Merge branch 'akpm' (patches from Andrew)
[cascardo/linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem              (truncate_pagecache)
66  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock             (exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page               (access_process_vm)
80  *
81  *  ->i_mutex                   (generic_perform_write)
82  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
99  *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
107  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112
113 static void page_cache_tree_delete(struct address_space *mapping,
114                                    struct page *page, void *shadow)
115 {
116         struct radix_tree_node *node;
117         int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
118
119         VM_BUG_ON_PAGE(!PageLocked(page), page);
120         VM_BUG_ON_PAGE(PageTail(page), page);
121         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
122
123         if (shadow) {
124                 mapping->nrexceptional += nr;
125                 /*
126                  * Make sure the nrexceptional update is committed before
127                  * the nrpages update so that final truncate racing
128                  * with reclaim does not see both counters 0 at the
129                  * same time and miss a shadow entry.
130                  */
131                 smp_wmb();
132         }
133         mapping->nrpages -= nr;
134
135         for (i = 0; i < nr; i++) {
136                 node = radix_tree_replace_clear_tags(&mapping->page_tree,
137                                 page->index + i, shadow);
138                 if (!node) {
139                         VM_BUG_ON_PAGE(nr != 1, page);
140                         return;
141                 }
142
143                 workingset_node_pages_dec(node);
144                 if (shadow)
145                         workingset_node_shadows_inc(node);
146                 else
147                         if (__radix_tree_delete_node(&mapping->page_tree, node))
148                                 continue;
149
150                 /*
151                  * Track node that only contains shadow entries. DAX mappings
152                  * contain no shadow entries and may contain other exceptional
153                  * entries so skip those.
154                  *
155                  * Avoid acquiring the list_lru lock if already tracked.
156                  * The list_empty() test is safe as node->private_list is
157                  * protected by mapping->tree_lock.
158                  */
159                 if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
160                                 list_empty(&node->private_list)) {
161                         node->private_data = mapping;
162                         list_lru_add(&workingset_shadow_nodes,
163                                         &node->private_list);
164                 }
165         }
166 }
167
168 /*
169  * Delete a page from the page cache and free it. Caller has to make
170  * sure the page is locked and that nobody else uses it - or that usage
171  * is safe.  The caller must hold the mapping's tree_lock.
172  */
173 void __delete_from_page_cache(struct page *page, void *shadow)
174 {
175         struct address_space *mapping = page->mapping;
176         int nr = hpage_nr_pages(page);
177
178         trace_mm_filemap_delete_from_page_cache(page);
179         /*
180          * if we're uptodate, flush out into the cleancache, otherwise
181          * invalidate any existing cleancache entries.  We can't leave
182          * stale data around in the cleancache once our page is gone
183          */
184         if (PageUptodate(page) && PageMappedToDisk(page))
185                 cleancache_put_page(page);
186         else
187                 cleancache_invalidate_page(mapping, page);
188
189         VM_BUG_ON_PAGE(PageTail(page), page);
190         VM_BUG_ON_PAGE(page_mapped(page), page);
191         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
192                 int mapcount;
193
194                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
195                          current->comm, page_to_pfn(page));
196                 dump_page(page, "still mapped when deleted");
197                 dump_stack();
198                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
199
200                 mapcount = page_mapcount(page);
201                 if (mapping_exiting(mapping) &&
202                     page_count(page) >= mapcount + 2) {
203                         /*
204                          * All vmas have already been torn down, so it's
205                          * a good bet that actually the page is unmapped,
206                          * and we'd prefer not to leak it: if we're wrong,
207                          * some other bad page check should catch it later.
208                          */
209                         page_mapcount_reset(page);
210                         page_ref_sub(page, mapcount);
211                 }
212         }
213
214         page_cache_tree_delete(mapping, page, shadow);
215
216         page->mapping = NULL;
217         /* Leave page->index set: truncation lookup relies upon it */
218
219         /* hugetlb pages do not participate in page cache accounting. */
220         if (!PageHuge(page))
221                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
222         if (PageSwapBacked(page)) {
223                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
224                 if (PageTransHuge(page))
225                         __dec_node_page_state(page, NR_SHMEM_THPS);
226         } else {
227                 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
228         }
229
230         /*
231          * At this point page must be either written or cleaned by truncate.
232          * Dirty page here signals a bug and loss of unwritten data.
233          *
234          * This fixes dirty accounting after removing the page entirely but
235          * leaves PageDirty set: it has no effect for truncated page and
236          * anyway will be cleared before returning page into buddy allocator.
237          */
238         if (WARN_ON_ONCE(PageDirty(page)))
239                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
240 }
241
242 /**
243  * delete_from_page_cache - delete page from page cache
244  * @page: the page which the kernel is trying to remove from page cache
245  *
246  * This must be called only on pages that have been verified to be in the page
247  * cache and locked.  It will never put the page into the free list, the caller
248  * has a reference on the page.
249  */
250 void delete_from_page_cache(struct page *page)
251 {
252         struct address_space *mapping = page_mapping(page);
253         unsigned long flags;
254         void (*freepage)(struct page *);
255
256         BUG_ON(!PageLocked(page));
257
258         freepage = mapping->a_ops->freepage;
259
260         spin_lock_irqsave(&mapping->tree_lock, flags);
261         __delete_from_page_cache(page, NULL);
262         spin_unlock_irqrestore(&mapping->tree_lock, flags);
263
264         if (freepage)
265                 freepage(page);
266
267         if (PageTransHuge(page) && !PageHuge(page)) {
268                 page_ref_sub(page, HPAGE_PMD_NR);
269                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
270         } else {
271                 put_page(page);
272         }
273 }
274 EXPORT_SYMBOL(delete_from_page_cache);
275
276 static int filemap_check_errors(struct address_space *mapping)
277 {
278         int ret = 0;
279         /* Check for outstanding write errors */
280         if (test_bit(AS_ENOSPC, &mapping->flags) &&
281             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
282                 ret = -ENOSPC;
283         if (test_bit(AS_EIO, &mapping->flags) &&
284             test_and_clear_bit(AS_EIO, &mapping->flags))
285                 ret = -EIO;
286         return ret;
287 }
288
289 /**
290  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
291  * @mapping:    address space structure to write
292  * @start:      offset in bytes where the range starts
293  * @end:        offset in bytes where the range ends (inclusive)
294  * @sync_mode:  enable synchronous operation
295  *
296  * Start writeback against all of a mapping's dirty pages that lie
297  * within the byte offsets <start, end> inclusive.
298  *
299  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
300  * opposed to a regular memory cleansing writeback.  The difference between
301  * these two operations is that if a dirty page/buffer is encountered, it must
302  * be waited upon, and not just skipped over.
303  */
304 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
305                                 loff_t end, int sync_mode)
306 {
307         int ret;
308         struct writeback_control wbc = {
309                 .sync_mode = sync_mode,
310                 .nr_to_write = LONG_MAX,
311                 .range_start = start,
312                 .range_end = end,
313         };
314
315         if (!mapping_cap_writeback_dirty(mapping))
316                 return 0;
317
318         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
319         ret = do_writepages(mapping, &wbc);
320         wbc_detach_inode(&wbc);
321         return ret;
322 }
323
324 static inline int __filemap_fdatawrite(struct address_space *mapping,
325         int sync_mode)
326 {
327         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
328 }
329
330 int filemap_fdatawrite(struct address_space *mapping)
331 {
332         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
333 }
334 EXPORT_SYMBOL(filemap_fdatawrite);
335
336 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
337                                 loff_t end)
338 {
339         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
340 }
341 EXPORT_SYMBOL(filemap_fdatawrite_range);
342
343 /**
344  * filemap_flush - mostly a non-blocking flush
345  * @mapping:    target address_space
346  *
347  * This is a mostly non-blocking flush.  Not suitable for data-integrity
348  * purposes - I/O may not be started against all dirty pages.
349  */
350 int filemap_flush(struct address_space *mapping)
351 {
352         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
353 }
354 EXPORT_SYMBOL(filemap_flush);
355
356 static int __filemap_fdatawait_range(struct address_space *mapping,
357                                      loff_t start_byte, loff_t end_byte)
358 {
359         pgoff_t index = start_byte >> PAGE_SHIFT;
360         pgoff_t end = end_byte >> PAGE_SHIFT;
361         struct pagevec pvec;
362         int nr_pages;
363         int ret = 0;
364
365         if (end_byte < start_byte)
366                 goto out;
367
368         pagevec_init(&pvec, 0);
369         while ((index <= end) &&
370                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
371                         PAGECACHE_TAG_WRITEBACK,
372                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
373                 unsigned i;
374
375                 for (i = 0; i < nr_pages; i++) {
376                         struct page *page = pvec.pages[i];
377
378                         /* until radix tree lookup accepts end_index */
379                         if (page->index > end)
380                                 continue;
381
382                         wait_on_page_writeback(page);
383                         if (TestClearPageError(page))
384                                 ret = -EIO;
385                 }
386                 pagevec_release(&pvec);
387                 cond_resched();
388         }
389 out:
390         return ret;
391 }
392
393 /**
394  * filemap_fdatawait_range - wait for writeback to complete
395  * @mapping:            address space structure to wait for
396  * @start_byte:         offset in bytes where the range starts
397  * @end_byte:           offset in bytes where the range ends (inclusive)
398  *
399  * Walk the list of under-writeback pages of the given address space
400  * in the given range and wait for all of them.  Check error status of
401  * the address space and return it.
402  *
403  * Since the error status of the address space is cleared by this function,
404  * callers are responsible for checking the return value and handling and/or
405  * reporting the error.
406  */
407 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
408                             loff_t end_byte)
409 {
410         int ret, ret2;
411
412         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
413         ret2 = filemap_check_errors(mapping);
414         if (!ret)
415                 ret = ret2;
416
417         return ret;
418 }
419 EXPORT_SYMBOL(filemap_fdatawait_range);
420
421 /**
422  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
423  * @mapping: address space structure to wait for
424  *
425  * Walk the list of under-writeback pages of the given address space
426  * and wait for all of them.  Unlike filemap_fdatawait(), this function
427  * does not clear error status of the address space.
428  *
429  * Use this function if callers don't handle errors themselves.  Expected
430  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
431  * fsfreeze(8)
432  */
433 void filemap_fdatawait_keep_errors(struct address_space *mapping)
434 {
435         loff_t i_size = i_size_read(mapping->host);
436
437         if (i_size == 0)
438                 return;
439
440         __filemap_fdatawait_range(mapping, 0, i_size - 1);
441 }
442
443 /**
444  * filemap_fdatawait - wait for all under-writeback pages to complete
445  * @mapping: address space structure to wait for
446  *
447  * Walk the list of under-writeback pages of the given address space
448  * and wait for all of them.  Check error status of the address space
449  * and return it.
450  *
451  * Since the error status of the address space is cleared by this function,
452  * callers are responsible for checking the return value and handling and/or
453  * reporting the error.
454  */
455 int filemap_fdatawait(struct address_space *mapping)
456 {
457         loff_t i_size = i_size_read(mapping->host);
458
459         if (i_size == 0)
460                 return 0;
461
462         return filemap_fdatawait_range(mapping, 0, i_size - 1);
463 }
464 EXPORT_SYMBOL(filemap_fdatawait);
465
466 int filemap_write_and_wait(struct address_space *mapping)
467 {
468         int err = 0;
469
470         if ((!dax_mapping(mapping) && mapping->nrpages) ||
471             (dax_mapping(mapping) && mapping->nrexceptional)) {
472                 err = filemap_fdatawrite(mapping);
473                 /*
474                  * Even if the above returned error, the pages may be
475                  * written partially (e.g. -ENOSPC), so we wait for it.
476                  * But the -EIO is special case, it may indicate the worst
477                  * thing (e.g. bug) happened, so we avoid waiting for it.
478                  */
479                 if (err != -EIO) {
480                         int err2 = filemap_fdatawait(mapping);
481                         if (!err)
482                                 err = err2;
483                 }
484         } else {
485                 err = filemap_check_errors(mapping);
486         }
487         return err;
488 }
489 EXPORT_SYMBOL(filemap_write_and_wait);
490
491 /**
492  * filemap_write_and_wait_range - write out & wait on a file range
493  * @mapping:    the address_space for the pages
494  * @lstart:     offset in bytes where the range starts
495  * @lend:       offset in bytes where the range ends (inclusive)
496  *
497  * Write out and wait upon file offsets lstart->lend, inclusive.
498  *
499  * Note that `lend' is inclusive (describes the last byte to be written) so
500  * that this function can be used to write to the very end-of-file (end = -1).
501  */
502 int filemap_write_and_wait_range(struct address_space *mapping,
503                                  loff_t lstart, loff_t lend)
504 {
505         int err = 0;
506
507         if ((!dax_mapping(mapping) && mapping->nrpages) ||
508             (dax_mapping(mapping) && mapping->nrexceptional)) {
509                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
510                                                  WB_SYNC_ALL);
511                 /* See comment of filemap_write_and_wait() */
512                 if (err != -EIO) {
513                         int err2 = filemap_fdatawait_range(mapping,
514                                                 lstart, lend);
515                         if (!err)
516                                 err = err2;
517                 }
518         } else {
519                 err = filemap_check_errors(mapping);
520         }
521         return err;
522 }
523 EXPORT_SYMBOL(filemap_write_and_wait_range);
524
525 /**
526  * replace_page_cache_page - replace a pagecache page with a new one
527  * @old:        page to be replaced
528  * @new:        page to replace with
529  * @gfp_mask:   allocation mode
530  *
531  * This function replaces a page in the pagecache with a new one.  On
532  * success it acquires the pagecache reference for the new page and
533  * drops it for the old page.  Both the old and new pages must be
534  * locked.  This function does not add the new page to the LRU, the
535  * caller must do that.
536  *
537  * The remove + add is atomic.  The only way this function can fail is
538  * memory allocation failure.
539  */
540 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
541 {
542         int error;
543
544         VM_BUG_ON_PAGE(!PageLocked(old), old);
545         VM_BUG_ON_PAGE(!PageLocked(new), new);
546         VM_BUG_ON_PAGE(new->mapping, new);
547
548         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
549         if (!error) {
550                 struct address_space *mapping = old->mapping;
551                 void (*freepage)(struct page *);
552                 unsigned long flags;
553
554                 pgoff_t offset = old->index;
555                 freepage = mapping->a_ops->freepage;
556
557                 get_page(new);
558                 new->mapping = mapping;
559                 new->index = offset;
560
561                 spin_lock_irqsave(&mapping->tree_lock, flags);
562                 __delete_from_page_cache(old, NULL);
563                 error = radix_tree_insert(&mapping->page_tree, offset, new);
564                 BUG_ON(error);
565                 mapping->nrpages++;
566
567                 /*
568                  * hugetlb pages do not participate in page cache accounting.
569                  */
570                 if (!PageHuge(new))
571                         __inc_node_page_state(new, NR_FILE_PAGES);
572                 if (PageSwapBacked(new))
573                         __inc_node_page_state(new, NR_SHMEM);
574                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
575                 mem_cgroup_migrate(old, new);
576                 radix_tree_preload_end();
577                 if (freepage)
578                         freepage(old);
579                 put_page(old);
580         }
581
582         return error;
583 }
584 EXPORT_SYMBOL_GPL(replace_page_cache_page);
585
586 static int page_cache_tree_insert(struct address_space *mapping,
587                                   struct page *page, void **shadowp)
588 {
589         struct radix_tree_node *node;
590         void **slot;
591         int error;
592
593         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
594                                     &node, &slot);
595         if (error)
596                 return error;
597         if (*slot) {
598                 void *p;
599
600                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
601                 if (!radix_tree_exceptional_entry(p))
602                         return -EEXIST;
603
604                 mapping->nrexceptional--;
605                 if (!dax_mapping(mapping)) {
606                         if (shadowp)
607                                 *shadowp = p;
608                         if (node)
609                                 workingset_node_shadows_dec(node);
610                 } else {
611                         /* DAX can replace empty locked entry with a hole */
612                         WARN_ON_ONCE(p !=
613                                 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
614                                          RADIX_DAX_ENTRY_LOCK));
615                         /* DAX accounts exceptional entries as normal pages */
616                         if (node)
617                                 workingset_node_pages_dec(node);
618                         /* Wakeup waiters for exceptional entry lock */
619                         dax_wake_mapping_entry_waiter(mapping, page->index,
620                                                       false);
621                 }
622         }
623         radix_tree_replace_slot(slot, page);
624         mapping->nrpages++;
625         if (node) {
626                 workingset_node_pages_inc(node);
627                 /*
628                  * Don't track node that contains actual pages.
629                  *
630                  * Avoid acquiring the list_lru lock if already
631                  * untracked.  The list_empty() test is safe as
632                  * node->private_list is protected by
633                  * mapping->tree_lock.
634                  */
635                 if (!list_empty(&node->private_list))
636                         list_lru_del(&workingset_shadow_nodes,
637                                      &node->private_list);
638         }
639         return 0;
640 }
641
642 static int __add_to_page_cache_locked(struct page *page,
643                                       struct address_space *mapping,
644                                       pgoff_t offset, gfp_t gfp_mask,
645                                       void **shadowp)
646 {
647         int huge = PageHuge(page);
648         struct mem_cgroup *memcg;
649         int error;
650
651         VM_BUG_ON_PAGE(!PageLocked(page), page);
652         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
653
654         if (!huge) {
655                 error = mem_cgroup_try_charge(page, current->mm,
656                                               gfp_mask, &memcg, false);
657                 if (error)
658                         return error;
659         }
660
661         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
662         if (error) {
663                 if (!huge)
664                         mem_cgroup_cancel_charge(page, memcg, false);
665                 return error;
666         }
667
668         get_page(page);
669         page->mapping = mapping;
670         page->index = offset;
671
672         spin_lock_irq(&mapping->tree_lock);
673         error = page_cache_tree_insert(mapping, page, shadowp);
674         radix_tree_preload_end();
675         if (unlikely(error))
676                 goto err_insert;
677
678         /* hugetlb pages do not participate in page cache accounting. */
679         if (!huge)
680                 __inc_node_page_state(page, NR_FILE_PAGES);
681         spin_unlock_irq(&mapping->tree_lock);
682         if (!huge)
683                 mem_cgroup_commit_charge(page, memcg, false, false);
684         trace_mm_filemap_add_to_page_cache(page);
685         return 0;
686 err_insert:
687         page->mapping = NULL;
688         /* Leave page->index set: truncation relies upon it */
689         spin_unlock_irq(&mapping->tree_lock);
690         if (!huge)
691                 mem_cgroup_cancel_charge(page, memcg, false);
692         put_page(page);
693         return error;
694 }
695
696 /**
697  * add_to_page_cache_locked - add a locked page to the pagecache
698  * @page:       page to add
699  * @mapping:    the page's address_space
700  * @offset:     page index
701  * @gfp_mask:   page allocation mode
702  *
703  * This function is used to add a page to the pagecache. It must be locked.
704  * This function does not add the page to the LRU.  The caller must do that.
705  */
706 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
707                 pgoff_t offset, gfp_t gfp_mask)
708 {
709         return __add_to_page_cache_locked(page, mapping, offset,
710                                           gfp_mask, NULL);
711 }
712 EXPORT_SYMBOL(add_to_page_cache_locked);
713
714 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
715                                 pgoff_t offset, gfp_t gfp_mask)
716 {
717         void *shadow = NULL;
718         int ret;
719
720         __SetPageLocked(page);
721         ret = __add_to_page_cache_locked(page, mapping, offset,
722                                          gfp_mask, &shadow);
723         if (unlikely(ret))
724                 __ClearPageLocked(page);
725         else {
726                 /*
727                  * The page might have been evicted from cache only
728                  * recently, in which case it should be activated like
729                  * any other repeatedly accessed page.
730                  * The exception is pages getting rewritten; evicting other
731                  * data from the working set, only to cache data that will
732                  * get overwritten with something else, is a waste of memory.
733                  */
734                 if (!(gfp_mask & __GFP_WRITE) &&
735                     shadow && workingset_refault(shadow)) {
736                         SetPageActive(page);
737                         workingset_activation(page);
738                 } else
739                         ClearPageActive(page);
740                 lru_cache_add(page);
741         }
742         return ret;
743 }
744 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
745
746 #ifdef CONFIG_NUMA
747 struct page *__page_cache_alloc(gfp_t gfp)
748 {
749         int n;
750         struct page *page;
751
752         if (cpuset_do_page_mem_spread()) {
753                 unsigned int cpuset_mems_cookie;
754                 do {
755                         cpuset_mems_cookie = read_mems_allowed_begin();
756                         n = cpuset_mem_spread_node();
757                         page = __alloc_pages_node(n, gfp, 0);
758                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
759
760                 return page;
761         }
762         return alloc_pages(gfp, 0);
763 }
764 EXPORT_SYMBOL(__page_cache_alloc);
765 #endif
766
767 /*
768  * In order to wait for pages to become available there must be
769  * waitqueues associated with pages. By using a hash table of
770  * waitqueues where the bucket discipline is to maintain all
771  * waiters on the same queue and wake all when any of the pages
772  * become available, and for the woken contexts to check to be
773  * sure the appropriate page became available, this saves space
774  * at a cost of "thundering herd" phenomena during rare hash
775  * collisions.
776  */
777 wait_queue_head_t *page_waitqueue(struct page *page)
778 {
779         const struct zone *zone = page_zone(page);
780
781         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
782 }
783 EXPORT_SYMBOL(page_waitqueue);
784
785 void wait_on_page_bit(struct page *page, int bit_nr)
786 {
787         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
788
789         if (test_bit(bit_nr, &page->flags))
790                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
791                                                         TASK_UNINTERRUPTIBLE);
792 }
793 EXPORT_SYMBOL(wait_on_page_bit);
794
795 int wait_on_page_bit_killable(struct page *page, int bit_nr)
796 {
797         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
798
799         if (!test_bit(bit_nr, &page->flags))
800                 return 0;
801
802         return __wait_on_bit(page_waitqueue(page), &wait,
803                              bit_wait_io, TASK_KILLABLE);
804 }
805
806 int wait_on_page_bit_killable_timeout(struct page *page,
807                                        int bit_nr, unsigned long timeout)
808 {
809         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
810
811         wait.key.timeout = jiffies + timeout;
812         if (!test_bit(bit_nr, &page->flags))
813                 return 0;
814         return __wait_on_bit(page_waitqueue(page), &wait,
815                              bit_wait_io_timeout, TASK_KILLABLE);
816 }
817 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
818
819 /**
820  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
821  * @page: Page defining the wait queue of interest
822  * @waiter: Waiter to add to the queue
823  *
824  * Add an arbitrary @waiter to the wait queue for the nominated @page.
825  */
826 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
827 {
828         wait_queue_head_t *q = page_waitqueue(page);
829         unsigned long flags;
830
831         spin_lock_irqsave(&q->lock, flags);
832         __add_wait_queue(q, waiter);
833         spin_unlock_irqrestore(&q->lock, flags);
834 }
835 EXPORT_SYMBOL_GPL(add_page_wait_queue);
836
837 /**
838  * unlock_page - unlock a locked page
839  * @page: the page
840  *
841  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
842  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
843  * mechanism between PageLocked pages and PageWriteback pages is shared.
844  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
845  *
846  * The mb is necessary to enforce ordering between the clear_bit and the read
847  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
848  */
849 void unlock_page(struct page *page)
850 {
851         page = compound_head(page);
852         VM_BUG_ON_PAGE(!PageLocked(page), page);
853         clear_bit_unlock(PG_locked, &page->flags);
854         smp_mb__after_atomic();
855         wake_up_page(page, PG_locked);
856 }
857 EXPORT_SYMBOL(unlock_page);
858
859 /**
860  * end_page_writeback - end writeback against a page
861  * @page: the page
862  */
863 void end_page_writeback(struct page *page)
864 {
865         /*
866          * TestClearPageReclaim could be used here but it is an atomic
867          * operation and overkill in this particular case. Failing to
868          * shuffle a page marked for immediate reclaim is too mild to
869          * justify taking an atomic operation penalty at the end of
870          * ever page writeback.
871          */
872         if (PageReclaim(page)) {
873                 ClearPageReclaim(page);
874                 rotate_reclaimable_page(page);
875         }
876
877         if (!test_clear_page_writeback(page))
878                 BUG();
879
880         smp_mb__after_atomic();
881         wake_up_page(page, PG_writeback);
882 }
883 EXPORT_SYMBOL(end_page_writeback);
884
885 /*
886  * After completing I/O on a page, call this routine to update the page
887  * flags appropriately
888  */
889 void page_endio(struct page *page, int rw, int err)
890 {
891         if (rw == READ) {
892                 if (!err) {
893                         SetPageUptodate(page);
894                 } else {
895                         ClearPageUptodate(page);
896                         SetPageError(page);
897                 }
898                 unlock_page(page);
899         } else { /* rw == WRITE */
900                 if (err) {
901                         SetPageError(page);
902                         if (page->mapping)
903                                 mapping_set_error(page->mapping, err);
904                 }
905                 end_page_writeback(page);
906         }
907 }
908 EXPORT_SYMBOL_GPL(page_endio);
909
910 /**
911  * __lock_page - get a lock on the page, assuming we need to sleep to get it
912  * @page: the page to lock
913  */
914 void __lock_page(struct page *page)
915 {
916         struct page *page_head = compound_head(page);
917         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
918
919         __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
920                                                         TASK_UNINTERRUPTIBLE);
921 }
922 EXPORT_SYMBOL(__lock_page);
923
924 int __lock_page_killable(struct page *page)
925 {
926         struct page *page_head = compound_head(page);
927         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
928
929         return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
930                                         bit_wait_io, TASK_KILLABLE);
931 }
932 EXPORT_SYMBOL_GPL(__lock_page_killable);
933
934 /*
935  * Return values:
936  * 1 - page is locked; mmap_sem is still held.
937  * 0 - page is not locked.
938  *     mmap_sem has been released (up_read()), unless flags had both
939  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
940  *     which case mmap_sem is still held.
941  *
942  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
943  * with the page locked and the mmap_sem unperturbed.
944  */
945 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
946                          unsigned int flags)
947 {
948         if (flags & FAULT_FLAG_ALLOW_RETRY) {
949                 /*
950                  * CAUTION! In this case, mmap_sem is not released
951                  * even though return 0.
952                  */
953                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
954                         return 0;
955
956                 up_read(&mm->mmap_sem);
957                 if (flags & FAULT_FLAG_KILLABLE)
958                         wait_on_page_locked_killable(page);
959                 else
960                         wait_on_page_locked(page);
961                 return 0;
962         } else {
963                 if (flags & FAULT_FLAG_KILLABLE) {
964                         int ret;
965
966                         ret = __lock_page_killable(page);
967                         if (ret) {
968                                 up_read(&mm->mmap_sem);
969                                 return 0;
970                         }
971                 } else
972                         __lock_page(page);
973                 return 1;
974         }
975 }
976
977 /**
978  * page_cache_next_hole - find the next hole (not-present entry)
979  * @mapping: mapping
980  * @index: index
981  * @max_scan: maximum range to search
982  *
983  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
984  * lowest indexed hole.
985  *
986  * Returns: the index of the hole if found, otherwise returns an index
987  * outside of the set specified (in which case 'return - index >=
988  * max_scan' will be true). In rare cases of index wrap-around, 0 will
989  * be returned.
990  *
991  * page_cache_next_hole may be called under rcu_read_lock. However,
992  * like radix_tree_gang_lookup, this will not atomically search a
993  * snapshot of the tree at a single point in time. For example, if a
994  * hole is created at index 5, then subsequently a hole is created at
995  * index 10, page_cache_next_hole covering both indexes may return 10
996  * if called under rcu_read_lock.
997  */
998 pgoff_t page_cache_next_hole(struct address_space *mapping,
999                              pgoff_t index, unsigned long max_scan)
1000 {
1001         unsigned long i;
1002
1003         for (i = 0; i < max_scan; i++) {
1004                 struct page *page;
1005
1006                 page = radix_tree_lookup(&mapping->page_tree, index);
1007                 if (!page || radix_tree_exceptional_entry(page))
1008                         break;
1009                 index++;
1010                 if (index == 0)
1011                         break;
1012         }
1013
1014         return index;
1015 }
1016 EXPORT_SYMBOL(page_cache_next_hole);
1017
1018 /**
1019  * page_cache_prev_hole - find the prev hole (not-present entry)
1020  * @mapping: mapping
1021  * @index: index
1022  * @max_scan: maximum range to search
1023  *
1024  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1025  * the first hole.
1026  *
1027  * Returns: the index of the hole if found, otherwise returns an index
1028  * outside of the set specified (in which case 'index - return >=
1029  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1030  * will be returned.
1031  *
1032  * page_cache_prev_hole may be called under rcu_read_lock. However,
1033  * like radix_tree_gang_lookup, this will not atomically search a
1034  * snapshot of the tree at a single point in time. For example, if a
1035  * hole is created at index 10, then subsequently a hole is created at
1036  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1037  * called under rcu_read_lock.
1038  */
1039 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1040                              pgoff_t index, unsigned long max_scan)
1041 {
1042         unsigned long i;
1043
1044         for (i = 0; i < max_scan; i++) {
1045                 struct page *page;
1046
1047                 page = radix_tree_lookup(&mapping->page_tree, index);
1048                 if (!page || radix_tree_exceptional_entry(page))
1049                         break;
1050                 index--;
1051                 if (index == ULONG_MAX)
1052                         break;
1053         }
1054
1055         return index;
1056 }
1057 EXPORT_SYMBOL(page_cache_prev_hole);
1058
1059 /**
1060  * find_get_entry - find and get a page cache entry
1061  * @mapping: the address_space to search
1062  * @offset: the page cache index
1063  *
1064  * Looks up the page cache slot at @mapping & @offset.  If there is a
1065  * page cache page, it is returned with an increased refcount.
1066  *
1067  * If the slot holds a shadow entry of a previously evicted page, or a
1068  * swap entry from shmem/tmpfs, it is returned.
1069  *
1070  * Otherwise, %NULL is returned.
1071  */
1072 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1073 {
1074         void **pagep;
1075         struct page *head, *page;
1076
1077         rcu_read_lock();
1078 repeat:
1079         page = NULL;
1080         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1081         if (pagep) {
1082                 page = radix_tree_deref_slot(pagep);
1083                 if (unlikely(!page))
1084                         goto out;
1085                 if (radix_tree_exception(page)) {
1086                         if (radix_tree_deref_retry(page))
1087                                 goto repeat;
1088                         /*
1089                          * A shadow entry of a recently evicted page,
1090                          * or a swap entry from shmem/tmpfs.  Return
1091                          * it without attempting to raise page count.
1092                          */
1093                         goto out;
1094                 }
1095
1096                 head = compound_head(page);
1097                 if (!page_cache_get_speculative(head))
1098                         goto repeat;
1099
1100                 /* The page was split under us? */
1101                 if (compound_head(page) != head) {
1102                         put_page(head);
1103                         goto repeat;
1104                 }
1105
1106                 /*
1107                  * Has the page moved?
1108                  * This is part of the lockless pagecache protocol. See
1109                  * include/linux/pagemap.h for details.
1110                  */
1111                 if (unlikely(page != *pagep)) {
1112                         put_page(head);
1113                         goto repeat;
1114                 }
1115         }
1116 out:
1117         rcu_read_unlock();
1118
1119         return page;
1120 }
1121 EXPORT_SYMBOL(find_get_entry);
1122
1123 /**
1124  * find_lock_entry - locate, pin and lock a page cache entry
1125  * @mapping: the address_space to search
1126  * @offset: the page cache index
1127  *
1128  * Looks up the page cache slot at @mapping & @offset.  If there is a
1129  * page cache page, it is returned locked and with an increased
1130  * refcount.
1131  *
1132  * If the slot holds a shadow entry of a previously evicted page, or a
1133  * swap entry from shmem/tmpfs, it is returned.
1134  *
1135  * Otherwise, %NULL is returned.
1136  *
1137  * find_lock_entry() may sleep.
1138  */
1139 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1140 {
1141         struct page *page;
1142
1143 repeat:
1144         page = find_get_entry(mapping, offset);
1145         if (page && !radix_tree_exception(page)) {
1146                 lock_page(page);
1147                 /* Has the page been truncated? */
1148                 if (unlikely(page_mapping(page) != mapping)) {
1149                         unlock_page(page);
1150                         put_page(page);
1151                         goto repeat;
1152                 }
1153                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1154         }
1155         return page;
1156 }
1157 EXPORT_SYMBOL(find_lock_entry);
1158
1159 /**
1160  * pagecache_get_page - find and get a page reference
1161  * @mapping: the address_space to search
1162  * @offset: the page index
1163  * @fgp_flags: PCG flags
1164  * @gfp_mask: gfp mask to use for the page cache data page allocation
1165  *
1166  * Looks up the page cache slot at @mapping & @offset.
1167  *
1168  * PCG flags modify how the page is returned.
1169  *
1170  * FGP_ACCESSED: the page will be marked accessed
1171  * FGP_LOCK: Page is return locked
1172  * FGP_CREAT: If page is not present then a new page is allocated using
1173  *              @gfp_mask and added to the page cache and the VM's LRU
1174  *              list. The page is returned locked and with an increased
1175  *              refcount. Otherwise, %NULL is returned.
1176  *
1177  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1178  * if the GFP flags specified for FGP_CREAT are atomic.
1179  *
1180  * If there is a page cache page, it is returned with an increased refcount.
1181  */
1182 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1183         int fgp_flags, gfp_t gfp_mask)
1184 {
1185         struct page *page;
1186
1187 repeat:
1188         page = find_get_entry(mapping, offset);
1189         if (radix_tree_exceptional_entry(page))
1190                 page = NULL;
1191         if (!page)
1192                 goto no_page;
1193
1194         if (fgp_flags & FGP_LOCK) {
1195                 if (fgp_flags & FGP_NOWAIT) {
1196                         if (!trylock_page(page)) {
1197                                 put_page(page);
1198                                 return NULL;
1199                         }
1200                 } else {
1201                         lock_page(page);
1202                 }
1203
1204                 /* Has the page been truncated? */
1205                 if (unlikely(page->mapping != mapping)) {
1206                         unlock_page(page);
1207                         put_page(page);
1208                         goto repeat;
1209                 }
1210                 VM_BUG_ON_PAGE(page->index != offset, page);
1211         }
1212
1213         if (page && (fgp_flags & FGP_ACCESSED))
1214                 mark_page_accessed(page);
1215
1216 no_page:
1217         if (!page && (fgp_flags & FGP_CREAT)) {
1218                 int err;
1219                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1220                         gfp_mask |= __GFP_WRITE;
1221                 if (fgp_flags & FGP_NOFS)
1222                         gfp_mask &= ~__GFP_FS;
1223
1224                 page = __page_cache_alloc(gfp_mask);
1225                 if (!page)
1226                         return NULL;
1227
1228                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1229                         fgp_flags |= FGP_LOCK;
1230
1231                 /* Init accessed so avoid atomic mark_page_accessed later */
1232                 if (fgp_flags & FGP_ACCESSED)
1233                         __SetPageReferenced(page);
1234
1235                 err = add_to_page_cache_lru(page, mapping, offset,
1236                                 gfp_mask & GFP_RECLAIM_MASK);
1237                 if (unlikely(err)) {
1238                         put_page(page);
1239                         page = NULL;
1240                         if (err == -EEXIST)
1241                                 goto repeat;
1242                 }
1243         }
1244
1245         return page;
1246 }
1247 EXPORT_SYMBOL(pagecache_get_page);
1248
1249 /**
1250  * find_get_entries - gang pagecache lookup
1251  * @mapping:    The address_space to search
1252  * @start:      The starting page cache index
1253  * @nr_entries: The maximum number of entries
1254  * @entries:    Where the resulting entries are placed
1255  * @indices:    The cache indices corresponding to the entries in @entries
1256  *
1257  * find_get_entries() will search for and return a group of up to
1258  * @nr_entries entries in the mapping.  The entries are placed at
1259  * @entries.  find_get_entries() takes a reference against any actual
1260  * pages it returns.
1261  *
1262  * The search returns a group of mapping-contiguous page cache entries
1263  * with ascending indexes.  There may be holes in the indices due to
1264  * not-present pages.
1265  *
1266  * Any shadow entries of evicted pages, or swap entries from
1267  * shmem/tmpfs, are included in the returned array.
1268  *
1269  * find_get_entries() returns the number of pages and shadow entries
1270  * which were found.
1271  */
1272 unsigned find_get_entries(struct address_space *mapping,
1273                           pgoff_t start, unsigned int nr_entries,
1274                           struct page **entries, pgoff_t *indices)
1275 {
1276         void **slot;
1277         unsigned int ret = 0;
1278         struct radix_tree_iter iter;
1279
1280         if (!nr_entries)
1281                 return 0;
1282
1283         rcu_read_lock();
1284         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1285                 struct page *head, *page;
1286 repeat:
1287                 page = radix_tree_deref_slot(slot);
1288                 if (unlikely(!page))
1289                         continue;
1290                 if (radix_tree_exception(page)) {
1291                         if (radix_tree_deref_retry(page)) {
1292                                 slot = radix_tree_iter_retry(&iter);
1293                                 continue;
1294                         }
1295                         /*
1296                          * A shadow entry of a recently evicted page, a swap
1297                          * entry from shmem/tmpfs or a DAX entry.  Return it
1298                          * without attempting to raise page count.
1299                          */
1300                         goto export;
1301                 }
1302
1303                 head = compound_head(page);
1304                 if (!page_cache_get_speculative(head))
1305                         goto repeat;
1306
1307                 /* The page was split under us? */
1308                 if (compound_head(page) != head) {
1309                         put_page(head);
1310                         goto repeat;
1311                 }
1312
1313                 /* Has the page moved? */
1314                 if (unlikely(page != *slot)) {
1315                         put_page(head);
1316                         goto repeat;
1317                 }
1318 export:
1319                 indices[ret] = iter.index;
1320                 entries[ret] = page;
1321                 if (++ret == nr_entries)
1322                         break;
1323         }
1324         rcu_read_unlock();
1325         return ret;
1326 }
1327
1328 /**
1329  * find_get_pages - gang pagecache lookup
1330  * @mapping:    The address_space to search
1331  * @start:      The starting page index
1332  * @nr_pages:   The maximum number of pages
1333  * @pages:      Where the resulting pages are placed
1334  *
1335  * find_get_pages() will search for and return a group of up to
1336  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1337  * find_get_pages() takes a reference against the returned pages.
1338  *
1339  * The search returns a group of mapping-contiguous pages with ascending
1340  * indexes.  There may be holes in the indices due to not-present pages.
1341  *
1342  * find_get_pages() returns the number of pages which were found.
1343  */
1344 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1345                             unsigned int nr_pages, struct page **pages)
1346 {
1347         struct radix_tree_iter iter;
1348         void **slot;
1349         unsigned ret = 0;
1350
1351         if (unlikely(!nr_pages))
1352                 return 0;
1353
1354         rcu_read_lock();
1355         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1356                 struct page *head, *page;
1357 repeat:
1358                 page = radix_tree_deref_slot(slot);
1359                 if (unlikely(!page))
1360                         continue;
1361
1362                 if (radix_tree_exception(page)) {
1363                         if (radix_tree_deref_retry(page)) {
1364                                 slot = radix_tree_iter_retry(&iter);
1365                                 continue;
1366                         }
1367                         /*
1368                          * A shadow entry of a recently evicted page,
1369                          * or a swap entry from shmem/tmpfs.  Skip
1370                          * over it.
1371                          */
1372                         continue;
1373                 }
1374
1375                 head = compound_head(page);
1376                 if (!page_cache_get_speculative(head))
1377                         goto repeat;
1378
1379                 /* The page was split under us? */
1380                 if (compound_head(page) != head) {
1381                         put_page(head);
1382                         goto repeat;
1383                 }
1384
1385                 /* Has the page moved? */
1386                 if (unlikely(page != *slot)) {
1387                         put_page(head);
1388                         goto repeat;
1389                 }
1390
1391                 pages[ret] = page;
1392                 if (++ret == nr_pages)
1393                         break;
1394         }
1395
1396         rcu_read_unlock();
1397         return ret;
1398 }
1399
1400 /**
1401  * find_get_pages_contig - gang contiguous pagecache lookup
1402  * @mapping:    The address_space to search
1403  * @index:      The starting page index
1404  * @nr_pages:   The maximum number of pages
1405  * @pages:      Where the resulting pages are placed
1406  *
1407  * find_get_pages_contig() works exactly like find_get_pages(), except
1408  * that the returned number of pages are guaranteed to be contiguous.
1409  *
1410  * find_get_pages_contig() returns the number of pages which were found.
1411  */
1412 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1413                                unsigned int nr_pages, struct page **pages)
1414 {
1415         struct radix_tree_iter iter;
1416         void **slot;
1417         unsigned int ret = 0;
1418
1419         if (unlikely(!nr_pages))
1420                 return 0;
1421
1422         rcu_read_lock();
1423         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1424                 struct page *head, *page;
1425 repeat:
1426                 page = radix_tree_deref_slot(slot);
1427                 /* The hole, there no reason to continue */
1428                 if (unlikely(!page))
1429                         break;
1430
1431                 if (radix_tree_exception(page)) {
1432                         if (radix_tree_deref_retry(page)) {
1433                                 slot = radix_tree_iter_retry(&iter);
1434                                 continue;
1435                         }
1436                         /*
1437                          * A shadow entry of a recently evicted page,
1438                          * or a swap entry from shmem/tmpfs.  Stop
1439                          * looking for contiguous pages.
1440                          */
1441                         break;
1442                 }
1443
1444                 head = compound_head(page);
1445                 if (!page_cache_get_speculative(head))
1446                         goto repeat;
1447
1448                 /* The page was split under us? */
1449                 if (compound_head(page) != head) {
1450                         put_page(head);
1451                         goto repeat;
1452                 }
1453
1454                 /* Has the page moved? */
1455                 if (unlikely(page != *slot)) {
1456                         put_page(head);
1457                         goto repeat;
1458                 }
1459
1460                 /*
1461                  * must check mapping and index after taking the ref.
1462                  * otherwise we can get both false positives and false
1463                  * negatives, which is just confusing to the caller.
1464                  */
1465                 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1466                         put_page(page);
1467                         break;
1468                 }
1469
1470                 pages[ret] = page;
1471                 if (++ret == nr_pages)
1472                         break;
1473         }
1474         rcu_read_unlock();
1475         return ret;
1476 }
1477 EXPORT_SYMBOL(find_get_pages_contig);
1478
1479 /**
1480  * find_get_pages_tag - find and return pages that match @tag
1481  * @mapping:    the address_space to search
1482  * @index:      the starting page index
1483  * @tag:        the tag index
1484  * @nr_pages:   the maximum number of pages
1485  * @pages:      where the resulting pages are placed
1486  *
1487  * Like find_get_pages, except we only return pages which are tagged with
1488  * @tag.   We update @index to index the next page for the traversal.
1489  */
1490 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1491                         int tag, unsigned int nr_pages, struct page **pages)
1492 {
1493         struct radix_tree_iter iter;
1494         void **slot;
1495         unsigned ret = 0;
1496
1497         if (unlikely(!nr_pages))
1498                 return 0;
1499
1500         rcu_read_lock();
1501         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1502                                    &iter, *index, tag) {
1503                 struct page *head, *page;
1504 repeat:
1505                 page = radix_tree_deref_slot(slot);
1506                 if (unlikely(!page))
1507                         continue;
1508
1509                 if (radix_tree_exception(page)) {
1510                         if (radix_tree_deref_retry(page)) {
1511                                 slot = radix_tree_iter_retry(&iter);
1512                                 continue;
1513                         }
1514                         /*
1515                          * A shadow entry of a recently evicted page.
1516                          *
1517                          * Those entries should never be tagged, but
1518                          * this tree walk is lockless and the tags are
1519                          * looked up in bulk, one radix tree node at a
1520                          * time, so there is a sizable window for page
1521                          * reclaim to evict a page we saw tagged.
1522                          *
1523                          * Skip over it.
1524                          */
1525                         continue;
1526                 }
1527
1528                 head = compound_head(page);
1529                 if (!page_cache_get_speculative(head))
1530                         goto repeat;
1531
1532                 /* The page was split under us? */
1533                 if (compound_head(page) != head) {
1534                         put_page(head);
1535                         goto repeat;
1536                 }
1537
1538                 /* Has the page moved? */
1539                 if (unlikely(page != *slot)) {
1540                         put_page(head);
1541                         goto repeat;
1542                 }
1543
1544                 pages[ret] = page;
1545                 if (++ret == nr_pages)
1546                         break;
1547         }
1548
1549         rcu_read_unlock();
1550
1551         if (ret)
1552                 *index = pages[ret - 1]->index + 1;
1553
1554         return ret;
1555 }
1556 EXPORT_SYMBOL(find_get_pages_tag);
1557
1558 /**
1559  * find_get_entries_tag - find and return entries that match @tag
1560  * @mapping:    the address_space to search
1561  * @start:      the starting page cache index
1562  * @tag:        the tag index
1563  * @nr_entries: the maximum number of entries
1564  * @entries:    where the resulting entries are placed
1565  * @indices:    the cache indices corresponding to the entries in @entries
1566  *
1567  * Like find_get_entries, except we only return entries which are tagged with
1568  * @tag.
1569  */
1570 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1571                         int tag, unsigned int nr_entries,
1572                         struct page **entries, pgoff_t *indices)
1573 {
1574         void **slot;
1575         unsigned int ret = 0;
1576         struct radix_tree_iter iter;
1577
1578         if (!nr_entries)
1579                 return 0;
1580
1581         rcu_read_lock();
1582         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1583                                    &iter, start, tag) {
1584                 struct page *head, *page;
1585 repeat:
1586                 page = radix_tree_deref_slot(slot);
1587                 if (unlikely(!page))
1588                         continue;
1589                 if (radix_tree_exception(page)) {
1590                         if (radix_tree_deref_retry(page)) {
1591                                 slot = radix_tree_iter_retry(&iter);
1592                                 continue;
1593                         }
1594
1595                         /*
1596                          * A shadow entry of a recently evicted page, a swap
1597                          * entry from shmem/tmpfs or a DAX entry.  Return it
1598                          * without attempting to raise page count.
1599                          */
1600                         goto export;
1601                 }
1602
1603                 head = compound_head(page);
1604                 if (!page_cache_get_speculative(head))
1605                         goto repeat;
1606
1607                 /* The page was split under us? */
1608                 if (compound_head(page) != head) {
1609                         put_page(head);
1610                         goto repeat;
1611                 }
1612
1613                 /* Has the page moved? */
1614                 if (unlikely(page != *slot)) {
1615                         put_page(head);
1616                         goto repeat;
1617                 }
1618 export:
1619                 indices[ret] = iter.index;
1620                 entries[ret] = page;
1621                 if (++ret == nr_entries)
1622                         break;
1623         }
1624         rcu_read_unlock();
1625         return ret;
1626 }
1627 EXPORT_SYMBOL(find_get_entries_tag);
1628
1629 /*
1630  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1631  * a _large_ part of the i/o request. Imagine the worst scenario:
1632  *
1633  *      ---R__________________________________________B__________
1634  *         ^ reading here                             ^ bad block(assume 4k)
1635  *
1636  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1637  * => failing the whole request => read(R) => read(R+1) =>
1638  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1639  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1640  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1641  *
1642  * It is going insane. Fix it by quickly scaling down the readahead size.
1643  */
1644 static void shrink_readahead_size_eio(struct file *filp,
1645                                         struct file_ra_state *ra)
1646 {
1647         ra->ra_pages /= 4;
1648 }
1649
1650 /**
1651  * do_generic_file_read - generic file read routine
1652  * @filp:       the file to read
1653  * @ppos:       current file position
1654  * @iter:       data destination
1655  * @written:    already copied
1656  *
1657  * This is a generic file read routine, and uses the
1658  * mapping->a_ops->readpage() function for the actual low-level stuff.
1659  *
1660  * This is really ugly. But the goto's actually try to clarify some
1661  * of the logic when it comes to error handling etc.
1662  */
1663 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1664                 struct iov_iter *iter, ssize_t written)
1665 {
1666         struct address_space *mapping = filp->f_mapping;
1667         struct inode *inode = mapping->host;
1668         struct file_ra_state *ra = &filp->f_ra;
1669         pgoff_t index;
1670         pgoff_t last_index;
1671         pgoff_t prev_index;
1672         unsigned long offset;      /* offset into pagecache page */
1673         unsigned int prev_offset;
1674         int error = 0;
1675
1676         index = *ppos >> PAGE_SHIFT;
1677         prev_index = ra->prev_pos >> PAGE_SHIFT;
1678         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1679         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1680         offset = *ppos & ~PAGE_MASK;
1681
1682         for (;;) {
1683                 struct page *page;
1684                 pgoff_t end_index;
1685                 loff_t isize;
1686                 unsigned long nr, ret;
1687
1688                 cond_resched();
1689 find_page:
1690                 page = find_get_page(mapping, index);
1691                 if (!page) {
1692                         page_cache_sync_readahead(mapping,
1693                                         ra, filp,
1694                                         index, last_index - index);
1695                         page = find_get_page(mapping, index);
1696                         if (unlikely(page == NULL))
1697                                 goto no_cached_page;
1698                 }
1699                 if (PageReadahead(page)) {
1700                         page_cache_async_readahead(mapping,
1701                                         ra, filp, page,
1702                                         index, last_index - index);
1703                 }
1704                 if (!PageUptodate(page)) {
1705                         /*
1706                          * See comment in do_read_cache_page on why
1707                          * wait_on_page_locked is used to avoid unnecessarily
1708                          * serialisations and why it's safe.
1709                          */
1710                         wait_on_page_locked_killable(page);
1711                         if (PageUptodate(page))
1712                                 goto page_ok;
1713
1714                         if (inode->i_blkbits == PAGE_SHIFT ||
1715                                         !mapping->a_ops->is_partially_uptodate)
1716                                 goto page_not_up_to_date;
1717                         if (!trylock_page(page))
1718                                 goto page_not_up_to_date;
1719                         /* Did it get truncated before we got the lock? */
1720                         if (!page->mapping)
1721                                 goto page_not_up_to_date_locked;
1722                         if (!mapping->a_ops->is_partially_uptodate(page,
1723                                                         offset, iter->count))
1724                                 goto page_not_up_to_date_locked;
1725                         unlock_page(page);
1726                 }
1727 page_ok:
1728                 /*
1729                  * i_size must be checked after we know the page is Uptodate.
1730                  *
1731                  * Checking i_size after the check allows us to calculate
1732                  * the correct value for "nr", which means the zero-filled
1733                  * part of the page is not copied back to userspace (unless
1734                  * another truncate extends the file - this is desired though).
1735                  */
1736
1737                 isize = i_size_read(inode);
1738                 end_index = (isize - 1) >> PAGE_SHIFT;
1739                 if (unlikely(!isize || index > end_index)) {
1740                         put_page(page);
1741                         goto out;
1742                 }
1743
1744                 /* nr is the maximum number of bytes to copy from this page */
1745                 nr = PAGE_SIZE;
1746                 if (index == end_index) {
1747                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
1748                         if (nr <= offset) {
1749                                 put_page(page);
1750                                 goto out;
1751                         }
1752                 }
1753                 nr = nr - offset;
1754
1755                 /* If users can be writing to this page using arbitrary
1756                  * virtual addresses, take care about potential aliasing
1757                  * before reading the page on the kernel side.
1758                  */
1759                 if (mapping_writably_mapped(mapping))
1760                         flush_dcache_page(page);
1761
1762                 /*
1763                  * When a sequential read accesses a page several times,
1764                  * only mark it as accessed the first time.
1765                  */
1766                 if (prev_index != index || offset != prev_offset)
1767                         mark_page_accessed(page);
1768                 prev_index = index;
1769
1770                 /*
1771                  * Ok, we have the page, and it's up-to-date, so
1772                  * now we can copy it to user space...
1773                  */
1774
1775                 ret = copy_page_to_iter(page, offset, nr, iter);
1776                 offset += ret;
1777                 index += offset >> PAGE_SHIFT;
1778                 offset &= ~PAGE_MASK;
1779                 prev_offset = offset;
1780
1781                 put_page(page);
1782                 written += ret;
1783                 if (!iov_iter_count(iter))
1784                         goto out;
1785                 if (ret < nr) {
1786                         error = -EFAULT;
1787                         goto out;
1788                 }
1789                 continue;
1790
1791 page_not_up_to_date:
1792                 /* Get exclusive access to the page ... */
1793                 error = lock_page_killable(page);
1794                 if (unlikely(error))
1795                         goto readpage_error;
1796
1797 page_not_up_to_date_locked:
1798                 /* Did it get truncated before we got the lock? */
1799                 if (!page->mapping) {
1800                         unlock_page(page);
1801                         put_page(page);
1802                         continue;
1803                 }
1804
1805                 /* Did somebody else fill it already? */
1806                 if (PageUptodate(page)) {
1807                         unlock_page(page);
1808                         goto page_ok;
1809                 }
1810
1811 readpage:
1812                 /*
1813                  * A previous I/O error may have been due to temporary
1814                  * failures, eg. multipath errors.
1815                  * PG_error will be set again if readpage fails.
1816                  */
1817                 ClearPageError(page);
1818                 /* Start the actual read. The read will unlock the page. */
1819                 error = mapping->a_ops->readpage(filp, page);
1820
1821                 if (unlikely(error)) {
1822                         if (error == AOP_TRUNCATED_PAGE) {
1823                                 put_page(page);
1824                                 error = 0;
1825                                 goto find_page;
1826                         }
1827                         goto readpage_error;
1828                 }
1829
1830                 if (!PageUptodate(page)) {
1831                         error = lock_page_killable(page);
1832                         if (unlikely(error))
1833                                 goto readpage_error;
1834                         if (!PageUptodate(page)) {
1835                                 if (page->mapping == NULL) {
1836                                         /*
1837                                          * invalidate_mapping_pages got it
1838                                          */
1839                                         unlock_page(page);
1840                                         put_page(page);
1841                                         goto find_page;
1842                                 }
1843                                 unlock_page(page);
1844                                 shrink_readahead_size_eio(filp, ra);
1845                                 error = -EIO;
1846                                 goto readpage_error;
1847                         }
1848                         unlock_page(page);
1849                 }
1850
1851                 goto page_ok;
1852
1853 readpage_error:
1854                 /* UHHUH! A synchronous read error occurred. Report it */
1855                 put_page(page);
1856                 goto out;
1857
1858 no_cached_page:
1859                 /*
1860                  * Ok, it wasn't cached, so we need to create a new
1861                  * page..
1862                  */
1863                 page = page_cache_alloc_cold(mapping);
1864                 if (!page) {
1865                         error = -ENOMEM;
1866                         goto out;
1867                 }
1868                 error = add_to_page_cache_lru(page, mapping, index,
1869                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1870                 if (error) {
1871                         put_page(page);
1872                         if (error == -EEXIST) {
1873                                 error = 0;
1874                                 goto find_page;
1875                         }
1876                         goto out;
1877                 }
1878                 goto readpage;
1879         }
1880
1881 out:
1882         ra->prev_pos = prev_index;
1883         ra->prev_pos <<= PAGE_SHIFT;
1884         ra->prev_pos |= prev_offset;
1885
1886         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1887         file_accessed(filp);
1888         return written ? written : error;
1889 }
1890
1891 /**
1892  * generic_file_read_iter - generic filesystem read routine
1893  * @iocb:       kernel I/O control block
1894  * @iter:       destination for the data read
1895  *
1896  * This is the "read_iter()" routine for all filesystems
1897  * that can use the page cache directly.
1898  */
1899 ssize_t
1900 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1901 {
1902         struct file *file = iocb->ki_filp;
1903         ssize_t retval = 0;
1904         size_t count = iov_iter_count(iter);
1905
1906         if (!count)
1907                 goto out; /* skip atime */
1908
1909         if (iocb->ki_flags & IOCB_DIRECT) {
1910                 struct address_space *mapping = file->f_mapping;
1911                 struct inode *inode = mapping->host;
1912                 loff_t size;
1913
1914                 size = i_size_read(inode);
1915                 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1916                                         iocb->ki_pos + count - 1);
1917                 if (!retval) {
1918                         struct iov_iter data = *iter;
1919                         retval = mapping->a_ops->direct_IO(iocb, &data);
1920                 }
1921
1922                 if (retval > 0) {
1923                         iocb->ki_pos += retval;
1924                         iov_iter_advance(iter, retval);
1925                 }
1926
1927                 /*
1928                  * Btrfs can have a short DIO read if we encounter
1929                  * compressed extents, so if there was an error, or if
1930                  * we've already read everything we wanted to, or if
1931                  * there was a short read because we hit EOF, go ahead
1932                  * and return.  Otherwise fallthrough to buffered io for
1933                  * the rest of the read.  Buffered reads will not work for
1934                  * DAX files, so don't bother trying.
1935                  */
1936                 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1937                     IS_DAX(inode)) {
1938                         file_accessed(file);
1939                         goto out;
1940                 }
1941         }
1942
1943         retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1944 out:
1945         return retval;
1946 }
1947 EXPORT_SYMBOL(generic_file_read_iter);
1948
1949 #ifdef CONFIG_MMU
1950 /**
1951  * page_cache_read - adds requested page to the page cache if not already there
1952  * @file:       file to read
1953  * @offset:     page index
1954  * @gfp_mask:   memory allocation flags
1955  *
1956  * This adds the requested page to the page cache if it isn't already there,
1957  * and schedules an I/O to read in its contents from disk.
1958  */
1959 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1960 {
1961         struct address_space *mapping = file->f_mapping;
1962         struct page *page;
1963         int ret;
1964
1965         do {
1966                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1967                 if (!page)
1968                         return -ENOMEM;
1969
1970                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1971                 if (ret == 0)
1972                         ret = mapping->a_ops->readpage(file, page);
1973                 else if (ret == -EEXIST)
1974                         ret = 0; /* losing race to add is OK */
1975
1976                 put_page(page);
1977
1978         } while (ret == AOP_TRUNCATED_PAGE);
1979
1980         return ret;
1981 }
1982
1983 #define MMAP_LOTSAMISS  (100)
1984
1985 /*
1986  * Synchronous readahead happens when we don't even find
1987  * a page in the page cache at all.
1988  */
1989 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1990                                    struct file_ra_state *ra,
1991                                    struct file *file,
1992                                    pgoff_t offset)
1993 {
1994         struct address_space *mapping = file->f_mapping;
1995
1996         /* If we don't want any read-ahead, don't bother */
1997         if (vma->vm_flags & VM_RAND_READ)
1998                 return;
1999         if (!ra->ra_pages)
2000                 return;
2001
2002         if (vma->vm_flags & VM_SEQ_READ) {
2003                 page_cache_sync_readahead(mapping, ra, file, offset,
2004                                           ra->ra_pages);
2005                 return;
2006         }
2007
2008         /* Avoid banging the cache line if not needed */
2009         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2010                 ra->mmap_miss++;
2011
2012         /*
2013          * Do we miss much more than hit in this file? If so,
2014          * stop bothering with read-ahead. It will only hurt.
2015          */
2016         if (ra->mmap_miss > MMAP_LOTSAMISS)
2017                 return;
2018
2019         /*
2020          * mmap read-around
2021          */
2022         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2023         ra->size = ra->ra_pages;
2024         ra->async_size = ra->ra_pages / 4;
2025         ra_submit(ra, mapping, file);
2026 }
2027
2028 /*
2029  * Asynchronous readahead happens when we find the page and PG_readahead,
2030  * so we want to possibly extend the readahead further..
2031  */
2032 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2033                                     struct file_ra_state *ra,
2034                                     struct file *file,
2035                                     struct page *page,
2036                                     pgoff_t offset)
2037 {
2038         struct address_space *mapping = file->f_mapping;
2039
2040         /* If we don't want any read-ahead, don't bother */
2041         if (vma->vm_flags & VM_RAND_READ)
2042                 return;
2043         if (ra->mmap_miss > 0)
2044                 ra->mmap_miss--;
2045         if (PageReadahead(page))
2046                 page_cache_async_readahead(mapping, ra, file,
2047                                            page, offset, ra->ra_pages);
2048 }
2049
2050 /**
2051  * filemap_fault - read in file data for page fault handling
2052  * @vma:        vma in which the fault was taken
2053  * @vmf:        struct vm_fault containing details of the fault
2054  *
2055  * filemap_fault() is invoked via the vma operations vector for a
2056  * mapped memory region to read in file data during a page fault.
2057  *
2058  * The goto's are kind of ugly, but this streamlines the normal case of having
2059  * it in the page cache, and handles the special cases reasonably without
2060  * having a lot of duplicated code.
2061  *
2062  * vma->vm_mm->mmap_sem must be held on entry.
2063  *
2064  * If our return value has VM_FAULT_RETRY set, it's because
2065  * lock_page_or_retry() returned 0.
2066  * The mmap_sem has usually been released in this case.
2067  * See __lock_page_or_retry() for the exception.
2068  *
2069  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2070  * has not been released.
2071  *
2072  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2073  */
2074 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2075 {
2076         int error;
2077         struct file *file = vma->vm_file;
2078         struct address_space *mapping = file->f_mapping;
2079         struct file_ra_state *ra = &file->f_ra;
2080         struct inode *inode = mapping->host;
2081         pgoff_t offset = vmf->pgoff;
2082         struct page *page;
2083         loff_t size;
2084         int ret = 0;
2085
2086         size = round_up(i_size_read(inode), PAGE_SIZE);
2087         if (offset >= size >> PAGE_SHIFT)
2088                 return VM_FAULT_SIGBUS;
2089
2090         /*
2091          * Do we have something in the page cache already?
2092          */
2093         page = find_get_page(mapping, offset);
2094         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2095                 /*
2096                  * We found the page, so try async readahead before
2097                  * waiting for the lock.
2098                  */
2099                 do_async_mmap_readahead(vma, ra, file, page, offset);
2100         } else if (!page) {
2101                 /* No page in the page cache at all */
2102                 do_sync_mmap_readahead(vma, ra, file, offset);
2103                 count_vm_event(PGMAJFAULT);
2104                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2105                 ret = VM_FAULT_MAJOR;
2106 retry_find:
2107                 page = find_get_page(mapping, offset);
2108                 if (!page)
2109                         goto no_cached_page;
2110         }
2111
2112         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2113                 put_page(page);
2114                 return ret | VM_FAULT_RETRY;
2115         }
2116
2117         /* Did it get truncated? */
2118         if (unlikely(page->mapping != mapping)) {
2119                 unlock_page(page);
2120                 put_page(page);
2121                 goto retry_find;
2122         }
2123         VM_BUG_ON_PAGE(page->index != offset, page);
2124
2125         /*
2126          * We have a locked page in the page cache, now we need to check
2127          * that it's up-to-date. If not, it is going to be due to an error.
2128          */
2129         if (unlikely(!PageUptodate(page)))
2130                 goto page_not_uptodate;
2131
2132         /*
2133          * Found the page and have a reference on it.
2134          * We must recheck i_size under page lock.
2135          */
2136         size = round_up(i_size_read(inode), PAGE_SIZE);
2137         if (unlikely(offset >= size >> PAGE_SHIFT)) {
2138                 unlock_page(page);
2139                 put_page(page);
2140                 return VM_FAULT_SIGBUS;
2141         }
2142
2143         vmf->page = page;
2144         return ret | VM_FAULT_LOCKED;
2145
2146 no_cached_page:
2147         /*
2148          * We're only likely to ever get here if MADV_RANDOM is in
2149          * effect.
2150          */
2151         error = page_cache_read(file, offset, vmf->gfp_mask);
2152
2153         /*
2154          * The page we want has now been added to the page cache.
2155          * In the unlikely event that someone removed it in the
2156          * meantime, we'll just come back here and read it again.
2157          */
2158         if (error >= 0)
2159                 goto retry_find;
2160
2161         /*
2162          * An error return from page_cache_read can result if the
2163          * system is low on memory, or a problem occurs while trying
2164          * to schedule I/O.
2165          */
2166         if (error == -ENOMEM)
2167                 return VM_FAULT_OOM;
2168         return VM_FAULT_SIGBUS;
2169
2170 page_not_uptodate:
2171         /*
2172          * Umm, take care of errors if the page isn't up-to-date.
2173          * Try to re-read it _once_. We do this synchronously,
2174          * because there really aren't any performance issues here
2175          * and we need to check for errors.
2176          */
2177         ClearPageError(page);
2178         error = mapping->a_ops->readpage(file, page);
2179         if (!error) {
2180                 wait_on_page_locked(page);
2181                 if (!PageUptodate(page))
2182                         error = -EIO;
2183         }
2184         put_page(page);
2185
2186         if (!error || error == AOP_TRUNCATED_PAGE)
2187                 goto retry_find;
2188
2189         /* Things didn't work out. Return zero to tell the mm layer so. */
2190         shrink_readahead_size_eio(file, ra);
2191         return VM_FAULT_SIGBUS;
2192 }
2193 EXPORT_SYMBOL(filemap_fault);
2194
2195 void filemap_map_pages(struct fault_env *fe,
2196                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2197 {
2198         struct radix_tree_iter iter;
2199         void **slot;
2200         struct file *file = fe->vma->vm_file;
2201         struct address_space *mapping = file->f_mapping;
2202         pgoff_t last_pgoff = start_pgoff;
2203         loff_t size;
2204         struct page *head, *page;
2205
2206         rcu_read_lock();
2207         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2208                         start_pgoff) {
2209                 if (iter.index > end_pgoff)
2210                         break;
2211 repeat:
2212                 page = radix_tree_deref_slot(slot);
2213                 if (unlikely(!page))
2214                         goto next;
2215                 if (radix_tree_exception(page)) {
2216                         if (radix_tree_deref_retry(page)) {
2217                                 slot = radix_tree_iter_retry(&iter);
2218                                 continue;
2219                         }
2220                         goto next;
2221                 }
2222
2223                 head = compound_head(page);
2224                 if (!page_cache_get_speculative(head))
2225                         goto repeat;
2226
2227                 /* The page was split under us? */
2228                 if (compound_head(page) != head) {
2229                         put_page(head);
2230                         goto repeat;
2231                 }
2232
2233                 /* Has the page moved? */
2234                 if (unlikely(page != *slot)) {
2235                         put_page(head);
2236                         goto repeat;
2237                 }
2238
2239                 if (!PageUptodate(page) ||
2240                                 PageReadahead(page) ||
2241                                 PageHWPoison(page))
2242                         goto skip;
2243                 if (!trylock_page(page))
2244                         goto skip;
2245
2246                 if (page->mapping != mapping || !PageUptodate(page))
2247                         goto unlock;
2248
2249                 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2250                 if (page->index >= size >> PAGE_SHIFT)
2251                         goto unlock;
2252
2253                 if (file->f_ra.mmap_miss > 0)
2254                         file->f_ra.mmap_miss--;
2255
2256                 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2257                 if (fe->pte)
2258                         fe->pte += iter.index - last_pgoff;
2259                 last_pgoff = iter.index;
2260                 if (alloc_set_pte(fe, NULL, page))
2261                         goto unlock;
2262                 unlock_page(page);
2263                 goto next;
2264 unlock:
2265                 unlock_page(page);
2266 skip:
2267                 put_page(page);
2268 next:
2269                 /* Huge page is mapped? No need to proceed. */
2270                 if (pmd_trans_huge(*fe->pmd))
2271                         break;
2272                 if (iter.index == end_pgoff)
2273                         break;
2274         }
2275         rcu_read_unlock();
2276 }
2277 EXPORT_SYMBOL(filemap_map_pages);
2278
2279 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2280 {
2281         struct page *page = vmf->page;
2282         struct inode *inode = file_inode(vma->vm_file);
2283         int ret = VM_FAULT_LOCKED;
2284
2285         sb_start_pagefault(inode->i_sb);
2286         file_update_time(vma->vm_file);
2287         lock_page(page);
2288         if (page->mapping != inode->i_mapping) {
2289                 unlock_page(page);
2290                 ret = VM_FAULT_NOPAGE;
2291                 goto out;
2292         }
2293         /*
2294          * We mark the page dirty already here so that when freeze is in
2295          * progress, we are guaranteed that writeback during freezing will
2296          * see the dirty page and writeprotect it again.
2297          */
2298         set_page_dirty(page);
2299         wait_for_stable_page(page);
2300 out:
2301         sb_end_pagefault(inode->i_sb);
2302         return ret;
2303 }
2304 EXPORT_SYMBOL(filemap_page_mkwrite);
2305
2306 const struct vm_operations_struct generic_file_vm_ops = {
2307         .fault          = filemap_fault,
2308         .map_pages      = filemap_map_pages,
2309         .page_mkwrite   = filemap_page_mkwrite,
2310 };
2311
2312 /* This is used for a general mmap of a disk file */
2313
2314 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2315 {
2316         struct address_space *mapping = file->f_mapping;
2317
2318         if (!mapping->a_ops->readpage)
2319                 return -ENOEXEC;
2320         file_accessed(file);
2321         vma->vm_ops = &generic_file_vm_ops;
2322         return 0;
2323 }
2324
2325 /*
2326  * This is for filesystems which do not implement ->writepage.
2327  */
2328 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2329 {
2330         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2331                 return -EINVAL;
2332         return generic_file_mmap(file, vma);
2333 }
2334 #else
2335 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2336 {
2337         return -ENOSYS;
2338 }
2339 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2340 {
2341         return -ENOSYS;
2342 }
2343 #endif /* CONFIG_MMU */
2344
2345 EXPORT_SYMBOL(generic_file_mmap);
2346 EXPORT_SYMBOL(generic_file_readonly_mmap);
2347
2348 static struct page *wait_on_page_read(struct page *page)
2349 {
2350         if (!IS_ERR(page)) {
2351                 wait_on_page_locked(page);
2352                 if (!PageUptodate(page)) {
2353                         put_page(page);
2354                         page = ERR_PTR(-EIO);
2355                 }
2356         }
2357         return page;
2358 }
2359
2360 static struct page *do_read_cache_page(struct address_space *mapping,
2361                                 pgoff_t index,
2362                                 int (*filler)(void *, struct page *),
2363                                 void *data,
2364                                 gfp_t gfp)
2365 {
2366         struct page *page;
2367         int err;
2368 repeat:
2369         page = find_get_page(mapping, index);
2370         if (!page) {
2371                 page = __page_cache_alloc(gfp | __GFP_COLD);
2372                 if (!page)
2373                         return ERR_PTR(-ENOMEM);
2374                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2375                 if (unlikely(err)) {
2376                         put_page(page);
2377                         if (err == -EEXIST)
2378                                 goto repeat;
2379                         /* Presumably ENOMEM for radix tree node */
2380                         return ERR_PTR(err);
2381                 }
2382
2383 filler:
2384                 err = filler(data, page);
2385                 if (err < 0) {
2386                         put_page(page);
2387                         return ERR_PTR(err);
2388                 }
2389
2390                 page = wait_on_page_read(page);
2391                 if (IS_ERR(page))
2392                         return page;
2393                 goto out;
2394         }
2395         if (PageUptodate(page))
2396                 goto out;
2397
2398         /*
2399          * Page is not up to date and may be locked due one of the following
2400          * case a: Page is being filled and the page lock is held
2401          * case b: Read/write error clearing the page uptodate status
2402          * case c: Truncation in progress (page locked)
2403          * case d: Reclaim in progress
2404          *
2405          * Case a, the page will be up to date when the page is unlocked.
2406          *    There is no need to serialise on the page lock here as the page
2407          *    is pinned so the lock gives no additional protection. Even if the
2408          *    the page is truncated, the data is still valid if PageUptodate as
2409          *    it's a race vs truncate race.
2410          * Case b, the page will not be up to date
2411          * Case c, the page may be truncated but in itself, the data may still
2412          *    be valid after IO completes as it's a read vs truncate race. The
2413          *    operation must restart if the page is not uptodate on unlock but
2414          *    otherwise serialising on page lock to stabilise the mapping gives
2415          *    no additional guarantees to the caller as the page lock is
2416          *    released before return.
2417          * Case d, similar to truncation. If reclaim holds the page lock, it
2418          *    will be a race with remove_mapping that determines if the mapping
2419          *    is valid on unlock but otherwise the data is valid and there is
2420          *    no need to serialise with page lock.
2421          *
2422          * As the page lock gives no additional guarantee, we optimistically
2423          * wait on the page to be unlocked and check if it's up to date and
2424          * use the page if it is. Otherwise, the page lock is required to
2425          * distinguish between the different cases. The motivation is that we
2426          * avoid spurious serialisations and wakeups when multiple processes
2427          * wait on the same page for IO to complete.
2428          */
2429         wait_on_page_locked(page);
2430         if (PageUptodate(page))
2431                 goto out;
2432
2433         /* Distinguish between all the cases under the safety of the lock */
2434         lock_page(page);
2435
2436         /* Case c or d, restart the operation */
2437         if (!page->mapping) {
2438                 unlock_page(page);
2439                 put_page(page);
2440                 goto repeat;
2441         }
2442
2443         /* Someone else locked and filled the page in a very small window */
2444         if (PageUptodate(page)) {
2445                 unlock_page(page);
2446                 goto out;
2447         }
2448         goto filler;
2449
2450 out:
2451         mark_page_accessed(page);
2452         return page;
2453 }
2454
2455 /**
2456  * read_cache_page - read into page cache, fill it if needed
2457  * @mapping:    the page's address_space
2458  * @index:      the page index
2459  * @filler:     function to perform the read
2460  * @data:       first arg to filler(data, page) function, often left as NULL
2461  *
2462  * Read into the page cache. If a page already exists, and PageUptodate() is
2463  * not set, try to fill the page and wait for it to become unlocked.
2464  *
2465  * If the page does not get brought uptodate, return -EIO.
2466  */
2467 struct page *read_cache_page(struct address_space *mapping,
2468                                 pgoff_t index,
2469                                 int (*filler)(void *, struct page *),
2470                                 void *data)
2471 {
2472         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2473 }
2474 EXPORT_SYMBOL(read_cache_page);
2475
2476 /**
2477  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2478  * @mapping:    the page's address_space
2479  * @index:      the page index
2480  * @gfp:        the page allocator flags to use if allocating
2481  *
2482  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2483  * any new page allocations done using the specified allocation flags.
2484  *
2485  * If the page does not get brought uptodate, return -EIO.
2486  */
2487 struct page *read_cache_page_gfp(struct address_space *mapping,
2488                                 pgoff_t index,
2489                                 gfp_t gfp)
2490 {
2491         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2492
2493         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2494 }
2495 EXPORT_SYMBOL(read_cache_page_gfp);
2496
2497 /*
2498  * Performs necessary checks before doing a write
2499  *
2500  * Can adjust writing position or amount of bytes to write.
2501  * Returns appropriate error code that caller should return or
2502  * zero in case that write should be allowed.
2503  */
2504 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2505 {
2506         struct file *file = iocb->ki_filp;
2507         struct inode *inode = file->f_mapping->host;
2508         unsigned long limit = rlimit(RLIMIT_FSIZE);
2509         loff_t pos;
2510
2511         if (!iov_iter_count(from))
2512                 return 0;
2513
2514         /* FIXME: this is for backwards compatibility with 2.4 */
2515         if (iocb->ki_flags & IOCB_APPEND)
2516                 iocb->ki_pos = i_size_read(inode);
2517
2518         pos = iocb->ki_pos;
2519
2520         if (limit != RLIM_INFINITY) {
2521                 if (iocb->ki_pos >= limit) {
2522                         send_sig(SIGXFSZ, current, 0);
2523                         return -EFBIG;
2524                 }
2525                 iov_iter_truncate(from, limit - (unsigned long)pos);
2526         }
2527
2528         /*
2529          * LFS rule
2530          */
2531         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2532                                 !(file->f_flags & O_LARGEFILE))) {
2533                 if (pos >= MAX_NON_LFS)
2534                         return -EFBIG;
2535                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2536         }
2537
2538         /*
2539          * Are we about to exceed the fs block limit ?
2540          *
2541          * If we have written data it becomes a short write.  If we have
2542          * exceeded without writing data we send a signal and return EFBIG.
2543          * Linus frestrict idea will clean these up nicely..
2544          */
2545         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2546                 return -EFBIG;
2547
2548         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2549         return iov_iter_count(from);
2550 }
2551 EXPORT_SYMBOL(generic_write_checks);
2552
2553 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2554                                 loff_t pos, unsigned len, unsigned flags,
2555                                 struct page **pagep, void **fsdata)
2556 {
2557         const struct address_space_operations *aops = mapping->a_ops;
2558
2559         return aops->write_begin(file, mapping, pos, len, flags,
2560                                                         pagep, fsdata);
2561 }
2562 EXPORT_SYMBOL(pagecache_write_begin);
2563
2564 int pagecache_write_end(struct file *file, struct address_space *mapping,
2565                                 loff_t pos, unsigned len, unsigned copied,
2566                                 struct page *page, void *fsdata)
2567 {
2568         const struct address_space_operations *aops = mapping->a_ops;
2569
2570         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2571 }
2572 EXPORT_SYMBOL(pagecache_write_end);
2573
2574 ssize_t
2575 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2576 {
2577         struct file     *file = iocb->ki_filp;
2578         struct address_space *mapping = file->f_mapping;
2579         struct inode    *inode = mapping->host;
2580         loff_t          pos = iocb->ki_pos;
2581         ssize_t         written;
2582         size_t          write_len;
2583         pgoff_t         end;
2584         struct iov_iter data;
2585
2586         write_len = iov_iter_count(from);
2587         end = (pos + write_len - 1) >> PAGE_SHIFT;
2588
2589         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2590         if (written)
2591                 goto out;
2592
2593         /*
2594          * After a write we want buffered reads to be sure to go to disk to get
2595          * the new data.  We invalidate clean cached page from the region we're
2596          * about to write.  We do this *before* the write so that we can return
2597          * without clobbering -EIOCBQUEUED from ->direct_IO().
2598          */
2599         if (mapping->nrpages) {
2600                 written = invalidate_inode_pages2_range(mapping,
2601                                         pos >> PAGE_SHIFT, end);
2602                 /*
2603                  * If a page can not be invalidated, return 0 to fall back
2604                  * to buffered write.
2605                  */
2606                 if (written) {
2607                         if (written == -EBUSY)
2608                                 return 0;
2609                         goto out;
2610                 }
2611         }
2612
2613         data = *from;
2614         written = mapping->a_ops->direct_IO(iocb, &data);
2615
2616         /*
2617          * Finally, try again to invalidate clean pages which might have been
2618          * cached by non-direct readahead, or faulted in by get_user_pages()
2619          * if the source of the write was an mmap'ed region of the file
2620          * we're writing.  Either one is a pretty crazy thing to do,
2621          * so we don't support it 100%.  If this invalidation
2622          * fails, tough, the write still worked...
2623          */
2624         if (mapping->nrpages) {
2625                 invalidate_inode_pages2_range(mapping,
2626                                               pos >> PAGE_SHIFT, end);
2627         }
2628
2629         if (written > 0) {
2630                 pos += written;
2631                 iov_iter_advance(from, written);
2632                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2633                         i_size_write(inode, pos);
2634                         mark_inode_dirty(inode);
2635                 }
2636                 iocb->ki_pos = pos;
2637         }
2638 out:
2639         return written;
2640 }
2641 EXPORT_SYMBOL(generic_file_direct_write);
2642
2643 /*
2644  * Find or create a page at the given pagecache position. Return the locked
2645  * page. This function is specifically for buffered writes.
2646  */
2647 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2648                                         pgoff_t index, unsigned flags)
2649 {
2650         struct page *page;
2651         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2652
2653         if (flags & AOP_FLAG_NOFS)
2654                 fgp_flags |= FGP_NOFS;
2655
2656         page = pagecache_get_page(mapping, index, fgp_flags,
2657                         mapping_gfp_mask(mapping));
2658         if (page)
2659                 wait_for_stable_page(page);
2660
2661         return page;
2662 }
2663 EXPORT_SYMBOL(grab_cache_page_write_begin);
2664
2665 ssize_t generic_perform_write(struct file *file,
2666                                 struct iov_iter *i, loff_t pos)
2667 {
2668         struct address_space *mapping = file->f_mapping;
2669         const struct address_space_operations *a_ops = mapping->a_ops;
2670         long status = 0;
2671         ssize_t written = 0;
2672         unsigned int flags = 0;
2673
2674         /*
2675          * Copies from kernel address space cannot fail (NFSD is a big user).
2676          */
2677         if (!iter_is_iovec(i))
2678                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2679
2680         do {
2681                 struct page *page;
2682                 unsigned long offset;   /* Offset into pagecache page */
2683                 unsigned long bytes;    /* Bytes to write to page */
2684                 size_t copied;          /* Bytes copied from user */
2685                 void *fsdata;
2686
2687                 offset = (pos & (PAGE_SIZE - 1));
2688                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2689                                                 iov_iter_count(i));
2690
2691 again:
2692                 /*
2693                  * Bring in the user page that we will copy from _first_.
2694                  * Otherwise there's a nasty deadlock on copying from the
2695                  * same page as we're writing to, without it being marked
2696                  * up-to-date.
2697                  *
2698                  * Not only is this an optimisation, but it is also required
2699                  * to check that the address is actually valid, when atomic
2700                  * usercopies are used, below.
2701                  */
2702                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2703                         status = -EFAULT;
2704                         break;
2705                 }
2706
2707                 if (fatal_signal_pending(current)) {
2708                         status = -EINTR;
2709                         break;
2710                 }
2711
2712                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2713                                                 &page, &fsdata);
2714                 if (unlikely(status < 0))
2715                         break;
2716
2717                 if (mapping_writably_mapped(mapping))
2718                         flush_dcache_page(page);
2719
2720                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2721                 flush_dcache_page(page);
2722
2723                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2724                                                 page, fsdata);
2725                 if (unlikely(status < 0))
2726                         break;
2727                 copied = status;
2728
2729                 cond_resched();
2730
2731                 iov_iter_advance(i, copied);
2732                 if (unlikely(copied == 0)) {
2733                         /*
2734                          * If we were unable to copy any data at all, we must
2735                          * fall back to a single segment length write.
2736                          *
2737                          * If we didn't fallback here, we could livelock
2738                          * because not all segments in the iov can be copied at
2739                          * once without a pagefault.
2740                          */
2741                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
2742                                                 iov_iter_single_seg_count(i));
2743                         goto again;
2744                 }
2745                 pos += copied;
2746                 written += copied;
2747
2748                 balance_dirty_pages_ratelimited(mapping);
2749         } while (iov_iter_count(i));
2750
2751         return written ? written : status;
2752 }
2753 EXPORT_SYMBOL(generic_perform_write);
2754
2755 /**
2756  * __generic_file_write_iter - write data to a file
2757  * @iocb:       IO state structure (file, offset, etc.)
2758  * @from:       iov_iter with data to write
2759  *
2760  * This function does all the work needed for actually writing data to a
2761  * file. It does all basic checks, removes SUID from the file, updates
2762  * modification times and calls proper subroutines depending on whether we
2763  * do direct IO or a standard buffered write.
2764  *
2765  * It expects i_mutex to be grabbed unless we work on a block device or similar
2766  * object which does not need locking at all.
2767  *
2768  * This function does *not* take care of syncing data in case of O_SYNC write.
2769  * A caller has to handle it. This is mainly due to the fact that we want to
2770  * avoid syncing under i_mutex.
2771  */
2772 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2773 {
2774         struct file *file = iocb->ki_filp;
2775         struct address_space * mapping = file->f_mapping;
2776         struct inode    *inode = mapping->host;
2777         ssize_t         written = 0;
2778         ssize_t         err;
2779         ssize_t         status;
2780
2781         /* We can write back this queue in page reclaim */
2782         current->backing_dev_info = inode_to_bdi(inode);
2783         err = file_remove_privs(file);
2784         if (err)
2785                 goto out;
2786
2787         err = file_update_time(file);
2788         if (err)
2789                 goto out;
2790
2791         if (iocb->ki_flags & IOCB_DIRECT) {
2792                 loff_t pos, endbyte;
2793
2794                 written = generic_file_direct_write(iocb, from);
2795                 /*
2796                  * If the write stopped short of completing, fall back to
2797                  * buffered writes.  Some filesystems do this for writes to
2798                  * holes, for example.  For DAX files, a buffered write will
2799                  * not succeed (even if it did, DAX does not handle dirty
2800                  * page-cache pages correctly).
2801                  */
2802                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2803                         goto out;
2804
2805                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2806                 /*
2807                  * If generic_perform_write() returned a synchronous error
2808                  * then we want to return the number of bytes which were
2809                  * direct-written, or the error code if that was zero.  Note
2810                  * that this differs from normal direct-io semantics, which
2811                  * will return -EFOO even if some bytes were written.
2812                  */
2813                 if (unlikely(status < 0)) {
2814                         err = status;
2815                         goto out;
2816                 }
2817                 /*
2818                  * We need to ensure that the page cache pages are written to
2819                  * disk and invalidated to preserve the expected O_DIRECT
2820                  * semantics.
2821                  */
2822                 endbyte = pos + status - 1;
2823                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2824                 if (err == 0) {
2825                         iocb->ki_pos = endbyte + 1;
2826                         written += status;
2827                         invalidate_mapping_pages(mapping,
2828                                                  pos >> PAGE_SHIFT,
2829                                                  endbyte >> PAGE_SHIFT);
2830                 } else {
2831                         /*
2832                          * We don't know how much we wrote, so just return
2833                          * the number of bytes which were direct-written
2834                          */
2835                 }
2836         } else {
2837                 written = generic_perform_write(file, from, iocb->ki_pos);
2838                 if (likely(written > 0))
2839                         iocb->ki_pos += written;
2840         }
2841 out:
2842         current->backing_dev_info = NULL;
2843         return written ? written : err;
2844 }
2845 EXPORT_SYMBOL(__generic_file_write_iter);
2846
2847 /**
2848  * generic_file_write_iter - write data to a file
2849  * @iocb:       IO state structure
2850  * @from:       iov_iter with data to write
2851  *
2852  * This is a wrapper around __generic_file_write_iter() to be used by most
2853  * filesystems. It takes care of syncing the file in case of O_SYNC file
2854  * and acquires i_mutex as needed.
2855  */
2856 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2857 {
2858         struct file *file = iocb->ki_filp;
2859         struct inode *inode = file->f_mapping->host;
2860         ssize_t ret;
2861
2862         inode_lock(inode);
2863         ret = generic_write_checks(iocb, from);
2864         if (ret > 0)
2865                 ret = __generic_file_write_iter(iocb, from);
2866         inode_unlock(inode);
2867
2868         if (ret > 0)
2869                 ret = generic_write_sync(iocb, ret);
2870         return ret;
2871 }
2872 EXPORT_SYMBOL(generic_file_write_iter);
2873
2874 /**
2875  * try_to_release_page() - release old fs-specific metadata on a page
2876  *
2877  * @page: the page which the kernel is trying to free
2878  * @gfp_mask: memory allocation flags (and I/O mode)
2879  *
2880  * The address_space is to try to release any data against the page
2881  * (presumably at page->private).  If the release was successful, return `1'.
2882  * Otherwise return zero.
2883  *
2884  * This may also be called if PG_fscache is set on a page, indicating that the
2885  * page is known to the local caching routines.
2886  *
2887  * The @gfp_mask argument specifies whether I/O may be performed to release
2888  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2889  *
2890  */
2891 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2892 {
2893         struct address_space * const mapping = page->mapping;
2894
2895         BUG_ON(!PageLocked(page));
2896         if (PageWriteback(page))
2897                 return 0;
2898
2899         if (mapping && mapping->a_ops->releasepage)
2900                 return mapping->a_ops->releasepage(page, gfp_mask);
2901         return try_to_free_buffers(page);
2902 }
2903
2904 EXPORT_SYMBOL(try_to_release_page);