Merge tag 'gpio-v4.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux...
[cascardo/linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem              (truncate_pagecache)
66  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock             (exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page               (access_process_vm)
80  *
81  *  ->i_mutex                   (generic_perform_write)
82  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
99  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
107  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112
113 static void page_cache_tree_delete(struct address_space *mapping,
114                                    struct page *page, void *shadow)
115 {
116         struct radix_tree_node *node;
117
118         VM_BUG_ON(!PageLocked(page));
119
120         node = radix_tree_replace_clear_tags(&mapping->page_tree, page->index,
121                                                                 shadow);
122
123         if (shadow) {
124                 mapping->nrexceptional++;
125                 /*
126                  * Make sure the nrexceptional update is committed before
127                  * the nrpages update so that final truncate racing
128                  * with reclaim does not see both counters 0 at the
129                  * same time and miss a shadow entry.
130                  */
131                 smp_wmb();
132         }
133         mapping->nrpages--;
134
135         if (!node)
136                 return;
137
138         workingset_node_pages_dec(node);
139         if (shadow)
140                 workingset_node_shadows_inc(node);
141         else
142                 if (__radix_tree_delete_node(&mapping->page_tree, node))
143                         return;
144
145         /*
146          * Track node that only contains shadow entries. DAX mappings contain
147          * no shadow entries and may contain other exceptional entries so skip
148          * those.
149          *
150          * Avoid acquiring the list_lru lock if already tracked.  The
151          * list_empty() test is safe as node->private_list is
152          * protected by mapping->tree_lock.
153          */
154         if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
155             list_empty(&node->private_list)) {
156                 node->private_data = mapping;
157                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
158         }
159 }
160
161 /*
162  * Delete a page from the page cache and free it. Caller has to make
163  * sure the page is locked and that nobody else uses it - or that usage
164  * is safe.  The caller must hold the mapping's tree_lock.
165  */
166 void __delete_from_page_cache(struct page *page, void *shadow)
167 {
168         struct address_space *mapping = page->mapping;
169
170         trace_mm_filemap_delete_from_page_cache(page);
171         /*
172          * if we're uptodate, flush out into the cleancache, otherwise
173          * invalidate any existing cleancache entries.  We can't leave
174          * stale data around in the cleancache once our page is gone
175          */
176         if (PageUptodate(page) && PageMappedToDisk(page))
177                 cleancache_put_page(page);
178         else
179                 cleancache_invalidate_page(mapping, page);
180
181         VM_BUG_ON_PAGE(page_mapped(page), page);
182         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
183                 int mapcount;
184
185                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
186                          current->comm, page_to_pfn(page));
187                 dump_page(page, "still mapped when deleted");
188                 dump_stack();
189                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
190
191                 mapcount = page_mapcount(page);
192                 if (mapping_exiting(mapping) &&
193                     page_count(page) >= mapcount + 2) {
194                         /*
195                          * All vmas have already been torn down, so it's
196                          * a good bet that actually the page is unmapped,
197                          * and we'd prefer not to leak it: if we're wrong,
198                          * some other bad page check should catch it later.
199                          */
200                         page_mapcount_reset(page);
201                         page_ref_sub(page, mapcount);
202                 }
203         }
204
205         page_cache_tree_delete(mapping, page, shadow);
206
207         page->mapping = NULL;
208         /* Leave page->index set: truncation lookup relies upon it */
209
210         /* hugetlb pages do not participate in page cache accounting. */
211         if (!PageHuge(page))
212                 __dec_zone_page_state(page, NR_FILE_PAGES);
213         if (PageSwapBacked(page))
214                 __dec_zone_page_state(page, NR_SHMEM);
215
216         /*
217          * At this point page must be either written or cleaned by truncate.
218          * Dirty page here signals a bug and loss of unwritten data.
219          *
220          * This fixes dirty accounting after removing the page entirely but
221          * leaves PageDirty set: it has no effect for truncated page and
222          * anyway will be cleared before returning page into buddy allocator.
223          */
224         if (WARN_ON_ONCE(PageDirty(page)))
225                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
226 }
227
228 /**
229  * delete_from_page_cache - delete page from page cache
230  * @page: the page which the kernel is trying to remove from page cache
231  *
232  * This must be called only on pages that have been verified to be in the page
233  * cache and locked.  It will never put the page into the free list, the caller
234  * has a reference on the page.
235  */
236 void delete_from_page_cache(struct page *page)
237 {
238         struct address_space *mapping = page->mapping;
239         unsigned long flags;
240
241         void (*freepage)(struct page *);
242
243         BUG_ON(!PageLocked(page));
244
245         freepage = mapping->a_ops->freepage;
246
247         spin_lock_irqsave(&mapping->tree_lock, flags);
248         __delete_from_page_cache(page, NULL);
249         spin_unlock_irqrestore(&mapping->tree_lock, flags);
250
251         if (freepage)
252                 freepage(page);
253         put_page(page);
254 }
255 EXPORT_SYMBOL(delete_from_page_cache);
256
257 static int filemap_check_errors(struct address_space *mapping)
258 {
259         int ret = 0;
260         /* Check for outstanding write errors */
261         if (test_bit(AS_ENOSPC, &mapping->flags) &&
262             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
263                 ret = -ENOSPC;
264         if (test_bit(AS_EIO, &mapping->flags) &&
265             test_and_clear_bit(AS_EIO, &mapping->flags))
266                 ret = -EIO;
267         return ret;
268 }
269
270 /**
271  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
272  * @mapping:    address space structure to write
273  * @start:      offset in bytes where the range starts
274  * @end:        offset in bytes where the range ends (inclusive)
275  * @sync_mode:  enable synchronous operation
276  *
277  * Start writeback against all of a mapping's dirty pages that lie
278  * within the byte offsets <start, end> inclusive.
279  *
280  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
281  * opposed to a regular memory cleansing writeback.  The difference between
282  * these two operations is that if a dirty page/buffer is encountered, it must
283  * be waited upon, and not just skipped over.
284  */
285 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
286                                 loff_t end, int sync_mode)
287 {
288         int ret;
289         struct writeback_control wbc = {
290                 .sync_mode = sync_mode,
291                 .nr_to_write = LONG_MAX,
292                 .range_start = start,
293                 .range_end = end,
294         };
295
296         if (!mapping_cap_writeback_dirty(mapping))
297                 return 0;
298
299         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
300         ret = do_writepages(mapping, &wbc);
301         wbc_detach_inode(&wbc);
302         return ret;
303 }
304
305 static inline int __filemap_fdatawrite(struct address_space *mapping,
306         int sync_mode)
307 {
308         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
309 }
310
311 int filemap_fdatawrite(struct address_space *mapping)
312 {
313         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
314 }
315 EXPORT_SYMBOL(filemap_fdatawrite);
316
317 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
318                                 loff_t end)
319 {
320         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
321 }
322 EXPORT_SYMBOL(filemap_fdatawrite_range);
323
324 /**
325  * filemap_flush - mostly a non-blocking flush
326  * @mapping:    target address_space
327  *
328  * This is a mostly non-blocking flush.  Not suitable for data-integrity
329  * purposes - I/O may not be started against all dirty pages.
330  */
331 int filemap_flush(struct address_space *mapping)
332 {
333         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
334 }
335 EXPORT_SYMBOL(filemap_flush);
336
337 static int __filemap_fdatawait_range(struct address_space *mapping,
338                                      loff_t start_byte, loff_t end_byte)
339 {
340         pgoff_t index = start_byte >> PAGE_SHIFT;
341         pgoff_t end = end_byte >> PAGE_SHIFT;
342         struct pagevec pvec;
343         int nr_pages;
344         int ret = 0;
345
346         if (end_byte < start_byte)
347                 goto out;
348
349         pagevec_init(&pvec, 0);
350         while ((index <= end) &&
351                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
352                         PAGECACHE_TAG_WRITEBACK,
353                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
354                 unsigned i;
355
356                 for (i = 0; i < nr_pages; i++) {
357                         struct page *page = pvec.pages[i];
358
359                         /* until radix tree lookup accepts end_index */
360                         if (page->index > end)
361                                 continue;
362
363                         wait_on_page_writeback(page);
364                         if (TestClearPageError(page))
365                                 ret = -EIO;
366                 }
367                 pagevec_release(&pvec);
368                 cond_resched();
369         }
370 out:
371         return ret;
372 }
373
374 /**
375  * filemap_fdatawait_range - wait for writeback to complete
376  * @mapping:            address space structure to wait for
377  * @start_byte:         offset in bytes where the range starts
378  * @end_byte:           offset in bytes where the range ends (inclusive)
379  *
380  * Walk the list of under-writeback pages of the given address space
381  * in the given range and wait for all of them.  Check error status of
382  * the address space and return it.
383  *
384  * Since the error status of the address space is cleared by this function,
385  * callers are responsible for checking the return value and handling and/or
386  * reporting the error.
387  */
388 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
389                             loff_t end_byte)
390 {
391         int ret, ret2;
392
393         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
394         ret2 = filemap_check_errors(mapping);
395         if (!ret)
396                 ret = ret2;
397
398         return ret;
399 }
400 EXPORT_SYMBOL(filemap_fdatawait_range);
401
402 /**
403  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
404  * @mapping: address space structure to wait for
405  *
406  * Walk the list of under-writeback pages of the given address space
407  * and wait for all of them.  Unlike filemap_fdatawait(), this function
408  * does not clear error status of the address space.
409  *
410  * Use this function if callers don't handle errors themselves.  Expected
411  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
412  * fsfreeze(8)
413  */
414 void filemap_fdatawait_keep_errors(struct address_space *mapping)
415 {
416         loff_t i_size = i_size_read(mapping->host);
417
418         if (i_size == 0)
419                 return;
420
421         __filemap_fdatawait_range(mapping, 0, i_size - 1);
422 }
423
424 /**
425  * filemap_fdatawait - wait for all under-writeback pages to complete
426  * @mapping: address space structure to wait for
427  *
428  * Walk the list of under-writeback pages of the given address space
429  * and wait for all of them.  Check error status of the address space
430  * and return it.
431  *
432  * Since the error status of the address space is cleared by this function,
433  * callers are responsible for checking the return value and handling and/or
434  * reporting the error.
435  */
436 int filemap_fdatawait(struct address_space *mapping)
437 {
438         loff_t i_size = i_size_read(mapping->host);
439
440         if (i_size == 0)
441                 return 0;
442
443         return filemap_fdatawait_range(mapping, 0, i_size - 1);
444 }
445 EXPORT_SYMBOL(filemap_fdatawait);
446
447 int filemap_write_and_wait(struct address_space *mapping)
448 {
449         int err = 0;
450
451         if ((!dax_mapping(mapping) && mapping->nrpages) ||
452             (dax_mapping(mapping) && mapping->nrexceptional)) {
453                 err = filemap_fdatawrite(mapping);
454                 /*
455                  * Even if the above returned error, the pages may be
456                  * written partially (e.g. -ENOSPC), so we wait for it.
457                  * But the -EIO is special case, it may indicate the worst
458                  * thing (e.g. bug) happened, so we avoid waiting for it.
459                  */
460                 if (err != -EIO) {
461                         int err2 = filemap_fdatawait(mapping);
462                         if (!err)
463                                 err = err2;
464                 }
465         } else {
466                 err = filemap_check_errors(mapping);
467         }
468         return err;
469 }
470 EXPORT_SYMBOL(filemap_write_and_wait);
471
472 /**
473  * filemap_write_and_wait_range - write out & wait on a file range
474  * @mapping:    the address_space for the pages
475  * @lstart:     offset in bytes where the range starts
476  * @lend:       offset in bytes where the range ends (inclusive)
477  *
478  * Write out and wait upon file offsets lstart->lend, inclusive.
479  *
480  * Note that `lend' is inclusive (describes the last byte to be written) so
481  * that this function can be used to write to the very end-of-file (end = -1).
482  */
483 int filemap_write_and_wait_range(struct address_space *mapping,
484                                  loff_t lstart, loff_t lend)
485 {
486         int err = 0;
487
488         if ((!dax_mapping(mapping) && mapping->nrpages) ||
489             (dax_mapping(mapping) && mapping->nrexceptional)) {
490                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
491                                                  WB_SYNC_ALL);
492                 /* See comment of filemap_write_and_wait() */
493                 if (err != -EIO) {
494                         int err2 = filemap_fdatawait_range(mapping,
495                                                 lstart, lend);
496                         if (!err)
497                                 err = err2;
498                 }
499         } else {
500                 err = filemap_check_errors(mapping);
501         }
502         return err;
503 }
504 EXPORT_SYMBOL(filemap_write_and_wait_range);
505
506 /**
507  * replace_page_cache_page - replace a pagecache page with a new one
508  * @old:        page to be replaced
509  * @new:        page to replace with
510  * @gfp_mask:   allocation mode
511  *
512  * This function replaces a page in the pagecache with a new one.  On
513  * success it acquires the pagecache reference for the new page and
514  * drops it for the old page.  Both the old and new pages must be
515  * locked.  This function does not add the new page to the LRU, the
516  * caller must do that.
517  *
518  * The remove + add is atomic.  The only way this function can fail is
519  * memory allocation failure.
520  */
521 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
522 {
523         int error;
524
525         VM_BUG_ON_PAGE(!PageLocked(old), old);
526         VM_BUG_ON_PAGE(!PageLocked(new), new);
527         VM_BUG_ON_PAGE(new->mapping, new);
528
529         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
530         if (!error) {
531                 struct address_space *mapping = old->mapping;
532                 void (*freepage)(struct page *);
533                 unsigned long flags;
534
535                 pgoff_t offset = old->index;
536                 freepage = mapping->a_ops->freepage;
537
538                 get_page(new);
539                 new->mapping = mapping;
540                 new->index = offset;
541
542                 spin_lock_irqsave(&mapping->tree_lock, flags);
543                 __delete_from_page_cache(old, NULL);
544                 error = radix_tree_insert(&mapping->page_tree, offset, new);
545                 BUG_ON(error);
546                 mapping->nrpages++;
547
548                 /*
549                  * hugetlb pages do not participate in page cache accounting.
550                  */
551                 if (!PageHuge(new))
552                         __inc_zone_page_state(new, NR_FILE_PAGES);
553                 if (PageSwapBacked(new))
554                         __inc_zone_page_state(new, NR_SHMEM);
555                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
556                 mem_cgroup_migrate(old, new);
557                 radix_tree_preload_end();
558                 if (freepage)
559                         freepage(old);
560                 put_page(old);
561         }
562
563         return error;
564 }
565 EXPORT_SYMBOL_GPL(replace_page_cache_page);
566
567 static int page_cache_tree_insert(struct address_space *mapping,
568                                   struct page *page, void **shadowp)
569 {
570         struct radix_tree_node *node;
571         void **slot;
572         int error;
573
574         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
575                                     &node, &slot);
576         if (error)
577                 return error;
578         if (*slot) {
579                 void *p;
580
581                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
582                 if (!radix_tree_exceptional_entry(p))
583                         return -EEXIST;
584
585                 mapping->nrexceptional--;
586                 if (!dax_mapping(mapping)) {
587                         if (shadowp)
588                                 *shadowp = p;
589                         if (node)
590                                 workingset_node_shadows_dec(node);
591                 } else {
592                         /* DAX can replace empty locked entry with a hole */
593                         WARN_ON_ONCE(p !=
594                                 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
595                                          RADIX_DAX_ENTRY_LOCK));
596                         /* DAX accounts exceptional entries as normal pages */
597                         if (node)
598                                 workingset_node_pages_dec(node);
599                         /* Wakeup waiters for exceptional entry lock */
600                         dax_wake_mapping_entry_waiter(mapping, page->index,
601                                                       false);
602                 }
603         }
604         radix_tree_replace_slot(slot, page);
605         mapping->nrpages++;
606         if (node) {
607                 workingset_node_pages_inc(node);
608                 /*
609                  * Don't track node that contains actual pages.
610                  *
611                  * Avoid acquiring the list_lru lock if already
612                  * untracked.  The list_empty() test is safe as
613                  * node->private_list is protected by
614                  * mapping->tree_lock.
615                  */
616                 if (!list_empty(&node->private_list))
617                         list_lru_del(&workingset_shadow_nodes,
618                                      &node->private_list);
619         }
620         return 0;
621 }
622
623 static int __add_to_page_cache_locked(struct page *page,
624                                       struct address_space *mapping,
625                                       pgoff_t offset, gfp_t gfp_mask,
626                                       void **shadowp)
627 {
628         int huge = PageHuge(page);
629         struct mem_cgroup *memcg;
630         int error;
631
632         VM_BUG_ON_PAGE(!PageLocked(page), page);
633         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
634
635         if (!huge) {
636                 error = mem_cgroup_try_charge(page, current->mm,
637                                               gfp_mask, &memcg, false);
638                 if (error)
639                         return error;
640         }
641
642         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
643         if (error) {
644                 if (!huge)
645                         mem_cgroup_cancel_charge(page, memcg, false);
646                 return error;
647         }
648
649         get_page(page);
650         page->mapping = mapping;
651         page->index = offset;
652
653         spin_lock_irq(&mapping->tree_lock);
654         error = page_cache_tree_insert(mapping, page, shadowp);
655         radix_tree_preload_end();
656         if (unlikely(error))
657                 goto err_insert;
658
659         /* hugetlb pages do not participate in page cache accounting. */
660         if (!huge)
661                 __inc_zone_page_state(page, NR_FILE_PAGES);
662         spin_unlock_irq(&mapping->tree_lock);
663         if (!huge)
664                 mem_cgroup_commit_charge(page, memcg, false, false);
665         trace_mm_filemap_add_to_page_cache(page);
666         return 0;
667 err_insert:
668         page->mapping = NULL;
669         /* Leave page->index set: truncation relies upon it */
670         spin_unlock_irq(&mapping->tree_lock);
671         if (!huge)
672                 mem_cgroup_cancel_charge(page, memcg, false);
673         put_page(page);
674         return error;
675 }
676
677 /**
678  * add_to_page_cache_locked - add a locked page to the pagecache
679  * @page:       page to add
680  * @mapping:    the page's address_space
681  * @offset:     page index
682  * @gfp_mask:   page allocation mode
683  *
684  * This function is used to add a page to the pagecache. It must be locked.
685  * This function does not add the page to the LRU.  The caller must do that.
686  */
687 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
688                 pgoff_t offset, gfp_t gfp_mask)
689 {
690         return __add_to_page_cache_locked(page, mapping, offset,
691                                           gfp_mask, NULL);
692 }
693 EXPORT_SYMBOL(add_to_page_cache_locked);
694
695 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
696                                 pgoff_t offset, gfp_t gfp_mask)
697 {
698         void *shadow = NULL;
699         int ret;
700
701         __SetPageLocked(page);
702         ret = __add_to_page_cache_locked(page, mapping, offset,
703                                          gfp_mask, &shadow);
704         if (unlikely(ret))
705                 __ClearPageLocked(page);
706         else {
707                 /*
708                  * The page might have been evicted from cache only
709                  * recently, in which case it should be activated like
710                  * any other repeatedly accessed page.
711                  * The exception is pages getting rewritten; evicting other
712                  * data from the working set, only to cache data that will
713                  * get overwritten with something else, is a waste of memory.
714                  */
715                 if (!(gfp_mask & __GFP_WRITE) &&
716                     shadow && workingset_refault(shadow)) {
717                         SetPageActive(page);
718                         workingset_activation(page);
719                 } else
720                         ClearPageActive(page);
721                 lru_cache_add(page);
722         }
723         return ret;
724 }
725 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
726
727 #ifdef CONFIG_NUMA
728 struct page *__page_cache_alloc(gfp_t gfp)
729 {
730         int n;
731         struct page *page;
732
733         if (cpuset_do_page_mem_spread()) {
734                 unsigned int cpuset_mems_cookie;
735                 do {
736                         cpuset_mems_cookie = read_mems_allowed_begin();
737                         n = cpuset_mem_spread_node();
738                         page = __alloc_pages_node(n, gfp, 0);
739                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
740
741                 return page;
742         }
743         return alloc_pages(gfp, 0);
744 }
745 EXPORT_SYMBOL(__page_cache_alloc);
746 #endif
747
748 /*
749  * In order to wait for pages to become available there must be
750  * waitqueues associated with pages. By using a hash table of
751  * waitqueues where the bucket discipline is to maintain all
752  * waiters on the same queue and wake all when any of the pages
753  * become available, and for the woken contexts to check to be
754  * sure the appropriate page became available, this saves space
755  * at a cost of "thundering herd" phenomena during rare hash
756  * collisions.
757  */
758 wait_queue_head_t *page_waitqueue(struct page *page)
759 {
760         const struct zone *zone = page_zone(page);
761
762         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
763 }
764 EXPORT_SYMBOL(page_waitqueue);
765
766 void wait_on_page_bit(struct page *page, int bit_nr)
767 {
768         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
769
770         if (test_bit(bit_nr, &page->flags))
771                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
772                                                         TASK_UNINTERRUPTIBLE);
773 }
774 EXPORT_SYMBOL(wait_on_page_bit);
775
776 int wait_on_page_bit_killable(struct page *page, int bit_nr)
777 {
778         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
779
780         if (!test_bit(bit_nr, &page->flags))
781                 return 0;
782
783         return __wait_on_bit(page_waitqueue(page), &wait,
784                              bit_wait_io, TASK_KILLABLE);
785 }
786
787 int wait_on_page_bit_killable_timeout(struct page *page,
788                                        int bit_nr, unsigned long timeout)
789 {
790         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
791
792         wait.key.timeout = jiffies + timeout;
793         if (!test_bit(bit_nr, &page->flags))
794                 return 0;
795         return __wait_on_bit(page_waitqueue(page), &wait,
796                              bit_wait_io_timeout, TASK_KILLABLE);
797 }
798 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
799
800 /**
801  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
802  * @page: Page defining the wait queue of interest
803  * @waiter: Waiter to add to the queue
804  *
805  * Add an arbitrary @waiter to the wait queue for the nominated @page.
806  */
807 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
808 {
809         wait_queue_head_t *q = page_waitqueue(page);
810         unsigned long flags;
811
812         spin_lock_irqsave(&q->lock, flags);
813         __add_wait_queue(q, waiter);
814         spin_unlock_irqrestore(&q->lock, flags);
815 }
816 EXPORT_SYMBOL_GPL(add_page_wait_queue);
817
818 /**
819  * unlock_page - unlock a locked page
820  * @page: the page
821  *
822  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
823  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
824  * mechanism between PageLocked pages and PageWriteback pages is shared.
825  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
826  *
827  * The mb is necessary to enforce ordering between the clear_bit and the read
828  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
829  */
830 void unlock_page(struct page *page)
831 {
832         page = compound_head(page);
833         VM_BUG_ON_PAGE(!PageLocked(page), page);
834         clear_bit_unlock(PG_locked, &page->flags);
835         smp_mb__after_atomic();
836         wake_up_page(page, PG_locked);
837 }
838 EXPORT_SYMBOL(unlock_page);
839
840 /**
841  * end_page_writeback - end writeback against a page
842  * @page: the page
843  */
844 void end_page_writeback(struct page *page)
845 {
846         /*
847          * TestClearPageReclaim could be used here but it is an atomic
848          * operation and overkill in this particular case. Failing to
849          * shuffle a page marked for immediate reclaim is too mild to
850          * justify taking an atomic operation penalty at the end of
851          * ever page writeback.
852          */
853         if (PageReclaim(page)) {
854                 ClearPageReclaim(page);
855                 rotate_reclaimable_page(page);
856         }
857
858         if (!test_clear_page_writeback(page))
859                 BUG();
860
861         smp_mb__after_atomic();
862         wake_up_page(page, PG_writeback);
863 }
864 EXPORT_SYMBOL(end_page_writeback);
865
866 /*
867  * After completing I/O on a page, call this routine to update the page
868  * flags appropriately
869  */
870 void page_endio(struct page *page, int rw, int err)
871 {
872         if (rw == READ) {
873                 if (!err) {
874                         SetPageUptodate(page);
875                 } else {
876                         ClearPageUptodate(page);
877                         SetPageError(page);
878                 }
879                 unlock_page(page);
880         } else { /* rw == WRITE */
881                 if (err) {
882                         SetPageError(page);
883                         if (page->mapping)
884                                 mapping_set_error(page->mapping, err);
885                 }
886                 end_page_writeback(page);
887         }
888 }
889 EXPORT_SYMBOL_GPL(page_endio);
890
891 /**
892  * __lock_page - get a lock on the page, assuming we need to sleep to get it
893  * @page: the page to lock
894  */
895 void __lock_page(struct page *page)
896 {
897         struct page *page_head = compound_head(page);
898         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
899
900         __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
901                                                         TASK_UNINTERRUPTIBLE);
902 }
903 EXPORT_SYMBOL(__lock_page);
904
905 int __lock_page_killable(struct page *page)
906 {
907         struct page *page_head = compound_head(page);
908         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
909
910         return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
911                                         bit_wait_io, TASK_KILLABLE);
912 }
913 EXPORT_SYMBOL_GPL(__lock_page_killable);
914
915 /*
916  * Return values:
917  * 1 - page is locked; mmap_sem is still held.
918  * 0 - page is not locked.
919  *     mmap_sem has been released (up_read()), unless flags had both
920  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
921  *     which case mmap_sem is still held.
922  *
923  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
924  * with the page locked and the mmap_sem unperturbed.
925  */
926 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
927                          unsigned int flags)
928 {
929         if (flags & FAULT_FLAG_ALLOW_RETRY) {
930                 /*
931                  * CAUTION! In this case, mmap_sem is not released
932                  * even though return 0.
933                  */
934                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
935                         return 0;
936
937                 up_read(&mm->mmap_sem);
938                 if (flags & FAULT_FLAG_KILLABLE)
939                         wait_on_page_locked_killable(page);
940                 else
941                         wait_on_page_locked(page);
942                 return 0;
943         } else {
944                 if (flags & FAULT_FLAG_KILLABLE) {
945                         int ret;
946
947                         ret = __lock_page_killable(page);
948                         if (ret) {
949                                 up_read(&mm->mmap_sem);
950                                 return 0;
951                         }
952                 } else
953                         __lock_page(page);
954                 return 1;
955         }
956 }
957
958 /**
959  * page_cache_next_hole - find the next hole (not-present entry)
960  * @mapping: mapping
961  * @index: index
962  * @max_scan: maximum range to search
963  *
964  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
965  * lowest indexed hole.
966  *
967  * Returns: the index of the hole if found, otherwise returns an index
968  * outside of the set specified (in which case 'return - index >=
969  * max_scan' will be true). In rare cases of index wrap-around, 0 will
970  * be returned.
971  *
972  * page_cache_next_hole may be called under rcu_read_lock. However,
973  * like radix_tree_gang_lookup, this will not atomically search a
974  * snapshot of the tree at a single point in time. For example, if a
975  * hole is created at index 5, then subsequently a hole is created at
976  * index 10, page_cache_next_hole covering both indexes may return 10
977  * if called under rcu_read_lock.
978  */
979 pgoff_t page_cache_next_hole(struct address_space *mapping,
980                              pgoff_t index, unsigned long max_scan)
981 {
982         unsigned long i;
983
984         for (i = 0; i < max_scan; i++) {
985                 struct page *page;
986
987                 page = radix_tree_lookup(&mapping->page_tree, index);
988                 if (!page || radix_tree_exceptional_entry(page))
989                         break;
990                 index++;
991                 if (index == 0)
992                         break;
993         }
994
995         return index;
996 }
997 EXPORT_SYMBOL(page_cache_next_hole);
998
999 /**
1000  * page_cache_prev_hole - find the prev hole (not-present entry)
1001  * @mapping: mapping
1002  * @index: index
1003  * @max_scan: maximum range to search
1004  *
1005  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1006  * the first hole.
1007  *
1008  * Returns: the index of the hole if found, otherwise returns an index
1009  * outside of the set specified (in which case 'index - return >=
1010  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1011  * will be returned.
1012  *
1013  * page_cache_prev_hole may be called under rcu_read_lock. However,
1014  * like radix_tree_gang_lookup, this will not atomically search a
1015  * snapshot of the tree at a single point in time. For example, if a
1016  * hole is created at index 10, then subsequently a hole is created at
1017  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1018  * called under rcu_read_lock.
1019  */
1020 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1021                              pgoff_t index, unsigned long max_scan)
1022 {
1023         unsigned long i;
1024
1025         for (i = 0; i < max_scan; i++) {
1026                 struct page *page;
1027
1028                 page = radix_tree_lookup(&mapping->page_tree, index);
1029                 if (!page || radix_tree_exceptional_entry(page))
1030                         break;
1031                 index--;
1032                 if (index == ULONG_MAX)
1033                         break;
1034         }
1035
1036         return index;
1037 }
1038 EXPORT_SYMBOL(page_cache_prev_hole);
1039
1040 /**
1041  * find_get_entry - find and get a page cache entry
1042  * @mapping: the address_space to search
1043  * @offset: the page cache index
1044  *
1045  * Looks up the page cache slot at @mapping & @offset.  If there is a
1046  * page cache page, it is returned with an increased refcount.
1047  *
1048  * If the slot holds a shadow entry of a previously evicted page, or a
1049  * swap entry from shmem/tmpfs, it is returned.
1050  *
1051  * Otherwise, %NULL is returned.
1052  */
1053 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1054 {
1055         void **pagep;
1056         struct page *page;
1057
1058         rcu_read_lock();
1059 repeat:
1060         page = NULL;
1061         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1062         if (pagep) {
1063                 page = radix_tree_deref_slot(pagep);
1064                 if (unlikely(!page))
1065                         goto out;
1066                 if (radix_tree_exception(page)) {
1067                         if (radix_tree_deref_retry(page))
1068                                 goto repeat;
1069                         /*
1070                          * A shadow entry of a recently evicted page,
1071                          * or a swap entry from shmem/tmpfs.  Return
1072                          * it without attempting to raise page count.
1073                          */
1074                         goto out;
1075                 }
1076                 if (!page_cache_get_speculative(page))
1077                         goto repeat;
1078
1079                 /*
1080                  * Has the page moved?
1081                  * This is part of the lockless pagecache protocol. See
1082                  * include/linux/pagemap.h for details.
1083                  */
1084                 if (unlikely(page != *pagep)) {
1085                         put_page(page);
1086                         goto repeat;
1087                 }
1088         }
1089 out:
1090         rcu_read_unlock();
1091
1092         return page;
1093 }
1094 EXPORT_SYMBOL(find_get_entry);
1095
1096 /**
1097  * find_lock_entry - locate, pin and lock a page cache entry
1098  * @mapping: the address_space to search
1099  * @offset: the page cache index
1100  *
1101  * Looks up the page cache slot at @mapping & @offset.  If there is a
1102  * page cache page, it is returned locked and with an increased
1103  * refcount.
1104  *
1105  * If the slot holds a shadow entry of a previously evicted page, or a
1106  * swap entry from shmem/tmpfs, it is returned.
1107  *
1108  * Otherwise, %NULL is returned.
1109  *
1110  * find_lock_entry() may sleep.
1111  */
1112 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1113 {
1114         struct page *page;
1115
1116 repeat:
1117         page = find_get_entry(mapping, offset);
1118         if (page && !radix_tree_exception(page)) {
1119                 lock_page(page);
1120                 /* Has the page been truncated? */
1121                 if (unlikely(page->mapping != mapping)) {
1122                         unlock_page(page);
1123                         put_page(page);
1124                         goto repeat;
1125                 }
1126                 VM_BUG_ON_PAGE(page->index != offset, page);
1127         }
1128         return page;
1129 }
1130 EXPORT_SYMBOL(find_lock_entry);
1131
1132 /**
1133  * pagecache_get_page - find and get a page reference
1134  * @mapping: the address_space to search
1135  * @offset: the page index
1136  * @fgp_flags: PCG flags
1137  * @gfp_mask: gfp mask to use for the page cache data page allocation
1138  *
1139  * Looks up the page cache slot at @mapping & @offset.
1140  *
1141  * PCG flags modify how the page is returned.
1142  *
1143  * FGP_ACCESSED: the page will be marked accessed
1144  * FGP_LOCK: Page is return locked
1145  * FGP_CREAT: If page is not present then a new page is allocated using
1146  *              @gfp_mask and added to the page cache and the VM's LRU
1147  *              list. The page is returned locked and with an increased
1148  *              refcount. Otherwise, %NULL is returned.
1149  *
1150  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1151  * if the GFP flags specified for FGP_CREAT are atomic.
1152  *
1153  * If there is a page cache page, it is returned with an increased refcount.
1154  */
1155 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1156         int fgp_flags, gfp_t gfp_mask)
1157 {
1158         struct page *page;
1159
1160 repeat:
1161         page = find_get_entry(mapping, offset);
1162         if (radix_tree_exceptional_entry(page))
1163                 page = NULL;
1164         if (!page)
1165                 goto no_page;
1166
1167         if (fgp_flags & FGP_LOCK) {
1168                 if (fgp_flags & FGP_NOWAIT) {
1169                         if (!trylock_page(page)) {
1170                                 put_page(page);
1171                                 return NULL;
1172                         }
1173                 } else {
1174                         lock_page(page);
1175                 }
1176
1177                 /* Has the page been truncated? */
1178                 if (unlikely(page->mapping != mapping)) {
1179                         unlock_page(page);
1180                         put_page(page);
1181                         goto repeat;
1182                 }
1183                 VM_BUG_ON_PAGE(page->index != offset, page);
1184         }
1185
1186         if (page && (fgp_flags & FGP_ACCESSED))
1187                 mark_page_accessed(page);
1188
1189 no_page:
1190         if (!page && (fgp_flags & FGP_CREAT)) {
1191                 int err;
1192                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1193                         gfp_mask |= __GFP_WRITE;
1194                 if (fgp_flags & FGP_NOFS)
1195                         gfp_mask &= ~__GFP_FS;
1196
1197                 page = __page_cache_alloc(gfp_mask);
1198                 if (!page)
1199                         return NULL;
1200
1201                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1202                         fgp_flags |= FGP_LOCK;
1203
1204                 /* Init accessed so avoid atomic mark_page_accessed later */
1205                 if (fgp_flags & FGP_ACCESSED)
1206                         __SetPageReferenced(page);
1207
1208                 err = add_to_page_cache_lru(page, mapping, offset,
1209                                 gfp_mask & GFP_RECLAIM_MASK);
1210                 if (unlikely(err)) {
1211                         put_page(page);
1212                         page = NULL;
1213                         if (err == -EEXIST)
1214                                 goto repeat;
1215                 }
1216         }
1217
1218         return page;
1219 }
1220 EXPORT_SYMBOL(pagecache_get_page);
1221
1222 /**
1223  * find_get_entries - gang pagecache lookup
1224  * @mapping:    The address_space to search
1225  * @start:      The starting page cache index
1226  * @nr_entries: The maximum number of entries
1227  * @entries:    Where the resulting entries are placed
1228  * @indices:    The cache indices corresponding to the entries in @entries
1229  *
1230  * find_get_entries() will search for and return a group of up to
1231  * @nr_entries entries in the mapping.  The entries are placed at
1232  * @entries.  find_get_entries() takes a reference against any actual
1233  * pages it returns.
1234  *
1235  * The search returns a group of mapping-contiguous page cache entries
1236  * with ascending indexes.  There may be holes in the indices due to
1237  * not-present pages.
1238  *
1239  * Any shadow entries of evicted pages, or swap entries from
1240  * shmem/tmpfs, are included in the returned array.
1241  *
1242  * find_get_entries() returns the number of pages and shadow entries
1243  * which were found.
1244  */
1245 unsigned find_get_entries(struct address_space *mapping,
1246                           pgoff_t start, unsigned int nr_entries,
1247                           struct page **entries, pgoff_t *indices)
1248 {
1249         void **slot;
1250         unsigned int ret = 0;
1251         struct radix_tree_iter iter;
1252
1253         if (!nr_entries)
1254                 return 0;
1255
1256         rcu_read_lock();
1257         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1258                 struct page *page;
1259 repeat:
1260                 page = radix_tree_deref_slot(slot);
1261                 if (unlikely(!page))
1262                         continue;
1263                 if (radix_tree_exception(page)) {
1264                         if (radix_tree_deref_retry(page)) {
1265                                 slot = radix_tree_iter_retry(&iter);
1266                                 continue;
1267                         }
1268                         /*
1269                          * A shadow entry of a recently evicted page, a swap
1270                          * entry from shmem/tmpfs or a DAX entry.  Return it
1271                          * without attempting to raise page count.
1272                          */
1273                         goto export;
1274                 }
1275                 if (!page_cache_get_speculative(page))
1276                         goto repeat;
1277
1278                 /* Has the page moved? */
1279                 if (unlikely(page != *slot)) {
1280                         put_page(page);
1281                         goto repeat;
1282                 }
1283 export:
1284                 indices[ret] = iter.index;
1285                 entries[ret] = page;
1286                 if (++ret == nr_entries)
1287                         break;
1288         }
1289         rcu_read_unlock();
1290         return ret;
1291 }
1292
1293 /**
1294  * find_get_pages - gang pagecache lookup
1295  * @mapping:    The address_space to search
1296  * @start:      The starting page index
1297  * @nr_pages:   The maximum number of pages
1298  * @pages:      Where the resulting pages are placed
1299  *
1300  * find_get_pages() will search for and return a group of up to
1301  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1302  * find_get_pages() takes a reference against the returned pages.
1303  *
1304  * The search returns a group of mapping-contiguous pages with ascending
1305  * indexes.  There may be holes in the indices due to not-present pages.
1306  *
1307  * find_get_pages() returns the number of pages which were found.
1308  */
1309 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1310                             unsigned int nr_pages, struct page **pages)
1311 {
1312         struct radix_tree_iter iter;
1313         void **slot;
1314         unsigned ret = 0;
1315
1316         if (unlikely(!nr_pages))
1317                 return 0;
1318
1319         rcu_read_lock();
1320         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1321                 struct page *page;
1322 repeat:
1323                 page = radix_tree_deref_slot(slot);
1324                 if (unlikely(!page))
1325                         continue;
1326
1327                 if (radix_tree_exception(page)) {
1328                         if (radix_tree_deref_retry(page)) {
1329                                 slot = radix_tree_iter_retry(&iter);
1330                                 continue;
1331                         }
1332                         /*
1333                          * A shadow entry of a recently evicted page,
1334                          * or a swap entry from shmem/tmpfs.  Skip
1335                          * over it.
1336                          */
1337                         continue;
1338                 }
1339
1340                 if (!page_cache_get_speculative(page))
1341                         goto repeat;
1342
1343                 /* Has the page moved? */
1344                 if (unlikely(page != *slot)) {
1345                         put_page(page);
1346                         goto repeat;
1347                 }
1348
1349                 pages[ret] = page;
1350                 if (++ret == nr_pages)
1351                         break;
1352         }
1353
1354         rcu_read_unlock();
1355         return ret;
1356 }
1357
1358 /**
1359  * find_get_pages_contig - gang contiguous pagecache lookup
1360  * @mapping:    The address_space to search
1361  * @index:      The starting page index
1362  * @nr_pages:   The maximum number of pages
1363  * @pages:      Where the resulting pages are placed
1364  *
1365  * find_get_pages_contig() works exactly like find_get_pages(), except
1366  * that the returned number of pages are guaranteed to be contiguous.
1367  *
1368  * find_get_pages_contig() returns the number of pages which were found.
1369  */
1370 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1371                                unsigned int nr_pages, struct page **pages)
1372 {
1373         struct radix_tree_iter iter;
1374         void **slot;
1375         unsigned int ret = 0;
1376
1377         if (unlikely(!nr_pages))
1378                 return 0;
1379
1380         rcu_read_lock();
1381         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1382                 struct page *page;
1383 repeat:
1384                 page = radix_tree_deref_slot(slot);
1385                 /* The hole, there no reason to continue */
1386                 if (unlikely(!page))
1387                         break;
1388
1389                 if (radix_tree_exception(page)) {
1390                         if (radix_tree_deref_retry(page)) {
1391                                 slot = radix_tree_iter_retry(&iter);
1392                                 continue;
1393                         }
1394                         /*
1395                          * A shadow entry of a recently evicted page,
1396                          * or a swap entry from shmem/tmpfs.  Stop
1397                          * looking for contiguous pages.
1398                          */
1399                         break;
1400                 }
1401
1402                 if (!page_cache_get_speculative(page))
1403                         goto repeat;
1404
1405                 /* Has the page moved? */
1406                 if (unlikely(page != *slot)) {
1407                         put_page(page);
1408                         goto repeat;
1409                 }
1410
1411                 /*
1412                  * must check mapping and index after taking the ref.
1413                  * otherwise we can get both false positives and false
1414                  * negatives, which is just confusing to the caller.
1415                  */
1416                 if (page->mapping == NULL || page->index != iter.index) {
1417                         put_page(page);
1418                         break;
1419                 }
1420
1421                 pages[ret] = page;
1422                 if (++ret == nr_pages)
1423                         break;
1424         }
1425         rcu_read_unlock();
1426         return ret;
1427 }
1428 EXPORT_SYMBOL(find_get_pages_contig);
1429
1430 /**
1431  * find_get_pages_tag - find and return pages that match @tag
1432  * @mapping:    the address_space to search
1433  * @index:      the starting page index
1434  * @tag:        the tag index
1435  * @nr_pages:   the maximum number of pages
1436  * @pages:      where the resulting pages are placed
1437  *
1438  * Like find_get_pages, except we only return pages which are tagged with
1439  * @tag.   We update @index to index the next page for the traversal.
1440  */
1441 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1442                         int tag, unsigned int nr_pages, struct page **pages)
1443 {
1444         struct radix_tree_iter iter;
1445         void **slot;
1446         unsigned ret = 0;
1447
1448         if (unlikely(!nr_pages))
1449                 return 0;
1450
1451         rcu_read_lock();
1452         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1453                                    &iter, *index, tag) {
1454                 struct page *page;
1455 repeat:
1456                 page = radix_tree_deref_slot(slot);
1457                 if (unlikely(!page))
1458                         continue;
1459
1460                 if (radix_tree_exception(page)) {
1461                         if (radix_tree_deref_retry(page)) {
1462                                 slot = radix_tree_iter_retry(&iter);
1463                                 continue;
1464                         }
1465                         /*
1466                          * A shadow entry of a recently evicted page.
1467                          *
1468                          * Those entries should never be tagged, but
1469                          * this tree walk is lockless and the tags are
1470                          * looked up in bulk, one radix tree node at a
1471                          * time, so there is a sizable window for page
1472                          * reclaim to evict a page we saw tagged.
1473                          *
1474                          * Skip over it.
1475                          */
1476                         continue;
1477                 }
1478
1479                 if (!page_cache_get_speculative(page))
1480                         goto repeat;
1481
1482                 /* Has the page moved? */
1483                 if (unlikely(page != *slot)) {
1484                         put_page(page);
1485                         goto repeat;
1486                 }
1487
1488                 pages[ret] = page;
1489                 if (++ret == nr_pages)
1490                         break;
1491         }
1492
1493         rcu_read_unlock();
1494
1495         if (ret)
1496                 *index = pages[ret - 1]->index + 1;
1497
1498         return ret;
1499 }
1500 EXPORT_SYMBOL(find_get_pages_tag);
1501
1502 /**
1503  * find_get_entries_tag - find and return entries that match @tag
1504  * @mapping:    the address_space to search
1505  * @start:      the starting page cache index
1506  * @tag:        the tag index
1507  * @nr_entries: the maximum number of entries
1508  * @entries:    where the resulting entries are placed
1509  * @indices:    the cache indices corresponding to the entries in @entries
1510  *
1511  * Like find_get_entries, except we only return entries which are tagged with
1512  * @tag.
1513  */
1514 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1515                         int tag, unsigned int nr_entries,
1516                         struct page **entries, pgoff_t *indices)
1517 {
1518         void **slot;
1519         unsigned int ret = 0;
1520         struct radix_tree_iter iter;
1521
1522         if (!nr_entries)
1523                 return 0;
1524
1525         rcu_read_lock();
1526         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1527                                    &iter, start, tag) {
1528                 struct page *page;
1529 repeat:
1530                 page = radix_tree_deref_slot(slot);
1531                 if (unlikely(!page))
1532                         continue;
1533                 if (radix_tree_exception(page)) {
1534                         if (radix_tree_deref_retry(page)) {
1535                                 slot = radix_tree_iter_retry(&iter);
1536                                 continue;
1537                         }
1538
1539                         /*
1540                          * A shadow entry of a recently evicted page, a swap
1541                          * entry from shmem/tmpfs or a DAX entry.  Return it
1542                          * without attempting to raise page count.
1543                          */
1544                         goto export;
1545                 }
1546                 if (!page_cache_get_speculative(page))
1547                         goto repeat;
1548
1549                 /* Has the page moved? */
1550                 if (unlikely(page != *slot)) {
1551                         put_page(page);
1552                         goto repeat;
1553                 }
1554 export:
1555                 indices[ret] = iter.index;
1556                 entries[ret] = page;
1557                 if (++ret == nr_entries)
1558                         break;
1559         }
1560         rcu_read_unlock();
1561         return ret;
1562 }
1563 EXPORT_SYMBOL(find_get_entries_tag);
1564
1565 /*
1566  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1567  * a _large_ part of the i/o request. Imagine the worst scenario:
1568  *
1569  *      ---R__________________________________________B__________
1570  *         ^ reading here                             ^ bad block(assume 4k)
1571  *
1572  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1573  * => failing the whole request => read(R) => read(R+1) =>
1574  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1575  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1576  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1577  *
1578  * It is going insane. Fix it by quickly scaling down the readahead size.
1579  */
1580 static void shrink_readahead_size_eio(struct file *filp,
1581                                         struct file_ra_state *ra)
1582 {
1583         ra->ra_pages /= 4;
1584 }
1585
1586 /**
1587  * do_generic_file_read - generic file read routine
1588  * @filp:       the file to read
1589  * @ppos:       current file position
1590  * @iter:       data destination
1591  * @written:    already copied
1592  *
1593  * This is a generic file read routine, and uses the
1594  * mapping->a_ops->readpage() function for the actual low-level stuff.
1595  *
1596  * This is really ugly. But the goto's actually try to clarify some
1597  * of the logic when it comes to error handling etc.
1598  */
1599 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1600                 struct iov_iter *iter, ssize_t written)
1601 {
1602         struct address_space *mapping = filp->f_mapping;
1603         struct inode *inode = mapping->host;
1604         struct file_ra_state *ra = &filp->f_ra;
1605         pgoff_t index;
1606         pgoff_t last_index;
1607         pgoff_t prev_index;
1608         unsigned long offset;      /* offset into pagecache page */
1609         unsigned int prev_offset;
1610         int error = 0;
1611
1612         index = *ppos >> PAGE_SHIFT;
1613         prev_index = ra->prev_pos >> PAGE_SHIFT;
1614         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1615         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1616         offset = *ppos & ~PAGE_MASK;
1617
1618         for (;;) {
1619                 struct page *page;
1620                 pgoff_t end_index;
1621                 loff_t isize;
1622                 unsigned long nr, ret;
1623
1624                 cond_resched();
1625 find_page:
1626                 page = find_get_page(mapping, index);
1627                 if (!page) {
1628                         page_cache_sync_readahead(mapping,
1629                                         ra, filp,
1630                                         index, last_index - index);
1631                         page = find_get_page(mapping, index);
1632                         if (unlikely(page == NULL))
1633                                 goto no_cached_page;
1634                 }
1635                 if (PageReadahead(page)) {
1636                         page_cache_async_readahead(mapping,
1637                                         ra, filp, page,
1638                                         index, last_index - index);
1639                 }
1640                 if (!PageUptodate(page)) {
1641                         /*
1642                          * See comment in do_read_cache_page on why
1643                          * wait_on_page_locked is used to avoid unnecessarily
1644                          * serialisations and why it's safe.
1645                          */
1646                         wait_on_page_locked_killable(page);
1647                         if (PageUptodate(page))
1648                                 goto page_ok;
1649
1650                         if (inode->i_blkbits == PAGE_SHIFT ||
1651                                         !mapping->a_ops->is_partially_uptodate)
1652                                 goto page_not_up_to_date;
1653                         if (!trylock_page(page))
1654                                 goto page_not_up_to_date;
1655                         /* Did it get truncated before we got the lock? */
1656                         if (!page->mapping)
1657                                 goto page_not_up_to_date_locked;
1658                         if (!mapping->a_ops->is_partially_uptodate(page,
1659                                                         offset, iter->count))
1660                                 goto page_not_up_to_date_locked;
1661                         unlock_page(page);
1662                 }
1663 page_ok:
1664                 /*
1665                  * i_size must be checked after we know the page is Uptodate.
1666                  *
1667                  * Checking i_size after the check allows us to calculate
1668                  * the correct value for "nr", which means the zero-filled
1669                  * part of the page is not copied back to userspace (unless
1670                  * another truncate extends the file - this is desired though).
1671                  */
1672
1673                 isize = i_size_read(inode);
1674                 end_index = (isize - 1) >> PAGE_SHIFT;
1675                 if (unlikely(!isize || index > end_index)) {
1676                         put_page(page);
1677                         goto out;
1678                 }
1679
1680                 /* nr is the maximum number of bytes to copy from this page */
1681                 nr = PAGE_SIZE;
1682                 if (index == end_index) {
1683                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
1684                         if (nr <= offset) {
1685                                 put_page(page);
1686                                 goto out;
1687                         }
1688                 }
1689                 nr = nr - offset;
1690
1691                 /* If users can be writing to this page using arbitrary
1692                  * virtual addresses, take care about potential aliasing
1693                  * before reading the page on the kernel side.
1694                  */
1695                 if (mapping_writably_mapped(mapping))
1696                         flush_dcache_page(page);
1697
1698                 /*
1699                  * When a sequential read accesses a page several times,
1700                  * only mark it as accessed the first time.
1701                  */
1702                 if (prev_index != index || offset != prev_offset)
1703                         mark_page_accessed(page);
1704                 prev_index = index;
1705
1706                 /*
1707                  * Ok, we have the page, and it's up-to-date, so
1708                  * now we can copy it to user space...
1709                  */
1710
1711                 ret = copy_page_to_iter(page, offset, nr, iter);
1712                 offset += ret;
1713                 index += offset >> PAGE_SHIFT;
1714                 offset &= ~PAGE_MASK;
1715                 prev_offset = offset;
1716
1717                 put_page(page);
1718                 written += ret;
1719                 if (!iov_iter_count(iter))
1720                         goto out;
1721                 if (ret < nr) {
1722                         error = -EFAULT;
1723                         goto out;
1724                 }
1725                 continue;
1726
1727 page_not_up_to_date:
1728                 /* Get exclusive access to the page ... */
1729                 error = lock_page_killable(page);
1730                 if (unlikely(error))
1731                         goto readpage_error;
1732
1733 page_not_up_to_date_locked:
1734                 /* Did it get truncated before we got the lock? */
1735                 if (!page->mapping) {
1736                         unlock_page(page);
1737                         put_page(page);
1738                         continue;
1739                 }
1740
1741                 /* Did somebody else fill it already? */
1742                 if (PageUptodate(page)) {
1743                         unlock_page(page);
1744                         goto page_ok;
1745                 }
1746
1747 readpage:
1748                 /*
1749                  * A previous I/O error may have been due to temporary
1750                  * failures, eg. multipath errors.
1751                  * PG_error will be set again if readpage fails.
1752                  */
1753                 ClearPageError(page);
1754                 /* Start the actual read. The read will unlock the page. */
1755                 error = mapping->a_ops->readpage(filp, page);
1756
1757                 if (unlikely(error)) {
1758                         if (error == AOP_TRUNCATED_PAGE) {
1759                                 put_page(page);
1760                                 error = 0;
1761                                 goto find_page;
1762                         }
1763                         goto readpage_error;
1764                 }
1765
1766                 if (!PageUptodate(page)) {
1767                         error = lock_page_killable(page);
1768                         if (unlikely(error))
1769                                 goto readpage_error;
1770                         if (!PageUptodate(page)) {
1771                                 if (page->mapping == NULL) {
1772                                         /*
1773                                          * invalidate_mapping_pages got it
1774                                          */
1775                                         unlock_page(page);
1776                                         put_page(page);
1777                                         goto find_page;
1778                                 }
1779                                 unlock_page(page);
1780                                 shrink_readahead_size_eio(filp, ra);
1781                                 error = -EIO;
1782                                 goto readpage_error;
1783                         }
1784                         unlock_page(page);
1785                 }
1786
1787                 goto page_ok;
1788
1789 readpage_error:
1790                 /* UHHUH! A synchronous read error occurred. Report it */
1791                 put_page(page);
1792                 goto out;
1793
1794 no_cached_page:
1795                 /*
1796                  * Ok, it wasn't cached, so we need to create a new
1797                  * page..
1798                  */
1799                 page = page_cache_alloc_cold(mapping);
1800                 if (!page) {
1801                         error = -ENOMEM;
1802                         goto out;
1803                 }
1804                 error = add_to_page_cache_lru(page, mapping, index,
1805                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1806                 if (error) {
1807                         put_page(page);
1808                         if (error == -EEXIST) {
1809                                 error = 0;
1810                                 goto find_page;
1811                         }
1812                         goto out;
1813                 }
1814                 goto readpage;
1815         }
1816
1817 out:
1818         ra->prev_pos = prev_index;
1819         ra->prev_pos <<= PAGE_SHIFT;
1820         ra->prev_pos |= prev_offset;
1821
1822         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1823         file_accessed(filp);
1824         return written ? written : error;
1825 }
1826
1827 /**
1828  * generic_file_read_iter - generic filesystem read routine
1829  * @iocb:       kernel I/O control block
1830  * @iter:       destination for the data read
1831  *
1832  * This is the "read_iter()" routine for all filesystems
1833  * that can use the page cache directly.
1834  */
1835 ssize_t
1836 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1837 {
1838         struct file *file = iocb->ki_filp;
1839         ssize_t retval = 0;
1840         size_t count = iov_iter_count(iter);
1841
1842         if (!count)
1843                 goto out; /* skip atime */
1844
1845         if (iocb->ki_flags & IOCB_DIRECT) {
1846                 struct address_space *mapping = file->f_mapping;
1847                 struct inode *inode = mapping->host;
1848                 loff_t size;
1849
1850                 size = i_size_read(inode);
1851                 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1852                                         iocb->ki_pos + count - 1);
1853                 if (!retval) {
1854                         struct iov_iter data = *iter;
1855                         retval = mapping->a_ops->direct_IO(iocb, &data);
1856                 }
1857
1858                 if (retval > 0) {
1859                         iocb->ki_pos += retval;
1860                         iov_iter_advance(iter, retval);
1861                 }
1862
1863                 /*
1864                  * Btrfs can have a short DIO read if we encounter
1865                  * compressed extents, so if there was an error, or if
1866                  * we've already read everything we wanted to, or if
1867                  * there was a short read because we hit EOF, go ahead
1868                  * and return.  Otherwise fallthrough to buffered io for
1869                  * the rest of the read.  Buffered reads will not work for
1870                  * DAX files, so don't bother trying.
1871                  */
1872                 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1873                     IS_DAX(inode)) {
1874                         file_accessed(file);
1875                         goto out;
1876                 }
1877         }
1878
1879         retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1880 out:
1881         return retval;
1882 }
1883 EXPORT_SYMBOL(generic_file_read_iter);
1884
1885 #ifdef CONFIG_MMU
1886 /**
1887  * page_cache_read - adds requested page to the page cache if not already there
1888  * @file:       file to read
1889  * @offset:     page index
1890  * @gfp_mask:   memory allocation flags
1891  *
1892  * This adds the requested page to the page cache if it isn't already there,
1893  * and schedules an I/O to read in its contents from disk.
1894  */
1895 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1896 {
1897         struct address_space *mapping = file->f_mapping;
1898         struct page *page;
1899         int ret;
1900
1901         do {
1902                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1903                 if (!page)
1904                         return -ENOMEM;
1905
1906                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1907                 if (ret == 0)
1908                         ret = mapping->a_ops->readpage(file, page);
1909                 else if (ret == -EEXIST)
1910                         ret = 0; /* losing race to add is OK */
1911
1912                 put_page(page);
1913
1914         } while (ret == AOP_TRUNCATED_PAGE);
1915
1916         return ret;
1917 }
1918
1919 #define MMAP_LOTSAMISS  (100)
1920
1921 /*
1922  * Synchronous readahead happens when we don't even find
1923  * a page in the page cache at all.
1924  */
1925 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1926                                    struct file_ra_state *ra,
1927                                    struct file *file,
1928                                    pgoff_t offset)
1929 {
1930         struct address_space *mapping = file->f_mapping;
1931
1932         /* If we don't want any read-ahead, don't bother */
1933         if (vma->vm_flags & VM_RAND_READ)
1934                 return;
1935         if (!ra->ra_pages)
1936                 return;
1937
1938         if (vma->vm_flags & VM_SEQ_READ) {
1939                 page_cache_sync_readahead(mapping, ra, file, offset,
1940                                           ra->ra_pages);
1941                 return;
1942         }
1943
1944         /* Avoid banging the cache line if not needed */
1945         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1946                 ra->mmap_miss++;
1947
1948         /*
1949          * Do we miss much more than hit in this file? If so,
1950          * stop bothering with read-ahead. It will only hurt.
1951          */
1952         if (ra->mmap_miss > MMAP_LOTSAMISS)
1953                 return;
1954
1955         /*
1956          * mmap read-around
1957          */
1958         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1959         ra->size = ra->ra_pages;
1960         ra->async_size = ra->ra_pages / 4;
1961         ra_submit(ra, mapping, file);
1962 }
1963
1964 /*
1965  * Asynchronous readahead happens when we find the page and PG_readahead,
1966  * so we want to possibly extend the readahead further..
1967  */
1968 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1969                                     struct file_ra_state *ra,
1970                                     struct file *file,
1971                                     struct page *page,
1972                                     pgoff_t offset)
1973 {
1974         struct address_space *mapping = file->f_mapping;
1975
1976         /* If we don't want any read-ahead, don't bother */
1977         if (vma->vm_flags & VM_RAND_READ)
1978                 return;
1979         if (ra->mmap_miss > 0)
1980                 ra->mmap_miss--;
1981         if (PageReadahead(page))
1982                 page_cache_async_readahead(mapping, ra, file,
1983                                            page, offset, ra->ra_pages);
1984 }
1985
1986 /**
1987  * filemap_fault - read in file data for page fault handling
1988  * @vma:        vma in which the fault was taken
1989  * @vmf:        struct vm_fault containing details of the fault
1990  *
1991  * filemap_fault() is invoked via the vma operations vector for a
1992  * mapped memory region to read in file data during a page fault.
1993  *
1994  * The goto's are kind of ugly, but this streamlines the normal case of having
1995  * it in the page cache, and handles the special cases reasonably without
1996  * having a lot of duplicated code.
1997  *
1998  * vma->vm_mm->mmap_sem must be held on entry.
1999  *
2000  * If our return value has VM_FAULT_RETRY set, it's because
2001  * lock_page_or_retry() returned 0.
2002  * The mmap_sem has usually been released in this case.
2003  * See __lock_page_or_retry() for the exception.
2004  *
2005  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2006  * has not been released.
2007  *
2008  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2009  */
2010 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2011 {
2012         int error;
2013         struct file *file = vma->vm_file;
2014         struct address_space *mapping = file->f_mapping;
2015         struct file_ra_state *ra = &file->f_ra;
2016         struct inode *inode = mapping->host;
2017         pgoff_t offset = vmf->pgoff;
2018         struct page *page;
2019         loff_t size;
2020         int ret = 0;
2021
2022         size = round_up(i_size_read(inode), PAGE_SIZE);
2023         if (offset >= size >> PAGE_SHIFT)
2024                 return VM_FAULT_SIGBUS;
2025
2026         /*
2027          * Do we have something in the page cache already?
2028          */
2029         page = find_get_page(mapping, offset);
2030         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2031                 /*
2032                  * We found the page, so try async readahead before
2033                  * waiting for the lock.
2034                  */
2035                 do_async_mmap_readahead(vma, ra, file, page, offset);
2036         } else if (!page) {
2037                 /* No page in the page cache at all */
2038                 do_sync_mmap_readahead(vma, ra, file, offset);
2039                 count_vm_event(PGMAJFAULT);
2040                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2041                 ret = VM_FAULT_MAJOR;
2042 retry_find:
2043                 page = find_get_page(mapping, offset);
2044                 if (!page)
2045                         goto no_cached_page;
2046         }
2047
2048         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2049                 put_page(page);
2050                 return ret | VM_FAULT_RETRY;
2051         }
2052
2053         /* Did it get truncated? */
2054         if (unlikely(page->mapping != mapping)) {
2055                 unlock_page(page);
2056                 put_page(page);
2057                 goto retry_find;
2058         }
2059         VM_BUG_ON_PAGE(page->index != offset, page);
2060
2061         /*
2062          * We have a locked page in the page cache, now we need to check
2063          * that it's up-to-date. If not, it is going to be due to an error.
2064          */
2065         if (unlikely(!PageUptodate(page)))
2066                 goto page_not_uptodate;
2067
2068         /*
2069          * Found the page and have a reference on it.
2070          * We must recheck i_size under page lock.
2071          */
2072         size = round_up(i_size_read(inode), PAGE_SIZE);
2073         if (unlikely(offset >= size >> PAGE_SHIFT)) {
2074                 unlock_page(page);
2075                 put_page(page);
2076                 return VM_FAULT_SIGBUS;
2077         }
2078
2079         vmf->page = page;
2080         return ret | VM_FAULT_LOCKED;
2081
2082 no_cached_page:
2083         /*
2084          * We're only likely to ever get here if MADV_RANDOM is in
2085          * effect.
2086          */
2087         error = page_cache_read(file, offset, vmf->gfp_mask);
2088
2089         /*
2090          * The page we want has now been added to the page cache.
2091          * In the unlikely event that someone removed it in the
2092          * meantime, we'll just come back here and read it again.
2093          */
2094         if (error >= 0)
2095                 goto retry_find;
2096
2097         /*
2098          * An error return from page_cache_read can result if the
2099          * system is low on memory, or a problem occurs while trying
2100          * to schedule I/O.
2101          */
2102         if (error == -ENOMEM)
2103                 return VM_FAULT_OOM;
2104         return VM_FAULT_SIGBUS;
2105
2106 page_not_uptodate:
2107         /*
2108          * Umm, take care of errors if the page isn't up-to-date.
2109          * Try to re-read it _once_. We do this synchronously,
2110          * because there really aren't any performance issues here
2111          * and we need to check for errors.
2112          */
2113         ClearPageError(page);
2114         error = mapping->a_ops->readpage(file, page);
2115         if (!error) {
2116                 wait_on_page_locked(page);
2117                 if (!PageUptodate(page))
2118                         error = -EIO;
2119         }
2120         put_page(page);
2121
2122         if (!error || error == AOP_TRUNCATED_PAGE)
2123                 goto retry_find;
2124
2125         /* Things didn't work out. Return zero to tell the mm layer so. */
2126         shrink_readahead_size_eio(file, ra);
2127         return VM_FAULT_SIGBUS;
2128 }
2129 EXPORT_SYMBOL(filemap_fault);
2130
2131 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2132 {
2133         struct radix_tree_iter iter;
2134         void **slot;
2135         struct file *file = vma->vm_file;
2136         struct address_space *mapping = file->f_mapping;
2137         loff_t size;
2138         struct page *page;
2139         unsigned long address = (unsigned long) vmf->virtual_address;
2140         unsigned long addr;
2141         pte_t *pte;
2142
2143         rcu_read_lock();
2144         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2145                 if (iter.index > vmf->max_pgoff)
2146                         break;
2147 repeat:
2148                 page = radix_tree_deref_slot(slot);
2149                 if (unlikely(!page))
2150                         goto next;
2151                 if (radix_tree_exception(page)) {
2152                         if (radix_tree_deref_retry(page)) {
2153                                 slot = radix_tree_iter_retry(&iter);
2154                                 continue;
2155                         }
2156                         goto next;
2157                 }
2158
2159                 if (!page_cache_get_speculative(page))
2160                         goto repeat;
2161
2162                 /* Has the page moved? */
2163                 if (unlikely(page != *slot)) {
2164                         put_page(page);
2165                         goto repeat;
2166                 }
2167
2168                 if (!PageUptodate(page) ||
2169                                 PageReadahead(page) ||
2170                                 PageHWPoison(page))
2171                         goto skip;
2172                 if (!trylock_page(page))
2173                         goto skip;
2174
2175                 if (page->mapping != mapping || !PageUptodate(page))
2176                         goto unlock;
2177
2178                 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2179                 if (page->index >= size >> PAGE_SHIFT)
2180                         goto unlock;
2181
2182                 pte = vmf->pte + page->index - vmf->pgoff;
2183                 if (!pte_none(*pte))
2184                         goto unlock;
2185
2186                 if (file->f_ra.mmap_miss > 0)
2187                         file->f_ra.mmap_miss--;
2188                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2189                 do_set_pte(vma, addr, page, pte, false, false);
2190                 unlock_page(page);
2191                 goto next;
2192 unlock:
2193                 unlock_page(page);
2194 skip:
2195                 put_page(page);
2196 next:
2197                 if (iter.index == vmf->max_pgoff)
2198                         break;
2199         }
2200         rcu_read_unlock();
2201 }
2202 EXPORT_SYMBOL(filemap_map_pages);
2203
2204 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2205 {
2206         struct page *page = vmf->page;
2207         struct inode *inode = file_inode(vma->vm_file);
2208         int ret = VM_FAULT_LOCKED;
2209
2210         sb_start_pagefault(inode->i_sb);
2211         file_update_time(vma->vm_file);
2212         lock_page(page);
2213         if (page->mapping != inode->i_mapping) {
2214                 unlock_page(page);
2215                 ret = VM_FAULT_NOPAGE;
2216                 goto out;
2217         }
2218         /*
2219          * We mark the page dirty already here so that when freeze is in
2220          * progress, we are guaranteed that writeback during freezing will
2221          * see the dirty page and writeprotect it again.
2222          */
2223         set_page_dirty(page);
2224         wait_for_stable_page(page);
2225 out:
2226         sb_end_pagefault(inode->i_sb);
2227         return ret;
2228 }
2229 EXPORT_SYMBOL(filemap_page_mkwrite);
2230
2231 const struct vm_operations_struct generic_file_vm_ops = {
2232         .fault          = filemap_fault,
2233         .map_pages      = filemap_map_pages,
2234         .page_mkwrite   = filemap_page_mkwrite,
2235 };
2236
2237 /* This is used for a general mmap of a disk file */
2238
2239 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2240 {
2241         struct address_space *mapping = file->f_mapping;
2242
2243         if (!mapping->a_ops->readpage)
2244                 return -ENOEXEC;
2245         file_accessed(file);
2246         vma->vm_ops = &generic_file_vm_ops;
2247         return 0;
2248 }
2249
2250 /*
2251  * This is for filesystems which do not implement ->writepage.
2252  */
2253 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2254 {
2255         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2256                 return -EINVAL;
2257         return generic_file_mmap(file, vma);
2258 }
2259 #else
2260 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2261 {
2262         return -ENOSYS;
2263 }
2264 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2265 {
2266         return -ENOSYS;
2267 }
2268 #endif /* CONFIG_MMU */
2269
2270 EXPORT_SYMBOL(generic_file_mmap);
2271 EXPORT_SYMBOL(generic_file_readonly_mmap);
2272
2273 static struct page *wait_on_page_read(struct page *page)
2274 {
2275         if (!IS_ERR(page)) {
2276                 wait_on_page_locked(page);
2277                 if (!PageUptodate(page)) {
2278                         put_page(page);
2279                         page = ERR_PTR(-EIO);
2280                 }
2281         }
2282         return page;
2283 }
2284
2285 static struct page *do_read_cache_page(struct address_space *mapping,
2286                                 pgoff_t index,
2287                                 int (*filler)(void *, struct page *),
2288                                 void *data,
2289                                 gfp_t gfp)
2290 {
2291         struct page *page;
2292         int err;
2293 repeat:
2294         page = find_get_page(mapping, index);
2295         if (!page) {
2296                 page = __page_cache_alloc(gfp | __GFP_COLD);
2297                 if (!page)
2298                         return ERR_PTR(-ENOMEM);
2299                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2300                 if (unlikely(err)) {
2301                         put_page(page);
2302                         if (err == -EEXIST)
2303                                 goto repeat;
2304                         /* Presumably ENOMEM for radix tree node */
2305                         return ERR_PTR(err);
2306                 }
2307
2308 filler:
2309                 err = filler(data, page);
2310                 if (err < 0) {
2311                         put_page(page);
2312                         return ERR_PTR(err);
2313                 }
2314
2315                 page = wait_on_page_read(page);
2316                 if (IS_ERR(page))
2317                         return page;
2318                 goto out;
2319         }
2320         if (PageUptodate(page))
2321                 goto out;
2322
2323         /*
2324          * Page is not up to date and may be locked due one of the following
2325          * case a: Page is being filled and the page lock is held
2326          * case b: Read/write error clearing the page uptodate status
2327          * case c: Truncation in progress (page locked)
2328          * case d: Reclaim in progress
2329          *
2330          * Case a, the page will be up to date when the page is unlocked.
2331          *    There is no need to serialise on the page lock here as the page
2332          *    is pinned so the lock gives no additional protection. Even if the
2333          *    the page is truncated, the data is still valid if PageUptodate as
2334          *    it's a race vs truncate race.
2335          * Case b, the page will not be up to date
2336          * Case c, the page may be truncated but in itself, the data may still
2337          *    be valid after IO completes as it's a read vs truncate race. The
2338          *    operation must restart if the page is not uptodate on unlock but
2339          *    otherwise serialising on page lock to stabilise the mapping gives
2340          *    no additional guarantees to the caller as the page lock is
2341          *    released before return.
2342          * Case d, similar to truncation. If reclaim holds the page lock, it
2343          *    will be a race with remove_mapping that determines if the mapping
2344          *    is valid on unlock but otherwise the data is valid and there is
2345          *    no need to serialise with page lock.
2346          *
2347          * As the page lock gives no additional guarantee, we optimistically
2348          * wait on the page to be unlocked and check if it's up to date and
2349          * use the page if it is. Otherwise, the page lock is required to
2350          * distinguish between the different cases. The motivation is that we
2351          * avoid spurious serialisations and wakeups when multiple processes
2352          * wait on the same page for IO to complete.
2353          */
2354         wait_on_page_locked(page);
2355         if (PageUptodate(page))
2356                 goto out;
2357
2358         /* Distinguish between all the cases under the safety of the lock */
2359         lock_page(page);
2360
2361         /* Case c or d, restart the operation */
2362         if (!page->mapping) {
2363                 unlock_page(page);
2364                 put_page(page);
2365                 goto repeat;
2366         }
2367
2368         /* Someone else locked and filled the page in a very small window */
2369         if (PageUptodate(page)) {
2370                 unlock_page(page);
2371                 goto out;
2372         }
2373         goto filler;
2374
2375 out:
2376         mark_page_accessed(page);
2377         return page;
2378 }
2379
2380 /**
2381  * read_cache_page - read into page cache, fill it if needed
2382  * @mapping:    the page's address_space
2383  * @index:      the page index
2384  * @filler:     function to perform the read
2385  * @data:       first arg to filler(data, page) function, often left as NULL
2386  *
2387  * Read into the page cache. If a page already exists, and PageUptodate() is
2388  * not set, try to fill the page and wait for it to become unlocked.
2389  *
2390  * If the page does not get brought uptodate, return -EIO.
2391  */
2392 struct page *read_cache_page(struct address_space *mapping,
2393                                 pgoff_t index,
2394                                 int (*filler)(void *, struct page *),
2395                                 void *data)
2396 {
2397         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2398 }
2399 EXPORT_SYMBOL(read_cache_page);
2400
2401 /**
2402  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2403  * @mapping:    the page's address_space
2404  * @index:      the page index
2405  * @gfp:        the page allocator flags to use if allocating
2406  *
2407  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2408  * any new page allocations done using the specified allocation flags.
2409  *
2410  * If the page does not get brought uptodate, return -EIO.
2411  */
2412 struct page *read_cache_page_gfp(struct address_space *mapping,
2413                                 pgoff_t index,
2414                                 gfp_t gfp)
2415 {
2416         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2417
2418         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2419 }
2420 EXPORT_SYMBOL(read_cache_page_gfp);
2421
2422 /*
2423  * Performs necessary checks before doing a write
2424  *
2425  * Can adjust writing position or amount of bytes to write.
2426  * Returns appropriate error code that caller should return or
2427  * zero in case that write should be allowed.
2428  */
2429 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2430 {
2431         struct file *file = iocb->ki_filp;
2432         struct inode *inode = file->f_mapping->host;
2433         unsigned long limit = rlimit(RLIMIT_FSIZE);
2434         loff_t pos;
2435
2436         if (!iov_iter_count(from))
2437                 return 0;
2438
2439         /* FIXME: this is for backwards compatibility with 2.4 */
2440         if (iocb->ki_flags & IOCB_APPEND)
2441                 iocb->ki_pos = i_size_read(inode);
2442
2443         pos = iocb->ki_pos;
2444
2445         if (limit != RLIM_INFINITY) {
2446                 if (iocb->ki_pos >= limit) {
2447                         send_sig(SIGXFSZ, current, 0);
2448                         return -EFBIG;
2449                 }
2450                 iov_iter_truncate(from, limit - (unsigned long)pos);
2451         }
2452
2453         /*
2454          * LFS rule
2455          */
2456         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2457                                 !(file->f_flags & O_LARGEFILE))) {
2458                 if (pos >= MAX_NON_LFS)
2459                         return -EFBIG;
2460                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2461         }
2462
2463         /*
2464          * Are we about to exceed the fs block limit ?
2465          *
2466          * If we have written data it becomes a short write.  If we have
2467          * exceeded without writing data we send a signal and return EFBIG.
2468          * Linus frestrict idea will clean these up nicely..
2469          */
2470         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2471                 return -EFBIG;
2472
2473         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2474         return iov_iter_count(from);
2475 }
2476 EXPORT_SYMBOL(generic_write_checks);
2477
2478 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2479                                 loff_t pos, unsigned len, unsigned flags,
2480                                 struct page **pagep, void **fsdata)
2481 {
2482         const struct address_space_operations *aops = mapping->a_ops;
2483
2484         return aops->write_begin(file, mapping, pos, len, flags,
2485                                                         pagep, fsdata);
2486 }
2487 EXPORT_SYMBOL(pagecache_write_begin);
2488
2489 int pagecache_write_end(struct file *file, struct address_space *mapping,
2490                                 loff_t pos, unsigned len, unsigned copied,
2491                                 struct page *page, void *fsdata)
2492 {
2493         const struct address_space_operations *aops = mapping->a_ops;
2494
2495         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2496 }
2497 EXPORT_SYMBOL(pagecache_write_end);
2498
2499 ssize_t
2500 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2501 {
2502         struct file     *file = iocb->ki_filp;
2503         struct address_space *mapping = file->f_mapping;
2504         struct inode    *inode = mapping->host;
2505         loff_t          pos = iocb->ki_pos;
2506         ssize_t         written;
2507         size_t          write_len;
2508         pgoff_t         end;
2509         struct iov_iter data;
2510
2511         write_len = iov_iter_count(from);
2512         end = (pos + write_len - 1) >> PAGE_SHIFT;
2513
2514         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2515         if (written)
2516                 goto out;
2517
2518         /*
2519          * After a write we want buffered reads to be sure to go to disk to get
2520          * the new data.  We invalidate clean cached page from the region we're
2521          * about to write.  We do this *before* the write so that we can return
2522          * without clobbering -EIOCBQUEUED from ->direct_IO().
2523          */
2524         if (mapping->nrpages) {
2525                 written = invalidate_inode_pages2_range(mapping,
2526                                         pos >> PAGE_SHIFT, end);
2527                 /*
2528                  * If a page can not be invalidated, return 0 to fall back
2529                  * to buffered write.
2530                  */
2531                 if (written) {
2532                         if (written == -EBUSY)
2533                                 return 0;
2534                         goto out;
2535                 }
2536         }
2537
2538         data = *from;
2539         written = mapping->a_ops->direct_IO(iocb, &data);
2540
2541         /*
2542          * Finally, try again to invalidate clean pages which might have been
2543          * cached by non-direct readahead, or faulted in by get_user_pages()
2544          * if the source of the write was an mmap'ed region of the file
2545          * we're writing.  Either one is a pretty crazy thing to do,
2546          * so we don't support it 100%.  If this invalidation
2547          * fails, tough, the write still worked...
2548          */
2549         if (mapping->nrpages) {
2550                 invalidate_inode_pages2_range(mapping,
2551                                               pos >> PAGE_SHIFT, end);
2552         }
2553
2554         if (written > 0) {
2555                 pos += written;
2556                 iov_iter_advance(from, written);
2557                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2558                         i_size_write(inode, pos);
2559                         mark_inode_dirty(inode);
2560                 }
2561                 iocb->ki_pos = pos;
2562         }
2563 out:
2564         return written;
2565 }
2566 EXPORT_SYMBOL(generic_file_direct_write);
2567
2568 /*
2569  * Find or create a page at the given pagecache position. Return the locked
2570  * page. This function is specifically for buffered writes.
2571  */
2572 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2573                                         pgoff_t index, unsigned flags)
2574 {
2575         struct page *page;
2576         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2577
2578         if (flags & AOP_FLAG_NOFS)
2579                 fgp_flags |= FGP_NOFS;
2580
2581         page = pagecache_get_page(mapping, index, fgp_flags,
2582                         mapping_gfp_mask(mapping));
2583         if (page)
2584                 wait_for_stable_page(page);
2585
2586         return page;
2587 }
2588 EXPORT_SYMBOL(grab_cache_page_write_begin);
2589
2590 ssize_t generic_perform_write(struct file *file,
2591                                 struct iov_iter *i, loff_t pos)
2592 {
2593         struct address_space *mapping = file->f_mapping;
2594         const struct address_space_operations *a_ops = mapping->a_ops;
2595         long status = 0;
2596         ssize_t written = 0;
2597         unsigned int flags = 0;
2598
2599         /*
2600          * Copies from kernel address space cannot fail (NFSD is a big user).
2601          */
2602         if (!iter_is_iovec(i))
2603                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2604
2605         do {
2606                 struct page *page;
2607                 unsigned long offset;   /* Offset into pagecache page */
2608                 unsigned long bytes;    /* Bytes to write to page */
2609                 size_t copied;          /* Bytes copied from user */
2610                 void *fsdata;
2611
2612                 offset = (pos & (PAGE_SIZE - 1));
2613                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2614                                                 iov_iter_count(i));
2615
2616 again:
2617                 /*
2618                  * Bring in the user page that we will copy from _first_.
2619                  * Otherwise there's a nasty deadlock on copying from the
2620                  * same page as we're writing to, without it being marked
2621                  * up-to-date.
2622                  *
2623                  * Not only is this an optimisation, but it is also required
2624                  * to check that the address is actually valid, when atomic
2625                  * usercopies are used, below.
2626                  */
2627                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2628                         status = -EFAULT;
2629                         break;
2630                 }
2631
2632                 if (fatal_signal_pending(current)) {
2633                         status = -EINTR;
2634                         break;
2635                 }
2636
2637                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2638                                                 &page, &fsdata);
2639                 if (unlikely(status < 0))
2640                         break;
2641
2642                 if (mapping_writably_mapped(mapping))
2643                         flush_dcache_page(page);
2644
2645                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2646                 flush_dcache_page(page);
2647
2648                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2649                                                 page, fsdata);
2650                 if (unlikely(status < 0))
2651                         break;
2652                 copied = status;
2653
2654                 cond_resched();
2655
2656                 iov_iter_advance(i, copied);
2657                 if (unlikely(copied == 0)) {
2658                         /*
2659                          * If we were unable to copy any data at all, we must
2660                          * fall back to a single segment length write.
2661                          *
2662                          * If we didn't fallback here, we could livelock
2663                          * because not all segments in the iov can be copied at
2664                          * once without a pagefault.
2665                          */
2666                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
2667                                                 iov_iter_single_seg_count(i));
2668                         goto again;
2669                 }
2670                 pos += copied;
2671                 written += copied;
2672
2673                 balance_dirty_pages_ratelimited(mapping);
2674         } while (iov_iter_count(i));
2675
2676         return written ? written : status;
2677 }
2678 EXPORT_SYMBOL(generic_perform_write);
2679
2680 /**
2681  * __generic_file_write_iter - write data to a file
2682  * @iocb:       IO state structure (file, offset, etc.)
2683  * @from:       iov_iter with data to write
2684  *
2685  * This function does all the work needed for actually writing data to a
2686  * file. It does all basic checks, removes SUID from the file, updates
2687  * modification times and calls proper subroutines depending on whether we
2688  * do direct IO or a standard buffered write.
2689  *
2690  * It expects i_mutex to be grabbed unless we work on a block device or similar
2691  * object which does not need locking at all.
2692  *
2693  * This function does *not* take care of syncing data in case of O_SYNC write.
2694  * A caller has to handle it. This is mainly due to the fact that we want to
2695  * avoid syncing under i_mutex.
2696  */
2697 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2698 {
2699         struct file *file = iocb->ki_filp;
2700         struct address_space * mapping = file->f_mapping;
2701         struct inode    *inode = mapping->host;
2702         ssize_t         written = 0;
2703         ssize_t         err;
2704         ssize_t         status;
2705
2706         /* We can write back this queue in page reclaim */
2707         current->backing_dev_info = inode_to_bdi(inode);
2708         err = file_remove_privs(file);
2709         if (err)
2710                 goto out;
2711
2712         err = file_update_time(file);
2713         if (err)
2714                 goto out;
2715
2716         if (iocb->ki_flags & IOCB_DIRECT) {
2717                 loff_t pos, endbyte;
2718
2719                 written = generic_file_direct_write(iocb, from);
2720                 /*
2721                  * If the write stopped short of completing, fall back to
2722                  * buffered writes.  Some filesystems do this for writes to
2723                  * holes, for example.  For DAX files, a buffered write will
2724                  * not succeed (even if it did, DAX does not handle dirty
2725                  * page-cache pages correctly).
2726                  */
2727                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2728                         goto out;
2729
2730                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2731                 /*
2732                  * If generic_perform_write() returned a synchronous error
2733                  * then we want to return the number of bytes which were
2734                  * direct-written, or the error code if that was zero.  Note
2735                  * that this differs from normal direct-io semantics, which
2736                  * will return -EFOO even if some bytes were written.
2737                  */
2738                 if (unlikely(status < 0)) {
2739                         err = status;
2740                         goto out;
2741                 }
2742                 /*
2743                  * We need to ensure that the page cache pages are written to
2744                  * disk and invalidated to preserve the expected O_DIRECT
2745                  * semantics.
2746                  */
2747                 endbyte = pos + status - 1;
2748                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2749                 if (err == 0) {
2750                         iocb->ki_pos = endbyte + 1;
2751                         written += status;
2752                         invalidate_mapping_pages(mapping,
2753                                                  pos >> PAGE_SHIFT,
2754                                                  endbyte >> PAGE_SHIFT);
2755                 } else {
2756                         /*
2757                          * We don't know how much we wrote, so just return
2758                          * the number of bytes which were direct-written
2759                          */
2760                 }
2761         } else {
2762                 written = generic_perform_write(file, from, iocb->ki_pos);
2763                 if (likely(written > 0))
2764                         iocb->ki_pos += written;
2765         }
2766 out:
2767         current->backing_dev_info = NULL;
2768         return written ? written : err;
2769 }
2770 EXPORT_SYMBOL(__generic_file_write_iter);
2771
2772 /**
2773  * generic_file_write_iter - write data to a file
2774  * @iocb:       IO state structure
2775  * @from:       iov_iter with data to write
2776  *
2777  * This is a wrapper around __generic_file_write_iter() to be used by most
2778  * filesystems. It takes care of syncing the file in case of O_SYNC file
2779  * and acquires i_mutex as needed.
2780  */
2781 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2782 {
2783         struct file *file = iocb->ki_filp;
2784         struct inode *inode = file->f_mapping->host;
2785         ssize_t ret;
2786
2787         inode_lock(inode);
2788         ret = generic_write_checks(iocb, from);
2789         if (ret > 0)
2790                 ret = __generic_file_write_iter(iocb, from);
2791         inode_unlock(inode);
2792
2793         if (ret > 0)
2794                 ret = generic_write_sync(iocb, ret);
2795         return ret;
2796 }
2797 EXPORT_SYMBOL(generic_file_write_iter);
2798
2799 /**
2800  * try_to_release_page() - release old fs-specific metadata on a page
2801  *
2802  * @page: the page which the kernel is trying to free
2803  * @gfp_mask: memory allocation flags (and I/O mode)
2804  *
2805  * The address_space is to try to release any data against the page
2806  * (presumably at page->private).  If the release was successful, return `1'.
2807  * Otherwise return zero.
2808  *
2809  * This may also be called if PG_fscache is set on a page, indicating that the
2810  * page is known to the local caching routines.
2811  *
2812  * The @gfp_mask argument specifies whether I/O may be performed to release
2813  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2814  *
2815  */
2816 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2817 {
2818         struct address_space * const mapping = page->mapping;
2819
2820         BUG_ON(!PageLocked(page));
2821         if (PageWriteback(page))
2822                 return 0;
2823
2824         if (mapping && mapping->a_ops->releasepage)
2825                 return mapping->a_ops->releasepage(page, gfp_mask);
2826         return try_to_free_buffers(page);
2827 }
2828
2829 EXPORT_SYMBOL(try_to_release_page);