef CONFIG_COMPACTION
873
874 /* Returns true if the page is within a block suitable for migration to */
875 static bool suitable_migration_target(struct page *page)
876 {
877         /* If the page is a large free page, then disallow migration */
878         if (PageBuddy(page)) {
879                 /*
880                  * We are checking page_order without zone->lock taken. But
881                  * the only small danger is that we skip a potentially suitable
882                  * pageblock, so it's not worth to check order for valid range.
883                  */
884                 if (page_order_unsafe(page) >= pageblock_order)
885                         return false;
886         }
887
888         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
889         if (migrate_async_suitable(get_pageblock_migratetype(page)))
890                 return true;
891
892         /* Otherwise skip the block */
893         return false;
894 }
895
896 /*
897  * Test whether the free scanner has reached the same or lower pageblock than
898  * the migration scanner, and compaction should thus terminate.
899  */
900 static inline bool compact_scanners_met(struct compact_control *cc)
901 {
902         return (cc->free_pfn >> pageblock_order)
903                 <= (cc->migrate_pfn >> pageblock_order);
904 }
905
906 /*
907  * Based on information in the current compact_control, find blocks
908  * suitable for isolating free pages from and then isolate them.
909  */
910 static void isolate_freepages(struct compact_control *cc)
911 {
912         struct zone *zone = cc->zone;
913         struct page *page;
914         unsigned long block_start_pfn;  /* start of current pageblock */
915         unsigned long isolate_start_pfn; /* exact pfn we start at */
916         unsigned long block_end_pfn;    /* end of current pageblock */
917         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
918         struct list_head *freelist = &cc->freepages;
919
920         /*
921          * Initialise the free scanner. The starting point is where we last
922          * successfully isolated from, zone-cached value, or the end of the
923          * zone when isolating for the first time. For looping we also need
924          * this pfn aligned down to the pageblock boundary, because we do
925          * block_start_pfn -= pageblock_nr_pages in the for loop.
926          * For ending point, take care when isolating in last pageblock of a
927          * a zone which ends in the middle of a pageblock.
928          * The low boundary is the end of the pageblock the migration scanner
929          * is using.
930          */
931         isolate_start_pfn = cc->free_pfn;
932         block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
933         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
934                                                 zone_end_pfn(zone));
935         low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
936
937         /*
938          * Isolate free pages until enough are available to migrate the
939          * pages on cc->migratepages. We stop searching if the migrate
940          * and free page scanners meet or enough free pages are isolated.
941          */
942         for (; block_start_pfn >= low_pfn;
943                                 block_end_pfn = block_start_pfn,
944                                 block_start_pfn -= pageblock_nr_pages,
945                                 isolate_start_pfn = block_start_pfn) {
946
947                 /*
948                  * This can iterate a massively long zone without finding any
949                  * suitable migration targets, so periodically check if we need
950                  * to schedule, or even abort async compaction.
951                  */
952                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
953                                                 && compact_should_abort(cc))
954                         break;
955
956                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
957                                                                         zone);
958                 if (!page)
959                         continue;
960
961                 /* Check the block is suitable for migration */
962                 if (!suitable_migration_target(page))
963                         continue;
964
965                 /* If isolation recently failed, do not retry */
966                 if (!isolation_suitable(cc, page))
967                         continue;
968
969                 /* Found a block suitable for isolating free pages from. */
970                 isolate_freepages_block(cc, &isolate_start_pfn,
971                                         block_end_pfn, freelist, false);
972
973                 /*
974                  * If we isolated enough freepages, or aborted due to async
975                  * compaction being contended, terminate the loop.
976                  * Remember where the free scanner should restart next time,
977                  * which is where isolate_freepages_block() left off.
978                  * But if it scanned the whole pageblock, isolate_start_pfn
979                  * now points at block_end_pfn, which is the start of the next
980                  * pageblock.
981                  * In that case we will however want to restart at the start
982                  * of the previous pageblock.
983                  */
984                 if ((cc->nr_freepages >= cc->nr_migratepages)
985                                                         || cc->contended) {
986                         if (isolate_start_pfn >= block_end_pfn)
987                                 isolate_start_pfn =
988                                         block_start_pfn - pageblock_nr_pages;
989                         break;
990                 } else {
991                         /*
992                          * isolate_freepages_block() should not terminate
993                          * prematurely unless contended, or isolated enough
994                          */
995                         VM_BUG_ON(isolate_start_pfn < block_end_pfn);
996                 }
997         }
998
999         /* split_free_page does not map the pages */
1000         map_pages(freelist);
1001
1002         /*
1003          * Record where the free scanner will restart next time. Either we
1004          * broke from the loop and set isolate_start_pfn based on the last
1005          * call to isolate_freepages_block(), or we met the migration scanner
1006          * and the loop terminated due to isolate_start_pfn < low_pfn
1007          */
1008         cc->free_pfn = isolate_start_pfn;
1009 }
1010
1011 /*
1012  * This is a migrate-callback that "allocates" freepages by taking pages
1013  * from the isolated freelists in the block we are migrating to.
1014  */
1015 static struct page *compaction_alloc(struct page *migratepage,
1016                                         unsigned long data,
1017                                         int **result)
1018 {
1019         struct compact_control *cc = (struct compact_control *)data;
1020         struct page *freepage;
1021
1022         /*
1023          * Isolate free pages if necessary, and if we are not aborting due to
1024          * contention.
1025          */
1026         if (list_empty(&cc->freepages)) {
1027                 if (!cc->contended)
1028                         isolate_freepages(cc);
1029
1030                 if (list_empty(&cc->freepages))
1031                         return NULL;
1032         }
1033
1034         freepage = list_entry(cc->freepages.next, struct page, lru);
1035         list_del(&freepage->lru);
1036         cc->nr_freepages--;
1037
1038         return freepage;
1039 }
1040
1041 /*
1042  * This is a migrate-callback that "frees" freepages back to the isolated
1043  * freelist.  All pages on the freelist are from the same zone, so there is no
1044  * special handling needed for NUMA.
1045  */
1046 static void compaction_free(struct page *page, unsigned long data)
1047 {
1048         struct compact_control *cc = (struct compact_control *)data;
1049
1050         list_add(&page->lru, &cc->freepages);
1051         cc->nr_freepages++;
1052 }
1053
1054 /* possible outcome of isolate_migratepages */
1055 typedef enum {
1056         ISOLATE_ABORT,          /* Abort compaction now */
1057         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1058         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1059 } isolate_migrate_t;
1060
1061 /*
1062  * Allow userspace to control policy on scanning the unevictable LRU for
1063  * compactable pages.
1064  */
1065 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1066
1067 /*
1068  * Isolate all pages that can be migrated from the first suitable block,
1069  * starting at the block pointed to by the migrate scanner pfn within
1070  * compact_control.
1071  */
1072 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1073                                         struct compact_control *cc)
1074 {
1075         unsigned long block_start_pfn;
1076         unsigned long block_end_pfn;
1077         unsigned long low_pfn;
1078         unsigned long isolate_start_pfn;
1079         struct page *page;
1080         const isolate_mode_t isolate_mode =
1081                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1082                 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1083
1084         /*
1085          * Start at where we last stopped, or beginning of the zone as
1086          * initialized by compact_zone()
1087          */
1088         low_pfn = cc->migrate_pfn;
1089         block_start_pfn = cc->migrate_pfn & ~(pageblock_nr_pages - 1);
1090         if (block_start_pfn < zone->zone_start_pfn)
1091                 block_start_pfn = zone->zone_start_pfn;
1092
1093         /* Only scan within a pageblock boundary */
1094         block_end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1095
1096         /*
1097          * Iterate over whole pageblocks until we find the first suitable.
1098          * Do not cross the free scanner.
1099          */
1100         for (; block_end_pfn <= cc->free_pfn;
1101                         low_pfn = block_end_pfn,
1102                         block_start_pfn = block_end_pfn,
1103                         block_end_pfn += pageblock_nr_pages) {
1104
1105                 /*
1106                  * This can potentially iterate a massively long zone with
1107                  * many pageblocks unsuitable, so periodically check if we
1108                  * need to schedule, or even abort async compaction.
1109                  */
1110                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1111                                                 && compact_should_abort(cc))
1112                         break;
1113
1114                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1115                                                                         zone);
1116                 if (!page)
1117                         continue;
1118
1119                 /* If isolation recently failed, do not retry */
1120                 if (!isolation_suitable(cc, page))
1121                         continue;
1122
1123                 /*
1124                  * For async compaction, also only scan in MOVABLE blocks.
1125                  * Async compaction is optimistic to see if the minimum amount
1126                  * of work satisfies the allocation.
1127                  */
1128                 if (cc->mode == MIGRATE_ASYNC &&
1129                     !migrate_async_suitable(get_pageblock_migratetype(page)))
1130                         continue;
1131
1132                 /* Perform the isolation */
1133                 isolate_start_pfn = low_pfn;
1134                 low_pfn = isolate_migratepages_block(cc, low_pfn,
1135                                                 block_end_pfn, isolate_mode);
1136
1137                 if (!low_pfn || cc->contended) {
1138                         acct_isolated(zone, cc);
1139                         return ISOLATE_ABORT;
1140                 }
1141
1142                 /*
1143                  * Record where we could have freed pages by migration and not
1144                  * yet flushed them to buddy allocator.
1145                  * - this is the lowest page that could have been isolated and
1146                  * then freed by migration.
1147                  */
1148                 if (cc->nr_migratepages && !cc->last_migrated_pfn)
1149                         cc->last_migrated_pfn = isolate_start_pfn;
1150
1151                 /*
1152                  * Either we isolated something and proceed with migration. Or
1153                  * we failed and compact_zone should decide if we should
1154                  * continue or not.
1155                  */
1156                 break;
1157         }
1158
1159         acct_isolated(zone, cc);
1160         /* Record where migration scanner will be restarted. */
1161         cc->migrate_pfn = low_pfn;
1162
1163         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1164 }
1165
1166 /*
1167  * order == -1 is expected when compacting via
1168  * /proc/sys/vm/compact_memory
1169  */
1170 static inline bool is_via_compact_memory(int order)
1171 {
1172         return order == -1;
1173 }
1174
1175 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1176                             const int migratetype)
1177 {
1178         unsigned int order;
1179         unsigned long watermark;
1180
1181         if (cc->contended || fatal_signal_pending(current))
1182                 return COMPACT_CONTENDED;
1183
1184         /* Compaction run completes if the migrate and free scanner meet */
1185         if (compact_scanners_met(cc)) {
1186                 /* Let the next compaction start anew. */
1187                 reset_cached_positions(zone);
1188
1189                 /*
1190                  * Mark that the PG_migrate_skip information should be cleared
1191                  * by kswapd when it goes to sleep. kswapd does not set the
1192                  * flag itself as the decision to be clear should be directly
1193                  * based on an allocation request.
1194                  */
1195                 if (!current_is_kswapd())
1196                         zone->compact_blockskip_flush = true;
1197
1198                 return COMPACT_COMPLETE;
1199         }
1200
1201         if (is_via_compact_memory(cc->order))
1202                 return COMPACT_CONTINUE;
1203
1204         /* Compaction run is not finished if the watermark is not met */
1205         watermark = low_wmark_pages(zone);
1206
1207         if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1208                                                         cc->alloc_flags))
1209                 return COMPACT_CONTINUE;
1210
1211         /* Direct compactor: Is a suitable page free? */
1212         for (order = cc->order; order < MAX_ORDER; order++) {
1213                 struct free_area *area = &zone->free_area[order];
1214                 bool can_steal;
1215
1216                 /* Job done if page is free of the right migratetype */
1217                 if (!list_empty(&area->free_list[migratetype]))
1218                         return COMPACT_PARTIAL;
1219
1220 #ifdef CONFIG_CMA
1221                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1222                 if (migratetype == MIGRATE_MOVABLE &&
1223                         !list_empty(&area->free_list[MIGRATE_CMA]))
1224                         return COMPACT_PARTIAL;
1225 #endif
1226                 /*
1227                  * Job done if allocation would steal freepages from
1228                  * other migratetype buddy lists.
1229                  */
1230                 if (find_suitable_fallback(area, order, migratetype,
1231                                                 true, &can_steal) != -1)
1232                         return COMPACT_PARTIAL;
1233         }
1234
1235         return COMPACT_NO_SUITABLE_PAGE;
1236 }
1237
1238 static int compact_finished(struct zone *zone, struct compact_control *cc,
1239                             const int migratetype)
1240 {
1241         int ret;
1242
1243         ret = __compact_finished(zone, cc, migratetype);
1244         trace_mm_compaction_finished(zone, cc->order, ret);
1245         if (ret == COMPACT_NO_SUITABLE_PAGE)
1246                 ret = COMPACT_CONTINUE;
1247
1248         return ret;
1249 }
1250
1251 /*
1252  * compaction_suitable: Is this suitable to run compaction on this zone now?
1253  * Returns
1254  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1255  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1256  *   COMPACT_CONTINUE - If compaction should run now
1257  */
1258 static unsigned long __compaction_suitable(struct zone *zone, int order,
1259                                         int alloc_flags, int classzone_idx)
1260 {
1261         int fragindex;
1262         unsigned long watermark;
1263
1264         if (is_via_compact_memory(order))
1265                 return COMPACT_CONTINUE;
1266
1267         watermark = low_wmark_pages(zone);
1268         /*
1269          * If watermarks for high-order allocation are already met, there
1270          * should be no need for compaction at all.
1271          */
1272         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1273                                                                 alloc_flags))
1274                 return COMPACT_PARTIAL;
1275
1276         /*
1277          * Watermarks for order-0 must be met for compaction. Note the 2UL.
1278          * This is because during migration, copies of pages need to be
1279          * allocated and for a short time, the footprint is higher
1280          */
1281         watermark += (2UL << order);
1282         if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1283                 return COMPACT_SKIPPED;
1284
1285         /*
1286          * fragmentation index determines if allocation failures are due to
1287          * low memory or external fragmentation
1288          *
1289          * index of -1000 would imply allocations might succeed depending on
1290          * watermarks, but we already failed the high-order watermark check
1291          * index towards 0 implies failure is due to lack of memory
1292          * index towards 1000 implies failure is due to fragmentation
1293          *
1294          * Only compact if a failure would be due to fragmentation.
1295          */
1296         fragindex = fragmentation_index(zone, order);
1297         if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1298                 return COMPACT_NOT_SUITABLE_ZONE;
1299
1300         return COMPACT_CONTINUE;
1301 }
1302
1303 unsigned long compaction_suitable(struct zone *zone, int order,
1304                                         int alloc_flags, int classzone_idx)
1305 {
1306         unsigned long ret;
1307
1308         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1309         trace_mm_compaction_suitable(zone, order, ret);
1310         if (ret == COMPACT_NOT_SUITABLE_ZONE)
1311                 ret = COMPACT_SKIPPED;
1312
1313         return ret;
1314 }
1315
1316 static int compact_zone(struct zone *zone, struct compact_control *cc)
1317 {
1318         int ret;
1319         unsigned long start_pfn = zone->zone_start_pfn;
1320         unsigned long end_pfn = zone_end_pfn(zone);
1321         const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1322         const bool sync = cc->mode != MIGRATE_ASYNC;
1323
1324         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1325                                                         cc->classzone_idx);
1326         switch (ret) {
1327         case COMPACT_PARTIAL:
1328         case COMPACT_SKIPPED:
1329                 /* Compaction is likely to fail */
1330                 return ret;
1331         case COMPACT_CONTINUE:
1332                 /* Fall through to compaction */
1333                 ;
1334         }
1335
1336         /*
1337          * Clear pageblock skip if there were failures recently and compaction
1338          * is about to be retried after being deferred. kswapd does not do
1339          * this reset as it'll reset the cached information when going to sleep.
1340          */
1341         if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1342                 __reset_isolation_suitable(zone);
1343
1344         /*
1345          * Setup to move all movable pages to the end of the zone. Used cached
1346          * information on where the scanners should start but check that it
1347          * is initialised by ensuring the values are within zone boundaries.
1348          */
1349         cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1350         cc->free_pfn = zone->compact_cached_free_pfn;
1351         if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1352                 cc->free_pfn = round_down(end_pfn - 1, pageblock_nr_pages);
1353                 zone->compact_cached_free_pfn = cc->free_pfn;
1354         }
1355         if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1356                 cc->migrate_pfn = start_pfn;
1357                 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1358                 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1359         }
1360         cc->last_migrated_pfn = 0;
1361
1362         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1363                                 cc->free_pfn, end_pfn, sync);
1364
1365         migrate_prep_local();
1366
1367         while ((ret = compact_finished(zone, cc, migratetype)) ==
1368                                                 COMPACT_CONTINUE) {
1369                 int err;
1370
1371                 switch (isolate_migratepages(zone, cc)) {
1372                 case ISOLATE_ABORT:
1373                         ret = COMPACT_CONTENDED;
1374                         putback_movable_pages(&cc->migratepages);
1375                         cc->nr_migratepages = 0;
1376                         goto out;
1377                 case ISOLATE_NONE:
1378                         /*
1379                          * We haven't isolated and migrated anything, but
1380                          * there might still be unflushed migrations from
1381                          * previous cc->order aligned block.
1382                          */
1383                         goto check_drain;
1384                 case ISOLATE_SUCCESS:
1385                         ;
1386                 }
1387
1388                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1389                                 compaction_free, (unsigned long)cc, cc->mode,
1390                                 MR_COMPACTION);
1391
1392                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1393                                                         &cc->migratepages);
1394
1395                 /* All pages were either migrated or will be released */
1396                 cc->nr_migratepages = 0;
1397                 if (err) {
1398                         putback_movable_pages(&cc->migratepages);
1399                         /*
1400                          * migrate_pages() may return -ENOMEM when scanners meet
1401                          * and we want compact_finished() to detect it
1402                          */
1403                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
1404                                 ret = COMPACT_CONTENDED;
1405                                 goto out;
1406                         }
1407                 }
1408
1409 check_drain:
1410                 /*
1411                  * Has the migration scanner moved away from the previous
1412                  * cc->order aligned block where we migrated from? If yes,
1413                  * flush the pages that were freed, so that they can merge and
1414                  * compact_finished() can detect immediately if allocation
1415                  * would succeed.
1416                  */
1417                 if (cc->order > 0 && cc->last_migrated_pfn) {
1418                         int cpu;
1419                         unsigned long current_block_start =
1420                                 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1421
1422                         if (cc->last_migrated_pfn < current_block_start) {
1423                                 cpu = get_cpu();
1424                                 lru_add_drain_cpu(cpu);
1425                                 drain_local_pages(zone);
1426                                 put_cpu();
1427                                 /* No more flushing until we migrate again */
1428                                 cc->last_migrated_pfn = 0;
1429                         }
1430                 }
1431
1432         }
1433
1434 out:
1435         /*
1436          * Release free pages and update where the free scanner should restart,
1437          * so we don't leave any returned pages behind in the next attempt.
1438          */
1439         if (cc->nr_freepages > 0) {
1440                 unsigned long free_pfn = release_freepages(&cc->freepages);
1441
1442                 cc->nr_freepages = 0;
1443                 VM_BUG_ON(free_pfn == 0);
1444                 /* The cached pfn is always the first in a pageblock */
1445                 free_pfn &= ~(pageblock_nr_pages-1);
1446                 /*
1447                  * Only go back, not forward. The cached pfn might have been
1448                  * already reset to zone end in compact_finished()
1449                  */
1450                 if (free_pfn > zone->compact_cached_free_pfn)
1451                         zone->compact_cached_free_pfn = free_pfn;
1452         }
1453
1454         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1455                                 cc->free_pfn, end_pfn, sync, ret);
1456
1457         if (ret == COMPACT_CONTENDED)
1458                 ret = COMPACT_PARTIAL;
1459
1460         return ret;
1461 }
1462
1463 static unsigned long compact_zone_order(struct zone *zone, int order,
1464                 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1465                 int alloc_flags, int classzone_idx)
1466 {
1467         unsigned long ret;
1468         struct compact_control cc = {
1469                 .nr_freepages = 0,
1470                 .nr_migratepages = 0,
1471                 .order = order,
1472                 .gfp_mask = gfp_mask,
1473                 .zone = zone,
1474                 .mode = mode,
1475                 .alloc_flags = alloc_flags,
1476                 .classzone_idx = classzone_idx,
1477         };
1478         INIT_LIST_HEAD(&cc.freepages);
1479         INIT_LIST_HEAD(&cc.migratepages);
1480
1481         ret = compact_zone(zone, &cc);
1482
1483         VM_BUG_ON(!list_empty(&cc.freepages));
1484         VM_BUG_ON(!list_empty(&cc.migratepages));
1485
1486         *contended = cc.contended;
1487         return ret;
1488 }
1489
1490 int sysctl_extfrag_threshold = 500;
1491
1492 /**
1493  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1494  * @gfp_mask: The GFP mask of the current allocation
1495  * @order: The order of the current allocation
1496  * @alloc_flags: The allocation flags of the current allocation
1497  * @ac: The context of current allocation
1498  * @mode: The migration mode for async, sync light, or sync migration
1499  * @contended: Return value that determines if compaction was aborted due to
1500  *             need_resched() or lock contention
1501  *
1502  * This is the main entry point for direct page compaction.
1503  */
1504 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1505                         int alloc_flags, const struct alloc_context *ac,
1506                         enum migrate_mode mode, int *contended)
1507 {
1508         int may_enter_fs = gfp_mask & __GFP_FS;
1509         int may_perform_io = gfp_mask & __GFP_IO;
1510         struct zoneref *z;
1511         struct zone *zone;
1512         int rc = COMPACT_DEFERRED;
1513         int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1514
1515         *contended = COMPACT_CONTENDED_NONE;
1516
1517         /* Check if the GFP flags allow compaction */
1518         if (!order || !may_enter_fs || !may_perform_io)
1519                 return COMPACT_SKIPPED;
1520
1521         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1522
1523         /* Compact each zone in the list */
1524         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1525                                                                 ac->nodemask) {
1526                 int status;
1527                 int zone_contended;
1528
1529                 if (compaction_deferred(zone, order))
1530                         continue;
1531
1532                 status = compact_zone_order(zone, order, gfp_mask, mode,
1533                                 &zone_contended, alloc_flags,
1534                                 ac->classzone_idx);
1535                 rc = max(status, rc);
1536                 /*
1537                  * It takes at least one zone that wasn't lock contended
1538                  * to clear all_zones_contended.
1539                  */
1540                 all_zones_contended &= zone_contended;
1541
1542                 /* If a normal allocation would succeed, stop compacting */
1543                 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1544                                         ac->classzone_idx, alloc_flags)) {
1545                         /*
1546                          * We think the allocation will succeed in this zone,
1547                          * but it is not certain, hence the false. The caller
1548                          * will repeat this with true if allocation indeed
1549                          * succeeds in this zone.
1550                          */
1551                         compaction_defer_reset(zone, order, false);
1552                         /*
1553                          * It is possible that async compaction aborted due to
1554                          * need_resched() and the watermarks were ok thanks to
1555                          * somebody else freeing memory. The allocation can
1556                          * however still fail so we better signal the
1557                          * need_resched() contention anyway (this will not
1558                          * prevent the allocation attempt).
1559                          */
1560                         if (zone_contended == COMPACT_CONTENDED_SCHED)
1561                                 *contended = COMPACT_CONTENDED_SCHED;
1562
1563                         goto break_loop;
1564                 }
1565
1566                 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1567                         /*
1568                          * We think that allocation won't succeed in this zone
1569                          * so we defer compaction there. If it ends up
1570                          * succeeding after all, it will be reset.
1571                          */
1572                         defer_compaction(zone, order);
1573                 }
1574
1575                 /*
1576                  * We might have stopped compacting due to need_resched() in
1577                  * async compaction, or due to a fatal signal detected. In that
1578                  * case do not try further zones and signal need_resched()
1579                  * contention.
1580                  */
1581                 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1582                                         || fatal_signal_pending(current)) {
1583                         *contended = COMPACT_CONTENDED_SCHED;
1584                         goto break_loop;
1585                 }
1586
1587                 continue;
1588 break_loop:
1589                 /*
1590                  * We might not have tried all the zones, so  be conservative
1591                  * and assume they are not all lock contended.
1592                  */
1593                 all_zones_contended = 0;
1594                 break;
1595         }
1596
1597         /*
1598          * If at least one zone wasn't deferred or skipped, we report if all
1599          * zones that were tried were lock contended.
1600          */
1601         if (rc > COMPACT_SKIPPED && all_zones_contended)
1602                 *contended = COMPACT_CONTENDED_LOCK;
1603
1604         return rc;
1605 }
1606
1607
1608 /* Compact all zones within a node */
1609 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1610 {
1611         int zoneid;
1612         struct zone *zone;
1613
1614         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1615
1616                 zone = &pgdat->node_zones[zoneid];
1617                 if (!populated_zone(zone))
1618                         continue;
1619
1620                 cc->nr_freepages = 0;
1621                 cc->nr_migratepages = 0;
1622                 cc->zone = zone;
1623                 INIT_LIST_HEAD(&cc->freepages);
1624                 INIT_LIST_HEAD(&cc->migratepages);
1625
1626                 /*
1627                  * When called via /proc/sys/vm/compact_memory
1628                  * this makes sure we compact the whole zone regardless of
1629                  * cached scanner positions.
1630                  */
1631                 if (is_via_compact_memory(cc->order))
1632                         __reset_isolation_suitable(zone);
1633
1634                 if (is_via_compact_memory(cc->order) ||
1635                                 !compaction_deferred(zone, cc->order))
1636                         compact_zone(zone, cc);
1637
1638                 VM_BUG_ON(!list_empty(&cc->freepages));
1639                 VM_BUG_ON(!list_empty(&cc->migratepages));
1640
1641                 if (is_via_compact_memory(cc->order))
1642                         continue;
1643
1644                 if (zone_watermark_ok(zone, cc->order,
1645                                 low_wmark_pages(zone), 0, 0))
1646                         compaction_defer_reset(zone, cc->order, false);
1647         }
1648 }
1649
1650 void compact_pgdat(pg_data_t *pgdat, int order)
1651 {
1652         struct compact_control cc = {
1653                 .order = order,
1654                 .mode = MIGRATE_ASYNC,
1655         };
1656
1657         if (!order)
1658                 return;
1659
1660         __compact_pgdat(pgdat, &cc);
1661 }
1662
1663 static void compact_node(int nid)
1664 {
1665         struct compact_control cc = {
1666                 .order = -1,
1667                 .mode = MIGRATE_SYNC,
1668                 .ignore_skip_hint = true,
1669         };
1670
1671         __compact_pgdat(NODE_DATA(nid), &cc);
1672 }
1673
1674 /* Compact all nodes in the system */
1675 static void compact_nodes(void)
1676 {
1677         int nid;
1678
1679         /* Flush pending updates to the LRU lists */
1680         lru_add_drain_all();
1681
1682         for_each_online_node(nid)
1683                 compact_node(nid);
1684 }
1685
1686 /* The written value is actually unused, all memory is compacted */
1687 int sysctl_compact_memory;
1688
1689 /*
1690  * This is the entry point for compacting all nodes via
1691  * /proc/sys/vm/compact_memory
1692  */
1693 int sysctl_compaction_handler(struct ctl_table *table, int write,
1694                         void __user *buffer, size_t *length, loff_t *ppos)
1695 {
1696         if (write)
1697                 compact_nodes();
1698
1699         return 0;
1700 }
1701
1702 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1703                         void __user *buffer, size_t *length, loff_t *ppos)
1704 {
1705         proc_dointvec_minmax(table, write, buffer, length, ppos);
1706
1707         return 0;
1708 }
1709
1710 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1711 static ssize_t sysfs_compact_node(struct device *dev,
1712                         struct device_attribute *attr,
1713                         const char *buf, size_t count)
1714 {
1715         int nid = dev->id;
1716
1717         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1718                 /* Flush pending updates to the LRU lists */
1719                 lru_add_drain_all();
1720
1721                 compact_node(nid);
1722         }
1723
1724         return count;
1725 }
1726 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1727
1728 int compaction_register_node(struct node *node)
1729 {
1730         return device_create_file(&node->dev, &dev_attr_compact);
1731 }
1732
1733 void compaction_unregister_node(struct node *node)
1734 {
1735         return device_remove_file(&node->dev, &dev_attr_compact);
1736 }
1737 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1738
1739 #endif /* CONFIG_COMPACTION */