mm: keep page cache radix tree nodes in check
[cascardo/linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/filemap.h>
40
41 /*
42  * FIXME: remove all knowledge of the buffer layer from the core VM
43  */
44 #include <linux/buffer_head.h> /* for try_to_free_buffers */
45
46 #include <asm/mman.h>
47
48 /*
49  * Shared mappings implemented 30.11.1994. It's not fully working yet,
50  * though.
51  *
52  * Shared mappings now work. 15.8.1995  Bruno.
53  *
54  * finished 'unifying' the page and buffer cache and SMP-threaded the
55  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56  *
57  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58  */
59
60 /*
61  * Lock ordering:
62  *
63  *  ->i_mmap_mutex              (truncate_pagecache)
64  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
65  *      ->swap_lock             (exclusive_swap_page, others)
66  *        ->mapping->tree_lock
67  *
68  *  ->i_mutex
69  *    ->i_mmap_mutex            (truncate->unmap_mapping_range)
70  *
71  *  ->mmap_sem
72  *    ->i_mmap_mutex
73  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
74  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
75  *
76  *  ->mmap_sem
77  *    ->lock_page               (access_process_vm)
78  *
79  *  ->i_mutex                   (generic_file_buffered_write)
80  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
81  *
82  *  bdi->wb.list_lock
83  *    sb_lock                   (fs/fs-writeback.c)
84  *    ->mapping->tree_lock      (__sync_single_inode)
85  *
86  *  ->i_mmap_mutex
87  *    ->anon_vma.lock           (vma_adjust)
88  *
89  *  ->anon_vma.lock
90  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
91  *
92  *  ->page_table_lock or pte_lock
93  *    ->swap_lock               (try_to_unmap_one)
94  *    ->private_lock            (try_to_unmap_one)
95  *    ->tree_lock               (try_to_unmap_one)
96  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
97  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
98  *    ->private_lock            (page_remove_rmap->set_page_dirty)
99  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
100  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
101  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
103  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
104  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
105  *
106  * ->i_mmap_mutex
107  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
108  */
109
110 static void page_cache_tree_delete(struct address_space *mapping,
111                                    struct page *page, void *shadow)
112 {
113         struct radix_tree_node *node;
114         unsigned long index;
115         unsigned int offset;
116         unsigned int tag;
117         void **slot;
118
119         VM_BUG_ON(!PageLocked(page));
120
121         __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
122
123         if (shadow) {
124                 mapping->nrshadows++;
125                 /*
126                  * Make sure the nrshadows update is committed before
127                  * the nrpages update so that final truncate racing
128                  * with reclaim does not see both counters 0 at the
129                  * same time and miss a shadow entry.
130                  */
131                 smp_wmb();
132         }
133         mapping->nrpages--;
134
135         if (!node) {
136                 /* Clear direct pointer tags in root node */
137                 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
138                 radix_tree_replace_slot(slot, shadow);
139                 return;
140         }
141
142         /* Clear tree tags for the removed page */
143         index = page->index;
144         offset = index & RADIX_TREE_MAP_MASK;
145         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
146                 if (test_bit(offset, node->tags[tag]))
147                         radix_tree_tag_clear(&mapping->page_tree, index, tag);
148         }
149
150         /* Delete page, swap shadow entry */
151         radix_tree_replace_slot(slot, shadow);
152         workingset_node_pages_dec(node);
153         if (shadow)
154                 workingset_node_shadows_inc(node);
155         else
156                 if (__radix_tree_delete_node(&mapping->page_tree, node))
157                         return;
158
159         /*
160          * Track node that only contains shadow entries.
161          *
162          * Avoid acquiring the list_lru lock if already tracked.  The
163          * list_empty() test is safe as node->private_list is
164          * protected by mapping->tree_lock.
165          */
166         if (!workingset_node_pages(node) &&
167             list_empty(&node->private_list)) {
168                 node->private_data = mapping;
169                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
170         }
171 }
172
173 /*
174  * Delete a page from the page cache and free it. Caller has to make
175  * sure the page is locked and that nobody else uses it - or that usage
176  * is safe.  The caller must hold the mapping's tree_lock.
177  */
178 void __delete_from_page_cache(struct page *page, void *shadow)
179 {
180         struct address_space *mapping = page->mapping;
181
182         trace_mm_filemap_delete_from_page_cache(page);
183         /*
184          * if we're uptodate, flush out into the cleancache, otherwise
185          * invalidate any existing cleancache entries.  We can't leave
186          * stale data around in the cleancache once our page is gone
187          */
188         if (PageUptodate(page) && PageMappedToDisk(page))
189                 cleancache_put_page(page);
190         else
191                 cleancache_invalidate_page(mapping, page);
192
193         page_cache_tree_delete(mapping, page, shadow);
194
195         page->mapping = NULL;
196         /* Leave page->index set: truncation lookup relies upon it */
197
198         __dec_zone_page_state(page, NR_FILE_PAGES);
199         if (PageSwapBacked(page))
200                 __dec_zone_page_state(page, NR_SHMEM);
201         BUG_ON(page_mapped(page));
202
203         /*
204          * Some filesystems seem to re-dirty the page even after
205          * the VM has canceled the dirty bit (eg ext3 journaling).
206          *
207          * Fix it up by doing a final dirty accounting check after
208          * having removed the page entirely.
209          */
210         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
211                 dec_zone_page_state(page, NR_FILE_DIRTY);
212                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
213         }
214 }
215
216 /**
217  * delete_from_page_cache - delete page from page cache
218  * @page: the page which the kernel is trying to remove from page cache
219  *
220  * This must be called only on pages that have been verified to be in the page
221  * cache and locked.  It will never put the page into the free list, the caller
222  * has a reference on the page.
223  */
224 void delete_from_page_cache(struct page *page)
225 {
226         struct address_space *mapping = page->mapping;
227         void (*freepage)(struct page *);
228
229         BUG_ON(!PageLocked(page));
230
231         freepage = mapping->a_ops->freepage;
232         spin_lock_irq(&mapping->tree_lock);
233         __delete_from_page_cache(page, NULL);
234         spin_unlock_irq(&mapping->tree_lock);
235         mem_cgroup_uncharge_cache_page(page);
236
237         if (freepage)
238                 freepage(page);
239         page_cache_release(page);
240 }
241 EXPORT_SYMBOL(delete_from_page_cache);
242
243 static int sleep_on_page(void *word)
244 {
245         io_schedule();
246         return 0;
247 }
248
249 static int sleep_on_page_killable(void *word)
250 {
251         sleep_on_page(word);
252         return fatal_signal_pending(current) ? -EINTR : 0;
253 }
254
255 static int filemap_check_errors(struct address_space *mapping)
256 {
257         int ret = 0;
258         /* Check for outstanding write errors */
259         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
260                 ret = -ENOSPC;
261         if (test_and_clear_bit(AS_EIO, &mapping->flags))
262                 ret = -EIO;
263         return ret;
264 }
265
266 /**
267  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
268  * @mapping:    address space structure to write
269  * @start:      offset in bytes where the range starts
270  * @end:        offset in bytes where the range ends (inclusive)
271  * @sync_mode:  enable synchronous operation
272  *
273  * Start writeback against all of a mapping's dirty pages that lie
274  * within the byte offsets <start, end> inclusive.
275  *
276  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
277  * opposed to a regular memory cleansing writeback.  The difference between
278  * these two operations is that if a dirty page/buffer is encountered, it must
279  * be waited upon, and not just skipped over.
280  */
281 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
282                                 loff_t end, int sync_mode)
283 {
284         int ret;
285         struct writeback_control wbc = {
286                 .sync_mode = sync_mode,
287                 .nr_to_write = LONG_MAX,
288                 .range_start = start,
289                 .range_end = end,
290         };
291
292         if (!mapping_cap_writeback_dirty(mapping))
293                 return 0;
294
295         ret = do_writepages(mapping, &wbc);
296         return ret;
297 }
298
299 static inline int __filemap_fdatawrite(struct address_space *mapping,
300         int sync_mode)
301 {
302         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
303 }
304
305 int filemap_fdatawrite(struct address_space *mapping)
306 {
307         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
308 }
309 EXPORT_SYMBOL(filemap_fdatawrite);
310
311 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
312                                 loff_t end)
313 {
314         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
315 }
316 EXPORT_SYMBOL(filemap_fdatawrite_range);
317
318 /**
319  * filemap_flush - mostly a non-blocking flush
320  * @mapping:    target address_space
321  *
322  * This is a mostly non-blocking flush.  Not suitable for data-integrity
323  * purposes - I/O may not be started against all dirty pages.
324  */
325 int filemap_flush(struct address_space *mapping)
326 {
327         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
328 }
329 EXPORT_SYMBOL(filemap_flush);
330
331 /**
332  * filemap_fdatawait_range - wait for writeback to complete
333  * @mapping:            address space structure to wait for
334  * @start_byte:         offset in bytes where the range starts
335  * @end_byte:           offset in bytes where the range ends (inclusive)
336  *
337  * Walk the list of under-writeback pages of the given address space
338  * in the given range and wait for all of them.
339  */
340 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
341                             loff_t end_byte)
342 {
343         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
344         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
345         struct pagevec pvec;
346         int nr_pages;
347         int ret2, ret = 0;
348
349         if (end_byte < start_byte)
350                 goto out;
351
352         pagevec_init(&pvec, 0);
353         while ((index <= end) &&
354                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
355                         PAGECACHE_TAG_WRITEBACK,
356                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
357                 unsigned i;
358
359                 for (i = 0; i < nr_pages; i++) {
360                         struct page *page = pvec.pages[i];
361
362                         /* until radix tree lookup accepts end_index */
363                         if (page->index > end)
364                                 continue;
365
366                         wait_on_page_writeback(page);
367                         if (TestClearPageError(page))
368                                 ret = -EIO;
369                 }
370                 pagevec_release(&pvec);
371                 cond_resched();
372         }
373 out:
374         ret2 = filemap_check_errors(mapping);
375         if (!ret)
376                 ret = ret2;
377
378         return ret;
379 }
380 EXPORT_SYMBOL(filemap_fdatawait_range);
381
382 /**
383  * filemap_fdatawait - wait for all under-writeback pages to complete
384  * @mapping: address space structure to wait for
385  *
386  * Walk the list of under-writeback pages of the given address space
387  * and wait for all of them.
388  */
389 int filemap_fdatawait(struct address_space *mapping)
390 {
391         loff_t i_size = i_size_read(mapping->host);
392
393         if (i_size == 0)
394                 return 0;
395
396         return filemap_fdatawait_range(mapping, 0, i_size - 1);
397 }
398 EXPORT_SYMBOL(filemap_fdatawait);
399
400 int filemap_write_and_wait(struct address_space *mapping)
401 {
402         int err = 0;
403
404         if (mapping->nrpages) {
405                 err = filemap_fdatawrite(mapping);
406                 /*
407                  * Even if the above returned error, the pages may be
408                  * written partially (e.g. -ENOSPC), so we wait for it.
409                  * But the -EIO is special case, it may indicate the worst
410                  * thing (e.g. bug) happened, so we avoid waiting for it.
411                  */
412                 if (err != -EIO) {
413                         int err2 = filemap_fdatawait(mapping);
414                         if (!err)
415                                 err = err2;
416                 }
417         } else {
418                 err = filemap_check_errors(mapping);
419         }
420         return err;
421 }
422 EXPORT_SYMBOL(filemap_write_and_wait);
423
424 /**
425  * filemap_write_and_wait_range - write out & wait on a file range
426  * @mapping:    the address_space for the pages
427  * @lstart:     offset in bytes where the range starts
428  * @lend:       offset in bytes where the range ends (inclusive)
429  *
430  * Write out and wait upon file offsets lstart->lend, inclusive.
431  *
432  * Note that `lend' is inclusive (describes the last byte to be written) so
433  * that this function can be used to write to the very end-of-file (end = -1).
434  */
435 int filemap_write_and_wait_range(struct address_space *mapping,
436                                  loff_t lstart, loff_t lend)
437 {
438         int err = 0;
439
440         if (mapping->nrpages) {
441                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
442                                                  WB_SYNC_ALL);
443                 /* See comment of filemap_write_and_wait() */
444                 if (err != -EIO) {
445                         int err2 = filemap_fdatawait_range(mapping,
446                                                 lstart, lend);
447                         if (!err)
448                                 err = err2;
449                 }
450         } else {
451                 err = filemap_check_errors(mapping);
452         }
453         return err;
454 }
455 EXPORT_SYMBOL(filemap_write_and_wait_range);
456
457 /**
458  * replace_page_cache_page - replace a pagecache page with a new one
459  * @old:        page to be replaced
460  * @new:        page to replace with
461  * @gfp_mask:   allocation mode
462  *
463  * This function replaces a page in the pagecache with a new one.  On
464  * success it acquires the pagecache reference for the new page and
465  * drops it for the old page.  Both the old and new pages must be
466  * locked.  This function does not add the new page to the LRU, the
467  * caller must do that.
468  *
469  * The remove + add is atomic.  The only way this function can fail is
470  * memory allocation failure.
471  */
472 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
473 {
474         int error;
475
476         VM_BUG_ON_PAGE(!PageLocked(old), old);
477         VM_BUG_ON_PAGE(!PageLocked(new), new);
478         VM_BUG_ON_PAGE(new->mapping, new);
479
480         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
481         if (!error) {
482                 struct address_space *mapping = old->mapping;
483                 void (*freepage)(struct page *);
484
485                 pgoff_t offset = old->index;
486                 freepage = mapping->a_ops->freepage;
487
488                 page_cache_get(new);
489                 new->mapping = mapping;
490                 new->index = offset;
491
492                 spin_lock_irq(&mapping->tree_lock);
493                 __delete_from_page_cache(old, NULL);
494                 error = radix_tree_insert(&mapping->page_tree, offset, new);
495                 BUG_ON(error);
496                 mapping->nrpages++;
497                 __inc_zone_page_state(new, NR_FILE_PAGES);
498                 if (PageSwapBacked(new))
499                         __inc_zone_page_state(new, NR_SHMEM);
500                 spin_unlock_irq(&mapping->tree_lock);
501                 /* mem_cgroup codes must not be called under tree_lock */
502                 mem_cgroup_replace_page_cache(old, new);
503                 radix_tree_preload_end();
504                 if (freepage)
505                         freepage(old);
506                 page_cache_release(old);
507         }
508
509         return error;
510 }
511 EXPORT_SYMBOL_GPL(replace_page_cache_page);
512
513 static int page_cache_tree_insert(struct address_space *mapping,
514                                   struct page *page, void **shadowp)
515 {
516         struct radix_tree_node *node;
517         void **slot;
518         int error;
519
520         error = __radix_tree_create(&mapping->page_tree, page->index,
521                                     &node, &slot);
522         if (error)
523                 return error;
524         if (*slot) {
525                 void *p;
526
527                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
528                 if (!radix_tree_exceptional_entry(p))
529                         return -EEXIST;
530                 if (shadowp)
531                         *shadowp = p;
532                 mapping->nrshadows--;
533                 if (node)
534                         workingset_node_shadows_dec(node);
535         }
536         radix_tree_replace_slot(slot, page);
537         mapping->nrpages++;
538         if (node) {
539                 workingset_node_pages_inc(node);
540                 /*
541                  * Don't track node that contains actual pages.
542                  *
543                  * Avoid acquiring the list_lru lock if already
544                  * untracked.  The list_empty() test is safe as
545                  * node->private_list is protected by
546                  * mapping->tree_lock.
547                  */
548                 if (!list_empty(&node->private_list))
549                         list_lru_del(&workingset_shadow_nodes,
550                                      &node->private_list);
551         }
552         return 0;
553 }
554
555 static int __add_to_page_cache_locked(struct page *page,
556                                       struct address_space *mapping,
557                                       pgoff_t offset, gfp_t gfp_mask,
558                                       void **shadowp)
559 {
560         int error;
561
562         VM_BUG_ON_PAGE(!PageLocked(page), page);
563         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
564
565         error = mem_cgroup_cache_charge(page, current->mm,
566                                         gfp_mask & GFP_RECLAIM_MASK);
567         if (error)
568                 return error;
569
570         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
571         if (error) {
572                 mem_cgroup_uncharge_cache_page(page);
573                 return error;
574         }
575
576         page_cache_get(page);
577         page->mapping = mapping;
578         page->index = offset;
579
580         spin_lock_irq(&mapping->tree_lock);
581         error = page_cache_tree_insert(mapping, page, shadowp);
582         radix_tree_preload_end();
583         if (unlikely(error))
584                 goto err_insert;
585         __inc_zone_page_state(page, NR_FILE_PAGES);
586         spin_unlock_irq(&mapping->tree_lock);
587         trace_mm_filemap_add_to_page_cache(page);
588         return 0;
589 err_insert:
590         page->mapping = NULL;
591         /* Leave page->index set: truncation relies upon it */
592         spin_unlock_irq(&mapping->tree_lock);
593         mem_cgroup_uncharge_cache_page(page);
594         page_cache_release(page);
595         return error;
596 }
597
598 /**
599  * add_to_page_cache_locked - add a locked page to the pagecache
600  * @page:       page to add
601  * @mapping:    the page's address_space
602  * @offset:     page index
603  * @gfp_mask:   page allocation mode
604  *
605  * This function is used to add a page to the pagecache. It must be locked.
606  * This function does not add the page to the LRU.  The caller must do that.
607  */
608 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
609                 pgoff_t offset, gfp_t gfp_mask)
610 {
611         return __add_to_page_cache_locked(page, mapping, offset,
612                                           gfp_mask, NULL);
613 }
614 EXPORT_SYMBOL(add_to_page_cache_locked);
615
616 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
617                                 pgoff_t offset, gfp_t gfp_mask)
618 {
619         void *shadow = NULL;
620         int ret;
621
622         __set_page_locked(page);
623         ret = __add_to_page_cache_locked(page, mapping, offset,
624                                          gfp_mask, &shadow);
625         if (unlikely(ret))
626                 __clear_page_locked(page);
627         else {
628                 /*
629                  * The page might have been evicted from cache only
630                  * recently, in which case it should be activated like
631                  * any other repeatedly accessed page.
632                  */
633                 if (shadow && workingset_refault(shadow)) {
634                         SetPageActive(page);
635                         workingset_activation(page);
636                 } else
637                         ClearPageActive(page);
638                 lru_cache_add(page);
639         }
640         return ret;
641 }
642 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
643
644 #ifdef CONFIG_NUMA
645 struct page *__page_cache_alloc(gfp_t gfp)
646 {
647         int n;
648         struct page *page;
649
650         if (cpuset_do_page_mem_spread()) {
651                 unsigned int cpuset_mems_cookie;
652                 do {
653                         cpuset_mems_cookie = read_mems_allowed_begin();
654                         n = cpuset_mem_spread_node();
655                         page = alloc_pages_exact_node(n, gfp, 0);
656                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
657
658                 return page;
659         }
660         return alloc_pages(gfp, 0);
661 }
662 EXPORT_SYMBOL(__page_cache_alloc);
663 #endif
664
665 /*
666  * In order to wait for pages to become available there must be
667  * waitqueues associated with pages. By using a hash table of
668  * waitqueues where the bucket discipline is to maintain all
669  * waiters on the same queue and wake all when any of the pages
670  * become available, and for the woken contexts to check to be
671  * sure the appropriate page became available, this saves space
672  * at a cost of "thundering herd" phenomena during rare hash
673  * collisions.
674  */
675 static wait_queue_head_t *page_waitqueue(struct page *page)
676 {
677         const struct zone *zone = page_zone(page);
678
679         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
680 }
681
682 static inline void wake_up_page(struct page *page, int bit)
683 {
684         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
685 }
686
687 void wait_on_page_bit(struct page *page, int bit_nr)
688 {
689         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
690
691         if (test_bit(bit_nr, &page->flags))
692                 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
693                                                         TASK_UNINTERRUPTIBLE);
694 }
695 EXPORT_SYMBOL(wait_on_page_bit);
696
697 int wait_on_page_bit_killable(struct page *page, int bit_nr)
698 {
699         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
700
701         if (!test_bit(bit_nr, &page->flags))
702                 return 0;
703
704         return __wait_on_bit(page_waitqueue(page), &wait,
705                              sleep_on_page_killable, TASK_KILLABLE);
706 }
707
708 /**
709  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
710  * @page: Page defining the wait queue of interest
711  * @waiter: Waiter to add to the queue
712  *
713  * Add an arbitrary @waiter to the wait queue for the nominated @page.
714  */
715 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
716 {
717         wait_queue_head_t *q = page_waitqueue(page);
718         unsigned long flags;
719
720         spin_lock_irqsave(&q->lock, flags);
721         __add_wait_queue(q, waiter);
722         spin_unlock_irqrestore(&q->lock, flags);
723 }
724 EXPORT_SYMBOL_GPL(add_page_wait_queue);
725
726 /**
727  * unlock_page - unlock a locked page
728  * @page: the page
729  *
730  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
731  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
732  * mechananism between PageLocked pages and PageWriteback pages is shared.
733  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
734  *
735  * The mb is necessary to enforce ordering between the clear_bit and the read
736  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
737  */
738 void unlock_page(struct page *page)
739 {
740         VM_BUG_ON_PAGE(!PageLocked(page), page);
741         clear_bit_unlock(PG_locked, &page->flags);
742         smp_mb__after_clear_bit();
743         wake_up_page(page, PG_locked);
744 }
745 EXPORT_SYMBOL(unlock_page);
746
747 /**
748  * end_page_writeback - end writeback against a page
749  * @page: the page
750  */
751 void end_page_writeback(struct page *page)
752 {
753         if (TestClearPageReclaim(page))
754                 rotate_reclaimable_page(page);
755
756         if (!test_clear_page_writeback(page))
757                 BUG();
758
759         smp_mb__after_clear_bit();
760         wake_up_page(page, PG_writeback);
761 }
762 EXPORT_SYMBOL(end_page_writeback);
763
764 /**
765  * __lock_page - get a lock on the page, assuming we need to sleep to get it
766  * @page: the page to lock
767  */
768 void __lock_page(struct page *page)
769 {
770         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
771
772         __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
773                                                         TASK_UNINTERRUPTIBLE);
774 }
775 EXPORT_SYMBOL(__lock_page);
776
777 int __lock_page_killable(struct page *page)
778 {
779         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
780
781         return __wait_on_bit_lock(page_waitqueue(page), &wait,
782                                         sleep_on_page_killable, TASK_KILLABLE);
783 }
784 EXPORT_SYMBOL_GPL(__lock_page_killable);
785
786 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
787                          unsigned int flags)
788 {
789         if (flags & FAULT_FLAG_ALLOW_RETRY) {
790                 /*
791                  * CAUTION! In this case, mmap_sem is not released
792                  * even though return 0.
793                  */
794                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
795                         return 0;
796
797                 up_read(&mm->mmap_sem);
798                 if (flags & FAULT_FLAG_KILLABLE)
799                         wait_on_page_locked_killable(page);
800                 else
801                         wait_on_page_locked(page);
802                 return 0;
803         } else {
804                 if (flags & FAULT_FLAG_KILLABLE) {
805                         int ret;
806
807                         ret = __lock_page_killable(page);
808                         if (ret) {
809                                 up_read(&mm->mmap_sem);
810                                 return 0;
811                         }
812                 } else
813                         __lock_page(page);
814                 return 1;
815         }
816 }
817
818 /**
819  * page_cache_next_hole - find the next hole (not-present entry)
820  * @mapping: mapping
821  * @index: index
822  * @max_scan: maximum range to search
823  *
824  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
825  * lowest indexed hole.
826  *
827  * Returns: the index of the hole if found, otherwise returns an index
828  * outside of the set specified (in which case 'return - index >=
829  * max_scan' will be true). In rare cases of index wrap-around, 0 will
830  * be returned.
831  *
832  * page_cache_next_hole may be called under rcu_read_lock. However,
833  * like radix_tree_gang_lookup, this will not atomically search a
834  * snapshot of the tree at a single point in time. For example, if a
835  * hole is created at index 5, then subsequently a hole is created at
836  * index 10, page_cache_next_hole covering both indexes may return 10
837  * if called under rcu_read_lock.
838  */
839 pgoff_t page_cache_next_hole(struct address_space *mapping,
840                              pgoff_t index, unsigned long max_scan)
841 {
842         unsigned long i;
843
844         for (i = 0; i < max_scan; i++) {
845                 struct page *page;
846
847                 page = radix_tree_lookup(&mapping->page_tree, index);
848                 if (!page || radix_tree_exceptional_entry(page))
849                         break;
850                 index++;
851                 if (index == 0)
852                         break;
853         }
854
855         return index;
856 }
857 EXPORT_SYMBOL(page_cache_next_hole);
858
859 /**
860  * page_cache_prev_hole - find the prev hole (not-present entry)
861  * @mapping: mapping
862  * @index: index
863  * @max_scan: maximum range to search
864  *
865  * Search backwards in the range [max(index-max_scan+1, 0), index] for
866  * the first hole.
867  *
868  * Returns: the index of the hole if found, otherwise returns an index
869  * outside of the set specified (in which case 'index - return >=
870  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
871  * will be returned.
872  *
873  * page_cache_prev_hole may be called under rcu_read_lock. However,
874  * like radix_tree_gang_lookup, this will not atomically search a
875  * snapshot of the tree at a single point in time. For example, if a
876  * hole is created at index 10, then subsequently a hole is created at
877  * index 5, page_cache_prev_hole covering both indexes may return 5 if
878  * called under rcu_read_lock.
879  */
880 pgoff_t page_cache_prev_hole(struct address_space *mapping,
881                              pgoff_t index, unsigned long max_scan)
882 {
883         unsigned long i;
884
885         for (i = 0; i < max_scan; i++) {
886                 struct page *page;
887
888                 page = radix_tree_lookup(&mapping->page_tree, index);
889                 if (!page || radix_tree_exceptional_entry(page))
890                         break;
891                 index--;
892                 if (index == ULONG_MAX)
893                         break;
894         }
895
896         return index;
897 }
898 EXPORT_SYMBOL(page_cache_prev_hole);
899
900 /**
901  * find_get_entry - find and get a page cache entry
902  * @mapping: the address_space to search
903  * @offset: the page cache index
904  *
905  * Looks up the page cache slot at @mapping & @offset.  If there is a
906  * page cache page, it is returned with an increased refcount.
907  *
908  * If the slot holds a shadow entry of a previously evicted page, it
909  * is returned.
910  *
911  * Otherwise, %NULL is returned.
912  */
913 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
914 {
915         void **pagep;
916         struct page *page;
917
918         rcu_read_lock();
919 repeat:
920         page = NULL;
921         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
922         if (pagep) {
923                 page = radix_tree_deref_slot(pagep);
924                 if (unlikely(!page))
925                         goto out;
926                 if (radix_tree_exception(page)) {
927                         if (radix_tree_deref_retry(page))
928                                 goto repeat;
929                         /*
930                          * Otherwise, shmem/tmpfs must be storing a swap entry
931                          * here as an exceptional entry: so return it without
932                          * attempting to raise page count.
933                          */
934                         goto out;
935                 }
936                 if (!page_cache_get_speculative(page))
937                         goto repeat;
938
939                 /*
940                  * Has the page moved?
941                  * This is part of the lockless pagecache protocol. See
942                  * include/linux/pagemap.h for details.
943                  */
944                 if (unlikely(page != *pagep)) {
945                         page_cache_release(page);
946                         goto repeat;
947                 }
948         }
949 out:
950         rcu_read_unlock();
951
952         return page;
953 }
954 EXPORT_SYMBOL(find_get_entry);
955
956 /**
957  * find_get_page - find and get a page reference
958  * @mapping: the address_space to search
959  * @offset: the page index
960  *
961  * Looks up the page cache slot at @mapping & @offset.  If there is a
962  * page cache page, it is returned with an increased refcount.
963  *
964  * Otherwise, %NULL is returned.
965  */
966 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
967 {
968         struct page *page = find_get_entry(mapping, offset);
969
970         if (radix_tree_exceptional_entry(page))
971                 page = NULL;
972         return page;
973 }
974 EXPORT_SYMBOL(find_get_page);
975
976 /**
977  * find_lock_entry - locate, pin and lock a page cache entry
978  * @mapping: the address_space to search
979  * @offset: the page cache index
980  *
981  * Looks up the page cache slot at @mapping & @offset.  If there is a
982  * page cache page, it is returned locked and with an increased
983  * refcount.
984  *
985  * If the slot holds a shadow entry of a previously evicted page, it
986  * is returned.
987  *
988  * Otherwise, %NULL is returned.
989  *
990  * find_lock_entry() may sleep.
991  */
992 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
993 {
994         struct page *page;
995
996 repeat:
997         page = find_get_entry(mapping, offset);
998         if (page && !radix_tree_exception(page)) {
999                 lock_page(page);
1000                 /* Has the page been truncated? */
1001                 if (unlikely(page->mapping != mapping)) {
1002                         unlock_page(page);
1003                         page_cache_release(page);
1004                         goto repeat;
1005                 }
1006                 VM_BUG_ON_PAGE(page->index != offset, page);
1007         }
1008         return page;
1009 }
1010 EXPORT_SYMBOL(find_lock_entry);
1011
1012 /**
1013  * find_lock_page - locate, pin and lock a pagecache page
1014  * @mapping: the address_space to search
1015  * @offset: the page index
1016  *
1017  * Looks up the page cache slot at @mapping & @offset.  If there is a
1018  * page cache page, it is returned locked and with an increased
1019  * refcount.
1020  *
1021  * Otherwise, %NULL is returned.
1022  *
1023  * find_lock_page() may sleep.
1024  */
1025 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1026 {
1027         struct page *page = find_lock_entry(mapping, offset);
1028
1029         if (radix_tree_exceptional_entry(page))
1030                 page = NULL;
1031         return page;
1032 }
1033 EXPORT_SYMBOL(find_lock_page);
1034
1035 /**
1036  * find_or_create_page - locate or add a pagecache page
1037  * @mapping: the page's address_space
1038  * @index: the page's index into the mapping
1039  * @gfp_mask: page allocation mode
1040  *
1041  * Looks up the page cache slot at @mapping & @offset.  If there is a
1042  * page cache page, it is returned locked and with an increased
1043  * refcount.
1044  *
1045  * If the page is not present, a new page is allocated using @gfp_mask
1046  * and added to the page cache and the VM's LRU list.  The page is
1047  * returned locked and with an increased refcount.
1048  *
1049  * On memory exhaustion, %NULL is returned.
1050  *
1051  * find_or_create_page() may sleep, even if @gfp_flags specifies an
1052  * atomic allocation!
1053  */
1054 struct page *find_or_create_page(struct address_space *mapping,
1055                 pgoff_t index, gfp_t gfp_mask)
1056 {
1057         struct page *page;
1058         int err;
1059 repeat:
1060         page = find_lock_page(mapping, index);
1061         if (!page) {
1062                 page = __page_cache_alloc(gfp_mask);
1063                 if (!page)
1064                         return NULL;
1065                 /*
1066                  * We want a regular kernel memory (not highmem or DMA etc)
1067                  * allocation for the radix tree nodes, but we need to honour
1068                  * the context-specific requirements the caller has asked for.
1069                  * GFP_RECLAIM_MASK collects those requirements.
1070                  */
1071                 err = add_to_page_cache_lru(page, mapping, index,
1072                         (gfp_mask & GFP_RECLAIM_MASK));
1073                 if (unlikely(err)) {
1074                         page_cache_release(page);
1075                         page = NULL;
1076                         if (err == -EEXIST)
1077                                 goto repeat;
1078                 }
1079         }
1080         return page;
1081 }
1082 EXPORT_SYMBOL(find_or_create_page);
1083
1084 /**
1085  * find_get_entries - gang pagecache lookup
1086  * @mapping:    The address_space to search
1087  * @start:      The starting page cache index
1088  * @nr_entries: The maximum number of entries
1089  * @entries:    Where the resulting entries are placed
1090  * @indices:    The cache indices corresponding to the entries in @entries
1091  *
1092  * find_get_entries() will search for and return a group of up to
1093  * @nr_entries entries in the mapping.  The entries are placed at
1094  * @entries.  find_get_entries() takes a reference against any actual
1095  * pages it returns.
1096  *
1097  * The search returns a group of mapping-contiguous page cache entries
1098  * with ascending indexes.  There may be holes in the indices due to
1099  * not-present pages.
1100  *
1101  * Any shadow entries of evicted pages are included in the returned
1102  * array.
1103  *
1104  * find_get_entries() returns the number of pages and shadow entries
1105  * which were found.
1106  */
1107 unsigned find_get_entries(struct address_space *mapping,
1108                           pgoff_t start, unsigned int nr_entries,
1109                           struct page **entries, pgoff_t *indices)
1110 {
1111         void **slot;
1112         unsigned int ret = 0;
1113         struct radix_tree_iter iter;
1114
1115         if (!nr_entries)
1116                 return 0;
1117
1118         rcu_read_lock();
1119 restart:
1120         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1121                 struct page *page;
1122 repeat:
1123                 page = radix_tree_deref_slot(slot);
1124                 if (unlikely(!page))
1125                         continue;
1126                 if (radix_tree_exception(page)) {
1127                         if (radix_tree_deref_retry(page))
1128                                 goto restart;
1129                         /*
1130                          * Otherwise, we must be storing a swap entry
1131                          * here as an exceptional entry: so return it
1132                          * without attempting to raise page count.
1133                          */
1134                         goto export;
1135                 }
1136                 if (!page_cache_get_speculative(page))
1137                         goto repeat;
1138
1139                 /* Has the page moved? */
1140                 if (unlikely(page != *slot)) {
1141                         page_cache_release(page);
1142                         goto repeat;
1143                 }
1144 export:
1145                 indices[ret] = iter.index;
1146                 entries[ret] = page;
1147                 if (++ret == nr_entries)
1148                         break;
1149         }
1150         rcu_read_unlock();
1151         return ret;
1152 }
1153
1154 /**
1155  * find_get_pages - gang pagecache lookup
1156  * @mapping:    The address_space to search
1157  * @start:      The starting page index
1158  * @nr_pages:   The maximum number of pages
1159  * @pages:      Where the resulting pages are placed
1160  *
1161  * find_get_pages() will search for and return a group of up to
1162  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1163  * find_get_pages() takes a reference against the returned pages.
1164  *
1165  * The search returns a group of mapping-contiguous pages with ascending
1166  * indexes.  There may be holes in the indices due to not-present pages.
1167  *
1168  * find_get_pages() returns the number of pages which were found.
1169  */
1170 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1171                             unsigned int nr_pages, struct page **pages)
1172 {
1173         struct radix_tree_iter iter;
1174         void **slot;
1175         unsigned ret = 0;
1176
1177         if (unlikely(!nr_pages))
1178                 return 0;
1179
1180         rcu_read_lock();
1181 restart:
1182         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1183                 struct page *page;
1184 repeat:
1185                 page = radix_tree_deref_slot(slot);
1186                 if (unlikely(!page))
1187                         continue;
1188
1189                 if (radix_tree_exception(page)) {
1190                         if (radix_tree_deref_retry(page)) {
1191                                 /*
1192                                  * Transient condition which can only trigger
1193                                  * when entry at index 0 moves out of or back
1194                                  * to root: none yet gotten, safe to restart.
1195                                  */
1196                                 WARN_ON(iter.index);
1197                                 goto restart;
1198                         }
1199                         /*
1200                          * Otherwise, shmem/tmpfs must be storing a swap entry
1201                          * here as an exceptional entry: so skip over it -
1202                          * we only reach this from invalidate_mapping_pages().
1203                          */
1204                         continue;
1205                 }
1206
1207                 if (!page_cache_get_speculative(page))
1208                         goto repeat;
1209
1210                 /* Has the page moved? */
1211                 if (unlikely(page != *slot)) {
1212                         page_cache_release(page);
1213                         goto repeat;
1214                 }
1215
1216                 pages[ret] = page;
1217                 if (++ret == nr_pages)
1218                         break;
1219         }
1220
1221         rcu_read_unlock();
1222         return ret;
1223 }
1224
1225 /**
1226  * find_get_pages_contig - gang contiguous pagecache lookup
1227  * @mapping:    The address_space to search
1228  * @index:      The starting page index
1229  * @nr_pages:   The maximum number of pages
1230  * @pages:      Where the resulting pages are placed
1231  *
1232  * find_get_pages_contig() works exactly like find_get_pages(), except
1233  * that the returned number of pages are guaranteed to be contiguous.
1234  *
1235  * find_get_pages_contig() returns the number of pages which were found.
1236  */
1237 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1238                                unsigned int nr_pages, struct page **pages)
1239 {
1240         struct radix_tree_iter iter;
1241         void **slot;
1242         unsigned int ret = 0;
1243
1244         if (unlikely(!nr_pages))
1245                 return 0;
1246
1247         rcu_read_lock();
1248 restart:
1249         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1250                 struct page *page;
1251 repeat:
1252                 page = radix_tree_deref_slot(slot);
1253                 /* The hole, there no reason to continue */
1254                 if (unlikely(!page))
1255                         break;
1256
1257                 if (radix_tree_exception(page)) {
1258                         if (radix_tree_deref_retry(page)) {
1259                                 /*
1260                                  * Transient condition which can only trigger
1261                                  * when entry at index 0 moves out of or back
1262                                  * to root: none yet gotten, safe to restart.
1263                                  */
1264                                 goto restart;
1265                         }
1266                         /*
1267                          * Otherwise, shmem/tmpfs must be storing a swap entry
1268                          * here as an exceptional entry: so stop looking for
1269                          * contiguous pages.
1270                          */
1271                         break;
1272                 }
1273
1274                 if (!page_cache_get_speculative(page))
1275                         goto repeat;
1276
1277                 /* Has the page moved? */
1278                 if (unlikely(page != *slot)) {
1279                         page_cache_release(page);
1280                         goto repeat;
1281                 }
1282
1283                 /*
1284                  * must check mapping and index after taking the ref.
1285                  * otherwise we can get both false positives and false
1286                  * negatives, which is just confusing to the caller.
1287                  */
1288                 if (page->mapping == NULL || page->index != iter.index) {
1289                         page_cache_release(page);
1290                         break;
1291                 }
1292
1293                 pages[ret] = page;
1294                 if (++ret == nr_pages)
1295                         break;
1296         }
1297         rcu_read_unlock();
1298         return ret;
1299 }
1300 EXPORT_SYMBOL(find_get_pages_contig);
1301
1302 /**
1303  * find_get_pages_tag - find and return pages that match @tag
1304  * @mapping:    the address_space to search
1305  * @index:      the starting page index
1306  * @tag:        the tag index
1307  * @nr_pages:   the maximum number of pages
1308  * @pages:      where the resulting pages are placed
1309  *
1310  * Like find_get_pages, except we only return pages which are tagged with
1311  * @tag.   We update @index to index the next page for the traversal.
1312  */
1313 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1314                         int tag, unsigned int nr_pages, struct page **pages)
1315 {
1316         struct radix_tree_iter iter;
1317         void **slot;
1318         unsigned ret = 0;
1319
1320         if (unlikely(!nr_pages))
1321                 return 0;
1322
1323         rcu_read_lock();
1324 restart:
1325         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1326                                    &iter, *index, tag) {
1327                 struct page *page;
1328 repeat:
1329                 page = radix_tree_deref_slot(slot);
1330                 if (unlikely(!page))
1331                         continue;
1332
1333                 if (radix_tree_exception(page)) {
1334                         if (radix_tree_deref_retry(page)) {
1335                                 /*
1336                                  * Transient condition which can only trigger
1337                                  * when entry at index 0 moves out of or back
1338                                  * to root: none yet gotten, safe to restart.
1339                                  */
1340                                 goto restart;
1341                         }
1342                         /*
1343                          * This function is never used on a shmem/tmpfs
1344                          * mapping, so a swap entry won't be found here.
1345                          */
1346                         BUG();
1347                 }
1348
1349                 if (!page_cache_get_speculative(page))
1350                         goto repeat;
1351
1352                 /* Has the page moved? */
1353                 if (unlikely(page != *slot)) {
1354                         page_cache_release(page);
1355                         goto repeat;
1356                 }
1357
1358                 pages[ret] = page;
1359                 if (++ret == nr_pages)
1360                         break;
1361         }
1362
1363         rcu_read_unlock();
1364
1365         if (ret)
1366                 *index = pages[ret - 1]->index + 1;
1367
1368         return ret;
1369 }
1370 EXPORT_SYMBOL(find_get_pages_tag);
1371
1372 /**
1373  * grab_cache_page_nowait - returns locked page at given index in given cache
1374  * @mapping: target address_space
1375  * @index: the page index
1376  *
1377  * Same as grab_cache_page(), but do not wait if the page is unavailable.
1378  * This is intended for speculative data generators, where the data can
1379  * be regenerated if the page couldn't be grabbed.  This routine should
1380  * be safe to call while holding the lock for another page.
1381  *
1382  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1383  * and deadlock against the caller's locked page.
1384  */
1385 struct page *
1386 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1387 {
1388         struct page *page = find_get_page(mapping, index);
1389
1390         if (page) {
1391                 if (trylock_page(page))
1392                         return page;
1393                 page_cache_release(page);
1394                 return NULL;
1395         }
1396         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1397         if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1398                 page_cache_release(page);
1399                 page = NULL;
1400         }
1401         return page;
1402 }
1403 EXPORT_SYMBOL(grab_cache_page_nowait);
1404
1405 /*
1406  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1407  * a _large_ part of the i/o request. Imagine the worst scenario:
1408  *
1409  *      ---R__________________________________________B__________
1410  *         ^ reading here                             ^ bad block(assume 4k)
1411  *
1412  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1413  * => failing the whole request => read(R) => read(R+1) =>
1414  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1415  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1416  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1417  *
1418  * It is going insane. Fix it by quickly scaling down the readahead size.
1419  */
1420 static void shrink_readahead_size_eio(struct file *filp,
1421                                         struct file_ra_state *ra)
1422 {
1423         ra->ra_pages /= 4;
1424 }
1425
1426 /**
1427  * do_generic_file_read - generic file read routine
1428  * @filp:       the file to read
1429  * @ppos:       current file position
1430  * @desc:       read_descriptor
1431  *
1432  * This is a generic file read routine, and uses the
1433  * mapping->a_ops->readpage() function for the actual low-level stuff.
1434  *
1435  * This is really ugly. But the goto's actually try to clarify some
1436  * of the logic when it comes to error handling etc.
1437  */
1438 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1439                 read_descriptor_t *desc)
1440 {
1441         struct address_space *mapping = filp->f_mapping;
1442         struct inode *inode = mapping->host;
1443         struct file_ra_state *ra = &filp->f_ra;
1444         pgoff_t index;
1445         pgoff_t last_index;
1446         pgoff_t prev_index;
1447         unsigned long offset;      /* offset into pagecache page */
1448         unsigned int prev_offset;
1449         int error;
1450
1451         index = *ppos >> PAGE_CACHE_SHIFT;
1452         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1453         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1454         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1455         offset = *ppos & ~PAGE_CACHE_MASK;
1456
1457         for (;;) {
1458                 struct page *page;
1459                 pgoff_t end_index;
1460                 loff_t isize;
1461                 unsigned long nr, ret;
1462
1463                 cond_resched();
1464 find_page:
1465                 page = find_get_page(mapping, index);
1466                 if (!page) {
1467                         page_cache_sync_readahead(mapping,
1468                                         ra, filp,
1469                                         index, last_index - index);
1470                         page = find_get_page(mapping, index);
1471                         if (unlikely(page == NULL))
1472                                 goto no_cached_page;
1473                 }
1474                 if (PageReadahead(page)) {
1475                         page_cache_async_readahead(mapping,
1476                                         ra, filp, page,
1477                                         index, last_index - index);
1478                 }
1479                 if (!PageUptodate(page)) {
1480                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1481                                         !mapping->a_ops->is_partially_uptodate)
1482                                 goto page_not_up_to_date;
1483                         if (!trylock_page(page))
1484                                 goto page_not_up_to_date;
1485                         /* Did it get truncated before we got the lock? */
1486                         if (!page->mapping)
1487                                 goto page_not_up_to_date_locked;
1488                         if (!mapping->a_ops->is_partially_uptodate(page,
1489                                                                 desc, offset))
1490                                 goto page_not_up_to_date_locked;
1491                         unlock_page(page);
1492                 }
1493 page_ok:
1494                 /*
1495                  * i_size must be checked after we know the page is Uptodate.
1496                  *
1497                  * Checking i_size after the check allows us to calculate
1498                  * the correct value for "nr", which means the zero-filled
1499                  * part of the page is not copied back to userspace (unless
1500                  * another truncate extends the file - this is desired though).
1501                  */
1502
1503                 isize = i_size_read(inode);
1504                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1505                 if (unlikely(!isize || index > end_index)) {
1506                         page_cache_release(page);
1507                         goto out;
1508                 }
1509
1510                 /* nr is the maximum number of bytes to copy from this page */
1511                 nr = PAGE_CACHE_SIZE;
1512                 if (index == end_index) {
1513                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1514                         if (nr <= offset) {
1515                                 page_cache_release(page);
1516                                 goto out;
1517                         }
1518                 }
1519                 nr = nr - offset;
1520
1521                 /* If users can be writing to this page using arbitrary
1522                  * virtual addresses, take care about potential aliasing
1523                  * before reading the page on the kernel side.
1524                  */
1525                 if (mapping_writably_mapped(mapping))
1526                         flush_dcache_page(page);
1527
1528                 /*
1529                  * When a sequential read accesses a page several times,
1530                  * only mark it as accessed the first time.
1531                  */
1532                 if (prev_index != index || offset != prev_offset)
1533                         mark_page_accessed(page);
1534                 prev_index = index;
1535
1536                 /*
1537                  * Ok, we have the page, and it's up-to-date, so
1538                  * now we can copy it to user space...
1539                  *
1540                  * The file_read_actor routine returns how many bytes were
1541                  * actually used..
1542                  * NOTE! This may not be the same as how much of a user buffer
1543                  * we filled up (we may be padding etc), so we can only update
1544                  * "pos" here (the actor routine has to update the user buffer
1545                  * pointers and the remaining count).
1546                  */
1547                 ret = file_read_actor(desc, page, offset, nr);
1548                 offset += ret;
1549                 index += offset >> PAGE_CACHE_SHIFT;
1550                 offset &= ~PAGE_CACHE_MASK;
1551                 prev_offset = offset;
1552
1553                 page_cache_release(page);
1554                 if (ret == nr && desc->count)
1555                         continue;
1556                 goto out;
1557
1558 page_not_up_to_date:
1559                 /* Get exclusive access to the page ... */
1560                 error = lock_page_killable(page);
1561                 if (unlikely(error))
1562                         goto readpage_error;
1563
1564 page_not_up_to_date_locked:
1565                 /* Did it get truncated before we got the lock? */
1566                 if (!page->mapping) {
1567                         unlock_page(page);
1568                         page_cache_release(page);
1569                         continue;
1570                 }
1571
1572                 /* Did somebody else fill it already? */
1573                 if (PageUptodate(page)) {
1574                         unlock_page(page);
1575                         goto page_ok;
1576                 }
1577
1578 readpage:
1579                 /*
1580                  * A previous I/O error may have been due to temporary
1581                  * failures, eg. multipath errors.
1582                  * PG_error will be set again if readpage fails.
1583                  */
1584                 ClearPageError(page);
1585                 /* Start the actual read. The read will unlock the page. */
1586                 error = mapping->a_ops->readpage(filp, page);
1587
1588                 if (unlikely(error)) {
1589                         if (error == AOP_TRUNCATED_PAGE) {
1590                                 page_cache_release(page);
1591                                 goto find_page;
1592                         }
1593                         goto readpage_error;
1594                 }
1595
1596                 if (!PageUptodate(page)) {
1597                         error = lock_page_killable(page);
1598                         if (unlikely(error))
1599                                 goto readpage_error;
1600                         if (!PageUptodate(page)) {
1601                                 if (page->mapping == NULL) {
1602                                         /*
1603                                          * invalidate_mapping_pages got it
1604                                          */
1605                                         unlock_page(page);
1606                                         page_cache_release(page);
1607                                         goto find_page;
1608                                 }
1609                                 unlock_page(page);
1610                                 shrink_readahead_size_eio(filp, ra);
1611                                 error = -EIO;
1612                                 goto readpage_error;
1613                         }
1614                         unlock_page(page);
1615                 }
1616
1617                 goto page_ok;
1618
1619 readpage_error:
1620                 /* UHHUH! A synchronous read error occurred. Report it */
1621                 desc->error = error;
1622                 page_cache_release(page);
1623                 goto out;
1624
1625 no_cached_page:
1626                 /*
1627                  * Ok, it wasn't cached, so we need to create a new
1628                  * page..
1629                  */
1630                 page = page_cache_alloc_cold(mapping);
1631                 if (!page) {
1632                         desc->error = -ENOMEM;
1633                         goto out;
1634                 }
1635                 error = add_to_page_cache_lru(page, mapping,
1636                                                 index, GFP_KERNEL);
1637                 if (error) {
1638                         page_cache_release(page);
1639                         if (error == -EEXIST)
1640                                 goto find_page;
1641                         desc->error = error;
1642                         goto out;
1643                 }
1644                 goto readpage;
1645         }
1646
1647 out:
1648         ra->prev_pos = prev_index;
1649         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1650         ra->prev_pos |= prev_offset;
1651
1652         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1653         file_accessed(filp);
1654 }
1655
1656 int file_read_actor(read_descriptor_t *desc, struct page *page,
1657                         unsigned long offset, unsigned long size)
1658 {
1659         char *kaddr;
1660         unsigned long left, count = desc->count;
1661
1662         if (size > count)
1663                 size = count;
1664
1665         /*
1666          * Faults on the destination of a read are common, so do it before
1667          * taking the kmap.
1668          */
1669         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1670                 kaddr = kmap_atomic(page);
1671                 left = __copy_to_user_inatomic(desc->arg.buf,
1672                                                 kaddr + offset, size);
1673                 kunmap_atomic(kaddr);
1674                 if (left == 0)
1675                         goto success;
1676         }
1677
1678         /* Do it the slow way */
1679         kaddr = kmap(page);
1680         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1681         kunmap(page);
1682
1683         if (left) {
1684                 size -= left;
1685                 desc->error = -EFAULT;
1686         }
1687 success:
1688         desc->count = count - size;
1689         desc->written += size;
1690         desc->arg.buf += size;
1691         return size;
1692 }
1693
1694 /*
1695  * Performs necessary checks before doing a write
1696  * @iov:        io vector request
1697  * @nr_segs:    number of segments in the iovec
1698  * @count:      number of bytes to write
1699  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1700  *
1701  * Adjust number of segments and amount of bytes to write (nr_segs should be
1702  * properly initialized first). Returns appropriate error code that caller
1703  * should return or zero in case that write should be allowed.
1704  */
1705 int generic_segment_checks(const struct iovec *iov,
1706                         unsigned long *nr_segs, size_t *count, int access_flags)
1707 {
1708         unsigned long   seg;
1709         size_t cnt = 0;
1710         for (seg = 0; seg < *nr_segs; seg++) {
1711                 const struct iovec *iv = &iov[seg];
1712
1713                 /*
1714                  * If any segment has a negative length, or the cumulative
1715                  * length ever wraps negative then return -EINVAL.
1716                  */
1717                 cnt += iv->iov_len;
1718                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1719                         return -EINVAL;
1720                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1721                         continue;
1722                 if (seg == 0)
1723                         return -EFAULT;
1724                 *nr_segs = seg;
1725                 cnt -= iv->iov_len;     /* This segment is no good */
1726                 break;
1727         }
1728         *count = cnt;
1729         return 0;
1730 }
1731 EXPORT_SYMBOL(generic_segment_checks);
1732
1733 /**
1734  * generic_file_aio_read - generic filesystem read routine
1735  * @iocb:       kernel I/O control block
1736  * @iov:        io vector request
1737  * @nr_segs:    number of segments in the iovec
1738  * @pos:        current file position
1739  *
1740  * This is the "read()" routine for all filesystems
1741  * that can use the page cache directly.
1742  */
1743 ssize_t
1744 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1745                 unsigned long nr_segs, loff_t pos)
1746 {
1747         struct file *filp = iocb->ki_filp;
1748         ssize_t retval;
1749         unsigned long seg = 0;
1750         size_t count;
1751         loff_t *ppos = &iocb->ki_pos;
1752
1753         count = 0;
1754         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1755         if (retval)
1756                 return retval;
1757
1758         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1759         if (filp->f_flags & O_DIRECT) {
1760                 loff_t size;
1761                 struct address_space *mapping;
1762                 struct inode *inode;
1763
1764                 mapping = filp->f_mapping;
1765                 inode = mapping->host;
1766                 if (!count)
1767                         goto out; /* skip atime */
1768                 size = i_size_read(inode);
1769                 retval = filemap_write_and_wait_range(mapping, pos,
1770                                         pos + iov_length(iov, nr_segs) - 1);
1771                 if (!retval) {
1772                         retval = mapping->a_ops->direct_IO(READ, iocb,
1773                                                            iov, pos, nr_segs);
1774                 }
1775                 if (retval > 0) {
1776                         *ppos = pos + retval;
1777                         count -= retval;
1778                 }
1779
1780                 /*
1781                  * Btrfs can have a short DIO read if we encounter
1782                  * compressed extents, so if there was an error, or if
1783                  * we've already read everything we wanted to, or if
1784                  * there was a short read because we hit EOF, go ahead
1785                  * and return.  Otherwise fallthrough to buffered io for
1786                  * the rest of the read.
1787                  */
1788                 if (retval < 0 || !count || *ppos >= size) {
1789                         file_accessed(filp);
1790                         goto out;
1791                 }
1792         }
1793
1794         count = retval;
1795         for (seg = 0; seg < nr_segs; seg++) {
1796                 read_descriptor_t desc;
1797                 loff_t offset = 0;
1798
1799                 /*
1800                  * If we did a short DIO read we need to skip the section of the
1801                  * iov that we've already read data into.
1802                  */
1803                 if (count) {
1804                         if (count > iov[seg].iov_len) {
1805                                 count -= iov[seg].iov_len;
1806                                 continue;
1807                         }
1808                         offset = count;
1809                         count = 0;
1810                 }
1811
1812                 desc.written = 0;
1813                 desc.arg.buf = iov[seg].iov_base + offset;
1814                 desc.count = iov[seg].iov_len - offset;
1815                 if (desc.count == 0)
1816                         continue;
1817                 desc.error = 0;
1818                 do_generic_file_read(filp, ppos, &desc);
1819                 retval += desc.written;
1820                 if (desc.error) {
1821                         retval = retval ?: desc.error;
1822                         break;
1823                 }
1824                 if (desc.count > 0)
1825                         break;
1826         }
1827 out:
1828         return retval;
1829 }
1830 EXPORT_SYMBOL(generic_file_aio_read);
1831
1832 #ifdef CONFIG_MMU
1833 /**
1834  * page_cache_read - adds requested page to the page cache if not already there
1835  * @file:       file to read
1836  * @offset:     page index
1837  *
1838  * This adds the requested page to the page cache if it isn't already there,
1839  * and schedules an I/O to read in its contents from disk.
1840  */
1841 static int page_cache_read(struct file *file, pgoff_t offset)
1842 {
1843         struct address_space *mapping = file->f_mapping;
1844         struct page *page; 
1845         int ret;
1846
1847         do {
1848                 page = page_cache_alloc_cold(mapping);
1849                 if (!page)
1850                         return -ENOMEM;
1851
1852                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1853                 if (ret == 0)
1854                         ret = mapping->a_ops->readpage(file, page);
1855                 else if (ret == -EEXIST)
1856                         ret = 0; /* losing race to add is OK */
1857
1858                 page_cache_release(page);
1859
1860         } while (ret == AOP_TRUNCATED_PAGE);
1861                 
1862         return ret;
1863 }
1864
1865 #define MMAP_LOTSAMISS  (100)
1866
1867 /*
1868  * Synchronous readahead happens when we don't even find
1869  * a page in the page cache at all.
1870  */
1871 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1872                                    struct file_ra_state *ra,
1873                                    struct file *file,
1874                                    pgoff_t offset)
1875 {
1876         unsigned long ra_pages;
1877         struct address_space *mapping = file->f_mapping;
1878
1879         /* If we don't want any read-ahead, don't bother */
1880         if (vma->vm_flags & VM_RAND_READ)
1881                 return;
1882         if (!ra->ra_pages)
1883                 return;
1884
1885         if (vma->vm_flags & VM_SEQ_READ) {
1886                 page_cache_sync_readahead(mapping, ra, file, offset,
1887                                           ra->ra_pages);
1888                 return;
1889         }
1890
1891         /* Avoid banging the cache line if not needed */
1892         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1893                 ra->mmap_miss++;
1894
1895         /*
1896          * Do we miss much more than hit in this file? If so,
1897          * stop bothering with read-ahead. It will only hurt.
1898          */
1899         if (ra->mmap_miss > MMAP_LOTSAMISS)
1900                 return;
1901
1902         /*
1903          * mmap read-around
1904          */
1905         ra_pages = max_sane_readahead(ra->ra_pages);
1906         ra->start = max_t(long, 0, offset - ra_pages / 2);
1907         ra->size = ra_pages;
1908         ra->async_size = ra_pages / 4;
1909         ra_submit(ra, mapping, file);
1910 }
1911
1912 /*
1913  * Asynchronous readahead happens when we find the page and PG_readahead,
1914  * so we want to possibly extend the readahead further..
1915  */
1916 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1917                                     struct file_ra_state *ra,
1918                                     struct file *file,
1919                                     struct page *page,
1920                                     pgoff_t offset)
1921 {
1922         struct address_space *mapping = file->f_mapping;
1923
1924         /* If we don't want any read-ahead, don't bother */
1925         if (vma->vm_flags & VM_RAND_READ)
1926                 return;
1927         if (ra->mmap_miss > 0)
1928                 ra->mmap_miss--;
1929         if (PageReadahead(page))
1930                 page_cache_async_readahead(mapping, ra, file,
1931                                            page, offset, ra->ra_pages);
1932 }
1933
1934 /**
1935  * filemap_fault - read in file data for page fault handling
1936  * @vma:        vma in which the fault was taken
1937  * @vmf:        struct vm_fault containing details of the fault
1938  *
1939  * filemap_fault() is invoked via the vma operations vector for a
1940  * mapped memory region to read in file data during a page fault.
1941  *
1942  * The goto's are kind of ugly, but this streamlines the normal case of having
1943  * it in the page cache, and handles the special cases reasonably without
1944  * having a lot of duplicated code.
1945  */
1946 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1947 {
1948         int error;
1949         struct file *file = vma->vm_file;
1950         struct address_space *mapping = file->f_mapping;
1951         struct file_ra_state *ra = &file->f_ra;
1952         struct inode *inode = mapping->host;
1953         pgoff_t offset = vmf->pgoff;
1954         struct page *page;
1955         pgoff_t size;
1956         int ret = 0;
1957
1958         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1959         if (offset >= size)
1960                 return VM_FAULT_SIGBUS;
1961
1962         /*
1963          * Do we have something in the page cache already?
1964          */
1965         page = find_get_page(mapping, offset);
1966         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1967                 /*
1968                  * We found the page, so try async readahead before
1969                  * waiting for the lock.
1970                  */
1971                 do_async_mmap_readahead(vma, ra, file, page, offset);
1972         } else if (!page) {
1973                 /* No page in the page cache at all */
1974                 do_sync_mmap_readahead(vma, ra, file, offset);
1975                 count_vm_event(PGMAJFAULT);
1976                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1977                 ret = VM_FAULT_MAJOR;
1978 retry_find:
1979                 page = find_get_page(mapping, offset);
1980                 if (!page)
1981                         goto no_cached_page;
1982         }
1983
1984         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1985                 page_cache_release(page);
1986                 return ret | VM_FAULT_RETRY;
1987         }
1988
1989         /* Did it get truncated? */
1990         if (unlikely(page->mapping != mapping)) {
1991                 unlock_page(page);
1992                 put_page(page);
1993                 goto retry_find;
1994         }
1995         VM_BUG_ON_PAGE(page->index != offset, page);
1996
1997         /*
1998          * We have a locked page in the page cache, now we need to check
1999          * that it's up-to-date. If not, it is going to be due to an error.
2000          */
2001         if (unlikely(!PageUptodate(page)))
2002                 goto page_not_uptodate;
2003
2004         /*
2005          * Found the page and have a reference on it.
2006          * We must recheck i_size under page lock.
2007          */
2008         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2009         if (unlikely(offset >= size)) {
2010                 unlock_page(page);
2011                 page_cache_release(page);
2012                 return VM_FAULT_SIGBUS;
2013         }
2014
2015         vmf->page = page;
2016         return ret | VM_FAULT_LOCKED;
2017
2018 no_cached_page:
2019         /*
2020          * We're only likely to ever get here if MADV_RANDOM is in
2021          * effect.
2022          */
2023         error = page_cache_read(file, offset);
2024
2025         /*
2026          * The page we want has now been added to the page cache.
2027          * In the unlikely event that someone removed it in the
2028          * meantime, we'll just come back here and read it again.
2029          */
2030         if (error >= 0)
2031                 goto retry_find;
2032
2033         /*
2034          * An error return from page_cache_read can result if the
2035          * system is low on memory, or a problem occurs while trying
2036          * to schedule I/O.
2037          */
2038         if (error == -ENOMEM)
2039                 return VM_FAULT_OOM;
2040         return VM_FAULT_SIGBUS;
2041
2042 page_not_uptodate:
2043         /*
2044          * Umm, take care of errors if the page isn't up-to-date.
2045          * Try to re-read it _once_. We do this synchronously,
2046          * because there really aren't any performance issues here
2047          * and we need to check for errors.
2048          */
2049         ClearPageError(page);
2050         error = mapping->a_ops->readpage(file, page);
2051         if (!error) {
2052                 wait_on_page_locked(page);
2053                 if (!PageUptodate(page))
2054                         error = -EIO;
2055         }
2056         page_cache_release(page);
2057
2058         if (!error || error == AOP_TRUNCATED_PAGE)
2059                 goto retry_find;
2060
2061         /* Things didn't work out. Return zero to tell the mm layer so. */
2062         shrink_readahead_size_eio(file, ra);
2063         return VM_FAULT_SIGBUS;
2064 }
2065 EXPORT_SYMBOL(filemap_fault);
2066
2067 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2068 {
2069         struct page *page = vmf->page;
2070         struct inode *inode = file_inode(vma->vm_file);
2071         int ret = VM_FAULT_LOCKED;
2072
2073         sb_start_pagefault(inode->i_sb);
2074         file_update_time(vma->vm_file);
2075         lock_page(page);
2076         if (page->mapping != inode->i_mapping) {
2077                 unlock_page(page);
2078                 ret = VM_FAULT_NOPAGE;
2079                 goto out;
2080         }
2081         /*
2082          * We mark the page dirty already here so that when freeze is in
2083          * progress, we are guaranteed that writeback during freezing will
2084          * see the dirty page and writeprotect it again.
2085          */
2086         set_page_dirty(page);
2087         wait_for_stable_page(page);
2088 out:
2089         sb_end_pagefault(inode->i_sb);
2090         return ret;
2091 }
2092 EXPORT_SYMBOL(filemap_page_mkwrite);
2093
2094 const struct vm_operations_struct generic_file_vm_ops = {
2095         .fault          = filemap_fault,
2096         .page_mkwrite   = filemap_page_mkwrite,
2097         .remap_pages    = generic_file_remap_pages,
2098 };
2099
2100 /* This is used for a general mmap of a disk file */
2101
2102 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2103 {
2104         struct address_space *mapping = file->f_mapping;
2105
2106         if (!mapping->a_ops->readpage)
2107                 return -ENOEXEC;
2108         file_accessed(file);
2109         vma->vm_ops = &generic_file_vm_ops;
2110         return 0;
2111 }
2112
2113 /*
2114  * This is for filesystems which do not implement ->writepage.
2115  */
2116 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2117 {
2118         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2119                 return -EINVAL;
2120         return generic_file_mmap(file, vma);
2121 }
2122 #else
2123 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2124 {
2125         return -ENOSYS;
2126 }
2127 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2128 {
2129         return -ENOSYS;
2130 }
2131 #endif /* CONFIG_MMU */
2132
2133 EXPORT_SYMBOL(generic_file_mmap);
2134 EXPORT_SYMBOL(generic_file_readonly_mmap);
2135
2136 static struct page *__read_cache_page(struct address_space *mapping,
2137                                 pgoff_t index,
2138                                 int (*filler)(void *, struct page *),
2139                                 void *data,
2140                                 gfp_t gfp)
2141 {
2142         struct page *page;
2143         int err;
2144 repeat:
2145         page = find_get_page(mapping, index);
2146         if (!page) {
2147                 page = __page_cache_alloc(gfp | __GFP_COLD);
2148                 if (!page)
2149                         return ERR_PTR(-ENOMEM);
2150                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2151                 if (unlikely(err)) {
2152                         page_cache_release(page);
2153                         if (err == -EEXIST)
2154                                 goto repeat;
2155                         /* Presumably ENOMEM for radix tree node */
2156                         return ERR_PTR(err);
2157                 }
2158                 err = filler(data, page);
2159                 if (err < 0) {
2160                         page_cache_release(page);
2161                         page = ERR_PTR(err);
2162                 }
2163         }
2164         return page;
2165 }
2166
2167 static struct page *do_read_cache_page(struct address_space *mapping,
2168                                 pgoff_t index,
2169                                 int (*filler)(void *, struct page *),
2170                                 void *data,
2171                                 gfp_t gfp)
2172
2173 {
2174         struct page *page;
2175         int err;
2176
2177 retry:
2178         page = __read_cache_page(mapping, index, filler, data, gfp);
2179         if (IS_ERR(page))
2180                 return page;
2181         if (PageUptodate(page))
2182                 goto out;
2183
2184         lock_page(page);
2185         if (!page->mapping) {
2186                 unlock_page(page);
2187                 page_cache_release(page);
2188                 goto retry;
2189         }
2190         if (PageUptodate(page)) {
2191                 unlock_page(page);
2192                 goto out;
2193         }
2194         err = filler(data, page);
2195         if (err < 0) {
2196                 page_cache_release(page);
2197                 return ERR_PTR(err);
2198         }
2199 out:
2200         mark_page_accessed(page);
2201         return page;
2202 }
2203
2204 /**
2205  * read_cache_page_async - read into page cache, fill it if needed
2206  * @mapping:    the page's address_space
2207  * @index:      the page index
2208  * @filler:     function to perform the read
2209  * @data:       first arg to filler(data, page) function, often left as NULL
2210  *
2211  * Same as read_cache_page, but don't wait for page to become unlocked
2212  * after submitting it to the filler.
2213  *
2214  * Read into the page cache. If a page already exists, and PageUptodate() is
2215  * not set, try to fill the page but don't wait for it to become unlocked.
2216  *
2217  * If the page does not get brought uptodate, return -EIO.
2218  */
2219 struct page *read_cache_page_async(struct address_space *mapping,
2220                                 pgoff_t index,
2221                                 int (*filler)(void *, struct page *),
2222                                 void *data)
2223 {
2224         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2225 }
2226 EXPORT_SYMBOL(read_cache_page_async);
2227
2228 static struct page *wait_on_page_read(struct page *page)
2229 {
2230         if (!IS_ERR(page)) {
2231                 wait_on_page_locked(page);
2232                 if (!PageUptodate(page)) {
2233                         page_cache_release(page);
2234                         page = ERR_PTR(-EIO);
2235                 }
2236         }
2237         return page;
2238 }
2239
2240 /**
2241  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2242  * @mapping:    the page's address_space
2243  * @index:      the page index
2244  * @gfp:        the page allocator flags to use if allocating
2245  *
2246  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2247  * any new page allocations done using the specified allocation flags.
2248  *
2249  * If the page does not get brought uptodate, return -EIO.
2250  */
2251 struct page *read_cache_page_gfp(struct address_space *mapping,
2252                                 pgoff_t index,
2253                                 gfp_t gfp)
2254 {
2255         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2256
2257         return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
2258 }
2259 EXPORT_SYMBOL(read_cache_page_gfp);
2260
2261 /**
2262  * read_cache_page - read into page cache, fill it if needed
2263  * @mapping:    the page's address_space
2264  * @index:      the page index
2265  * @filler:     function to perform the read
2266  * @data:       first arg to filler(data, page) function, often left as NULL
2267  *
2268  * Read into the page cache. If a page already exists, and PageUptodate() is
2269  * not set, try to fill the page then wait for it to become unlocked.
2270  *
2271  * If the page does not get brought uptodate, return -EIO.
2272  */
2273 struct page *read_cache_page(struct address_space *mapping,
2274                                 pgoff_t index,
2275                                 int (*filler)(void *, struct page *),
2276                                 void *data)
2277 {
2278         return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
2279 }
2280 EXPORT_SYMBOL(read_cache_page);
2281
2282 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2283                         const struct iovec *iov, size_t base, size_t bytes)
2284 {
2285         size_t copied = 0, left = 0;
2286
2287         while (bytes) {
2288                 char __user *buf = iov->iov_base + base;
2289                 int copy = min(bytes, iov->iov_len - base);
2290
2291                 base = 0;
2292                 left = __copy_from_user_inatomic(vaddr, buf, copy);
2293                 copied += copy;
2294                 bytes -= copy;
2295                 vaddr += copy;
2296                 iov++;
2297
2298                 if (unlikely(left))
2299                         break;
2300         }
2301         return copied - left;
2302 }
2303
2304 /*
2305  * Copy as much as we can into the page and return the number of bytes which
2306  * were successfully copied.  If a fault is encountered then return the number of
2307  * bytes which were copied.
2308  */
2309 size_t iov_iter_copy_from_user_atomic(struct page *page,
2310                 struct iov_iter *i, unsigned long offset, size_t bytes)
2311 {
2312         char *kaddr;
2313         size_t copied;
2314
2315         BUG_ON(!in_atomic());
2316         kaddr = kmap_atomic(page);
2317         if (likely(i->nr_segs == 1)) {
2318                 int left;
2319                 char __user *buf = i->iov->iov_base + i->iov_offset;
2320                 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2321                 copied = bytes - left;
2322         } else {
2323                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2324                                                 i->iov, i->iov_offset, bytes);
2325         }
2326         kunmap_atomic(kaddr);
2327
2328         return copied;
2329 }
2330 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2331
2332 /*
2333  * This has the same sideeffects and return value as
2334  * iov_iter_copy_from_user_atomic().
2335  * The difference is that it attempts to resolve faults.
2336  * Page must not be locked.
2337  */
2338 size_t iov_iter_copy_from_user(struct page *page,
2339                 struct iov_iter *i, unsigned long offset, size_t bytes)
2340 {
2341         char *kaddr;
2342         size_t copied;
2343
2344         kaddr = kmap(page);
2345         if (likely(i->nr_segs == 1)) {
2346                 int left;
2347                 char __user *buf = i->iov->iov_base + i->iov_offset;
2348                 left = __copy_from_user(kaddr + offset, buf, bytes);
2349                 copied = bytes - left;
2350         } else {
2351                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2352                                                 i->iov, i->iov_offset, bytes);
2353         }
2354         kunmap(page);
2355         return copied;
2356 }
2357 EXPORT_SYMBOL(iov_iter_copy_from_user);
2358
2359 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2360 {
2361         BUG_ON(i->count < bytes);
2362
2363         if (likely(i->nr_segs == 1)) {
2364                 i->iov_offset += bytes;
2365                 i->count -= bytes;
2366         } else {
2367                 const struct iovec *iov = i->iov;
2368                 size_t base = i->iov_offset;
2369                 unsigned long nr_segs = i->nr_segs;
2370
2371                 /*
2372                  * The !iov->iov_len check ensures we skip over unlikely
2373                  * zero-length segments (without overruning the iovec).
2374                  */
2375                 while (bytes || unlikely(i->count && !iov->iov_len)) {
2376                         int copy;
2377
2378                         copy = min(bytes, iov->iov_len - base);
2379                         BUG_ON(!i->count || i->count < copy);
2380                         i->count -= copy;
2381                         bytes -= copy;
2382                         base += copy;
2383                         if (iov->iov_len == base) {
2384                                 iov++;
2385                                 nr_segs--;
2386                                 base = 0;
2387                         }
2388                 }
2389                 i->iov = iov;
2390                 i->iov_offset = base;
2391                 i->nr_segs = nr_segs;
2392         }
2393 }
2394 EXPORT_SYMBOL(iov_iter_advance);
2395
2396 /*
2397  * Fault in the first iovec of the given iov_iter, to a maximum length
2398  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2399  * accessed (ie. because it is an invalid address).
2400  *
2401  * writev-intensive code may want this to prefault several iovecs -- that
2402  * would be possible (callers must not rely on the fact that _only_ the
2403  * first iovec will be faulted with the current implementation).
2404  */
2405 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2406 {
2407         char __user *buf = i->iov->iov_base + i->iov_offset;
2408         bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2409         return fault_in_pages_readable(buf, bytes);
2410 }
2411 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2412
2413 /*
2414  * Return the count of just the current iov_iter segment.
2415  */
2416 size_t iov_iter_single_seg_count(const struct iov_iter *i)
2417 {
2418         const struct iovec *iov = i->iov;
2419         if (i->nr_segs == 1)
2420                 return i->count;
2421         else
2422                 return min(i->count, iov->iov_len - i->iov_offset);
2423 }
2424 EXPORT_SYMBOL(iov_iter_single_seg_count);
2425
2426 /*
2427  * Performs necessary checks before doing a write
2428  *
2429  * Can adjust writing position or amount of bytes to write.
2430  * Returns appropriate error code that caller should return or
2431  * zero in case that write should be allowed.
2432  */
2433 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2434 {
2435         struct inode *inode = file->f_mapping->host;
2436         unsigned long limit = rlimit(RLIMIT_FSIZE);
2437
2438         if (unlikely(*pos < 0))
2439                 return -EINVAL;
2440
2441         if (!isblk) {
2442                 /* FIXME: this is for backwards compatibility with 2.4 */
2443                 if (file->f_flags & O_APPEND)
2444                         *pos = i_size_read(inode);
2445
2446                 if (limit != RLIM_INFINITY) {
2447                         if (*pos >= limit) {
2448                                 send_sig(SIGXFSZ, current, 0);
2449                                 return -EFBIG;
2450                         }
2451                         if (*count > limit - (typeof(limit))*pos) {
2452                                 *count = limit - (typeof(limit))*pos;
2453                         }
2454                 }
2455         }
2456
2457         /*
2458          * LFS rule
2459          */
2460         if (unlikely(*pos + *count > MAX_NON_LFS &&
2461                                 !(file->f_flags & O_LARGEFILE))) {
2462                 if (*pos >= MAX_NON_LFS) {
2463                         return -EFBIG;
2464                 }
2465                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2466                         *count = MAX_NON_LFS - (unsigned long)*pos;
2467                 }
2468         }
2469
2470         /*
2471          * Are we about to exceed the fs block limit ?
2472          *
2473          * If we have written data it becomes a short write.  If we have
2474          * exceeded without writing data we send a signal and return EFBIG.
2475          * Linus frestrict idea will clean these up nicely..
2476          */
2477         if (likely(!isblk)) {
2478                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2479                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2480                                 return -EFBIG;
2481                         }
2482                         /* zero-length writes at ->s_maxbytes are OK */
2483                 }
2484
2485                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2486                         *count = inode->i_sb->s_maxbytes - *pos;
2487         } else {
2488 #ifdef CONFIG_BLOCK
2489                 loff_t isize;
2490                 if (bdev_read_only(I_BDEV(inode)))
2491                         return -EPERM;
2492                 isize = i_size_read(inode);
2493                 if (*pos >= isize) {
2494                         if (*count || *pos > isize)
2495                                 return -ENOSPC;
2496                 }
2497
2498                 if (*pos + *count > isize)
2499                         *count = isize - *pos;
2500 #else
2501                 return -EPERM;
2502 #endif
2503         }
2504         return 0;
2505 }
2506 EXPORT_SYMBOL(generic_write_checks);
2507
2508 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2509                                 loff_t pos, unsigned len, unsigned flags,
2510                                 struct page **pagep, void **fsdata)
2511 {
2512         const struct address_space_operations *aops = mapping->a_ops;
2513
2514         return aops->write_begin(file, mapping, pos, len, flags,
2515                                                         pagep, fsdata);
2516 }
2517 EXPORT_SYMBOL(pagecache_write_begin);
2518
2519 int pagecache_write_end(struct file *file, struct address_space *mapping,
2520                                 loff_t pos, unsigned len, unsigned copied,
2521                                 struct page *page, void *fsdata)
2522 {
2523         const struct address_space_operations *aops = mapping->a_ops;
2524
2525         mark_page_accessed(page);
2526         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2527 }
2528 EXPORT_SYMBOL(pagecache_write_end);
2529
2530 ssize_t
2531 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2532                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2533                 size_t count, size_t ocount)
2534 {
2535         struct file     *file = iocb->ki_filp;
2536         struct address_space *mapping = file->f_mapping;
2537         struct inode    *inode = mapping->host;
2538         ssize_t         written;
2539         size_t          write_len;
2540         pgoff_t         end;
2541
2542         if (count != ocount)
2543                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2544
2545         write_len = iov_length(iov, *nr_segs);
2546         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2547
2548         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2549         if (written)
2550                 goto out;
2551
2552         /*
2553          * After a write we want buffered reads to be sure to go to disk to get
2554          * the new data.  We invalidate clean cached page from the region we're
2555          * about to write.  We do this *before* the write so that we can return
2556          * without clobbering -EIOCBQUEUED from ->direct_IO().
2557          */
2558         if (mapping->nrpages) {
2559                 written = invalidate_inode_pages2_range(mapping,
2560                                         pos >> PAGE_CACHE_SHIFT, end);
2561                 /*
2562                  * If a page can not be invalidated, return 0 to fall back
2563                  * to buffered write.
2564                  */
2565                 if (written) {
2566                         if (written == -EBUSY)
2567                                 return 0;
2568                         goto out;
2569                 }
2570         }
2571
2572         written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2573
2574         /*
2575          * Finally, try again to invalidate clean pages which might have been
2576          * cached by non-direct readahead, or faulted in by get_user_pages()
2577          * if the source of the write was an mmap'ed region of the file
2578          * we're writing.  Either one is a pretty crazy thing to do,
2579          * so we don't support it 100%.  If this invalidation
2580          * fails, tough, the write still worked...
2581          */
2582         if (mapping->nrpages) {
2583                 invalidate_inode_pages2_range(mapping,
2584                                               pos >> PAGE_CACHE_SHIFT, end);
2585         }
2586
2587         if (written > 0) {
2588                 pos += written;
2589                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2590                         i_size_write(inode, pos);
2591                         mark_inode_dirty(inode);
2592                 }
2593                 *ppos = pos;
2594         }
2595 out:
2596         return written;
2597 }
2598 EXPORT_SYMBOL(generic_file_direct_write);
2599
2600 /*
2601  * Find or create a page at the given pagecache position. Return the locked
2602  * page. This function is specifically for buffered writes.
2603  */
2604 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2605                                         pgoff_t index, unsigned flags)
2606 {
2607         int status;
2608         gfp_t gfp_mask;
2609         struct page *page;
2610         gfp_t gfp_notmask = 0;
2611
2612         gfp_mask = mapping_gfp_mask(mapping);
2613         if (mapping_cap_account_dirty(mapping))
2614                 gfp_mask |= __GFP_WRITE;
2615         if (flags & AOP_FLAG_NOFS)
2616                 gfp_notmask = __GFP_FS;
2617 repeat:
2618         page = find_lock_page(mapping, index);
2619         if (page)
2620                 goto found;
2621
2622         page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2623         if (!page)
2624                 return NULL;
2625         status = add_to_page_cache_lru(page, mapping, index,
2626                                                 GFP_KERNEL & ~gfp_notmask);
2627         if (unlikely(status)) {
2628                 page_cache_release(page);
2629                 if (status == -EEXIST)
2630                         goto repeat;
2631                 return NULL;
2632         }
2633 found:
2634         wait_for_stable_page(page);
2635         return page;
2636 }
2637 EXPORT_SYMBOL(grab_cache_page_write_begin);
2638
2639 static ssize_t generic_perform_write(struct file *file,
2640                                 struct iov_iter *i, loff_t pos)
2641 {
2642         struct address_space *mapping = file->f_mapping;
2643         const struct address_space_operations *a_ops = mapping->a_ops;
2644         long status = 0;
2645         ssize_t written = 0;
2646         unsigned int flags = 0;
2647
2648         /*
2649          * Copies from kernel address space cannot fail (NFSD is a big user).
2650          */
2651         if (segment_eq(get_fs(), KERNEL_DS))
2652                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2653
2654         do {
2655                 struct page *page;
2656                 unsigned long offset;   /* Offset into pagecache page */
2657                 unsigned long bytes;    /* Bytes to write to page */
2658                 size_t copied;          /* Bytes copied from user */
2659                 void *fsdata;
2660
2661                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2662                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2663                                                 iov_iter_count(i));
2664
2665 again:
2666                 /*
2667                  * Bring in the user page that we will copy from _first_.
2668                  * Otherwise there's a nasty deadlock on copying from the
2669                  * same page as we're writing to, without it being marked
2670                  * up-to-date.
2671                  *
2672                  * Not only is this an optimisation, but it is also required
2673                  * to check that the address is actually valid, when atomic
2674                  * usercopies are used, below.
2675                  */
2676                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2677                         status = -EFAULT;
2678                         break;
2679                 }
2680
2681                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2682                                                 &page, &fsdata);
2683                 if (unlikely(status))
2684                         break;
2685
2686                 if (mapping_writably_mapped(mapping))
2687                         flush_dcache_page(page);
2688
2689                 pagefault_disable();
2690                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2691                 pagefault_enable();
2692                 flush_dcache_page(page);
2693
2694                 mark_page_accessed(page);
2695                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2696                                                 page, fsdata);
2697                 if (unlikely(status < 0))
2698                         break;
2699                 copied = status;
2700
2701                 cond_resched();
2702
2703                 iov_iter_advance(i, copied);
2704                 if (unlikely(copied == 0)) {
2705                         /*
2706                          * If we were unable to copy any data at all, we must
2707                          * fall back to a single segment length write.
2708                          *
2709                          * If we didn't fallback here, we could livelock
2710                          * because not all segments in the iov can be copied at
2711                          * once without a pagefault.
2712                          */
2713                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2714                                                 iov_iter_single_seg_count(i));
2715                         goto again;
2716                 }
2717                 pos += copied;
2718                 written += copied;
2719
2720                 balance_dirty_pages_ratelimited(mapping);
2721                 if (fatal_signal_pending(current)) {
2722                         status = -EINTR;
2723                         break;
2724                 }
2725         } while (iov_iter_count(i));
2726
2727         return written ? written : status;
2728 }
2729
2730 ssize_t
2731 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2732                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2733                 size_t count, ssize_t written)
2734 {
2735         struct file *file = iocb->ki_filp;
2736         ssize_t status;
2737         struct iov_iter i;
2738
2739         iov_iter_init(&i, iov, nr_segs, count, written);
2740         status = generic_perform_write(file, &i, pos);
2741
2742         if (likely(status >= 0)) {
2743                 written += status;
2744                 *ppos = pos + status;
2745         }
2746         
2747         return written ? written : status;
2748 }
2749 EXPORT_SYMBOL(generic_file_buffered_write);
2750
2751 /**
2752  * __generic_file_aio_write - write data to a file
2753  * @iocb:       IO state structure (file, offset, etc.)
2754  * @iov:        vector with data to write
2755  * @nr_segs:    number of segments in the vector
2756  * @ppos:       position where to write
2757  *
2758  * This function does all the work needed for actually writing data to a
2759  * file. It does all basic checks, removes SUID from the file, updates
2760  * modification times and calls proper subroutines depending on whether we
2761  * do direct IO or a standard buffered write.
2762  *
2763  * It expects i_mutex to be grabbed unless we work on a block device or similar
2764  * object which does not need locking at all.
2765  *
2766  * This function does *not* take care of syncing data in case of O_SYNC write.
2767  * A caller has to handle it. This is mainly due to the fact that we want to
2768  * avoid syncing under i_mutex.
2769  */
2770 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2771                                  unsigned long nr_segs, loff_t *ppos)
2772 {
2773         struct file *file = iocb->ki_filp;
2774         struct address_space * mapping = file->f_mapping;
2775         size_t ocount;          /* original count */
2776         size_t count;           /* after file limit checks */
2777         struct inode    *inode = mapping->host;
2778         loff_t          pos;
2779         ssize_t         written;
2780         ssize_t         err;
2781
2782         ocount = 0;
2783         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2784         if (err)
2785                 return err;
2786
2787         count = ocount;
2788         pos = *ppos;
2789
2790         /* We can write back this queue in page reclaim */
2791         current->backing_dev_info = mapping->backing_dev_info;
2792         written = 0;
2793
2794         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2795         if (err)
2796                 goto out;
2797
2798         if (count == 0)
2799                 goto out;
2800
2801         err = file_remove_suid(file);
2802         if (err)
2803                 goto out;
2804
2805         err = file_update_time(file);
2806         if (err)
2807                 goto out;
2808
2809         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2810         if (unlikely(file->f_flags & O_DIRECT)) {
2811                 loff_t endbyte;
2812                 ssize_t written_buffered;
2813
2814                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2815                                                         ppos, count, ocount);
2816                 if (written < 0 || written == count)
2817                         goto out;
2818                 /*
2819                  * direct-io write to a hole: fall through to buffered I/O
2820                  * for completing the rest of the request.
2821                  */
2822                 pos += written;
2823                 count -= written;
2824                 written_buffered = generic_file_buffered_write(iocb, iov,
2825                                                 nr_segs, pos, ppos, count,
2826                                                 written);
2827                 /*
2828                  * If generic_file_buffered_write() retuned a synchronous error
2829                  * then we want to return the number of bytes which were
2830                  * direct-written, or the error code if that was zero.  Note
2831                  * that this differs from normal direct-io semantics, which
2832                  * will return -EFOO even if some bytes were written.
2833                  */
2834                 if (written_buffered < 0) {
2835                         err = written_buffered;
2836                         goto out;
2837                 }
2838
2839                 /*
2840                  * We need to ensure that the page cache pages are written to
2841                  * disk and invalidated to preserve the expected O_DIRECT
2842                  * semantics.
2843                  */
2844                 endbyte = pos + written_buffered - written - 1;
2845                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2846                 if (err == 0) {
2847                         written = written_buffered;
2848                         invalidate_mapping_pages(mapping,
2849                                                  pos >> PAGE_CACHE_SHIFT,
2850                                                  endbyte >> PAGE_CACHE_SHIFT);
2851                 } else {
2852                         /*
2853                          * We don't know how much we wrote, so just return
2854                          * the number of bytes which were direct-written
2855                          */
2856                 }
2857         } else {
2858                 written = generic_file_buffered_write(iocb, iov, nr_segs,
2859                                 pos, ppos, count, written);
2860         }
2861 out:
2862         current->backing_dev_info = NULL;
2863         return written ? written : err;
2864 }
2865 EXPORT_SYMBOL(__generic_file_aio_write);
2866
2867 /**
2868  * generic_file_aio_write - write data to a file
2869  * @iocb:       IO state structure
2870  * @iov:        vector with data to write
2871  * @nr_segs:    number of segments in the vector
2872  * @pos:        position in file where to write
2873  *
2874  * This is a wrapper around __generic_file_aio_write() to be used by most
2875  * filesystems. It takes care of syncing the file in case of O_SYNC file
2876  * and acquires i_mutex as needed.
2877  */
2878 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2879                 unsigned long nr_segs, loff_t pos)
2880 {
2881         struct file *file = iocb->ki_filp;
2882         struct inode *inode = file->f_mapping->host;
2883         ssize_t ret;
2884
2885         BUG_ON(iocb->ki_pos != pos);
2886
2887         mutex_lock(&inode->i_mutex);
2888         ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2889         mutex_unlock(&inode->i_mutex);
2890
2891         if (ret > 0) {
2892                 ssize_t err;
2893
2894                 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2895                 if (err < 0)
2896                         ret = err;
2897         }
2898         return ret;
2899 }
2900 EXPORT_SYMBOL(generic_file_aio_write);
2901
2902 /**
2903  * try_to_release_page() - release old fs-specific metadata on a page
2904  *
2905  * @page: the page which the kernel is trying to free
2906  * @gfp_mask: memory allocation flags (and I/O mode)
2907  *
2908  * The address_space is to try to release any data against the page
2909  * (presumably at page->private).  If the release was successful, return `1'.
2910  * Otherwise return zero.
2911  *
2912  * This may also be called if PG_fscache is set on a page, indicating that the
2913  * page is known to the local caching routines.
2914  *
2915  * The @gfp_mask argument specifies whether I/O may be performed to release
2916  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2917  *
2918  */
2919 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2920 {
2921         struct address_space * const mapping = page->mapping;
2922
2923         BUG_ON(!PageLocked(page));
2924         if (PageWriteback(page))
2925                 return 0;
2926
2927         if (mapping && mapping->a_ops->releasepage)
2928                 return mapping->a_ops->releasepage(page, gfp_mask);
2929         return try_to_free_buffers(page);
2930 }
2931
2932 EXPORT_SYMBOL(try_to_release_page);