Merge tag 'mac80211-for-davem-2016-02-23' of git://git.kernel.org/pub/scm/linux/kerne...
[cascardo/linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem              (truncate_pagecache)
66  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock             (exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page               (access_process_vm)
80  *
81  *  ->i_mutex                   (generic_perform_write)
82  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
99  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock        (page_remove_rmap->mem_cgroup_begin_page_stat)
105  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
107  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112
113 static void page_cache_tree_delete(struct address_space *mapping,
114                                    struct page *page, void *shadow)
115 {
116         struct radix_tree_node *node;
117         unsigned long index;
118         unsigned int offset;
119         unsigned int tag;
120         void **slot;
121
122         VM_BUG_ON(!PageLocked(page));
123
124         __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125
126         if (shadow) {
127                 mapping->nrexceptional++;
128                 /*
129                  * Make sure the nrexceptional update is committed before
130                  * the nrpages update so that final truncate racing
131                  * with reclaim does not see both counters 0 at the
132                  * same time and miss a shadow entry.
133                  */
134                 smp_wmb();
135         }
136         mapping->nrpages--;
137
138         if (!node) {
139                 /* Clear direct pointer tags in root node */
140                 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
141                 radix_tree_replace_slot(slot, shadow);
142                 return;
143         }
144
145         /* Clear tree tags for the removed page */
146         index = page->index;
147         offset = index & RADIX_TREE_MAP_MASK;
148         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
149                 if (test_bit(offset, node->tags[tag]))
150                         radix_tree_tag_clear(&mapping->page_tree, index, tag);
151         }
152
153         /* Delete page, swap shadow entry */
154         radix_tree_replace_slot(slot, shadow);
155         workingset_node_pages_dec(node);
156         if (shadow)
157                 workingset_node_shadows_inc(node);
158         else
159                 if (__radix_tree_delete_node(&mapping->page_tree, node))
160                         return;
161
162         /*
163          * Track node that only contains shadow entries.
164          *
165          * Avoid acquiring the list_lru lock if already tracked.  The
166          * list_empty() test is safe as node->private_list is
167          * protected by mapping->tree_lock.
168          */
169         if (!workingset_node_pages(node) &&
170             list_empty(&node->private_list)) {
171                 node->private_data = mapping;
172                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
173         }
174 }
175
176 /*
177  * Delete a page from the page cache and free it. Caller has to make
178  * sure the page is locked and that nobody else uses it - or that usage
179  * is safe.  The caller must hold the mapping's tree_lock and
180  * mem_cgroup_begin_page_stat().
181  */
182 void __delete_from_page_cache(struct page *page, void *shadow,
183                               struct mem_cgroup *memcg)
184 {
185         struct address_space *mapping = page->mapping;
186
187         trace_mm_filemap_delete_from_page_cache(page);
188         /*
189          * if we're uptodate, flush out into the cleancache, otherwise
190          * invalidate any existing cleancache entries.  We can't leave
191          * stale data around in the cleancache once our page is gone
192          */
193         if (PageUptodate(page) && PageMappedToDisk(page))
194                 cleancache_put_page(page);
195         else
196                 cleancache_invalidate_page(mapping, page);
197
198         page_cache_tree_delete(mapping, page, shadow);
199
200         page->mapping = NULL;
201         /* Leave page->index set: truncation lookup relies upon it */
202
203         /* hugetlb pages do not participate in page cache accounting. */
204         if (!PageHuge(page))
205                 __dec_zone_page_state(page, NR_FILE_PAGES);
206         if (PageSwapBacked(page))
207                 __dec_zone_page_state(page, NR_SHMEM);
208         VM_BUG_ON_PAGE(page_mapped(page), page);
209
210         /*
211          * At this point page must be either written or cleaned by truncate.
212          * Dirty page here signals a bug and loss of unwritten data.
213          *
214          * This fixes dirty accounting after removing the page entirely but
215          * leaves PageDirty set: it has no effect for truncated page and
216          * anyway will be cleared before returning page into buddy allocator.
217          */
218         if (WARN_ON_ONCE(PageDirty(page)))
219                 account_page_cleaned(page, mapping, memcg,
220                                      inode_to_wb(mapping->host));
221 }
222
223 /**
224  * delete_from_page_cache - delete page from page cache
225  * @page: the page which the kernel is trying to remove from page cache
226  *
227  * This must be called only on pages that have been verified to be in the page
228  * cache and locked.  It will never put the page into the free list, the caller
229  * has a reference on the page.
230  */
231 void delete_from_page_cache(struct page *page)
232 {
233         struct address_space *mapping = page->mapping;
234         struct mem_cgroup *memcg;
235         unsigned long flags;
236
237         void (*freepage)(struct page *);
238
239         BUG_ON(!PageLocked(page));
240
241         freepage = mapping->a_ops->freepage;
242
243         memcg = mem_cgroup_begin_page_stat(page);
244         spin_lock_irqsave(&mapping->tree_lock, flags);
245         __delete_from_page_cache(page, NULL, memcg);
246         spin_unlock_irqrestore(&mapping->tree_lock, flags);
247         mem_cgroup_end_page_stat(memcg);
248
249         if (freepage)
250                 freepage(page);
251         page_cache_release(page);
252 }
253 EXPORT_SYMBOL(delete_from_page_cache);
254
255 static int filemap_check_errors(struct address_space *mapping)
256 {
257         int ret = 0;
258         /* Check for outstanding write errors */
259         if (test_bit(AS_ENOSPC, &mapping->flags) &&
260             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
261                 ret = -ENOSPC;
262         if (test_bit(AS_EIO, &mapping->flags) &&
263             test_and_clear_bit(AS_EIO, &mapping->flags))
264                 ret = -EIO;
265         return ret;
266 }
267
268 /**
269  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
270  * @mapping:    address space structure to write
271  * @start:      offset in bytes where the range starts
272  * @end:        offset in bytes where the range ends (inclusive)
273  * @sync_mode:  enable synchronous operation
274  *
275  * Start writeback against all of a mapping's dirty pages that lie
276  * within the byte offsets <start, end> inclusive.
277  *
278  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
279  * opposed to a regular memory cleansing writeback.  The difference between
280  * these two operations is that if a dirty page/buffer is encountered, it must
281  * be waited upon, and not just skipped over.
282  */
283 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
284                                 loff_t end, int sync_mode)
285 {
286         int ret;
287         struct writeback_control wbc = {
288                 .sync_mode = sync_mode,
289                 .nr_to_write = LONG_MAX,
290                 .range_start = start,
291                 .range_end = end,
292         };
293
294         if (!mapping_cap_writeback_dirty(mapping))
295                 return 0;
296
297         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
298         ret = do_writepages(mapping, &wbc);
299         wbc_detach_inode(&wbc);
300         return ret;
301 }
302
303 static inline int __filemap_fdatawrite(struct address_space *mapping,
304         int sync_mode)
305 {
306         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
307 }
308
309 int filemap_fdatawrite(struct address_space *mapping)
310 {
311         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
312 }
313 EXPORT_SYMBOL(filemap_fdatawrite);
314
315 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
316                                 loff_t end)
317 {
318         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
319 }
320 EXPORT_SYMBOL(filemap_fdatawrite_range);
321
322 /**
323  * filemap_flush - mostly a non-blocking flush
324  * @mapping:    target address_space
325  *
326  * This is a mostly non-blocking flush.  Not suitable for data-integrity
327  * purposes - I/O may not be started against all dirty pages.
328  */
329 int filemap_flush(struct address_space *mapping)
330 {
331         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
332 }
333 EXPORT_SYMBOL(filemap_flush);
334
335 static int __filemap_fdatawait_range(struct address_space *mapping,
336                                      loff_t start_byte, loff_t end_byte)
337 {
338         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
339         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
340         struct pagevec pvec;
341         int nr_pages;
342         int ret = 0;
343
344         if (end_byte < start_byte)
345                 goto out;
346
347         pagevec_init(&pvec, 0);
348         while ((index <= end) &&
349                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
350                         PAGECACHE_TAG_WRITEBACK,
351                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
352                 unsigned i;
353
354                 for (i = 0; i < nr_pages; i++) {
355                         struct page *page = pvec.pages[i];
356
357                         /* until radix tree lookup accepts end_index */
358                         if (page->index > end)
359                                 continue;
360
361                         wait_on_page_writeback(page);
362                         if (TestClearPageError(page))
363                                 ret = -EIO;
364                 }
365                 pagevec_release(&pvec);
366                 cond_resched();
367         }
368 out:
369         return ret;
370 }
371
372 /**
373  * filemap_fdatawait_range - wait for writeback to complete
374  * @mapping:            address space structure to wait for
375  * @start_byte:         offset in bytes where the range starts
376  * @end_byte:           offset in bytes where the range ends (inclusive)
377  *
378  * Walk the list of under-writeback pages of the given address space
379  * in the given range and wait for all of them.  Check error status of
380  * the address space and return it.
381  *
382  * Since the error status of the address space is cleared by this function,
383  * callers are responsible for checking the return value and handling and/or
384  * reporting the error.
385  */
386 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
387                             loff_t end_byte)
388 {
389         int ret, ret2;
390
391         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
392         ret2 = filemap_check_errors(mapping);
393         if (!ret)
394                 ret = ret2;
395
396         return ret;
397 }
398 EXPORT_SYMBOL(filemap_fdatawait_range);
399
400 /**
401  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
402  * @mapping: address space structure to wait for
403  *
404  * Walk the list of under-writeback pages of the given address space
405  * and wait for all of them.  Unlike filemap_fdatawait(), this function
406  * does not clear error status of the address space.
407  *
408  * Use this function if callers don't handle errors themselves.  Expected
409  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
410  * fsfreeze(8)
411  */
412 void filemap_fdatawait_keep_errors(struct address_space *mapping)
413 {
414         loff_t i_size = i_size_read(mapping->host);
415
416         if (i_size == 0)
417                 return;
418
419         __filemap_fdatawait_range(mapping, 0, i_size - 1);
420 }
421
422 /**
423  * filemap_fdatawait - wait for all under-writeback pages to complete
424  * @mapping: address space structure to wait for
425  *
426  * Walk the list of under-writeback pages of the given address space
427  * and wait for all of them.  Check error status of the address space
428  * and return it.
429  *
430  * Since the error status of the address space is cleared by this function,
431  * callers are responsible for checking the return value and handling and/or
432  * reporting the error.
433  */
434 int filemap_fdatawait(struct address_space *mapping)
435 {
436         loff_t i_size = i_size_read(mapping->host);
437
438         if (i_size == 0)
439                 return 0;
440
441         return filemap_fdatawait_range(mapping, 0, i_size - 1);
442 }
443 EXPORT_SYMBOL(filemap_fdatawait);
444
445 int filemap_write_and_wait(struct address_space *mapping)
446 {
447         int err = 0;
448
449         if (mapping->nrpages) {
450                 err = filemap_fdatawrite(mapping);
451                 /*
452                  * Even if the above returned error, the pages may be
453                  * written partially (e.g. -ENOSPC), so we wait for it.
454                  * But the -EIO is special case, it may indicate the worst
455                  * thing (e.g. bug) happened, so we avoid waiting for it.
456                  */
457                 if (err != -EIO) {
458                         int err2 = filemap_fdatawait(mapping);
459                         if (!err)
460                                 err = err2;
461                 }
462         } else {
463                 err = filemap_check_errors(mapping);
464         }
465         return err;
466 }
467 EXPORT_SYMBOL(filemap_write_and_wait);
468
469 /**
470  * filemap_write_and_wait_range - write out & wait on a file range
471  * @mapping:    the address_space for the pages
472  * @lstart:     offset in bytes where the range starts
473  * @lend:       offset in bytes where the range ends (inclusive)
474  *
475  * Write out and wait upon file offsets lstart->lend, inclusive.
476  *
477  * Note that `lend' is inclusive (describes the last byte to be written) so
478  * that this function can be used to write to the very end-of-file (end = -1).
479  */
480 int filemap_write_and_wait_range(struct address_space *mapping,
481                                  loff_t lstart, loff_t lend)
482 {
483         int err = 0;
484
485         if (dax_mapping(mapping) && mapping->nrexceptional) {
486                 err = dax_writeback_mapping_range(mapping, lstart, lend);
487                 if (err)
488                         return err;
489         }
490
491         if (mapping->nrpages) {
492                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
493                                                  WB_SYNC_ALL);
494                 /* See comment of filemap_write_and_wait() */
495                 if (err != -EIO) {
496                         int err2 = filemap_fdatawait_range(mapping,
497                                                 lstart, lend);
498                         if (!err)
499                                 err = err2;
500                 }
501         } else {
502                 err = filemap_check_errors(mapping);
503         }
504         return err;
505 }
506 EXPORT_SYMBOL(filemap_write_and_wait_range);
507
508 /**
509  * replace_page_cache_page - replace a pagecache page with a new one
510  * @old:        page to be replaced
511  * @new:        page to replace with
512  * @gfp_mask:   allocation mode
513  *
514  * This function replaces a page in the pagecache with a new one.  On
515  * success it acquires the pagecache reference for the new page and
516  * drops it for the old page.  Both the old and new pages must be
517  * locked.  This function does not add the new page to the LRU, the
518  * caller must do that.
519  *
520  * The remove + add is atomic.  The only way this function can fail is
521  * memory allocation failure.
522  */
523 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
524 {
525         int error;
526
527         VM_BUG_ON_PAGE(!PageLocked(old), old);
528         VM_BUG_ON_PAGE(!PageLocked(new), new);
529         VM_BUG_ON_PAGE(new->mapping, new);
530
531         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
532         if (!error) {
533                 struct address_space *mapping = old->mapping;
534                 void (*freepage)(struct page *);
535                 struct mem_cgroup *memcg;
536                 unsigned long flags;
537
538                 pgoff_t offset = old->index;
539                 freepage = mapping->a_ops->freepage;
540
541                 page_cache_get(new);
542                 new->mapping = mapping;
543                 new->index = offset;
544
545                 memcg = mem_cgroup_begin_page_stat(old);
546                 spin_lock_irqsave(&mapping->tree_lock, flags);
547                 __delete_from_page_cache(old, NULL, memcg);
548                 error = radix_tree_insert(&mapping->page_tree, offset, new);
549                 BUG_ON(error);
550                 mapping->nrpages++;
551
552                 /*
553                  * hugetlb pages do not participate in page cache accounting.
554                  */
555                 if (!PageHuge(new))
556                         __inc_zone_page_state(new, NR_FILE_PAGES);
557                 if (PageSwapBacked(new))
558                         __inc_zone_page_state(new, NR_SHMEM);
559                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
560                 mem_cgroup_end_page_stat(memcg);
561                 mem_cgroup_replace_page(old, new);
562                 radix_tree_preload_end();
563                 if (freepage)
564                         freepage(old);
565                 page_cache_release(old);
566         }
567
568         return error;
569 }
570 EXPORT_SYMBOL_GPL(replace_page_cache_page);
571
572 static int page_cache_tree_insert(struct address_space *mapping,
573                                   struct page *page, void **shadowp)
574 {
575         struct radix_tree_node *node;
576         void **slot;
577         int error;
578
579         error = __radix_tree_create(&mapping->page_tree, page->index,
580                                     &node, &slot);
581         if (error)
582                 return error;
583         if (*slot) {
584                 void *p;
585
586                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
587                 if (!radix_tree_exceptional_entry(p))
588                         return -EEXIST;
589
590                 if (WARN_ON(dax_mapping(mapping)))
591                         return -EINVAL;
592
593                 if (shadowp)
594                         *shadowp = p;
595                 mapping->nrexceptional--;
596                 if (node)
597                         workingset_node_shadows_dec(node);
598         }
599         radix_tree_replace_slot(slot, page);
600         mapping->nrpages++;
601         if (node) {
602                 workingset_node_pages_inc(node);
603                 /*
604                  * Don't track node that contains actual pages.
605                  *
606                  * Avoid acquiring the list_lru lock if already
607                  * untracked.  The list_empty() test is safe as
608                  * node->private_list is protected by
609                  * mapping->tree_lock.
610                  */
611                 if (!list_empty(&node->private_list))
612                         list_lru_del(&workingset_shadow_nodes,
613                                      &node->private_list);
614         }
615         return 0;
616 }
617
618 static int __add_to_page_cache_locked(struct page *page,
619                                       struct address_space *mapping,
620                                       pgoff_t offset, gfp_t gfp_mask,
621                                       void **shadowp)
622 {
623         int huge = PageHuge(page);
624         struct mem_cgroup *memcg;
625         int error;
626
627         VM_BUG_ON_PAGE(!PageLocked(page), page);
628         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
629
630         if (!huge) {
631                 error = mem_cgroup_try_charge(page, current->mm,
632                                               gfp_mask, &memcg, false);
633                 if (error)
634                         return error;
635         }
636
637         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
638         if (error) {
639                 if (!huge)
640                         mem_cgroup_cancel_charge(page, memcg, false);
641                 return error;
642         }
643
644         page_cache_get(page);
645         page->mapping = mapping;
646         page->index = offset;
647
648         spin_lock_irq(&mapping->tree_lock);
649         error = page_cache_tree_insert(mapping, page, shadowp);
650         radix_tree_preload_end();
651         if (unlikely(error))
652                 goto err_insert;
653
654         /* hugetlb pages do not participate in page cache accounting. */
655         if (!huge)
656                 __inc_zone_page_state(page, NR_FILE_PAGES);
657         spin_unlock_irq(&mapping->tree_lock);
658         if (!huge)
659                 mem_cgroup_commit_charge(page, memcg, false, false);
660         trace_mm_filemap_add_to_page_cache(page);
661         return 0;
662 err_insert:
663         page->mapping = NULL;
664         /* Leave page->index set: truncation relies upon it */
665         spin_unlock_irq(&mapping->tree_lock);
666         if (!huge)
667                 mem_cgroup_cancel_charge(page, memcg, false);
668         page_cache_release(page);
669         return error;
670 }
671
672 /**
673  * add_to_page_cache_locked - add a locked page to the pagecache
674  * @page:       page to add
675  * @mapping:    the page's address_space
676  * @offset:     page index
677  * @gfp_mask:   page allocation mode
678  *
679  * This function is used to add a page to the pagecache. It must be locked.
680  * This function does not add the page to the LRU.  The caller must do that.
681  */
682 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
683                 pgoff_t offset, gfp_t gfp_mask)
684 {
685         return __add_to_page_cache_locked(page, mapping, offset,
686                                           gfp_mask, NULL);
687 }
688 EXPORT_SYMBOL(add_to_page_cache_locked);
689
690 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
691                                 pgoff_t offset, gfp_t gfp_mask)
692 {
693         void *shadow = NULL;
694         int ret;
695
696         __SetPageLocked(page);
697         ret = __add_to_page_cache_locked(page, mapping, offset,
698                                          gfp_mask, &shadow);
699         if (unlikely(ret))
700                 __ClearPageLocked(page);
701         else {
702                 /*
703                  * The page might have been evicted from cache only
704                  * recently, in which case it should be activated like
705                  * any other repeatedly accessed page.
706                  */
707                 if (shadow && workingset_refault(shadow)) {
708                         SetPageActive(page);
709                         workingset_activation(page);
710                 } else
711                         ClearPageActive(page);
712                 lru_cache_add(page);
713         }
714         return ret;
715 }
716 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
717
718 #ifdef CONFIG_NUMA
719 struct page *__page_cache_alloc(gfp_t gfp)
720 {
721         int n;
722         struct page *page;
723
724         if (cpuset_do_page_mem_spread()) {
725                 unsigned int cpuset_mems_cookie;
726                 do {
727                         cpuset_mems_cookie = read_mems_allowed_begin();
728                         n = cpuset_mem_spread_node();
729                         page = __alloc_pages_node(n, gfp, 0);
730                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
731
732                 return page;
733         }
734         return alloc_pages(gfp, 0);
735 }
736 EXPORT_SYMBOL(__page_cache_alloc);
737 #endif
738
739 /*
740  * In order to wait for pages to become available there must be
741  * waitqueues associated with pages. By using a hash table of
742  * waitqueues where the bucket discipline is to maintain all
743  * waiters on the same queue and wake all when any of the pages
744  * become available, and for the woken contexts to check to be
745  * sure the appropriate page became available, this saves space
746  * at a cost of "thundering herd" phenomena during rare hash
747  * collisions.
748  */
749 wait_queue_head_t *page_waitqueue(struct page *page)
750 {
751         const struct zone *zone = page_zone(page);
752
753         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
754 }
755 EXPORT_SYMBOL(page_waitqueue);
756
757 void wait_on_page_bit(struct page *page, int bit_nr)
758 {
759         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
760
761         if (test_bit(bit_nr, &page->flags))
762                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
763                                                         TASK_UNINTERRUPTIBLE);
764 }
765 EXPORT_SYMBOL(wait_on_page_bit);
766
767 int wait_on_page_bit_killable(struct page *page, int bit_nr)
768 {
769         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
770
771         if (!test_bit(bit_nr, &page->flags))
772                 return 0;
773
774         return __wait_on_bit(page_waitqueue(page), &wait,
775                              bit_wait_io, TASK_KILLABLE);
776 }
777
778 int wait_on_page_bit_killable_timeout(struct page *page,
779                                        int bit_nr, unsigned long timeout)
780 {
781         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
782
783         wait.key.timeout = jiffies + timeout;
784         if (!test_bit(bit_nr, &page->flags))
785                 return 0;
786         return __wait_on_bit(page_waitqueue(page), &wait,
787                              bit_wait_io_timeout, TASK_KILLABLE);
788 }
789 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
790
791 /**
792  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
793  * @page: Page defining the wait queue of interest
794  * @waiter: Waiter to add to the queue
795  *
796  * Add an arbitrary @waiter to the wait queue for the nominated @page.
797  */
798 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
799 {
800         wait_queue_head_t *q = page_waitqueue(page);
801         unsigned long flags;
802
803         spin_lock_irqsave(&q->lock, flags);
804         __add_wait_queue(q, waiter);
805         spin_unlock_irqrestore(&q->lock, flags);
806 }
807 EXPORT_SYMBOL_GPL(add_page_wait_queue);
808
809 /**
810  * unlock_page - unlock a locked page
811  * @page: the page
812  *
813  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
814  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
815  * mechanism between PageLocked pages and PageWriteback pages is shared.
816  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
817  *
818  * The mb is necessary to enforce ordering between the clear_bit and the read
819  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
820  */
821 void unlock_page(struct page *page)
822 {
823         page = compound_head(page);
824         VM_BUG_ON_PAGE(!PageLocked(page), page);
825         clear_bit_unlock(PG_locked, &page->flags);
826         smp_mb__after_atomic();
827         wake_up_page(page, PG_locked);
828 }
829 EXPORT_SYMBOL(unlock_page);
830
831 /**
832  * end_page_writeback - end writeback against a page
833  * @page: the page
834  */
835 void end_page_writeback(struct page *page)
836 {
837         /*
838          * TestClearPageReclaim could be used here but it is an atomic
839          * operation and overkill in this particular case. Failing to
840          * shuffle a page marked for immediate reclaim is too mild to
841          * justify taking an atomic operation penalty at the end of
842          * ever page writeback.
843          */
844         if (PageReclaim(page)) {
845                 ClearPageReclaim(page);
846                 rotate_reclaimable_page(page);
847         }
848
849         if (!test_clear_page_writeback(page))
850                 BUG();
851
852         smp_mb__after_atomic();
853         wake_up_page(page, PG_writeback);
854 }
855 EXPORT_SYMBOL(end_page_writeback);
856
857 /*
858  * After completing I/O on a page, call this routine to update the page
859  * flags appropriately
860  */
861 void page_endio(struct page *page, int rw, int err)
862 {
863         if (rw == READ) {
864                 if (!err) {
865                         SetPageUptodate(page);
866                 } else {
867                         ClearPageUptodate(page);
868                         SetPageError(page);
869                 }
870                 unlock_page(page);
871         } else { /* rw == WRITE */
872                 if (err) {
873                         SetPageError(page);
874                         if (page->mapping)
875                                 mapping_set_error(page->mapping, err);
876                 }
877                 end_page_writeback(page);
878         }
879 }
880 EXPORT_SYMBOL_GPL(page_endio);
881
882 /**
883  * __lock_page - get a lock on the page, assuming we need to sleep to get it
884  * @page: the page to lock
885  */
886 void __lock_page(struct page *page)
887 {
888         struct page *page_head = compound_head(page);
889         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
890
891         __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
892                                                         TASK_UNINTERRUPTIBLE);
893 }
894 EXPORT_SYMBOL(__lock_page);
895
896 int __lock_page_killable(struct page *page)
897 {
898         struct page *page_head = compound_head(page);
899         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
900
901         return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
902                                         bit_wait_io, TASK_KILLABLE);
903 }
904 EXPORT_SYMBOL_GPL(__lock_page_killable);
905
906 /*
907  * Return values:
908  * 1 - page is locked; mmap_sem is still held.
909  * 0 - page is not locked.
910  *     mmap_sem has been released (up_read()), unless flags had both
911  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
912  *     which case mmap_sem is still held.
913  *
914  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
915  * with the page locked and the mmap_sem unperturbed.
916  */
917 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
918                          unsigned int flags)
919 {
920         if (flags & FAULT_FLAG_ALLOW_RETRY) {
921                 /*
922                  * CAUTION! In this case, mmap_sem is not released
923                  * even though return 0.
924                  */
925                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
926                         return 0;
927
928                 up_read(&mm->mmap_sem);
929                 if (flags & FAULT_FLAG_KILLABLE)
930                         wait_on_page_locked_killable(page);
931                 else
932                         wait_on_page_locked(page);
933                 return 0;
934         } else {
935                 if (flags & FAULT_FLAG_KILLABLE) {
936                         int ret;
937
938                         ret = __lock_page_killable(page);
939                         if (ret) {
940                                 up_read(&mm->mmap_sem);
941                                 return 0;
942                         }
943                 } else
944                         __lock_page(page);
945                 return 1;
946         }
947 }
948
949 /**
950  * page_cache_next_hole - find the next hole (not-present entry)
951  * @mapping: mapping
952  * @index: index
953  * @max_scan: maximum range to search
954  *
955  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
956  * lowest indexed hole.
957  *
958  * Returns: the index of the hole if found, otherwise returns an index
959  * outside of the set specified (in which case 'return - index >=
960  * max_scan' will be true). In rare cases of index wrap-around, 0 will
961  * be returned.
962  *
963  * page_cache_next_hole may be called under rcu_read_lock. However,
964  * like radix_tree_gang_lookup, this will not atomically search a
965  * snapshot of the tree at a single point in time. For example, if a
966  * hole is created at index 5, then subsequently a hole is created at
967  * index 10, page_cache_next_hole covering both indexes may return 10
968  * if called under rcu_read_lock.
969  */
970 pgoff_t page_cache_next_hole(struct address_space *mapping,
971                              pgoff_t index, unsigned long max_scan)
972 {
973         unsigned long i;
974
975         for (i = 0; i < max_scan; i++) {
976                 struct page *page;
977
978                 page = radix_tree_lookup(&mapping->page_tree, index);
979                 if (!page || radix_tree_exceptional_entry(page))
980                         break;
981                 index++;
982                 if (index == 0)
983                         break;
984         }
985
986         return index;
987 }
988 EXPORT_SYMBOL(page_cache_next_hole);
989
990 /**
991  * page_cache_prev_hole - find the prev hole (not-present entry)
992  * @mapping: mapping
993  * @index: index
994  * @max_scan: maximum range to search
995  *
996  * Search backwards in the range [max(index-max_scan+1, 0), index] for
997  * the first hole.
998  *
999  * Returns: the index of the hole if found, otherwise returns an index
1000  * outside of the set specified (in which case 'index - return >=
1001  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1002  * will be returned.
1003  *
1004  * page_cache_prev_hole may be called under rcu_read_lock. However,
1005  * like radix_tree_gang_lookup, this will not atomically search a
1006  * snapshot of the tree at a single point in time. For example, if a
1007  * hole is created at index 10, then subsequently a hole is created at
1008  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1009  * called under rcu_read_lock.
1010  */
1011 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1012                              pgoff_t index, unsigned long max_scan)
1013 {
1014         unsigned long i;
1015
1016         for (i = 0; i < max_scan; i++) {
1017                 struct page *page;
1018
1019                 page = radix_tree_lookup(&mapping->page_tree, index);
1020                 if (!page || radix_tree_exceptional_entry(page))
1021                         break;
1022                 index--;
1023                 if (index == ULONG_MAX)
1024                         break;
1025         }
1026
1027         return index;
1028 }
1029 EXPORT_SYMBOL(page_cache_prev_hole);
1030
1031 /**
1032  * find_get_entry - find and get a page cache entry
1033  * @mapping: the address_space to search
1034  * @offset: the page cache index
1035  *
1036  * Looks up the page cache slot at @mapping & @offset.  If there is a
1037  * page cache page, it is returned with an increased refcount.
1038  *
1039  * If the slot holds a shadow entry of a previously evicted page, or a
1040  * swap entry from shmem/tmpfs, it is returned.
1041  *
1042  * Otherwise, %NULL is returned.
1043  */
1044 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1045 {
1046         void **pagep;
1047         struct page *page;
1048
1049         rcu_read_lock();
1050 repeat:
1051         page = NULL;
1052         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1053         if (pagep) {
1054                 page = radix_tree_deref_slot(pagep);
1055                 if (unlikely(!page))
1056                         goto out;
1057                 if (radix_tree_exception(page)) {
1058                         if (radix_tree_deref_retry(page))
1059                                 goto repeat;
1060                         /*
1061                          * A shadow entry of a recently evicted page,
1062                          * or a swap entry from shmem/tmpfs.  Return
1063                          * it without attempting to raise page count.
1064                          */
1065                         goto out;
1066                 }
1067                 if (!page_cache_get_speculative(page))
1068                         goto repeat;
1069
1070                 /*
1071                  * Has the page moved?
1072                  * This is part of the lockless pagecache protocol. See
1073                  * include/linux/pagemap.h for details.
1074                  */
1075                 if (unlikely(page != *pagep)) {
1076                         page_cache_release(page);
1077                         goto repeat;
1078                 }
1079         }
1080 out:
1081         rcu_read_unlock();
1082
1083         return page;
1084 }
1085 EXPORT_SYMBOL(find_get_entry);
1086
1087 /**
1088  * find_lock_entry - locate, pin and lock a page cache entry
1089  * @mapping: the address_space to search
1090  * @offset: the page cache index
1091  *
1092  * Looks up the page cache slot at @mapping & @offset.  If there is a
1093  * page cache page, it is returned locked and with an increased
1094  * refcount.
1095  *
1096  * If the slot holds a shadow entry of a previously evicted page, or a
1097  * swap entry from shmem/tmpfs, it is returned.
1098  *
1099  * Otherwise, %NULL is returned.
1100  *
1101  * find_lock_entry() may sleep.
1102  */
1103 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1104 {
1105         struct page *page;
1106
1107 repeat:
1108         page = find_get_entry(mapping, offset);
1109         if (page && !radix_tree_exception(page)) {
1110                 lock_page(page);
1111                 /* Has the page been truncated? */
1112                 if (unlikely(page->mapping != mapping)) {
1113                         unlock_page(page);
1114                         page_cache_release(page);
1115                         goto repeat;
1116                 }
1117                 VM_BUG_ON_PAGE(page->index != offset, page);
1118         }
1119         return page;
1120 }
1121 EXPORT_SYMBOL(find_lock_entry);
1122
1123 /**
1124  * pagecache_get_page - find and get a page reference
1125  * @mapping: the address_space to search
1126  * @offset: the page index
1127  * @fgp_flags: PCG flags
1128  * @gfp_mask: gfp mask to use for the page cache data page allocation
1129  *
1130  * Looks up the page cache slot at @mapping & @offset.
1131  *
1132  * PCG flags modify how the page is returned.
1133  *
1134  * FGP_ACCESSED: the page will be marked accessed
1135  * FGP_LOCK: Page is return locked
1136  * FGP_CREAT: If page is not present then a new page is allocated using
1137  *              @gfp_mask and added to the page cache and the VM's LRU
1138  *              list. The page is returned locked and with an increased
1139  *              refcount. Otherwise, %NULL is returned.
1140  *
1141  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1142  * if the GFP flags specified for FGP_CREAT are atomic.
1143  *
1144  * If there is a page cache page, it is returned with an increased refcount.
1145  */
1146 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1147         int fgp_flags, gfp_t gfp_mask)
1148 {
1149         struct page *page;
1150
1151 repeat:
1152         page = find_get_entry(mapping, offset);
1153         if (radix_tree_exceptional_entry(page))
1154                 page = NULL;
1155         if (!page)
1156                 goto no_page;
1157
1158         if (fgp_flags & FGP_LOCK) {
1159                 if (fgp_flags & FGP_NOWAIT) {
1160                         if (!trylock_page(page)) {
1161                                 page_cache_release(page);
1162                                 return NULL;
1163                         }
1164                 } else {
1165                         lock_page(page);
1166                 }
1167
1168                 /* Has the page been truncated? */
1169                 if (unlikely(page->mapping != mapping)) {
1170                         unlock_page(page);
1171                         page_cache_release(page);
1172                         goto repeat;
1173                 }
1174                 VM_BUG_ON_PAGE(page->index != offset, page);
1175         }
1176
1177         if (page && (fgp_flags & FGP_ACCESSED))
1178                 mark_page_accessed(page);
1179
1180 no_page:
1181         if (!page && (fgp_flags & FGP_CREAT)) {
1182                 int err;
1183                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1184                         gfp_mask |= __GFP_WRITE;
1185                 if (fgp_flags & FGP_NOFS)
1186                         gfp_mask &= ~__GFP_FS;
1187
1188                 page = __page_cache_alloc(gfp_mask);
1189                 if (!page)
1190                         return NULL;
1191
1192                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1193                         fgp_flags |= FGP_LOCK;
1194
1195                 /* Init accessed so avoid atomic mark_page_accessed later */
1196                 if (fgp_flags & FGP_ACCESSED)
1197                         __SetPageReferenced(page);
1198
1199                 err = add_to_page_cache_lru(page, mapping, offset,
1200                                 gfp_mask & GFP_RECLAIM_MASK);
1201                 if (unlikely(err)) {
1202                         page_cache_release(page);
1203                         page = NULL;
1204                         if (err == -EEXIST)
1205                                 goto repeat;
1206                 }
1207         }
1208
1209         return page;
1210 }
1211 EXPORT_SYMBOL(pagecache_get_page);
1212
1213 /**
1214  * find_get_entries - gang pagecache lookup
1215  * @mapping:    The address_space to search
1216  * @start:      The starting page cache index
1217  * @nr_entries: The maximum number of entries
1218  * @entries:    Where the resulting entries are placed
1219  * @indices:    The cache indices corresponding to the entries in @entries
1220  *
1221  * find_get_entries() will search for and return a group of up to
1222  * @nr_entries entries in the mapping.  The entries are placed at
1223  * @entries.  find_get_entries() takes a reference against any actual
1224  * pages it returns.
1225  *
1226  * The search returns a group of mapping-contiguous page cache entries
1227  * with ascending indexes.  There may be holes in the indices due to
1228  * not-present pages.
1229  *
1230  * Any shadow entries of evicted pages, or swap entries from
1231  * shmem/tmpfs, are included in the returned array.
1232  *
1233  * find_get_entries() returns the number of pages and shadow entries
1234  * which were found.
1235  */
1236 unsigned find_get_entries(struct address_space *mapping,
1237                           pgoff_t start, unsigned int nr_entries,
1238                           struct page **entries, pgoff_t *indices)
1239 {
1240         void **slot;
1241         unsigned int ret = 0;
1242         struct radix_tree_iter iter;
1243
1244         if (!nr_entries)
1245                 return 0;
1246
1247         rcu_read_lock();
1248 restart:
1249         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1250                 struct page *page;
1251 repeat:
1252                 page = radix_tree_deref_slot(slot);
1253                 if (unlikely(!page))
1254                         continue;
1255                 if (radix_tree_exception(page)) {
1256                         if (radix_tree_deref_retry(page))
1257                                 goto restart;
1258                         /*
1259                          * A shadow entry of a recently evicted page, a swap
1260                          * entry from shmem/tmpfs or a DAX entry.  Return it
1261                          * without attempting to raise page count.
1262                          */
1263                         goto export;
1264                 }
1265                 if (!page_cache_get_speculative(page))
1266                         goto repeat;
1267
1268                 /* Has the page moved? */
1269                 if (unlikely(page != *slot)) {
1270                         page_cache_release(page);
1271                         goto repeat;
1272                 }
1273 export:
1274                 indices[ret] = iter.index;
1275                 entries[ret] = page;
1276                 if (++ret == nr_entries)
1277                         break;
1278         }
1279         rcu_read_unlock();
1280         return ret;
1281 }
1282
1283 /**
1284  * find_get_pages - gang pagecache lookup
1285  * @mapping:    The address_space to search
1286  * @start:      The starting page index
1287  * @nr_pages:   The maximum number of pages
1288  * @pages:      Where the resulting pages are placed
1289  *
1290  * find_get_pages() will search for and return a group of up to
1291  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1292  * find_get_pages() takes a reference against the returned pages.
1293  *
1294  * The search returns a group of mapping-contiguous pages with ascending
1295  * indexes.  There may be holes in the indices due to not-present pages.
1296  *
1297  * find_get_pages() returns the number of pages which were found.
1298  */
1299 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1300                             unsigned int nr_pages, struct page **pages)
1301 {
1302         struct radix_tree_iter iter;
1303         void **slot;
1304         unsigned ret = 0;
1305
1306         if (unlikely(!nr_pages))
1307                 return 0;
1308
1309         rcu_read_lock();
1310 restart:
1311         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1312                 struct page *page;
1313 repeat:
1314                 page = radix_tree_deref_slot(slot);
1315                 if (unlikely(!page))
1316                         continue;
1317
1318                 if (radix_tree_exception(page)) {
1319                         if (radix_tree_deref_retry(page)) {
1320                                 /*
1321                                  * Transient condition which can only trigger
1322                                  * when entry at index 0 moves out of or back
1323                                  * to root: none yet gotten, safe to restart.
1324                                  */
1325                                 WARN_ON(iter.index);
1326                                 goto restart;
1327                         }
1328                         /*
1329                          * A shadow entry of a recently evicted page,
1330                          * or a swap entry from shmem/tmpfs.  Skip
1331                          * over it.
1332                          */
1333                         continue;
1334                 }
1335
1336                 if (!page_cache_get_speculative(page))
1337                         goto repeat;
1338
1339                 /* Has the page moved? */
1340                 if (unlikely(page != *slot)) {
1341                         page_cache_release(page);
1342                         goto repeat;
1343                 }
1344
1345                 pages[ret] = page;
1346                 if (++ret == nr_pages)
1347                         break;
1348         }
1349
1350         rcu_read_unlock();
1351         return ret;
1352 }
1353
1354 /**
1355  * find_get_pages_contig - gang contiguous pagecache lookup
1356  * @mapping:    The address_space to search
1357  * @index:      The starting page index
1358  * @nr_pages:   The maximum number of pages
1359  * @pages:      Where the resulting pages are placed
1360  *
1361  * find_get_pages_contig() works exactly like find_get_pages(), except
1362  * that the returned number of pages are guaranteed to be contiguous.
1363  *
1364  * find_get_pages_contig() returns the number of pages which were found.
1365  */
1366 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1367                                unsigned int nr_pages, struct page **pages)
1368 {
1369         struct radix_tree_iter iter;
1370         void **slot;
1371         unsigned int ret = 0;
1372
1373         if (unlikely(!nr_pages))
1374                 return 0;
1375
1376         rcu_read_lock();
1377 restart:
1378         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1379                 struct page *page;
1380 repeat:
1381                 page = radix_tree_deref_slot(slot);
1382                 /* The hole, there no reason to continue */
1383                 if (unlikely(!page))
1384                         break;
1385
1386                 if (radix_tree_exception(page)) {
1387                         if (radix_tree_deref_retry(page)) {
1388                                 /*
1389                                  * Transient condition which can only trigger
1390                                  * when entry at index 0 moves out of or back
1391                                  * to root: none yet gotten, safe to restart.
1392                                  */
1393                                 goto restart;
1394                         }
1395                         /*
1396                          * A shadow entry of a recently evicted page,
1397                          * or a swap entry from shmem/tmpfs.  Stop
1398                          * looking for contiguous pages.
1399                          */
1400                         break;
1401                 }
1402
1403                 if (!page_cache_get_speculative(page))
1404                         goto repeat;
1405
1406                 /* Has the page moved? */
1407                 if (unlikely(page != *slot)) {
1408                         page_cache_release(page);
1409                         goto repeat;
1410                 }
1411
1412                 /*
1413                  * must check mapping and index after taking the ref.
1414                  * otherwise we can get both false positives and false
1415                  * negatives, which is just confusing to the caller.
1416                  */
1417                 if (page->mapping == NULL || page->index != iter.index) {
1418                         page_cache_release(page);
1419                         break;
1420                 }
1421
1422                 pages[ret] = page;
1423                 if (++ret == nr_pages)
1424                         break;
1425         }
1426         rcu_read_unlock();
1427         return ret;
1428 }
1429 EXPORT_SYMBOL(find_get_pages_contig);
1430
1431 /**
1432  * find_get_pages_tag - find and return pages that match @tag
1433  * @mapping:    the address_space to search
1434  * @index:      the starting page index
1435  * @tag:        the tag index
1436  * @nr_pages:   the maximum number of pages
1437  * @pages:      where the resulting pages are placed
1438  *
1439  * Like find_get_pages, except we only return pages which are tagged with
1440  * @tag.   We update @index to index the next page for the traversal.
1441  */
1442 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1443                         int tag, unsigned int nr_pages, struct page **pages)
1444 {
1445         struct radix_tree_iter iter;
1446         void **slot;
1447         unsigned ret = 0;
1448
1449         if (unlikely(!nr_pages))
1450                 return 0;
1451
1452         rcu_read_lock();
1453 restart:
1454         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1455                                    &iter, *index, tag) {
1456                 struct page *page;
1457 repeat:
1458                 page = radix_tree_deref_slot(slot);
1459                 if (unlikely(!page))
1460                         continue;
1461
1462                 if (radix_tree_exception(page)) {
1463                         if (radix_tree_deref_retry(page)) {
1464                                 /*
1465                                  * Transient condition which can only trigger
1466                                  * when entry at index 0 moves out of or back
1467                                  * to root: none yet gotten, safe to restart.
1468                                  */
1469                                 goto restart;
1470                         }
1471                         /*
1472                          * A shadow entry of a recently evicted page.
1473                          *
1474                          * Those entries should never be tagged, but
1475                          * this tree walk is lockless and the tags are
1476                          * looked up in bulk, one radix tree node at a
1477                          * time, so there is a sizable window for page
1478                          * reclaim to evict a page we saw tagged.
1479                          *
1480                          * Skip over it.
1481                          */
1482                         continue;
1483                 }
1484
1485                 if (!page_cache_get_speculative(page))
1486                         goto repeat;
1487
1488                 /* Has the page moved? */
1489                 if (unlikely(page != *slot)) {
1490                         page_cache_release(page);
1491                         goto repeat;
1492                 }
1493
1494                 pages[ret] = page;
1495                 if (++ret == nr_pages)
1496                         break;
1497         }
1498
1499         rcu_read_unlock();
1500
1501         if (ret)
1502                 *index = pages[ret - 1]->index + 1;
1503
1504         return ret;
1505 }
1506 EXPORT_SYMBOL(find_get_pages_tag);
1507
1508 /**
1509  * find_get_entries_tag - find and return entries that match @tag
1510  * @mapping:    the address_space to search
1511  * @start:      the starting page cache index
1512  * @tag:        the tag index
1513  * @nr_entries: the maximum number of entries
1514  * @entries:    where the resulting entries are placed
1515  * @indices:    the cache indices corresponding to the entries in @entries
1516  *
1517  * Like find_get_entries, except we only return entries which are tagged with
1518  * @tag.
1519  */
1520 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1521                         int tag, unsigned int nr_entries,
1522                         struct page **entries, pgoff_t *indices)
1523 {
1524         void **slot;
1525         unsigned int ret = 0;
1526         struct radix_tree_iter iter;
1527
1528         if (!nr_entries)
1529                 return 0;
1530
1531         rcu_read_lock();
1532 restart:
1533         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1534                                    &iter, start, tag) {
1535                 struct page *page;
1536 repeat:
1537                 page = radix_tree_deref_slot(slot);
1538                 if (unlikely(!page))
1539                         continue;
1540                 if (radix_tree_exception(page)) {
1541                         if (radix_tree_deref_retry(page)) {
1542                                 /*
1543                                  * Transient condition which can only trigger
1544                                  * when entry at index 0 moves out of or back
1545                                  * to root: none yet gotten, safe to restart.
1546                                  */
1547                                 goto restart;
1548                         }
1549
1550                         /*
1551                          * A shadow entry of a recently evicted page, a swap
1552                          * entry from shmem/tmpfs or a DAX entry.  Return it
1553                          * without attempting to raise page count.
1554                          */
1555                         goto export;
1556                 }
1557                 if (!page_cache_get_speculative(page))
1558                         goto repeat;
1559
1560                 /* Has the page moved? */
1561                 if (unlikely(page != *slot)) {
1562                         page_cache_release(page);
1563                         goto repeat;
1564                 }
1565 export:
1566                 indices[ret] = iter.index;
1567                 entries[ret] = page;
1568                 if (++ret == nr_entries)
1569                         break;
1570         }
1571         rcu_read_unlock();
1572         return ret;
1573 }
1574 EXPORT_SYMBOL(find_get_entries_tag);
1575
1576 /*
1577  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1578  * a _large_ part of the i/o request. Imagine the worst scenario:
1579  *
1580  *      ---R__________________________________________B__________
1581  *         ^ reading here                             ^ bad block(assume 4k)
1582  *
1583  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1584  * => failing the whole request => read(R) => read(R+1) =>
1585  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1586  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1587  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1588  *
1589  * It is going insane. Fix it by quickly scaling down the readahead size.
1590  */
1591 static void shrink_readahead_size_eio(struct file *filp,
1592                                         struct file_ra_state *ra)
1593 {
1594         ra->ra_pages /= 4;
1595 }
1596
1597 /**
1598  * do_generic_file_read - generic file read routine
1599  * @filp:       the file to read
1600  * @ppos:       current file position
1601  * @iter:       data destination
1602  * @written:    already copied
1603  *
1604  * This is a generic file read routine, and uses the
1605  * mapping->a_ops->readpage() function for the actual low-level stuff.
1606  *
1607  * This is really ugly. But the goto's actually try to clarify some
1608  * of the logic when it comes to error handling etc.
1609  */
1610 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1611                 struct iov_iter *iter, ssize_t written)
1612 {
1613         struct address_space *mapping = filp->f_mapping;
1614         struct inode *inode = mapping->host;
1615         struct file_ra_state *ra = &filp->f_ra;
1616         pgoff_t index;
1617         pgoff_t last_index;
1618         pgoff_t prev_index;
1619         unsigned long offset;      /* offset into pagecache page */
1620         unsigned int prev_offset;
1621         int error = 0;
1622
1623         index = *ppos >> PAGE_CACHE_SHIFT;
1624         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1625         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1626         last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1627         offset = *ppos & ~PAGE_CACHE_MASK;
1628
1629         for (;;) {
1630                 struct page *page;
1631                 pgoff_t end_index;
1632                 loff_t isize;
1633                 unsigned long nr, ret;
1634
1635                 cond_resched();
1636 find_page:
1637                 page = find_get_page(mapping, index);
1638                 if (!page) {
1639                         page_cache_sync_readahead(mapping,
1640                                         ra, filp,
1641                                         index, last_index - index);
1642                         page = find_get_page(mapping, index);
1643                         if (unlikely(page == NULL))
1644                                 goto no_cached_page;
1645                 }
1646                 if (PageReadahead(page)) {
1647                         page_cache_async_readahead(mapping,
1648                                         ra, filp, page,
1649                                         index, last_index - index);
1650                 }
1651                 if (!PageUptodate(page)) {
1652                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1653                                         !mapping->a_ops->is_partially_uptodate)
1654                                 goto page_not_up_to_date;
1655                         if (!trylock_page(page))
1656                                 goto page_not_up_to_date;
1657                         /* Did it get truncated before we got the lock? */
1658                         if (!page->mapping)
1659                                 goto page_not_up_to_date_locked;
1660                         if (!mapping->a_ops->is_partially_uptodate(page,
1661                                                         offset, iter->count))
1662                                 goto page_not_up_to_date_locked;
1663                         unlock_page(page);
1664                 }
1665 page_ok:
1666                 /*
1667                  * i_size must be checked after we know the page is Uptodate.
1668                  *
1669                  * Checking i_size after the check allows us to calculate
1670                  * the correct value for "nr", which means the zero-filled
1671                  * part of the page is not copied back to userspace (unless
1672                  * another truncate extends the file - this is desired though).
1673                  */
1674
1675                 isize = i_size_read(inode);
1676                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1677                 if (unlikely(!isize || index > end_index)) {
1678                         page_cache_release(page);
1679                         goto out;
1680                 }
1681
1682                 /* nr is the maximum number of bytes to copy from this page */
1683                 nr = PAGE_CACHE_SIZE;
1684                 if (index == end_index) {
1685                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1686                         if (nr <= offset) {
1687                                 page_cache_release(page);
1688                                 goto out;
1689                         }
1690                 }
1691                 nr = nr - offset;
1692
1693                 /* If users can be writing to this page using arbitrary
1694                  * virtual addresses, take care about potential aliasing
1695                  * before reading the page on the kernel side.
1696                  */
1697                 if (mapping_writably_mapped(mapping))
1698                         flush_dcache_page(page);
1699
1700                 /*
1701                  * When a sequential read accesses a page several times,
1702                  * only mark it as accessed the first time.
1703                  */
1704                 if (prev_index != index || offset != prev_offset)
1705                         mark_page_accessed(page);
1706                 prev_index = index;
1707
1708                 /*
1709                  * Ok, we have the page, and it's up-to-date, so
1710                  * now we can copy it to user space...
1711                  */
1712
1713                 ret = copy_page_to_iter(page, offset, nr, iter);
1714                 offset += ret;
1715                 index += offset >> PAGE_CACHE_SHIFT;
1716                 offset &= ~PAGE_CACHE_MASK;
1717                 prev_offset = offset;
1718
1719                 page_cache_release(page);
1720                 written += ret;
1721                 if (!iov_iter_count(iter))
1722                         goto out;
1723                 if (ret < nr) {
1724                         error = -EFAULT;
1725                         goto out;
1726                 }
1727                 continue;
1728
1729 page_not_up_to_date:
1730                 /* Get exclusive access to the page ... */
1731                 error = lock_page_killable(page);
1732                 if (unlikely(error))
1733                         goto readpage_error;
1734
1735 page_not_up_to_date_locked:
1736                 /* Did it get truncated before we got the lock? */
1737                 if (!page->mapping) {
1738                         unlock_page(page);
1739                         page_cache_release(page);
1740                         continue;
1741                 }
1742
1743                 /* Did somebody else fill it already? */
1744                 if (PageUptodate(page)) {
1745                         unlock_page(page);
1746                         goto page_ok;
1747                 }
1748
1749 readpage:
1750                 /*
1751                  * A previous I/O error may have been due to temporary
1752                  * failures, eg. multipath errors.
1753                  * PG_error will be set again if readpage fails.
1754                  */
1755                 ClearPageError(page);
1756                 /* Start the actual read. The read will unlock the page. */
1757                 error = mapping->a_ops->readpage(filp, page);
1758
1759                 if (unlikely(error)) {
1760                         if (error == AOP_TRUNCATED_PAGE) {
1761                                 page_cache_release(page);
1762                                 error = 0;
1763                                 goto find_page;
1764                         }
1765                         goto readpage_error;
1766                 }
1767
1768                 if (!PageUptodate(page)) {
1769                         error = lock_page_killable(page);
1770                         if (unlikely(error))
1771                                 goto readpage_error;
1772                         if (!PageUptodate(page)) {
1773                                 if (page->mapping == NULL) {
1774                                         /*
1775                                          * invalidate_mapping_pages got it
1776                                          */
1777                                         unlock_page(page);
1778                                         page_cache_release(page);
1779                                         goto find_page;
1780                                 }
1781                                 unlock_page(page);
1782                                 shrink_readahead_size_eio(filp, ra);
1783                                 error = -EIO;
1784                                 goto readpage_error;
1785                         }
1786                         unlock_page(page);
1787                 }
1788
1789                 goto page_ok;
1790
1791 readpage_error:
1792                 /* UHHUH! A synchronous read error occurred. Report it */
1793                 page_cache_release(page);
1794                 goto out;
1795
1796 no_cached_page:
1797                 /*
1798                  * Ok, it wasn't cached, so we need to create a new
1799                  * page..
1800                  */
1801                 page = page_cache_alloc_cold(mapping);
1802                 if (!page) {
1803                         error = -ENOMEM;
1804                         goto out;
1805                 }
1806                 error = add_to_page_cache_lru(page, mapping, index,
1807                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1808                 if (error) {
1809                         page_cache_release(page);
1810                         if (error == -EEXIST) {
1811                                 error = 0;
1812                                 goto find_page;
1813                         }
1814                         goto out;
1815                 }
1816                 goto readpage;
1817         }
1818
1819 out:
1820         ra->prev_pos = prev_index;
1821         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1822         ra->prev_pos |= prev_offset;
1823
1824         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1825         file_accessed(filp);
1826         return written ? written : error;
1827 }
1828
1829 /**
1830  * generic_file_read_iter - generic filesystem read routine
1831  * @iocb:       kernel I/O control block
1832  * @iter:       destination for the data read
1833  *
1834  * This is the "read_iter()" routine for all filesystems
1835  * that can use the page cache directly.
1836  */
1837 ssize_t
1838 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1839 {
1840         struct file *file = iocb->ki_filp;
1841         ssize_t retval = 0;
1842         loff_t *ppos = &iocb->ki_pos;
1843         loff_t pos = *ppos;
1844
1845         if (iocb->ki_flags & IOCB_DIRECT) {
1846                 struct address_space *mapping = file->f_mapping;
1847                 struct inode *inode = mapping->host;
1848                 size_t count = iov_iter_count(iter);
1849                 loff_t size;
1850
1851                 if (!count)
1852                         goto out; /* skip atime */
1853                 size = i_size_read(inode);
1854                 retval = filemap_write_and_wait_range(mapping, pos,
1855                                         pos + count - 1);
1856                 if (!retval) {
1857                         struct iov_iter data = *iter;
1858                         retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1859                 }
1860
1861                 if (retval > 0) {
1862                         *ppos = pos + retval;
1863                         iov_iter_advance(iter, retval);
1864                 }
1865
1866                 /*
1867                  * Btrfs can have a short DIO read if we encounter
1868                  * compressed extents, so if there was an error, or if
1869                  * we've already read everything we wanted to, or if
1870                  * there was a short read because we hit EOF, go ahead
1871                  * and return.  Otherwise fallthrough to buffered io for
1872                  * the rest of the read.  Buffered reads will not work for
1873                  * DAX files, so don't bother trying.
1874                  */
1875                 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1876                     IS_DAX(inode)) {
1877                         file_accessed(file);
1878                         goto out;
1879                 }
1880         }
1881
1882         retval = do_generic_file_read(file, ppos, iter, retval);
1883 out:
1884         return retval;
1885 }
1886 EXPORT_SYMBOL(generic_file_read_iter);
1887
1888 #ifdef CONFIG_MMU
1889 /**
1890  * page_cache_read - adds requested page to the page cache if not already there
1891  * @file:       file to read
1892  * @offset:     page index
1893  * @gfp_mask:   memory allocation flags
1894  *
1895  * This adds the requested page to the page cache if it isn't already there,
1896  * and schedules an I/O to read in its contents from disk.
1897  */
1898 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1899 {
1900         struct address_space *mapping = file->f_mapping;
1901         struct page *page;
1902         int ret;
1903
1904         do {
1905                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1906                 if (!page)
1907                         return -ENOMEM;
1908
1909                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1910                 if (ret == 0)
1911                         ret = mapping->a_ops->readpage(file, page);
1912                 else if (ret == -EEXIST)
1913                         ret = 0; /* losing race to add is OK */
1914
1915                 page_cache_release(page);
1916
1917         } while (ret == AOP_TRUNCATED_PAGE);
1918
1919         return ret;
1920 }
1921
1922 #define MMAP_LOTSAMISS  (100)
1923
1924 /*
1925  * Synchronous readahead happens when we don't even find
1926  * a page in the page cache at all.
1927  */
1928 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1929                                    struct file_ra_state *ra,
1930                                    struct file *file,
1931                                    pgoff_t offset)
1932 {
1933         struct address_space *mapping = file->f_mapping;
1934
1935         /* If we don't want any read-ahead, don't bother */
1936         if (vma->vm_flags & VM_RAND_READ)
1937                 return;
1938         if (!ra->ra_pages)
1939                 return;
1940
1941         if (vma->vm_flags & VM_SEQ_READ) {
1942                 page_cache_sync_readahead(mapping, ra, file, offset,
1943                                           ra->ra_pages);
1944                 return;
1945         }
1946
1947         /* Avoid banging the cache line if not needed */
1948         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1949                 ra->mmap_miss++;
1950
1951         /*
1952          * Do we miss much more than hit in this file? If so,
1953          * stop bothering with read-ahead. It will only hurt.
1954          */
1955         if (ra->mmap_miss > MMAP_LOTSAMISS)
1956                 return;
1957
1958         /*
1959          * mmap read-around
1960          */
1961         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1962         ra->size = ra->ra_pages;
1963         ra->async_size = ra->ra_pages / 4;
1964         ra_submit(ra, mapping, file);
1965 }
1966
1967 /*
1968  * Asynchronous readahead happens when we find the page and PG_readahead,
1969  * so we want to possibly extend the readahead further..
1970  */
1971 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1972                                     struct file_ra_state *ra,
1973                                     struct file *file,
1974                                     struct page *page,
1975                                     pgoff_t offset)
1976 {
1977         struct address_space *mapping = file->f_mapping;
1978
1979         /* If we don't want any read-ahead, don't bother */
1980         if (vma->vm_flags & VM_RAND_READ)
1981                 return;
1982         if (ra->mmap_miss > 0)
1983                 ra->mmap_miss--;
1984         if (PageReadahead(page))
1985                 page_cache_async_readahead(mapping, ra, file,
1986                                            page, offset, ra->ra_pages);
1987 }
1988
1989 /**
1990  * filemap_fault - read in file data for page fault handling
1991  * @vma:        vma in which the fault was taken
1992  * @vmf:        struct vm_fault containing details of the fault
1993  *
1994  * filemap_fault() is invoked via the vma operations vector for a
1995  * mapped memory region to read in file data during a page fault.
1996  *
1997  * The goto's are kind of ugly, but this streamlines the normal case of having
1998  * it in the page cache, and handles the special cases reasonably without
1999  * having a lot of duplicated code.
2000  *
2001  * vma->vm_mm->mmap_sem must be held on entry.
2002  *
2003  * If our return value has VM_FAULT_RETRY set, it's because
2004  * lock_page_or_retry() returned 0.
2005  * The mmap_sem has usually been released in this case.
2006  * See __lock_page_or_retry() for the exception.
2007  *
2008  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2009  * has not been released.
2010  *
2011  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2012  */
2013 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2014 {
2015         int error;
2016         struct file *file = vma->vm_file;
2017         struct address_space *mapping = file->f_mapping;
2018         struct file_ra_state *ra = &file->f_ra;
2019         struct inode *inode = mapping->host;
2020         pgoff_t offset = vmf->pgoff;
2021         struct page *page;
2022         loff_t size;
2023         int ret = 0;
2024
2025         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2026         if (offset >= size >> PAGE_CACHE_SHIFT)
2027                 return VM_FAULT_SIGBUS;
2028
2029         /*
2030          * Do we have something in the page cache already?
2031          */
2032         page = find_get_page(mapping, offset);
2033         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2034                 /*
2035                  * We found the page, so try async readahead before
2036                  * waiting for the lock.
2037                  */
2038                 do_async_mmap_readahead(vma, ra, file, page, offset);
2039         } else if (!page) {
2040                 /* No page in the page cache at all */
2041                 do_sync_mmap_readahead(vma, ra, file, offset);
2042                 count_vm_event(PGMAJFAULT);
2043                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2044                 ret = VM_FAULT_MAJOR;
2045 retry_find:
2046                 page = find_get_page(mapping, offset);
2047                 if (!page)
2048                         goto no_cached_page;
2049         }
2050
2051         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2052                 page_cache_release(page);
2053                 return ret | VM_FAULT_RETRY;
2054         }
2055
2056         /* Did it get truncated? */
2057         if (unlikely(page->mapping != mapping)) {
2058                 unlock_page(page);
2059                 put_page(page);
2060                 goto retry_find;
2061         }
2062         VM_BUG_ON_PAGE(page->index != offset, page);
2063
2064         /*
2065          * We have a locked page in the page cache, now we need to check
2066          * that it's up-to-date. If not, it is going to be due to an error.
2067          */
2068         if (unlikely(!PageUptodate(page)))
2069                 goto page_not_uptodate;
2070
2071         /*
2072          * Found the page and have a reference on it.
2073          * We must recheck i_size under page lock.
2074          */
2075         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2076         if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
2077                 unlock_page(page);
2078                 page_cache_release(page);
2079                 return VM_FAULT_SIGBUS;
2080         }
2081
2082         vmf->page = page;
2083         return ret | VM_FAULT_LOCKED;
2084
2085 no_cached_page:
2086         /*
2087          * We're only likely to ever get here if MADV_RANDOM is in
2088          * effect.
2089          */
2090         error = page_cache_read(file, offset, vmf->gfp_mask);
2091
2092         /*
2093          * The page we want has now been added to the page cache.
2094          * In the unlikely event that someone removed it in the
2095          * meantime, we'll just come back here and read it again.
2096          */
2097         if (error >= 0)
2098                 goto retry_find;
2099
2100         /*
2101          * An error return from page_cache_read can result if the
2102          * system is low on memory, or a problem occurs while trying
2103          * to schedule I/O.
2104          */
2105         if (error == -ENOMEM)
2106                 return VM_FAULT_OOM;
2107         return VM_FAULT_SIGBUS;
2108
2109 page_not_uptodate:
2110         /*
2111          * Umm, take care of errors if the page isn't up-to-date.
2112          * Try to re-read it _once_. We do this synchronously,
2113          * because there really aren't any performance issues here
2114          * and we need to check for errors.
2115          */
2116         ClearPageError(page);
2117         error = mapping->a_ops->readpage(file, page);
2118         if (!error) {
2119                 wait_on_page_locked(page);
2120                 if (!PageUptodate(page))
2121                         error = -EIO;
2122         }
2123         page_cache_release(page);
2124
2125         if (!error || error == AOP_TRUNCATED_PAGE)
2126                 goto retry_find;
2127
2128         /* Things didn't work out. Return zero to tell the mm layer so. */
2129         shrink_readahead_size_eio(file, ra);
2130         return VM_FAULT_SIGBUS;
2131 }
2132 EXPORT_SYMBOL(filemap_fault);
2133
2134 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2135 {
2136         struct radix_tree_iter iter;
2137         void **slot;
2138         struct file *file = vma->vm_file;
2139         struct address_space *mapping = file->f_mapping;
2140         loff_t size;
2141         struct page *page;
2142         unsigned long address = (unsigned long) vmf->virtual_address;
2143         unsigned long addr;
2144         pte_t *pte;
2145
2146         rcu_read_lock();
2147         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2148                 if (iter.index > vmf->max_pgoff)
2149                         break;
2150 repeat:
2151                 page = radix_tree_deref_slot(slot);
2152                 if (unlikely(!page))
2153                         goto next;
2154                 if (radix_tree_exception(page)) {
2155                         if (radix_tree_deref_retry(page))
2156                                 break;
2157                         else
2158                                 goto next;
2159                 }
2160
2161                 if (!page_cache_get_speculative(page))
2162                         goto repeat;
2163
2164                 /* Has the page moved? */
2165                 if (unlikely(page != *slot)) {
2166                         page_cache_release(page);
2167                         goto repeat;
2168                 }
2169
2170                 if (!PageUptodate(page) ||
2171                                 PageReadahead(page) ||
2172                                 PageHWPoison(page))
2173                         goto skip;
2174                 if (!trylock_page(page))
2175                         goto skip;
2176
2177                 if (page->mapping != mapping || !PageUptodate(page))
2178                         goto unlock;
2179
2180                 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2181                 if (page->index >= size >> PAGE_CACHE_SHIFT)
2182                         goto unlock;
2183
2184                 pte = vmf->pte + page->index - vmf->pgoff;
2185                 if (!pte_none(*pte))
2186                         goto unlock;
2187
2188                 if (file->f_ra.mmap_miss > 0)
2189                         file->f_ra.mmap_miss--;
2190                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2191                 do_set_pte(vma, addr, page, pte, false, false);
2192                 unlock_page(page);
2193                 goto next;
2194 unlock:
2195                 unlock_page(page);
2196 skip:
2197                 page_cache_release(page);
2198 next:
2199                 if (iter.index == vmf->max_pgoff)
2200                         break;
2201         }
2202         rcu_read_unlock();
2203 }
2204 EXPORT_SYMBOL(filemap_map_pages);
2205
2206 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2207 {
2208         struct page *page = vmf->page;
2209         struct inode *inode = file_inode(vma->vm_file);
2210         int ret = VM_FAULT_LOCKED;
2211
2212         sb_start_pagefault(inode->i_sb);
2213         file_update_time(vma->vm_file);
2214         lock_page(page);
2215         if (page->mapping != inode->i_mapping) {
2216                 unlock_page(page);
2217                 ret = VM_FAULT_NOPAGE;
2218                 goto out;
2219         }
2220         /*
2221          * We mark the page dirty already here so that when freeze is in
2222          * progress, we are guaranteed that writeback during freezing will
2223          * see the dirty page and writeprotect it again.
2224          */
2225         set_page_dirty(page);
2226         wait_for_stable_page(page);
2227 out:
2228         sb_end_pagefault(inode->i_sb);
2229         return ret;
2230 }
2231 EXPORT_SYMBOL(filemap_page_mkwrite);
2232
2233 const struct vm_operations_struct generic_file_vm_ops = {
2234         .fault          = filemap_fault,
2235         .map_pages      = filemap_map_pages,
2236         .page_mkwrite   = filemap_page_mkwrite,
2237 };
2238
2239 /* This is used for a general mmap of a disk file */
2240
2241 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2242 {
2243         struct address_space *mapping = file->f_mapping;
2244
2245         if (!mapping->a_ops->readpage)
2246                 return -ENOEXEC;
2247         file_accessed(file);
2248         vma->vm_ops = &generic_file_vm_ops;
2249         return 0;
2250 }
2251
2252 /*
2253  * This is for filesystems which do not implement ->writepage.
2254  */
2255 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2256 {
2257         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2258                 return -EINVAL;
2259         return generic_file_mmap(file, vma);
2260 }
2261 #else
2262 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2263 {
2264         return -ENOSYS;
2265 }
2266 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2267 {
2268         return -ENOSYS;
2269 }
2270 #endif /* CONFIG_MMU */
2271
2272 EXPORT_SYMBOL(generic_file_mmap);
2273 EXPORT_SYMBOL(generic_file_readonly_mmap);
2274
2275 static struct page *wait_on_page_read(struct page *page)
2276 {
2277         if (!IS_ERR(page)) {
2278                 wait_on_page_locked(page);
2279                 if (!PageUptodate(page)) {
2280                         page_cache_release(page);
2281                         page = ERR_PTR(-EIO);
2282                 }
2283         }
2284         return page;
2285 }
2286
2287 static struct page *__read_cache_page(struct address_space *mapping,
2288                                 pgoff_t index,
2289                                 int (*filler)(void *, struct page *),
2290                                 void *data,
2291                                 gfp_t gfp)
2292 {
2293         struct page *page;
2294         int err;
2295 repeat:
2296         page = find_get_page(mapping, index);
2297         if (!page) {
2298                 page = __page_cache_alloc(gfp | __GFP_COLD);
2299                 if (!page)
2300                         return ERR_PTR(-ENOMEM);
2301                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2302                 if (unlikely(err)) {
2303                         page_cache_release(page);
2304                         if (err == -EEXIST)
2305                                 goto repeat;
2306                         /* Presumably ENOMEM for radix tree node */
2307                         return ERR_PTR(err);
2308                 }
2309                 err = filler(data, page);
2310                 if (err < 0) {
2311                         page_cache_release(page);
2312                         page = ERR_PTR(err);
2313                 } else {
2314                         page = wait_on_page_read(page);
2315                 }
2316         }
2317         return page;
2318 }
2319
2320 static struct page *do_read_cache_page(struct address_space *mapping,
2321                                 pgoff_t index,
2322                                 int (*filler)(void *, struct page *),
2323                                 void *data,
2324                                 gfp_t gfp)
2325
2326 {
2327         struct page *page;
2328         int err;
2329
2330 retry:
2331         page = __read_cache_page(mapping, index, filler, data, gfp);
2332         if (IS_ERR(page))
2333                 return page;
2334         if (PageUptodate(page))
2335                 goto out;
2336
2337         lock_page(page);
2338         if (!page->mapping) {
2339                 unlock_page(page);
2340                 page_cache_release(page);
2341                 goto retry;
2342         }
2343         if (PageUptodate(page)) {
2344                 unlock_page(page);
2345                 goto out;
2346         }
2347         err = filler(data, page);
2348         if (err < 0) {
2349                 page_cache_release(page);
2350                 return ERR_PTR(err);
2351         } else {
2352                 page = wait_on_page_read(page);
2353                 if (IS_ERR(page))
2354                         return page;
2355         }
2356 out:
2357         mark_page_accessed(page);
2358         return page;
2359 }
2360
2361 /**
2362  * read_cache_page - read into page cache, fill it if needed
2363  * @mapping:    the page's address_space
2364  * @index:      the page index
2365  * @filler:     function to perform the read
2366  * @data:       first arg to filler(data, page) function, often left as NULL
2367  *
2368  * Read into the page cache. If a page already exists, and PageUptodate() is
2369  * not set, try to fill the page and wait for it to become unlocked.
2370  *
2371  * If the page does not get brought uptodate, return -EIO.
2372  */
2373 struct page *read_cache_page(struct address_space *mapping,
2374                                 pgoff_t index,
2375                                 int (*filler)(void *, struct page *),
2376                                 void *data)
2377 {
2378         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2379 }
2380 EXPORT_SYMBOL(read_cache_page);
2381
2382 /**
2383  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2384  * @mapping:    the page's address_space
2385  * @index:      the page index
2386  * @gfp:        the page allocator flags to use if allocating
2387  *
2388  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2389  * any new page allocations done using the specified allocation flags.
2390  *
2391  * If the page does not get brought uptodate, return -EIO.
2392  */
2393 struct page *read_cache_page_gfp(struct address_space *mapping,
2394                                 pgoff_t index,
2395                                 gfp_t gfp)
2396 {
2397         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2398
2399         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2400 }
2401 EXPORT_SYMBOL(read_cache_page_gfp);
2402
2403 /*
2404  * Performs necessary checks before doing a write
2405  *
2406  * Can adjust writing position or amount of bytes to write.
2407  * Returns appropriate error code that caller should return or
2408  * zero in case that write should be allowed.
2409  */
2410 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2411 {
2412         struct file *file = iocb->ki_filp;
2413         struct inode *inode = file->f_mapping->host;
2414         unsigned long limit = rlimit(RLIMIT_FSIZE);
2415         loff_t pos;
2416
2417         if (!iov_iter_count(from))
2418                 return 0;
2419
2420         /* FIXME: this is for backwards compatibility with 2.4 */
2421         if (iocb->ki_flags & IOCB_APPEND)
2422                 iocb->ki_pos = i_size_read(inode);
2423
2424         pos = iocb->ki_pos;
2425
2426         if (limit != RLIM_INFINITY) {
2427                 if (iocb->ki_pos >= limit) {
2428                         send_sig(SIGXFSZ, current, 0);
2429                         return -EFBIG;
2430                 }
2431                 iov_iter_truncate(from, limit - (unsigned long)pos);
2432         }
2433
2434         /*
2435          * LFS rule
2436          */
2437         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2438                                 !(file->f_flags & O_LARGEFILE))) {
2439                 if (pos >= MAX_NON_LFS)
2440                         return -EFBIG;
2441                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2442         }
2443
2444         /*
2445          * Are we about to exceed the fs block limit ?
2446          *
2447          * If we have written data it becomes a short write.  If we have
2448          * exceeded without writing data we send a signal and return EFBIG.
2449          * Linus frestrict idea will clean these up nicely..
2450          */
2451         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2452                 return -EFBIG;
2453
2454         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2455         return iov_iter_count(from);
2456 }
2457 EXPORT_SYMBOL(generic_write_checks);
2458
2459 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2460                                 loff_t pos, unsigned len, unsigned flags,
2461                                 struct page **pagep, void **fsdata)
2462 {
2463         const struct address_space_operations *aops = mapping->a_ops;
2464
2465         return aops->write_begin(file, mapping, pos, len, flags,
2466                                                         pagep, fsdata);
2467 }
2468 EXPORT_SYMBOL(pagecache_write_begin);
2469
2470 int pagecache_write_end(struct file *file, struct address_space *mapping,
2471                                 loff_t pos, unsigned len, unsigned copied,
2472                                 struct page *page, void *fsdata)
2473 {
2474         const struct address_space_operations *aops = mapping->a_ops;
2475
2476         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2477 }
2478 EXPORT_SYMBOL(pagecache_write_end);
2479
2480 ssize_t
2481 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2482 {
2483         struct file     *file = iocb->ki_filp;
2484         struct address_space *mapping = file->f_mapping;
2485         struct inode    *inode = mapping->host;
2486         ssize_t         written;
2487         size_t          write_len;
2488         pgoff_t         end;
2489         struct iov_iter data;
2490
2491         write_len = iov_iter_count(from);
2492         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2493
2494         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2495         if (written)
2496                 goto out;
2497
2498         /*
2499          * After a write we want buffered reads to be sure to go to disk to get
2500          * the new data.  We invalidate clean cached page from the region we're
2501          * about to write.  We do this *before* the write so that we can return
2502          * without clobbering -EIOCBQUEUED from ->direct_IO().
2503          */
2504         if (mapping->nrpages) {
2505                 written = invalidate_inode_pages2_range(mapping,
2506                                         pos >> PAGE_CACHE_SHIFT, end);
2507                 /*
2508                  * If a page can not be invalidated, return 0 to fall back
2509                  * to buffered write.
2510                  */
2511                 if (written) {
2512                         if (written == -EBUSY)
2513                                 return 0;
2514                         goto out;
2515                 }
2516         }
2517
2518         data = *from;
2519         written = mapping->a_ops->direct_IO(iocb, &data, pos);
2520
2521         /*
2522          * Finally, try again to invalidate clean pages which might have been
2523          * cached by non-direct readahead, or faulted in by get_user_pages()
2524          * if the source of the write was an mmap'ed region of the file
2525          * we're writing.  Either one is a pretty crazy thing to do,
2526          * so we don't support it 100%.  If this invalidation
2527          * fails, tough, the write still worked...
2528          */
2529         if (mapping->nrpages) {
2530                 invalidate_inode_pages2_range(mapping,
2531                                               pos >> PAGE_CACHE_SHIFT, end);
2532         }
2533
2534         if (written > 0) {
2535                 pos += written;
2536                 iov_iter_advance(from, written);
2537                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2538                         i_size_write(inode, pos);
2539                         mark_inode_dirty(inode);
2540                 }
2541                 iocb->ki_pos = pos;
2542         }
2543 out:
2544         return written;
2545 }
2546 EXPORT_SYMBOL(generic_file_direct_write);
2547
2548 /*
2549  * Find or create a page at the given pagecache position. Return the locked
2550  * page. This function is specifically for buffered writes.
2551  */
2552 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2553                                         pgoff_t index, unsigned flags)
2554 {
2555         struct page *page;
2556         int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2557
2558         if (flags & AOP_FLAG_NOFS)
2559                 fgp_flags |= FGP_NOFS;
2560
2561         page = pagecache_get_page(mapping, index, fgp_flags,
2562                         mapping_gfp_mask(mapping));
2563         if (page)
2564                 wait_for_stable_page(page);
2565
2566         return page;
2567 }
2568 EXPORT_SYMBOL(grab_cache_page_write_begin);
2569
2570 ssize_t generic_perform_write(struct file *file,
2571                                 struct iov_iter *i, loff_t pos)
2572 {
2573         struct address_space *mapping = file->f_mapping;
2574         const struct address_space_operations *a_ops = mapping->a_ops;
2575         long status = 0;
2576         ssize_t written = 0;
2577         unsigned int flags = 0;
2578
2579         /*
2580          * Copies from kernel address space cannot fail (NFSD is a big user).
2581          */
2582         if (!iter_is_iovec(i))
2583                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2584
2585         do {
2586                 struct page *page;
2587                 unsigned long offset;   /* Offset into pagecache page */
2588                 unsigned long bytes;    /* Bytes to write to page */
2589                 size_t copied;          /* Bytes copied from user */
2590                 void *fsdata;
2591
2592                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2593                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2594                                                 iov_iter_count(i));
2595
2596 again:
2597                 /*
2598                  * Bring in the user page that we will copy from _first_.
2599                  * Otherwise there's a nasty deadlock on copying from the
2600                  * same page as we're writing to, without it being marked
2601                  * up-to-date.
2602                  *
2603                  * Not only is this an optimisation, but it is also required
2604                  * to check that the address is actually valid, when atomic
2605                  * usercopies are used, below.
2606                  */
2607                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2608                         status = -EFAULT;
2609                         break;
2610                 }
2611
2612                 if (fatal_signal_pending(current)) {
2613                         status = -EINTR;
2614                         break;
2615                 }
2616
2617                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2618                                                 &page, &fsdata);
2619                 if (unlikely(status < 0))
2620                         break;
2621
2622                 if (mapping_writably_mapped(mapping))
2623                         flush_dcache_page(page);
2624
2625                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2626                 flush_dcache_page(page);
2627
2628                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2629                                                 page, fsdata);
2630                 if (unlikely(status < 0))
2631                         break;
2632                 copied = status;
2633
2634                 cond_resched();
2635
2636                 iov_iter_advance(i, copied);
2637                 if (unlikely(copied == 0)) {
2638                         /*
2639                          * If we were unable to copy any data at all, we must
2640                          * fall back to a single segment length write.
2641                          *
2642                          * If we didn't fallback here, we could livelock
2643                          * because not all segments in the iov can be copied at
2644                          * once without a pagefault.
2645                          */
2646                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2647                                                 iov_iter_single_seg_count(i));
2648                         goto again;
2649                 }
2650                 pos += copied;
2651                 written += copied;
2652
2653                 balance_dirty_pages_ratelimited(mapping);
2654         } while (iov_iter_count(i));
2655
2656         return written ? written : status;
2657 }
2658 EXPORT_SYMBOL(generic_perform_write);
2659
2660 /**
2661  * __generic_file_write_iter - write data to a file
2662  * @iocb:       IO state structure (file, offset, etc.)
2663  * @from:       iov_iter with data to write
2664  *
2665  * This function does all the work needed for actually writing data to a
2666  * file. It does all basic checks, removes SUID from the file, updates
2667  * modification times and calls proper subroutines depending on whether we
2668  * do direct IO or a standard buffered write.
2669  *
2670  * It expects i_mutex to be grabbed unless we work on a block device or similar
2671  * object which does not need locking at all.
2672  *
2673  * This function does *not* take care of syncing data in case of O_SYNC write.
2674  * A caller has to handle it. This is mainly due to the fact that we want to
2675  * avoid syncing under i_mutex.
2676  */
2677 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2678 {
2679         struct file *file = iocb->ki_filp;
2680         struct address_space * mapping = file->f_mapping;
2681         struct inode    *inode = mapping->host;
2682         ssize_t         written = 0;
2683         ssize_t         err;
2684         ssize_t         status;
2685
2686         /* We can write back this queue in page reclaim */
2687         current->backing_dev_info = inode_to_bdi(inode);
2688         err = file_remove_privs(file);
2689         if (err)
2690                 goto out;
2691
2692         err = file_update_time(file);
2693         if (err)
2694                 goto out;
2695
2696         if (iocb->ki_flags & IOCB_DIRECT) {
2697                 loff_t pos, endbyte;
2698
2699                 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2700                 /*
2701                  * If the write stopped short of completing, fall back to
2702                  * buffered writes.  Some filesystems do this for writes to
2703                  * holes, for example.  For DAX files, a buffered write will
2704                  * not succeed (even if it did, DAX does not handle dirty
2705                  * page-cache pages correctly).
2706                  */
2707                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2708                         goto out;
2709
2710                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2711                 /*
2712                  * If generic_perform_write() returned a synchronous error
2713                  * then we want to return the number of bytes which were
2714                  * direct-written, or the error code if that was zero.  Note
2715                  * that this differs from normal direct-io semantics, which
2716                  * will return -EFOO even if some bytes were written.
2717                  */
2718                 if (unlikely(status < 0)) {
2719                         err = status;
2720                         goto out;
2721                 }
2722                 /*
2723                  * We need to ensure that the page cache pages are written to
2724                  * disk and invalidated to preserve the expected O_DIRECT
2725                  * semantics.
2726                  */
2727                 endbyte = pos + status - 1;
2728                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2729                 if (err == 0) {
2730                         iocb->ki_pos = endbyte + 1;
2731                         written += status;
2732                         invalidate_mapping_pages(mapping,
2733                                                  pos >> PAGE_CACHE_SHIFT,
2734                                                  endbyte >> PAGE_CACHE_SHIFT);
2735                 } else {
2736                         /*
2737                          * We don't know how much we wrote, so just return
2738                          * the number of bytes which were direct-written
2739                          */
2740                 }
2741         } else {
2742                 written = generic_perform_write(file, from, iocb->ki_pos);
2743                 if (likely(written > 0))
2744                         iocb->ki_pos += written;
2745         }
2746 out:
2747         current->backing_dev_info = NULL;
2748         return written ? written : err;
2749 }
2750 EXPORT_SYMBOL(__generic_file_write_iter);
2751
2752 /**
2753  * generic_file_write_iter - write data to a file
2754  * @iocb:       IO state structure
2755  * @from:       iov_iter with data to write
2756  *
2757  * This is a wrapper around __generic_file_write_iter() to be used by most
2758  * filesystems. It takes care of syncing the file in case of O_SYNC file
2759  * and acquires i_mutex as needed.
2760  */
2761 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2762 {
2763         struct file *file = iocb->ki_filp;
2764         struct inode *inode = file->f_mapping->host;
2765         ssize_t ret;
2766
2767         inode_lock(inode);
2768         ret = generic_write_checks(iocb, from);
2769         if (ret > 0)
2770                 ret = __generic_file_write_iter(iocb, from);
2771         inode_unlock(inode);
2772
2773         if (ret > 0) {
2774                 ssize_t err;
2775
2776                 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2777                 if (err < 0)
2778                         ret = err;
2779         }
2780         return ret;
2781 }
2782 EXPORT_SYMBOL(generic_file_write_iter);
2783
2784 /**
2785  * try_to_release_page() - release old fs-specific metadata on a page
2786  *
2787  * @page: the page which the kernel is trying to free
2788  * @gfp_mask: memory allocation flags (and I/O mode)
2789  *
2790  * The address_space is to try to release any data against the page
2791  * (presumably at page->private).  If the release was successful, return `1'.
2792  * Otherwise return zero.
2793  *
2794  * This may also be called if PG_fscache is set on a page, indicating that the
2795  * page is known to the local caching routines.
2796  *
2797  * The @gfp_mask argument specifies whether I/O may be performed to release
2798  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2799  *
2800  */
2801 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2802 {
2803         struct address_space * const mapping = page->mapping;
2804
2805         BUG_ON(!PageLocked(page));
2806         if (PageWriteback(page))
2807                 return 0;
2808
2809         if (mapping && mapping->a_ops->releasepage)
2810                 return mapping->a_ops->releasepage(page, gfp_mask);
2811         return try_to_free_buffers(page);
2812 }
2813
2814 EXPORT_SYMBOL(try_to_release_page);