mm: filemap: avoid unnecessary calls to lock_page when waiting for IO to complete...
[cascardo/linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem              (truncate_pagecache)
66  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock             (exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page               (access_process_vm)
80  *
81  *  ->i_mutex                   (generic_perform_write)
82  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
99  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock        (page_remove_rmap->mem_cgroup_begin_page_stat)
105  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
107  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112
113 static void page_cache_tree_delete(struct address_space *mapping,
114                                    struct page *page, void *shadow)
115 {
116         struct radix_tree_node *node;
117         unsigned long index;
118         unsigned int offset;
119         unsigned int tag;
120         void **slot;
121
122         VM_BUG_ON(!PageLocked(page));
123
124         __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125
126         if (shadow) {
127                 mapping->nrexceptional++;
128                 /*
129                  * Make sure the nrexceptional update is committed before
130                  * the nrpages update so that final truncate racing
131                  * with reclaim does not see both counters 0 at the
132                  * same time and miss a shadow entry.
133                  */
134                 smp_wmb();
135         }
136         mapping->nrpages--;
137
138         if (!node) {
139                 /* Clear direct pointer tags in root node */
140                 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
141                 radix_tree_replace_slot(slot, shadow);
142                 return;
143         }
144
145         /* Clear tree tags for the removed page */
146         index = page->index;
147         offset = index & RADIX_TREE_MAP_MASK;
148         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
149                 if (test_bit(offset, node->tags[tag]))
150                         radix_tree_tag_clear(&mapping->page_tree, index, tag);
151         }
152
153         /* Delete page, swap shadow entry */
154         radix_tree_replace_slot(slot, shadow);
155         workingset_node_pages_dec(node);
156         if (shadow)
157                 workingset_node_shadows_inc(node);
158         else
159                 if (__radix_tree_delete_node(&mapping->page_tree, node))
160                         return;
161
162         /*
163          * Track node that only contains shadow entries.
164          *
165          * Avoid acquiring the list_lru lock if already tracked.  The
166          * list_empty() test is safe as node->private_list is
167          * protected by mapping->tree_lock.
168          */
169         if (!workingset_node_pages(node) &&
170             list_empty(&node->private_list)) {
171                 node->private_data = mapping;
172                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
173         }
174 }
175
176 /*
177  * Delete a page from the page cache and free it. Caller has to make
178  * sure the page is locked and that nobody else uses it - or that usage
179  * is safe.  The caller must hold the mapping's tree_lock and
180  * mem_cgroup_begin_page_stat().
181  */
182 void __delete_from_page_cache(struct page *page, void *shadow,
183                               struct mem_cgroup *memcg)
184 {
185         struct address_space *mapping = page->mapping;
186
187         trace_mm_filemap_delete_from_page_cache(page);
188         /*
189          * if we're uptodate, flush out into the cleancache, otherwise
190          * invalidate any existing cleancache entries.  We can't leave
191          * stale data around in the cleancache once our page is gone
192          */
193         if (PageUptodate(page) && PageMappedToDisk(page))
194                 cleancache_put_page(page);
195         else
196                 cleancache_invalidate_page(mapping, page);
197
198         VM_BUG_ON_PAGE(page_mapped(page), page);
199         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
200                 int mapcount;
201
202                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
203                          current->comm, page_to_pfn(page));
204                 dump_page(page, "still mapped when deleted");
205                 dump_stack();
206                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
207
208                 mapcount = page_mapcount(page);
209                 if (mapping_exiting(mapping) &&
210                     page_count(page) >= mapcount + 2) {
211                         /*
212                          * All vmas have already been torn down, so it's
213                          * a good bet that actually the page is unmapped,
214                          * and we'd prefer not to leak it: if we're wrong,
215                          * some other bad page check should catch it later.
216                          */
217                         page_mapcount_reset(page);
218                         atomic_sub(mapcount, &page->_count);
219                 }
220         }
221
222         page_cache_tree_delete(mapping, page, shadow);
223
224         page->mapping = NULL;
225         /* Leave page->index set: truncation lookup relies upon it */
226
227         /* hugetlb pages do not participate in page cache accounting. */
228         if (!PageHuge(page))
229                 __dec_zone_page_state(page, NR_FILE_PAGES);
230         if (PageSwapBacked(page))
231                 __dec_zone_page_state(page, NR_SHMEM);
232
233         /*
234          * At this point page must be either written or cleaned by truncate.
235          * Dirty page here signals a bug and loss of unwritten data.
236          *
237          * This fixes dirty accounting after removing the page entirely but
238          * leaves PageDirty set: it has no effect for truncated page and
239          * anyway will be cleared before returning page into buddy allocator.
240          */
241         if (WARN_ON_ONCE(PageDirty(page)))
242                 account_page_cleaned(page, mapping, memcg,
243                                      inode_to_wb(mapping->host));
244 }
245
246 /**
247  * delete_from_page_cache - delete page from page cache
248  * @page: the page which the kernel is trying to remove from page cache
249  *
250  * This must be called only on pages that have been verified to be in the page
251  * cache and locked.  It will never put the page into the free list, the caller
252  * has a reference on the page.
253  */
254 void delete_from_page_cache(struct page *page)
255 {
256         struct address_space *mapping = page->mapping;
257         struct mem_cgroup *memcg;
258         unsigned long flags;
259
260         void (*freepage)(struct page *);
261
262         BUG_ON(!PageLocked(page));
263
264         freepage = mapping->a_ops->freepage;
265
266         memcg = mem_cgroup_begin_page_stat(page);
267         spin_lock_irqsave(&mapping->tree_lock, flags);
268         __delete_from_page_cache(page, NULL, memcg);
269         spin_unlock_irqrestore(&mapping->tree_lock, flags);
270         mem_cgroup_end_page_stat(memcg);
271
272         if (freepage)
273                 freepage(page);
274         page_cache_release(page);
275 }
276 EXPORT_SYMBOL(delete_from_page_cache);
277
278 static int filemap_check_errors(struct address_space *mapping)
279 {
280         int ret = 0;
281         /* Check for outstanding write errors */
282         if (test_bit(AS_ENOSPC, &mapping->flags) &&
283             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
284                 ret = -ENOSPC;
285         if (test_bit(AS_EIO, &mapping->flags) &&
286             test_and_clear_bit(AS_EIO, &mapping->flags))
287                 ret = -EIO;
288         return ret;
289 }
290
291 /**
292  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
293  * @mapping:    address space structure to write
294  * @start:      offset in bytes where the range starts
295  * @end:        offset in bytes where the range ends (inclusive)
296  * @sync_mode:  enable synchronous operation
297  *
298  * Start writeback against all of a mapping's dirty pages that lie
299  * within the byte offsets <start, end> inclusive.
300  *
301  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
302  * opposed to a regular memory cleansing writeback.  The difference between
303  * these two operations is that if a dirty page/buffer is encountered, it must
304  * be waited upon, and not just skipped over.
305  */
306 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
307                                 loff_t end, int sync_mode)
308 {
309         int ret;
310         struct writeback_control wbc = {
311                 .sync_mode = sync_mode,
312                 .nr_to_write = LONG_MAX,
313                 .range_start = start,
314                 .range_end = end,
315         };
316
317         if (!mapping_cap_writeback_dirty(mapping))
318                 return 0;
319
320         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
321         ret = do_writepages(mapping, &wbc);
322         wbc_detach_inode(&wbc);
323         return ret;
324 }
325
326 static inline int __filemap_fdatawrite(struct address_space *mapping,
327         int sync_mode)
328 {
329         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
330 }
331
332 int filemap_fdatawrite(struct address_space *mapping)
333 {
334         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
335 }
336 EXPORT_SYMBOL(filemap_fdatawrite);
337
338 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
339                                 loff_t end)
340 {
341         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
342 }
343 EXPORT_SYMBOL(filemap_fdatawrite_range);
344
345 /**
346  * filemap_flush - mostly a non-blocking flush
347  * @mapping:    target address_space
348  *
349  * This is a mostly non-blocking flush.  Not suitable for data-integrity
350  * purposes - I/O may not be started against all dirty pages.
351  */
352 int filemap_flush(struct address_space *mapping)
353 {
354         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
355 }
356 EXPORT_SYMBOL(filemap_flush);
357
358 static int __filemap_fdatawait_range(struct address_space *mapping,
359                                      loff_t start_byte, loff_t end_byte)
360 {
361         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
362         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
363         struct pagevec pvec;
364         int nr_pages;
365         int ret = 0;
366
367         if (end_byte < start_byte)
368                 goto out;
369
370         pagevec_init(&pvec, 0);
371         while ((index <= end) &&
372                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
373                         PAGECACHE_TAG_WRITEBACK,
374                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
375                 unsigned i;
376
377                 for (i = 0; i < nr_pages; i++) {
378                         struct page *page = pvec.pages[i];
379
380                         /* until radix tree lookup accepts end_index */
381                         if (page->index > end)
382                                 continue;
383
384                         wait_on_page_writeback(page);
385                         if (TestClearPageError(page))
386                                 ret = -EIO;
387                 }
388                 pagevec_release(&pvec);
389                 cond_resched();
390         }
391 out:
392         return ret;
393 }
394
395 /**
396  * filemap_fdatawait_range - wait for writeback to complete
397  * @mapping:            address space structure to wait for
398  * @start_byte:         offset in bytes where the range starts
399  * @end_byte:           offset in bytes where the range ends (inclusive)
400  *
401  * Walk the list of under-writeback pages of the given address space
402  * in the given range and wait for all of them.  Check error status of
403  * the address space and return it.
404  *
405  * Since the error status of the address space is cleared by this function,
406  * callers are responsible for checking the return value and handling and/or
407  * reporting the error.
408  */
409 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
410                             loff_t end_byte)
411 {
412         int ret, ret2;
413
414         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
415         ret2 = filemap_check_errors(mapping);
416         if (!ret)
417                 ret = ret2;
418
419         return ret;
420 }
421 EXPORT_SYMBOL(filemap_fdatawait_range);
422
423 /**
424  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
425  * @mapping: address space structure to wait for
426  *
427  * Walk the list of under-writeback pages of the given address space
428  * and wait for all of them.  Unlike filemap_fdatawait(), this function
429  * does not clear error status of the address space.
430  *
431  * Use this function if callers don't handle errors themselves.  Expected
432  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
433  * fsfreeze(8)
434  */
435 void filemap_fdatawait_keep_errors(struct address_space *mapping)
436 {
437         loff_t i_size = i_size_read(mapping->host);
438
439         if (i_size == 0)
440                 return;
441
442         __filemap_fdatawait_range(mapping, 0, i_size - 1);
443 }
444
445 /**
446  * filemap_fdatawait - wait for all under-writeback pages to complete
447  * @mapping: address space structure to wait for
448  *
449  * Walk the list of under-writeback pages of the given address space
450  * and wait for all of them.  Check error status of the address space
451  * and return it.
452  *
453  * Since the error status of the address space is cleared by this function,
454  * callers are responsible for checking the return value and handling and/or
455  * reporting the error.
456  */
457 int filemap_fdatawait(struct address_space *mapping)
458 {
459         loff_t i_size = i_size_read(mapping->host);
460
461         if (i_size == 0)
462                 return 0;
463
464         return filemap_fdatawait_range(mapping, 0, i_size - 1);
465 }
466 EXPORT_SYMBOL(filemap_fdatawait);
467
468 int filemap_write_and_wait(struct address_space *mapping)
469 {
470         int err = 0;
471
472         if ((!dax_mapping(mapping) && mapping->nrpages) ||
473             (dax_mapping(mapping) && mapping->nrexceptional)) {
474                 err = filemap_fdatawrite(mapping);
475                 /*
476                  * Even if the above returned error, the pages may be
477                  * written partially (e.g. -ENOSPC), so we wait for it.
478                  * But the -EIO is special case, it may indicate the worst
479                  * thing (e.g. bug) happened, so we avoid waiting for it.
480                  */
481                 if (err != -EIO) {
482                         int err2 = filemap_fdatawait(mapping);
483                         if (!err)
484                                 err = err2;
485                 }
486         } else {
487                 err = filemap_check_errors(mapping);
488         }
489         return err;
490 }
491 EXPORT_SYMBOL(filemap_write_and_wait);
492
493 /**
494  * filemap_write_and_wait_range - write out & wait on a file range
495  * @mapping:    the address_space for the pages
496  * @lstart:     offset in bytes where the range starts
497  * @lend:       offset in bytes where the range ends (inclusive)
498  *
499  * Write out and wait upon file offsets lstart->lend, inclusive.
500  *
501  * Note that `lend' is inclusive (describes the last byte to be written) so
502  * that this function can be used to write to the very end-of-file (end = -1).
503  */
504 int filemap_write_and_wait_range(struct address_space *mapping,
505                                  loff_t lstart, loff_t lend)
506 {
507         int err = 0;
508
509         if ((!dax_mapping(mapping) && mapping->nrpages) ||
510             (dax_mapping(mapping) && mapping->nrexceptional)) {
511                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
512                                                  WB_SYNC_ALL);
513                 /* See comment of filemap_write_and_wait() */
514                 if (err != -EIO) {
515                         int err2 = filemap_fdatawait_range(mapping,
516                                                 lstart, lend);
517                         if (!err)
518                                 err = err2;
519                 }
520         } else {
521                 err = filemap_check_errors(mapping);
522         }
523         return err;
524 }
525 EXPORT_SYMBOL(filemap_write_and_wait_range);
526
527 /**
528  * replace_page_cache_page - replace a pagecache page with a new one
529  * @old:        page to be replaced
530  * @new:        page to replace with
531  * @gfp_mask:   allocation mode
532  *
533  * This function replaces a page in the pagecache with a new one.  On
534  * success it acquires the pagecache reference for the new page and
535  * drops it for the old page.  Both the old and new pages must be
536  * locked.  This function does not add the new page to the LRU, the
537  * caller must do that.
538  *
539  * The remove + add is atomic.  The only way this function can fail is
540  * memory allocation failure.
541  */
542 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
543 {
544         int error;
545
546         VM_BUG_ON_PAGE(!PageLocked(old), old);
547         VM_BUG_ON_PAGE(!PageLocked(new), new);
548         VM_BUG_ON_PAGE(new->mapping, new);
549
550         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
551         if (!error) {
552                 struct address_space *mapping = old->mapping;
553                 void (*freepage)(struct page *);
554                 struct mem_cgroup *memcg;
555                 unsigned long flags;
556
557                 pgoff_t offset = old->index;
558                 freepage = mapping->a_ops->freepage;
559
560                 page_cache_get(new);
561                 new->mapping = mapping;
562                 new->index = offset;
563
564                 memcg = mem_cgroup_begin_page_stat(old);
565                 spin_lock_irqsave(&mapping->tree_lock, flags);
566                 __delete_from_page_cache(old, NULL, memcg);
567                 error = radix_tree_insert(&mapping->page_tree, offset, new);
568                 BUG_ON(error);
569                 mapping->nrpages++;
570
571                 /*
572                  * hugetlb pages do not participate in page cache accounting.
573                  */
574                 if (!PageHuge(new))
575                         __inc_zone_page_state(new, NR_FILE_PAGES);
576                 if (PageSwapBacked(new))
577                         __inc_zone_page_state(new, NR_SHMEM);
578                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
579                 mem_cgroup_end_page_stat(memcg);
580                 mem_cgroup_replace_page(old, new);
581                 radix_tree_preload_end();
582                 if (freepage)
583                         freepage(old);
584                 page_cache_release(old);
585         }
586
587         return error;
588 }
589 EXPORT_SYMBOL_GPL(replace_page_cache_page);
590
591 static int page_cache_tree_insert(struct address_space *mapping,
592                                   struct page *page, void **shadowp)
593 {
594         struct radix_tree_node *node;
595         void **slot;
596         int error;
597
598         error = __radix_tree_create(&mapping->page_tree, page->index,
599                                     &node, &slot);
600         if (error)
601                 return error;
602         if (*slot) {
603                 void *p;
604
605                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
606                 if (!radix_tree_exceptional_entry(p))
607                         return -EEXIST;
608
609                 if (WARN_ON(dax_mapping(mapping)))
610                         return -EINVAL;
611
612                 if (shadowp)
613                         *shadowp = p;
614                 mapping->nrexceptional--;
615                 if (node)
616                         workingset_node_shadows_dec(node);
617         }
618         radix_tree_replace_slot(slot, page);
619         mapping->nrpages++;
620         if (node) {
621                 workingset_node_pages_inc(node);
622                 /*
623                  * Don't track node that contains actual pages.
624                  *
625                  * Avoid acquiring the list_lru lock if already
626                  * untracked.  The list_empty() test is safe as
627                  * node->private_list is protected by
628                  * mapping->tree_lock.
629                  */
630                 if (!list_empty(&node->private_list))
631                         list_lru_del(&workingset_shadow_nodes,
632                                      &node->private_list);
633         }
634         return 0;
635 }
636
637 static int __add_to_page_cache_locked(struct page *page,
638                                       struct address_space *mapping,
639                                       pgoff_t offset, gfp_t gfp_mask,
640                                       void **shadowp)
641 {
642         int huge = PageHuge(page);
643         struct mem_cgroup *memcg;
644         int error;
645
646         VM_BUG_ON_PAGE(!PageLocked(page), page);
647         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
648
649         if (!huge) {
650                 error = mem_cgroup_try_charge(page, current->mm,
651                                               gfp_mask, &memcg, false);
652                 if (error)
653                         return error;
654         }
655
656         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
657         if (error) {
658                 if (!huge)
659                         mem_cgroup_cancel_charge(page, memcg, false);
660                 return error;
661         }
662
663         page_cache_get(page);
664         page->mapping = mapping;
665         page->index = offset;
666
667         spin_lock_irq(&mapping->tree_lock);
668         error = page_cache_tree_insert(mapping, page, shadowp);
669         radix_tree_preload_end();
670         if (unlikely(error))
671                 goto err_insert;
672
673         /* hugetlb pages do not participate in page cache accounting. */
674         if (!huge)
675                 __inc_zone_page_state(page, NR_FILE_PAGES);
676         spin_unlock_irq(&mapping->tree_lock);
677         if (!huge)
678                 mem_cgroup_commit_charge(page, memcg, false, false);
679         trace_mm_filemap_add_to_page_cache(page);
680         return 0;
681 err_insert:
682         page->mapping = NULL;
683         /* Leave page->index set: truncation relies upon it */
684         spin_unlock_irq(&mapping->tree_lock);
685         if (!huge)
686                 mem_cgroup_cancel_charge(page, memcg, false);
687         page_cache_release(page);
688         return error;
689 }
690
691 /**
692  * add_to_page_cache_locked - add a locked page to the pagecache
693  * @page:       page to add
694  * @mapping:    the page's address_space
695  * @offset:     page index
696  * @gfp_mask:   page allocation mode
697  *
698  * This function is used to add a page to the pagecache. It must be locked.
699  * This function does not add the page to the LRU.  The caller must do that.
700  */
701 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
702                 pgoff_t offset, gfp_t gfp_mask)
703 {
704         return __add_to_page_cache_locked(page, mapping, offset,
705                                           gfp_mask, NULL);
706 }
707 EXPORT_SYMBOL(add_to_page_cache_locked);
708
709 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
710                                 pgoff_t offset, gfp_t gfp_mask)
711 {
712         void *shadow = NULL;
713         int ret;
714
715         __SetPageLocked(page);
716         ret = __add_to_page_cache_locked(page, mapping, offset,
717                                          gfp_mask, &shadow);
718         if (unlikely(ret))
719                 __ClearPageLocked(page);
720         else {
721                 /*
722                  * The page might have been evicted from cache only
723                  * recently, in which case it should be activated like
724                  * any other repeatedly accessed page.
725                  */
726                 if (shadow && workingset_refault(shadow)) {
727                         SetPageActive(page);
728                         workingset_activation(page);
729                 } else
730                         ClearPageActive(page);
731                 lru_cache_add(page);
732         }
733         return ret;
734 }
735 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
736
737 #ifdef CONFIG_NUMA
738 struct page *__page_cache_alloc(gfp_t gfp)
739 {
740         int n;
741         struct page *page;
742
743         if (cpuset_do_page_mem_spread()) {
744                 unsigned int cpuset_mems_cookie;
745                 do {
746                         cpuset_mems_cookie = read_mems_allowed_begin();
747                         n = cpuset_mem_spread_node();
748                         page = __alloc_pages_node(n, gfp, 0);
749                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
750
751                 return page;
752         }
753         return alloc_pages(gfp, 0);
754 }
755 EXPORT_SYMBOL(__page_cache_alloc);
756 #endif
757
758 /*
759  * In order to wait for pages to become available there must be
760  * waitqueues associated with pages. By using a hash table of
761  * waitqueues where the bucket discipline is to maintain all
762  * waiters on the same queue and wake all when any of the pages
763  * become available, and for the woken contexts to check to be
764  * sure the appropriate page became available, this saves space
765  * at a cost of "thundering herd" phenomena during rare hash
766  * collisions.
767  */
768 wait_queue_head_t *page_waitqueue(struct page *page)
769 {
770         const struct zone *zone = page_zone(page);
771
772         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
773 }
774 EXPORT_SYMBOL(page_waitqueue);
775
776 void wait_on_page_bit(struct page *page, int bit_nr)
777 {
778         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
779
780         if (test_bit(bit_nr, &page->flags))
781                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
782                                                         TASK_UNINTERRUPTIBLE);
783 }
784 EXPORT_SYMBOL(wait_on_page_bit);
785
786 int wait_on_page_bit_killable(struct page *page, int bit_nr)
787 {
788         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
789
790         if (!test_bit(bit_nr, &page->flags))
791                 return 0;
792
793         return __wait_on_bit(page_waitqueue(page), &wait,
794                              bit_wait_io, TASK_KILLABLE);
795 }
796
797 int wait_on_page_bit_killable_timeout(struct page *page,
798                                        int bit_nr, unsigned long timeout)
799 {
800         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
801
802         wait.key.timeout = jiffies + timeout;
803         if (!test_bit(bit_nr, &page->flags))
804                 return 0;
805         return __wait_on_bit(page_waitqueue(page), &wait,
806                              bit_wait_io_timeout, TASK_KILLABLE);
807 }
808 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
809
810 /**
811  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
812  * @page: Page defining the wait queue of interest
813  * @waiter: Waiter to add to the queue
814  *
815  * Add an arbitrary @waiter to the wait queue for the nominated @page.
816  */
817 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
818 {
819         wait_queue_head_t *q = page_waitqueue(page);
820         unsigned long flags;
821
822         spin_lock_irqsave(&q->lock, flags);
823         __add_wait_queue(q, waiter);
824         spin_unlock_irqrestore(&q->lock, flags);
825 }
826 EXPORT_SYMBOL_GPL(add_page_wait_queue);
827
828 /**
829  * unlock_page - unlock a locked page
830  * @page: the page
831  *
832  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
833  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
834  * mechanism between PageLocked pages and PageWriteback pages is shared.
835  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
836  *
837  * The mb is necessary to enforce ordering between the clear_bit and the read
838  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
839  */
840 void unlock_page(struct page *page)
841 {
842         page = compound_head(page);
843         VM_BUG_ON_PAGE(!PageLocked(page), page);
844         clear_bit_unlock(PG_locked, &page->flags);
845         smp_mb__after_atomic();
846         wake_up_page(page, PG_locked);
847 }
848 EXPORT_SYMBOL(unlock_page);
849
850 /**
851  * end_page_writeback - end writeback against a page
852  * @page: the page
853  */
854 void end_page_writeback(struct page *page)
855 {
856         /*
857          * TestClearPageReclaim could be used here but it is an atomic
858          * operation and overkill in this particular case. Failing to
859          * shuffle a page marked for immediate reclaim is too mild to
860          * justify taking an atomic operation penalty at the end of
861          * ever page writeback.
862          */
863         if (PageReclaim(page)) {
864                 ClearPageReclaim(page);
865                 rotate_reclaimable_page(page);
866         }
867
868         if (!test_clear_page_writeback(page))
869                 BUG();
870
871         smp_mb__after_atomic();
872         wake_up_page(page, PG_writeback);
873 }
874 EXPORT_SYMBOL(end_page_writeback);
875
876 /*
877  * After completing I/O on a page, call this routine to update the page
878  * flags appropriately
879  */
880 void page_endio(struct page *page, int rw, int err)
881 {
882         if (rw == READ) {
883                 if (!err) {
884                         SetPageUptodate(page);
885                 } else {
886                         ClearPageUptodate(page);
887                         SetPageError(page);
888                 }
889                 unlock_page(page);
890         } else { /* rw == WRITE */
891                 if (err) {
892                         SetPageError(page);
893                         if (page->mapping)
894                                 mapping_set_error(page->mapping, err);
895                 }
896                 end_page_writeback(page);
897         }
898 }
899 EXPORT_SYMBOL_GPL(page_endio);
900
901 /**
902  * __lock_page - get a lock on the page, assuming we need to sleep to get it
903  * @page: the page to lock
904  */
905 void __lock_page(struct page *page)
906 {
907         struct page *page_head = compound_head(page);
908         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
909
910         __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
911                                                         TASK_UNINTERRUPTIBLE);
912 }
913 EXPORT_SYMBOL(__lock_page);
914
915 int __lock_page_killable(struct page *page)
916 {
917         struct page *page_head = compound_head(page);
918         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
919
920         return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
921                                         bit_wait_io, TASK_KILLABLE);
922 }
923 EXPORT_SYMBOL_GPL(__lock_page_killable);
924
925 /*
926  * Return values:
927  * 1 - page is locked; mmap_sem is still held.
928  * 0 - page is not locked.
929  *     mmap_sem has been released (up_read()), unless flags had both
930  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
931  *     which case mmap_sem is still held.
932  *
933  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
934  * with the page locked and the mmap_sem unperturbed.
935  */
936 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
937                          unsigned int flags)
938 {
939         if (flags & FAULT_FLAG_ALLOW_RETRY) {
940                 /*
941                  * CAUTION! In this case, mmap_sem is not released
942                  * even though return 0.
943                  */
944                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
945                         return 0;
946
947                 up_read(&mm->mmap_sem);
948                 if (flags & FAULT_FLAG_KILLABLE)
949                         wait_on_page_locked_killable(page);
950                 else
951                         wait_on_page_locked(page);
952                 return 0;
953         } else {
954                 if (flags & FAULT_FLAG_KILLABLE) {
955                         int ret;
956
957                         ret = __lock_page_killable(page);
958                         if (ret) {
959                                 up_read(&mm->mmap_sem);
960                                 return 0;
961                         }
962                 } else
963                         __lock_page(page);
964                 return 1;
965         }
966 }
967
968 /**
969  * page_cache_next_hole - find the next hole (not-present entry)
970  * @mapping: mapping
971  * @index: index
972  * @max_scan: maximum range to search
973  *
974  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
975  * lowest indexed hole.
976  *
977  * Returns: the index of the hole if found, otherwise returns an index
978  * outside of the set specified (in which case 'return - index >=
979  * max_scan' will be true). In rare cases of index wrap-around, 0 will
980  * be returned.
981  *
982  * page_cache_next_hole may be called under rcu_read_lock. However,
983  * like radix_tree_gang_lookup, this will not atomically search a
984  * snapshot of the tree at a single point in time. For example, if a
985  * hole is created at index 5, then subsequently a hole is created at
986  * index 10, page_cache_next_hole covering both indexes may return 10
987  * if called under rcu_read_lock.
988  */
989 pgoff_t page_cache_next_hole(struct address_space *mapping,
990                              pgoff_t index, unsigned long max_scan)
991 {
992         unsigned long i;
993
994         for (i = 0; i < max_scan; i++) {
995                 struct page *page;
996
997                 page = radix_tree_lookup(&mapping->page_tree, index);
998                 if (!page || radix_tree_exceptional_entry(page))
999                         break;
1000                 index++;
1001                 if (index == 0)
1002                         break;
1003         }
1004
1005         return index;
1006 }
1007 EXPORT_SYMBOL(page_cache_next_hole);
1008
1009 /**
1010  * page_cache_prev_hole - find the prev hole (not-present entry)
1011  * @mapping: mapping
1012  * @index: index
1013  * @max_scan: maximum range to search
1014  *
1015  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1016  * the first hole.
1017  *
1018  * Returns: the index of the hole if found, otherwise returns an index
1019  * outside of the set specified (in which case 'index - return >=
1020  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1021  * will be returned.
1022  *
1023  * page_cache_prev_hole may be called under rcu_read_lock. However,
1024  * like radix_tree_gang_lookup, this will not atomically search a
1025  * snapshot of the tree at a single point in time. For example, if a
1026  * hole is created at index 10, then subsequently a hole is created at
1027  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1028  * called under rcu_read_lock.
1029  */
1030 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1031                              pgoff_t index, unsigned long max_scan)
1032 {
1033         unsigned long i;
1034
1035         for (i = 0; i < max_scan; i++) {
1036                 struct page *page;
1037
1038                 page = radix_tree_lookup(&mapping->page_tree, index);
1039                 if (!page || radix_tree_exceptional_entry(page))
1040                         break;
1041                 index--;
1042                 if (index == ULONG_MAX)
1043                         break;
1044         }
1045
1046         return index;
1047 }
1048 EXPORT_SYMBOL(page_cache_prev_hole);
1049
1050 /**
1051  * find_get_entry - find and get a page cache entry
1052  * @mapping: the address_space to search
1053  * @offset: the page cache index
1054  *
1055  * Looks up the page cache slot at @mapping & @offset.  If there is a
1056  * page cache page, it is returned with an increased refcount.
1057  *
1058  * If the slot holds a shadow entry of a previously evicted page, or a
1059  * swap entry from shmem/tmpfs, it is returned.
1060  *
1061  * Otherwise, %NULL is returned.
1062  */
1063 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1064 {
1065         void **pagep;
1066         struct page *page;
1067
1068         rcu_read_lock();
1069 repeat:
1070         page = NULL;
1071         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1072         if (pagep) {
1073                 page = radix_tree_deref_slot(pagep);
1074                 if (unlikely(!page))
1075                         goto out;
1076                 if (radix_tree_exception(page)) {
1077                         if (radix_tree_deref_retry(page))
1078                                 goto repeat;
1079                         /*
1080                          * A shadow entry of a recently evicted page,
1081                          * or a swap entry from shmem/tmpfs.  Return
1082                          * it without attempting to raise page count.
1083                          */
1084                         goto out;
1085                 }
1086                 if (!page_cache_get_speculative(page))
1087                         goto repeat;
1088
1089                 /*
1090                  * Has the page moved?
1091                  * This is part of the lockless pagecache protocol. See
1092                  * include/linux/pagemap.h for details.
1093                  */
1094                 if (unlikely(page != *pagep)) {
1095                         page_cache_release(page);
1096                         goto repeat;
1097                 }
1098         }
1099 out:
1100         rcu_read_unlock();
1101
1102         return page;
1103 }
1104 EXPORT_SYMBOL(find_get_entry);
1105
1106 /**
1107  * find_lock_entry - locate, pin and lock a page cache entry
1108  * @mapping: the address_space to search
1109  * @offset: the page cache index
1110  *
1111  * Looks up the page cache slot at @mapping & @offset.  If there is a
1112  * page cache page, it is returned locked and with an increased
1113  * refcount.
1114  *
1115  * If the slot holds a shadow entry of a previously evicted page, or a
1116  * swap entry from shmem/tmpfs, it is returned.
1117  *
1118  * Otherwise, %NULL is returned.
1119  *
1120  * find_lock_entry() may sleep.
1121  */
1122 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1123 {
1124         struct page *page;
1125
1126 repeat:
1127         page = find_get_entry(mapping, offset);
1128         if (page && !radix_tree_exception(page)) {
1129                 lock_page(page);
1130                 /* Has the page been truncated? */
1131                 if (unlikely(page->mapping != mapping)) {
1132                         unlock_page(page);
1133                         page_cache_release(page);
1134                         goto repeat;
1135                 }
1136                 VM_BUG_ON_PAGE(page->index != offset, page);
1137         }
1138         return page;
1139 }
1140 EXPORT_SYMBOL(find_lock_entry);
1141
1142 /**
1143  * pagecache_get_page - find and get a page reference
1144  * @mapping: the address_space to search
1145  * @offset: the page index
1146  * @fgp_flags: PCG flags
1147  * @gfp_mask: gfp mask to use for the page cache data page allocation
1148  *
1149  * Looks up the page cache slot at @mapping & @offset.
1150  *
1151  * PCG flags modify how the page is returned.
1152  *
1153  * FGP_ACCESSED: the page will be marked accessed
1154  * FGP_LOCK: Page is return locked
1155  * FGP_CREAT: If page is not present then a new page is allocated using
1156  *              @gfp_mask and added to the page cache and the VM's LRU
1157  *              list. The page is returned locked and with an increased
1158  *              refcount. Otherwise, %NULL is returned.
1159  *
1160  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1161  * if the GFP flags specified for FGP_CREAT are atomic.
1162  *
1163  * If there is a page cache page, it is returned with an increased refcount.
1164  */
1165 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1166         int fgp_flags, gfp_t gfp_mask)
1167 {
1168         struct page *page;
1169
1170 repeat:
1171         page = find_get_entry(mapping, offset);
1172         if (radix_tree_exceptional_entry(page))
1173                 page = NULL;
1174         if (!page)
1175                 goto no_page;
1176
1177         if (fgp_flags & FGP_LOCK) {
1178                 if (fgp_flags & FGP_NOWAIT) {
1179                         if (!trylock_page(page)) {
1180                                 page_cache_release(page);
1181                                 return NULL;
1182                         }
1183                 } else {
1184                         lock_page(page);
1185                 }
1186
1187                 /* Has the page been truncated? */
1188                 if (unlikely(page->mapping != mapping)) {
1189                         unlock_page(page);
1190                         page_cache_release(page);
1191                         goto repeat;
1192                 }
1193                 VM_BUG_ON_PAGE(page->index != offset, page);
1194         }
1195
1196         if (page && (fgp_flags & FGP_ACCESSED))
1197                 mark_page_accessed(page);
1198
1199 no_page:
1200         if (!page && (fgp_flags & FGP_CREAT)) {
1201                 int err;
1202                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1203                         gfp_mask |= __GFP_WRITE;
1204                 if (fgp_flags & FGP_NOFS)
1205                         gfp_mask &= ~__GFP_FS;
1206
1207                 page = __page_cache_alloc(gfp_mask);
1208                 if (!page)
1209                         return NULL;
1210
1211                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1212                         fgp_flags |= FGP_LOCK;
1213
1214                 /* Init accessed so avoid atomic mark_page_accessed later */
1215                 if (fgp_flags & FGP_ACCESSED)
1216                         __SetPageReferenced(page);
1217
1218                 err = add_to_page_cache_lru(page, mapping, offset,
1219                                 gfp_mask & GFP_RECLAIM_MASK);
1220                 if (unlikely(err)) {
1221                         page_cache_release(page);
1222                         page = NULL;
1223                         if (err == -EEXIST)
1224                                 goto repeat;
1225                 }
1226         }
1227
1228         return page;
1229 }
1230 EXPORT_SYMBOL(pagecache_get_page);
1231
1232 /**
1233  * find_get_entries - gang pagecache lookup
1234  * @mapping:    The address_space to search
1235  * @start:      The starting page cache index
1236  * @nr_entries: The maximum number of entries
1237  * @entries:    Where the resulting entries are placed
1238  * @indices:    The cache indices corresponding to the entries in @entries
1239  *
1240  * find_get_entries() will search for and return a group of up to
1241  * @nr_entries entries in the mapping.  The entries are placed at
1242  * @entries.  find_get_entries() takes a reference against any actual
1243  * pages it returns.
1244  *
1245  * The search returns a group of mapping-contiguous page cache entries
1246  * with ascending indexes.  There may be holes in the indices due to
1247  * not-present pages.
1248  *
1249  * Any shadow entries of evicted pages, or swap entries from
1250  * shmem/tmpfs, are included in the returned array.
1251  *
1252  * find_get_entries() returns the number of pages and shadow entries
1253  * which were found.
1254  */
1255 unsigned find_get_entries(struct address_space *mapping,
1256                           pgoff_t start, unsigned int nr_entries,
1257                           struct page **entries, pgoff_t *indices)
1258 {
1259         void **slot;
1260         unsigned int ret = 0;
1261         struct radix_tree_iter iter;
1262
1263         if (!nr_entries)
1264                 return 0;
1265
1266         rcu_read_lock();
1267 restart:
1268         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1269                 struct page *page;
1270 repeat:
1271                 page = radix_tree_deref_slot(slot);
1272                 if (unlikely(!page))
1273                         continue;
1274                 if (radix_tree_exception(page)) {
1275                         if (radix_tree_deref_retry(page))
1276                                 goto restart;
1277                         /*
1278                          * A shadow entry of a recently evicted page, a swap
1279                          * entry from shmem/tmpfs or a DAX entry.  Return it
1280                          * without attempting to raise page count.
1281                          */
1282                         goto export;
1283                 }
1284                 if (!page_cache_get_speculative(page))
1285                         goto repeat;
1286
1287                 /* Has the page moved? */
1288                 if (unlikely(page != *slot)) {
1289                         page_cache_release(page);
1290                         goto repeat;
1291                 }
1292 export:
1293                 indices[ret] = iter.index;
1294                 entries[ret] = page;
1295                 if (++ret == nr_entries)
1296                         break;
1297         }
1298         rcu_read_unlock();
1299         return ret;
1300 }
1301
1302 /**
1303  * find_get_pages - gang pagecache lookup
1304  * @mapping:    The address_space to search
1305  * @start:      The starting page index
1306  * @nr_pages:   The maximum number of pages
1307  * @pages:      Where the resulting pages are placed
1308  *
1309  * find_get_pages() will search for and return a group of up to
1310  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1311  * find_get_pages() takes a reference against the returned pages.
1312  *
1313  * The search returns a group of mapping-contiguous pages with ascending
1314  * indexes.  There may be holes in the indices due to not-present pages.
1315  *
1316  * find_get_pages() returns the number of pages which were found.
1317  */
1318 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1319                             unsigned int nr_pages, struct page **pages)
1320 {
1321         struct radix_tree_iter iter;
1322         void **slot;
1323         unsigned ret = 0;
1324
1325         if (unlikely(!nr_pages))
1326                 return 0;
1327
1328         rcu_read_lock();
1329 restart:
1330         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1331                 struct page *page;
1332 repeat:
1333                 page = radix_tree_deref_slot(slot);
1334                 if (unlikely(!page))
1335                         continue;
1336
1337                 if (radix_tree_exception(page)) {
1338                         if (radix_tree_deref_retry(page)) {
1339                                 /*
1340                                  * Transient condition which can only trigger
1341                                  * when entry at index 0 moves out of or back
1342                                  * to root: none yet gotten, safe to restart.
1343                                  */
1344                                 WARN_ON(iter.index);
1345                                 goto restart;
1346                         }
1347                         /*
1348                          * A shadow entry of a recently evicted page,
1349                          * or a swap entry from shmem/tmpfs.  Skip
1350                          * over it.
1351                          */
1352                         continue;
1353                 }
1354
1355                 if (!page_cache_get_speculative(page))
1356                         goto repeat;
1357
1358                 /* Has the page moved? */
1359                 if (unlikely(page != *slot)) {
1360                         page_cache_release(page);
1361                         goto repeat;
1362                 }
1363
1364                 pages[ret] = page;
1365                 if (++ret == nr_pages)
1366                         break;
1367         }
1368
1369         rcu_read_unlock();
1370         return ret;
1371 }
1372
1373 /**
1374  * find_get_pages_contig - gang contiguous pagecache lookup
1375  * @mapping:    The address_space to search
1376  * @index:      The starting page index
1377  * @nr_pages:   The maximum number of pages
1378  * @pages:      Where the resulting pages are placed
1379  *
1380  * find_get_pages_contig() works exactly like find_get_pages(), except
1381  * that the returned number of pages are guaranteed to be contiguous.
1382  *
1383  * find_get_pages_contig() returns the number of pages which were found.
1384  */
1385 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1386                                unsigned int nr_pages, struct page **pages)
1387 {
1388         struct radix_tree_iter iter;
1389         void **slot;
1390         unsigned int ret = 0;
1391
1392         if (unlikely(!nr_pages))
1393                 return 0;
1394
1395         rcu_read_lock();
1396 restart:
1397         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1398                 struct page *page;
1399 repeat:
1400                 page = radix_tree_deref_slot(slot);
1401                 /* The hole, there no reason to continue */
1402                 if (unlikely(!page))
1403                         break;
1404
1405                 if (radix_tree_exception(page)) {
1406                         if (radix_tree_deref_retry(page)) {
1407                                 /*
1408                                  * Transient condition which can only trigger
1409                                  * when entry at index 0 moves out of or back
1410                                  * to root: none yet gotten, safe to restart.
1411                                  */
1412                                 goto restart;
1413                         }
1414                         /*
1415                          * A shadow entry of a recently evicted page,
1416                          * or a swap entry from shmem/tmpfs.  Stop
1417                          * looking for contiguous pages.
1418                          */
1419                         break;
1420                 }
1421
1422                 if (!page_cache_get_speculative(page))
1423                         goto repeat;
1424
1425                 /* Has the page moved? */
1426                 if (unlikely(page != *slot)) {
1427                         page_cache_release(page);
1428                         goto repeat;
1429                 }
1430
1431                 /*
1432                  * must check mapping and index after taking the ref.
1433                  * otherwise we can get both false positives and false
1434                  * negatives, which is just confusing to the caller.
1435                  */
1436                 if (page->mapping == NULL || page->index != iter.index) {
1437                         page_cache_release(page);
1438                         break;
1439                 }
1440
1441                 pages[ret] = page;
1442                 if (++ret == nr_pages)
1443                         break;
1444         }
1445         rcu_read_unlock();
1446         return ret;
1447 }
1448 EXPORT_SYMBOL(find_get_pages_contig);
1449
1450 /**
1451  * find_get_pages_tag - find and return pages that match @tag
1452  * @mapping:    the address_space to search
1453  * @index:      the starting page index
1454  * @tag:        the tag index
1455  * @nr_pages:   the maximum number of pages
1456  * @pages:      where the resulting pages are placed
1457  *
1458  * Like find_get_pages, except we only return pages which are tagged with
1459  * @tag.   We update @index to index the next page for the traversal.
1460  */
1461 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1462                         int tag, unsigned int nr_pages, struct page **pages)
1463 {
1464         struct radix_tree_iter iter;
1465         void **slot;
1466         unsigned ret = 0;
1467
1468         if (unlikely(!nr_pages))
1469                 return 0;
1470
1471         rcu_read_lock();
1472 restart:
1473         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1474                                    &iter, *index, tag) {
1475                 struct page *page;
1476 repeat:
1477                 page = radix_tree_deref_slot(slot);
1478                 if (unlikely(!page))
1479                         continue;
1480
1481                 if (radix_tree_exception(page)) {
1482                         if (radix_tree_deref_retry(page)) {
1483                                 /*
1484                                  * Transient condition which can only trigger
1485                                  * when entry at index 0 moves out of or back
1486                                  * to root: none yet gotten, safe to restart.
1487                                  */
1488                                 goto restart;
1489                         }
1490                         /*
1491                          * A shadow entry of a recently evicted page.
1492                          *
1493                          * Those entries should never be tagged, but
1494                          * this tree walk is lockless and the tags are
1495                          * looked up in bulk, one radix tree node at a
1496                          * time, so there is a sizable window for page
1497                          * reclaim to evict a page we saw tagged.
1498                          *
1499                          * Skip over it.
1500                          */
1501                         continue;
1502                 }
1503
1504                 if (!page_cache_get_speculative(page))
1505                         goto repeat;
1506
1507                 /* Has the page moved? */
1508                 if (unlikely(page != *slot)) {
1509                         page_cache_release(page);
1510                         goto repeat;
1511                 }
1512
1513                 pages[ret] = page;
1514                 if (++ret == nr_pages)
1515                         break;
1516         }
1517
1518         rcu_read_unlock();
1519
1520         if (ret)
1521                 *index = pages[ret - 1]->index + 1;
1522
1523         return ret;
1524 }
1525 EXPORT_SYMBOL(find_get_pages_tag);
1526
1527 /**
1528  * find_get_entries_tag - find and return entries that match @tag
1529  * @mapping:    the address_space to search
1530  * @start:      the starting page cache index
1531  * @tag:        the tag index
1532  * @nr_entries: the maximum number of entries
1533  * @entries:    where the resulting entries are placed
1534  * @indices:    the cache indices corresponding to the entries in @entries
1535  *
1536  * Like find_get_entries, except we only return entries which are tagged with
1537  * @tag.
1538  */
1539 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1540                         int tag, unsigned int nr_entries,
1541                         struct page **entries, pgoff_t *indices)
1542 {
1543         void **slot;
1544         unsigned int ret = 0;
1545         struct radix_tree_iter iter;
1546
1547         if (!nr_entries)
1548                 return 0;
1549
1550         rcu_read_lock();
1551 restart:
1552         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1553                                    &iter, start, tag) {
1554                 struct page *page;
1555 repeat:
1556                 page = radix_tree_deref_slot(slot);
1557                 if (unlikely(!page))
1558                         continue;
1559                 if (radix_tree_exception(page)) {
1560                         if (radix_tree_deref_retry(page)) {
1561                                 /*
1562                                  * Transient condition which can only trigger
1563                                  * when entry at index 0 moves out of or back
1564                                  * to root: none yet gotten, safe to restart.
1565                                  */
1566                                 goto restart;
1567                         }
1568
1569                         /*
1570                          * A shadow entry of a recently evicted page, a swap
1571                          * entry from shmem/tmpfs or a DAX entry.  Return it
1572                          * without attempting to raise page count.
1573                          */
1574                         goto export;
1575                 }
1576                 if (!page_cache_get_speculative(page))
1577                         goto repeat;
1578
1579                 /* Has the page moved? */
1580                 if (unlikely(page != *slot)) {
1581                         page_cache_release(page);
1582                         goto repeat;
1583                 }
1584 export:
1585                 indices[ret] = iter.index;
1586                 entries[ret] = page;
1587                 if (++ret == nr_entries)
1588                         break;
1589         }
1590         rcu_read_unlock();
1591         return ret;
1592 }
1593 EXPORT_SYMBOL(find_get_entries_tag);
1594
1595 /*
1596  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1597  * a _large_ part of the i/o request. Imagine the worst scenario:
1598  *
1599  *      ---R__________________________________________B__________
1600  *         ^ reading here                             ^ bad block(assume 4k)
1601  *
1602  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1603  * => failing the whole request => read(R) => read(R+1) =>
1604  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1605  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1606  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1607  *
1608  * It is going insane. Fix it by quickly scaling down the readahead size.
1609  */
1610 static void shrink_readahead_size_eio(struct file *filp,
1611                                         struct file_ra_state *ra)
1612 {
1613         ra->ra_pages /= 4;
1614 }
1615
1616 /**
1617  * do_generic_file_read - generic file read routine
1618  * @filp:       the file to read
1619  * @ppos:       current file position
1620  * @iter:       data destination
1621  * @written:    already copied
1622  *
1623  * This is a generic file read routine, and uses the
1624  * mapping->a_ops->readpage() function for the actual low-level stuff.
1625  *
1626  * This is really ugly. But the goto's actually try to clarify some
1627  * of the logic when it comes to error handling etc.
1628  */
1629 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1630                 struct iov_iter *iter, ssize_t written)
1631 {
1632         struct address_space *mapping = filp->f_mapping;
1633         struct inode *inode = mapping->host;
1634         struct file_ra_state *ra = &filp->f_ra;
1635         pgoff_t index;
1636         pgoff_t last_index;
1637         pgoff_t prev_index;
1638         unsigned long offset;      /* offset into pagecache page */
1639         unsigned int prev_offset;
1640         int error = 0;
1641
1642         index = *ppos >> PAGE_CACHE_SHIFT;
1643         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1644         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1645         last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1646         offset = *ppos & ~PAGE_CACHE_MASK;
1647
1648         for (;;) {
1649                 struct page *page;
1650                 pgoff_t end_index;
1651                 loff_t isize;
1652                 unsigned long nr, ret;
1653
1654                 cond_resched();
1655 find_page:
1656                 page = find_get_page(mapping, index);
1657                 if (!page) {
1658                         page_cache_sync_readahead(mapping,
1659                                         ra, filp,
1660                                         index, last_index - index);
1661                         page = find_get_page(mapping, index);
1662                         if (unlikely(page == NULL))
1663                                 goto no_cached_page;
1664                 }
1665                 if (PageReadahead(page)) {
1666                         page_cache_async_readahead(mapping,
1667                                         ra, filp, page,
1668                                         index, last_index - index);
1669                 }
1670                 if (!PageUptodate(page)) {
1671                         /*
1672                          * See comment in do_read_cache_page on why
1673                          * wait_on_page_locked is used to avoid unnecessarily
1674                          * serialisations and why it's safe.
1675                          */
1676                         wait_on_page_locked_killable(page);
1677                         if (PageUptodate(page))
1678                                 goto page_ok;
1679
1680                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1681                                         !mapping->a_ops->is_partially_uptodate)
1682                                 goto page_not_up_to_date;
1683                         if (!trylock_page(page))
1684                                 goto page_not_up_to_date;
1685                         /* Did it get truncated before we got the lock? */
1686                         if (!page->mapping)
1687                                 goto page_not_up_to_date_locked;
1688                         if (!mapping->a_ops->is_partially_uptodate(page,
1689                                                         offset, iter->count))
1690                                 goto page_not_up_to_date_locked;
1691                         unlock_page(page);
1692                 }
1693 page_ok:
1694                 /*
1695                  * i_size must be checked after we know the page is Uptodate.
1696                  *
1697                  * Checking i_size after the check allows us to calculate
1698                  * the correct value for "nr", which means the zero-filled
1699                  * part of the page is not copied back to userspace (unless
1700                  * another truncate extends the file - this is desired though).
1701                  */
1702
1703                 isize = i_size_read(inode);
1704                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1705                 if (unlikely(!isize || index > end_index)) {
1706                         page_cache_release(page);
1707                         goto out;
1708                 }
1709
1710                 /* nr is the maximum number of bytes to copy from this page */
1711                 nr = PAGE_CACHE_SIZE;
1712                 if (index == end_index) {
1713                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1714                         if (nr <= offset) {
1715                                 page_cache_release(page);
1716                                 goto out;
1717                         }
1718                 }
1719                 nr = nr - offset;
1720
1721                 /* If users can be writing to this page using arbitrary
1722                  * virtual addresses, take care about potential aliasing
1723                  * before reading the page on the kernel side.
1724                  */
1725                 if (mapping_writably_mapped(mapping))
1726                         flush_dcache_page(page);
1727
1728                 /*
1729                  * When a sequential read accesses a page several times,
1730                  * only mark it as accessed the first time.
1731                  */
1732                 if (prev_index != index || offset != prev_offset)
1733                         mark_page_accessed(page);
1734                 prev_index = index;
1735
1736                 /*
1737                  * Ok, we have the page, and it's up-to-date, so
1738                  * now we can copy it to user space...
1739                  */
1740
1741                 ret = copy_page_to_iter(page, offset, nr, iter);
1742                 offset += ret;
1743                 index += offset >> PAGE_CACHE_SHIFT;
1744                 offset &= ~PAGE_CACHE_MASK;
1745                 prev_offset = offset;
1746
1747                 page_cache_release(page);
1748                 written += ret;
1749                 if (!iov_iter_count(iter))
1750                         goto out;
1751                 if (ret < nr) {
1752                         error = -EFAULT;
1753                         goto out;
1754                 }
1755                 continue;
1756
1757 page_not_up_to_date:
1758                 /* Get exclusive access to the page ... */
1759                 error = lock_page_killable(page);
1760                 if (unlikely(error))
1761                         goto readpage_error;
1762
1763 page_not_up_to_date_locked:
1764                 /* Did it get truncated before we got the lock? */
1765                 if (!page->mapping) {
1766                         unlock_page(page);
1767                         page_cache_release(page);
1768                         continue;
1769                 }
1770
1771                 /* Did somebody else fill it already? */
1772                 if (PageUptodate(page)) {
1773                         unlock_page(page);
1774                         goto page_ok;
1775                 }
1776
1777 readpage:
1778                 /*
1779                  * A previous I/O error may have been due to temporary
1780                  * failures, eg. multipath errors.
1781                  * PG_error will be set again if readpage fails.
1782                  */
1783                 ClearPageError(page);
1784                 /* Start the actual read. The read will unlock the page. */
1785                 error = mapping->a_ops->readpage(filp, page);
1786
1787                 if (unlikely(error)) {
1788                         if (error == AOP_TRUNCATED_PAGE) {
1789                                 page_cache_release(page);
1790                                 error = 0;
1791                                 goto find_page;
1792                         }
1793                         goto readpage_error;
1794                 }
1795
1796                 if (!PageUptodate(page)) {
1797                         error = lock_page_killable(page);
1798                         if (unlikely(error))
1799                                 goto readpage_error;
1800                         if (!PageUptodate(page)) {
1801                                 if (page->mapping == NULL) {
1802                                         /*
1803                                          * invalidate_mapping_pages got it
1804                                          */
1805                                         unlock_page(page);
1806                                         page_cache_release(page);
1807                                         goto find_page;
1808                                 }
1809                                 unlock_page(page);
1810                                 shrink_readahead_size_eio(filp, ra);
1811                                 error = -EIO;
1812                                 goto readpage_error;
1813                         }
1814                         unlock_page(page);
1815                 }
1816
1817                 goto page_ok;
1818
1819 readpage_error:
1820                 /* UHHUH! A synchronous read error occurred. Report it */
1821                 page_cache_release(page);
1822                 goto out;
1823
1824 no_cached_page:
1825                 /*
1826                  * Ok, it wasn't cached, so we need to create a new
1827                  * page..
1828                  */
1829                 page = page_cache_alloc_cold(mapping);
1830                 if (!page) {
1831                         error = -ENOMEM;
1832                         goto out;
1833                 }
1834                 error = add_to_page_cache_lru(page, mapping, index,
1835                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1836                 if (error) {
1837                         page_cache_release(page);
1838                         if (error == -EEXIST) {
1839                                 error = 0;
1840                                 goto find_page;
1841                         }
1842                         goto out;
1843                 }
1844                 goto readpage;
1845         }
1846
1847 out:
1848         ra->prev_pos = prev_index;
1849         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1850         ra->prev_pos |= prev_offset;
1851
1852         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1853         file_accessed(filp);
1854         return written ? written : error;
1855 }
1856
1857 /**
1858  * generic_file_read_iter - generic filesystem read routine
1859  * @iocb:       kernel I/O control block
1860  * @iter:       destination for the data read
1861  *
1862  * This is the "read_iter()" routine for all filesystems
1863  * that can use the page cache directly.
1864  */
1865 ssize_t
1866 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1867 {
1868         struct file *file = iocb->ki_filp;
1869         ssize_t retval = 0;
1870         loff_t *ppos = &iocb->ki_pos;
1871         loff_t pos = *ppos;
1872
1873         if (iocb->ki_flags & IOCB_DIRECT) {
1874                 struct address_space *mapping = file->f_mapping;
1875                 struct inode *inode = mapping->host;
1876                 size_t count = iov_iter_count(iter);
1877                 loff_t size;
1878
1879                 if (!count)
1880                         goto out; /* skip atime */
1881                 size = i_size_read(inode);
1882                 retval = filemap_write_and_wait_range(mapping, pos,
1883                                         pos + count - 1);
1884                 if (!retval) {
1885                         struct iov_iter data = *iter;
1886                         retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1887                 }
1888
1889                 if (retval > 0) {
1890                         *ppos = pos + retval;
1891                         iov_iter_advance(iter, retval);
1892                 }
1893
1894                 /*
1895                  * Btrfs can have a short DIO read if we encounter
1896                  * compressed extents, so if there was an error, or if
1897                  * we've already read everything we wanted to, or if
1898                  * there was a short read because we hit EOF, go ahead
1899                  * and return.  Otherwise fallthrough to buffered io for
1900                  * the rest of the read.  Buffered reads will not work for
1901                  * DAX files, so don't bother trying.
1902                  */
1903                 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1904                     IS_DAX(inode)) {
1905                         file_accessed(file);
1906                         goto out;
1907                 }
1908         }
1909
1910         retval = do_generic_file_read(file, ppos, iter, retval);
1911 out:
1912         return retval;
1913 }
1914 EXPORT_SYMBOL(generic_file_read_iter);
1915
1916 #ifdef CONFIG_MMU
1917 /**
1918  * page_cache_read - adds requested page to the page cache if not already there
1919  * @file:       file to read
1920  * @offset:     page index
1921  * @gfp_mask:   memory allocation flags
1922  *
1923  * This adds the requested page to the page cache if it isn't already there,
1924  * and schedules an I/O to read in its contents from disk.
1925  */
1926 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1927 {
1928         struct address_space *mapping = file->f_mapping;
1929         struct page *page;
1930         int ret;
1931
1932         do {
1933                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1934                 if (!page)
1935                         return -ENOMEM;
1936
1937                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1938                 if (ret == 0)
1939                         ret = mapping->a_ops->readpage(file, page);
1940                 else if (ret == -EEXIST)
1941                         ret = 0; /* losing race to add is OK */
1942
1943                 page_cache_release(page);
1944
1945         } while (ret == AOP_TRUNCATED_PAGE);
1946
1947         return ret;
1948 }
1949
1950 #define MMAP_LOTSAMISS  (100)
1951
1952 /*
1953  * Synchronous readahead happens when we don't even find
1954  * a page in the page cache at all.
1955  */
1956 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1957                                    struct file_ra_state *ra,
1958                                    struct file *file,
1959                                    pgoff_t offset)
1960 {
1961         struct address_space *mapping = file->f_mapping;
1962
1963         /* If we don't want any read-ahead, don't bother */
1964         if (vma->vm_flags & VM_RAND_READ)
1965                 return;
1966         if (!ra->ra_pages)
1967                 return;
1968
1969         if (vma->vm_flags & VM_SEQ_READ) {
1970                 page_cache_sync_readahead(mapping, ra, file, offset,
1971                                           ra->ra_pages);
1972                 return;
1973         }
1974
1975         /* Avoid banging the cache line if not needed */
1976         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1977                 ra->mmap_miss++;
1978
1979         /*
1980          * Do we miss much more than hit in this file? If so,
1981          * stop bothering with read-ahead. It will only hurt.
1982          */
1983         if (ra->mmap_miss > MMAP_LOTSAMISS)
1984                 return;
1985
1986         /*
1987          * mmap read-around
1988          */
1989         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1990         ra->size = ra->ra_pages;
1991         ra->async_size = ra->ra_pages / 4;
1992         ra_submit(ra, mapping, file);
1993 }
1994
1995 /*
1996  * Asynchronous readahead happens when we find the page and PG_readahead,
1997  * so we want to possibly extend the readahead further..
1998  */
1999 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2000                                     struct file_ra_state *ra,
2001                                     struct file *file,
2002                                     struct page *page,
2003                                     pgoff_t offset)
2004 {
2005         struct address_space *mapping = file->f_mapping;
2006
2007         /* If we don't want any read-ahead, don't bother */
2008         if (vma->vm_flags & VM_RAND_READ)
2009                 return;
2010         if (ra->mmap_miss > 0)
2011                 ra->mmap_miss--;
2012         if (PageReadahead(page))
2013                 page_cache_async_readahead(mapping, ra, file,
2014                                            page, offset, ra->ra_pages);
2015 }
2016
2017 /**
2018  * filemap_fault - read in file data for page fault handling
2019  * @vma:        vma in which the fault was taken
2020  * @vmf:        struct vm_fault containing details of the fault
2021  *
2022  * filemap_fault() is invoked via the vma operations vector for a
2023  * mapped memory region to read in file data during a page fault.
2024  *
2025  * The goto's are kind of ugly, but this streamlines the normal case of having
2026  * it in the page cache, and handles the special cases reasonably without
2027  * having a lot of duplicated code.
2028  *
2029  * vma->vm_mm->mmap_sem must be held on entry.
2030  *
2031  * If our return value has VM_FAULT_RETRY set, it's because
2032  * lock_page_or_retry() returned 0.
2033  * The mmap_sem has usually been released in this case.
2034  * See __lock_page_or_retry() for the exception.
2035  *
2036  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2037  * has not been released.
2038  *
2039  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2040  */
2041 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2042 {
2043         int error;
2044         struct file *file = vma->vm_file;
2045         struct address_space *mapping = file->f_mapping;
2046         struct file_ra_state *ra = &file->f_ra;
2047         struct inode *inode = mapping->host;
2048         pgoff_t offset = vmf->pgoff;
2049         struct page *page;
2050         loff_t size;
2051         int ret = 0;
2052
2053         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2054         if (offset >= size >> PAGE_CACHE_SHIFT)
2055                 return VM_FAULT_SIGBUS;
2056
2057         /*
2058          * Do we have something in the page cache already?
2059          */
2060         page = find_get_page(mapping, offset);
2061         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2062                 /*
2063                  * We found the page, so try async readahead before
2064                  * waiting for the lock.
2065                  */
2066                 do_async_mmap_readahead(vma, ra, file, page, offset);
2067         } else if (!page) {
2068                 /* No page in the page cache at all */
2069                 do_sync_mmap_readahead(vma, ra, file, offset);
2070                 count_vm_event(PGMAJFAULT);
2071                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2072                 ret = VM_FAULT_MAJOR;
2073 retry_find:
2074                 page = find_get_page(mapping, offset);
2075                 if (!page)
2076                         goto no_cached_page;
2077         }
2078
2079         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2080                 page_cache_release(page);
2081                 return ret | VM_FAULT_RETRY;
2082         }
2083
2084         /* Did it get truncated? */
2085         if (unlikely(page->mapping != mapping)) {
2086                 unlock_page(page);
2087                 put_page(page);
2088                 goto retry_find;
2089         }
2090         VM_BUG_ON_PAGE(page->index != offset, page);
2091
2092         /*
2093          * We have a locked page in the page cache, now we need to check
2094          * that it's up-to-date. If not, it is going to be due to an error.
2095          */
2096         if (unlikely(!PageUptodate(page)))
2097                 goto page_not_uptodate;
2098
2099         /*
2100          * Found the page and have a reference on it.
2101          * We must recheck i_size under page lock.
2102          */
2103         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2104         if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
2105                 unlock_page(page);
2106                 page_cache_release(page);
2107                 return VM_FAULT_SIGBUS;
2108         }
2109
2110         vmf->page = page;
2111         return ret | VM_FAULT_LOCKED;
2112
2113 no_cached_page:
2114         /*
2115          * We're only likely to ever get here if MADV_RANDOM is in
2116          * effect.
2117          */
2118         error = page_cache_read(file, offset, vmf->gfp_mask);
2119
2120         /*
2121          * The page we want has now been added to the page cache.
2122          * In the unlikely event that someone removed it in the
2123          * meantime, we'll just come back here and read it again.
2124          */
2125         if (error >= 0)
2126                 goto retry_find;
2127
2128         /*
2129          * An error return from page_cache_read can result if the
2130          * system is low on memory, or a problem occurs while trying
2131          * to schedule I/O.
2132          */
2133         if (error == -ENOMEM)
2134                 return VM_FAULT_OOM;
2135         return VM_FAULT_SIGBUS;
2136
2137 page_not_uptodate:
2138         /*
2139          * Umm, take care of errors if the page isn't up-to-date.
2140          * Try to re-read it _once_. We do this synchronously,
2141          * because there really aren't any performance issues here
2142          * and we need to check for errors.
2143          */
2144         ClearPageError(page);
2145         error = mapping->a_ops->readpage(file, page);
2146         if (!error) {
2147                 wait_on_page_locked(page);
2148                 if (!PageUptodate(page))
2149                         error = -EIO;
2150         }
2151         page_cache_release(page);
2152
2153         if (!error || error == AOP_TRUNCATED_PAGE)
2154                 goto retry_find;
2155
2156         /* Things didn't work out. Return zero to tell the mm layer so. */
2157         shrink_readahead_size_eio(file, ra);
2158         return VM_FAULT_SIGBUS;
2159 }
2160 EXPORT_SYMBOL(filemap_fault);
2161
2162 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2163 {
2164         struct radix_tree_iter iter;
2165         void **slot;
2166         struct file *file = vma->vm_file;
2167         struct address_space *mapping = file->f_mapping;
2168         loff_t size;
2169         struct page *page;
2170         unsigned long address = (unsigned long) vmf->virtual_address;
2171         unsigned long addr;
2172         pte_t *pte;
2173
2174         rcu_read_lock();
2175         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2176                 if (iter.index > vmf->max_pgoff)
2177                         break;
2178 repeat:
2179                 page = radix_tree_deref_slot(slot);
2180                 if (unlikely(!page))
2181                         goto next;
2182                 if (radix_tree_exception(page)) {
2183                         if (radix_tree_deref_retry(page))
2184                                 break;
2185                         else
2186                                 goto next;
2187                 }
2188
2189                 if (!page_cache_get_speculative(page))
2190                         goto repeat;
2191
2192                 /* Has the page moved? */
2193                 if (unlikely(page != *slot)) {
2194                         page_cache_release(page);
2195                         goto repeat;
2196                 }
2197
2198                 if (!PageUptodate(page) ||
2199                                 PageReadahead(page) ||
2200                                 PageHWPoison(page))
2201                         goto skip;
2202                 if (!trylock_page(page))
2203                         goto skip;
2204
2205                 if (page->mapping != mapping || !PageUptodate(page))
2206                         goto unlock;
2207
2208                 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2209                 if (page->index >= size >> PAGE_CACHE_SHIFT)
2210                         goto unlock;
2211
2212                 pte = vmf->pte + page->index - vmf->pgoff;
2213                 if (!pte_none(*pte))
2214                         goto unlock;
2215
2216                 if (file->f_ra.mmap_miss > 0)
2217                         file->f_ra.mmap_miss--;
2218                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2219                 do_set_pte(vma, addr, page, pte, false, false);
2220                 unlock_page(page);
2221                 goto next;
2222 unlock:
2223                 unlock_page(page);
2224 skip:
2225                 page_cache_release(page);
2226 next:
2227                 if (iter.index == vmf->max_pgoff)
2228                         break;
2229         }
2230         rcu_read_unlock();
2231 }
2232 EXPORT_SYMBOL(filemap_map_pages);
2233
2234 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2235 {
2236         struct page *page = vmf->page;
2237         struct inode *inode = file_inode(vma->vm_file);
2238         int ret = VM_FAULT_LOCKED;
2239
2240         sb_start_pagefault(inode->i_sb);
2241         file_update_time(vma->vm_file);
2242         lock_page(page);
2243         if (page->mapping != inode->i_mapping) {
2244                 unlock_page(page);
2245                 ret = VM_FAULT_NOPAGE;
2246                 goto out;
2247         }
2248         /*
2249          * We mark the page dirty already here so that when freeze is in
2250          * progress, we are guaranteed that writeback during freezing will
2251          * see the dirty page and writeprotect it again.
2252          */
2253         set_page_dirty(page);
2254         wait_for_stable_page(page);
2255 out:
2256         sb_end_pagefault(inode->i_sb);
2257         return ret;
2258 }
2259 EXPORT_SYMBOL(filemap_page_mkwrite);
2260
2261 const struct vm_operations_struct generic_file_vm_ops = {
2262         .fault          = filemap_fault,
2263         .map_pages      = filemap_map_pages,
2264         .page_mkwrite   = filemap_page_mkwrite,
2265 };
2266
2267 /* This is used for a general mmap of a disk file */
2268
2269 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2270 {
2271         struct address_space *mapping = file->f_mapping;
2272
2273         if (!mapping->a_ops->readpage)
2274                 return -ENOEXEC;
2275         file_accessed(file);
2276         vma->vm_ops = &generic_file_vm_ops;
2277         return 0;
2278 }
2279
2280 /*
2281  * This is for filesystems which do not implement ->writepage.
2282  */
2283 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2284 {
2285         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2286                 return -EINVAL;
2287         return generic_file_mmap(file, vma);
2288 }
2289 #else
2290 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2291 {
2292         return -ENOSYS;
2293 }
2294 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2295 {
2296         return -ENOSYS;
2297 }
2298 #endif /* CONFIG_MMU */
2299
2300 EXPORT_SYMBOL(generic_file_mmap);
2301 EXPORT_SYMBOL(generic_file_readonly_mmap);
2302
2303 static struct page *wait_on_page_read(struct page *page)
2304 {
2305         if (!IS_ERR(page)) {
2306                 wait_on_page_locked(page);
2307                 if (!PageUptodate(page)) {
2308                         page_cache_release(page);
2309                         page = ERR_PTR(-EIO);
2310                 }
2311         }
2312         return page;
2313 }
2314
2315 static struct page *do_read_cache_page(struct address_space *mapping,
2316                                 pgoff_t index,
2317                                 int (*filler)(void *, struct page *),
2318                                 void *data,
2319                                 gfp_t gfp)
2320 {
2321         struct page *page;
2322         int err;
2323 repeat:
2324         page = find_get_page(mapping, index);
2325         if (!page) {
2326                 page = __page_cache_alloc(gfp | __GFP_COLD);
2327                 if (!page)
2328                         return ERR_PTR(-ENOMEM);
2329                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2330                 if (unlikely(err)) {
2331                         page_cache_release(page);
2332                         if (err == -EEXIST)
2333                                 goto repeat;
2334                         /* Presumably ENOMEM for radix tree node */
2335                         return ERR_PTR(err);
2336                 }
2337
2338 filler:
2339                 err = filler(data, page);
2340                 if (err < 0) {
2341                         page_cache_release(page);
2342                         return ERR_PTR(err);
2343                 }
2344
2345                 page = wait_on_page_read(page);
2346                 if (IS_ERR(page))
2347                         return page;
2348                 goto out;
2349         }
2350         if (PageUptodate(page))
2351                 goto out;
2352
2353         /*
2354          * Page is not up to date and may be locked due one of the following
2355          * case a: Page is being filled and the page lock is held
2356          * case b: Read/write error clearing the page uptodate status
2357          * case c: Truncation in progress (page locked)
2358          * case d: Reclaim in progress
2359          *
2360          * Case a, the page will be up to date when the page is unlocked.
2361          *    There is no need to serialise on the page lock here as the page
2362          *    is pinned so the lock gives no additional protection. Even if the
2363          *    the page is truncated, the data is still valid if PageUptodate as
2364          *    it's a race vs truncate race.
2365          * Case b, the page will not be up to date
2366          * Case c, the page may be truncated but in itself, the data may still
2367          *    be valid after IO completes as it's a read vs truncate race. The
2368          *    operation must restart if the page is not uptodate on unlock but
2369          *    otherwise serialising on page lock to stabilise the mapping gives
2370          *    no additional guarantees to the caller as the page lock is
2371          *    released before return.
2372          * Case d, similar to truncation. If reclaim holds the page lock, it
2373          *    will be a race with remove_mapping that determines if the mapping
2374          *    is valid on unlock but otherwise the data is valid and there is
2375          *    no need to serialise with page lock.
2376          *
2377          * As the page lock gives no additional guarantee, we optimistically
2378          * wait on the page to be unlocked and check if it's up to date and
2379          * use the page if it is. Otherwise, the page lock is required to
2380          * distinguish between the different cases. The motivation is that we
2381          * avoid spurious serialisations and wakeups when multiple processes
2382          * wait on the same page for IO to complete.
2383          */
2384         wait_on_page_locked(page);
2385         if (PageUptodate(page))
2386                 goto out;
2387
2388         /* Distinguish between all the cases under the safety of the lock */
2389         lock_page(page);
2390
2391         /* Case c or d, restart the operation */
2392         if (!page->mapping) {
2393                 unlock_page(page);
2394                 page_cache_release(page);
2395                 goto repeat;
2396         }
2397
2398         /* Someone else locked and filled the page in a very small window */
2399         if (PageUptodate(page)) {
2400                 unlock_page(page);
2401                 goto out;
2402         }
2403         goto filler;
2404
2405 out:
2406         mark_page_accessed(page);
2407         return page;
2408 }
2409
2410 /**
2411  * read_cache_page - read into page cache, fill it if needed
2412  * @mapping:    the page's address_space
2413  * @index:      the page index
2414  * @filler:     function to perform the read
2415  * @data:       first arg to filler(data, page) function, often left as NULL
2416  *
2417  * Read into the page cache. If a page already exists, and PageUptodate() is
2418  * not set, try to fill the page and wait for it to become unlocked.
2419  *
2420  * If the page does not get brought uptodate, return -EIO.
2421  */
2422 struct page *read_cache_page(struct address_space *mapping,
2423                                 pgoff_t index,
2424                                 int (*filler)(void *, struct page *),
2425                                 void *data)
2426 {
2427         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2428 }
2429 EXPORT_SYMBOL(read_cache_page);
2430
2431 /**
2432  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2433  * @mapping:    the page's address_space
2434  * @index:      the page index
2435  * @gfp:        the page allocator flags to use if allocating
2436  *
2437  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2438  * any new page allocations done using the specified allocation flags.
2439  *
2440  * If the page does not get brought uptodate, return -EIO.
2441  */
2442 struct page *read_cache_page_gfp(struct address_space *mapping,
2443                                 pgoff_t index,
2444                                 gfp_t gfp)
2445 {
2446         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2447
2448         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2449 }
2450 EXPORT_SYMBOL(read_cache_page_gfp);
2451
2452 /*
2453  * Performs necessary checks before doing a write
2454  *
2455  * Can adjust writing position or amount of bytes to write.
2456  * Returns appropriate error code that caller should return or
2457  * zero in case that write should be allowed.
2458  */
2459 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2460 {
2461         struct file *file = iocb->ki_filp;
2462         struct inode *inode = file->f_mapping->host;
2463         unsigned long limit = rlimit(RLIMIT_FSIZE);
2464         loff_t pos;
2465
2466         if (!iov_iter_count(from))
2467                 return 0;
2468
2469         /* FIXME: this is for backwards compatibility with 2.4 */
2470         if (iocb->ki_flags & IOCB_APPEND)
2471                 iocb->ki_pos = i_size_read(inode);
2472
2473         pos = iocb->ki_pos;
2474
2475         if (limit != RLIM_INFINITY) {
2476                 if (iocb->ki_pos >= limit) {
2477                         send_sig(SIGXFSZ, current, 0);
2478                         return -EFBIG;
2479                 }
2480                 iov_iter_truncate(from, limit - (unsigned long)pos);
2481         }
2482
2483         /*
2484          * LFS rule
2485          */
2486         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2487                                 !(file->f_flags & O_LARGEFILE))) {
2488                 if (pos >= MAX_NON_LFS)
2489                         return -EFBIG;
2490                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2491         }
2492
2493         /*
2494          * Are we about to exceed the fs block limit ?
2495          *
2496          * If we have written data it becomes a short write.  If we have
2497          * exceeded without writing data we send a signal and return EFBIG.
2498          * Linus frestrict idea will clean these up nicely..
2499          */
2500         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2501                 return -EFBIG;
2502
2503         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2504         return iov_iter_count(from);
2505 }
2506 EXPORT_SYMBOL(generic_write_checks);
2507
2508 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2509                                 loff_t pos, unsigned len, unsigned flags,
2510                                 struct page **pagep, void **fsdata)
2511 {
2512         const struct address_space_operations *aops = mapping->a_ops;
2513
2514         return aops->write_begin(file, mapping, pos, len, flags,
2515                                                         pagep, fsdata);
2516 }
2517 EXPORT_SYMBOL(pagecache_write_begin);
2518
2519 int pagecache_write_end(struct file *file, struct address_space *mapping,
2520                                 loff_t pos, unsigned len, unsigned copied,
2521                                 struct page *page, void *fsdata)
2522 {
2523         const struct address_space_operations *aops = mapping->a_ops;
2524
2525         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2526 }
2527 EXPORT_SYMBOL(pagecache_write_end);
2528
2529 ssize_t
2530 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2531 {
2532         struct file     *file = iocb->ki_filp;
2533         struct address_space *mapping = file->f_mapping;
2534         struct inode    *inode = mapping->host;
2535         ssize_t         written;
2536         size_t          write_len;
2537         pgoff_t         end;
2538         struct iov_iter data;
2539
2540         write_len = iov_iter_count(from);
2541         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2542
2543         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2544         if (written)
2545                 goto out;
2546
2547         /*
2548          * After a write we want buffered reads to be sure to go to disk to get
2549          * the new data.  We invalidate clean cached page from the region we're
2550          * about to write.  We do this *before* the write so that we can return
2551          * without clobbering -EIOCBQUEUED from ->direct_IO().
2552          */
2553         if (mapping->nrpages) {
2554                 written = invalidate_inode_pages2_range(mapping,
2555                                         pos >> PAGE_CACHE_SHIFT, end);
2556                 /*
2557                  * If a page can not be invalidated, return 0 to fall back
2558                  * to buffered write.
2559                  */
2560                 if (written) {
2561                         if (written == -EBUSY)
2562                                 return 0;
2563                         goto out;
2564                 }
2565         }
2566
2567         data = *from;
2568         written = mapping->a_ops->direct_IO(iocb, &data, pos);
2569
2570         /*
2571          * Finally, try again to invalidate clean pages which might have been
2572          * cached by non-direct readahead, or faulted in by get_user_pages()
2573          * if the source of the write was an mmap'ed region of the file
2574          * we're writing.  Either one is a pretty crazy thing to do,
2575          * so we don't support it 100%.  If this invalidation
2576          * fails, tough, the write still worked...
2577          */
2578         if (mapping->nrpages) {
2579                 invalidate_inode_pages2_range(mapping,
2580                                               pos >> PAGE_CACHE_SHIFT, end);
2581         }
2582
2583         if (written > 0) {
2584                 pos += written;
2585                 iov_iter_advance(from, written);
2586                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2587                         i_size_write(inode, pos);
2588                         mark_inode_dirty(inode);
2589                 }
2590                 iocb->ki_pos = pos;
2591         }
2592 out:
2593         return written;
2594 }
2595 EXPORT_SYMBOL(generic_file_direct_write);
2596
2597 /*
2598  * Find or create a page at the given pagecache position. Return the locked
2599  * page. This function is specifically for buffered writes.
2600  */
2601 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2602                                         pgoff_t index, unsigned flags)
2603 {
2604         struct page *page;
2605         int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2606
2607         if (flags & AOP_FLAG_NOFS)
2608                 fgp_flags |= FGP_NOFS;
2609
2610         page = pagecache_get_page(mapping, index, fgp_flags,
2611                         mapping_gfp_mask(mapping));
2612         if (page)
2613                 wait_for_stable_page(page);
2614
2615         return page;
2616 }
2617 EXPORT_SYMBOL(grab_cache_page_write_begin);
2618
2619 ssize_t generic_perform_write(struct file *file,
2620                                 struct iov_iter *i, loff_t pos)
2621 {
2622         struct address_space *mapping = file->f_mapping;
2623         const struct address_space_operations *a_ops = mapping->a_ops;
2624         long status = 0;
2625         ssize_t written = 0;
2626         unsigned int flags = 0;
2627
2628         /*
2629          * Copies from kernel address space cannot fail (NFSD is a big user).
2630          */
2631         if (!iter_is_iovec(i))
2632                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2633
2634         do {
2635                 struct page *page;
2636                 unsigned long offset;   /* Offset into pagecache page */
2637                 unsigned long bytes;    /* Bytes to write to page */
2638                 size_t copied;          /* Bytes copied from user */
2639                 void *fsdata;
2640
2641                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2642                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2643                                                 iov_iter_count(i));
2644
2645 again:
2646                 /*
2647                  * Bring in the user page that we will copy from _first_.
2648                  * Otherwise there's a nasty deadlock on copying from the
2649                  * same page as we're writing to, without it being marked
2650                  * up-to-date.
2651                  *
2652                  * Not only is this an optimisation, but it is also required
2653                  * to check that the address is actually valid, when atomic
2654                  * usercopies are used, below.
2655                  */
2656                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2657                         status = -EFAULT;
2658                         break;
2659                 }
2660
2661                 if (fatal_signal_pending(current)) {
2662                         status = -EINTR;
2663                         break;
2664                 }
2665
2666                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2667                                                 &page, &fsdata);
2668                 if (unlikely(status < 0))
2669                         break;
2670
2671                 if (mapping_writably_mapped(mapping))
2672                         flush_dcache_page(page);
2673
2674                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2675                 flush_dcache_page(page);
2676
2677                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2678                                                 page, fsdata);
2679                 if (unlikely(status < 0))
2680                         break;
2681                 copied = status;
2682
2683                 cond_resched();
2684
2685                 iov_iter_advance(i, copied);
2686                 if (unlikely(copied == 0)) {
2687                         /*
2688                          * If we were unable to copy any data at all, we must
2689                          * fall back to a single segment length write.
2690                          *
2691                          * If we didn't fallback here, we could livelock
2692                          * because not all segments in the iov can be copied at
2693                          * once without a pagefault.
2694                          */
2695                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2696                                                 iov_iter_single_seg_count(i));
2697                         goto again;
2698                 }
2699                 pos += copied;
2700                 written += copied;
2701
2702                 balance_dirty_pages_ratelimited(mapping);
2703         } while (iov_iter_count(i));
2704
2705         return written ? written : status;
2706 }
2707 EXPORT_SYMBOL(generic_perform_write);
2708
2709 /**
2710  * __generic_file_write_iter - write data to a file
2711  * @iocb:       IO state structure (file, offset, etc.)
2712  * @from:       iov_iter with data to write
2713  *
2714  * This function does all the work needed for actually writing data to a
2715  * file. It does all basic checks, removes SUID from the file, updates
2716  * modification times and calls proper subroutines depending on whether we
2717  * do direct IO or a standard buffered write.
2718  *
2719  * It expects i_mutex to be grabbed unless we work on a block device or similar
2720  * object which does not need locking at all.
2721  *
2722  * This function does *not* take care of syncing data in case of O_SYNC write.
2723  * A caller has to handle it. This is mainly due to the fact that we want to
2724  * avoid syncing under i_mutex.
2725  */
2726 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2727 {
2728         struct file *file = iocb->ki_filp;
2729         struct address_space * mapping = file->f_mapping;
2730         struct inode    *inode = mapping->host;
2731         ssize_t         written = 0;
2732         ssize_t         err;
2733         ssize_t         status;
2734
2735         /* We can write back this queue in page reclaim */
2736         current->backing_dev_info = inode_to_bdi(inode);
2737         err = file_remove_privs(file);
2738         if (err)
2739                 goto out;
2740
2741         err = file_update_time(file);
2742         if (err)
2743                 goto out;
2744
2745         if (iocb->ki_flags & IOCB_DIRECT) {
2746                 loff_t pos, endbyte;
2747
2748                 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2749                 /*
2750                  * If the write stopped short of completing, fall back to
2751                  * buffered writes.  Some filesystems do this for writes to
2752                  * holes, for example.  For DAX files, a buffered write will
2753                  * not succeed (even if it did, DAX does not handle dirty
2754                  * page-cache pages correctly).
2755                  */
2756                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2757                         goto out;
2758
2759                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2760                 /*
2761                  * If generic_perform_write() returned a synchronous error
2762                  * then we want to return the number of bytes which were
2763                  * direct-written, or the error code if that was zero.  Note
2764                  * that this differs from normal direct-io semantics, which
2765                  * will return -EFOO even if some bytes were written.
2766                  */
2767                 if (unlikely(status < 0)) {
2768                         err = status;
2769                         goto out;
2770                 }
2771                 /*
2772                  * We need to ensure that the page cache pages are written to
2773                  * disk and invalidated to preserve the expected O_DIRECT
2774                  * semantics.
2775                  */
2776                 endbyte = pos + status - 1;
2777                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2778                 if (err == 0) {
2779                         iocb->ki_pos = endbyte + 1;
2780                         written += status;
2781                         invalidate_mapping_pages(mapping,
2782                                                  pos >> PAGE_CACHE_SHIFT,
2783                                                  endbyte >> PAGE_CACHE_SHIFT);
2784                 } else {
2785                         /*
2786                          * We don't know how much we wrote, so just return
2787                          * the number of bytes which were direct-written
2788                          */
2789                 }
2790         } else {
2791                 written = generic_perform_write(file, from, iocb->ki_pos);
2792                 if (likely(written > 0))
2793                         iocb->ki_pos += written;
2794         }
2795 out:
2796         current->backing_dev_info = NULL;
2797         return written ? written : err;
2798 }
2799 EXPORT_SYMBOL(__generic_file_write_iter);
2800
2801 /**
2802  * generic_file_write_iter - write data to a file
2803  * @iocb:       IO state structure
2804  * @from:       iov_iter with data to write
2805  *
2806  * This is a wrapper around __generic_file_write_iter() to be used by most
2807  * filesystems. It takes care of syncing the file in case of O_SYNC file
2808  * and acquires i_mutex as needed.
2809  */
2810 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2811 {
2812         struct file *file = iocb->ki_filp;
2813         struct inode *inode = file->f_mapping->host;
2814         ssize_t ret;
2815
2816         inode_lock(inode);
2817         ret = generic_write_checks(iocb, from);
2818         if (ret > 0)
2819                 ret = __generic_file_write_iter(iocb, from);
2820         inode_unlock(inode);
2821
2822         if (ret > 0) {
2823                 ssize_t err;
2824
2825                 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2826                 if (err < 0)
2827                         ret = err;
2828         }
2829         return ret;
2830 }
2831 EXPORT_SYMBOL(generic_file_write_iter);
2832
2833 /**
2834  * try_to_release_page() - release old fs-specific metadata on a page
2835  *
2836  * @page: the page which the kernel is trying to free
2837  * @gfp_mask: memory allocation flags (and I/O mode)
2838  *
2839  * The address_space is to try to release any data against the page
2840  * (presumably at page->private).  If the release was successful, return `1'.
2841  * Otherwise return zero.
2842  *
2843  * This may also be called if PG_fscache is set on a page, indicating that the
2844  * page is known to the local caching routines.
2845  *
2846  * The @gfp_mask argument specifies whether I/O may be performed to release
2847  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2848  *
2849  */
2850 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2851 {
2852         struct address_space * const mapping = page->mapping;
2853
2854         BUG_ON(!PageLocked(page));
2855         if (PageWriteback(page))
2856                 return 0;
2857
2858         if (mapping && mapping->a_ops->releasepage)
2859                 return mapping->a_ops->releasepage(page, gfp_mask);
2860         return try_to_free_buffers(page);
2861 }
2862
2863 EXPORT_SYMBOL(try_to_release_page);