dax: move writeback calls into the filesystems
[cascardo/linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem              (truncate_pagecache)
66  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock             (exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page               (access_process_vm)
80  *
81  *  ->i_mutex                   (generic_perform_write)
82  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
99  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock        (page_remove_rmap->mem_cgroup_begin_page_stat)
105  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
107  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112
113 static void page_cache_tree_delete(struct address_space *mapping,
114                                    struct page *page, void *shadow)
115 {
116         struct radix_tree_node *node;
117         unsigned long index;
118         unsigned int offset;
119         unsigned int tag;
120         void **slot;
121
122         VM_BUG_ON(!PageLocked(page));
123
124         __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125
126         if (shadow) {
127                 mapping->nrexceptional++;
128                 /*
129                  * Make sure the nrexceptional update is committed before
130                  * the nrpages update so that final truncate racing
131                  * with reclaim does not see both counters 0 at the
132                  * same time and miss a shadow entry.
133                  */
134                 smp_wmb();
135         }
136         mapping->nrpages--;
137
138         if (!node) {
139                 /* Clear direct pointer tags in root node */
140                 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
141                 radix_tree_replace_slot(slot, shadow);
142                 return;
143         }
144
145         /* Clear tree tags for the removed page */
146         index = page->index;
147         offset = index & RADIX_TREE_MAP_MASK;
148         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
149                 if (test_bit(offset, node->tags[tag]))
150                         radix_tree_tag_clear(&mapping->page_tree, index, tag);
151         }
152
153         /* Delete page, swap shadow entry */
154         radix_tree_replace_slot(slot, shadow);
155         workingset_node_pages_dec(node);
156         if (shadow)
157                 workingset_node_shadows_inc(node);
158         else
159                 if (__radix_tree_delete_node(&mapping->page_tree, node))
160                         return;
161
162         /*
163          * Track node that only contains shadow entries.
164          *
165          * Avoid acquiring the list_lru lock if already tracked.  The
166          * list_empty() test is safe as node->private_list is
167          * protected by mapping->tree_lock.
168          */
169         if (!workingset_node_pages(node) &&
170             list_empty(&node->private_list)) {
171                 node->private_data = mapping;
172                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
173         }
174 }
175
176 /*
177  * Delete a page from the page cache and free it. Caller has to make
178  * sure the page is locked and that nobody else uses it - or that usage
179  * is safe.  The caller must hold the mapping's tree_lock and
180  * mem_cgroup_begin_page_stat().
181  */
182 void __delete_from_page_cache(struct page *page, void *shadow,
183                               struct mem_cgroup *memcg)
184 {
185         struct address_space *mapping = page->mapping;
186
187         trace_mm_filemap_delete_from_page_cache(page);
188         /*
189          * if we're uptodate, flush out into the cleancache, otherwise
190          * invalidate any existing cleancache entries.  We can't leave
191          * stale data around in the cleancache once our page is gone
192          */
193         if (PageUptodate(page) && PageMappedToDisk(page))
194                 cleancache_put_page(page);
195         else
196                 cleancache_invalidate_page(mapping, page);
197
198         page_cache_tree_delete(mapping, page, shadow);
199
200         page->mapping = NULL;
201         /* Leave page->index set: truncation lookup relies upon it */
202
203         /* hugetlb pages do not participate in page cache accounting. */
204         if (!PageHuge(page))
205                 __dec_zone_page_state(page, NR_FILE_PAGES);
206         if (PageSwapBacked(page))
207                 __dec_zone_page_state(page, NR_SHMEM);
208         VM_BUG_ON_PAGE(page_mapped(page), page);
209
210         /*
211          * At this point page must be either written or cleaned by truncate.
212          * Dirty page here signals a bug and loss of unwritten data.
213          *
214          * This fixes dirty accounting after removing the page entirely but
215          * leaves PageDirty set: it has no effect for truncated page and
216          * anyway will be cleared before returning page into buddy allocator.
217          */
218         if (WARN_ON_ONCE(PageDirty(page)))
219                 account_page_cleaned(page, mapping, memcg,
220                                      inode_to_wb(mapping->host));
221 }
222
223 /**
224  * delete_from_page_cache - delete page from page cache
225  * @page: the page which the kernel is trying to remove from page cache
226  *
227  * This must be called only on pages that have been verified to be in the page
228  * cache and locked.  It will never put the page into the free list, the caller
229  * has a reference on the page.
230  */
231 void delete_from_page_cache(struct page *page)
232 {
233         struct address_space *mapping = page->mapping;
234         struct mem_cgroup *memcg;
235         unsigned long flags;
236
237         void (*freepage)(struct page *);
238
239         BUG_ON(!PageLocked(page));
240
241         freepage = mapping->a_ops->freepage;
242
243         memcg = mem_cgroup_begin_page_stat(page);
244         spin_lock_irqsave(&mapping->tree_lock, flags);
245         __delete_from_page_cache(page, NULL, memcg);
246         spin_unlock_irqrestore(&mapping->tree_lock, flags);
247         mem_cgroup_end_page_stat(memcg);
248
249         if (freepage)
250                 freepage(page);
251         page_cache_release(page);
252 }
253 EXPORT_SYMBOL(delete_from_page_cache);
254
255 static int filemap_check_errors(struct address_space *mapping)
256 {
257         int ret = 0;
258         /* Check for outstanding write errors */
259         if (test_bit(AS_ENOSPC, &mapping->flags) &&
260             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
261                 ret = -ENOSPC;
262         if (test_bit(AS_EIO, &mapping->flags) &&
263             test_and_clear_bit(AS_EIO, &mapping->flags))
264                 ret = -EIO;
265         return ret;
266 }
267
268 /**
269  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
270  * @mapping:    address space structure to write
271  * @start:      offset in bytes where the range starts
272  * @end:        offset in bytes where the range ends (inclusive)
273  * @sync_mode:  enable synchronous operation
274  *
275  * Start writeback against all of a mapping's dirty pages that lie
276  * within the byte offsets <start, end> inclusive.
277  *
278  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
279  * opposed to a regular memory cleansing writeback.  The difference between
280  * these two operations is that if a dirty page/buffer is encountered, it must
281  * be waited upon, and not just skipped over.
282  */
283 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
284                                 loff_t end, int sync_mode)
285 {
286         int ret;
287         struct writeback_control wbc = {
288                 .sync_mode = sync_mode,
289                 .nr_to_write = LONG_MAX,
290                 .range_start = start,
291                 .range_end = end,
292         };
293
294         if (!mapping_cap_writeback_dirty(mapping))
295                 return 0;
296
297         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
298         ret = do_writepages(mapping, &wbc);
299         wbc_detach_inode(&wbc);
300         return ret;
301 }
302
303 static inline int __filemap_fdatawrite(struct address_space *mapping,
304         int sync_mode)
305 {
306         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
307 }
308
309 int filemap_fdatawrite(struct address_space *mapping)
310 {
311         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
312 }
313 EXPORT_SYMBOL(filemap_fdatawrite);
314
315 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
316                                 loff_t end)
317 {
318         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
319 }
320 EXPORT_SYMBOL(filemap_fdatawrite_range);
321
322 /**
323  * filemap_flush - mostly a non-blocking flush
324  * @mapping:    target address_space
325  *
326  * This is a mostly non-blocking flush.  Not suitable for data-integrity
327  * purposes - I/O may not be started against all dirty pages.
328  */
329 int filemap_flush(struct address_space *mapping)
330 {
331         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
332 }
333 EXPORT_SYMBOL(filemap_flush);
334
335 static int __filemap_fdatawait_range(struct address_space *mapping,
336                                      loff_t start_byte, loff_t end_byte)
337 {
338         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
339         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
340         struct pagevec pvec;
341         int nr_pages;
342         int ret = 0;
343
344         if (end_byte < start_byte)
345                 goto out;
346
347         pagevec_init(&pvec, 0);
348         while ((index <= end) &&
349                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
350                         PAGECACHE_TAG_WRITEBACK,
351                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
352                 unsigned i;
353
354                 for (i = 0; i < nr_pages; i++) {
355                         struct page *page = pvec.pages[i];
356
357                         /* until radix tree lookup accepts end_index */
358                         if (page->index > end)
359                                 continue;
360
361                         wait_on_page_writeback(page);
362                         if (TestClearPageError(page))
363                                 ret = -EIO;
364                 }
365                 pagevec_release(&pvec);
366                 cond_resched();
367         }
368 out:
369         return ret;
370 }
371
372 /**
373  * filemap_fdatawait_range - wait for writeback to complete
374  * @mapping:            address space structure to wait for
375  * @start_byte:         offset in bytes where the range starts
376  * @end_byte:           offset in bytes where the range ends (inclusive)
377  *
378  * Walk the list of under-writeback pages of the given address space
379  * in the given range and wait for all of them.  Check error status of
380  * the address space and return it.
381  *
382  * Since the error status of the address space is cleared by this function,
383  * callers are responsible for checking the return value and handling and/or
384  * reporting the error.
385  */
386 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
387                             loff_t end_byte)
388 {
389         int ret, ret2;
390
391         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
392         ret2 = filemap_check_errors(mapping);
393         if (!ret)
394                 ret = ret2;
395
396         return ret;
397 }
398 EXPORT_SYMBOL(filemap_fdatawait_range);
399
400 /**
401  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
402  * @mapping: address space structure to wait for
403  *
404  * Walk the list of under-writeback pages of the given address space
405  * and wait for all of them.  Unlike filemap_fdatawait(), this function
406  * does not clear error status of the address space.
407  *
408  * Use this function if callers don't handle errors themselves.  Expected
409  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
410  * fsfreeze(8)
411  */
412 void filemap_fdatawait_keep_errors(struct address_space *mapping)
413 {
414         loff_t i_size = i_size_read(mapping->host);
415
416         if (i_size == 0)
417                 return;
418
419         __filemap_fdatawait_range(mapping, 0, i_size - 1);
420 }
421
422 /**
423  * filemap_fdatawait - wait for all under-writeback pages to complete
424  * @mapping: address space structure to wait for
425  *
426  * Walk the list of under-writeback pages of the given address space
427  * and wait for all of them.  Check error status of the address space
428  * and return it.
429  *
430  * Since the error status of the address space is cleared by this function,
431  * callers are responsible for checking the return value and handling and/or
432  * reporting the error.
433  */
434 int filemap_fdatawait(struct address_space *mapping)
435 {
436         loff_t i_size = i_size_read(mapping->host);
437
438         if (i_size == 0)
439                 return 0;
440
441         return filemap_fdatawait_range(mapping, 0, i_size - 1);
442 }
443 EXPORT_SYMBOL(filemap_fdatawait);
444
445 int filemap_write_and_wait(struct address_space *mapping)
446 {
447         int err = 0;
448
449         if ((!dax_mapping(mapping) && mapping->nrpages) ||
450             (dax_mapping(mapping) && mapping->nrexceptional)) {
451                 err = filemap_fdatawrite(mapping);
452                 /*
453                  * Even if the above returned error, the pages may be
454                  * written partially (e.g. -ENOSPC), so we wait for it.
455                  * But the -EIO is special case, it may indicate the worst
456                  * thing (e.g. bug) happened, so we avoid waiting for it.
457                  */
458                 if (err != -EIO) {
459                         int err2 = filemap_fdatawait(mapping);
460                         if (!err)
461                                 err = err2;
462                 }
463         } else {
464                 err = filemap_check_errors(mapping);
465         }
466         return err;
467 }
468 EXPORT_SYMBOL(filemap_write_and_wait);
469
470 /**
471  * filemap_write_and_wait_range - write out & wait on a file range
472  * @mapping:    the address_space for the pages
473  * @lstart:     offset in bytes where the range starts
474  * @lend:       offset in bytes where the range ends (inclusive)
475  *
476  * Write out and wait upon file offsets lstart->lend, inclusive.
477  *
478  * Note that `lend' is inclusive (describes the last byte to be written) so
479  * that this function can be used to write to the very end-of-file (end = -1).
480  */
481 int filemap_write_and_wait_range(struct address_space *mapping,
482                                  loff_t lstart, loff_t lend)
483 {
484         int err = 0;
485
486         if ((!dax_mapping(mapping) && mapping->nrpages) ||
487             (dax_mapping(mapping) && mapping->nrexceptional)) {
488                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
489                                                  WB_SYNC_ALL);
490                 /* See comment of filemap_write_and_wait() */
491                 if (err != -EIO) {
492                         int err2 = filemap_fdatawait_range(mapping,
493                                                 lstart, lend);
494                         if (!err)
495                                 err = err2;
496                 }
497         } else {
498                 err = filemap_check_errors(mapping);
499         }
500         return err;
501 }
502 EXPORT_SYMBOL(filemap_write_and_wait_range);
503
504 /**
505  * replace_page_cache_page - replace a pagecache page with a new one
506  * @old:        page to be replaced
507  * @new:        page to replace with
508  * @gfp_mask:   allocation mode
509  *
510  * This function replaces a page in the pagecache with a new one.  On
511  * success it acquires the pagecache reference for the new page and
512  * drops it for the old page.  Both the old and new pages must be
513  * locked.  This function does not add the new page to the LRU, the
514  * caller must do that.
515  *
516  * The remove + add is atomic.  The only way this function can fail is
517  * memory allocation failure.
518  */
519 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
520 {
521         int error;
522
523         VM_BUG_ON_PAGE(!PageLocked(old), old);
524         VM_BUG_ON_PAGE(!PageLocked(new), new);
525         VM_BUG_ON_PAGE(new->mapping, new);
526
527         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
528         if (!error) {
529                 struct address_space *mapping = old->mapping;
530                 void (*freepage)(struct page *);
531                 struct mem_cgroup *memcg;
532                 unsigned long flags;
533
534                 pgoff_t offset = old->index;
535                 freepage = mapping->a_ops->freepage;
536
537                 page_cache_get(new);
538                 new->mapping = mapping;
539                 new->index = offset;
540
541                 memcg = mem_cgroup_begin_page_stat(old);
542                 spin_lock_irqsave(&mapping->tree_lock, flags);
543                 __delete_from_page_cache(old, NULL, memcg);
544                 error = radix_tree_insert(&mapping->page_tree, offset, new);
545                 BUG_ON(error);
546                 mapping->nrpages++;
547
548                 /*
549                  * hugetlb pages do not participate in page cache accounting.
550                  */
551                 if (!PageHuge(new))
552                         __inc_zone_page_state(new, NR_FILE_PAGES);
553                 if (PageSwapBacked(new))
554                         __inc_zone_page_state(new, NR_SHMEM);
555                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
556                 mem_cgroup_end_page_stat(memcg);
557                 mem_cgroup_replace_page(old, new);
558                 radix_tree_preload_end();
559                 if (freepage)
560                         freepage(old);
561                 page_cache_release(old);
562         }
563
564         return error;
565 }
566 EXPORT_SYMBOL_GPL(replace_page_cache_page);
567
568 static int page_cache_tree_insert(struct address_space *mapping,
569                                   struct page *page, void **shadowp)
570 {
571         struct radix_tree_node *node;
572         void **slot;
573         int error;
574
575         error = __radix_tree_create(&mapping->page_tree, page->index,
576                                     &node, &slot);
577         if (error)
578                 return error;
579         if (*slot) {
580                 void *p;
581
582                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
583                 if (!radix_tree_exceptional_entry(p))
584                         return -EEXIST;
585
586                 if (WARN_ON(dax_mapping(mapping)))
587                         return -EINVAL;
588
589                 if (shadowp)
590                         *shadowp = p;
591                 mapping->nrexceptional--;
592                 if (node)
593                         workingset_node_shadows_dec(node);
594         }
595         radix_tree_replace_slot(slot, page);
596         mapping->nrpages++;
597         if (node) {
598                 workingset_node_pages_inc(node);
599                 /*
600                  * Don't track node that contains actual pages.
601                  *
602                  * Avoid acquiring the list_lru lock if already
603                  * untracked.  The list_empty() test is safe as
604                  * node->private_list is protected by
605                  * mapping->tree_lock.
606                  */
607                 if (!list_empty(&node->private_list))
608                         list_lru_del(&workingset_shadow_nodes,
609                                      &node->private_list);
610         }
611         return 0;
612 }
613
614 static int __add_to_page_cache_locked(struct page *page,
615                                       struct address_space *mapping,
616                                       pgoff_t offset, gfp_t gfp_mask,
617                                       void **shadowp)
618 {
619         int huge = PageHuge(page);
620         struct mem_cgroup *memcg;
621         int error;
622
623         VM_BUG_ON_PAGE(!PageLocked(page), page);
624         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
625
626         if (!huge) {
627                 error = mem_cgroup_try_charge(page, current->mm,
628                                               gfp_mask, &memcg, false);
629                 if (error)
630                         return error;
631         }
632
633         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
634         if (error) {
635                 if (!huge)
636                         mem_cgroup_cancel_charge(page, memcg, false);
637                 return error;
638         }
639
640         page_cache_get(page);
641         page->mapping = mapping;
642         page->index = offset;
643
644         spin_lock_irq(&mapping->tree_lock);
645         error = page_cache_tree_insert(mapping, page, shadowp);
646         radix_tree_preload_end();
647         if (unlikely(error))
648                 goto err_insert;
649
650         /* hugetlb pages do not participate in page cache accounting. */
651         if (!huge)
652                 __inc_zone_page_state(page, NR_FILE_PAGES);
653         spin_unlock_irq(&mapping->tree_lock);
654         if (!huge)
655                 mem_cgroup_commit_charge(page, memcg, false, false);
656         trace_mm_filemap_add_to_page_cache(page);
657         return 0;
658 err_insert:
659         page->mapping = NULL;
660         /* Leave page->index set: truncation relies upon it */
661         spin_unlock_irq(&mapping->tree_lock);
662         if (!huge)
663                 mem_cgroup_cancel_charge(page, memcg, false);
664         page_cache_release(page);
665         return error;
666 }
667
668 /**
669  * add_to_page_cache_locked - add a locked page to the pagecache
670  * @page:       page to add
671  * @mapping:    the page's address_space
672  * @offset:     page index
673  * @gfp_mask:   page allocation mode
674  *
675  * This function is used to add a page to the pagecache. It must be locked.
676  * This function does not add the page to the LRU.  The caller must do that.
677  */
678 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
679                 pgoff_t offset, gfp_t gfp_mask)
680 {
681         return __add_to_page_cache_locked(page, mapping, offset,
682                                           gfp_mask, NULL);
683 }
684 EXPORT_SYMBOL(add_to_page_cache_locked);
685
686 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
687                                 pgoff_t offset, gfp_t gfp_mask)
688 {
689         void *shadow = NULL;
690         int ret;
691
692         __SetPageLocked(page);
693         ret = __add_to_page_cache_locked(page, mapping, offset,
694                                          gfp_mask, &shadow);
695         if (unlikely(ret))
696                 __ClearPageLocked(page);
697         else {
698                 /*
699                  * The page might have been evicted from cache only
700                  * recently, in which case it should be activated like
701                  * any other repeatedly accessed page.
702                  */
703                 if (shadow && workingset_refault(shadow)) {
704                         SetPageActive(page);
705                         workingset_activation(page);
706                 } else
707                         ClearPageActive(page);
708                 lru_cache_add(page);
709         }
710         return ret;
711 }
712 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
713
714 #ifdef CONFIG_NUMA
715 struct page *__page_cache_alloc(gfp_t gfp)
716 {
717         int n;
718         struct page *page;
719
720         if (cpuset_do_page_mem_spread()) {
721                 unsigned int cpuset_mems_cookie;
722                 do {
723                         cpuset_mems_cookie = read_mems_allowed_begin();
724                         n = cpuset_mem_spread_node();
725                         page = __alloc_pages_node(n, gfp, 0);
726                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
727
728                 return page;
729         }
730         return alloc_pages(gfp, 0);
731 }
732 EXPORT_SYMBOL(__page_cache_alloc);
733 #endif
734
735 /*
736  * In order to wait for pages to become available there must be
737  * waitqueues associated with pages. By using a hash table of
738  * waitqueues where the bucket discipline is to maintain all
739  * waiters on the same queue and wake all when any of the pages
740  * become available, and for the woken contexts to check to be
741  * sure the appropriate page became available, this saves space
742  * at a cost of "thundering herd" phenomena during rare hash
743  * collisions.
744  */
745 wait_queue_head_t *page_waitqueue(struct page *page)
746 {
747         const struct zone *zone = page_zone(page);
748
749         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
750 }
751 EXPORT_SYMBOL(page_waitqueue);
752
753 void wait_on_page_bit(struct page *page, int bit_nr)
754 {
755         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
756
757         if (test_bit(bit_nr, &page->flags))
758                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
759                                                         TASK_UNINTERRUPTIBLE);
760 }
761 EXPORT_SYMBOL(wait_on_page_bit);
762
763 int wait_on_page_bit_killable(struct page *page, int bit_nr)
764 {
765         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
766
767         if (!test_bit(bit_nr, &page->flags))
768                 return 0;
769
770         return __wait_on_bit(page_waitqueue(page), &wait,
771                              bit_wait_io, TASK_KILLABLE);
772 }
773
774 int wait_on_page_bit_killable_timeout(struct page *page,
775                                        int bit_nr, unsigned long timeout)
776 {
777         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
778
779         wait.key.timeout = jiffies + timeout;
780         if (!test_bit(bit_nr, &page->flags))
781                 return 0;
782         return __wait_on_bit(page_waitqueue(page), &wait,
783                              bit_wait_io_timeout, TASK_KILLABLE);
784 }
785 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
786
787 /**
788  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
789  * @page: Page defining the wait queue of interest
790  * @waiter: Waiter to add to the queue
791  *
792  * Add an arbitrary @waiter to the wait queue for the nominated @page.
793  */
794 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
795 {
796         wait_queue_head_t *q = page_waitqueue(page);
797         unsigned long flags;
798
799         spin_lock_irqsave(&q->lock, flags);
800         __add_wait_queue(q, waiter);
801         spin_unlock_irqrestore(&q->lock, flags);
802 }
803 EXPORT_SYMBOL_GPL(add_page_wait_queue);
804
805 /**
806  * unlock_page - unlock a locked page
807  * @page: the page
808  *
809  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
810  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
811  * mechanism between PageLocked pages and PageWriteback pages is shared.
812  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
813  *
814  * The mb is necessary to enforce ordering between the clear_bit and the read
815  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
816  */
817 void unlock_page(struct page *page)
818 {
819         page = compound_head(page);
820         VM_BUG_ON_PAGE(!PageLocked(page), page);
821         clear_bit_unlock(PG_locked, &page->flags);
822         smp_mb__after_atomic();
823         wake_up_page(page, PG_locked);
824 }
825 EXPORT_SYMBOL(unlock_page);
826
827 /**
828  * end_page_writeback - end writeback against a page
829  * @page: the page
830  */
831 void end_page_writeback(struct page *page)
832 {
833         /*
834          * TestClearPageReclaim could be used here but it is an atomic
835          * operation and overkill in this particular case. Failing to
836          * shuffle a page marked for immediate reclaim is too mild to
837          * justify taking an atomic operation penalty at the end of
838          * ever page writeback.
839          */
840         if (PageReclaim(page)) {
841                 ClearPageReclaim(page);
842                 rotate_reclaimable_page(page);
843         }
844
845         if (!test_clear_page_writeback(page))
846                 BUG();
847
848         smp_mb__after_atomic();
849         wake_up_page(page, PG_writeback);
850 }
851 EXPORT_SYMBOL(end_page_writeback);
852
853 /*
854  * After completing I/O on a page, call this routine to update the page
855  * flags appropriately
856  */
857 void page_endio(struct page *page, int rw, int err)
858 {
859         if (rw == READ) {
860                 if (!err) {
861                         SetPageUptodate(page);
862                 } else {
863                         ClearPageUptodate(page);
864                         SetPageError(page);
865                 }
866                 unlock_page(page);
867         } else { /* rw == WRITE */
868                 if (err) {
869                         SetPageError(page);
870                         if (page->mapping)
871                                 mapping_set_error(page->mapping, err);
872                 }
873                 end_page_writeback(page);
874         }
875 }
876 EXPORT_SYMBOL_GPL(page_endio);
877
878 /**
879  * __lock_page - get a lock on the page, assuming we need to sleep to get it
880  * @page: the page to lock
881  */
882 void __lock_page(struct page *page)
883 {
884         struct page *page_head = compound_head(page);
885         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
886
887         __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
888                                                         TASK_UNINTERRUPTIBLE);
889 }
890 EXPORT_SYMBOL(__lock_page);
891
892 int __lock_page_killable(struct page *page)
893 {
894         struct page *page_head = compound_head(page);
895         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
896
897         return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
898                                         bit_wait_io, TASK_KILLABLE);
899 }
900 EXPORT_SYMBOL_GPL(__lock_page_killable);
901
902 /*
903  * Return values:
904  * 1 - page is locked; mmap_sem is still held.
905  * 0 - page is not locked.
906  *     mmap_sem has been released (up_read()), unless flags had both
907  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
908  *     which case mmap_sem is still held.
909  *
910  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
911  * with the page locked and the mmap_sem unperturbed.
912  */
913 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
914                          unsigned int flags)
915 {
916         if (flags & FAULT_FLAG_ALLOW_RETRY) {
917                 /*
918                  * CAUTION! In this case, mmap_sem is not released
919                  * even though return 0.
920                  */
921                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
922                         return 0;
923
924                 up_read(&mm->mmap_sem);
925                 if (flags & FAULT_FLAG_KILLABLE)
926                         wait_on_page_locked_killable(page);
927                 else
928                         wait_on_page_locked(page);
929                 return 0;
930         } else {
931                 if (flags & FAULT_FLAG_KILLABLE) {
932                         int ret;
933
934                         ret = __lock_page_killable(page);
935                         if (ret) {
936                                 up_read(&mm->mmap_sem);
937                                 return 0;
938                         }
939                 } else
940                         __lock_page(page);
941                 return 1;
942         }
943 }
944
945 /**
946  * page_cache_next_hole - find the next hole (not-present entry)
947  * @mapping: mapping
948  * @index: index
949  * @max_scan: maximum range to search
950  *
951  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
952  * lowest indexed hole.
953  *
954  * Returns: the index of the hole if found, otherwise returns an index
955  * outside of the set specified (in which case 'return - index >=
956  * max_scan' will be true). In rare cases of index wrap-around, 0 will
957  * be returned.
958  *
959  * page_cache_next_hole may be called under rcu_read_lock. However,
960  * like radix_tree_gang_lookup, this will not atomically search a
961  * snapshot of the tree at a single point in time. For example, if a
962  * hole is created at index 5, then subsequently a hole is created at
963  * index 10, page_cache_next_hole covering both indexes may return 10
964  * if called under rcu_read_lock.
965  */
966 pgoff_t page_cache_next_hole(struct address_space *mapping,
967                              pgoff_t index, unsigned long max_scan)
968 {
969         unsigned long i;
970
971         for (i = 0; i < max_scan; i++) {
972                 struct page *page;
973
974                 page = radix_tree_lookup(&mapping->page_tree, index);
975                 if (!page || radix_tree_exceptional_entry(page))
976                         break;
977                 index++;
978                 if (index == 0)
979                         break;
980         }
981
982         return index;
983 }
984 EXPORT_SYMBOL(page_cache_next_hole);
985
986 /**
987  * page_cache_prev_hole - find the prev hole (not-present entry)
988  * @mapping: mapping
989  * @index: index
990  * @max_scan: maximum range to search
991  *
992  * Search backwards in the range [max(index-max_scan+1, 0), index] for
993  * the first hole.
994  *
995  * Returns: the index of the hole if found, otherwise returns an index
996  * outside of the set specified (in which case 'index - return >=
997  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
998  * will be returned.
999  *
1000  * page_cache_prev_hole may be called under rcu_read_lock. However,
1001  * like radix_tree_gang_lookup, this will not atomically search a
1002  * snapshot of the tree at a single point in time. For example, if a
1003  * hole is created at index 10, then subsequently a hole is created at
1004  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1005  * called under rcu_read_lock.
1006  */
1007 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1008                              pgoff_t index, unsigned long max_scan)
1009 {
1010         unsigned long i;
1011
1012         for (i = 0; i < max_scan; i++) {
1013                 struct page *page;
1014
1015                 page = radix_tree_lookup(&mapping->page_tree, index);
1016                 if (!page || radix_tree_exceptional_entry(page))
1017                         break;
1018                 index--;
1019                 if (index == ULONG_MAX)
1020                         break;
1021         }
1022
1023         return index;
1024 }
1025 EXPORT_SYMBOL(page_cache_prev_hole);
1026
1027 /**
1028  * find_get_entry - find and get a page cache entry
1029  * @mapping: the address_space to search
1030  * @offset: the page cache index
1031  *
1032  * Looks up the page cache slot at @mapping & @offset.  If there is a
1033  * page cache page, it is returned with an increased refcount.
1034  *
1035  * If the slot holds a shadow entry of a previously evicted page, or a
1036  * swap entry from shmem/tmpfs, it is returned.
1037  *
1038  * Otherwise, %NULL is returned.
1039  */
1040 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1041 {
1042         void **pagep;
1043         struct page *page;
1044
1045         rcu_read_lock();
1046 repeat:
1047         page = NULL;
1048         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1049         if (pagep) {
1050                 page = radix_tree_deref_slot(pagep);
1051                 if (unlikely(!page))
1052                         goto out;
1053                 if (radix_tree_exception(page)) {
1054                         if (radix_tree_deref_retry(page))
1055                                 goto repeat;
1056                         /*
1057                          * A shadow entry of a recently evicted page,
1058                          * or a swap entry from shmem/tmpfs.  Return
1059                          * it without attempting to raise page count.
1060                          */
1061                         goto out;
1062                 }
1063                 if (!page_cache_get_speculative(page))
1064                         goto repeat;
1065
1066                 /*
1067                  * Has the page moved?
1068                  * This is part of the lockless pagecache protocol. See
1069                  * include/linux/pagemap.h for details.
1070                  */
1071                 if (unlikely(page != *pagep)) {
1072                         page_cache_release(page);
1073                         goto repeat;
1074                 }
1075         }
1076 out:
1077         rcu_read_unlock();
1078
1079         return page;
1080 }
1081 EXPORT_SYMBOL(find_get_entry);
1082
1083 /**
1084  * find_lock_entry - locate, pin and lock a page cache entry
1085  * @mapping: the address_space to search
1086  * @offset: the page cache index
1087  *
1088  * Looks up the page cache slot at @mapping & @offset.  If there is a
1089  * page cache page, it is returned locked and with an increased
1090  * refcount.
1091  *
1092  * If the slot holds a shadow entry of a previously evicted page, or a
1093  * swap entry from shmem/tmpfs, it is returned.
1094  *
1095  * Otherwise, %NULL is returned.
1096  *
1097  * find_lock_entry() may sleep.
1098  */
1099 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1100 {
1101         struct page *page;
1102
1103 repeat:
1104         page = find_get_entry(mapping, offset);
1105         if (page && !radix_tree_exception(page)) {
1106                 lock_page(page);
1107                 /* Has the page been truncated? */
1108                 if (unlikely(page->mapping != mapping)) {
1109                         unlock_page(page);
1110                         page_cache_release(page);
1111                         goto repeat;
1112                 }
1113                 VM_BUG_ON_PAGE(page->index != offset, page);
1114         }
1115         return page;
1116 }
1117 EXPORT_SYMBOL(find_lock_entry);
1118
1119 /**
1120  * pagecache_get_page - find and get a page reference
1121  * @mapping: the address_space to search
1122  * @offset: the page index
1123  * @fgp_flags: PCG flags
1124  * @gfp_mask: gfp mask to use for the page cache data page allocation
1125  *
1126  * Looks up the page cache slot at @mapping & @offset.
1127  *
1128  * PCG flags modify how the page is returned.
1129  *
1130  * FGP_ACCESSED: the page will be marked accessed
1131  * FGP_LOCK: Page is return locked
1132  * FGP_CREAT: If page is not present then a new page is allocated using
1133  *              @gfp_mask and added to the page cache and the VM's LRU
1134  *              list. The page is returned locked and with an increased
1135  *              refcount. Otherwise, %NULL is returned.
1136  *
1137  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1138  * if the GFP flags specified for FGP_CREAT are atomic.
1139  *
1140  * If there is a page cache page, it is returned with an increased refcount.
1141  */
1142 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1143         int fgp_flags, gfp_t gfp_mask)
1144 {
1145         struct page *page;
1146
1147 repeat:
1148         page = find_get_entry(mapping, offset);
1149         if (radix_tree_exceptional_entry(page))
1150                 page = NULL;
1151         if (!page)
1152                 goto no_page;
1153
1154         if (fgp_flags & FGP_LOCK) {
1155                 if (fgp_flags & FGP_NOWAIT) {
1156                         if (!trylock_page(page)) {
1157                                 page_cache_release(page);
1158                                 return NULL;
1159                         }
1160                 } else {
1161                         lock_page(page);
1162                 }
1163
1164                 /* Has the page been truncated? */
1165                 if (unlikely(page->mapping != mapping)) {
1166                         unlock_page(page);
1167                         page_cache_release(page);
1168                         goto repeat;
1169                 }
1170                 VM_BUG_ON_PAGE(page->index != offset, page);
1171         }
1172
1173         if (page && (fgp_flags & FGP_ACCESSED))
1174                 mark_page_accessed(page);
1175
1176 no_page:
1177         if (!page && (fgp_flags & FGP_CREAT)) {
1178                 int err;
1179                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1180                         gfp_mask |= __GFP_WRITE;
1181                 if (fgp_flags & FGP_NOFS)
1182                         gfp_mask &= ~__GFP_FS;
1183
1184                 page = __page_cache_alloc(gfp_mask);
1185                 if (!page)
1186                         return NULL;
1187
1188                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1189                         fgp_flags |= FGP_LOCK;
1190
1191                 /* Init accessed so avoid atomic mark_page_accessed later */
1192                 if (fgp_flags & FGP_ACCESSED)
1193                         __SetPageReferenced(page);
1194
1195                 err = add_to_page_cache_lru(page, mapping, offset,
1196                                 gfp_mask & GFP_RECLAIM_MASK);
1197                 if (unlikely(err)) {
1198                         page_cache_release(page);
1199                         page = NULL;
1200                         if (err == -EEXIST)
1201                                 goto repeat;
1202                 }
1203         }
1204
1205         return page;
1206 }
1207 EXPORT_SYMBOL(pagecache_get_page);
1208
1209 /**
1210  * find_get_entries - gang pagecache lookup
1211  * @mapping:    The address_space to search
1212  * @start:      The starting page cache index
1213  * @nr_entries: The maximum number of entries
1214  * @entries:    Where the resulting entries are placed
1215  * @indices:    The cache indices corresponding to the entries in @entries
1216  *
1217  * find_get_entries() will search for and return a group of up to
1218  * @nr_entries entries in the mapping.  The entries are placed at
1219  * @entries.  find_get_entries() takes a reference against any actual
1220  * pages it returns.
1221  *
1222  * The search returns a group of mapping-contiguous page cache entries
1223  * with ascending indexes.  There may be holes in the indices due to
1224  * not-present pages.
1225  *
1226  * Any shadow entries of evicted pages, or swap entries from
1227  * shmem/tmpfs, are included in the returned array.
1228  *
1229  * find_get_entries() returns the number of pages and shadow entries
1230  * which were found.
1231  */
1232 unsigned find_get_entries(struct address_space *mapping,
1233                           pgoff_t start, unsigned int nr_entries,
1234                           struct page **entries, pgoff_t *indices)
1235 {
1236         void **slot;
1237         unsigned int ret = 0;
1238         struct radix_tree_iter iter;
1239
1240         if (!nr_entries)
1241                 return 0;
1242
1243         rcu_read_lock();
1244 restart:
1245         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1246                 struct page *page;
1247 repeat:
1248                 page = radix_tree_deref_slot(slot);
1249                 if (unlikely(!page))
1250                         continue;
1251                 if (radix_tree_exception(page)) {
1252                         if (radix_tree_deref_retry(page))
1253                                 goto restart;
1254                         /*
1255                          * A shadow entry of a recently evicted page, a swap
1256                          * entry from shmem/tmpfs or a DAX entry.  Return it
1257                          * without attempting to raise page count.
1258                          */
1259                         goto export;
1260                 }
1261                 if (!page_cache_get_speculative(page))
1262                         goto repeat;
1263
1264                 /* Has the page moved? */
1265                 if (unlikely(page != *slot)) {
1266                         page_cache_release(page);
1267                         goto repeat;
1268                 }
1269 export:
1270                 indices[ret] = iter.index;
1271                 entries[ret] = page;
1272                 if (++ret == nr_entries)
1273                         break;
1274         }
1275         rcu_read_unlock();
1276         return ret;
1277 }
1278
1279 /**
1280  * find_get_pages - gang pagecache lookup
1281  * @mapping:    The address_space to search
1282  * @start:      The starting page index
1283  * @nr_pages:   The maximum number of pages
1284  * @pages:      Where the resulting pages are placed
1285  *
1286  * find_get_pages() will search for and return a group of up to
1287  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1288  * find_get_pages() takes a reference against the returned pages.
1289  *
1290  * The search returns a group of mapping-contiguous pages with ascending
1291  * indexes.  There may be holes in the indices due to not-present pages.
1292  *
1293  * find_get_pages() returns the number of pages which were found.
1294  */
1295 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1296                             unsigned int nr_pages, struct page **pages)
1297 {
1298         struct radix_tree_iter iter;
1299         void **slot;
1300         unsigned ret = 0;
1301
1302         if (unlikely(!nr_pages))
1303                 return 0;
1304
1305         rcu_read_lock();
1306 restart:
1307         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1308                 struct page *page;
1309 repeat:
1310                 page = radix_tree_deref_slot(slot);
1311                 if (unlikely(!page))
1312                         continue;
1313
1314                 if (radix_tree_exception(page)) {
1315                         if (radix_tree_deref_retry(page)) {
1316                                 /*
1317                                  * Transient condition which can only trigger
1318                                  * when entry at index 0 moves out of or back
1319                                  * to root: none yet gotten, safe to restart.
1320                                  */
1321                                 WARN_ON(iter.index);
1322                                 goto restart;
1323                         }
1324                         /*
1325                          * A shadow entry of a recently evicted page,
1326                          * or a swap entry from shmem/tmpfs.  Skip
1327                          * over it.
1328                          */
1329                         continue;
1330                 }
1331
1332                 if (!page_cache_get_speculative(page))
1333                         goto repeat;
1334
1335                 /* Has the page moved? */
1336                 if (unlikely(page != *slot)) {
1337                         page_cache_release(page);
1338                         goto repeat;
1339                 }
1340
1341                 pages[ret] = page;
1342                 if (++ret == nr_pages)
1343                         break;
1344         }
1345
1346         rcu_read_unlock();
1347         return ret;
1348 }
1349
1350 /**
1351  * find_get_pages_contig - gang contiguous pagecache lookup
1352  * @mapping:    The address_space to search
1353  * @index:      The starting page index
1354  * @nr_pages:   The maximum number of pages
1355  * @pages:      Where the resulting pages are placed
1356  *
1357  * find_get_pages_contig() works exactly like find_get_pages(), except
1358  * that the returned number of pages are guaranteed to be contiguous.
1359  *
1360  * find_get_pages_contig() returns the number of pages which were found.
1361  */
1362 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1363                                unsigned int nr_pages, struct page **pages)
1364 {
1365         struct radix_tree_iter iter;
1366         void **slot;
1367         unsigned int ret = 0;
1368
1369         if (unlikely(!nr_pages))
1370                 return 0;
1371
1372         rcu_read_lock();
1373 restart:
1374         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1375                 struct page *page;
1376 repeat:
1377                 page = radix_tree_deref_slot(slot);
1378                 /* The hole, there no reason to continue */
1379                 if (unlikely(!page))
1380                         break;
1381
1382                 if (radix_tree_exception(page)) {
1383                         if (radix_tree_deref_retry(page)) {
1384                                 /*
1385                                  * Transient condition which can only trigger
1386                                  * when entry at index 0 moves out of or back
1387                                  * to root: none yet gotten, safe to restart.
1388                                  */
1389                                 goto restart;
1390                         }
1391                         /*
1392                          * A shadow entry of a recently evicted page,
1393                          * or a swap entry from shmem/tmpfs.  Stop
1394                          * looking for contiguous pages.
1395                          */
1396                         break;
1397                 }
1398
1399                 if (!page_cache_get_speculative(page))
1400                         goto repeat;
1401
1402                 /* Has the page moved? */
1403                 if (unlikely(page != *slot)) {
1404                         page_cache_release(page);
1405                         goto repeat;
1406                 }
1407
1408                 /*
1409                  * must check mapping and index after taking the ref.
1410                  * otherwise we can get both false positives and false
1411                  * negatives, which is just confusing to the caller.
1412                  */
1413                 if (page->mapping == NULL || page->index != iter.index) {
1414                         page_cache_release(page);
1415                         break;
1416                 }
1417
1418                 pages[ret] = page;
1419                 if (++ret == nr_pages)
1420                         break;
1421         }
1422         rcu_read_unlock();
1423         return ret;
1424 }
1425 EXPORT_SYMBOL(find_get_pages_contig);
1426
1427 /**
1428  * find_get_pages_tag - find and return pages that match @tag
1429  * @mapping:    the address_space to search
1430  * @index:      the starting page index
1431  * @tag:        the tag index
1432  * @nr_pages:   the maximum number of pages
1433  * @pages:      where the resulting pages are placed
1434  *
1435  * Like find_get_pages, except we only return pages which are tagged with
1436  * @tag.   We update @index to index the next page for the traversal.
1437  */
1438 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1439                         int tag, unsigned int nr_pages, struct page **pages)
1440 {
1441         struct radix_tree_iter iter;
1442         void **slot;
1443         unsigned ret = 0;
1444
1445         if (unlikely(!nr_pages))
1446                 return 0;
1447
1448         rcu_read_lock();
1449 restart:
1450         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1451                                    &iter, *index, tag) {
1452                 struct page *page;
1453 repeat:
1454                 page = radix_tree_deref_slot(slot);
1455                 if (unlikely(!page))
1456                         continue;
1457
1458                 if (radix_tree_exception(page)) {
1459                         if (radix_tree_deref_retry(page)) {
1460                                 /*
1461                                  * Transient condition which can only trigger
1462                                  * when entry at index 0 moves out of or back
1463                                  * to root: none yet gotten, safe to restart.
1464                                  */
1465                                 goto restart;
1466                         }
1467                         /*
1468                          * A shadow entry of a recently evicted page.
1469                          *
1470                          * Those entries should never be tagged, but
1471                          * this tree walk is lockless and the tags are
1472                          * looked up in bulk, one radix tree node at a
1473                          * time, so there is a sizable window for page
1474                          * reclaim to evict a page we saw tagged.
1475                          *
1476                          * Skip over it.
1477                          */
1478                         continue;
1479                 }
1480
1481                 if (!page_cache_get_speculative(page))
1482                         goto repeat;
1483
1484                 /* Has the page moved? */
1485                 if (unlikely(page != *slot)) {
1486                         page_cache_release(page);
1487                         goto repeat;
1488                 }
1489
1490                 pages[ret] = page;
1491                 if (++ret == nr_pages)
1492                         break;
1493         }
1494
1495         rcu_read_unlock();
1496
1497         if (ret)
1498                 *index = pages[ret - 1]->index + 1;
1499
1500         return ret;
1501 }
1502 EXPORT_SYMBOL(find_get_pages_tag);
1503
1504 /**
1505  * find_get_entries_tag - find and return entries that match @tag
1506  * @mapping:    the address_space to search
1507  * @start:      the starting page cache index
1508  * @tag:        the tag index
1509  * @nr_entries: the maximum number of entries
1510  * @entries:    where the resulting entries are placed
1511  * @indices:    the cache indices corresponding to the entries in @entries
1512  *
1513  * Like find_get_entries, except we only return entries which are tagged with
1514  * @tag.
1515  */
1516 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1517                         int tag, unsigned int nr_entries,
1518                         struct page **entries, pgoff_t *indices)
1519 {
1520         void **slot;
1521         unsigned int ret = 0;
1522         struct radix_tree_iter iter;
1523
1524         if (!nr_entries)
1525                 return 0;
1526
1527         rcu_read_lock();
1528 restart:
1529         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1530                                    &iter, start, tag) {
1531                 struct page *page;
1532 repeat:
1533                 page = radix_tree_deref_slot(slot);
1534                 if (unlikely(!page))
1535                         continue;
1536                 if (radix_tree_exception(page)) {
1537                         if (radix_tree_deref_retry(page)) {
1538                                 /*
1539                                  * Transient condition which can only trigger
1540                                  * when entry at index 0 moves out of or back
1541                                  * to root: none yet gotten, safe to restart.
1542                                  */
1543                                 goto restart;
1544                         }
1545
1546                         /*
1547                          * A shadow entry of a recently evicted page, a swap
1548                          * entry from shmem/tmpfs or a DAX entry.  Return it
1549                          * without attempting to raise page count.
1550                          */
1551                         goto export;
1552                 }
1553                 if (!page_cache_get_speculative(page))
1554                         goto repeat;
1555
1556                 /* Has the page moved? */
1557                 if (unlikely(page != *slot)) {
1558                         page_cache_release(page);
1559                         goto repeat;
1560                 }
1561 export:
1562                 indices[ret] = iter.index;
1563                 entries[ret] = page;
1564                 if (++ret == nr_entries)
1565                         break;
1566         }
1567         rcu_read_unlock();
1568         return ret;
1569 }
1570 EXPORT_SYMBOL(find_get_entries_tag);
1571
1572 /*
1573  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1574  * a _large_ part of the i/o request. Imagine the worst scenario:
1575  *
1576  *      ---R__________________________________________B__________
1577  *         ^ reading here                             ^ bad block(assume 4k)
1578  *
1579  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1580  * => failing the whole request => read(R) => read(R+1) =>
1581  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1582  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1583  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1584  *
1585  * It is going insane. Fix it by quickly scaling down the readahead size.
1586  */
1587 static void shrink_readahead_size_eio(struct file *filp,
1588                                         struct file_ra_state *ra)
1589 {
1590         ra->ra_pages /= 4;
1591 }
1592
1593 /**
1594  * do_generic_file_read - generic file read routine
1595  * @filp:       the file to read
1596  * @ppos:       current file position
1597  * @iter:       data destination
1598  * @written:    already copied
1599  *
1600  * This is a generic file read routine, and uses the
1601  * mapping->a_ops->readpage() function for the actual low-level stuff.
1602  *
1603  * This is really ugly. But the goto's actually try to clarify some
1604  * of the logic when it comes to error handling etc.
1605  */
1606 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1607                 struct iov_iter *iter, ssize_t written)
1608 {
1609         struct address_space *mapping = filp->f_mapping;
1610         struct inode *inode = mapping->host;
1611         struct file_ra_state *ra = &filp->f_ra;
1612         pgoff_t index;
1613         pgoff_t last_index;
1614         pgoff_t prev_index;
1615         unsigned long offset;      /* offset into pagecache page */
1616         unsigned int prev_offset;
1617         int error = 0;
1618
1619         index = *ppos >> PAGE_CACHE_SHIFT;
1620         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1621         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1622         last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1623         offset = *ppos & ~PAGE_CACHE_MASK;
1624
1625         for (;;) {
1626                 struct page *page;
1627                 pgoff_t end_index;
1628                 loff_t isize;
1629                 unsigned long nr, ret;
1630
1631                 cond_resched();
1632 find_page:
1633                 page = find_get_page(mapping, index);
1634                 if (!page) {
1635                         page_cache_sync_readahead(mapping,
1636                                         ra, filp,
1637                                         index, last_index - index);
1638                         page = find_get_page(mapping, index);
1639                         if (unlikely(page == NULL))
1640                                 goto no_cached_page;
1641                 }
1642                 if (PageReadahead(page)) {
1643                         page_cache_async_readahead(mapping,
1644                                         ra, filp, page,
1645                                         index, last_index - index);
1646                 }
1647                 if (!PageUptodate(page)) {
1648                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1649                                         !mapping->a_ops->is_partially_uptodate)
1650                                 goto page_not_up_to_date;
1651                         if (!trylock_page(page))
1652                                 goto page_not_up_to_date;
1653                         /* Did it get truncated before we got the lock? */
1654                         if (!page->mapping)
1655                                 goto page_not_up_to_date_locked;
1656                         if (!mapping->a_ops->is_partially_uptodate(page,
1657                                                         offset, iter->count))
1658                                 goto page_not_up_to_date_locked;
1659                         unlock_page(page);
1660                 }
1661 page_ok:
1662                 /*
1663                  * i_size must be checked after we know the page is Uptodate.
1664                  *
1665                  * Checking i_size after the check allows us to calculate
1666                  * the correct value for "nr", which means the zero-filled
1667                  * part of the page is not copied back to userspace (unless
1668                  * another truncate extends the file - this is desired though).
1669                  */
1670
1671                 isize = i_size_read(inode);
1672                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1673                 if (unlikely(!isize || index > end_index)) {
1674                         page_cache_release(page);
1675                         goto out;
1676                 }
1677
1678                 /* nr is the maximum number of bytes to copy from this page */
1679                 nr = PAGE_CACHE_SIZE;
1680                 if (index == end_index) {
1681                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1682                         if (nr <= offset) {
1683                                 page_cache_release(page);
1684                                 goto out;
1685                         }
1686                 }
1687                 nr = nr - offset;
1688
1689                 /* If users can be writing to this page using arbitrary
1690                  * virtual addresses, take care about potential aliasing
1691                  * before reading the page on the kernel side.
1692                  */
1693                 if (mapping_writably_mapped(mapping))
1694                         flush_dcache_page(page);
1695
1696                 /*
1697                  * When a sequential read accesses a page several times,
1698                  * only mark it as accessed the first time.
1699                  */
1700                 if (prev_index != index || offset != prev_offset)
1701                         mark_page_accessed(page);
1702                 prev_index = index;
1703
1704                 /*
1705                  * Ok, we have the page, and it's up-to-date, so
1706                  * now we can copy it to user space...
1707                  */
1708
1709                 ret = copy_page_to_iter(page, offset, nr, iter);
1710                 offset += ret;
1711                 index += offset >> PAGE_CACHE_SHIFT;
1712                 offset &= ~PAGE_CACHE_MASK;
1713                 prev_offset = offset;
1714
1715                 page_cache_release(page);
1716                 written += ret;
1717                 if (!iov_iter_count(iter))
1718                         goto out;
1719                 if (ret < nr) {
1720                         error = -EFAULT;
1721                         goto out;
1722                 }
1723                 continue;
1724
1725 page_not_up_to_date:
1726                 /* Get exclusive access to the page ... */
1727                 error = lock_page_killable(page);
1728                 if (unlikely(error))
1729                         goto readpage_error;
1730
1731 page_not_up_to_date_locked:
1732                 /* Did it get truncated before we got the lock? */
1733                 if (!page->mapping) {
1734                         unlock_page(page);
1735                         page_cache_release(page);
1736                         continue;
1737                 }
1738
1739                 /* Did somebody else fill it already? */
1740                 if (PageUptodate(page)) {
1741                         unlock_page(page);
1742                         goto page_ok;
1743                 }
1744
1745 readpage:
1746                 /*
1747                  * A previous I/O error may have been due to temporary
1748                  * failures, eg. multipath errors.
1749                  * PG_error will be set again if readpage fails.
1750                  */
1751                 ClearPageError(page);
1752                 /* Start the actual read. The read will unlock the page. */
1753                 error = mapping->a_ops->readpage(filp, page);
1754
1755                 if (unlikely(error)) {
1756                         if (error == AOP_TRUNCATED_PAGE) {
1757                                 page_cache_release(page);
1758                                 error = 0;
1759                                 goto find_page;
1760                         }
1761                         goto readpage_error;
1762                 }
1763
1764                 if (!PageUptodate(page)) {
1765                         error = lock_page_killable(page);
1766                         if (unlikely(error))
1767                                 goto readpage_error;
1768                         if (!PageUptodate(page)) {
1769                                 if (page->mapping == NULL) {
1770                                         /*
1771                                          * invalidate_mapping_pages got it
1772                                          */
1773                                         unlock_page(page);
1774                                         page_cache_release(page);
1775                                         goto find_page;
1776                                 }
1777                                 unlock_page(page);
1778                                 shrink_readahead_size_eio(filp, ra);
1779                                 error = -EIO;
1780                                 goto readpage_error;
1781                         }
1782                         unlock_page(page);
1783                 }
1784
1785                 goto page_ok;
1786
1787 readpage_error:
1788                 /* UHHUH! A synchronous read error occurred. Report it */
1789                 page_cache_release(page);
1790                 goto out;
1791
1792 no_cached_page:
1793                 /*
1794                  * Ok, it wasn't cached, so we need to create a new
1795                  * page..
1796                  */
1797                 page = page_cache_alloc_cold(mapping);
1798                 if (!page) {
1799                         error = -ENOMEM;
1800                         goto out;
1801                 }
1802                 error = add_to_page_cache_lru(page, mapping, index,
1803                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1804                 if (error) {
1805                         page_cache_release(page);
1806                         if (error == -EEXIST) {
1807                                 error = 0;
1808                                 goto find_page;
1809                         }
1810                         goto out;
1811                 }
1812                 goto readpage;
1813         }
1814
1815 out:
1816         ra->prev_pos = prev_index;
1817         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1818         ra->prev_pos |= prev_offset;
1819
1820         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1821         file_accessed(filp);
1822         return written ? written : error;
1823 }
1824
1825 /**
1826  * generic_file_read_iter - generic filesystem read routine
1827  * @iocb:       kernel I/O control block
1828  * @iter:       destination for the data read
1829  *
1830  * This is the "read_iter()" routine for all filesystems
1831  * that can use the page cache directly.
1832  */
1833 ssize_t
1834 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1835 {
1836         struct file *file = iocb->ki_filp;
1837         ssize_t retval = 0;
1838         loff_t *ppos = &iocb->ki_pos;
1839         loff_t pos = *ppos;
1840
1841         if (iocb->ki_flags & IOCB_DIRECT) {
1842                 struct address_space *mapping = file->f_mapping;
1843                 struct inode *inode = mapping->host;
1844                 size_t count = iov_iter_count(iter);
1845                 loff_t size;
1846
1847                 if (!count)
1848                         goto out; /* skip atime */
1849                 size = i_size_read(inode);
1850                 retval = filemap_write_and_wait_range(mapping, pos,
1851                                         pos + count - 1);
1852                 if (!retval) {
1853                         struct iov_iter data = *iter;
1854                         retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1855                 }
1856
1857                 if (retval > 0) {
1858                         *ppos = pos + retval;
1859                         iov_iter_advance(iter, retval);
1860                 }
1861
1862                 /*
1863                  * Btrfs can have a short DIO read if we encounter
1864                  * compressed extents, so if there was an error, or if
1865                  * we've already read everything we wanted to, or if
1866                  * there was a short read because we hit EOF, go ahead
1867                  * and return.  Otherwise fallthrough to buffered io for
1868                  * the rest of the read.  Buffered reads will not work for
1869                  * DAX files, so don't bother trying.
1870                  */
1871                 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1872                     IS_DAX(inode)) {
1873                         file_accessed(file);
1874                         goto out;
1875                 }
1876         }
1877
1878         retval = do_generic_file_read(file, ppos, iter, retval);
1879 out:
1880         return retval;
1881 }
1882 EXPORT_SYMBOL(generic_file_read_iter);
1883
1884 #ifdef CONFIG_MMU
1885 /**
1886  * page_cache_read - adds requested page to the page cache if not already there
1887  * @file:       file to read
1888  * @offset:     page index
1889  * @gfp_mask:   memory allocation flags
1890  *
1891  * This adds the requested page to the page cache if it isn't already there,
1892  * and schedules an I/O to read in its contents from disk.
1893  */
1894 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1895 {
1896         struct address_space *mapping = file->f_mapping;
1897         struct page *page;
1898         int ret;
1899
1900         do {
1901                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1902                 if (!page)
1903                         return -ENOMEM;
1904
1905                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1906                 if (ret == 0)
1907                         ret = mapping->a_ops->readpage(file, page);
1908                 else if (ret == -EEXIST)
1909                         ret = 0; /* losing race to add is OK */
1910
1911                 page_cache_release(page);
1912
1913         } while (ret == AOP_TRUNCATED_PAGE);
1914
1915         return ret;
1916 }
1917
1918 #define MMAP_LOTSAMISS  (100)
1919
1920 /*
1921  * Synchronous readahead happens when we don't even find
1922  * a page in the page cache at all.
1923  */
1924 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1925                                    struct file_ra_state *ra,
1926                                    struct file *file,
1927                                    pgoff_t offset)
1928 {
1929         struct address_space *mapping = file->f_mapping;
1930
1931         /* If we don't want any read-ahead, don't bother */
1932         if (vma->vm_flags & VM_RAND_READ)
1933                 return;
1934         if (!ra->ra_pages)
1935                 return;
1936
1937         if (vma->vm_flags & VM_SEQ_READ) {
1938                 page_cache_sync_readahead(mapping, ra, file, offset,
1939                                           ra->ra_pages);
1940                 return;
1941         }
1942
1943         /* Avoid banging the cache line if not needed */
1944         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1945                 ra->mmap_miss++;
1946
1947         /*
1948          * Do we miss much more than hit in this file? If so,
1949          * stop bothering with read-ahead. It will only hurt.
1950          */
1951         if (ra->mmap_miss > MMAP_LOTSAMISS)
1952                 return;
1953
1954         /*
1955          * mmap read-around
1956          */
1957         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1958         ra->size = ra->ra_pages;
1959         ra->async_size = ra->ra_pages / 4;
1960         ra_submit(ra, mapping, file);
1961 }
1962
1963 /*
1964  * Asynchronous readahead happens when we find the page and PG_readahead,
1965  * so we want to possibly extend the readahead further..
1966  */
1967 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1968                                     struct file_ra_state *ra,
1969                                     struct file *file,
1970                                     struct page *page,
1971                                     pgoff_t offset)
1972 {
1973         struct address_space *mapping = file->f_mapping;
1974
1975         /* If we don't want any read-ahead, don't bother */
1976         if (vma->vm_flags & VM_RAND_READ)
1977                 return;
1978         if (ra->mmap_miss > 0)
1979                 ra->mmap_miss--;
1980         if (PageReadahead(page))
1981                 page_cache_async_readahead(mapping, ra, file,
1982                                            page, offset, ra->ra_pages);
1983 }
1984
1985 /**
1986  * filemap_fault - read in file data for page fault handling
1987  * @vma:        vma in which the fault was taken
1988  * @vmf:        struct vm_fault containing details of the fault
1989  *
1990  * filemap_fault() is invoked via the vma operations vector for a
1991  * mapped memory region to read in file data during a page fault.
1992  *
1993  * The goto's are kind of ugly, but this streamlines the normal case of having
1994  * it in the page cache, and handles the special cases reasonably without
1995  * having a lot of duplicated code.
1996  *
1997  * vma->vm_mm->mmap_sem must be held on entry.
1998  *
1999  * If our return value has VM_FAULT_RETRY set, it's because
2000  * lock_page_or_retry() returned 0.
2001  * The mmap_sem has usually been released in this case.
2002  * See __lock_page_or_retry() for the exception.
2003  *
2004  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2005  * has not been released.
2006  *
2007  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2008  */
2009 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2010 {
2011         int error;
2012         struct file *file = vma->vm_file;
2013         struct address_space *mapping = file->f_mapping;
2014         struct file_ra_state *ra = &file->f_ra;
2015         struct inode *inode = mapping->host;
2016         pgoff_t offset = vmf->pgoff;
2017         struct page *page;
2018         loff_t size;
2019         int ret = 0;
2020
2021         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2022         if (offset >= size >> PAGE_CACHE_SHIFT)
2023                 return VM_FAULT_SIGBUS;
2024
2025         /*
2026          * Do we have something in the page cache already?
2027          */
2028         page = find_get_page(mapping, offset);
2029         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2030                 /*
2031                  * We found the page, so try async readahead before
2032                  * waiting for the lock.
2033                  */
2034                 do_async_mmap_readahead(vma, ra, file, page, offset);
2035         } else if (!page) {
2036                 /* No page in the page cache at all */
2037                 do_sync_mmap_readahead(vma, ra, file, offset);
2038                 count_vm_event(PGMAJFAULT);
2039                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2040                 ret = VM_FAULT_MAJOR;
2041 retry_find:
2042                 page = find_get_page(mapping, offset);
2043                 if (!page)
2044                         goto no_cached_page;
2045         }
2046
2047         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2048                 page_cache_release(page);
2049                 return ret | VM_FAULT_RETRY;
2050         }
2051
2052         /* Did it get truncated? */
2053         if (unlikely(page->mapping != mapping)) {
2054                 unlock_page(page);
2055                 put_page(page);
2056                 goto retry_find;
2057         }
2058         VM_BUG_ON_PAGE(page->index != offset, page);
2059
2060         /*
2061          * We have a locked page in the page cache, now we need to check
2062          * that it's up-to-date. If not, it is going to be due to an error.
2063          */
2064         if (unlikely(!PageUptodate(page)))
2065                 goto page_not_uptodate;
2066
2067         /*
2068          * Found the page and have a reference on it.
2069          * We must recheck i_size under page lock.
2070          */
2071         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2072         if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
2073                 unlock_page(page);
2074                 page_cache_release(page);
2075                 return VM_FAULT_SIGBUS;
2076         }
2077
2078         vmf->page = page;
2079         return ret | VM_FAULT_LOCKED;
2080
2081 no_cached_page:
2082         /*
2083          * We're only likely to ever get here if MADV_RANDOM is in
2084          * effect.
2085          */
2086         error = page_cache_read(file, offset, vmf->gfp_mask);
2087
2088         /*
2089          * The page we want has now been added to the page cache.
2090          * In the unlikely event that someone removed it in the
2091          * meantime, we'll just come back here and read it again.
2092          */
2093         if (error >= 0)
2094                 goto retry_find;
2095
2096         /*
2097          * An error return from page_cache_read can result if the
2098          * system is low on memory, or a problem occurs while trying
2099          * to schedule I/O.
2100          */
2101         if (error == -ENOMEM)
2102                 return VM_FAULT_OOM;
2103         return VM_FAULT_SIGBUS;
2104
2105 page_not_uptodate:
2106         /*
2107          * Umm, take care of errors if the page isn't up-to-date.
2108          * Try to re-read it _once_. We do this synchronously,
2109          * because there really aren't any performance issues here
2110          * and we need to check for errors.
2111          */
2112         ClearPageError(page);
2113         error = mapping->a_ops->readpage(file, page);
2114         if (!error) {
2115                 wait_on_page_locked(page);
2116                 if (!PageUptodate(page))
2117                         error = -EIO;
2118         }
2119         page_cache_release(page);
2120
2121         if (!error || error == AOP_TRUNCATED_PAGE)
2122                 goto retry_find;
2123
2124         /* Things didn't work out. Return zero to tell the mm layer so. */
2125         shrink_readahead_size_eio(file, ra);
2126         return VM_FAULT_SIGBUS;
2127 }
2128 EXPORT_SYMBOL(filemap_fault);
2129
2130 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2131 {
2132         struct radix_tree_iter iter;
2133         void **slot;
2134         struct file *file = vma->vm_file;
2135         struct address_space *mapping = file->f_mapping;
2136         loff_t size;
2137         struct page *page;
2138         unsigned long address = (unsigned long) vmf->virtual_address;
2139         unsigned long addr;
2140         pte_t *pte;
2141
2142         rcu_read_lock();
2143         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2144                 if (iter.index > vmf->max_pgoff)
2145                         break;
2146 repeat:
2147                 page = radix_tree_deref_slot(slot);
2148                 if (unlikely(!page))
2149                         goto next;
2150                 if (radix_tree_exception(page)) {
2151                         if (radix_tree_deref_retry(page))
2152                                 break;
2153                         else
2154                                 goto next;
2155                 }
2156
2157                 if (!page_cache_get_speculative(page))
2158                         goto repeat;
2159
2160                 /* Has the page moved? */
2161                 if (unlikely(page != *slot)) {
2162                         page_cache_release(page);
2163                         goto repeat;
2164                 }
2165
2166                 if (!PageUptodate(page) ||
2167                                 PageReadahead(page) ||
2168                                 PageHWPoison(page))
2169                         goto skip;
2170                 if (!trylock_page(page))
2171                         goto skip;
2172
2173                 if (page->mapping != mapping || !PageUptodate(page))
2174                         goto unlock;
2175
2176                 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2177                 if (page->index >= size >> PAGE_CACHE_SHIFT)
2178                         goto unlock;
2179
2180                 pte = vmf->pte + page->index - vmf->pgoff;
2181                 if (!pte_none(*pte))
2182                         goto unlock;
2183
2184                 if (file->f_ra.mmap_miss > 0)
2185                         file->f_ra.mmap_miss--;
2186                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2187                 do_set_pte(vma, addr, page, pte, false, false);
2188                 unlock_page(page);
2189                 goto next;
2190 unlock:
2191                 unlock_page(page);
2192 skip:
2193                 page_cache_release(page);
2194 next:
2195                 if (iter.index == vmf->max_pgoff)
2196                         break;
2197         }
2198         rcu_read_unlock();
2199 }
2200 EXPORT_SYMBOL(filemap_map_pages);
2201
2202 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2203 {
2204         struct page *page = vmf->page;
2205         struct inode *inode = file_inode(vma->vm_file);
2206         int ret = VM_FAULT_LOCKED;
2207
2208         sb_start_pagefault(inode->i_sb);
2209         file_update_time(vma->vm_file);
2210         lock_page(page);
2211         if (page->mapping != inode->i_mapping) {
2212                 unlock_page(page);
2213                 ret = VM_FAULT_NOPAGE;
2214                 goto out;
2215         }
2216         /*
2217          * We mark the page dirty already here so that when freeze is in
2218          * progress, we are guaranteed that writeback during freezing will
2219          * see the dirty page and writeprotect it again.
2220          */
2221         set_page_dirty(page);
2222         wait_for_stable_page(page);
2223 out:
2224         sb_end_pagefault(inode->i_sb);
2225         return ret;
2226 }
2227 EXPORT_SYMBOL(filemap_page_mkwrite);
2228
2229 const struct vm_operations_struct generic_file_vm_ops = {
2230         .fault          = filemap_fault,
2231         .map_pages      = filemap_map_pages,
2232         .page_mkwrite   = filemap_page_mkwrite,
2233 };
2234
2235 /* This is used for a general mmap of a disk file */
2236
2237 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2238 {
2239         struct address_space *mapping = file->f_mapping;
2240
2241         if (!mapping->a_ops->readpage)
2242                 return -ENOEXEC;
2243         file_accessed(file);
2244         vma->vm_ops = &generic_file_vm_ops;
2245         return 0;
2246 }
2247
2248 /*
2249  * This is for filesystems which do not implement ->writepage.
2250  */
2251 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2252 {
2253         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2254                 return -EINVAL;
2255         return generic_file_mmap(file, vma);
2256 }
2257 #else
2258 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2259 {
2260         return -ENOSYS;
2261 }
2262 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2263 {
2264         return -ENOSYS;
2265 }
2266 #endif /* CONFIG_MMU */
2267
2268 EXPORT_SYMBOL(generic_file_mmap);
2269 EXPORT_SYMBOL(generic_file_readonly_mmap);
2270
2271 static struct page *wait_on_page_read(struct page *page)
2272 {
2273         if (!IS_ERR(page)) {
2274                 wait_on_page_locked(page);
2275                 if (!PageUptodate(page)) {
2276                         page_cache_release(page);
2277                         page = ERR_PTR(-EIO);
2278                 }
2279         }
2280         return page;
2281 }
2282
2283 static struct page *__read_cache_page(struct address_space *mapping,
2284                                 pgoff_t index,
2285                                 int (*filler)(void *, struct page *),
2286                                 void *data,
2287                                 gfp_t gfp)
2288 {
2289         struct page *page;
2290         int err;
2291 repeat:
2292         page = find_get_page(mapping, index);
2293         if (!page) {
2294                 page = __page_cache_alloc(gfp | __GFP_COLD);
2295                 if (!page)
2296                         return ERR_PTR(-ENOMEM);
2297                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2298                 if (unlikely(err)) {
2299                         page_cache_release(page);
2300                         if (err == -EEXIST)
2301                                 goto repeat;
2302                         /* Presumably ENOMEM for radix tree node */
2303                         return ERR_PTR(err);
2304                 }
2305                 err = filler(data, page);
2306                 if (err < 0) {
2307                         page_cache_release(page);
2308                         page = ERR_PTR(err);
2309                 } else {
2310                         page = wait_on_page_read(page);
2311                 }
2312         }
2313         return page;
2314 }
2315
2316 static struct page *do_read_cache_page(struct address_space *mapping,
2317                                 pgoff_t index,
2318                                 int (*filler)(void *, struct page *),
2319                                 void *data,
2320                                 gfp_t gfp)
2321
2322 {
2323         struct page *page;
2324         int err;
2325
2326 retry:
2327         page = __read_cache_page(mapping, index, filler, data, gfp);
2328         if (IS_ERR(page))
2329                 return page;
2330         if (PageUptodate(page))
2331                 goto out;
2332
2333         lock_page(page);
2334         if (!page->mapping) {
2335                 unlock_page(page);
2336                 page_cache_release(page);
2337                 goto retry;
2338         }
2339         if (PageUptodate(page)) {
2340                 unlock_page(page);
2341                 goto out;
2342         }
2343         err = filler(data, page);
2344         if (err < 0) {
2345                 page_cache_release(page);
2346                 return ERR_PTR(err);
2347         } else {
2348                 page = wait_on_page_read(page);
2349                 if (IS_ERR(page))
2350                         return page;
2351         }
2352 out:
2353         mark_page_accessed(page);
2354         return page;
2355 }
2356
2357 /**
2358  * read_cache_page - read into page cache, fill it if needed
2359  * @mapping:    the page's address_space
2360  * @index:      the page index
2361  * @filler:     function to perform the read
2362  * @data:       first arg to filler(data, page) function, often left as NULL
2363  *
2364  * Read into the page cache. If a page already exists, and PageUptodate() is
2365  * not set, try to fill the page and wait for it to become unlocked.
2366  *
2367  * If the page does not get brought uptodate, return -EIO.
2368  */
2369 struct page *read_cache_page(struct address_space *mapping,
2370                                 pgoff_t index,
2371                                 int (*filler)(void *, struct page *),
2372                                 void *data)
2373 {
2374         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2375 }
2376 EXPORT_SYMBOL(read_cache_page);
2377
2378 /**
2379  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2380  * @mapping:    the page's address_space
2381  * @index:      the page index
2382  * @gfp:        the page allocator flags to use if allocating
2383  *
2384  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2385  * any new page allocations done using the specified allocation flags.
2386  *
2387  * If the page does not get brought uptodate, return -EIO.
2388  */
2389 struct page *read_cache_page_gfp(struct address_space *mapping,
2390                                 pgoff_t index,
2391                                 gfp_t gfp)
2392 {
2393         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2394
2395         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2396 }
2397 EXPORT_SYMBOL(read_cache_page_gfp);
2398
2399 /*
2400  * Performs necessary checks before doing a write
2401  *
2402  * Can adjust writing position or amount of bytes to write.
2403  * Returns appropriate error code that caller should return or
2404  * zero in case that write should be allowed.
2405  */
2406 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2407 {
2408         struct file *file = iocb->ki_filp;
2409         struct inode *inode = file->f_mapping->host;
2410         unsigned long limit = rlimit(RLIMIT_FSIZE);
2411         loff_t pos;
2412
2413         if (!iov_iter_count(from))
2414                 return 0;
2415
2416         /* FIXME: this is for backwards compatibility with 2.4 */
2417         if (iocb->ki_flags & IOCB_APPEND)
2418                 iocb->ki_pos = i_size_read(inode);
2419
2420         pos = iocb->ki_pos;
2421
2422         if (limit != RLIM_INFINITY) {
2423                 if (iocb->ki_pos >= limit) {
2424                         send_sig(SIGXFSZ, current, 0);
2425                         return -EFBIG;
2426                 }
2427                 iov_iter_truncate(from, limit - (unsigned long)pos);
2428         }
2429
2430         /*
2431          * LFS rule
2432          */
2433         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2434                                 !(file->f_flags & O_LARGEFILE))) {
2435                 if (pos >= MAX_NON_LFS)
2436                         return -EFBIG;
2437                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2438         }
2439
2440         /*
2441          * Are we about to exceed the fs block limit ?
2442          *
2443          * If we have written data it becomes a short write.  If we have
2444          * exceeded without writing data we send a signal and return EFBIG.
2445          * Linus frestrict idea will clean these up nicely..
2446          */
2447         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2448                 return -EFBIG;
2449
2450         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2451         return iov_iter_count(from);
2452 }
2453 EXPORT_SYMBOL(generic_write_checks);
2454
2455 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2456                                 loff_t pos, unsigned len, unsigned flags,
2457                                 struct page **pagep, void **fsdata)
2458 {
2459         const struct address_space_operations *aops = mapping->a_ops;
2460
2461         return aops->write_begin(file, mapping, pos, len, flags,
2462                                                         pagep, fsdata);
2463 }
2464 EXPORT_SYMBOL(pagecache_write_begin);
2465
2466 int pagecache_write_end(struct file *file, struct address_space *mapping,
2467                                 loff_t pos, unsigned len, unsigned copied,
2468                                 struct page *page, void *fsdata)
2469 {
2470         const struct address_space_operations *aops = mapping->a_ops;
2471
2472         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2473 }
2474 EXPORT_SYMBOL(pagecache_write_end);
2475
2476 ssize_t
2477 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2478 {
2479         struct file     *file = iocb->ki_filp;
2480         struct address_space *mapping = file->f_mapping;
2481         struct inode    *inode = mapping->host;
2482         ssize_t         written;
2483         size_t          write_len;
2484         pgoff_t         end;
2485         struct iov_iter data;
2486
2487         write_len = iov_iter_count(from);
2488         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2489
2490         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2491         if (written)
2492                 goto out;
2493
2494         /*
2495          * After a write we want buffered reads to be sure to go to disk to get
2496          * the new data.  We invalidate clean cached page from the region we're
2497          * about to write.  We do this *before* the write so that we can return
2498          * without clobbering -EIOCBQUEUED from ->direct_IO().
2499          */
2500         if (mapping->nrpages) {
2501                 written = invalidate_inode_pages2_range(mapping,
2502                                         pos >> PAGE_CACHE_SHIFT, end);
2503                 /*
2504                  * If a page can not be invalidated, return 0 to fall back
2505                  * to buffered write.
2506                  */
2507                 if (written) {
2508                         if (written == -EBUSY)
2509                                 return 0;
2510                         goto out;
2511                 }
2512         }
2513
2514         data = *from;
2515         written = mapping->a_ops->direct_IO(iocb, &data, pos);
2516
2517         /*
2518          * Finally, try again to invalidate clean pages which might have been
2519          * cached by non-direct readahead, or faulted in by get_user_pages()
2520          * if the source of the write was an mmap'ed region of the file
2521          * we're writing.  Either one is a pretty crazy thing to do,
2522          * so we don't support it 100%.  If this invalidation
2523          * fails, tough, the write still worked...
2524          */
2525         if (mapping->nrpages) {
2526                 invalidate_inode_pages2_range(mapping,
2527                                               pos >> PAGE_CACHE_SHIFT, end);
2528         }
2529
2530         if (written > 0) {
2531                 pos += written;
2532                 iov_iter_advance(from, written);
2533                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2534                         i_size_write(inode, pos);
2535                         mark_inode_dirty(inode);
2536                 }
2537                 iocb->ki_pos = pos;
2538         }
2539 out:
2540         return written;
2541 }
2542 EXPORT_SYMBOL(generic_file_direct_write);
2543
2544 /*
2545  * Find or create a page at the given pagecache position. Return the locked
2546  * page. This function is specifically for buffered writes.
2547  */
2548 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2549                                         pgoff_t index, unsigned flags)
2550 {
2551         struct page *page;
2552         int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2553
2554         if (flags & AOP_FLAG_NOFS)
2555                 fgp_flags |= FGP_NOFS;
2556
2557         page = pagecache_get_page(mapping, index, fgp_flags,
2558                         mapping_gfp_mask(mapping));
2559         if (page)
2560                 wait_for_stable_page(page);
2561
2562         return page;
2563 }
2564 EXPORT_SYMBOL(grab_cache_page_write_begin);
2565
2566 ssize_t generic_perform_write(struct file *file,
2567                                 struct iov_iter *i, loff_t pos)
2568 {
2569         struct address_space *mapping = file->f_mapping;
2570         const struct address_space_operations *a_ops = mapping->a_ops;
2571         long status = 0;
2572         ssize_t written = 0;
2573         unsigned int flags = 0;
2574
2575         /*
2576          * Copies from kernel address space cannot fail (NFSD is a big user).
2577          */
2578         if (!iter_is_iovec(i))
2579                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2580
2581         do {
2582                 struct page *page;
2583                 unsigned long offset;   /* Offset into pagecache page */
2584                 unsigned long bytes;    /* Bytes to write to page */
2585                 size_t copied;          /* Bytes copied from user */
2586                 void *fsdata;
2587
2588                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2589                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2590                                                 iov_iter_count(i));
2591
2592 again:
2593                 /*
2594                  * Bring in the user page that we will copy from _first_.
2595                  * Otherwise there's a nasty deadlock on copying from the
2596                  * same page as we're writing to, without it being marked
2597                  * up-to-date.
2598                  *
2599                  * Not only is this an optimisation, but it is also required
2600                  * to check that the address is actually valid, when atomic
2601                  * usercopies are used, below.
2602                  */
2603                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2604                         status = -EFAULT;
2605                         break;
2606                 }
2607
2608                 if (fatal_signal_pending(current)) {
2609                         status = -EINTR;
2610                         break;
2611                 }
2612
2613                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2614                                                 &page, &fsdata);
2615                 if (unlikely(status < 0))
2616                         break;
2617
2618                 if (mapping_writably_mapped(mapping))
2619                         flush_dcache_page(page);
2620
2621                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2622                 flush_dcache_page(page);
2623
2624                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2625                                                 page, fsdata);
2626                 if (unlikely(status < 0))
2627                         break;
2628                 copied = status;
2629
2630                 cond_resched();
2631
2632                 iov_iter_advance(i, copied);
2633                 if (unlikely(copied == 0)) {
2634                         /*
2635                          * If we were unable to copy any data at all, we must
2636                          * fall back to a single segment length write.
2637                          *
2638                          * If we didn't fallback here, we could livelock
2639                          * because not all segments in the iov can be copied at
2640                          * once without a pagefault.
2641                          */
2642                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2643                                                 iov_iter_single_seg_count(i));
2644                         goto again;
2645                 }
2646                 pos += copied;
2647                 written += copied;
2648
2649                 balance_dirty_pages_ratelimited(mapping);
2650         } while (iov_iter_count(i));
2651
2652         return written ? written : status;
2653 }
2654 EXPORT_SYMBOL(generic_perform_write);
2655
2656 /**
2657  * __generic_file_write_iter - write data to a file
2658  * @iocb:       IO state structure (file, offset, etc.)
2659  * @from:       iov_iter with data to write
2660  *
2661  * This function does all the work needed for actually writing data to a
2662  * file. It does all basic checks, removes SUID from the file, updates
2663  * modification times and calls proper subroutines depending on whether we
2664  * do direct IO or a standard buffered write.
2665  *
2666  * It expects i_mutex to be grabbed unless we work on a block device or similar
2667  * object which does not need locking at all.
2668  *
2669  * This function does *not* take care of syncing data in case of O_SYNC write.
2670  * A caller has to handle it. This is mainly due to the fact that we want to
2671  * avoid syncing under i_mutex.
2672  */
2673 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2674 {
2675         struct file *file = iocb->ki_filp;
2676         struct address_space * mapping = file->f_mapping;
2677         struct inode    *inode = mapping->host;
2678         ssize_t         written = 0;
2679         ssize_t         err;
2680         ssize_t         status;
2681
2682         /* We can write back this queue in page reclaim */
2683         current->backing_dev_info = inode_to_bdi(inode);
2684         err = file_remove_privs(file);
2685         if (err)
2686                 goto out;
2687
2688         err = file_update_time(file);
2689         if (err)
2690                 goto out;
2691
2692         if (iocb->ki_flags & IOCB_DIRECT) {
2693                 loff_t pos, endbyte;
2694
2695                 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2696                 /*
2697                  * If the write stopped short of completing, fall back to
2698                  * buffered writes.  Some filesystems do this for writes to
2699                  * holes, for example.  For DAX files, a buffered write will
2700                  * not succeed (even if it did, DAX does not handle dirty
2701                  * page-cache pages correctly).
2702                  */
2703                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2704                         goto out;
2705
2706                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2707                 /*
2708                  * If generic_perform_write() returned a synchronous error
2709                  * then we want to return the number of bytes which were
2710                  * direct-written, or the error code if that was zero.  Note
2711                  * that this differs from normal direct-io semantics, which
2712                  * will return -EFOO even if some bytes were written.
2713                  */
2714                 if (unlikely(status < 0)) {
2715                         err = status;
2716                         goto out;
2717                 }
2718                 /*
2719                  * We need to ensure that the page cache pages are written to
2720                  * disk and invalidated to preserve the expected O_DIRECT
2721                  * semantics.
2722                  */
2723                 endbyte = pos + status - 1;
2724                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2725                 if (err == 0) {
2726                         iocb->ki_pos = endbyte + 1;
2727                         written += status;
2728                         invalidate_mapping_pages(mapping,
2729                                                  pos >> PAGE_CACHE_SHIFT,
2730                                                  endbyte >> PAGE_CACHE_SHIFT);
2731                 } else {
2732                         /*
2733                          * We don't know how much we wrote, so just return
2734                          * the number of bytes which were direct-written
2735                          */
2736                 }
2737         } else {
2738                 written = generic_perform_write(file, from, iocb->ki_pos);
2739                 if (likely(written > 0))
2740                         iocb->ki_pos += written;
2741         }
2742 out:
2743         current->backing_dev_info = NULL;
2744         return written ? written : err;
2745 }
2746 EXPORT_SYMBOL(__generic_file_write_iter);
2747
2748 /**
2749  * generic_file_write_iter - write data to a file
2750  * @iocb:       IO state structure
2751  * @from:       iov_iter with data to write
2752  *
2753  * This is a wrapper around __generic_file_write_iter() to be used by most
2754  * filesystems. It takes care of syncing the file in case of O_SYNC file
2755  * and acquires i_mutex as needed.
2756  */
2757 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2758 {
2759         struct file *file = iocb->ki_filp;
2760         struct inode *inode = file->f_mapping->host;
2761         ssize_t ret;
2762
2763         inode_lock(inode);
2764         ret = generic_write_checks(iocb, from);
2765         if (ret > 0)
2766                 ret = __generic_file_write_iter(iocb, from);
2767         inode_unlock(inode);
2768
2769         if (ret > 0) {
2770                 ssize_t err;
2771
2772                 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2773                 if (err < 0)
2774                         ret = err;
2775         }
2776         return ret;
2777 }
2778 EXPORT_SYMBOL(generic_file_write_iter);
2779
2780 /**
2781  * try_to_release_page() - release old fs-specific metadata on a page
2782  *
2783  * @page: the page which the kernel is trying to free
2784  * @gfp_mask: memory allocation flags (and I/O mode)
2785  *
2786  * The address_space is to try to release any data against the page
2787  * (presumably at page->private).  If the release was successful, return `1'.
2788  * Otherwise return zero.
2789  *
2790  * This may also be called if PG_fscache is set on a page, indicating that the
2791  * page is known to the local caching routines.
2792  *
2793  * The @gfp_mask argument specifies whether I/O may be performed to release
2794  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2795  *
2796  */
2797 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2798 {
2799         struct address_space * const mapping = page->mapping;
2800
2801         BUG_ON(!PageLocked(page));
2802         if (PageWriteback(page))
2803                 return 0;
2804
2805         if (mapping && mapping->a_ops->releasepage)
2806                 return mapping->a_ops->releasepage(page, gfp_mask);
2807         return try_to_free_buffers(page);
2808 }
2809
2810 EXPORT_SYMBOL(try_to_release_page);