mm: memcontrol: rewrite charge API
[cascardo/linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_mutex              (truncate_pagecache)
66  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock             (exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_mutex            (truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_mutex
75  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page               (access_process_vm)
80  *
81  *  ->i_mutex                   (generic_perform_write)
82  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_mutex
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
99  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
105  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
106  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
107  *
108  * ->i_mmap_mutex
109  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
110  */
111
112 static void page_cache_tree_delete(struct address_space *mapping,
113                                    struct page *page, void *shadow)
114 {
115         struct radix_tree_node *node;
116         unsigned long index;
117         unsigned int offset;
118         unsigned int tag;
119         void **slot;
120
121         VM_BUG_ON(!PageLocked(page));
122
123         __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
124
125         if (shadow) {
126                 mapping->nrshadows++;
127                 /*
128                  * Make sure the nrshadows update is committed before
129                  * the nrpages update so that final truncate racing
130                  * with reclaim does not see both counters 0 at the
131                  * same time and miss a shadow entry.
132                  */
133                 smp_wmb();
134         }
135         mapping->nrpages--;
136
137         if (!node) {
138                 /* Clear direct pointer tags in root node */
139                 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
140                 radix_tree_replace_slot(slot, shadow);
141                 return;
142         }
143
144         /* Clear tree tags for the removed page */
145         index = page->index;
146         offset = index & RADIX_TREE_MAP_MASK;
147         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
148                 if (test_bit(offset, node->tags[tag]))
149                         radix_tree_tag_clear(&mapping->page_tree, index, tag);
150         }
151
152         /* Delete page, swap shadow entry */
153         radix_tree_replace_slot(slot, shadow);
154         workingset_node_pages_dec(node);
155         if (shadow)
156                 workingset_node_shadows_inc(node);
157         else
158                 if (__radix_tree_delete_node(&mapping->page_tree, node))
159                         return;
160
161         /*
162          * Track node that only contains shadow entries.
163          *
164          * Avoid acquiring the list_lru lock if already tracked.  The
165          * list_empty() test is safe as node->private_list is
166          * protected by mapping->tree_lock.
167          */
168         if (!workingset_node_pages(node) &&
169             list_empty(&node->private_list)) {
170                 node->private_data = mapping;
171                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
172         }
173 }
174
175 /*
176  * Delete a page from the page cache and free it. Caller has to make
177  * sure the page is locked and that nobody else uses it - or that usage
178  * is safe.  The caller must hold the mapping's tree_lock.
179  */
180 void __delete_from_page_cache(struct page *page, void *shadow)
181 {
182         struct address_space *mapping = page->mapping;
183
184         trace_mm_filemap_delete_from_page_cache(page);
185         /*
186          * if we're uptodate, flush out into the cleancache, otherwise
187          * invalidate any existing cleancache entries.  We can't leave
188          * stale data around in the cleancache once our page is gone
189          */
190         if (PageUptodate(page) && PageMappedToDisk(page))
191                 cleancache_put_page(page);
192         else
193                 cleancache_invalidate_page(mapping, page);
194
195         page_cache_tree_delete(mapping, page, shadow);
196
197         page->mapping = NULL;
198         /* Leave page->index set: truncation lookup relies upon it */
199
200         __dec_zone_page_state(page, NR_FILE_PAGES);
201         if (PageSwapBacked(page))
202                 __dec_zone_page_state(page, NR_SHMEM);
203         BUG_ON(page_mapped(page));
204
205         /*
206          * Some filesystems seem to re-dirty the page even after
207          * the VM has canceled the dirty bit (eg ext3 journaling).
208          *
209          * Fix it up by doing a final dirty accounting check after
210          * having removed the page entirely.
211          */
212         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
213                 dec_zone_page_state(page, NR_FILE_DIRTY);
214                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
215         }
216 }
217
218 /**
219  * delete_from_page_cache - delete page from page cache
220  * @page: the page which the kernel is trying to remove from page cache
221  *
222  * This must be called only on pages that have been verified to be in the page
223  * cache and locked.  It will never put the page into the free list, the caller
224  * has a reference on the page.
225  */
226 void delete_from_page_cache(struct page *page)
227 {
228         struct address_space *mapping = page->mapping;
229         void (*freepage)(struct page *);
230
231         BUG_ON(!PageLocked(page));
232
233         freepage = mapping->a_ops->freepage;
234         spin_lock_irq(&mapping->tree_lock);
235         __delete_from_page_cache(page, NULL);
236         spin_unlock_irq(&mapping->tree_lock);
237         mem_cgroup_uncharge_cache_page(page);
238
239         if (freepage)
240                 freepage(page);
241         page_cache_release(page);
242 }
243 EXPORT_SYMBOL(delete_from_page_cache);
244
245 static int filemap_check_errors(struct address_space *mapping)
246 {
247         int ret = 0;
248         /* Check for outstanding write errors */
249         if (test_bit(AS_ENOSPC, &mapping->flags) &&
250             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
251                 ret = -ENOSPC;
252         if (test_bit(AS_EIO, &mapping->flags) &&
253             test_and_clear_bit(AS_EIO, &mapping->flags))
254                 ret = -EIO;
255         return ret;
256 }
257
258 /**
259  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
260  * @mapping:    address space structure to write
261  * @start:      offset in bytes where the range starts
262  * @end:        offset in bytes where the range ends (inclusive)
263  * @sync_mode:  enable synchronous operation
264  *
265  * Start writeback against all of a mapping's dirty pages that lie
266  * within the byte offsets <start, end> inclusive.
267  *
268  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
269  * opposed to a regular memory cleansing writeback.  The difference between
270  * these two operations is that if a dirty page/buffer is encountered, it must
271  * be waited upon, and not just skipped over.
272  */
273 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
274                                 loff_t end, int sync_mode)
275 {
276         int ret;
277         struct writeback_control wbc = {
278                 .sync_mode = sync_mode,
279                 .nr_to_write = LONG_MAX,
280                 .range_start = start,
281                 .range_end = end,
282         };
283
284         if (!mapping_cap_writeback_dirty(mapping))
285                 return 0;
286
287         ret = do_writepages(mapping, &wbc);
288         return ret;
289 }
290
291 static inline int __filemap_fdatawrite(struct address_space *mapping,
292         int sync_mode)
293 {
294         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
295 }
296
297 int filemap_fdatawrite(struct address_space *mapping)
298 {
299         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
300 }
301 EXPORT_SYMBOL(filemap_fdatawrite);
302
303 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
304                                 loff_t end)
305 {
306         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
307 }
308 EXPORT_SYMBOL(filemap_fdatawrite_range);
309
310 /**
311  * filemap_flush - mostly a non-blocking flush
312  * @mapping:    target address_space
313  *
314  * This is a mostly non-blocking flush.  Not suitable for data-integrity
315  * purposes - I/O may not be started against all dirty pages.
316  */
317 int filemap_flush(struct address_space *mapping)
318 {
319         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
320 }
321 EXPORT_SYMBOL(filemap_flush);
322
323 /**
324  * filemap_fdatawait_range - wait for writeback to complete
325  * @mapping:            address space structure to wait for
326  * @start_byte:         offset in bytes where the range starts
327  * @end_byte:           offset in bytes where the range ends (inclusive)
328  *
329  * Walk the list of under-writeback pages of the given address space
330  * in the given range and wait for all of them.
331  */
332 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
333                             loff_t end_byte)
334 {
335         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
336         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
337         struct pagevec pvec;
338         int nr_pages;
339         int ret2, ret = 0;
340
341         if (end_byte < start_byte)
342                 goto out;
343
344         pagevec_init(&pvec, 0);
345         while ((index <= end) &&
346                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
347                         PAGECACHE_TAG_WRITEBACK,
348                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
349                 unsigned i;
350
351                 for (i = 0; i < nr_pages; i++) {
352                         struct page *page = pvec.pages[i];
353
354                         /* until radix tree lookup accepts end_index */
355                         if (page->index > end)
356                                 continue;
357
358                         wait_on_page_writeback(page);
359                         if (TestClearPageError(page))
360                                 ret = -EIO;
361                 }
362                 pagevec_release(&pvec);
363                 cond_resched();
364         }
365 out:
366         ret2 = filemap_check_errors(mapping);
367         if (!ret)
368                 ret = ret2;
369
370         return ret;
371 }
372 EXPORT_SYMBOL(filemap_fdatawait_range);
373
374 /**
375  * filemap_fdatawait - wait for all under-writeback pages to complete
376  * @mapping: address space structure to wait for
377  *
378  * Walk the list of under-writeback pages of the given address space
379  * and wait for all of them.
380  */
381 int filemap_fdatawait(struct address_space *mapping)
382 {
383         loff_t i_size = i_size_read(mapping->host);
384
385         if (i_size == 0)
386                 return 0;
387
388         return filemap_fdatawait_range(mapping, 0, i_size - 1);
389 }
390 EXPORT_SYMBOL(filemap_fdatawait);
391
392 int filemap_write_and_wait(struct address_space *mapping)
393 {
394         int err = 0;
395
396         if (mapping->nrpages) {
397                 err = filemap_fdatawrite(mapping);
398                 /*
399                  * Even if the above returned error, the pages may be
400                  * written partially (e.g. -ENOSPC), so we wait for it.
401                  * But the -EIO is special case, it may indicate the worst
402                  * thing (e.g. bug) happened, so we avoid waiting for it.
403                  */
404                 if (err != -EIO) {
405                         int err2 = filemap_fdatawait(mapping);
406                         if (!err)
407                                 err = err2;
408                 }
409         } else {
410                 err = filemap_check_errors(mapping);
411         }
412         return err;
413 }
414 EXPORT_SYMBOL(filemap_write_and_wait);
415
416 /**
417  * filemap_write_and_wait_range - write out & wait on a file range
418  * @mapping:    the address_space for the pages
419  * @lstart:     offset in bytes where the range starts
420  * @lend:       offset in bytes where the range ends (inclusive)
421  *
422  * Write out and wait upon file offsets lstart->lend, inclusive.
423  *
424  * Note that `lend' is inclusive (describes the last byte to be written) so
425  * that this function can be used to write to the very end-of-file (end = -1).
426  */
427 int filemap_write_and_wait_range(struct address_space *mapping,
428                                  loff_t lstart, loff_t lend)
429 {
430         int err = 0;
431
432         if (mapping->nrpages) {
433                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
434                                                  WB_SYNC_ALL);
435                 /* See comment of filemap_write_and_wait() */
436                 if (err != -EIO) {
437                         int err2 = filemap_fdatawait_range(mapping,
438                                                 lstart, lend);
439                         if (!err)
440                                 err = err2;
441                 }
442         } else {
443                 err = filemap_check_errors(mapping);
444         }
445         return err;
446 }
447 EXPORT_SYMBOL(filemap_write_and_wait_range);
448
449 /**
450  * replace_page_cache_page - replace a pagecache page with a new one
451  * @old:        page to be replaced
452  * @new:        page to replace with
453  * @gfp_mask:   allocation mode
454  *
455  * This function replaces a page in the pagecache with a new one.  On
456  * success it acquires the pagecache reference for the new page and
457  * drops it for the old page.  Both the old and new pages must be
458  * locked.  This function does not add the new page to the LRU, the
459  * caller must do that.
460  *
461  * The remove + add is atomic.  The only way this function can fail is
462  * memory allocation failure.
463  */
464 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
465 {
466         int error;
467
468         VM_BUG_ON_PAGE(!PageLocked(old), old);
469         VM_BUG_ON_PAGE(!PageLocked(new), new);
470         VM_BUG_ON_PAGE(new->mapping, new);
471
472         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
473         if (!error) {
474                 struct address_space *mapping = old->mapping;
475                 void (*freepage)(struct page *);
476
477                 pgoff_t offset = old->index;
478                 freepage = mapping->a_ops->freepage;
479
480                 page_cache_get(new);
481                 new->mapping = mapping;
482                 new->index = offset;
483
484                 spin_lock_irq(&mapping->tree_lock);
485                 __delete_from_page_cache(old, NULL);
486                 error = radix_tree_insert(&mapping->page_tree, offset, new);
487                 BUG_ON(error);
488                 mapping->nrpages++;
489                 __inc_zone_page_state(new, NR_FILE_PAGES);
490                 if (PageSwapBacked(new))
491                         __inc_zone_page_state(new, NR_SHMEM);
492                 spin_unlock_irq(&mapping->tree_lock);
493                 /* mem_cgroup codes must not be called under tree_lock */
494                 mem_cgroup_replace_page_cache(old, new);
495                 radix_tree_preload_end();
496                 if (freepage)
497                         freepage(old);
498                 page_cache_release(old);
499         }
500
501         return error;
502 }
503 EXPORT_SYMBOL_GPL(replace_page_cache_page);
504
505 static int page_cache_tree_insert(struct address_space *mapping,
506                                   struct page *page, void **shadowp)
507 {
508         struct radix_tree_node *node;
509         void **slot;
510         int error;
511
512         error = __radix_tree_create(&mapping->page_tree, page->index,
513                                     &node, &slot);
514         if (error)
515                 return error;
516         if (*slot) {
517                 void *p;
518
519                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
520                 if (!radix_tree_exceptional_entry(p))
521                         return -EEXIST;
522                 if (shadowp)
523                         *shadowp = p;
524                 mapping->nrshadows--;
525                 if (node)
526                         workingset_node_shadows_dec(node);
527         }
528         radix_tree_replace_slot(slot, page);
529         mapping->nrpages++;
530         if (node) {
531                 workingset_node_pages_inc(node);
532                 /*
533                  * Don't track node that contains actual pages.
534                  *
535                  * Avoid acquiring the list_lru lock if already
536                  * untracked.  The list_empty() test is safe as
537                  * node->private_list is protected by
538                  * mapping->tree_lock.
539                  */
540                 if (!list_empty(&node->private_list))
541                         list_lru_del(&workingset_shadow_nodes,
542                                      &node->private_list);
543         }
544         return 0;
545 }
546
547 static int __add_to_page_cache_locked(struct page *page,
548                                       struct address_space *mapping,
549                                       pgoff_t offset, gfp_t gfp_mask,
550                                       void **shadowp)
551 {
552         int huge = PageHuge(page);
553         struct mem_cgroup *memcg;
554         int error;
555
556         VM_BUG_ON_PAGE(!PageLocked(page), page);
557         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
558
559         if (!huge) {
560                 error = mem_cgroup_try_charge(page, current->mm,
561                                               gfp_mask, &memcg);
562                 if (error)
563                         return error;
564         }
565
566         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
567         if (error) {
568                 if (!huge)
569                         mem_cgroup_cancel_charge(page, memcg);
570                 return error;
571         }
572
573         page_cache_get(page);
574         page->mapping = mapping;
575         page->index = offset;
576
577         spin_lock_irq(&mapping->tree_lock);
578         error = page_cache_tree_insert(mapping, page, shadowp);
579         radix_tree_preload_end();
580         if (unlikely(error))
581                 goto err_insert;
582         __inc_zone_page_state(page, NR_FILE_PAGES);
583         spin_unlock_irq(&mapping->tree_lock);
584         if (!huge)
585                 mem_cgroup_commit_charge(page, memcg, false);
586         trace_mm_filemap_add_to_page_cache(page);
587         return 0;
588 err_insert:
589         page->mapping = NULL;
590         /* Leave page->index set: truncation relies upon it */
591         spin_unlock_irq(&mapping->tree_lock);
592         if (!huge)
593                 mem_cgroup_cancel_charge(page, memcg);
594         page_cache_release(page);
595         return error;
596 }
597
598 /**
599  * add_to_page_cache_locked - add a locked page to the pagecache
600  * @page:       page to add
601  * @mapping:    the page's address_space
602  * @offset:     page index
603  * @gfp_mask:   page allocation mode
604  *
605  * This function is used to add a page to the pagecache. It must be locked.
606  * This function does not add the page to the LRU.  The caller must do that.
607  */
608 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
609                 pgoff_t offset, gfp_t gfp_mask)
610 {
611         return __add_to_page_cache_locked(page, mapping, offset,
612                                           gfp_mask, NULL);
613 }
614 EXPORT_SYMBOL(add_to_page_cache_locked);
615
616 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
617                                 pgoff_t offset, gfp_t gfp_mask)
618 {
619         void *shadow = NULL;
620         int ret;
621
622         __set_page_locked(page);
623         ret = __add_to_page_cache_locked(page, mapping, offset,
624                                          gfp_mask, &shadow);
625         if (unlikely(ret))
626                 __clear_page_locked(page);
627         else {
628                 /*
629                  * The page might have been evicted from cache only
630                  * recently, in which case it should be activated like
631                  * any other repeatedly accessed page.
632                  */
633                 if (shadow && workingset_refault(shadow)) {
634                         SetPageActive(page);
635                         workingset_activation(page);
636                 } else
637                         ClearPageActive(page);
638                 lru_cache_add(page);
639         }
640         return ret;
641 }
642 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
643
644 #ifdef CONFIG_NUMA
645 struct page *__page_cache_alloc(gfp_t gfp)
646 {
647         int n;
648         struct page *page;
649
650         if (cpuset_do_page_mem_spread()) {
651                 unsigned int cpuset_mems_cookie;
652                 do {
653                         cpuset_mems_cookie = read_mems_allowed_begin();
654                         n = cpuset_mem_spread_node();
655                         page = alloc_pages_exact_node(n, gfp, 0);
656                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
657
658                 return page;
659         }
660         return alloc_pages(gfp, 0);
661 }
662 EXPORT_SYMBOL(__page_cache_alloc);
663 #endif
664
665 /*
666  * In order to wait for pages to become available there must be
667  * waitqueues associated with pages. By using a hash table of
668  * waitqueues where the bucket discipline is to maintain all
669  * waiters on the same queue and wake all when any of the pages
670  * become available, and for the woken contexts to check to be
671  * sure the appropriate page became available, this saves space
672  * at a cost of "thundering herd" phenomena during rare hash
673  * collisions.
674  */
675 static wait_queue_head_t *page_waitqueue(struct page *page)
676 {
677         const struct zone *zone = page_zone(page);
678
679         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
680 }
681
682 static inline void wake_up_page(struct page *page, int bit)
683 {
684         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
685 }
686
687 void wait_on_page_bit(struct page *page, int bit_nr)
688 {
689         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
690
691         if (test_bit(bit_nr, &page->flags))
692                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
693                                                         TASK_UNINTERRUPTIBLE);
694 }
695 EXPORT_SYMBOL(wait_on_page_bit);
696
697 int wait_on_page_bit_killable(struct page *page, int bit_nr)
698 {
699         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
700
701         if (!test_bit(bit_nr, &page->flags))
702                 return 0;
703
704         return __wait_on_bit(page_waitqueue(page), &wait,
705                              bit_wait_io, TASK_KILLABLE);
706 }
707
708 /**
709  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
710  * @page: Page defining the wait queue of interest
711  * @waiter: Waiter to add to the queue
712  *
713  * Add an arbitrary @waiter to the wait queue for the nominated @page.
714  */
715 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
716 {
717         wait_queue_head_t *q = page_waitqueue(page);
718         unsigned long flags;
719
720         spin_lock_irqsave(&q->lock, flags);
721         __add_wait_queue(q, waiter);
722         spin_unlock_irqrestore(&q->lock, flags);
723 }
724 EXPORT_SYMBOL_GPL(add_page_wait_queue);
725
726 /**
727  * unlock_page - unlock a locked page
728  * @page: the page
729  *
730  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
731  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
732  * mechananism between PageLocked pages and PageWriteback pages is shared.
733  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
734  *
735  * The mb is necessary to enforce ordering between the clear_bit and the read
736  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
737  */
738 void unlock_page(struct page *page)
739 {
740         VM_BUG_ON_PAGE(!PageLocked(page), page);
741         clear_bit_unlock(PG_locked, &page->flags);
742         smp_mb__after_atomic();
743         wake_up_page(page, PG_locked);
744 }
745 EXPORT_SYMBOL(unlock_page);
746
747 /**
748  * end_page_writeback - end writeback against a page
749  * @page: the page
750  */
751 void end_page_writeback(struct page *page)
752 {
753         /*
754          * TestClearPageReclaim could be used here but it is an atomic
755          * operation and overkill in this particular case. Failing to
756          * shuffle a page marked for immediate reclaim is too mild to
757          * justify taking an atomic operation penalty at the end of
758          * ever page writeback.
759          */
760         if (PageReclaim(page)) {
761                 ClearPageReclaim(page);
762                 rotate_reclaimable_page(page);
763         }
764
765         if (!test_clear_page_writeback(page))
766                 BUG();
767
768         smp_mb__after_atomic();
769         wake_up_page(page, PG_writeback);
770 }
771 EXPORT_SYMBOL(end_page_writeback);
772
773 /*
774  * After completing I/O on a page, call this routine to update the page
775  * flags appropriately
776  */
777 void page_endio(struct page *page, int rw, int err)
778 {
779         if (rw == READ) {
780                 if (!err) {
781                         SetPageUptodate(page);
782                 } else {
783                         ClearPageUptodate(page);
784                         SetPageError(page);
785                 }
786                 unlock_page(page);
787         } else { /* rw == WRITE */
788                 if (err) {
789                         SetPageError(page);
790                         if (page->mapping)
791                                 mapping_set_error(page->mapping, err);
792                 }
793                 end_page_writeback(page);
794         }
795 }
796 EXPORT_SYMBOL_GPL(page_endio);
797
798 /**
799  * __lock_page - get a lock on the page, assuming we need to sleep to get it
800  * @page: the page to lock
801  */
802 void __lock_page(struct page *page)
803 {
804         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
805
806         __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
807                                                         TASK_UNINTERRUPTIBLE);
808 }
809 EXPORT_SYMBOL(__lock_page);
810
811 int __lock_page_killable(struct page *page)
812 {
813         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
814
815         return __wait_on_bit_lock(page_waitqueue(page), &wait,
816                                         bit_wait_io, TASK_KILLABLE);
817 }
818 EXPORT_SYMBOL_GPL(__lock_page_killable);
819
820 /*
821  * Return values:
822  * 1 - page is locked; mmap_sem is still held.
823  * 0 - page is not locked.
824  *     mmap_sem has been released (up_read()), unless flags had both
825  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
826  *     which case mmap_sem is still held.
827  *
828  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
829  * with the page locked and the mmap_sem unperturbed.
830  */
831 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
832                          unsigned int flags)
833 {
834         if (flags & FAULT_FLAG_ALLOW_RETRY) {
835                 /*
836                  * CAUTION! In this case, mmap_sem is not released
837                  * even though return 0.
838                  */
839                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
840                         return 0;
841
842                 up_read(&mm->mmap_sem);
843                 if (flags & FAULT_FLAG_KILLABLE)
844                         wait_on_page_locked_killable(page);
845                 else
846                         wait_on_page_locked(page);
847                 return 0;
848         } else {
849                 if (flags & FAULT_FLAG_KILLABLE) {
850                         int ret;
851
852                         ret = __lock_page_killable(page);
853                         if (ret) {
854                                 up_read(&mm->mmap_sem);
855                                 return 0;
856                         }
857                 } else
858                         __lock_page(page);
859                 return 1;
860         }
861 }
862
863 /**
864  * page_cache_next_hole - find the next hole (not-present entry)
865  * @mapping: mapping
866  * @index: index
867  * @max_scan: maximum range to search
868  *
869  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
870  * lowest indexed hole.
871  *
872  * Returns: the index of the hole if found, otherwise returns an index
873  * outside of the set specified (in which case 'return - index >=
874  * max_scan' will be true). In rare cases of index wrap-around, 0 will
875  * be returned.
876  *
877  * page_cache_next_hole may be called under rcu_read_lock. However,
878  * like radix_tree_gang_lookup, this will not atomically search a
879  * snapshot of the tree at a single point in time. For example, if a
880  * hole is created at index 5, then subsequently a hole is created at
881  * index 10, page_cache_next_hole covering both indexes may return 10
882  * if called under rcu_read_lock.
883  */
884 pgoff_t page_cache_next_hole(struct address_space *mapping,
885                              pgoff_t index, unsigned long max_scan)
886 {
887         unsigned long i;
888
889         for (i = 0; i < max_scan; i++) {
890                 struct page *page;
891
892                 page = radix_tree_lookup(&mapping->page_tree, index);
893                 if (!page || radix_tree_exceptional_entry(page))
894                         break;
895                 index++;
896                 if (index == 0)
897                         break;
898         }
899
900         return index;
901 }
902 EXPORT_SYMBOL(page_cache_next_hole);
903
904 /**
905  * page_cache_prev_hole - find the prev hole (not-present entry)
906  * @mapping: mapping
907  * @index: index
908  * @max_scan: maximum range to search
909  *
910  * Search backwards in the range [max(index-max_scan+1, 0), index] for
911  * the first hole.
912  *
913  * Returns: the index of the hole if found, otherwise returns an index
914  * outside of the set specified (in which case 'index - return >=
915  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
916  * will be returned.
917  *
918  * page_cache_prev_hole may be called under rcu_read_lock. However,
919  * like radix_tree_gang_lookup, this will not atomically search a
920  * snapshot of the tree at a single point in time. For example, if a
921  * hole is created at index 10, then subsequently a hole is created at
922  * index 5, page_cache_prev_hole covering both indexes may return 5 if
923  * called under rcu_read_lock.
924  */
925 pgoff_t page_cache_prev_hole(struct address_space *mapping,
926                              pgoff_t index, unsigned long max_scan)
927 {
928         unsigned long i;
929
930         for (i = 0; i < max_scan; i++) {
931                 struct page *page;
932
933                 page = radix_tree_lookup(&mapping->page_tree, index);
934                 if (!page || radix_tree_exceptional_entry(page))
935                         break;
936                 index--;
937                 if (index == ULONG_MAX)
938                         break;
939         }
940
941         return index;
942 }
943 EXPORT_SYMBOL(page_cache_prev_hole);
944
945 /**
946  * find_get_entry - find and get a page cache entry
947  * @mapping: the address_space to search
948  * @offset: the page cache index
949  *
950  * Looks up the page cache slot at @mapping & @offset.  If there is a
951  * page cache page, it is returned with an increased refcount.
952  *
953  * If the slot holds a shadow entry of a previously evicted page, or a
954  * swap entry from shmem/tmpfs, it is returned.
955  *
956  * Otherwise, %NULL is returned.
957  */
958 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
959 {
960         void **pagep;
961         struct page *page;
962
963         rcu_read_lock();
964 repeat:
965         page = NULL;
966         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
967         if (pagep) {
968                 page = radix_tree_deref_slot(pagep);
969                 if (unlikely(!page))
970                         goto out;
971                 if (radix_tree_exception(page)) {
972                         if (radix_tree_deref_retry(page))
973                                 goto repeat;
974                         /*
975                          * A shadow entry of a recently evicted page,
976                          * or a swap entry from shmem/tmpfs.  Return
977                          * it without attempting to raise page count.
978                          */
979                         goto out;
980                 }
981                 if (!page_cache_get_speculative(page))
982                         goto repeat;
983
984                 /*
985                  * Has the page moved?
986                  * This is part of the lockless pagecache protocol. See
987                  * include/linux/pagemap.h for details.
988                  */
989                 if (unlikely(page != *pagep)) {
990                         page_cache_release(page);
991                         goto repeat;
992                 }
993         }
994 out:
995         rcu_read_unlock();
996
997         return page;
998 }
999 EXPORT_SYMBOL(find_get_entry);
1000
1001 /**
1002  * find_lock_entry - locate, pin and lock a page cache entry
1003  * @mapping: the address_space to search
1004  * @offset: the page cache index
1005  *
1006  * Looks up the page cache slot at @mapping & @offset.  If there is a
1007  * page cache page, it is returned locked and with an increased
1008  * refcount.
1009  *
1010  * If the slot holds a shadow entry of a previously evicted page, or a
1011  * swap entry from shmem/tmpfs, it is returned.
1012  *
1013  * Otherwise, %NULL is returned.
1014  *
1015  * find_lock_entry() may sleep.
1016  */
1017 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1018 {
1019         struct page *page;
1020
1021 repeat:
1022         page = find_get_entry(mapping, offset);
1023         if (page && !radix_tree_exception(page)) {
1024                 lock_page(page);
1025                 /* Has the page been truncated? */
1026                 if (unlikely(page->mapping != mapping)) {
1027                         unlock_page(page);
1028                         page_cache_release(page);
1029                         goto repeat;
1030                 }
1031                 VM_BUG_ON_PAGE(page->index != offset, page);
1032         }
1033         return page;
1034 }
1035 EXPORT_SYMBOL(find_lock_entry);
1036
1037 /**
1038  * pagecache_get_page - find and get a page reference
1039  * @mapping: the address_space to search
1040  * @offset: the page index
1041  * @fgp_flags: PCG flags
1042  * @cache_gfp_mask: gfp mask to use for the page cache data page allocation
1043  * @radix_gfp_mask: gfp mask to use for radix tree node allocation
1044  *
1045  * Looks up the page cache slot at @mapping & @offset.
1046  *
1047  * PCG flags modify how the page is returned.
1048  *
1049  * FGP_ACCESSED: the page will be marked accessed
1050  * FGP_LOCK: Page is return locked
1051  * FGP_CREAT: If page is not present then a new page is allocated using
1052  *              @cache_gfp_mask and added to the page cache and the VM's LRU
1053  *              list. If radix tree nodes are allocated during page cache
1054  *              insertion then @radix_gfp_mask is used. The page is returned
1055  *              locked and with an increased refcount. Otherwise, %NULL is
1056  *              returned.
1057  *
1058  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1059  * if the GFP flags specified for FGP_CREAT are atomic.
1060  *
1061  * If there is a page cache page, it is returned with an increased refcount.
1062  */
1063 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1064         int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask)
1065 {
1066         struct page *page;
1067
1068 repeat:
1069         page = find_get_entry(mapping, offset);
1070         if (radix_tree_exceptional_entry(page))
1071                 page = NULL;
1072         if (!page)
1073                 goto no_page;
1074
1075         if (fgp_flags & FGP_LOCK) {
1076                 if (fgp_flags & FGP_NOWAIT) {
1077                         if (!trylock_page(page)) {
1078                                 page_cache_release(page);
1079                                 return NULL;
1080                         }
1081                 } else {
1082                         lock_page(page);
1083                 }
1084
1085                 /* Has the page been truncated? */
1086                 if (unlikely(page->mapping != mapping)) {
1087                         unlock_page(page);
1088                         page_cache_release(page);
1089                         goto repeat;
1090                 }
1091                 VM_BUG_ON_PAGE(page->index != offset, page);
1092         }
1093
1094         if (page && (fgp_flags & FGP_ACCESSED))
1095                 mark_page_accessed(page);
1096
1097 no_page:
1098         if (!page && (fgp_flags & FGP_CREAT)) {
1099                 int err;
1100                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1101                         cache_gfp_mask |= __GFP_WRITE;
1102                 if (fgp_flags & FGP_NOFS) {
1103                         cache_gfp_mask &= ~__GFP_FS;
1104                         radix_gfp_mask &= ~__GFP_FS;
1105                 }
1106
1107                 page = __page_cache_alloc(cache_gfp_mask);
1108                 if (!page)
1109                         return NULL;
1110
1111                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1112                         fgp_flags |= FGP_LOCK;
1113
1114                 /* Init accessed so avoid atomic mark_page_accessed later */
1115                 if (fgp_flags & FGP_ACCESSED)
1116                         __SetPageReferenced(page);
1117
1118                 err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask);
1119                 if (unlikely(err)) {
1120                         page_cache_release(page);
1121                         page = NULL;
1122                         if (err == -EEXIST)
1123                                 goto repeat;
1124                 }
1125         }
1126
1127         return page;
1128 }
1129 EXPORT_SYMBOL(pagecache_get_page);
1130
1131 /**
1132  * find_get_entries - gang pagecache lookup
1133  * @mapping:    The address_space to search
1134  * @start:      The starting page cache index
1135  * @nr_entries: The maximum number of entries
1136  * @entries:    Where the resulting entries are placed
1137  * @indices:    The cache indices corresponding to the entries in @entries
1138  *
1139  * find_get_entries() will search for and return a group of up to
1140  * @nr_entries entries in the mapping.  The entries are placed at
1141  * @entries.  find_get_entries() takes a reference against any actual
1142  * pages it returns.
1143  *
1144  * The search returns a group of mapping-contiguous page cache entries
1145  * with ascending indexes.  There may be holes in the indices due to
1146  * not-present pages.
1147  *
1148  * Any shadow entries of evicted pages, or swap entries from
1149  * shmem/tmpfs, are included in the returned array.
1150  *
1151  * find_get_entries() returns the number of pages and shadow entries
1152  * which were found.
1153  */
1154 unsigned find_get_entries(struct address_space *mapping,
1155                           pgoff_t start, unsigned int nr_entries,
1156                           struct page **entries, pgoff_t *indices)
1157 {
1158         void **slot;
1159         unsigned int ret = 0;
1160         struct radix_tree_iter iter;
1161
1162         if (!nr_entries)
1163                 return 0;
1164
1165         rcu_read_lock();
1166 restart:
1167         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1168                 struct page *page;
1169 repeat:
1170                 page = radix_tree_deref_slot(slot);
1171                 if (unlikely(!page))
1172                         continue;
1173                 if (radix_tree_exception(page)) {
1174                         if (radix_tree_deref_retry(page))
1175                                 goto restart;
1176                         /*
1177                          * A shadow entry of a recently evicted page,
1178                          * or a swap entry from shmem/tmpfs.  Return
1179                          * it without attempting to raise page count.
1180                          */
1181                         goto export;
1182                 }
1183                 if (!page_cache_get_speculative(page))
1184                         goto repeat;
1185
1186                 /* Has the page moved? */
1187                 if (unlikely(page != *slot)) {
1188                         page_cache_release(page);
1189                         goto repeat;
1190                 }
1191 export:
1192                 indices[ret] = iter.index;
1193                 entries[ret] = page;
1194                 if (++ret == nr_entries)
1195                         break;
1196         }
1197         rcu_read_unlock();
1198         return ret;
1199 }
1200
1201 /**
1202  * find_get_pages - gang pagecache lookup
1203  * @mapping:    The address_space to search
1204  * @start:      The starting page index
1205  * @nr_pages:   The maximum number of pages
1206  * @pages:      Where the resulting pages are placed
1207  *
1208  * find_get_pages() will search for and return a group of up to
1209  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1210  * find_get_pages() takes a reference against the returned pages.
1211  *
1212  * The search returns a group of mapping-contiguous pages with ascending
1213  * indexes.  There may be holes in the indices due to not-present pages.
1214  *
1215  * find_get_pages() returns the number of pages which were found.
1216  */
1217 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1218                             unsigned int nr_pages, struct page **pages)
1219 {
1220         struct radix_tree_iter iter;
1221         void **slot;
1222         unsigned ret = 0;
1223
1224         if (unlikely(!nr_pages))
1225                 return 0;
1226
1227         rcu_read_lock();
1228 restart:
1229         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1230                 struct page *page;
1231 repeat:
1232                 page = radix_tree_deref_slot(slot);
1233                 if (unlikely(!page))
1234                         continue;
1235
1236                 if (radix_tree_exception(page)) {
1237                         if (radix_tree_deref_retry(page)) {
1238                                 /*
1239                                  * Transient condition which can only trigger
1240                                  * when entry at index 0 moves out of or back
1241                                  * to root: none yet gotten, safe to restart.
1242                                  */
1243                                 WARN_ON(iter.index);
1244                                 goto restart;
1245                         }
1246                         /*
1247                          * A shadow entry of a recently evicted page,
1248                          * or a swap entry from shmem/tmpfs.  Skip
1249                          * over it.
1250                          */
1251                         continue;
1252                 }
1253
1254                 if (!page_cache_get_speculative(page))
1255                         goto repeat;
1256
1257                 /* Has the page moved? */
1258                 if (unlikely(page != *slot)) {
1259                         page_cache_release(page);
1260                         goto repeat;
1261                 }
1262
1263                 pages[ret] = page;
1264                 if (++ret == nr_pages)
1265                         break;
1266         }
1267
1268         rcu_read_unlock();
1269         return ret;
1270 }
1271
1272 /**
1273  * find_get_pages_contig - gang contiguous pagecache lookup
1274  * @mapping:    The address_space to search
1275  * @index:      The starting page index
1276  * @nr_pages:   The maximum number of pages
1277  * @pages:      Where the resulting pages are placed
1278  *
1279  * find_get_pages_contig() works exactly like find_get_pages(), except
1280  * that the returned number of pages are guaranteed to be contiguous.
1281  *
1282  * find_get_pages_contig() returns the number of pages which were found.
1283  */
1284 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1285                                unsigned int nr_pages, struct page **pages)
1286 {
1287         struct radix_tree_iter iter;
1288         void **slot;
1289         unsigned int ret = 0;
1290
1291         if (unlikely(!nr_pages))
1292                 return 0;
1293
1294         rcu_read_lock();
1295 restart:
1296         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1297                 struct page *page;
1298 repeat:
1299                 page = radix_tree_deref_slot(slot);
1300                 /* The hole, there no reason to continue */
1301                 if (unlikely(!page))
1302                         break;
1303
1304                 if (radix_tree_exception(page)) {
1305                         if (radix_tree_deref_retry(page)) {
1306                                 /*
1307                                  * Transient condition which can only trigger
1308                                  * when entry at index 0 moves out of or back
1309                                  * to root: none yet gotten, safe to restart.
1310                                  */
1311                                 goto restart;
1312                         }
1313                         /*
1314                          * A shadow entry of a recently evicted page,
1315                          * or a swap entry from shmem/tmpfs.  Stop
1316                          * looking for contiguous pages.
1317                          */
1318                         break;
1319                 }
1320
1321                 if (!page_cache_get_speculative(page))
1322                         goto repeat;
1323
1324                 /* Has the page moved? */
1325                 if (unlikely(page != *slot)) {
1326                         page_cache_release(page);
1327                         goto repeat;
1328                 }
1329
1330                 /*
1331                  * must check mapping and index after taking the ref.
1332                  * otherwise we can get both false positives and false
1333                  * negatives, which is just confusing to the caller.
1334                  */
1335                 if (page->mapping == NULL || page->index != iter.index) {
1336                         page_cache_release(page);
1337                         break;
1338                 }
1339
1340                 pages[ret] = page;
1341                 if (++ret == nr_pages)
1342                         break;
1343         }
1344         rcu_read_unlock();
1345         return ret;
1346 }
1347 EXPORT_SYMBOL(find_get_pages_contig);
1348
1349 /**
1350  * find_get_pages_tag - find and return pages that match @tag
1351  * @mapping:    the address_space to search
1352  * @index:      the starting page index
1353  * @tag:        the tag index
1354  * @nr_pages:   the maximum number of pages
1355  * @pages:      where the resulting pages are placed
1356  *
1357  * Like find_get_pages, except we only return pages which are tagged with
1358  * @tag.   We update @index to index the next page for the traversal.
1359  */
1360 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1361                         int tag, unsigned int nr_pages, struct page **pages)
1362 {
1363         struct radix_tree_iter iter;
1364         void **slot;
1365         unsigned ret = 0;
1366
1367         if (unlikely(!nr_pages))
1368                 return 0;
1369
1370         rcu_read_lock();
1371 restart:
1372         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1373                                    &iter, *index, tag) {
1374                 struct page *page;
1375 repeat:
1376                 page = radix_tree_deref_slot(slot);
1377                 if (unlikely(!page))
1378                         continue;
1379
1380                 if (radix_tree_exception(page)) {
1381                         if (radix_tree_deref_retry(page)) {
1382                                 /*
1383                                  * Transient condition which can only trigger
1384                                  * when entry at index 0 moves out of or back
1385                                  * to root: none yet gotten, safe to restart.
1386                                  */
1387                                 goto restart;
1388                         }
1389                         /*
1390                          * A shadow entry of a recently evicted page.
1391                          *
1392                          * Those entries should never be tagged, but
1393                          * this tree walk is lockless and the tags are
1394                          * looked up in bulk, one radix tree node at a
1395                          * time, so there is a sizable window for page
1396                          * reclaim to evict a page we saw tagged.
1397                          *
1398                          * Skip over it.
1399                          */
1400                         continue;
1401                 }
1402
1403                 if (!page_cache_get_speculative(page))
1404                         goto repeat;
1405
1406                 /* Has the page moved? */
1407                 if (unlikely(page != *slot)) {
1408                         page_cache_release(page);
1409                         goto repeat;
1410                 }
1411
1412                 pages[ret] = page;
1413                 if (++ret == nr_pages)
1414                         break;
1415         }
1416
1417         rcu_read_unlock();
1418
1419         if (ret)
1420                 *index = pages[ret - 1]->index + 1;
1421
1422         return ret;
1423 }
1424 EXPORT_SYMBOL(find_get_pages_tag);
1425
1426 /*
1427  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1428  * a _large_ part of the i/o request. Imagine the worst scenario:
1429  *
1430  *      ---R__________________________________________B__________
1431  *         ^ reading here                             ^ bad block(assume 4k)
1432  *
1433  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1434  * => failing the whole request => read(R) => read(R+1) =>
1435  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1436  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1437  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1438  *
1439  * It is going insane. Fix it by quickly scaling down the readahead size.
1440  */
1441 static void shrink_readahead_size_eio(struct file *filp,
1442                                         struct file_ra_state *ra)
1443 {
1444         ra->ra_pages /= 4;
1445 }
1446
1447 /**
1448  * do_generic_file_read - generic file read routine
1449  * @filp:       the file to read
1450  * @ppos:       current file position
1451  * @iter:       data destination
1452  * @written:    already copied
1453  *
1454  * This is a generic file read routine, and uses the
1455  * mapping->a_ops->readpage() function for the actual low-level stuff.
1456  *
1457  * This is really ugly. But the goto's actually try to clarify some
1458  * of the logic when it comes to error handling etc.
1459  */
1460 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1461                 struct iov_iter *iter, ssize_t written)
1462 {
1463         struct address_space *mapping = filp->f_mapping;
1464         struct inode *inode = mapping->host;
1465         struct file_ra_state *ra = &filp->f_ra;
1466         pgoff_t index;
1467         pgoff_t last_index;
1468         pgoff_t prev_index;
1469         unsigned long offset;      /* offset into pagecache page */
1470         unsigned int prev_offset;
1471         int error = 0;
1472
1473         index = *ppos >> PAGE_CACHE_SHIFT;
1474         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1475         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1476         last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1477         offset = *ppos & ~PAGE_CACHE_MASK;
1478
1479         for (;;) {
1480                 struct page *page;
1481                 pgoff_t end_index;
1482                 loff_t isize;
1483                 unsigned long nr, ret;
1484
1485                 cond_resched();
1486 find_page:
1487                 page = find_get_page(mapping, index);
1488                 if (!page) {
1489                         page_cache_sync_readahead(mapping,
1490                                         ra, filp,
1491                                         index, last_index - index);
1492                         page = find_get_page(mapping, index);
1493                         if (unlikely(page == NULL))
1494                                 goto no_cached_page;
1495                 }
1496                 if (PageReadahead(page)) {
1497                         page_cache_async_readahead(mapping,
1498                                         ra, filp, page,
1499                                         index, last_index - index);
1500                 }
1501                 if (!PageUptodate(page)) {
1502                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1503                                         !mapping->a_ops->is_partially_uptodate)
1504                                 goto page_not_up_to_date;
1505                         if (!trylock_page(page))
1506                                 goto page_not_up_to_date;
1507                         /* Did it get truncated before we got the lock? */
1508                         if (!page->mapping)
1509                                 goto page_not_up_to_date_locked;
1510                         if (!mapping->a_ops->is_partially_uptodate(page,
1511                                                         offset, iter->count))
1512                                 goto page_not_up_to_date_locked;
1513                         unlock_page(page);
1514                 }
1515 page_ok:
1516                 /*
1517                  * i_size must be checked after we know the page is Uptodate.
1518                  *
1519                  * Checking i_size after the check allows us to calculate
1520                  * the correct value for "nr", which means the zero-filled
1521                  * part of the page is not copied back to userspace (unless
1522                  * another truncate extends the file - this is desired though).
1523                  */
1524
1525                 isize = i_size_read(inode);
1526                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1527                 if (unlikely(!isize || index > end_index)) {
1528                         page_cache_release(page);
1529                         goto out;
1530                 }
1531
1532                 /* nr is the maximum number of bytes to copy from this page */
1533                 nr = PAGE_CACHE_SIZE;
1534                 if (index == end_index) {
1535                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1536                         if (nr <= offset) {
1537                                 page_cache_release(page);
1538                                 goto out;
1539                         }
1540                 }
1541                 nr = nr - offset;
1542
1543                 /* If users can be writing to this page using arbitrary
1544                  * virtual addresses, take care about potential aliasing
1545                  * before reading the page on the kernel side.
1546                  */
1547                 if (mapping_writably_mapped(mapping))
1548                         flush_dcache_page(page);
1549
1550                 /*
1551                  * When a sequential read accesses a page several times,
1552                  * only mark it as accessed the first time.
1553                  */
1554                 if (prev_index != index || offset != prev_offset)
1555                         mark_page_accessed(page);
1556                 prev_index = index;
1557
1558                 /*
1559                  * Ok, we have the page, and it's up-to-date, so
1560                  * now we can copy it to user space...
1561                  */
1562
1563                 ret = copy_page_to_iter(page, offset, nr, iter);
1564                 offset += ret;
1565                 index += offset >> PAGE_CACHE_SHIFT;
1566                 offset &= ~PAGE_CACHE_MASK;
1567                 prev_offset = offset;
1568
1569                 page_cache_release(page);
1570                 written += ret;
1571                 if (!iov_iter_count(iter))
1572                         goto out;
1573                 if (ret < nr) {
1574                         error = -EFAULT;
1575                         goto out;
1576                 }
1577                 continue;
1578
1579 page_not_up_to_date:
1580                 /* Get exclusive access to the page ... */
1581                 error = lock_page_killable(page);
1582                 if (unlikely(error))
1583                         goto readpage_error;
1584
1585 page_not_up_to_date_locked:
1586                 /* Did it get truncated before we got the lock? */
1587                 if (!page->mapping) {
1588                         unlock_page(page);
1589                         page_cache_release(page);
1590                         continue;
1591                 }
1592
1593                 /* Did somebody else fill it already? */
1594                 if (PageUptodate(page)) {
1595                         unlock_page(page);
1596                         goto page_ok;
1597                 }
1598
1599 readpage:
1600                 /*
1601                  * A previous I/O error may have been due to temporary
1602                  * failures, eg. multipath errors.
1603                  * PG_error will be set again if readpage fails.
1604                  */
1605                 ClearPageError(page);
1606                 /* Start the actual read. The read will unlock the page. */
1607                 error = mapping->a_ops->readpage(filp, page);
1608
1609                 if (unlikely(error)) {
1610                         if (error == AOP_TRUNCATED_PAGE) {
1611                                 page_cache_release(page);
1612                                 error = 0;
1613                                 goto find_page;
1614                         }
1615                         goto readpage_error;
1616                 }
1617
1618                 if (!PageUptodate(page)) {
1619                         error = lock_page_killable(page);
1620                         if (unlikely(error))
1621                                 goto readpage_error;
1622                         if (!PageUptodate(page)) {
1623                                 if (page->mapping == NULL) {
1624                                         /*
1625                                          * invalidate_mapping_pages got it
1626                                          */
1627                                         unlock_page(page);
1628                                         page_cache_release(page);
1629                                         goto find_page;
1630                                 }
1631                                 unlock_page(page);
1632                                 shrink_readahead_size_eio(filp, ra);
1633                                 error = -EIO;
1634                                 goto readpage_error;
1635                         }
1636                         unlock_page(page);
1637                 }
1638
1639                 goto page_ok;
1640
1641 readpage_error:
1642                 /* UHHUH! A synchronous read error occurred. Report it */
1643                 page_cache_release(page);
1644                 goto out;
1645
1646 no_cached_page:
1647                 /*
1648                  * Ok, it wasn't cached, so we need to create a new
1649                  * page..
1650                  */
1651                 page = page_cache_alloc_cold(mapping);
1652                 if (!page) {
1653                         error = -ENOMEM;
1654                         goto out;
1655                 }
1656                 error = add_to_page_cache_lru(page, mapping,
1657                                                 index, GFP_KERNEL);
1658                 if (error) {
1659                         page_cache_release(page);
1660                         if (error == -EEXIST) {
1661                                 error = 0;
1662                                 goto find_page;
1663                         }
1664                         goto out;
1665                 }
1666                 goto readpage;
1667         }
1668
1669 out:
1670         ra->prev_pos = prev_index;
1671         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1672         ra->prev_pos |= prev_offset;
1673
1674         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1675         file_accessed(filp);
1676         return written ? written : error;
1677 }
1678
1679 /**
1680  * generic_file_read_iter - generic filesystem read routine
1681  * @iocb:       kernel I/O control block
1682  * @iter:       destination for the data read
1683  *
1684  * This is the "read_iter()" routine for all filesystems
1685  * that can use the page cache directly.
1686  */
1687 ssize_t
1688 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1689 {
1690         struct file *file = iocb->ki_filp;
1691         ssize_t retval = 0;
1692         loff_t *ppos = &iocb->ki_pos;
1693         loff_t pos = *ppos;
1694
1695         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1696         if (file->f_flags & O_DIRECT) {
1697                 struct address_space *mapping = file->f_mapping;
1698                 struct inode *inode = mapping->host;
1699                 size_t count = iov_iter_count(iter);
1700                 loff_t size;
1701
1702                 if (!count)
1703                         goto out; /* skip atime */
1704                 size = i_size_read(inode);
1705                 retval = filemap_write_and_wait_range(mapping, pos,
1706                                         pos + count - 1);
1707                 if (!retval) {
1708                         struct iov_iter data = *iter;
1709                         retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos);
1710                 }
1711
1712                 if (retval > 0) {
1713                         *ppos = pos + retval;
1714                         iov_iter_advance(iter, retval);
1715                 }
1716
1717                 /*
1718                  * Btrfs can have a short DIO read if we encounter
1719                  * compressed extents, so if there was an error, or if
1720                  * we've already read everything we wanted to, or if
1721                  * there was a short read because we hit EOF, go ahead
1722                  * and return.  Otherwise fallthrough to buffered io for
1723                  * the rest of the read.
1724                  */
1725                 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) {
1726                         file_accessed(file);
1727                         goto out;
1728                 }
1729         }
1730
1731         retval = do_generic_file_read(file, ppos, iter, retval);
1732 out:
1733         return retval;
1734 }
1735 EXPORT_SYMBOL(generic_file_read_iter);
1736
1737 #ifdef CONFIG_MMU
1738 /**
1739  * page_cache_read - adds requested page to the page cache if not already there
1740  * @file:       file to read
1741  * @offset:     page index
1742  *
1743  * This adds the requested page to the page cache if it isn't already there,
1744  * and schedules an I/O to read in its contents from disk.
1745  */
1746 static int page_cache_read(struct file *file, pgoff_t offset)
1747 {
1748         struct address_space *mapping = file->f_mapping;
1749         struct page *page; 
1750         int ret;
1751
1752         do {
1753                 page = page_cache_alloc_cold(mapping);
1754                 if (!page)
1755                         return -ENOMEM;
1756
1757                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1758                 if (ret == 0)
1759                         ret = mapping->a_ops->readpage(file, page);
1760                 else if (ret == -EEXIST)
1761                         ret = 0; /* losing race to add is OK */
1762
1763                 page_cache_release(page);
1764
1765         } while (ret == AOP_TRUNCATED_PAGE);
1766                 
1767         return ret;
1768 }
1769
1770 #define MMAP_LOTSAMISS  (100)
1771
1772 /*
1773  * Synchronous readahead happens when we don't even find
1774  * a page in the page cache at all.
1775  */
1776 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1777                                    struct file_ra_state *ra,
1778                                    struct file *file,
1779                                    pgoff_t offset)
1780 {
1781         unsigned long ra_pages;
1782         struct address_space *mapping = file->f_mapping;
1783
1784         /* If we don't want any read-ahead, don't bother */
1785         if (vma->vm_flags & VM_RAND_READ)
1786                 return;
1787         if (!ra->ra_pages)
1788                 return;
1789
1790         if (vma->vm_flags & VM_SEQ_READ) {
1791                 page_cache_sync_readahead(mapping, ra, file, offset,
1792                                           ra->ra_pages);
1793                 return;
1794         }
1795
1796         /* Avoid banging the cache line if not needed */
1797         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1798                 ra->mmap_miss++;
1799
1800         /*
1801          * Do we miss much more than hit in this file? If so,
1802          * stop bothering with read-ahead. It will only hurt.
1803          */
1804         if (ra->mmap_miss > MMAP_LOTSAMISS)
1805                 return;
1806
1807         /*
1808          * mmap read-around
1809          */
1810         ra_pages = max_sane_readahead(ra->ra_pages);
1811         ra->start = max_t(long, 0, offset - ra_pages / 2);
1812         ra->size = ra_pages;
1813         ra->async_size = ra_pages / 4;
1814         ra_submit(ra, mapping, file);
1815 }
1816
1817 /*
1818  * Asynchronous readahead happens when we find the page and PG_readahead,
1819  * so we want to possibly extend the readahead further..
1820  */
1821 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1822                                     struct file_ra_state *ra,
1823                                     struct file *file,
1824                                     struct page *page,
1825                                     pgoff_t offset)
1826 {
1827         struct address_space *mapping = file->f_mapping;
1828
1829         /* If we don't want any read-ahead, don't bother */
1830         if (vma->vm_flags & VM_RAND_READ)
1831                 return;
1832         if (ra->mmap_miss > 0)
1833                 ra->mmap_miss--;
1834         if (PageReadahead(page))
1835                 page_cache_async_readahead(mapping, ra, file,
1836                                            page, offset, ra->ra_pages);
1837 }
1838
1839 /**
1840  * filemap_fault - read in file data for page fault handling
1841  * @vma:        vma in which the fault was taken
1842  * @vmf:        struct vm_fault containing details of the fault
1843  *
1844  * filemap_fault() is invoked via the vma operations vector for a
1845  * mapped memory region to read in file data during a page fault.
1846  *
1847  * The goto's are kind of ugly, but this streamlines the normal case of having
1848  * it in the page cache, and handles the special cases reasonably without
1849  * having a lot of duplicated code.
1850  *
1851  * vma->vm_mm->mmap_sem must be held on entry.
1852  *
1853  * If our return value has VM_FAULT_RETRY set, it's because
1854  * lock_page_or_retry() returned 0.
1855  * The mmap_sem has usually been released in this case.
1856  * See __lock_page_or_retry() for the exception.
1857  *
1858  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1859  * has not been released.
1860  *
1861  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1862  */
1863 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1864 {
1865         int error;
1866         struct file *file = vma->vm_file;
1867         struct address_space *mapping = file->f_mapping;
1868         struct file_ra_state *ra = &file->f_ra;
1869         struct inode *inode = mapping->host;
1870         pgoff_t offset = vmf->pgoff;
1871         struct page *page;
1872         loff_t size;
1873         int ret = 0;
1874
1875         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1876         if (offset >= size >> PAGE_CACHE_SHIFT)
1877                 return VM_FAULT_SIGBUS;
1878
1879         /*
1880          * Do we have something in the page cache already?
1881          */
1882         page = find_get_page(mapping, offset);
1883         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1884                 /*
1885                  * We found the page, so try async readahead before
1886                  * waiting for the lock.
1887                  */
1888                 do_async_mmap_readahead(vma, ra, file, page, offset);
1889         } else if (!page) {
1890                 /* No page in the page cache at all */
1891                 do_sync_mmap_readahead(vma, ra, file, offset);
1892                 count_vm_event(PGMAJFAULT);
1893                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1894                 ret = VM_FAULT_MAJOR;
1895 retry_find:
1896                 page = find_get_page(mapping, offset);
1897                 if (!page)
1898                         goto no_cached_page;
1899         }
1900
1901         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1902                 page_cache_release(page);
1903                 return ret | VM_FAULT_RETRY;
1904         }
1905
1906         /* Did it get truncated? */
1907         if (unlikely(page->mapping != mapping)) {
1908                 unlock_page(page);
1909                 put_page(page);
1910                 goto retry_find;
1911         }
1912         VM_BUG_ON_PAGE(page->index != offset, page);
1913
1914         /*
1915          * We have a locked page in the page cache, now we need to check
1916          * that it's up-to-date. If not, it is going to be due to an error.
1917          */
1918         if (unlikely(!PageUptodate(page)))
1919                 goto page_not_uptodate;
1920
1921         /*
1922          * Found the page and have a reference on it.
1923          * We must recheck i_size under page lock.
1924          */
1925         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1926         if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1927                 unlock_page(page);
1928                 page_cache_release(page);
1929                 return VM_FAULT_SIGBUS;
1930         }
1931
1932         vmf->page = page;
1933         return ret | VM_FAULT_LOCKED;
1934
1935 no_cached_page:
1936         /*
1937          * We're only likely to ever get here if MADV_RANDOM is in
1938          * effect.
1939          */
1940         error = page_cache_read(file, offset);
1941
1942         /*
1943          * The page we want has now been added to the page cache.
1944          * In the unlikely event that someone removed it in the
1945          * meantime, we'll just come back here and read it again.
1946          */
1947         if (error >= 0)
1948                 goto retry_find;
1949
1950         /*
1951          * An error return from page_cache_read can result if the
1952          * system is low on memory, or a problem occurs while trying
1953          * to schedule I/O.
1954          */
1955         if (error == -ENOMEM)
1956                 return VM_FAULT_OOM;
1957         return VM_FAULT_SIGBUS;
1958
1959 page_not_uptodate:
1960         /*
1961          * Umm, take care of errors if the page isn't up-to-date.
1962          * Try to re-read it _once_. We do this synchronously,
1963          * because there really aren't any performance issues here
1964          * and we need to check for errors.
1965          */
1966         ClearPageError(page);
1967         error = mapping->a_ops->readpage(file, page);
1968         if (!error) {
1969                 wait_on_page_locked(page);
1970                 if (!PageUptodate(page))
1971                         error = -EIO;
1972         }
1973         page_cache_release(page);
1974
1975         if (!error || error == AOP_TRUNCATED_PAGE)
1976                 goto retry_find;
1977
1978         /* Things didn't work out. Return zero to tell the mm layer so. */
1979         shrink_readahead_size_eio(file, ra);
1980         return VM_FAULT_SIGBUS;
1981 }
1982 EXPORT_SYMBOL(filemap_fault);
1983
1984 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1985 {
1986         struct radix_tree_iter iter;
1987         void **slot;
1988         struct file *file = vma->vm_file;
1989         struct address_space *mapping = file->f_mapping;
1990         loff_t size;
1991         struct page *page;
1992         unsigned long address = (unsigned long) vmf->virtual_address;
1993         unsigned long addr;
1994         pte_t *pte;
1995
1996         rcu_read_lock();
1997         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
1998                 if (iter.index > vmf->max_pgoff)
1999                         break;
2000 repeat:
2001                 page = radix_tree_deref_slot(slot);
2002                 if (unlikely(!page))
2003                         goto next;
2004                 if (radix_tree_exception(page)) {
2005                         if (radix_tree_deref_retry(page))
2006                                 break;
2007                         else
2008                                 goto next;
2009                 }
2010
2011                 if (!page_cache_get_speculative(page))
2012                         goto repeat;
2013
2014                 /* Has the page moved? */
2015                 if (unlikely(page != *slot)) {
2016                         page_cache_release(page);
2017                         goto repeat;
2018                 }
2019
2020                 if (!PageUptodate(page) ||
2021                                 PageReadahead(page) ||
2022                                 PageHWPoison(page))
2023                         goto skip;
2024                 if (!trylock_page(page))
2025                         goto skip;
2026
2027                 if (page->mapping != mapping || !PageUptodate(page))
2028                         goto unlock;
2029
2030                 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2031                 if (page->index >= size >> PAGE_CACHE_SHIFT)
2032                         goto unlock;
2033
2034                 pte = vmf->pte + page->index - vmf->pgoff;
2035                 if (!pte_none(*pte))
2036                         goto unlock;
2037
2038                 if (file->f_ra.mmap_miss > 0)
2039                         file->f_ra.mmap_miss--;
2040                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2041                 do_set_pte(vma, addr, page, pte, false, false);
2042                 unlock_page(page);
2043                 goto next;
2044 unlock:
2045                 unlock_page(page);
2046 skip:
2047                 page_cache_release(page);
2048 next:
2049                 if (iter.index == vmf->max_pgoff)
2050                         break;
2051         }
2052         rcu_read_unlock();
2053 }
2054 EXPORT_SYMBOL(filemap_map_pages);
2055
2056 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2057 {
2058         struct page *page = vmf->page;
2059         struct inode *inode = file_inode(vma->vm_file);
2060         int ret = VM_FAULT_LOCKED;
2061
2062         sb_start_pagefault(inode->i_sb);
2063         file_update_time(vma->vm_file);
2064         lock_page(page);
2065         if (page->mapping != inode->i_mapping) {
2066                 unlock_page(page);
2067                 ret = VM_FAULT_NOPAGE;
2068                 goto out;
2069         }
2070         /*
2071          * We mark the page dirty already here so that when freeze is in
2072          * progress, we are guaranteed that writeback during freezing will
2073          * see the dirty page and writeprotect it again.
2074          */
2075         set_page_dirty(page);
2076         wait_for_stable_page(page);
2077 out:
2078         sb_end_pagefault(inode->i_sb);
2079         return ret;
2080 }
2081 EXPORT_SYMBOL(filemap_page_mkwrite);
2082
2083 const struct vm_operations_struct generic_file_vm_ops = {
2084         .fault          = filemap_fault,
2085         .map_pages      = filemap_map_pages,
2086         .page_mkwrite   = filemap_page_mkwrite,
2087         .remap_pages    = generic_file_remap_pages,
2088 };
2089
2090 /* This is used for a general mmap of a disk file */
2091
2092 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2093 {
2094         struct address_space *mapping = file->f_mapping;
2095
2096         if (!mapping->a_ops->readpage)
2097                 return -ENOEXEC;
2098         file_accessed(file);
2099         vma->vm_ops = &generic_file_vm_ops;
2100         return 0;
2101 }
2102
2103 /*
2104  * This is for filesystems which do not implement ->writepage.
2105  */
2106 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2107 {
2108         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2109                 return -EINVAL;
2110         return generic_file_mmap(file, vma);
2111 }
2112 #else
2113 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2114 {
2115         return -ENOSYS;
2116 }
2117 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2118 {
2119         return -ENOSYS;
2120 }
2121 #endif /* CONFIG_MMU */
2122
2123 EXPORT_SYMBOL(generic_file_mmap);
2124 EXPORT_SYMBOL(generic_file_readonly_mmap);
2125
2126 static struct page *wait_on_page_read(struct page *page)
2127 {
2128         if (!IS_ERR(page)) {
2129                 wait_on_page_locked(page);
2130                 if (!PageUptodate(page)) {
2131                         page_cache_release(page);
2132                         page = ERR_PTR(-EIO);
2133                 }
2134         }
2135         return page;
2136 }
2137
2138 static struct page *__read_cache_page(struct address_space *mapping,
2139                                 pgoff_t index,
2140                                 int (*filler)(void *, struct page *),
2141                                 void *data,
2142                                 gfp_t gfp)
2143 {
2144         struct page *page;
2145         int err;
2146 repeat:
2147         page = find_get_page(mapping, index);
2148         if (!page) {
2149                 page = __page_cache_alloc(gfp | __GFP_COLD);
2150                 if (!page)
2151                         return ERR_PTR(-ENOMEM);
2152                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2153                 if (unlikely(err)) {
2154                         page_cache_release(page);
2155                         if (err == -EEXIST)
2156                                 goto repeat;
2157                         /* Presumably ENOMEM for radix tree node */
2158                         return ERR_PTR(err);
2159                 }
2160                 err = filler(data, page);
2161                 if (err < 0) {
2162                         page_cache_release(page);
2163                         page = ERR_PTR(err);
2164                 } else {
2165                         page = wait_on_page_read(page);
2166                 }
2167         }
2168         return page;
2169 }
2170
2171 static struct page *do_read_cache_page(struct address_space *mapping,
2172                                 pgoff_t index,
2173                                 int (*filler)(void *, struct page *),
2174                                 void *data,
2175                                 gfp_t gfp)
2176
2177 {
2178         struct page *page;
2179         int err;
2180
2181 retry:
2182         page = __read_cache_page(mapping, index, filler, data, gfp);
2183         if (IS_ERR(page))
2184                 return page;
2185         if (PageUptodate(page))
2186                 goto out;
2187
2188         lock_page(page);
2189         if (!page->mapping) {
2190                 unlock_page(page);
2191                 page_cache_release(page);
2192                 goto retry;
2193         }
2194         if (PageUptodate(page)) {
2195                 unlock_page(page);
2196                 goto out;
2197         }
2198         err = filler(data, page);
2199         if (err < 0) {
2200                 page_cache_release(page);
2201                 return ERR_PTR(err);
2202         } else {
2203                 page = wait_on_page_read(page);
2204                 if (IS_ERR(page))
2205                         return page;
2206         }
2207 out:
2208         mark_page_accessed(page);
2209         return page;
2210 }
2211
2212 /**
2213  * read_cache_page - read into page cache, fill it if needed
2214  * @mapping:    the page's address_space
2215  * @index:      the page index
2216  * @filler:     function to perform the read
2217  * @data:       first arg to filler(data, page) function, often left as NULL
2218  *
2219  * Read into the page cache. If a page already exists, and PageUptodate() is
2220  * not set, try to fill the page and wait for it to become unlocked.
2221  *
2222  * If the page does not get brought uptodate, return -EIO.
2223  */
2224 struct page *read_cache_page(struct address_space *mapping,
2225                                 pgoff_t index,
2226                                 int (*filler)(void *, struct page *),
2227                                 void *data)
2228 {
2229         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2230 }
2231 EXPORT_SYMBOL(read_cache_page);
2232
2233 /**
2234  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2235  * @mapping:    the page's address_space
2236  * @index:      the page index
2237  * @gfp:        the page allocator flags to use if allocating
2238  *
2239  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2240  * any new page allocations done using the specified allocation flags.
2241  *
2242  * If the page does not get brought uptodate, return -EIO.
2243  */
2244 struct page *read_cache_page_gfp(struct address_space *mapping,
2245                                 pgoff_t index,
2246                                 gfp_t gfp)
2247 {
2248         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2249
2250         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2251 }
2252 EXPORT_SYMBOL(read_cache_page_gfp);
2253
2254 /*
2255  * Performs necessary checks before doing a write
2256  *
2257  * Can adjust writing position or amount of bytes to write.
2258  * Returns appropriate error code that caller should return or
2259  * zero in case that write should be allowed.
2260  */
2261 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2262 {
2263         struct inode *inode = file->f_mapping->host;
2264         unsigned long limit = rlimit(RLIMIT_FSIZE);
2265
2266         if (unlikely(*pos < 0))
2267                 return -EINVAL;
2268
2269         if (!isblk) {
2270                 /* FIXME: this is for backwards compatibility with 2.4 */
2271                 if (file->f_flags & O_APPEND)
2272                         *pos = i_size_read(inode);
2273
2274                 if (limit != RLIM_INFINITY) {
2275                         if (*pos >= limit) {
2276                                 send_sig(SIGXFSZ, current, 0);
2277                                 return -EFBIG;
2278                         }
2279                         if (*count > limit - (typeof(limit))*pos) {
2280                                 *count = limit - (typeof(limit))*pos;
2281                         }
2282                 }
2283         }
2284
2285         /*
2286          * LFS rule
2287          */
2288         if (unlikely(*pos + *count > MAX_NON_LFS &&
2289                                 !(file->f_flags & O_LARGEFILE))) {
2290                 if (*pos >= MAX_NON_LFS) {
2291                         return -EFBIG;
2292                 }
2293                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2294                         *count = MAX_NON_LFS - (unsigned long)*pos;
2295                 }
2296         }
2297
2298         /*
2299          * Are we about to exceed the fs block limit ?
2300          *
2301          * If we have written data it becomes a short write.  If we have
2302          * exceeded without writing data we send a signal and return EFBIG.
2303          * Linus frestrict idea will clean these up nicely..
2304          */
2305         if (likely(!isblk)) {
2306                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2307                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2308                                 return -EFBIG;
2309                         }
2310                         /* zero-length writes at ->s_maxbytes are OK */
2311                 }
2312
2313                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2314                         *count = inode->i_sb->s_maxbytes - *pos;
2315         } else {
2316 #ifdef CONFIG_BLOCK
2317                 loff_t isize;
2318                 if (bdev_read_only(I_BDEV(inode)))
2319                         return -EPERM;
2320                 isize = i_size_read(inode);
2321                 if (*pos >= isize) {
2322                         if (*count || *pos > isize)
2323                                 return -ENOSPC;
2324                 }
2325
2326                 if (*pos + *count > isize)
2327                         *count = isize - *pos;
2328 #else
2329                 return -EPERM;
2330 #endif
2331         }
2332         return 0;
2333 }
2334 EXPORT_SYMBOL(generic_write_checks);
2335
2336 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2337                                 loff_t pos, unsigned len, unsigned flags,
2338                                 struct page **pagep, void **fsdata)
2339 {
2340         const struct address_space_operations *aops = mapping->a_ops;
2341
2342         return aops->write_begin(file, mapping, pos, len, flags,
2343                                                         pagep, fsdata);
2344 }
2345 EXPORT_SYMBOL(pagecache_write_begin);
2346
2347 int pagecache_write_end(struct file *file, struct address_space *mapping,
2348                                 loff_t pos, unsigned len, unsigned copied,
2349                                 struct page *page, void *fsdata)
2350 {
2351         const struct address_space_operations *aops = mapping->a_ops;
2352
2353         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2354 }
2355 EXPORT_SYMBOL(pagecache_write_end);
2356
2357 ssize_t
2358 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2359 {
2360         struct file     *file = iocb->ki_filp;
2361         struct address_space *mapping = file->f_mapping;
2362         struct inode    *inode = mapping->host;
2363         ssize_t         written;
2364         size_t          write_len;
2365         pgoff_t         end;
2366         struct iov_iter data;
2367
2368         write_len = iov_iter_count(from);
2369         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2370
2371         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2372         if (written)
2373                 goto out;
2374
2375         /*
2376          * After a write we want buffered reads to be sure to go to disk to get
2377          * the new data.  We invalidate clean cached page from the region we're
2378          * about to write.  We do this *before* the write so that we can return
2379          * without clobbering -EIOCBQUEUED from ->direct_IO().
2380          */
2381         if (mapping->nrpages) {
2382                 written = invalidate_inode_pages2_range(mapping,
2383                                         pos >> PAGE_CACHE_SHIFT, end);
2384                 /*
2385                  * If a page can not be invalidated, return 0 to fall back
2386                  * to buffered write.
2387                  */
2388                 if (written) {
2389                         if (written == -EBUSY)
2390                                 return 0;
2391                         goto out;
2392                 }
2393         }
2394
2395         data = *from;
2396         written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
2397
2398         /*
2399          * Finally, try again to invalidate clean pages which might have been
2400          * cached by non-direct readahead, or faulted in by get_user_pages()
2401          * if the source of the write was an mmap'ed region of the file
2402          * we're writing.  Either one is a pretty crazy thing to do,
2403          * so we don't support it 100%.  If this invalidation
2404          * fails, tough, the write still worked...
2405          */
2406         if (mapping->nrpages) {
2407                 invalidate_inode_pages2_range(mapping,
2408                                               pos >> PAGE_CACHE_SHIFT, end);
2409         }
2410
2411         if (written > 0) {
2412                 pos += written;
2413                 iov_iter_advance(from, written);
2414                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2415                         i_size_write(inode, pos);
2416                         mark_inode_dirty(inode);
2417                 }
2418                 iocb->ki_pos = pos;
2419         }
2420 out:
2421         return written;
2422 }
2423 EXPORT_SYMBOL(generic_file_direct_write);
2424
2425 /*
2426  * Find or create a page at the given pagecache position. Return the locked
2427  * page. This function is specifically for buffered writes.
2428  */
2429 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2430                                         pgoff_t index, unsigned flags)
2431 {
2432         struct page *page;
2433         int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2434
2435         if (flags & AOP_FLAG_NOFS)
2436                 fgp_flags |= FGP_NOFS;
2437
2438         page = pagecache_get_page(mapping, index, fgp_flags,
2439                         mapping_gfp_mask(mapping),
2440                         GFP_KERNEL);
2441         if (page)
2442                 wait_for_stable_page(page);
2443
2444         return page;
2445 }
2446 EXPORT_SYMBOL(grab_cache_page_write_begin);
2447
2448 ssize_t generic_perform_write(struct file *file,
2449                                 struct iov_iter *i, loff_t pos)
2450 {
2451         struct address_space *mapping = file->f_mapping;
2452         const struct address_space_operations *a_ops = mapping->a_ops;
2453         long status = 0;
2454         ssize_t written = 0;
2455         unsigned int flags = 0;
2456
2457         /*
2458          * Copies from kernel address space cannot fail (NFSD is a big user).
2459          */
2460         if (segment_eq(get_fs(), KERNEL_DS))
2461                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2462
2463         do {
2464                 struct page *page;
2465                 unsigned long offset;   /* Offset into pagecache page */
2466                 unsigned long bytes;    /* Bytes to write to page */
2467                 size_t copied;          /* Bytes copied from user */
2468                 void *fsdata;
2469
2470                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2471                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2472                                                 iov_iter_count(i));
2473
2474 again:
2475                 /*
2476                  * Bring in the user page that we will copy from _first_.
2477                  * Otherwise there's a nasty deadlock on copying from the
2478                  * same page as we're writing to, without it being marked
2479                  * up-to-date.
2480                  *
2481                  * Not only is this an optimisation, but it is also required
2482                  * to check that the address is actually valid, when atomic
2483                  * usercopies are used, below.
2484                  */
2485                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2486                         status = -EFAULT;
2487                         break;
2488                 }
2489
2490                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2491                                                 &page, &fsdata);
2492                 if (unlikely(status < 0))
2493                         break;
2494
2495                 if (mapping_writably_mapped(mapping))
2496                         flush_dcache_page(page);
2497
2498                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2499                 flush_dcache_page(page);
2500
2501                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2502                                                 page, fsdata);
2503                 if (unlikely(status < 0))
2504                         break;
2505                 copied = status;
2506
2507                 cond_resched();
2508
2509                 iov_iter_advance(i, copied);
2510                 if (unlikely(copied == 0)) {
2511                         /*
2512                          * If we were unable to copy any data at all, we must
2513                          * fall back to a single segment length write.
2514                          *
2515                          * If we didn't fallback here, we could livelock
2516                          * because not all segments in the iov can be copied at
2517                          * once without a pagefault.
2518                          */
2519                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2520                                                 iov_iter_single_seg_count(i));
2521                         goto again;
2522                 }
2523                 pos += copied;
2524                 written += copied;
2525
2526                 balance_dirty_pages_ratelimited(mapping);
2527                 if (fatal_signal_pending(current)) {
2528                         status = -EINTR;
2529                         break;
2530                 }
2531         } while (iov_iter_count(i));
2532
2533         return written ? written : status;
2534 }
2535 EXPORT_SYMBOL(generic_perform_write);
2536
2537 /**
2538  * __generic_file_write_iter - write data to a file
2539  * @iocb:       IO state structure (file, offset, etc.)
2540  * @from:       iov_iter with data to write
2541  *
2542  * This function does all the work needed for actually writing data to a
2543  * file. It does all basic checks, removes SUID from the file, updates
2544  * modification times and calls proper subroutines depending on whether we
2545  * do direct IO or a standard buffered write.
2546  *
2547  * It expects i_mutex to be grabbed unless we work on a block device or similar
2548  * object which does not need locking at all.
2549  *
2550  * This function does *not* take care of syncing data in case of O_SYNC write.
2551  * A caller has to handle it. This is mainly due to the fact that we want to
2552  * avoid syncing under i_mutex.
2553  */
2554 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2555 {
2556         struct file *file = iocb->ki_filp;
2557         struct address_space * mapping = file->f_mapping;
2558         struct inode    *inode = mapping->host;
2559         loff_t          pos = iocb->ki_pos;
2560         ssize_t         written = 0;
2561         ssize_t         err;
2562         ssize_t         status;
2563         size_t          count = iov_iter_count(from);
2564
2565         /* We can write back this queue in page reclaim */
2566         current->backing_dev_info = mapping->backing_dev_info;
2567         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2568         if (err)
2569                 goto out;
2570
2571         if (count == 0)
2572                 goto out;
2573
2574         iov_iter_truncate(from, count);
2575
2576         err = file_remove_suid(file);
2577         if (err)
2578                 goto out;
2579
2580         err = file_update_time(file);
2581         if (err)
2582                 goto out;
2583
2584         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2585         if (unlikely(file->f_flags & O_DIRECT)) {
2586                 loff_t endbyte;
2587
2588                 written = generic_file_direct_write(iocb, from, pos);
2589                 if (written < 0 || written == count)
2590                         goto out;
2591
2592                 /*
2593                  * direct-io write to a hole: fall through to buffered I/O
2594                  * for completing the rest of the request.
2595                  */
2596                 pos += written;
2597                 count -= written;
2598
2599                 status = generic_perform_write(file, from, pos);
2600                 /*
2601                  * If generic_perform_write() returned a synchronous error
2602                  * then we want to return the number of bytes which were
2603                  * direct-written, or the error code if that was zero.  Note
2604                  * that this differs from normal direct-io semantics, which
2605                  * will return -EFOO even if some bytes were written.
2606                  */
2607                 if (unlikely(status < 0) && !written) {
2608                         err = status;
2609                         goto out;
2610                 }
2611                 iocb->ki_pos = pos + status;
2612                 /*
2613                  * We need to ensure that the page cache pages are written to
2614                  * disk and invalidated to preserve the expected O_DIRECT
2615                  * semantics.
2616                  */
2617                 endbyte = pos + status - 1;
2618                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2619                 if (err == 0) {
2620                         written += status;
2621                         invalidate_mapping_pages(mapping,
2622                                                  pos >> PAGE_CACHE_SHIFT,
2623                                                  endbyte >> PAGE_CACHE_SHIFT);
2624                 } else {
2625                         /*
2626                          * We don't know how much we wrote, so just return
2627                          * the number of bytes which were direct-written
2628                          */
2629                 }
2630         } else {
2631                 written = generic_perform_write(file, from, pos);
2632                 if (likely(written >= 0))
2633                         iocb->ki_pos = pos + written;
2634         }
2635 out:
2636         current->backing_dev_info = NULL;
2637         return written ? written : err;
2638 }
2639 EXPORT_SYMBOL(__generic_file_write_iter);
2640
2641 /**
2642  * generic_file_write_iter - write data to a file
2643  * @iocb:       IO state structure
2644  * @from:       iov_iter with data to write
2645  *
2646  * This is a wrapper around __generic_file_write_iter() to be used by most
2647  * filesystems. It takes care of syncing the file in case of O_SYNC file
2648  * and acquires i_mutex as needed.
2649  */
2650 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2651 {
2652         struct file *file = iocb->ki_filp;
2653         struct inode *inode = file->f_mapping->host;
2654         ssize_t ret;
2655
2656         mutex_lock(&inode->i_mutex);
2657         ret = __generic_file_write_iter(iocb, from);
2658         mutex_unlock(&inode->i_mutex);
2659
2660         if (ret > 0) {
2661                 ssize_t err;
2662
2663                 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2664                 if (err < 0)
2665                         ret = err;
2666         }
2667         return ret;
2668 }
2669 EXPORT_SYMBOL(generic_file_write_iter);
2670
2671 /**
2672  * try_to_release_page() - release old fs-specific metadata on a page
2673  *
2674  * @page: the page which the kernel is trying to free
2675  * @gfp_mask: memory allocation flags (and I/O mode)
2676  *
2677  * The address_space is to try to release any data against the page
2678  * (presumably at page->private).  If the release was successful, return `1'.
2679  * Otherwise return zero.
2680  *
2681  * This may also be called if PG_fscache is set on a page, indicating that the
2682  * page is known to the local caching routines.
2683  *
2684  * The @gfp_mask argument specifies whether I/O may be performed to release
2685  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2686  *
2687  */
2688 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2689 {
2690         struct address_space * const mapping = page->mapping;
2691
2692         BUG_ON(!PageLocked(page));
2693         if (PageWriteback(page))
2694                 return 0;
2695
2696         if (mapping && mapping->a_ops->releasepage)
2697                 return mapping->a_ops->releasepage(page, gfp_mask);
2698         return try_to_free_buffers(page);
2699 }
2700
2701 EXPORT_SYMBOL(try_to_release_page);