mm: non-atomically mark page accessed during page cache allocation where possible
[cascardo/linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41
42 /*
43  * FIXME: remove all knowledge of the buffer layer from the core VM
44  */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46
47 #include <asm/mman.h>
48
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_mutex              (truncate_pagecache)
65  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock             (exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_mutex            (truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_mutex
74  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
75  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page               (access_process_vm)
79  *
80  *  ->i_mutex                   (generic_perform_write)
81  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
82  *
83  *  bdi->wb.list_lock
84  *    sb_lock                   (fs/fs-writeback.c)
85  *    ->mapping->tree_lock      (__sync_single_inode)
86  *
87  *  ->i_mmap_mutex
88  *    ->anon_vma.lock           (vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock               (try_to_unmap_one)
95  *    ->private_lock            (try_to_unmap_one)
96  *    ->tree_lock               (try_to_unmap_one)
97  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
98  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
99  *    ->private_lock            (page_remove_rmap->set_page_dirty)
100  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
101  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
102  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
104  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
105  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
106  *
107  * ->i_mmap_mutex
108  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
109  */
110
111 static void page_cache_tree_delete(struct address_space *mapping,
112                                    struct page *page, void *shadow)
113 {
114         struct radix_tree_node *node;
115         unsigned long index;
116         unsigned int offset;
117         unsigned int tag;
118         void **slot;
119
120         VM_BUG_ON(!PageLocked(page));
121
122         __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
123
124         if (shadow) {
125                 mapping->nrshadows++;
126                 /*
127                  * Make sure the nrshadows update is committed before
128                  * the nrpages update so that final truncate racing
129                  * with reclaim does not see both counters 0 at the
130                  * same time and miss a shadow entry.
131                  */
132                 smp_wmb();
133         }
134         mapping->nrpages--;
135
136         if (!node) {
137                 /* Clear direct pointer tags in root node */
138                 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139                 radix_tree_replace_slot(slot, shadow);
140                 return;
141         }
142
143         /* Clear tree tags for the removed page */
144         index = page->index;
145         offset = index & RADIX_TREE_MAP_MASK;
146         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147                 if (test_bit(offset, node->tags[tag]))
148                         radix_tree_tag_clear(&mapping->page_tree, index, tag);
149         }
150
151         /* Delete page, swap shadow entry */
152         radix_tree_replace_slot(slot, shadow);
153         workingset_node_pages_dec(node);
154         if (shadow)
155                 workingset_node_shadows_inc(node);
156         else
157                 if (__radix_tree_delete_node(&mapping->page_tree, node))
158                         return;
159
160         /*
161          * Track node that only contains shadow entries.
162          *
163          * Avoid acquiring the list_lru lock if already tracked.  The
164          * list_empty() test is safe as node->private_list is
165          * protected by mapping->tree_lock.
166          */
167         if (!workingset_node_pages(node) &&
168             list_empty(&node->private_list)) {
169                 node->private_data = mapping;
170                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
171         }
172 }
173
174 /*
175  * Delete a page from the page cache and free it. Caller has to make
176  * sure the page is locked and that nobody else uses it - or that usage
177  * is safe.  The caller must hold the mapping's tree_lock.
178  */
179 void __delete_from_page_cache(struct page *page, void *shadow)
180 {
181         struct address_space *mapping = page->mapping;
182
183         trace_mm_filemap_delete_from_page_cache(page);
184         /*
185          * if we're uptodate, flush out into the cleancache, otherwise
186          * invalidate any existing cleancache entries.  We can't leave
187          * stale data around in the cleancache once our page is gone
188          */
189         if (PageUptodate(page) && PageMappedToDisk(page))
190                 cleancache_put_page(page);
191         else
192                 cleancache_invalidate_page(mapping, page);
193
194         page_cache_tree_delete(mapping, page, shadow);
195
196         page->mapping = NULL;
197         /* Leave page->index set: truncation lookup relies upon it */
198
199         __dec_zone_page_state(page, NR_FILE_PAGES);
200         if (PageSwapBacked(page))
201                 __dec_zone_page_state(page, NR_SHMEM);
202         BUG_ON(page_mapped(page));
203
204         /*
205          * Some filesystems seem to re-dirty the page even after
206          * the VM has canceled the dirty bit (eg ext3 journaling).
207          *
208          * Fix it up by doing a final dirty accounting check after
209          * having removed the page entirely.
210          */
211         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
212                 dec_zone_page_state(page, NR_FILE_DIRTY);
213                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
214         }
215 }
216
217 /**
218  * delete_from_page_cache - delete page from page cache
219  * @page: the page which the kernel is trying to remove from page cache
220  *
221  * This must be called only on pages that have been verified to be in the page
222  * cache and locked.  It will never put the page into the free list, the caller
223  * has a reference on the page.
224  */
225 void delete_from_page_cache(struct page *page)
226 {
227         struct address_space *mapping = page->mapping;
228         void (*freepage)(struct page *);
229
230         BUG_ON(!PageLocked(page));
231
232         freepage = mapping->a_ops->freepage;
233         spin_lock_irq(&mapping->tree_lock);
234         __delete_from_page_cache(page, NULL);
235         spin_unlock_irq(&mapping->tree_lock);
236         mem_cgroup_uncharge_cache_page(page);
237
238         if (freepage)
239                 freepage(page);
240         page_cache_release(page);
241 }
242 EXPORT_SYMBOL(delete_from_page_cache);
243
244 static int sleep_on_page(void *word)
245 {
246         io_schedule();
247         return 0;
248 }
249
250 static int sleep_on_page_killable(void *word)
251 {
252         sleep_on_page(word);
253         return fatal_signal_pending(current) ? -EINTR : 0;
254 }
255
256 static int filemap_check_errors(struct address_space *mapping)
257 {
258         int ret = 0;
259         /* Check for outstanding write errors */
260         if (test_bit(AS_ENOSPC, &mapping->flags) &&
261             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
262                 ret = -ENOSPC;
263         if (test_bit(AS_EIO, &mapping->flags) &&
264             test_and_clear_bit(AS_EIO, &mapping->flags))
265                 ret = -EIO;
266         return ret;
267 }
268
269 /**
270  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
271  * @mapping:    address space structure to write
272  * @start:      offset in bytes where the range starts
273  * @end:        offset in bytes where the range ends (inclusive)
274  * @sync_mode:  enable synchronous operation
275  *
276  * Start writeback against all of a mapping's dirty pages that lie
277  * within the byte offsets <start, end> inclusive.
278  *
279  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
280  * opposed to a regular memory cleansing writeback.  The difference between
281  * these two operations is that if a dirty page/buffer is encountered, it must
282  * be waited upon, and not just skipped over.
283  */
284 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
285                                 loff_t end, int sync_mode)
286 {
287         int ret;
288         struct writeback_control wbc = {
289                 .sync_mode = sync_mode,
290                 .nr_to_write = LONG_MAX,
291                 .range_start = start,
292                 .range_end = end,
293         };
294
295         if (!mapping_cap_writeback_dirty(mapping))
296                 return 0;
297
298         ret = do_writepages(mapping, &wbc);
299         return ret;
300 }
301
302 static inline int __filemap_fdatawrite(struct address_space *mapping,
303         int sync_mode)
304 {
305         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
306 }
307
308 int filemap_fdatawrite(struct address_space *mapping)
309 {
310         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
311 }
312 EXPORT_SYMBOL(filemap_fdatawrite);
313
314 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
315                                 loff_t end)
316 {
317         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
318 }
319 EXPORT_SYMBOL(filemap_fdatawrite_range);
320
321 /**
322  * filemap_flush - mostly a non-blocking flush
323  * @mapping:    target address_space
324  *
325  * This is a mostly non-blocking flush.  Not suitable for data-integrity
326  * purposes - I/O may not be started against all dirty pages.
327  */
328 int filemap_flush(struct address_space *mapping)
329 {
330         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
331 }
332 EXPORT_SYMBOL(filemap_flush);
333
334 /**
335  * filemap_fdatawait_range - wait for writeback to complete
336  * @mapping:            address space structure to wait for
337  * @start_byte:         offset in bytes where the range starts
338  * @end_byte:           offset in bytes where the range ends (inclusive)
339  *
340  * Walk the list of under-writeback pages of the given address space
341  * in the given range and wait for all of them.
342  */
343 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
344                             loff_t end_byte)
345 {
346         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
347         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
348         struct pagevec pvec;
349         int nr_pages;
350         int ret2, ret = 0;
351
352         if (end_byte < start_byte)
353                 goto out;
354
355         pagevec_init(&pvec, 0);
356         while ((index <= end) &&
357                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
358                         PAGECACHE_TAG_WRITEBACK,
359                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
360                 unsigned i;
361
362                 for (i = 0; i < nr_pages; i++) {
363                         struct page *page = pvec.pages[i];
364
365                         /* until radix tree lookup accepts end_index */
366                         if (page->index > end)
367                                 continue;
368
369                         wait_on_page_writeback(page);
370                         if (TestClearPageError(page))
371                                 ret = -EIO;
372                 }
373                 pagevec_release(&pvec);
374                 cond_resched();
375         }
376 out:
377         ret2 = filemap_check_errors(mapping);
378         if (!ret)
379                 ret = ret2;
380
381         return ret;
382 }
383 EXPORT_SYMBOL(filemap_fdatawait_range);
384
385 /**
386  * filemap_fdatawait - wait for all under-writeback pages to complete
387  * @mapping: address space structure to wait for
388  *
389  * Walk the list of under-writeback pages of the given address space
390  * and wait for all of them.
391  */
392 int filemap_fdatawait(struct address_space *mapping)
393 {
394         loff_t i_size = i_size_read(mapping->host);
395
396         if (i_size == 0)
397                 return 0;
398
399         return filemap_fdatawait_range(mapping, 0, i_size - 1);
400 }
401 EXPORT_SYMBOL(filemap_fdatawait);
402
403 int filemap_write_and_wait(struct address_space *mapping)
404 {
405         int err = 0;
406
407         if (mapping->nrpages) {
408                 err = filemap_fdatawrite(mapping);
409                 /*
410                  * Even if the above returned error, the pages may be
411                  * written partially (e.g. -ENOSPC), so we wait for it.
412                  * But the -EIO is special case, it may indicate the worst
413                  * thing (e.g. bug) happened, so we avoid waiting for it.
414                  */
415                 if (err != -EIO) {
416                         int err2 = filemap_fdatawait(mapping);
417                         if (!err)
418                                 err = err2;
419                 }
420         } else {
421                 err = filemap_check_errors(mapping);
422         }
423         return err;
424 }
425 EXPORT_SYMBOL(filemap_write_and_wait);
426
427 /**
428  * filemap_write_and_wait_range - write out & wait on a file range
429  * @mapping:    the address_space for the pages
430  * @lstart:     offset in bytes where the range starts
431  * @lend:       offset in bytes where the range ends (inclusive)
432  *
433  * Write out and wait upon file offsets lstart->lend, inclusive.
434  *
435  * Note that `lend' is inclusive (describes the last byte to be written) so
436  * that this function can be used to write to the very end-of-file (end = -1).
437  */
438 int filemap_write_and_wait_range(struct address_space *mapping,
439                                  loff_t lstart, loff_t lend)
440 {
441         int err = 0;
442
443         if (mapping->nrpages) {
444                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
445                                                  WB_SYNC_ALL);
446                 /* See comment of filemap_write_and_wait() */
447                 if (err != -EIO) {
448                         int err2 = filemap_fdatawait_range(mapping,
449                                                 lstart, lend);
450                         if (!err)
451                                 err = err2;
452                 }
453         } else {
454                 err = filemap_check_errors(mapping);
455         }
456         return err;
457 }
458 EXPORT_SYMBOL(filemap_write_and_wait_range);
459
460 /**
461  * replace_page_cache_page - replace a pagecache page with a new one
462  * @old:        page to be replaced
463  * @new:        page to replace with
464  * @gfp_mask:   allocation mode
465  *
466  * This function replaces a page in the pagecache with a new one.  On
467  * success it acquires the pagecache reference for the new page and
468  * drops it for the old page.  Both the old and new pages must be
469  * locked.  This function does not add the new page to the LRU, the
470  * caller must do that.
471  *
472  * The remove + add is atomic.  The only way this function can fail is
473  * memory allocation failure.
474  */
475 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
476 {
477         int error;
478
479         VM_BUG_ON_PAGE(!PageLocked(old), old);
480         VM_BUG_ON_PAGE(!PageLocked(new), new);
481         VM_BUG_ON_PAGE(new->mapping, new);
482
483         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
484         if (!error) {
485                 struct address_space *mapping = old->mapping;
486                 void (*freepage)(struct page *);
487
488                 pgoff_t offset = old->index;
489                 freepage = mapping->a_ops->freepage;
490
491                 page_cache_get(new);
492                 new->mapping = mapping;
493                 new->index = offset;
494
495                 spin_lock_irq(&mapping->tree_lock);
496                 __delete_from_page_cache(old, NULL);
497                 error = radix_tree_insert(&mapping->page_tree, offset, new);
498                 BUG_ON(error);
499                 mapping->nrpages++;
500                 __inc_zone_page_state(new, NR_FILE_PAGES);
501                 if (PageSwapBacked(new))
502                         __inc_zone_page_state(new, NR_SHMEM);
503                 spin_unlock_irq(&mapping->tree_lock);
504                 /* mem_cgroup codes must not be called under tree_lock */
505                 mem_cgroup_replace_page_cache(old, new);
506                 radix_tree_preload_end();
507                 if (freepage)
508                         freepage(old);
509                 page_cache_release(old);
510         }
511
512         return error;
513 }
514 EXPORT_SYMBOL_GPL(replace_page_cache_page);
515
516 static int page_cache_tree_insert(struct address_space *mapping,
517                                   struct page *page, void **shadowp)
518 {
519         struct radix_tree_node *node;
520         void **slot;
521         int error;
522
523         error = __radix_tree_create(&mapping->page_tree, page->index,
524                                     &node, &slot);
525         if (error)
526                 return error;
527         if (*slot) {
528                 void *p;
529
530                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
531                 if (!radix_tree_exceptional_entry(p))
532                         return -EEXIST;
533                 if (shadowp)
534                         *shadowp = p;
535                 mapping->nrshadows--;
536                 if (node)
537                         workingset_node_shadows_dec(node);
538         }
539         radix_tree_replace_slot(slot, page);
540         mapping->nrpages++;
541         if (node) {
542                 workingset_node_pages_inc(node);
543                 /*
544                  * Don't track node that contains actual pages.
545                  *
546                  * Avoid acquiring the list_lru lock if already
547                  * untracked.  The list_empty() test is safe as
548                  * node->private_list is protected by
549                  * mapping->tree_lock.
550                  */
551                 if (!list_empty(&node->private_list))
552                         list_lru_del(&workingset_shadow_nodes,
553                                      &node->private_list);
554         }
555         return 0;
556 }
557
558 static int __add_to_page_cache_locked(struct page *page,
559                                       struct address_space *mapping,
560                                       pgoff_t offset, gfp_t gfp_mask,
561                                       void **shadowp)
562 {
563         int error;
564
565         VM_BUG_ON_PAGE(!PageLocked(page), page);
566         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
567
568         error = mem_cgroup_charge_file(page, current->mm,
569                                         gfp_mask & GFP_RECLAIM_MASK);
570         if (error)
571                 return error;
572
573         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
574         if (error) {
575                 mem_cgroup_uncharge_cache_page(page);
576                 return error;
577         }
578
579         page_cache_get(page);
580         page->mapping = mapping;
581         page->index = offset;
582
583         spin_lock_irq(&mapping->tree_lock);
584         error = page_cache_tree_insert(mapping, page, shadowp);
585         radix_tree_preload_end();
586         if (unlikely(error))
587                 goto err_insert;
588         __inc_zone_page_state(page, NR_FILE_PAGES);
589         spin_unlock_irq(&mapping->tree_lock);
590         trace_mm_filemap_add_to_page_cache(page);
591         return 0;
592 err_insert:
593         page->mapping = NULL;
594         /* Leave page->index set: truncation relies upon it */
595         spin_unlock_irq(&mapping->tree_lock);
596         mem_cgroup_uncharge_cache_page(page);
597         page_cache_release(page);
598         return error;
599 }
600
601 /**
602  * add_to_page_cache_locked - add a locked page to the pagecache
603  * @page:       page to add
604  * @mapping:    the page's address_space
605  * @offset:     page index
606  * @gfp_mask:   page allocation mode
607  *
608  * This function is used to add a page to the pagecache. It must be locked.
609  * This function does not add the page to the LRU.  The caller must do that.
610  */
611 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
612                 pgoff_t offset, gfp_t gfp_mask)
613 {
614         return __add_to_page_cache_locked(page, mapping, offset,
615                                           gfp_mask, NULL);
616 }
617 EXPORT_SYMBOL(add_to_page_cache_locked);
618
619 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
620                                 pgoff_t offset, gfp_t gfp_mask)
621 {
622         void *shadow = NULL;
623         int ret;
624
625         __set_page_locked(page);
626         ret = __add_to_page_cache_locked(page, mapping, offset,
627                                          gfp_mask, &shadow);
628         if (unlikely(ret))
629                 __clear_page_locked(page);
630         else {
631                 /*
632                  * The page might have been evicted from cache only
633                  * recently, in which case it should be activated like
634                  * any other repeatedly accessed page.
635                  */
636                 if (shadow && workingset_refault(shadow)) {
637                         SetPageActive(page);
638                         workingset_activation(page);
639                 } else
640                         ClearPageActive(page);
641                 lru_cache_add(page);
642         }
643         return ret;
644 }
645 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
646
647 #ifdef CONFIG_NUMA
648 struct page *__page_cache_alloc(gfp_t gfp)
649 {
650         int n;
651         struct page *page;
652
653         if (cpuset_do_page_mem_spread()) {
654                 unsigned int cpuset_mems_cookie;
655                 do {
656                         cpuset_mems_cookie = read_mems_allowed_begin();
657                         n = cpuset_mem_spread_node();
658                         page = alloc_pages_exact_node(n, gfp, 0);
659                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
660
661                 return page;
662         }
663         return alloc_pages(gfp, 0);
664 }
665 EXPORT_SYMBOL(__page_cache_alloc);
666 #endif
667
668 /*
669  * In order to wait for pages to become available there must be
670  * waitqueues associated with pages. By using a hash table of
671  * waitqueues where the bucket discipline is to maintain all
672  * waiters on the same queue and wake all when any of the pages
673  * become available, and for the woken contexts to check to be
674  * sure the appropriate page became available, this saves space
675  * at a cost of "thundering herd" phenomena during rare hash
676  * collisions.
677  */
678 static wait_queue_head_t *page_waitqueue(struct page *page)
679 {
680         const struct zone *zone = page_zone(page);
681
682         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
683 }
684
685 static inline void wake_up_page(struct page *page, int bit)
686 {
687         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
688 }
689
690 void wait_on_page_bit(struct page *page, int bit_nr)
691 {
692         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
693
694         if (test_bit(bit_nr, &page->flags))
695                 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
696                                                         TASK_UNINTERRUPTIBLE);
697 }
698 EXPORT_SYMBOL(wait_on_page_bit);
699
700 int wait_on_page_bit_killable(struct page *page, int bit_nr)
701 {
702         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
703
704         if (!test_bit(bit_nr, &page->flags))
705                 return 0;
706
707         return __wait_on_bit(page_waitqueue(page), &wait,
708                              sleep_on_page_killable, TASK_KILLABLE);
709 }
710
711 /**
712  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
713  * @page: Page defining the wait queue of interest
714  * @waiter: Waiter to add to the queue
715  *
716  * Add an arbitrary @waiter to the wait queue for the nominated @page.
717  */
718 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
719 {
720         wait_queue_head_t *q = page_waitqueue(page);
721         unsigned long flags;
722
723         spin_lock_irqsave(&q->lock, flags);
724         __add_wait_queue(q, waiter);
725         spin_unlock_irqrestore(&q->lock, flags);
726 }
727 EXPORT_SYMBOL_GPL(add_page_wait_queue);
728
729 /**
730  * unlock_page - unlock a locked page
731  * @page: the page
732  *
733  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
734  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
735  * mechananism between PageLocked pages and PageWriteback pages is shared.
736  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
737  *
738  * The mb is necessary to enforce ordering between the clear_bit and the read
739  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
740  */
741 void unlock_page(struct page *page)
742 {
743         VM_BUG_ON_PAGE(!PageLocked(page), page);
744         clear_bit_unlock(PG_locked, &page->flags);
745         smp_mb__after_atomic();
746         wake_up_page(page, PG_locked);
747 }
748 EXPORT_SYMBOL(unlock_page);
749
750 /**
751  * end_page_writeback - end writeback against a page
752  * @page: the page
753  */
754 void end_page_writeback(struct page *page)
755 {
756         if (TestClearPageReclaim(page))
757                 rotate_reclaimable_page(page);
758
759         if (!test_clear_page_writeback(page))
760                 BUG();
761
762         smp_mb__after_atomic();
763         wake_up_page(page, PG_writeback);
764 }
765 EXPORT_SYMBOL(end_page_writeback);
766
767 /*
768  * After completing I/O on a page, call this routine to update the page
769  * flags appropriately
770  */
771 void page_endio(struct page *page, int rw, int err)
772 {
773         if (rw == READ) {
774                 if (!err) {
775                         SetPageUptodate(page);
776                 } else {
777                         ClearPageUptodate(page);
778                         SetPageError(page);
779                 }
780                 unlock_page(page);
781         } else { /* rw == WRITE */
782                 if (err) {
783                         SetPageError(page);
784                         if (page->mapping)
785                                 mapping_set_error(page->mapping, err);
786                 }
787                 end_page_writeback(page);
788         }
789 }
790 EXPORT_SYMBOL_GPL(page_endio);
791
792 /**
793  * __lock_page - get a lock on the page, assuming we need to sleep to get it
794  * @page: the page to lock
795  */
796 void __lock_page(struct page *page)
797 {
798         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
799
800         __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
801                                                         TASK_UNINTERRUPTIBLE);
802 }
803 EXPORT_SYMBOL(__lock_page);
804
805 int __lock_page_killable(struct page *page)
806 {
807         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
808
809         return __wait_on_bit_lock(page_waitqueue(page), &wait,
810                                         sleep_on_page_killable, TASK_KILLABLE);
811 }
812 EXPORT_SYMBOL_GPL(__lock_page_killable);
813
814 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
815                          unsigned int flags)
816 {
817         if (flags & FAULT_FLAG_ALLOW_RETRY) {
818                 /*
819                  * CAUTION! In this case, mmap_sem is not released
820                  * even though return 0.
821                  */
822                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
823                         return 0;
824
825                 up_read(&mm->mmap_sem);
826                 if (flags & FAULT_FLAG_KILLABLE)
827                         wait_on_page_locked_killable(page);
828                 else
829                         wait_on_page_locked(page);
830                 return 0;
831         } else {
832                 if (flags & FAULT_FLAG_KILLABLE) {
833                         int ret;
834
835                         ret = __lock_page_killable(page);
836                         if (ret) {
837                                 up_read(&mm->mmap_sem);
838                                 return 0;
839                         }
840                 } else
841                         __lock_page(page);
842                 return 1;
843         }
844 }
845
846 /**
847  * page_cache_next_hole - find the next hole (not-present entry)
848  * @mapping: mapping
849  * @index: index
850  * @max_scan: maximum range to search
851  *
852  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
853  * lowest indexed hole.
854  *
855  * Returns: the index of the hole if found, otherwise returns an index
856  * outside of the set specified (in which case 'return - index >=
857  * max_scan' will be true). In rare cases of index wrap-around, 0 will
858  * be returned.
859  *
860  * page_cache_next_hole may be called under rcu_read_lock. However,
861  * like radix_tree_gang_lookup, this will not atomically search a
862  * snapshot of the tree at a single point in time. For example, if a
863  * hole is created at index 5, then subsequently a hole is created at
864  * index 10, page_cache_next_hole covering both indexes may return 10
865  * if called under rcu_read_lock.
866  */
867 pgoff_t page_cache_next_hole(struct address_space *mapping,
868                              pgoff_t index, unsigned long max_scan)
869 {
870         unsigned long i;
871
872         for (i = 0; i < max_scan; i++) {
873                 struct page *page;
874
875                 page = radix_tree_lookup(&mapping->page_tree, index);
876                 if (!page || radix_tree_exceptional_entry(page))
877                         break;
878                 index++;
879                 if (index == 0)
880                         break;
881         }
882
883         return index;
884 }
885 EXPORT_SYMBOL(page_cache_next_hole);
886
887 /**
888  * page_cache_prev_hole - find the prev hole (not-present entry)
889  * @mapping: mapping
890  * @index: index
891  * @max_scan: maximum range to search
892  *
893  * Search backwards in the range [max(index-max_scan+1, 0), index] for
894  * the first hole.
895  *
896  * Returns: the index of the hole if found, otherwise returns an index
897  * outside of the set specified (in which case 'index - return >=
898  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
899  * will be returned.
900  *
901  * page_cache_prev_hole may be called under rcu_read_lock. However,
902  * like radix_tree_gang_lookup, this will not atomically search a
903  * snapshot of the tree at a single point in time. For example, if a
904  * hole is created at index 10, then subsequently a hole is created at
905  * index 5, page_cache_prev_hole covering both indexes may return 5 if
906  * called under rcu_read_lock.
907  */
908 pgoff_t page_cache_prev_hole(struct address_space *mapping,
909                              pgoff_t index, unsigned long max_scan)
910 {
911         unsigned long i;
912
913         for (i = 0; i < max_scan; i++) {
914                 struct page *page;
915
916                 page = radix_tree_lookup(&mapping->page_tree, index);
917                 if (!page || radix_tree_exceptional_entry(page))
918                         break;
919                 index--;
920                 if (index == ULONG_MAX)
921                         break;
922         }
923
924         return index;
925 }
926 EXPORT_SYMBOL(page_cache_prev_hole);
927
928 /**
929  * find_get_entry - find and get a page cache entry
930  * @mapping: the address_space to search
931  * @offset: the page cache index
932  *
933  * Looks up the page cache slot at @mapping & @offset.  If there is a
934  * page cache page, it is returned with an increased refcount.
935  *
936  * If the slot holds a shadow entry of a previously evicted page, or a
937  * swap entry from shmem/tmpfs, it is returned.
938  *
939  * Otherwise, %NULL is returned.
940  */
941 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
942 {
943         void **pagep;
944         struct page *page;
945
946         rcu_read_lock();
947 repeat:
948         page = NULL;
949         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
950         if (pagep) {
951                 page = radix_tree_deref_slot(pagep);
952                 if (unlikely(!page))
953                         goto out;
954                 if (radix_tree_exception(page)) {
955                         if (radix_tree_deref_retry(page))
956                                 goto repeat;
957                         /*
958                          * A shadow entry of a recently evicted page,
959                          * or a swap entry from shmem/tmpfs.  Return
960                          * it without attempting to raise page count.
961                          */
962                         goto out;
963                 }
964                 if (!page_cache_get_speculative(page))
965                         goto repeat;
966
967                 /*
968                  * Has the page moved?
969                  * This is part of the lockless pagecache protocol. See
970                  * include/linux/pagemap.h for details.
971                  */
972                 if (unlikely(page != *pagep)) {
973                         page_cache_release(page);
974                         goto repeat;
975                 }
976         }
977 out:
978         rcu_read_unlock();
979
980         return page;
981 }
982 EXPORT_SYMBOL(find_get_entry);
983
984 /**
985  * find_lock_entry - locate, pin and lock a page cache entry
986  * @mapping: the address_space to search
987  * @offset: the page cache index
988  *
989  * Looks up the page cache slot at @mapping & @offset.  If there is a
990  * page cache page, it is returned locked and with an increased
991  * refcount.
992  *
993  * If the slot holds a shadow entry of a previously evicted page, or a
994  * swap entry from shmem/tmpfs, it is returned.
995  *
996  * Otherwise, %NULL is returned.
997  *
998  * find_lock_entry() may sleep.
999  */
1000 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1001 {
1002         struct page *page;
1003
1004 repeat:
1005         page = find_get_entry(mapping, offset);
1006         if (page && !radix_tree_exception(page)) {
1007                 lock_page(page);
1008                 /* Has the page been truncated? */
1009                 if (unlikely(page->mapping != mapping)) {
1010                         unlock_page(page);
1011                         page_cache_release(page);
1012                         goto repeat;
1013                 }
1014                 VM_BUG_ON_PAGE(page->index != offset, page);
1015         }
1016         return page;
1017 }
1018 EXPORT_SYMBOL(find_lock_entry);
1019
1020 /**
1021  * pagecache_get_page - find and get a page reference
1022  * @mapping: the address_space to search
1023  * @offset: the page index
1024  * @fgp_flags: PCG flags
1025  * @gfp_mask: gfp mask to use if a page is to be allocated
1026  *
1027  * Looks up the page cache slot at @mapping & @offset.
1028  *
1029  * PCG flags modify how the page is returned
1030  *
1031  * FGP_ACCESSED: the page will be marked accessed
1032  * FGP_LOCK: Page is return locked
1033  * FGP_CREAT: If page is not present then a new page is allocated using
1034  *              @gfp_mask and added to the page cache and the VM's LRU
1035  *              list. The page is returned locked and with an increased
1036  *              refcount. Otherwise, %NULL is returned.
1037  *
1038  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1039  * if the GFP flags specified for FGP_CREAT are atomic.
1040  *
1041  * If there is a page cache page, it is returned with an increased refcount.
1042  */
1043 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1044         int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask)
1045 {
1046         struct page *page;
1047
1048 repeat:
1049         page = find_get_entry(mapping, offset);
1050         if (radix_tree_exceptional_entry(page))
1051                 page = NULL;
1052         if (!page)
1053                 goto no_page;
1054
1055         if (fgp_flags & FGP_LOCK) {
1056                 if (fgp_flags & FGP_NOWAIT) {
1057                         if (!trylock_page(page)) {
1058                                 page_cache_release(page);
1059                                 return NULL;
1060                         }
1061                 } else {
1062                         lock_page(page);
1063                 }
1064
1065                 /* Has the page been truncated? */
1066                 if (unlikely(page->mapping != mapping)) {
1067                         unlock_page(page);
1068                         page_cache_release(page);
1069                         goto repeat;
1070                 }
1071                 VM_BUG_ON_PAGE(page->index != offset, page);
1072         }
1073
1074         if (page && (fgp_flags & FGP_ACCESSED))
1075                 mark_page_accessed(page);
1076
1077 no_page:
1078         if (!page && (fgp_flags & FGP_CREAT)) {
1079                 int err;
1080                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1081                         cache_gfp_mask |= __GFP_WRITE;
1082                 if (fgp_flags & FGP_NOFS) {
1083                         cache_gfp_mask &= ~__GFP_FS;
1084                         radix_gfp_mask &= ~__GFP_FS;
1085                 }
1086
1087                 page = __page_cache_alloc(cache_gfp_mask);
1088                 if (!page)
1089                         return NULL;
1090
1091                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1092                         fgp_flags |= FGP_LOCK;
1093
1094                 /* Init accessed so avoit atomic mark_page_accessed later */
1095                 if (fgp_flags & FGP_ACCESSED)
1096                         init_page_accessed(page);
1097
1098                 err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask);
1099                 if (unlikely(err)) {
1100                         page_cache_release(page);
1101                         page = NULL;
1102                         if (err == -EEXIST)
1103                                 goto repeat;
1104                 }
1105         }
1106
1107         return page;
1108 }
1109 EXPORT_SYMBOL(pagecache_get_page);
1110
1111 /**
1112  * find_get_entries - gang pagecache lookup
1113  * @mapping:    The address_space to search
1114  * @start:      The starting page cache index
1115  * @nr_entries: The maximum number of entries
1116  * @entries:    Where the resulting entries are placed
1117  * @indices:    The cache indices corresponding to the entries in @entries
1118  *
1119  * find_get_entries() will search for and return a group of up to
1120  * @nr_entries entries in the mapping.  The entries are placed at
1121  * @entries.  find_get_entries() takes a reference against any actual
1122  * pages it returns.
1123  *
1124  * The search returns a group of mapping-contiguous page cache entries
1125  * with ascending indexes.  There may be holes in the indices due to
1126  * not-present pages.
1127  *
1128  * Any shadow entries of evicted pages, or swap entries from
1129  * shmem/tmpfs, are included in the returned array.
1130  *
1131  * find_get_entries() returns the number of pages and shadow entries
1132  * which were found.
1133  */
1134 unsigned find_get_entries(struct address_space *mapping,
1135                           pgoff_t start, unsigned int nr_entries,
1136                           struct page **entries, pgoff_t *indices)
1137 {
1138         void **slot;
1139         unsigned int ret = 0;
1140         struct radix_tree_iter iter;
1141
1142         if (!nr_entries)
1143                 return 0;
1144
1145         rcu_read_lock();
1146 restart:
1147         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1148                 struct page *page;
1149 repeat:
1150                 page = radix_tree_deref_slot(slot);
1151                 if (unlikely(!page))
1152                         continue;
1153                 if (radix_tree_exception(page)) {
1154                         if (radix_tree_deref_retry(page))
1155                                 goto restart;
1156                         /*
1157                          * A shadow entry of a recently evicted page,
1158                          * or a swap entry from shmem/tmpfs.  Return
1159                          * it without attempting to raise page count.
1160                          */
1161                         goto export;
1162                 }
1163                 if (!page_cache_get_speculative(page))
1164                         goto repeat;
1165
1166                 /* Has the page moved? */
1167                 if (unlikely(page != *slot)) {
1168                         page_cache_release(page);
1169                         goto repeat;
1170                 }
1171 export:
1172                 indices[ret] = iter.index;
1173                 entries[ret] = page;
1174                 if (++ret == nr_entries)
1175                         break;
1176         }
1177         rcu_read_unlock();
1178         return ret;
1179 }
1180
1181 /**
1182  * find_get_pages - gang pagecache lookup
1183  * @mapping:    The address_space to search
1184  * @start:      The starting page index
1185  * @nr_pages:   The maximum number of pages
1186  * @pages:      Where the resulting pages are placed
1187  *
1188  * find_get_pages() will search for and return a group of up to
1189  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1190  * find_get_pages() takes a reference against the returned pages.
1191  *
1192  * The search returns a group of mapping-contiguous pages with ascending
1193  * indexes.  There may be holes in the indices due to not-present pages.
1194  *
1195  * find_get_pages() returns the number of pages which were found.
1196  */
1197 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1198                             unsigned int nr_pages, struct page **pages)
1199 {
1200         struct radix_tree_iter iter;
1201         void **slot;
1202         unsigned ret = 0;
1203
1204         if (unlikely(!nr_pages))
1205                 return 0;
1206
1207         rcu_read_lock();
1208 restart:
1209         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1210                 struct page *page;
1211 repeat:
1212                 page = radix_tree_deref_slot(slot);
1213                 if (unlikely(!page))
1214                         continue;
1215
1216                 if (radix_tree_exception(page)) {
1217                         if (radix_tree_deref_retry(page)) {
1218                                 /*
1219                                  * Transient condition which can only trigger
1220                                  * when entry at index 0 moves out of or back
1221                                  * to root: none yet gotten, safe to restart.
1222                                  */
1223                                 WARN_ON(iter.index);
1224                                 goto restart;
1225                         }
1226                         /*
1227                          * A shadow entry of a recently evicted page,
1228                          * or a swap entry from shmem/tmpfs.  Skip
1229                          * over it.
1230                          */
1231                         continue;
1232                 }
1233
1234                 if (!page_cache_get_speculative(page))
1235                         goto repeat;
1236
1237                 /* Has the page moved? */
1238                 if (unlikely(page != *slot)) {
1239                         page_cache_release(page);
1240                         goto repeat;
1241                 }
1242
1243                 pages[ret] = page;
1244                 if (++ret == nr_pages)
1245                         break;
1246         }
1247
1248         rcu_read_unlock();
1249         return ret;
1250 }
1251
1252 /**
1253  * find_get_pages_contig - gang contiguous pagecache lookup
1254  * @mapping:    The address_space to search
1255  * @index:      The starting page index
1256  * @nr_pages:   The maximum number of pages
1257  * @pages:      Where the resulting pages are placed
1258  *
1259  * find_get_pages_contig() works exactly like find_get_pages(), except
1260  * that the returned number of pages are guaranteed to be contiguous.
1261  *
1262  * find_get_pages_contig() returns the number of pages which were found.
1263  */
1264 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1265                                unsigned int nr_pages, struct page **pages)
1266 {
1267         struct radix_tree_iter iter;
1268         void **slot;
1269         unsigned int ret = 0;
1270
1271         if (unlikely(!nr_pages))
1272                 return 0;
1273
1274         rcu_read_lock();
1275 restart:
1276         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1277                 struct page *page;
1278 repeat:
1279                 page = radix_tree_deref_slot(slot);
1280                 /* The hole, there no reason to continue */
1281                 if (unlikely(!page))
1282                         break;
1283
1284                 if (radix_tree_exception(page)) {
1285                         if (radix_tree_deref_retry(page)) {
1286                                 /*
1287                                  * Transient condition which can only trigger
1288                                  * when entry at index 0 moves out of or back
1289                                  * to root: none yet gotten, safe to restart.
1290                                  */
1291                                 goto restart;
1292                         }
1293                         /*
1294                          * A shadow entry of a recently evicted page,
1295                          * or a swap entry from shmem/tmpfs.  Stop
1296                          * looking for contiguous pages.
1297                          */
1298                         break;
1299                 }
1300
1301                 if (!page_cache_get_speculative(page))
1302                         goto repeat;
1303
1304                 /* Has the page moved? */
1305                 if (unlikely(page != *slot)) {
1306                         page_cache_release(page);
1307                         goto repeat;
1308                 }
1309
1310                 /*
1311                  * must check mapping and index after taking the ref.
1312                  * otherwise we can get both false positives and false
1313                  * negatives, which is just confusing to the caller.
1314                  */
1315                 if (page->mapping == NULL || page->index != iter.index) {
1316                         page_cache_release(page);
1317                         break;
1318                 }
1319
1320                 pages[ret] = page;
1321                 if (++ret == nr_pages)
1322                         break;
1323         }
1324         rcu_read_unlock();
1325         return ret;
1326 }
1327 EXPORT_SYMBOL(find_get_pages_contig);
1328
1329 /**
1330  * find_get_pages_tag - find and return pages that match @tag
1331  * @mapping:    the address_space to search
1332  * @index:      the starting page index
1333  * @tag:        the tag index
1334  * @nr_pages:   the maximum number of pages
1335  * @pages:      where the resulting pages are placed
1336  *
1337  * Like find_get_pages, except we only return pages which are tagged with
1338  * @tag.   We update @index to index the next page for the traversal.
1339  */
1340 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1341                         int tag, unsigned int nr_pages, struct page **pages)
1342 {
1343         struct radix_tree_iter iter;
1344         void **slot;
1345         unsigned ret = 0;
1346
1347         if (unlikely(!nr_pages))
1348                 return 0;
1349
1350         rcu_read_lock();
1351 restart:
1352         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1353                                    &iter, *index, tag) {
1354                 struct page *page;
1355 repeat:
1356                 page = radix_tree_deref_slot(slot);
1357                 if (unlikely(!page))
1358                         continue;
1359
1360                 if (radix_tree_exception(page)) {
1361                         if (radix_tree_deref_retry(page)) {
1362                                 /*
1363                                  * Transient condition which can only trigger
1364                                  * when entry at index 0 moves out of or back
1365                                  * to root: none yet gotten, safe to restart.
1366                                  */
1367                                 goto restart;
1368                         }
1369                         /*
1370                          * A shadow entry of a recently evicted page.
1371                          *
1372                          * Those entries should never be tagged, but
1373                          * this tree walk is lockless and the tags are
1374                          * looked up in bulk, one radix tree node at a
1375                          * time, so there is a sizable window for page
1376                          * reclaim to evict a page we saw tagged.
1377                          *
1378                          * Skip over it.
1379                          */
1380                         continue;
1381                 }
1382
1383                 if (!page_cache_get_speculative(page))
1384                         goto repeat;
1385
1386                 /* Has the page moved? */
1387                 if (unlikely(page != *slot)) {
1388                         page_cache_release(page);
1389                         goto repeat;
1390                 }
1391
1392                 pages[ret] = page;
1393                 if (++ret == nr_pages)
1394                         break;
1395         }
1396
1397         rcu_read_unlock();
1398
1399         if (ret)
1400                 *index = pages[ret - 1]->index + 1;
1401
1402         return ret;
1403 }
1404 EXPORT_SYMBOL(find_get_pages_tag);
1405
1406 /*
1407  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1408  * a _large_ part of the i/o request. Imagine the worst scenario:
1409  *
1410  *      ---R__________________________________________B__________
1411  *         ^ reading here                             ^ bad block(assume 4k)
1412  *
1413  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1414  * => failing the whole request => read(R) => read(R+1) =>
1415  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1416  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1417  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1418  *
1419  * It is going insane. Fix it by quickly scaling down the readahead size.
1420  */
1421 static void shrink_readahead_size_eio(struct file *filp,
1422                                         struct file_ra_state *ra)
1423 {
1424         ra->ra_pages /= 4;
1425 }
1426
1427 /**
1428  * do_generic_file_read - generic file read routine
1429  * @filp:       the file to read
1430  * @ppos:       current file position
1431  * @iter:       data destination
1432  * @written:    already copied
1433  *
1434  * This is a generic file read routine, and uses the
1435  * mapping->a_ops->readpage() function for the actual low-level stuff.
1436  *
1437  * This is really ugly. But the goto's actually try to clarify some
1438  * of the logic when it comes to error handling etc.
1439  */
1440 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1441                 struct iov_iter *iter, ssize_t written)
1442 {
1443         struct address_space *mapping = filp->f_mapping;
1444         struct inode *inode = mapping->host;
1445         struct file_ra_state *ra = &filp->f_ra;
1446         pgoff_t index;
1447         pgoff_t last_index;
1448         pgoff_t prev_index;
1449         unsigned long offset;      /* offset into pagecache page */
1450         unsigned int prev_offset;
1451         int error = 0;
1452
1453         index = *ppos >> PAGE_CACHE_SHIFT;
1454         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1455         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1456         last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1457         offset = *ppos & ~PAGE_CACHE_MASK;
1458
1459         for (;;) {
1460                 struct page *page;
1461                 pgoff_t end_index;
1462                 loff_t isize;
1463                 unsigned long nr, ret;
1464
1465                 cond_resched();
1466 find_page:
1467                 page = find_get_page(mapping, index);
1468                 if (!page) {
1469                         page_cache_sync_readahead(mapping,
1470                                         ra, filp,
1471                                         index, last_index - index);
1472                         page = find_get_page(mapping, index);
1473                         if (unlikely(page == NULL))
1474                                 goto no_cached_page;
1475                 }
1476                 if (PageReadahead(page)) {
1477                         page_cache_async_readahead(mapping,
1478                                         ra, filp, page,
1479                                         index, last_index - index);
1480                 }
1481                 if (!PageUptodate(page)) {
1482                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1483                                         !mapping->a_ops->is_partially_uptodate)
1484                                 goto page_not_up_to_date;
1485                         if (!trylock_page(page))
1486                                 goto page_not_up_to_date;
1487                         /* Did it get truncated before we got the lock? */
1488                         if (!page->mapping)
1489                                 goto page_not_up_to_date_locked;
1490                         if (!mapping->a_ops->is_partially_uptodate(page,
1491                                                         offset, iter->count))
1492                                 goto page_not_up_to_date_locked;
1493                         unlock_page(page);
1494                 }
1495 page_ok:
1496                 /*
1497                  * i_size must be checked after we know the page is Uptodate.
1498                  *
1499                  * Checking i_size after the check allows us to calculate
1500                  * the correct value for "nr", which means the zero-filled
1501                  * part of the page is not copied back to userspace (unless
1502                  * another truncate extends the file - this is desired though).
1503                  */
1504
1505                 isize = i_size_read(inode);
1506                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1507                 if (unlikely(!isize || index > end_index)) {
1508                         page_cache_release(page);
1509                         goto out;
1510                 }
1511
1512                 /* nr is the maximum number of bytes to copy from this page */
1513                 nr = PAGE_CACHE_SIZE;
1514                 if (index == end_index) {
1515                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1516                         if (nr <= offset) {
1517                                 page_cache_release(page);
1518                                 goto out;
1519                         }
1520                 }
1521                 nr = nr - offset;
1522
1523                 /* If users can be writing to this page using arbitrary
1524                  * virtual addresses, take care about potential aliasing
1525                  * before reading the page on the kernel side.
1526                  */
1527                 if (mapping_writably_mapped(mapping))
1528                         flush_dcache_page(page);
1529
1530                 /*
1531                  * When a sequential read accesses a page several times,
1532                  * only mark it as accessed the first time.
1533                  */
1534                 if (prev_index != index || offset != prev_offset)
1535                         mark_page_accessed(page);
1536                 prev_index = index;
1537
1538                 /*
1539                  * Ok, we have the page, and it's up-to-date, so
1540                  * now we can copy it to user space...
1541                  */
1542
1543                 ret = copy_page_to_iter(page, offset, nr, iter);
1544                 offset += ret;
1545                 index += offset >> PAGE_CACHE_SHIFT;
1546                 offset &= ~PAGE_CACHE_MASK;
1547                 prev_offset = offset;
1548
1549                 page_cache_release(page);
1550                 written += ret;
1551                 if (!iov_iter_count(iter))
1552                         goto out;
1553                 if (ret < nr) {
1554                         error = -EFAULT;
1555                         goto out;
1556                 }
1557                 continue;
1558
1559 page_not_up_to_date:
1560                 /* Get exclusive access to the page ... */
1561                 error = lock_page_killable(page);
1562                 if (unlikely(error))
1563                         goto readpage_error;
1564
1565 page_not_up_to_date_locked:
1566                 /* Did it get truncated before we got the lock? */
1567                 if (!page->mapping) {
1568                         unlock_page(page);
1569                         page_cache_release(page);
1570                         continue;
1571                 }
1572
1573                 /* Did somebody else fill it already? */
1574                 if (PageUptodate(page)) {
1575                         unlock_page(page);
1576                         goto page_ok;
1577                 }
1578
1579 readpage:
1580                 /*
1581                  * A previous I/O error may have been due to temporary
1582                  * failures, eg. multipath errors.
1583                  * PG_error will be set again if readpage fails.
1584                  */
1585                 ClearPageError(page);
1586                 /* Start the actual read. The read will unlock the page. */
1587                 error = mapping->a_ops->readpage(filp, page);
1588
1589                 if (unlikely(error)) {
1590                         if (error == AOP_TRUNCATED_PAGE) {
1591                                 page_cache_release(page);
1592                                 error = 0;
1593                                 goto find_page;
1594                         }
1595                         goto readpage_error;
1596                 }
1597
1598                 if (!PageUptodate(page)) {
1599                         error = lock_page_killable(page);
1600                         if (unlikely(error))
1601                                 goto readpage_error;
1602                         if (!PageUptodate(page)) {
1603                                 if (page->mapping == NULL) {
1604                                         /*
1605                                          * invalidate_mapping_pages got it
1606                                          */
1607                                         unlock_page(page);
1608                                         page_cache_release(page);
1609                                         goto find_page;
1610                                 }
1611                                 unlock_page(page);
1612                                 shrink_readahead_size_eio(filp, ra);
1613                                 error = -EIO;
1614                                 goto readpage_error;
1615                         }
1616                         unlock_page(page);
1617                 }
1618
1619                 goto page_ok;
1620
1621 readpage_error:
1622                 /* UHHUH! A synchronous read error occurred. Report it */
1623                 page_cache_release(page);
1624                 goto out;
1625
1626 no_cached_page:
1627                 /*
1628                  * Ok, it wasn't cached, so we need to create a new
1629                  * page..
1630                  */
1631                 page = page_cache_alloc_cold(mapping);
1632                 if (!page) {
1633                         error = -ENOMEM;
1634                         goto out;
1635                 }
1636                 error = add_to_page_cache_lru(page, mapping,
1637                                                 index, GFP_KERNEL);
1638                 if (error) {
1639                         page_cache_release(page);
1640                         if (error == -EEXIST) {
1641                                 error = 0;
1642                                 goto find_page;
1643                         }
1644                         goto out;
1645                 }
1646                 goto readpage;
1647         }
1648
1649 out:
1650         ra->prev_pos = prev_index;
1651         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1652         ra->prev_pos |= prev_offset;
1653
1654         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1655         file_accessed(filp);
1656         return written ? written : error;
1657 }
1658
1659 /*
1660  * Performs necessary checks before doing a write
1661  * @iov:        io vector request
1662  * @nr_segs:    number of segments in the iovec
1663  * @count:      number of bytes to write
1664  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1665  *
1666  * Adjust number of segments and amount of bytes to write (nr_segs should be
1667  * properly initialized first). Returns appropriate error code that caller
1668  * should return or zero in case that write should be allowed.
1669  */
1670 int generic_segment_checks(const struct iovec *iov,
1671                         unsigned long *nr_segs, size_t *count, int access_flags)
1672 {
1673         unsigned long   seg;
1674         size_t cnt = 0;
1675         for (seg = 0; seg < *nr_segs; seg++) {
1676                 const struct iovec *iv = &iov[seg];
1677
1678                 /*
1679                  * If any segment has a negative length, or the cumulative
1680                  * length ever wraps negative then return -EINVAL.
1681                  */
1682                 cnt += iv->iov_len;
1683                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1684                         return -EINVAL;
1685                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1686                         continue;
1687                 if (seg == 0)
1688                         return -EFAULT;
1689                 *nr_segs = seg;
1690                 cnt -= iv->iov_len;     /* This segment is no good */
1691                 break;
1692         }
1693         *count = cnt;
1694         return 0;
1695 }
1696 EXPORT_SYMBOL(generic_segment_checks);
1697
1698 /**
1699  * generic_file_aio_read - generic filesystem read routine
1700  * @iocb:       kernel I/O control block
1701  * @iov:        io vector request
1702  * @nr_segs:    number of segments in the iovec
1703  * @pos:        current file position
1704  *
1705  * This is the "read()" routine for all filesystems
1706  * that can use the page cache directly.
1707  */
1708 ssize_t
1709 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1710                 unsigned long nr_segs, loff_t pos)
1711 {
1712         struct file *filp = iocb->ki_filp;
1713         ssize_t retval;
1714         size_t count;
1715         loff_t *ppos = &iocb->ki_pos;
1716         struct iov_iter i;
1717
1718         count = 0;
1719         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1720         if (retval)
1721                 return retval;
1722         iov_iter_init(&i, iov, nr_segs, count, 0);
1723
1724         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1725         if (filp->f_flags & O_DIRECT) {
1726                 loff_t size;
1727                 struct address_space *mapping;
1728                 struct inode *inode;
1729
1730                 mapping = filp->f_mapping;
1731                 inode = mapping->host;
1732                 if (!count)
1733                         goto out; /* skip atime */
1734                 size = i_size_read(inode);
1735                 retval = filemap_write_and_wait_range(mapping, pos,
1736                                         pos + iov_length(iov, nr_segs) - 1);
1737                 if (!retval) {
1738                         retval = mapping->a_ops->direct_IO(READ, iocb,
1739                                                            iov, pos, nr_segs);
1740                 }
1741                 if (retval > 0) {
1742                         *ppos = pos + retval;
1743                         count -= retval;
1744                         /*
1745                          * If we did a short DIO read we need to skip the
1746                          * section of the iov that we've already read data into.
1747                          */
1748                         iov_iter_advance(&i, retval);
1749                 }
1750
1751                 /*
1752                  * Btrfs can have a short DIO read if we encounter
1753                  * compressed extents, so if there was an error, or if
1754                  * we've already read everything we wanted to, or if
1755                  * there was a short read because we hit EOF, go ahead
1756                  * and return.  Otherwise fallthrough to buffered io for
1757                  * the rest of the read.
1758                  */
1759                 if (retval < 0 || !count || *ppos >= size) {
1760                         file_accessed(filp);
1761                         goto out;
1762                 }
1763         }
1764
1765         retval = do_generic_file_read(filp, ppos, &i, retval);
1766 out:
1767         return retval;
1768 }
1769 EXPORT_SYMBOL(generic_file_aio_read);
1770
1771 #ifdef CONFIG_MMU
1772 /**
1773  * page_cache_read - adds requested page to the page cache if not already there
1774  * @file:       file to read
1775  * @offset:     page index
1776  *
1777  * This adds the requested page to the page cache if it isn't already there,
1778  * and schedules an I/O to read in its contents from disk.
1779  */
1780 static int page_cache_read(struct file *file, pgoff_t offset)
1781 {
1782         struct address_space *mapping = file->f_mapping;
1783         struct page *page; 
1784         int ret;
1785
1786         do {
1787                 page = page_cache_alloc_cold(mapping);
1788                 if (!page)
1789                         return -ENOMEM;
1790
1791                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1792                 if (ret == 0)
1793                         ret = mapping->a_ops->readpage(file, page);
1794                 else if (ret == -EEXIST)
1795                         ret = 0; /* losing race to add is OK */
1796
1797                 page_cache_release(page);
1798
1799         } while (ret == AOP_TRUNCATED_PAGE);
1800                 
1801         return ret;
1802 }
1803
1804 #define MMAP_LOTSAMISS  (100)
1805
1806 /*
1807  * Synchronous readahead happens when we don't even find
1808  * a page in the page cache at all.
1809  */
1810 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1811                                    struct file_ra_state *ra,
1812                                    struct file *file,
1813                                    pgoff_t offset)
1814 {
1815         unsigned long ra_pages;
1816         struct address_space *mapping = file->f_mapping;
1817
1818         /* If we don't want any read-ahead, don't bother */
1819         if (vma->vm_flags & VM_RAND_READ)
1820                 return;
1821         if (!ra->ra_pages)
1822                 return;
1823
1824         if (vma->vm_flags & VM_SEQ_READ) {
1825                 page_cache_sync_readahead(mapping, ra, file, offset,
1826                                           ra->ra_pages);
1827                 return;
1828         }
1829
1830         /* Avoid banging the cache line if not needed */
1831         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1832                 ra->mmap_miss++;
1833
1834         /*
1835          * Do we miss much more than hit in this file? If so,
1836          * stop bothering with read-ahead. It will only hurt.
1837          */
1838         if (ra->mmap_miss > MMAP_LOTSAMISS)
1839                 return;
1840
1841         /*
1842          * mmap read-around
1843          */
1844         ra_pages = max_sane_readahead(ra->ra_pages);
1845         ra->start = max_t(long, 0, offset - ra_pages / 2);
1846         ra->size = ra_pages;
1847         ra->async_size = ra_pages / 4;
1848         ra_submit(ra, mapping, file);
1849 }
1850
1851 /*
1852  * Asynchronous readahead happens when we find the page and PG_readahead,
1853  * so we want to possibly extend the readahead further..
1854  */
1855 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1856                                     struct file_ra_state *ra,
1857                                     struct file *file,
1858                                     struct page *page,
1859                                     pgoff_t offset)
1860 {
1861         struct address_space *mapping = file->f_mapping;
1862
1863         /* If we don't want any read-ahead, don't bother */
1864         if (vma->vm_flags & VM_RAND_READ)
1865                 return;
1866         if (ra->mmap_miss > 0)
1867                 ra->mmap_miss--;
1868         if (PageReadahead(page))
1869                 page_cache_async_readahead(mapping, ra, file,
1870                                            page, offset, ra->ra_pages);
1871 }
1872
1873 /**
1874  * filemap_fault - read in file data for page fault handling
1875  * @vma:        vma in which the fault was taken
1876  * @vmf:        struct vm_fault containing details of the fault
1877  *
1878  * filemap_fault() is invoked via the vma operations vector for a
1879  * mapped memory region to read in file data during a page fault.
1880  *
1881  * The goto's are kind of ugly, but this streamlines the normal case of having
1882  * it in the page cache, and handles the special cases reasonably without
1883  * having a lot of duplicated code.
1884  */
1885 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1886 {
1887         int error;
1888         struct file *file = vma->vm_file;
1889         struct address_space *mapping = file->f_mapping;
1890         struct file_ra_state *ra = &file->f_ra;
1891         struct inode *inode = mapping->host;
1892         pgoff_t offset = vmf->pgoff;
1893         struct page *page;
1894         loff_t size;
1895         int ret = 0;
1896
1897         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1898         if (offset >= size >> PAGE_CACHE_SHIFT)
1899                 return VM_FAULT_SIGBUS;
1900
1901         /*
1902          * Do we have something in the page cache already?
1903          */
1904         page = find_get_page(mapping, offset);
1905         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1906                 /*
1907                  * We found the page, so try async readahead before
1908                  * waiting for the lock.
1909                  */
1910                 do_async_mmap_readahead(vma, ra, file, page, offset);
1911         } else if (!page) {
1912                 /* No page in the page cache at all */
1913                 do_sync_mmap_readahead(vma, ra, file, offset);
1914                 count_vm_event(PGMAJFAULT);
1915                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1916                 ret = VM_FAULT_MAJOR;
1917 retry_find:
1918                 page = find_get_page(mapping, offset);
1919                 if (!page)
1920                         goto no_cached_page;
1921         }
1922
1923         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1924                 page_cache_release(page);
1925                 return ret | VM_FAULT_RETRY;
1926         }
1927
1928         /* Did it get truncated? */
1929         if (unlikely(page->mapping != mapping)) {
1930                 unlock_page(page);
1931                 put_page(page);
1932                 goto retry_find;
1933         }
1934         VM_BUG_ON_PAGE(page->index != offset, page);
1935
1936         /*
1937          * We have a locked page in the page cache, now we need to check
1938          * that it's up-to-date. If not, it is going to be due to an error.
1939          */
1940         if (unlikely(!PageUptodate(page)))
1941                 goto page_not_uptodate;
1942
1943         /*
1944          * Found the page and have a reference on it.
1945          * We must recheck i_size under page lock.
1946          */
1947         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1948         if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1949                 unlock_page(page);
1950                 page_cache_release(page);
1951                 return VM_FAULT_SIGBUS;
1952         }
1953
1954         vmf->page = page;
1955         return ret | VM_FAULT_LOCKED;
1956
1957 no_cached_page:
1958         /*
1959          * We're only likely to ever get here if MADV_RANDOM is in
1960          * effect.
1961          */
1962         error = page_cache_read(file, offset);
1963
1964         /*
1965          * The page we want has now been added to the page cache.
1966          * In the unlikely event that someone removed it in the
1967          * meantime, we'll just come back here and read it again.
1968          */
1969         if (error >= 0)
1970                 goto retry_find;
1971
1972         /*
1973          * An error return from page_cache_read can result if the
1974          * system is low on memory, or a problem occurs while trying
1975          * to schedule I/O.
1976          */
1977         if (error == -ENOMEM)
1978                 return VM_FAULT_OOM;
1979         return VM_FAULT_SIGBUS;
1980
1981 page_not_uptodate:
1982         /*
1983          * Umm, take care of errors if the page isn't up-to-date.
1984          * Try to re-read it _once_. We do this synchronously,
1985          * because there really aren't any performance issues here
1986          * and we need to check for errors.
1987          */
1988         ClearPageError(page);
1989         error = mapping->a_ops->readpage(file, page);
1990         if (!error) {
1991                 wait_on_page_locked(page);
1992                 if (!PageUptodate(page))
1993                         error = -EIO;
1994         }
1995         page_cache_release(page);
1996
1997         if (!error || error == AOP_TRUNCATED_PAGE)
1998                 goto retry_find;
1999
2000         /* Things didn't work out. Return zero to tell the mm layer so. */
2001         shrink_readahead_size_eio(file, ra);
2002         return VM_FAULT_SIGBUS;
2003 }
2004 EXPORT_SYMBOL(filemap_fault);
2005
2006 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2007 {
2008         struct radix_tree_iter iter;
2009         void **slot;
2010         struct file *file = vma->vm_file;
2011         struct address_space *mapping = file->f_mapping;
2012         loff_t size;
2013         struct page *page;
2014         unsigned long address = (unsigned long) vmf->virtual_address;
2015         unsigned long addr;
2016         pte_t *pte;
2017
2018         rcu_read_lock();
2019         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2020                 if (iter.index > vmf->max_pgoff)
2021                         break;
2022 repeat:
2023                 page = radix_tree_deref_slot(slot);
2024                 if (unlikely(!page))
2025                         goto next;
2026                 if (radix_tree_exception(page)) {
2027                         if (radix_tree_deref_retry(page))
2028                                 break;
2029                         else
2030                                 goto next;
2031                 }
2032
2033                 if (!page_cache_get_speculative(page))
2034                         goto repeat;
2035
2036                 /* Has the page moved? */
2037                 if (unlikely(page != *slot)) {
2038                         page_cache_release(page);
2039                         goto repeat;
2040                 }
2041
2042                 if (!PageUptodate(page) ||
2043                                 PageReadahead(page) ||
2044                                 PageHWPoison(page))
2045                         goto skip;
2046                 if (!trylock_page(page))
2047                         goto skip;
2048
2049                 if (page->mapping != mapping || !PageUptodate(page))
2050                         goto unlock;
2051
2052                 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2053                 if (page->index >= size >> PAGE_CACHE_SHIFT)
2054                         goto unlock;
2055
2056                 pte = vmf->pte + page->index - vmf->pgoff;
2057                 if (!pte_none(*pte))
2058                         goto unlock;
2059
2060                 if (file->f_ra.mmap_miss > 0)
2061                         file->f_ra.mmap_miss--;
2062                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2063                 do_set_pte(vma, addr, page, pte, false, false);
2064                 unlock_page(page);
2065                 goto next;
2066 unlock:
2067                 unlock_page(page);
2068 skip:
2069                 page_cache_release(page);
2070 next:
2071                 if (iter.index == vmf->max_pgoff)
2072                         break;
2073         }
2074         rcu_read_unlock();
2075 }
2076 EXPORT_SYMBOL(filemap_map_pages);
2077
2078 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2079 {
2080         struct page *page = vmf->page;
2081         struct inode *inode = file_inode(vma->vm_file);
2082         int ret = VM_FAULT_LOCKED;
2083
2084         sb_start_pagefault(inode->i_sb);
2085         file_update_time(vma->vm_file);
2086         lock_page(page);
2087         if (page->mapping != inode->i_mapping) {
2088                 unlock_page(page);
2089                 ret = VM_FAULT_NOPAGE;
2090                 goto out;
2091         }
2092         /*
2093          * We mark the page dirty already here so that when freeze is in
2094          * progress, we are guaranteed that writeback during freezing will
2095          * see the dirty page and writeprotect it again.
2096          */
2097         set_page_dirty(page);
2098         wait_for_stable_page(page);
2099 out:
2100         sb_end_pagefault(inode->i_sb);
2101         return ret;
2102 }
2103 EXPORT_SYMBOL(filemap_page_mkwrite);
2104
2105 const struct vm_operations_struct generic_file_vm_ops = {
2106         .fault          = filemap_fault,
2107         .map_pages      = filemap_map_pages,
2108         .page_mkwrite   = filemap_page_mkwrite,
2109         .remap_pages    = generic_file_remap_pages,
2110 };
2111
2112 /* This is used for a general mmap of a disk file */
2113
2114 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2115 {
2116         struct address_space *mapping = file->f_mapping;
2117
2118         if (!mapping->a_ops->readpage)
2119                 return -ENOEXEC;
2120         file_accessed(file);
2121         vma->vm_ops = &generic_file_vm_ops;
2122         return 0;
2123 }
2124
2125 /*
2126  * This is for filesystems which do not implement ->writepage.
2127  */
2128 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2129 {
2130         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2131                 return -EINVAL;
2132         return generic_file_mmap(file, vma);
2133 }
2134 #else
2135 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2136 {
2137         return -ENOSYS;
2138 }
2139 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2140 {
2141         return -ENOSYS;
2142 }
2143 #endif /* CONFIG_MMU */
2144
2145 EXPORT_SYMBOL(generic_file_mmap);
2146 EXPORT_SYMBOL(generic_file_readonly_mmap);
2147
2148 static struct page *wait_on_page_read(struct page *page)
2149 {
2150         if (!IS_ERR(page)) {
2151                 wait_on_page_locked(page);
2152                 if (!PageUptodate(page)) {
2153                         page_cache_release(page);
2154                         page = ERR_PTR(-EIO);
2155                 }
2156         }
2157         return page;
2158 }
2159
2160 static struct page *__read_cache_page(struct address_space *mapping,
2161                                 pgoff_t index,
2162                                 int (*filler)(void *, struct page *),
2163                                 void *data,
2164                                 gfp_t gfp)
2165 {
2166         struct page *page;
2167         int err;
2168 repeat:
2169         page = find_get_page(mapping, index);
2170         if (!page) {
2171                 page = __page_cache_alloc(gfp | __GFP_COLD);
2172                 if (!page)
2173                         return ERR_PTR(-ENOMEM);
2174                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2175                 if (unlikely(err)) {
2176                         page_cache_release(page);
2177                         if (err == -EEXIST)
2178                                 goto repeat;
2179                         /* Presumably ENOMEM for radix tree node */
2180                         return ERR_PTR(err);
2181                 }
2182                 err = filler(data, page);
2183                 if (err < 0) {
2184                         page_cache_release(page);
2185                         page = ERR_PTR(err);
2186                 } else {
2187                         page = wait_on_page_read(page);
2188                 }
2189         }
2190         return page;
2191 }
2192
2193 static struct page *do_read_cache_page(struct address_space *mapping,
2194                                 pgoff_t index,
2195                                 int (*filler)(void *, struct page *),
2196                                 void *data,
2197                                 gfp_t gfp)
2198
2199 {
2200         struct page *page;
2201         int err;
2202
2203 retry:
2204         page = __read_cache_page(mapping, index, filler, data, gfp);
2205         if (IS_ERR(page))
2206                 return page;
2207         if (PageUptodate(page))
2208                 goto out;
2209
2210         lock_page(page);
2211         if (!page->mapping) {
2212                 unlock_page(page);
2213                 page_cache_release(page);
2214                 goto retry;
2215         }
2216         if (PageUptodate(page)) {
2217                 unlock_page(page);
2218                 goto out;
2219         }
2220         err = filler(data, page);
2221         if (err < 0) {
2222                 page_cache_release(page);
2223                 return ERR_PTR(err);
2224         } else {
2225                 page = wait_on_page_read(page);
2226                 if (IS_ERR(page))
2227                         return page;
2228         }
2229 out:
2230         mark_page_accessed(page);
2231         return page;
2232 }
2233
2234 /**
2235  * read_cache_page - read into page cache, fill it if needed
2236  * @mapping:    the page's address_space
2237  * @index:      the page index
2238  * @filler:     function to perform the read
2239  * @data:       first arg to filler(data, page) function, often left as NULL
2240  *
2241  * Read into the page cache. If a page already exists, and PageUptodate() is
2242  * not set, try to fill the page and wait for it to become unlocked.
2243  *
2244  * If the page does not get brought uptodate, return -EIO.
2245  */
2246 struct page *read_cache_page(struct address_space *mapping,
2247                                 pgoff_t index,
2248                                 int (*filler)(void *, struct page *),
2249                                 void *data)
2250 {
2251         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2252 }
2253 EXPORT_SYMBOL(read_cache_page);
2254
2255 /**
2256  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2257  * @mapping:    the page's address_space
2258  * @index:      the page index
2259  * @gfp:        the page allocator flags to use if allocating
2260  *
2261  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2262  * any new page allocations done using the specified allocation flags.
2263  *
2264  * If the page does not get brought uptodate, return -EIO.
2265  */
2266 struct page *read_cache_page_gfp(struct address_space *mapping,
2267                                 pgoff_t index,
2268                                 gfp_t gfp)
2269 {
2270         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2271
2272         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2273 }
2274 EXPORT_SYMBOL(read_cache_page_gfp);
2275
2276 /*
2277  * Performs necessary checks before doing a write
2278  *
2279  * Can adjust writing position or amount of bytes to write.
2280  * Returns appropriate error code that caller should return or
2281  * zero in case that write should be allowed.
2282  */
2283 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2284 {
2285         struct inode *inode = file->f_mapping->host;
2286         unsigned long limit = rlimit(RLIMIT_FSIZE);
2287
2288         if (unlikely(*pos < 0))
2289                 return -EINVAL;
2290
2291         if (!isblk) {
2292                 /* FIXME: this is for backwards compatibility with 2.4 */
2293                 if (file->f_flags & O_APPEND)
2294                         *pos = i_size_read(inode);
2295
2296                 if (limit != RLIM_INFINITY) {
2297                         if (*pos >= limit) {
2298                                 send_sig(SIGXFSZ, current, 0);
2299                                 return -EFBIG;
2300                         }
2301                         if (*count > limit - (typeof(limit))*pos) {
2302                                 *count = limit - (typeof(limit))*pos;
2303                         }
2304                 }
2305         }
2306
2307         /*
2308          * LFS rule
2309          */
2310         if (unlikely(*pos + *count > MAX_NON_LFS &&
2311                                 !(file->f_flags & O_LARGEFILE))) {
2312                 if (*pos >= MAX_NON_LFS) {
2313                         return -EFBIG;
2314                 }
2315                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2316                         *count = MAX_NON_LFS - (unsigned long)*pos;
2317                 }
2318         }
2319
2320         /*
2321          * Are we about to exceed the fs block limit ?
2322          *
2323          * If we have written data it becomes a short write.  If we have
2324          * exceeded without writing data we send a signal and return EFBIG.
2325          * Linus frestrict idea will clean these up nicely..
2326          */
2327         if (likely(!isblk)) {
2328                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2329                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2330                                 return -EFBIG;
2331                         }
2332                         /* zero-length writes at ->s_maxbytes are OK */
2333                 }
2334
2335                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2336                         *count = inode->i_sb->s_maxbytes - *pos;
2337         } else {
2338 #ifdef CONFIG_BLOCK
2339                 loff_t isize;
2340                 if (bdev_read_only(I_BDEV(inode)))
2341                         return -EPERM;
2342                 isize = i_size_read(inode);
2343                 if (*pos >= isize) {
2344                         if (*count || *pos > isize)
2345                                 return -ENOSPC;
2346                 }
2347
2348                 if (*pos + *count > isize)
2349                         *count = isize - *pos;
2350 #else
2351                 return -EPERM;
2352 #endif
2353         }
2354         return 0;
2355 }
2356 EXPORT_SYMBOL(generic_write_checks);
2357
2358 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2359                                 loff_t pos, unsigned len, unsigned flags,
2360                                 struct page **pagep, void **fsdata)
2361 {
2362         const struct address_space_operations *aops = mapping->a_ops;
2363
2364         return aops->write_begin(file, mapping, pos, len, flags,
2365                                                         pagep, fsdata);
2366 }
2367 EXPORT_SYMBOL(pagecache_write_begin);
2368
2369 int pagecache_write_end(struct file *file, struct address_space *mapping,
2370                                 loff_t pos, unsigned len, unsigned copied,
2371                                 struct page *page, void *fsdata)
2372 {
2373         const struct address_space_operations *aops = mapping->a_ops;
2374
2375         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2376 }
2377 EXPORT_SYMBOL(pagecache_write_end);
2378
2379 ssize_t
2380 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2381                 unsigned long *nr_segs, loff_t pos,
2382                 size_t count, size_t ocount)
2383 {
2384         struct file     *file = iocb->ki_filp;
2385         struct address_space *mapping = file->f_mapping;
2386         struct inode    *inode = mapping->host;
2387         ssize_t         written;
2388         size_t          write_len;
2389         pgoff_t         end;
2390
2391         if (count != ocount)
2392                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2393
2394         write_len = iov_length(iov, *nr_segs);
2395         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2396
2397         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2398         if (written)
2399                 goto out;
2400
2401         /*
2402          * After a write we want buffered reads to be sure to go to disk to get
2403          * the new data.  We invalidate clean cached page from the region we're
2404          * about to write.  We do this *before* the write so that we can return
2405          * without clobbering -EIOCBQUEUED from ->direct_IO().
2406          */
2407         if (mapping->nrpages) {
2408                 written = invalidate_inode_pages2_range(mapping,
2409                                         pos >> PAGE_CACHE_SHIFT, end);
2410                 /*
2411                  * If a page can not be invalidated, return 0 to fall back
2412                  * to buffered write.
2413                  */
2414                 if (written) {
2415                         if (written == -EBUSY)
2416                                 return 0;
2417                         goto out;
2418                 }
2419         }
2420
2421         written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2422
2423         /*
2424          * Finally, try again to invalidate clean pages which might have been
2425          * cached by non-direct readahead, or faulted in by get_user_pages()
2426          * if the source of the write was an mmap'ed region of the file
2427          * we're writing.  Either one is a pretty crazy thing to do,
2428          * so we don't support it 100%.  If this invalidation
2429          * fails, tough, the write still worked...
2430          */
2431         if (mapping->nrpages) {
2432                 invalidate_inode_pages2_range(mapping,
2433                                               pos >> PAGE_CACHE_SHIFT, end);
2434         }
2435
2436         if (written > 0) {
2437                 pos += written;
2438                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2439                         i_size_write(inode, pos);
2440                         mark_inode_dirty(inode);
2441                 }
2442                 iocb->ki_pos = pos;
2443         }
2444 out:
2445         return written;
2446 }
2447 EXPORT_SYMBOL(generic_file_direct_write);
2448
2449 /*
2450  * Find or create a page at the given pagecache position. Return the locked
2451  * page. This function is specifically for buffered writes.
2452  */
2453 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2454                                         pgoff_t index, unsigned flags)
2455 {
2456         struct page *page;
2457         int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2458
2459         if (flags & AOP_FLAG_NOFS)
2460                 fgp_flags |= FGP_NOFS;
2461
2462         page = pagecache_get_page(mapping, index, fgp_flags,
2463                         mapping_gfp_mask(mapping),
2464                         GFP_KERNEL);
2465         if (page)
2466                 wait_for_stable_page(page);
2467
2468         return page;
2469 }
2470 EXPORT_SYMBOL(grab_cache_page_write_begin);
2471
2472 ssize_t generic_perform_write(struct file *file,
2473                                 struct iov_iter *i, loff_t pos)
2474 {
2475         struct address_space *mapping = file->f_mapping;
2476         const struct address_space_operations *a_ops = mapping->a_ops;
2477         long status = 0;
2478         ssize_t written = 0;
2479         unsigned int flags = 0;
2480
2481         /*
2482          * Copies from kernel address space cannot fail (NFSD is a big user).
2483          */
2484         if (segment_eq(get_fs(), KERNEL_DS))
2485                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2486
2487         do {
2488                 struct page *page;
2489                 unsigned long offset;   /* Offset into pagecache page */
2490                 unsigned long bytes;    /* Bytes to write to page */
2491                 size_t copied;          /* Bytes copied from user */
2492                 void *fsdata;
2493
2494                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2495                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2496                                                 iov_iter_count(i));
2497
2498 again:
2499                 /*
2500                  * Bring in the user page that we will copy from _first_.
2501                  * Otherwise there's a nasty deadlock on copying from the
2502                  * same page as we're writing to, without it being marked
2503                  * up-to-date.
2504                  *
2505                  * Not only is this an optimisation, but it is also required
2506                  * to check that the address is actually valid, when atomic
2507                  * usercopies are used, below.
2508                  */
2509                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2510                         status = -EFAULT;
2511                         break;
2512                 }
2513
2514                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2515                                                 &page, &fsdata);
2516                 if (unlikely(status < 0))
2517                         break;
2518
2519                 if (mapping_writably_mapped(mapping))
2520                         flush_dcache_page(page);
2521
2522                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2523                 flush_dcache_page(page);
2524
2525                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2526                                                 page, fsdata);
2527                 if (unlikely(status < 0))
2528                         break;
2529                 copied = status;
2530
2531                 cond_resched();
2532
2533                 iov_iter_advance(i, copied);
2534                 if (unlikely(copied == 0)) {
2535                         /*
2536                          * If we were unable to copy any data at all, we must
2537                          * fall back to a single segment length write.
2538                          *
2539                          * If we didn't fallback here, we could livelock
2540                          * because not all segments in the iov can be copied at
2541                          * once without a pagefault.
2542                          */
2543                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2544                                                 iov_iter_single_seg_count(i));
2545                         goto again;
2546                 }
2547                 pos += copied;
2548                 written += copied;
2549
2550                 balance_dirty_pages_ratelimited(mapping);
2551                 if (fatal_signal_pending(current)) {
2552                         status = -EINTR;
2553                         break;
2554                 }
2555         } while (iov_iter_count(i));
2556
2557         return written ? written : status;
2558 }
2559 EXPORT_SYMBOL(generic_perform_write);
2560
2561 /**
2562  * __generic_file_aio_write - write data to a file
2563  * @iocb:       IO state structure (file, offset, etc.)
2564  * @iov:        vector with data to write
2565  * @nr_segs:    number of segments in the vector
2566  *
2567  * This function does all the work needed for actually writing data to a
2568  * file. It does all basic checks, removes SUID from the file, updates
2569  * modification times and calls proper subroutines depending on whether we
2570  * do direct IO or a standard buffered write.
2571  *
2572  * It expects i_mutex to be grabbed unless we work on a block device or similar
2573  * object which does not need locking at all.
2574  *
2575  * This function does *not* take care of syncing data in case of O_SYNC write.
2576  * A caller has to handle it. This is mainly due to the fact that we want to
2577  * avoid syncing under i_mutex.
2578  */
2579 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2580                                  unsigned long nr_segs)
2581 {
2582         struct file *file = iocb->ki_filp;
2583         struct address_space * mapping = file->f_mapping;
2584         size_t ocount;          /* original count */
2585         size_t count;           /* after file limit checks */
2586         struct inode    *inode = mapping->host;
2587         loff_t          pos = iocb->ki_pos;
2588         ssize_t         written = 0;
2589         ssize_t         err;
2590         ssize_t         status;
2591         struct iov_iter from;
2592
2593         ocount = 0;
2594         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2595         if (err)
2596                 return err;
2597
2598         count = ocount;
2599
2600         /* We can write back this queue in page reclaim */
2601         current->backing_dev_info = mapping->backing_dev_info;
2602         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2603         if (err)
2604                 goto out;
2605
2606         if (count == 0)
2607                 goto out;
2608
2609         err = file_remove_suid(file);
2610         if (err)
2611                 goto out;
2612
2613         err = file_update_time(file);
2614         if (err)
2615                 goto out;
2616
2617         iov_iter_init(&from, iov, nr_segs, count, 0);
2618
2619         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2620         if (unlikely(file->f_flags & O_DIRECT)) {
2621                 loff_t endbyte;
2622
2623                 written = generic_file_direct_write(iocb, iov, &from.nr_segs, pos,
2624                                                         count, ocount);
2625                 if (written < 0 || written == count)
2626                         goto out;
2627                 iov_iter_advance(&from, written);
2628
2629                 /*
2630                  * direct-io write to a hole: fall through to buffered I/O
2631                  * for completing the rest of the request.
2632                  */
2633                 pos += written;
2634                 count -= written;
2635
2636                 status = generic_perform_write(file, &from, pos);
2637                 /*
2638                  * If generic_perform_write() returned a synchronous error
2639                  * then we want to return the number of bytes which were
2640                  * direct-written, or the error code if that was zero.  Note
2641                  * that this differs from normal direct-io semantics, which
2642                  * will return -EFOO even if some bytes were written.
2643                  */
2644                 if (unlikely(status < 0) && !written) {
2645                         err = status;
2646                         goto out;
2647                 }
2648                 iocb->ki_pos = pos + status;
2649                 /*
2650                  * We need to ensure that the page cache pages are written to
2651                  * disk and invalidated to preserve the expected O_DIRECT
2652                  * semantics.
2653                  */
2654                 endbyte = pos + status - 1;
2655                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2656                 if (err == 0) {
2657                         written += status;
2658                         invalidate_mapping_pages(mapping,
2659                                                  pos >> PAGE_CACHE_SHIFT,
2660                                                  endbyte >> PAGE_CACHE_SHIFT);
2661                 } else {
2662                         /*
2663                          * We don't know how much we wrote, so just return
2664                          * the number of bytes which were direct-written
2665                          */
2666                 }
2667         } else {
2668                 written = generic_perform_write(file, &from, pos);
2669                 if (likely(written >= 0))
2670                         iocb->ki_pos = pos + written;
2671         }
2672 out:
2673         current->backing_dev_info = NULL;
2674         return written ? written : err;
2675 }
2676 EXPORT_SYMBOL(__generic_file_aio_write);
2677
2678 /**
2679  * generic_file_aio_write - write data to a file
2680  * @iocb:       IO state structure
2681  * @iov:        vector with data to write
2682  * @nr_segs:    number of segments in the vector
2683  * @pos:        position in file where to write
2684  *
2685  * This is a wrapper around __generic_file_aio_write() to be used by most
2686  * filesystems. It takes care of syncing the file in case of O_SYNC file
2687  * and acquires i_mutex as needed.
2688  */
2689 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2690                 unsigned long nr_segs, loff_t pos)
2691 {
2692         struct file *file = iocb->ki_filp;
2693         struct inode *inode = file->f_mapping->host;
2694         ssize_t ret;
2695
2696         BUG_ON(iocb->ki_pos != pos);
2697
2698         mutex_lock(&inode->i_mutex);
2699         ret = __generic_file_aio_write(iocb, iov, nr_segs);
2700         mutex_unlock(&inode->i_mutex);
2701
2702         if (ret > 0) {
2703                 ssize_t err;
2704
2705                 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2706                 if (err < 0)
2707                         ret = err;
2708         }
2709         return ret;
2710 }
2711 EXPORT_SYMBOL(generic_file_aio_write);
2712
2713 /**
2714  * try_to_release_page() - release old fs-specific metadata on a page
2715  *
2716  * @page: the page which the kernel is trying to free
2717  * @gfp_mask: memory allocation flags (and I/O mode)
2718  *
2719  * The address_space is to try to release any data against the page
2720  * (presumably at page->private).  If the release was successful, return `1'.
2721  * Otherwise return zero.
2722  *
2723  * This may also be called if PG_fscache is set on a page, indicating that the
2724  * page is known to the local caching routines.
2725  *
2726  * The @gfp_mask argument specifies whether I/O may be performed to release
2727  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2728  *
2729  */
2730 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2731 {
2732         struct address_space * const mapping = page->mapping;
2733
2734         BUG_ON(!PageLocked(page));
2735         if (PageWriteback(page))
2736                 return 0;
2737
2738         if (mapping && mapping->a_ops->releasepage)
2739                 return mapping->a_ops->releasepage(page, gfp_mask);
2740         return try_to_free_buffers(page);
2741 }
2742
2743 EXPORT_SYMBOL(try_to_release_page);