Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
[cascardo/linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41
42 /*
43  * FIXME: remove all knowledge of the buffer layer from the core VM
44  */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46
47 #include <asm/mman.h>
48
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_mutex              (truncate_pagecache)
65  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock             (exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_mutex            (truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_mutex
74  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
75  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page               (access_process_vm)
79  *
80  *  ->i_mutex                   (generic_perform_write)
81  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
82  *
83  *  bdi->wb.list_lock
84  *    sb_lock                   (fs/fs-writeback.c)
85  *    ->mapping->tree_lock      (__sync_single_inode)
86  *
87  *  ->i_mmap_mutex
88  *    ->anon_vma.lock           (vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock               (try_to_unmap_one)
95  *    ->private_lock            (try_to_unmap_one)
96  *    ->tree_lock               (try_to_unmap_one)
97  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
98  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
99  *    ->private_lock            (page_remove_rmap->set_page_dirty)
100  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
101  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
102  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
104  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
105  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
106  *
107  * ->i_mmap_mutex
108  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
109  */
110
111 static void page_cache_tree_delete(struct address_space *mapping,
112                                    struct page *page, void *shadow)
113 {
114         struct radix_tree_node *node;
115         unsigned long index;
116         unsigned int offset;
117         unsigned int tag;
118         void **slot;
119
120         VM_BUG_ON(!PageLocked(page));
121
122         __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
123
124         if (shadow) {
125                 mapping->nrshadows++;
126                 /*
127                  * Make sure the nrshadows update is committed before
128                  * the nrpages update so that final truncate racing
129                  * with reclaim does not see both counters 0 at the
130                  * same time and miss a shadow entry.
131                  */
132                 smp_wmb();
133         }
134         mapping->nrpages--;
135
136         if (!node) {
137                 /* Clear direct pointer tags in root node */
138                 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139                 radix_tree_replace_slot(slot, shadow);
140                 return;
141         }
142
143         /* Clear tree tags for the removed page */
144         index = page->index;
145         offset = index & RADIX_TREE_MAP_MASK;
146         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147                 if (test_bit(offset, node->tags[tag]))
148                         radix_tree_tag_clear(&mapping->page_tree, index, tag);
149         }
150
151         /* Delete page, swap shadow entry */
152         radix_tree_replace_slot(slot, shadow);
153         workingset_node_pages_dec(node);
154         if (shadow)
155                 workingset_node_shadows_inc(node);
156         else
157                 if (__radix_tree_delete_node(&mapping->page_tree, node))
158                         return;
159
160         /*
161          * Track node that only contains shadow entries.
162          *
163          * Avoid acquiring the list_lru lock if already tracked.  The
164          * list_empty() test is safe as node->private_list is
165          * protected by mapping->tree_lock.
166          */
167         if (!workingset_node_pages(node) &&
168             list_empty(&node->private_list)) {
169                 node->private_data = mapping;
170                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
171         }
172 }
173
174 /*
175  * Delete a page from the page cache and free it. Caller has to make
176  * sure the page is locked and that nobody else uses it - or that usage
177  * is safe.  The caller must hold the mapping's tree_lock.
178  */
179 void __delete_from_page_cache(struct page *page, void *shadow)
180 {
181         struct address_space *mapping = page->mapping;
182
183         trace_mm_filemap_delete_from_page_cache(page);
184         /*
185          * if we're uptodate, flush out into the cleancache, otherwise
186          * invalidate any existing cleancache entries.  We can't leave
187          * stale data around in the cleancache once our page is gone
188          */
189         if (PageUptodate(page) && PageMappedToDisk(page))
190                 cleancache_put_page(page);
191         else
192                 cleancache_invalidate_page(mapping, page);
193
194         page_cache_tree_delete(mapping, page, shadow);
195
196         page->mapping = NULL;
197         /* Leave page->index set: truncation lookup relies upon it */
198
199         __dec_zone_page_state(page, NR_FILE_PAGES);
200         if (PageSwapBacked(page))
201                 __dec_zone_page_state(page, NR_SHMEM);
202         BUG_ON(page_mapped(page));
203
204         /*
205          * Some filesystems seem to re-dirty the page even after
206          * the VM has canceled the dirty bit (eg ext3 journaling).
207          *
208          * Fix it up by doing a final dirty accounting check after
209          * having removed the page entirely.
210          */
211         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
212                 dec_zone_page_state(page, NR_FILE_DIRTY);
213                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
214         }
215 }
216
217 /**
218  * delete_from_page_cache - delete page from page cache
219  * @page: the page which the kernel is trying to remove from page cache
220  *
221  * This must be called only on pages that have been verified to be in the page
222  * cache and locked.  It will never put the page into the free list, the caller
223  * has a reference on the page.
224  */
225 void delete_from_page_cache(struct page *page)
226 {
227         struct address_space *mapping = page->mapping;
228         void (*freepage)(struct page *);
229
230         BUG_ON(!PageLocked(page));
231
232         freepage = mapping->a_ops->freepage;
233         spin_lock_irq(&mapping->tree_lock);
234         __delete_from_page_cache(page, NULL);
235         spin_unlock_irq(&mapping->tree_lock);
236         mem_cgroup_uncharge_cache_page(page);
237
238         if (freepage)
239                 freepage(page);
240         page_cache_release(page);
241 }
242 EXPORT_SYMBOL(delete_from_page_cache);
243
244 static int filemap_check_errors(struct address_space *mapping)
245 {
246         int ret = 0;
247         /* Check for outstanding write errors */
248         if (test_bit(AS_ENOSPC, &mapping->flags) &&
249             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
250                 ret = -ENOSPC;
251         if (test_bit(AS_EIO, &mapping->flags) &&
252             test_and_clear_bit(AS_EIO, &mapping->flags))
253                 ret = -EIO;
254         return ret;
255 }
256
257 /**
258  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
259  * @mapping:    address space structure to write
260  * @start:      offset in bytes where the range starts
261  * @end:        offset in bytes where the range ends (inclusive)
262  * @sync_mode:  enable synchronous operation
263  *
264  * Start writeback against all of a mapping's dirty pages that lie
265  * within the byte offsets <start, end> inclusive.
266  *
267  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
268  * opposed to a regular memory cleansing writeback.  The difference between
269  * these two operations is that if a dirty page/buffer is encountered, it must
270  * be waited upon, and not just skipped over.
271  */
272 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
273                                 loff_t end, int sync_mode)
274 {
275         int ret;
276         struct writeback_control wbc = {
277                 .sync_mode = sync_mode,
278                 .nr_to_write = LONG_MAX,
279                 .range_start = start,
280                 .range_end = end,
281         };
282
283         if (!mapping_cap_writeback_dirty(mapping))
284                 return 0;
285
286         ret = do_writepages(mapping, &wbc);
287         return ret;
288 }
289
290 static inline int __filemap_fdatawrite(struct address_space *mapping,
291         int sync_mode)
292 {
293         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
294 }
295
296 int filemap_fdatawrite(struct address_space *mapping)
297 {
298         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
299 }
300 EXPORT_SYMBOL(filemap_fdatawrite);
301
302 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
303                                 loff_t end)
304 {
305         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
306 }
307 EXPORT_SYMBOL(filemap_fdatawrite_range);
308
309 /**
310  * filemap_flush - mostly a non-blocking flush
311  * @mapping:    target address_space
312  *
313  * This is a mostly non-blocking flush.  Not suitable for data-integrity
314  * purposes - I/O may not be started against all dirty pages.
315  */
316 int filemap_flush(struct address_space *mapping)
317 {
318         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
319 }
320 EXPORT_SYMBOL(filemap_flush);
321
322 /**
323  * filemap_fdatawait_range - wait for writeback to complete
324  * @mapping:            address space structure to wait for
325  * @start_byte:         offset in bytes where the range starts
326  * @end_byte:           offset in bytes where the range ends (inclusive)
327  *
328  * Walk the list of under-writeback pages of the given address space
329  * in the given range and wait for all of them.
330  */
331 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
332                             loff_t end_byte)
333 {
334         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
335         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
336         struct pagevec pvec;
337         int nr_pages;
338         int ret2, ret = 0;
339
340         if (end_byte < start_byte)
341                 goto out;
342
343         pagevec_init(&pvec, 0);
344         while ((index <= end) &&
345                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
346                         PAGECACHE_TAG_WRITEBACK,
347                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
348                 unsigned i;
349
350                 for (i = 0; i < nr_pages; i++) {
351                         struct page *page = pvec.pages[i];
352
353                         /* until radix tree lookup accepts end_index */
354                         if (page->index > end)
355                                 continue;
356
357                         wait_on_page_writeback(page);
358                         if (TestClearPageError(page))
359                                 ret = -EIO;
360                 }
361                 pagevec_release(&pvec);
362                 cond_resched();
363         }
364 out:
365         ret2 = filemap_check_errors(mapping);
366         if (!ret)
367                 ret = ret2;
368
369         return ret;
370 }
371 EXPORT_SYMBOL(filemap_fdatawait_range);
372
373 /**
374  * filemap_fdatawait - wait for all under-writeback pages to complete
375  * @mapping: address space structure to wait for
376  *
377  * Walk the list of under-writeback pages of the given address space
378  * and wait for all of them.
379  */
380 int filemap_fdatawait(struct address_space *mapping)
381 {
382         loff_t i_size = i_size_read(mapping->host);
383
384         if (i_size == 0)
385                 return 0;
386
387         return filemap_fdatawait_range(mapping, 0, i_size - 1);
388 }
389 EXPORT_SYMBOL(filemap_fdatawait);
390
391 int filemap_write_and_wait(struct address_space *mapping)
392 {
393         int err = 0;
394
395         if (mapping->nrpages) {
396                 err = filemap_fdatawrite(mapping);
397                 /*
398                  * Even if the above returned error, the pages may be
399                  * written partially (e.g. -ENOSPC), so we wait for it.
400                  * But the -EIO is special case, it may indicate the worst
401                  * thing (e.g. bug) happened, so we avoid waiting for it.
402                  */
403                 if (err != -EIO) {
404                         int err2 = filemap_fdatawait(mapping);
405                         if (!err)
406                                 err = err2;
407                 }
408         } else {
409                 err = filemap_check_errors(mapping);
410         }
411         return err;
412 }
413 EXPORT_SYMBOL(filemap_write_and_wait);
414
415 /**
416  * filemap_write_and_wait_range - write out & wait on a file range
417  * @mapping:    the address_space for the pages
418  * @lstart:     offset in bytes where the range starts
419  * @lend:       offset in bytes where the range ends (inclusive)
420  *
421  * Write out and wait upon file offsets lstart->lend, inclusive.
422  *
423  * Note that `lend' is inclusive (describes the last byte to be written) so
424  * that this function can be used to write to the very end-of-file (end = -1).
425  */
426 int filemap_write_and_wait_range(struct address_space *mapping,
427                                  loff_t lstart, loff_t lend)
428 {
429         int err = 0;
430
431         if (mapping->nrpages) {
432                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
433                                                  WB_SYNC_ALL);
434                 /* See comment of filemap_write_and_wait() */
435                 if (err != -EIO) {
436                         int err2 = filemap_fdatawait_range(mapping,
437                                                 lstart, lend);
438                         if (!err)
439                                 err = err2;
440                 }
441         } else {
442                 err = filemap_check_errors(mapping);
443         }
444         return err;
445 }
446 EXPORT_SYMBOL(filemap_write_and_wait_range);
447
448 /**
449  * replace_page_cache_page - replace a pagecache page with a new one
450  * @old:        page to be replaced
451  * @new:        page to replace with
452  * @gfp_mask:   allocation mode
453  *
454  * This function replaces a page in the pagecache with a new one.  On
455  * success it acquires the pagecache reference for the new page and
456  * drops it for the old page.  Both the old and new pages must be
457  * locked.  This function does not add the new page to the LRU, the
458  * caller must do that.
459  *
460  * The remove + add is atomic.  The only way this function can fail is
461  * memory allocation failure.
462  */
463 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
464 {
465         int error;
466
467         VM_BUG_ON_PAGE(!PageLocked(old), old);
468         VM_BUG_ON_PAGE(!PageLocked(new), new);
469         VM_BUG_ON_PAGE(new->mapping, new);
470
471         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
472         if (!error) {
473                 struct address_space *mapping = old->mapping;
474                 void (*freepage)(struct page *);
475
476                 pgoff_t offset = old->index;
477                 freepage = mapping->a_ops->freepage;
478
479                 page_cache_get(new);
480                 new->mapping = mapping;
481                 new->index = offset;
482
483                 spin_lock_irq(&mapping->tree_lock);
484                 __delete_from_page_cache(old, NULL);
485                 error = radix_tree_insert(&mapping->page_tree, offset, new);
486                 BUG_ON(error);
487                 mapping->nrpages++;
488                 __inc_zone_page_state(new, NR_FILE_PAGES);
489                 if (PageSwapBacked(new))
490                         __inc_zone_page_state(new, NR_SHMEM);
491                 spin_unlock_irq(&mapping->tree_lock);
492                 /* mem_cgroup codes must not be called under tree_lock */
493                 mem_cgroup_replace_page_cache(old, new);
494                 radix_tree_preload_end();
495                 if (freepage)
496                         freepage(old);
497                 page_cache_release(old);
498         }
499
500         return error;
501 }
502 EXPORT_SYMBOL_GPL(replace_page_cache_page);
503
504 static int page_cache_tree_insert(struct address_space *mapping,
505                                   struct page *page, void **shadowp)
506 {
507         struct radix_tree_node *node;
508         void **slot;
509         int error;
510
511         error = __radix_tree_create(&mapping->page_tree, page->index,
512                                     &node, &slot);
513         if (error)
514                 return error;
515         if (*slot) {
516                 void *p;
517
518                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
519                 if (!radix_tree_exceptional_entry(p))
520                         return -EEXIST;
521                 if (shadowp)
522                         *shadowp = p;
523                 mapping->nrshadows--;
524                 if (node)
525                         workingset_node_shadows_dec(node);
526         }
527         radix_tree_replace_slot(slot, page);
528         mapping->nrpages++;
529         if (node) {
530                 workingset_node_pages_inc(node);
531                 /*
532                  * Don't track node that contains actual pages.
533                  *
534                  * Avoid acquiring the list_lru lock if already
535                  * untracked.  The list_empty() test is safe as
536                  * node->private_list is protected by
537                  * mapping->tree_lock.
538                  */
539                 if (!list_empty(&node->private_list))
540                         list_lru_del(&workingset_shadow_nodes,
541                                      &node->private_list);
542         }
543         return 0;
544 }
545
546 static int __add_to_page_cache_locked(struct page *page,
547                                       struct address_space *mapping,
548                                       pgoff_t offset, gfp_t gfp_mask,
549                                       void **shadowp)
550 {
551         int error;
552
553         VM_BUG_ON_PAGE(!PageLocked(page), page);
554         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
555
556         error = mem_cgroup_charge_file(page, current->mm,
557                                         gfp_mask & GFP_RECLAIM_MASK);
558         if (error)
559                 return error;
560
561         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
562         if (error) {
563                 mem_cgroup_uncharge_cache_page(page);
564                 return error;
565         }
566
567         page_cache_get(page);
568         page->mapping = mapping;
569         page->index = offset;
570
571         spin_lock_irq(&mapping->tree_lock);
572         error = page_cache_tree_insert(mapping, page, shadowp);
573         radix_tree_preload_end();
574         if (unlikely(error))
575                 goto err_insert;
576         __inc_zone_page_state(page, NR_FILE_PAGES);
577         spin_unlock_irq(&mapping->tree_lock);
578         trace_mm_filemap_add_to_page_cache(page);
579         return 0;
580 err_insert:
581         page->mapping = NULL;
582         /* Leave page->index set: truncation relies upon it */
583         spin_unlock_irq(&mapping->tree_lock);
584         mem_cgroup_uncharge_cache_page(page);
585         page_cache_release(page);
586         return error;
587 }
588
589 /**
590  * add_to_page_cache_locked - add a locked page to the pagecache
591  * @page:       page to add
592  * @mapping:    the page's address_space
593  * @offset:     page index
594  * @gfp_mask:   page allocation mode
595  *
596  * This function is used to add a page to the pagecache. It must be locked.
597  * This function does not add the page to the LRU.  The caller must do that.
598  */
599 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
600                 pgoff_t offset, gfp_t gfp_mask)
601 {
602         return __add_to_page_cache_locked(page, mapping, offset,
603                                           gfp_mask, NULL);
604 }
605 EXPORT_SYMBOL(add_to_page_cache_locked);
606
607 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
608                                 pgoff_t offset, gfp_t gfp_mask)
609 {
610         void *shadow = NULL;
611         int ret;
612
613         __set_page_locked(page);
614         ret = __add_to_page_cache_locked(page, mapping, offset,
615                                          gfp_mask, &shadow);
616         if (unlikely(ret))
617                 __clear_page_locked(page);
618         else {
619                 /*
620                  * The page might have been evicted from cache only
621                  * recently, in which case it should be activated like
622                  * any other repeatedly accessed page.
623                  */
624                 if (shadow && workingset_refault(shadow)) {
625                         SetPageActive(page);
626                         workingset_activation(page);
627                 } else
628                         ClearPageActive(page);
629                 lru_cache_add(page);
630         }
631         return ret;
632 }
633 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
634
635 #ifdef CONFIG_NUMA
636 struct page *__page_cache_alloc(gfp_t gfp)
637 {
638         int n;
639         struct page *page;
640
641         if (cpuset_do_page_mem_spread()) {
642                 unsigned int cpuset_mems_cookie;
643                 do {
644                         cpuset_mems_cookie = read_mems_allowed_begin();
645                         n = cpuset_mem_spread_node();
646                         page = alloc_pages_exact_node(n, gfp, 0);
647                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
648
649                 return page;
650         }
651         return alloc_pages(gfp, 0);
652 }
653 EXPORT_SYMBOL(__page_cache_alloc);
654 #endif
655
656 /*
657  * In order to wait for pages to become available there must be
658  * waitqueues associated with pages. By using a hash table of
659  * waitqueues where the bucket discipline is to maintain all
660  * waiters on the same queue and wake all when any of the pages
661  * become available, and for the woken contexts to check to be
662  * sure the appropriate page became available, this saves space
663  * at a cost of "thundering herd" phenomena during rare hash
664  * collisions.
665  */
666 static wait_queue_head_t *page_waitqueue(struct page *page)
667 {
668         const struct zone *zone = page_zone(page);
669
670         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
671 }
672
673 static inline void wake_up_page(struct page *page, int bit)
674 {
675         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
676 }
677
678 void wait_on_page_bit(struct page *page, int bit_nr)
679 {
680         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
681
682         if (test_bit(bit_nr, &page->flags))
683                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
684                                                         TASK_UNINTERRUPTIBLE);
685 }
686 EXPORT_SYMBOL(wait_on_page_bit);
687
688 int wait_on_page_bit_killable(struct page *page, int bit_nr)
689 {
690         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
691
692         if (!test_bit(bit_nr, &page->flags))
693                 return 0;
694
695         return __wait_on_bit(page_waitqueue(page), &wait,
696                              bit_wait_io, TASK_KILLABLE);
697 }
698
699 /**
700  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
701  * @page: Page defining the wait queue of interest
702  * @waiter: Waiter to add to the queue
703  *
704  * Add an arbitrary @waiter to the wait queue for the nominated @page.
705  */
706 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
707 {
708         wait_queue_head_t *q = page_waitqueue(page);
709         unsigned long flags;
710
711         spin_lock_irqsave(&q->lock, flags);
712         __add_wait_queue(q, waiter);
713         spin_unlock_irqrestore(&q->lock, flags);
714 }
715 EXPORT_SYMBOL_GPL(add_page_wait_queue);
716
717 /**
718  * unlock_page - unlock a locked page
719  * @page: the page
720  *
721  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
722  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
723  * mechananism between PageLocked pages and PageWriteback pages is shared.
724  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
725  *
726  * The mb is necessary to enforce ordering between the clear_bit and the read
727  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
728  */
729 void unlock_page(struct page *page)
730 {
731         VM_BUG_ON_PAGE(!PageLocked(page), page);
732         clear_bit_unlock(PG_locked, &page->flags);
733         smp_mb__after_atomic();
734         wake_up_page(page, PG_locked);
735 }
736 EXPORT_SYMBOL(unlock_page);
737
738 /**
739  * end_page_writeback - end writeback against a page
740  * @page: the page
741  */
742 void end_page_writeback(struct page *page)
743 {
744         /*
745          * TestClearPageReclaim could be used here but it is an atomic
746          * operation and overkill in this particular case. Failing to
747          * shuffle a page marked for immediate reclaim is too mild to
748          * justify taking an atomic operation penalty at the end of
749          * ever page writeback.
750          */
751         if (PageReclaim(page)) {
752                 ClearPageReclaim(page);
753                 rotate_reclaimable_page(page);
754         }
755
756         if (!test_clear_page_writeback(page))
757                 BUG();
758
759         smp_mb__after_atomic();
760         wake_up_page(page, PG_writeback);
761 }
762 EXPORT_SYMBOL(end_page_writeback);
763
764 /*
765  * After completing I/O on a page, call this routine to update the page
766  * flags appropriately
767  */
768 void page_endio(struct page *page, int rw, int err)
769 {
770         if (rw == READ) {
771                 if (!err) {
772                         SetPageUptodate(page);
773                 } else {
774                         ClearPageUptodate(page);
775                         SetPageError(page);
776                 }
777                 unlock_page(page);
778         } else { /* rw == WRITE */
779                 if (err) {
780                         SetPageError(page);
781                         if (page->mapping)
782                                 mapping_set_error(page->mapping, err);
783                 }
784                 end_page_writeback(page);
785         }
786 }
787 EXPORT_SYMBOL_GPL(page_endio);
788
789 /**
790  * __lock_page - get a lock on the page, assuming we need to sleep to get it
791  * @page: the page to lock
792  */
793 void __lock_page(struct page *page)
794 {
795         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
796
797         __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
798                                                         TASK_UNINTERRUPTIBLE);
799 }
800 EXPORT_SYMBOL(__lock_page);
801
802 int __lock_page_killable(struct page *page)
803 {
804         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
805
806         return __wait_on_bit_lock(page_waitqueue(page), &wait,
807                                         bit_wait_io, TASK_KILLABLE);
808 }
809 EXPORT_SYMBOL_GPL(__lock_page_killable);
810
811 /*
812  * Return values:
813  * 1 - page is locked; mmap_sem is still held.
814  * 0 - page is not locked.
815  *     mmap_sem has been released (up_read()), unless flags had both
816  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
817  *     which case mmap_sem is still held.
818  *
819  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
820  * with the page locked and the mmap_sem unperturbed.
821  */
822 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
823                          unsigned int flags)
824 {
825         if (flags & FAULT_FLAG_ALLOW_RETRY) {
826                 /*
827                  * CAUTION! In this case, mmap_sem is not released
828                  * even though return 0.
829                  */
830                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
831                         return 0;
832
833                 up_read(&mm->mmap_sem);
834                 if (flags & FAULT_FLAG_KILLABLE)
835                         wait_on_page_locked_killable(page);
836                 else
837                         wait_on_page_locked(page);
838                 return 0;
839         } else {
840                 if (flags & FAULT_FLAG_KILLABLE) {
841                         int ret;
842
843                         ret = __lock_page_killable(page);
844                         if (ret) {
845                                 up_read(&mm->mmap_sem);
846                                 return 0;
847                         }
848                 } else
849                         __lock_page(page);
850                 return 1;
851         }
852 }
853
854 /**
855  * page_cache_next_hole - find the next hole (not-present entry)
856  * @mapping: mapping
857  * @index: index
858  * @max_scan: maximum range to search
859  *
860  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
861  * lowest indexed hole.
862  *
863  * Returns: the index of the hole if found, otherwise returns an index
864  * outside of the set specified (in which case 'return - index >=
865  * max_scan' will be true). In rare cases of index wrap-around, 0 will
866  * be returned.
867  *
868  * page_cache_next_hole may be called under rcu_read_lock. However,
869  * like radix_tree_gang_lookup, this will not atomically search a
870  * snapshot of the tree at a single point in time. For example, if a
871  * hole is created at index 5, then subsequently a hole is created at
872  * index 10, page_cache_next_hole covering both indexes may return 10
873  * if called under rcu_read_lock.
874  */
875 pgoff_t page_cache_next_hole(struct address_space *mapping,
876                              pgoff_t index, unsigned long max_scan)
877 {
878         unsigned long i;
879
880         for (i = 0; i < max_scan; i++) {
881                 struct page *page;
882
883                 page = radix_tree_lookup(&mapping->page_tree, index);
884                 if (!page || radix_tree_exceptional_entry(page))
885                         break;
886                 index++;
887                 if (index == 0)
888                         break;
889         }
890
891         return index;
892 }
893 EXPORT_SYMBOL(page_cache_next_hole);
894
895 /**
896  * page_cache_prev_hole - find the prev hole (not-present entry)
897  * @mapping: mapping
898  * @index: index
899  * @max_scan: maximum range to search
900  *
901  * Search backwards in the range [max(index-max_scan+1, 0), index] for
902  * the first hole.
903  *
904  * Returns: the index of the hole if found, otherwise returns an index
905  * outside of the set specified (in which case 'index - return >=
906  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
907  * will be returned.
908  *
909  * page_cache_prev_hole may be called under rcu_read_lock. However,
910  * like radix_tree_gang_lookup, this will not atomically search a
911  * snapshot of the tree at a single point in time. For example, if a
912  * hole is created at index 10, then subsequently a hole is created at
913  * index 5, page_cache_prev_hole covering both indexes may return 5 if
914  * called under rcu_read_lock.
915  */
916 pgoff_t page_cache_prev_hole(struct address_space *mapping,
917                              pgoff_t index, unsigned long max_scan)
918 {
919         unsigned long i;
920
921         for (i = 0; i < max_scan; i++) {
922                 struct page *page;
923
924                 page = radix_tree_lookup(&mapping->page_tree, index);
925                 if (!page || radix_tree_exceptional_entry(page))
926                         break;
927                 index--;
928                 if (index == ULONG_MAX)
929                         break;
930         }
931
932         return index;
933 }
934 EXPORT_SYMBOL(page_cache_prev_hole);
935
936 /**
937  * find_get_entry - find and get a page cache entry
938  * @mapping: the address_space to search
939  * @offset: the page cache index
940  *
941  * Looks up the page cache slot at @mapping & @offset.  If there is a
942  * page cache page, it is returned with an increased refcount.
943  *
944  * If the slot holds a shadow entry of a previously evicted page, or a
945  * swap entry from shmem/tmpfs, it is returned.
946  *
947  * Otherwise, %NULL is returned.
948  */
949 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
950 {
951         void **pagep;
952         struct page *page;
953
954         rcu_read_lock();
955 repeat:
956         page = NULL;
957         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
958         if (pagep) {
959                 page = radix_tree_deref_slot(pagep);
960                 if (unlikely(!page))
961                         goto out;
962                 if (radix_tree_exception(page)) {
963                         if (radix_tree_deref_retry(page))
964                                 goto repeat;
965                         /*
966                          * A shadow entry of a recently evicted page,
967                          * or a swap entry from shmem/tmpfs.  Return
968                          * it without attempting to raise page count.
969                          */
970                         goto out;
971                 }
972                 if (!page_cache_get_speculative(page))
973                         goto repeat;
974
975                 /*
976                  * Has the page moved?
977                  * This is part of the lockless pagecache protocol. See
978                  * include/linux/pagemap.h for details.
979                  */
980                 if (unlikely(page != *pagep)) {
981                         page_cache_release(page);
982                         goto repeat;
983                 }
984         }
985 out:
986         rcu_read_unlock();
987
988         return page;
989 }
990 EXPORT_SYMBOL(find_get_entry);
991
992 /**
993  * find_lock_entry - locate, pin and lock a page cache entry
994  * @mapping: the address_space to search
995  * @offset: the page cache index
996  *
997  * Looks up the page cache slot at @mapping & @offset.  If there is a
998  * page cache page, it is returned locked and with an increased
999  * refcount.
1000  *
1001  * If the slot holds a shadow entry of a previously evicted page, or a
1002  * swap entry from shmem/tmpfs, it is returned.
1003  *
1004  * Otherwise, %NULL is returned.
1005  *
1006  * find_lock_entry() may sleep.
1007  */
1008 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1009 {
1010         struct page *page;
1011
1012 repeat:
1013         page = find_get_entry(mapping, offset);
1014         if (page && !radix_tree_exception(page)) {
1015                 lock_page(page);
1016                 /* Has the page been truncated? */
1017                 if (unlikely(page->mapping != mapping)) {
1018                         unlock_page(page);
1019                         page_cache_release(page);
1020                         goto repeat;
1021                 }
1022                 VM_BUG_ON_PAGE(page->index != offset, page);
1023         }
1024         return page;
1025 }
1026 EXPORT_SYMBOL(find_lock_entry);
1027
1028 /**
1029  * pagecache_get_page - find and get a page reference
1030  * @mapping: the address_space to search
1031  * @offset: the page index
1032  * @fgp_flags: PCG flags
1033  * @cache_gfp_mask: gfp mask to use for the page cache data page allocation
1034  * @radix_gfp_mask: gfp mask to use for radix tree node allocation
1035  *
1036  * Looks up the page cache slot at @mapping & @offset.
1037  *
1038  * PCG flags modify how the page is returned.
1039  *
1040  * FGP_ACCESSED: the page will be marked accessed
1041  * FGP_LOCK: Page is return locked
1042  * FGP_CREAT: If page is not present then a new page is allocated using
1043  *              @cache_gfp_mask and added to the page cache and the VM's LRU
1044  *              list. If radix tree nodes are allocated during page cache
1045  *              insertion then @radix_gfp_mask is used. The page is returned
1046  *              locked and with an increased refcount. Otherwise, %NULL is
1047  *              returned.
1048  *
1049  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1050  * if the GFP flags specified for FGP_CREAT are atomic.
1051  *
1052  * If there is a page cache page, it is returned with an increased refcount.
1053  */
1054 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1055         int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask)
1056 {
1057         struct page *page;
1058
1059 repeat:
1060         page = find_get_entry(mapping, offset);
1061         if (radix_tree_exceptional_entry(page))
1062                 page = NULL;
1063         if (!page)
1064                 goto no_page;
1065
1066         if (fgp_flags & FGP_LOCK) {
1067                 if (fgp_flags & FGP_NOWAIT) {
1068                         if (!trylock_page(page)) {
1069                                 page_cache_release(page);
1070                                 return NULL;
1071                         }
1072                 } else {
1073                         lock_page(page);
1074                 }
1075
1076                 /* Has the page been truncated? */
1077                 if (unlikely(page->mapping != mapping)) {
1078                         unlock_page(page);
1079                         page_cache_release(page);
1080                         goto repeat;
1081                 }
1082                 VM_BUG_ON_PAGE(page->index != offset, page);
1083         }
1084
1085         if (page && (fgp_flags & FGP_ACCESSED))
1086                 mark_page_accessed(page);
1087
1088 no_page:
1089         if (!page && (fgp_flags & FGP_CREAT)) {
1090                 int err;
1091                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1092                         cache_gfp_mask |= __GFP_WRITE;
1093                 if (fgp_flags & FGP_NOFS) {
1094                         cache_gfp_mask &= ~__GFP_FS;
1095                         radix_gfp_mask &= ~__GFP_FS;
1096                 }
1097
1098                 page = __page_cache_alloc(cache_gfp_mask);
1099                 if (!page)
1100                         return NULL;
1101
1102                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1103                         fgp_flags |= FGP_LOCK;
1104
1105                 /* Init accessed so avoid atomic mark_page_accessed later */
1106                 if (fgp_flags & FGP_ACCESSED)
1107                         __SetPageReferenced(page);
1108
1109                 err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask);
1110                 if (unlikely(err)) {
1111                         page_cache_release(page);
1112                         page = NULL;
1113                         if (err == -EEXIST)
1114                                 goto repeat;
1115                 }
1116         }
1117
1118         return page;
1119 }
1120 EXPORT_SYMBOL(pagecache_get_page);
1121
1122 /**
1123  * find_get_entries - gang pagecache lookup
1124  * @mapping:    The address_space to search
1125  * @start:      The starting page cache index
1126  * @nr_entries: The maximum number of entries
1127  * @entries:    Where the resulting entries are placed
1128  * @indices:    The cache indices corresponding to the entries in @entries
1129  *
1130  * find_get_entries() will search for and return a group of up to
1131  * @nr_entries entries in the mapping.  The entries are placed at
1132  * @entries.  find_get_entries() takes a reference against any actual
1133  * pages it returns.
1134  *
1135  * The search returns a group of mapping-contiguous page cache entries
1136  * with ascending indexes.  There may be holes in the indices due to
1137  * not-present pages.
1138  *
1139  * Any shadow entries of evicted pages, or swap entries from
1140  * shmem/tmpfs, are included in the returned array.
1141  *
1142  * find_get_entries() returns the number of pages and shadow entries
1143  * which were found.
1144  */
1145 unsigned find_get_entries(struct address_space *mapping,
1146                           pgoff_t start, unsigned int nr_entries,
1147                           struct page **entries, pgoff_t *indices)
1148 {
1149         void **slot;
1150         unsigned int ret = 0;
1151         struct radix_tree_iter iter;
1152
1153         if (!nr_entries)
1154                 return 0;
1155
1156         rcu_read_lock();
1157 restart:
1158         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1159                 struct page *page;
1160 repeat:
1161                 page = radix_tree_deref_slot(slot);
1162                 if (unlikely(!page))
1163                         continue;
1164                 if (radix_tree_exception(page)) {
1165                         if (radix_tree_deref_retry(page))
1166                                 goto restart;
1167                         /*
1168                          * A shadow entry of a recently evicted page,
1169                          * or a swap entry from shmem/tmpfs.  Return
1170                          * it without attempting to raise page count.
1171                          */
1172                         goto export;
1173                 }
1174                 if (!page_cache_get_speculative(page))
1175                         goto repeat;
1176
1177                 /* Has the page moved? */
1178                 if (unlikely(page != *slot)) {
1179                         page_cache_release(page);
1180                         goto repeat;
1181                 }
1182 export:
1183                 indices[ret] = iter.index;
1184                 entries[ret] = page;
1185                 if (++ret == nr_entries)
1186                         break;
1187         }
1188         rcu_read_unlock();
1189         return ret;
1190 }
1191
1192 /**
1193  * find_get_pages - gang pagecache lookup
1194  * @mapping:    The address_space to search
1195  * @start:      The starting page index
1196  * @nr_pages:   The maximum number of pages
1197  * @pages:      Where the resulting pages are placed
1198  *
1199  * find_get_pages() will search for and return a group of up to
1200  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1201  * find_get_pages() takes a reference against the returned pages.
1202  *
1203  * The search returns a group of mapping-contiguous pages with ascending
1204  * indexes.  There may be holes in the indices due to not-present pages.
1205  *
1206  * find_get_pages() returns the number of pages which were found.
1207  */
1208 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1209                             unsigned int nr_pages, struct page **pages)
1210 {
1211         struct radix_tree_iter iter;
1212         void **slot;
1213         unsigned ret = 0;
1214
1215         if (unlikely(!nr_pages))
1216                 return 0;
1217
1218         rcu_read_lock();
1219 restart:
1220         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1221                 struct page *page;
1222 repeat:
1223                 page = radix_tree_deref_slot(slot);
1224                 if (unlikely(!page))
1225                         continue;
1226
1227                 if (radix_tree_exception(page)) {
1228                         if (radix_tree_deref_retry(page)) {
1229                                 /*
1230                                  * Transient condition which can only trigger
1231                                  * when entry at index 0 moves out of or back
1232                                  * to root: none yet gotten, safe to restart.
1233                                  */
1234                                 WARN_ON(iter.index);
1235                                 goto restart;
1236                         }
1237                         /*
1238                          * A shadow entry of a recently evicted page,
1239                          * or a swap entry from shmem/tmpfs.  Skip
1240                          * over it.
1241                          */
1242                         continue;
1243                 }
1244
1245                 if (!page_cache_get_speculative(page))
1246                         goto repeat;
1247
1248                 /* Has the page moved? */
1249                 if (unlikely(page != *slot)) {
1250                         page_cache_release(page);
1251                         goto repeat;
1252                 }
1253
1254                 pages[ret] = page;
1255                 if (++ret == nr_pages)
1256                         break;
1257         }
1258
1259         rcu_read_unlock();
1260         return ret;
1261 }
1262
1263 /**
1264  * find_get_pages_contig - gang contiguous pagecache lookup
1265  * @mapping:    The address_space to search
1266  * @index:      The starting page index
1267  * @nr_pages:   The maximum number of pages
1268  * @pages:      Where the resulting pages are placed
1269  *
1270  * find_get_pages_contig() works exactly like find_get_pages(), except
1271  * that the returned number of pages are guaranteed to be contiguous.
1272  *
1273  * find_get_pages_contig() returns the number of pages which were found.
1274  */
1275 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1276                                unsigned int nr_pages, struct page **pages)
1277 {
1278         struct radix_tree_iter iter;
1279         void **slot;
1280         unsigned int ret = 0;
1281
1282         if (unlikely(!nr_pages))
1283                 return 0;
1284
1285         rcu_read_lock();
1286 restart:
1287         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1288                 struct page *page;
1289 repeat:
1290                 page = radix_tree_deref_slot(slot);
1291                 /* The hole, there no reason to continue */
1292                 if (unlikely(!page))
1293                         break;
1294
1295                 if (radix_tree_exception(page)) {
1296                         if (radix_tree_deref_retry(page)) {
1297                                 /*
1298                                  * Transient condition which can only trigger
1299                                  * when entry at index 0 moves out of or back
1300                                  * to root: none yet gotten, safe to restart.
1301                                  */
1302                                 goto restart;
1303                         }
1304                         /*
1305                          * A shadow entry of a recently evicted page,
1306                          * or a swap entry from shmem/tmpfs.  Stop
1307                          * looking for contiguous pages.
1308                          */
1309                         break;
1310                 }
1311
1312                 if (!page_cache_get_speculative(page))
1313                         goto repeat;
1314
1315                 /* Has the page moved? */
1316                 if (unlikely(page != *slot)) {
1317                         page_cache_release(page);
1318                         goto repeat;
1319                 }
1320
1321                 /*
1322                  * must check mapping and index after taking the ref.
1323                  * otherwise we can get both false positives and false
1324                  * negatives, which is just confusing to the caller.
1325                  */
1326                 if (page->mapping == NULL || page->index != iter.index) {
1327                         page_cache_release(page);
1328                         break;
1329                 }
1330
1331                 pages[ret] = page;
1332                 if (++ret == nr_pages)
1333                         break;
1334         }
1335         rcu_read_unlock();
1336         return ret;
1337 }
1338 EXPORT_SYMBOL(find_get_pages_contig);
1339
1340 /**
1341  * find_get_pages_tag - find and return pages that match @tag
1342  * @mapping:    the address_space to search
1343  * @index:      the starting page index
1344  * @tag:        the tag index
1345  * @nr_pages:   the maximum number of pages
1346  * @pages:      where the resulting pages are placed
1347  *
1348  * Like find_get_pages, except we only return pages which are tagged with
1349  * @tag.   We update @index to index the next page for the traversal.
1350  */
1351 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1352                         int tag, unsigned int nr_pages, struct page **pages)
1353 {
1354         struct radix_tree_iter iter;
1355         void **slot;
1356         unsigned ret = 0;
1357
1358         if (unlikely(!nr_pages))
1359                 return 0;
1360
1361         rcu_read_lock();
1362 restart:
1363         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1364                                    &iter, *index, tag) {
1365                 struct page *page;
1366 repeat:
1367                 page = radix_tree_deref_slot(slot);
1368                 if (unlikely(!page))
1369                         continue;
1370
1371                 if (radix_tree_exception(page)) {
1372                         if (radix_tree_deref_retry(page)) {
1373                                 /*
1374                                  * Transient condition which can only trigger
1375                                  * when entry at index 0 moves out of or back
1376                                  * to root: none yet gotten, safe to restart.
1377                                  */
1378                                 goto restart;
1379                         }
1380                         /*
1381                          * A shadow entry of a recently evicted page.
1382                          *
1383                          * Those entries should never be tagged, but
1384                          * this tree walk is lockless and the tags are
1385                          * looked up in bulk, one radix tree node at a
1386                          * time, so there is a sizable window for page
1387                          * reclaim to evict a page we saw tagged.
1388                          *
1389                          * Skip over it.
1390                          */
1391                         continue;
1392                 }
1393
1394                 if (!page_cache_get_speculative(page))
1395                         goto repeat;
1396
1397                 /* Has the page moved? */
1398                 if (unlikely(page != *slot)) {
1399                         page_cache_release(page);
1400                         goto repeat;
1401                 }
1402
1403                 pages[ret] = page;
1404                 if (++ret == nr_pages)
1405                         break;
1406         }
1407
1408         rcu_read_unlock();
1409
1410         if (ret)
1411                 *index = pages[ret - 1]->index + 1;
1412
1413         return ret;
1414 }
1415 EXPORT_SYMBOL(find_get_pages_tag);
1416
1417 /*
1418  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1419  * a _large_ part of the i/o request. Imagine the worst scenario:
1420  *
1421  *      ---R__________________________________________B__________
1422  *         ^ reading here                             ^ bad block(assume 4k)
1423  *
1424  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1425  * => failing the whole request => read(R) => read(R+1) =>
1426  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1427  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1428  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1429  *
1430  * It is going insane. Fix it by quickly scaling down the readahead size.
1431  */
1432 static void shrink_readahead_size_eio(struct file *filp,
1433                                         struct file_ra_state *ra)
1434 {
1435         ra->ra_pages /= 4;
1436 }
1437
1438 /**
1439  * do_generic_file_read - generic file read routine
1440  * @filp:       the file to read
1441  * @ppos:       current file position
1442  * @iter:       data destination
1443  * @written:    already copied
1444  *
1445  * This is a generic file read routine, and uses the
1446  * mapping->a_ops->readpage() function for the actual low-level stuff.
1447  *
1448  * This is really ugly. But the goto's actually try to clarify some
1449  * of the logic when it comes to error handling etc.
1450  */
1451 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1452                 struct iov_iter *iter, ssize_t written)
1453 {
1454         struct address_space *mapping = filp->f_mapping;
1455         struct inode *inode = mapping->host;
1456         struct file_ra_state *ra = &filp->f_ra;
1457         pgoff_t index;
1458         pgoff_t last_index;
1459         pgoff_t prev_index;
1460         unsigned long offset;      /* offset into pagecache page */
1461         unsigned int prev_offset;
1462         int error = 0;
1463
1464         index = *ppos >> PAGE_CACHE_SHIFT;
1465         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1466         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1467         last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1468         offset = *ppos & ~PAGE_CACHE_MASK;
1469
1470         for (;;) {
1471                 struct page *page;
1472                 pgoff_t end_index;
1473                 loff_t isize;
1474                 unsigned long nr, ret;
1475
1476                 cond_resched();
1477 find_page:
1478                 page = find_get_page(mapping, index);
1479                 if (!page) {
1480                         page_cache_sync_readahead(mapping,
1481                                         ra, filp,
1482                                         index, last_index - index);
1483                         page = find_get_page(mapping, index);
1484                         if (unlikely(page == NULL))
1485                                 goto no_cached_page;
1486                 }
1487                 if (PageReadahead(page)) {
1488                         page_cache_async_readahead(mapping,
1489                                         ra, filp, page,
1490                                         index, last_index - index);
1491                 }
1492                 if (!PageUptodate(page)) {
1493                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1494                                         !mapping->a_ops->is_partially_uptodate)
1495                                 goto page_not_up_to_date;
1496                         if (!trylock_page(page))
1497                                 goto page_not_up_to_date;
1498                         /* Did it get truncated before we got the lock? */
1499                         if (!page->mapping)
1500                                 goto page_not_up_to_date_locked;
1501                         if (!mapping->a_ops->is_partially_uptodate(page,
1502                                                         offset, iter->count))
1503                                 goto page_not_up_to_date_locked;
1504                         unlock_page(page);
1505                 }
1506 page_ok:
1507                 /*
1508                  * i_size must be checked after we know the page is Uptodate.
1509                  *
1510                  * Checking i_size after the check allows us to calculate
1511                  * the correct value for "nr", which means the zero-filled
1512                  * part of the page is not copied back to userspace (unless
1513                  * another truncate extends the file - this is desired though).
1514                  */
1515
1516                 isize = i_size_read(inode);
1517                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1518                 if (unlikely(!isize || index > end_index)) {
1519                         page_cache_release(page);
1520                         goto out;
1521                 }
1522
1523                 /* nr is the maximum number of bytes to copy from this page */
1524                 nr = PAGE_CACHE_SIZE;
1525                 if (index == end_index) {
1526                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1527                         if (nr <= offset) {
1528                                 page_cache_release(page);
1529                                 goto out;
1530                         }
1531                 }
1532                 nr = nr - offset;
1533
1534                 /* If users can be writing to this page using arbitrary
1535                  * virtual addresses, take care about potential aliasing
1536                  * before reading the page on the kernel side.
1537                  */
1538                 if (mapping_writably_mapped(mapping))
1539                         flush_dcache_page(page);
1540
1541                 /*
1542                  * When a sequential read accesses a page several times,
1543                  * only mark it as accessed the first time.
1544                  */
1545                 if (prev_index != index || offset != prev_offset)
1546                         mark_page_accessed(page);
1547                 prev_index = index;
1548
1549                 /*
1550                  * Ok, we have the page, and it's up-to-date, so
1551                  * now we can copy it to user space...
1552                  */
1553
1554                 ret = copy_page_to_iter(page, offset, nr, iter);
1555                 offset += ret;
1556                 index += offset >> PAGE_CACHE_SHIFT;
1557                 offset &= ~PAGE_CACHE_MASK;
1558                 prev_offset = offset;
1559
1560                 page_cache_release(page);
1561                 written += ret;
1562                 if (!iov_iter_count(iter))
1563                         goto out;
1564                 if (ret < nr) {
1565                         error = -EFAULT;
1566                         goto out;
1567                 }
1568                 continue;
1569
1570 page_not_up_to_date:
1571                 /* Get exclusive access to the page ... */
1572                 error = lock_page_killable(page);
1573                 if (unlikely(error))
1574                         goto readpage_error;
1575
1576 page_not_up_to_date_locked:
1577                 /* Did it get truncated before we got the lock? */
1578                 if (!page->mapping) {
1579                         unlock_page(page);
1580                         page_cache_release(page);
1581                         continue;
1582                 }
1583
1584                 /* Did somebody else fill it already? */
1585                 if (PageUptodate(page)) {
1586                         unlock_page(page);
1587                         goto page_ok;
1588                 }
1589
1590 readpage:
1591                 /*
1592                  * A previous I/O error may have been due to temporary
1593                  * failures, eg. multipath errors.
1594                  * PG_error will be set again if readpage fails.
1595                  */
1596                 ClearPageError(page);
1597                 /* Start the actual read. The read will unlock the page. */
1598                 error = mapping->a_ops->readpage(filp, page);
1599
1600                 if (unlikely(error)) {
1601                         if (error == AOP_TRUNCATED_PAGE) {
1602                                 page_cache_release(page);
1603                                 error = 0;
1604                                 goto find_page;
1605                         }
1606                         goto readpage_error;
1607                 }
1608
1609                 if (!PageUptodate(page)) {
1610                         error = lock_page_killable(page);
1611                         if (unlikely(error))
1612                                 goto readpage_error;
1613                         if (!PageUptodate(page)) {
1614                                 if (page->mapping == NULL) {
1615                                         /*
1616                                          * invalidate_mapping_pages got it
1617                                          */
1618                                         unlock_page(page);
1619                                         page_cache_release(page);
1620                                         goto find_page;
1621                                 }
1622                                 unlock_page(page);
1623                                 shrink_readahead_size_eio(filp, ra);
1624                                 error = -EIO;
1625                                 goto readpage_error;
1626                         }
1627                         unlock_page(page);
1628                 }
1629
1630                 goto page_ok;
1631
1632 readpage_error:
1633                 /* UHHUH! A synchronous read error occurred. Report it */
1634                 page_cache_release(page);
1635                 goto out;
1636
1637 no_cached_page:
1638                 /*
1639                  * Ok, it wasn't cached, so we need to create a new
1640                  * page..
1641                  */
1642                 page = page_cache_alloc_cold(mapping);
1643                 if (!page) {
1644                         error = -ENOMEM;
1645                         goto out;
1646                 }
1647                 error = add_to_page_cache_lru(page, mapping,
1648                                                 index, GFP_KERNEL);
1649                 if (error) {
1650                         page_cache_release(page);
1651                         if (error == -EEXIST) {
1652                                 error = 0;
1653                                 goto find_page;
1654                         }
1655                         goto out;
1656                 }
1657                 goto readpage;
1658         }
1659
1660 out:
1661         ra->prev_pos = prev_index;
1662         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1663         ra->prev_pos |= prev_offset;
1664
1665         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1666         file_accessed(filp);
1667         return written ? written : error;
1668 }
1669
1670 /**
1671  * generic_file_read_iter - generic filesystem read routine
1672  * @iocb:       kernel I/O control block
1673  * @iter:       destination for the data read
1674  *
1675  * This is the "read_iter()" routine for all filesystems
1676  * that can use the page cache directly.
1677  */
1678 ssize_t
1679 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1680 {
1681         struct file *file = iocb->ki_filp;
1682         ssize_t retval = 0;
1683         loff_t *ppos = &iocb->ki_pos;
1684         loff_t pos = *ppos;
1685
1686         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1687         if (file->f_flags & O_DIRECT) {
1688                 struct address_space *mapping = file->f_mapping;
1689                 struct inode *inode = mapping->host;
1690                 size_t count = iov_iter_count(iter);
1691                 loff_t size;
1692
1693                 if (!count)
1694                         goto out; /* skip atime */
1695                 size = i_size_read(inode);
1696                 retval = filemap_write_and_wait_range(mapping, pos,
1697                                         pos + count - 1);
1698                 if (!retval) {
1699                         struct iov_iter data = *iter;
1700                         retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos);
1701                 }
1702
1703                 if (retval > 0) {
1704                         *ppos = pos + retval;
1705                         iov_iter_advance(iter, retval);
1706                 }
1707
1708                 /*
1709                  * Btrfs can have a short DIO read if we encounter
1710                  * compressed extents, so if there was an error, or if
1711                  * we've already read everything we wanted to, or if
1712                  * there was a short read because we hit EOF, go ahead
1713                  * and return.  Otherwise fallthrough to buffered io for
1714                  * the rest of the read.
1715                  */
1716                 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) {
1717                         file_accessed(file);
1718                         goto out;
1719                 }
1720         }
1721
1722         retval = do_generic_file_read(file, ppos, iter, retval);
1723 out:
1724         return retval;
1725 }
1726 EXPORT_SYMBOL(generic_file_read_iter);
1727
1728 #ifdef CONFIG_MMU
1729 /**
1730  * page_cache_read - adds requested page to the page cache if not already there
1731  * @file:       file to read
1732  * @offset:     page index
1733  *
1734  * This adds the requested page to the page cache if it isn't already there,
1735  * and schedules an I/O to read in its contents from disk.
1736  */
1737 static int page_cache_read(struct file *file, pgoff_t offset)
1738 {
1739         struct address_space *mapping = file->f_mapping;
1740         struct page *page; 
1741         int ret;
1742
1743         do {
1744                 page = page_cache_alloc_cold(mapping);
1745                 if (!page)
1746                         return -ENOMEM;
1747
1748                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1749                 if (ret == 0)
1750                         ret = mapping->a_ops->readpage(file, page);
1751                 else if (ret == -EEXIST)
1752                         ret = 0; /* losing race to add is OK */
1753
1754                 page_cache_release(page);
1755
1756         } while (ret == AOP_TRUNCATED_PAGE);
1757                 
1758         return ret;
1759 }
1760
1761 #define MMAP_LOTSAMISS  (100)
1762
1763 /*
1764  * Synchronous readahead happens when we don't even find
1765  * a page in the page cache at all.
1766  */
1767 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1768                                    struct file_ra_state *ra,
1769                                    struct file *file,
1770                                    pgoff_t offset)
1771 {
1772         unsigned long ra_pages;
1773         struct address_space *mapping = file->f_mapping;
1774
1775         /* If we don't want any read-ahead, don't bother */
1776         if (vma->vm_flags & VM_RAND_READ)
1777                 return;
1778         if (!ra->ra_pages)
1779                 return;
1780
1781         if (vma->vm_flags & VM_SEQ_READ) {
1782                 page_cache_sync_readahead(mapping, ra, file, offset,
1783                                           ra->ra_pages);
1784                 return;
1785         }
1786
1787         /* Avoid banging the cache line if not needed */
1788         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1789                 ra->mmap_miss++;
1790
1791         /*
1792          * Do we miss much more than hit in this file? If so,
1793          * stop bothering with read-ahead. It will only hurt.
1794          */
1795         if (ra->mmap_miss > MMAP_LOTSAMISS)
1796                 return;
1797
1798         /*
1799          * mmap read-around
1800          */
1801         ra_pages = max_sane_readahead(ra->ra_pages);
1802         ra->start = max_t(long, 0, offset - ra_pages / 2);
1803         ra->size = ra_pages;
1804         ra->async_size = ra_pages / 4;
1805         ra_submit(ra, mapping, file);
1806 }
1807
1808 /*
1809  * Asynchronous readahead happens when we find the page and PG_readahead,
1810  * so we want to possibly extend the readahead further..
1811  */
1812 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1813                                     struct file_ra_state *ra,
1814                                     struct file *file,
1815                                     struct page *page,
1816                                     pgoff_t offset)
1817 {
1818         struct address_space *mapping = file->f_mapping;
1819
1820         /* If we don't want any read-ahead, don't bother */
1821         if (vma->vm_flags & VM_RAND_READ)
1822                 return;
1823         if (ra->mmap_miss > 0)
1824                 ra->mmap_miss--;
1825         if (PageReadahead(page))
1826                 page_cache_async_readahead(mapping, ra, file,
1827                                            page, offset, ra->ra_pages);
1828 }
1829
1830 /**
1831  * filemap_fault - read in file data for page fault handling
1832  * @vma:        vma in which the fault was taken
1833  * @vmf:        struct vm_fault containing details of the fault
1834  *
1835  * filemap_fault() is invoked via the vma operations vector for a
1836  * mapped memory region to read in file data during a page fault.
1837  *
1838  * The goto's are kind of ugly, but this streamlines the normal case of having
1839  * it in the page cache, and handles the special cases reasonably without
1840  * having a lot of duplicated code.
1841  *
1842  * vma->vm_mm->mmap_sem must be held on entry.
1843  *
1844  * If our return value has VM_FAULT_RETRY set, it's because
1845  * lock_page_or_retry() returned 0.
1846  * The mmap_sem has usually been released in this case.
1847  * See __lock_page_or_retry() for the exception.
1848  *
1849  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1850  * has not been released.
1851  *
1852  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1853  */
1854 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1855 {
1856         int error;
1857         struct file *file = vma->vm_file;
1858         struct address_space *mapping = file->f_mapping;
1859         struct file_ra_state *ra = &file->f_ra;
1860         struct inode *inode = mapping->host;
1861         pgoff_t offset = vmf->pgoff;
1862         struct page *page;
1863         loff_t size;
1864         int ret = 0;
1865
1866         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1867         if (offset >= size >> PAGE_CACHE_SHIFT)
1868                 return VM_FAULT_SIGBUS;
1869
1870         /*
1871          * Do we have something in the page cache already?
1872          */
1873         page = find_get_page(mapping, offset);
1874         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1875                 /*
1876                  * We found the page, so try async readahead before
1877                  * waiting for the lock.
1878                  */
1879                 do_async_mmap_readahead(vma, ra, file, page, offset);
1880         } else if (!page) {
1881                 /* No page in the page cache at all */
1882                 do_sync_mmap_readahead(vma, ra, file, offset);
1883                 count_vm_event(PGMAJFAULT);
1884                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1885                 ret = VM_FAULT_MAJOR;
1886 retry_find:
1887                 page = find_get_page(mapping, offset);
1888                 if (!page)
1889                         goto no_cached_page;
1890         }
1891
1892         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1893                 page_cache_release(page);
1894                 return ret | VM_FAULT_RETRY;
1895         }
1896
1897         /* Did it get truncated? */
1898         if (unlikely(page->mapping != mapping)) {
1899                 unlock_page(page);
1900                 put_page(page);
1901                 goto retry_find;
1902         }
1903         VM_BUG_ON_PAGE(page->index != offset, page);
1904
1905         /*
1906          * We have a locked page in the page cache, now we need to check
1907          * that it's up-to-date. If not, it is going to be due to an error.
1908          */
1909         if (unlikely(!PageUptodate(page)))
1910                 goto page_not_uptodate;
1911
1912         /*
1913          * Found the page and have a reference on it.
1914          * We must recheck i_size under page lock.
1915          */
1916         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1917         if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1918                 unlock_page(page);
1919                 page_cache_release(page);
1920                 return VM_FAULT_SIGBUS;
1921         }
1922
1923         vmf->page = page;
1924         return ret | VM_FAULT_LOCKED;
1925
1926 no_cached_page:
1927         /*
1928          * We're only likely to ever get here if MADV_RANDOM is in
1929          * effect.
1930          */
1931         error = page_cache_read(file, offset);
1932
1933         /*
1934          * The page we want has now been added to the page cache.
1935          * In the unlikely event that someone removed it in the
1936          * meantime, we'll just come back here and read it again.
1937          */
1938         if (error >= 0)
1939                 goto retry_find;
1940
1941         /*
1942          * An error return from page_cache_read can result if the
1943          * system is low on memory, or a problem occurs while trying
1944          * to schedule I/O.
1945          */
1946         if (error == -ENOMEM)
1947                 return VM_FAULT_OOM;
1948         return VM_FAULT_SIGBUS;
1949
1950 page_not_uptodate:
1951         /*
1952          * Umm, take care of errors if the page isn't up-to-date.
1953          * Try to re-read it _once_. We do this synchronously,
1954          * because there really aren't any performance issues here
1955          * and we need to check for errors.
1956          */
1957         ClearPageError(page);
1958         error = mapping->a_ops->readpage(file, page);
1959         if (!error) {
1960                 wait_on_page_locked(page);
1961                 if (!PageUptodate(page))
1962                         error = -EIO;
1963         }
1964         page_cache_release(page);
1965
1966         if (!error || error == AOP_TRUNCATED_PAGE)
1967                 goto retry_find;
1968
1969         /* Things didn't work out. Return zero to tell the mm layer so. */
1970         shrink_readahead_size_eio(file, ra);
1971         return VM_FAULT_SIGBUS;
1972 }
1973 EXPORT_SYMBOL(filemap_fault);
1974
1975 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1976 {
1977         struct radix_tree_iter iter;
1978         void **slot;
1979         struct file *file = vma->vm_file;
1980         struct address_space *mapping = file->f_mapping;
1981         loff_t size;
1982         struct page *page;
1983         unsigned long address = (unsigned long) vmf->virtual_address;
1984         unsigned long addr;
1985         pte_t *pte;
1986
1987         rcu_read_lock();
1988         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
1989                 if (iter.index > vmf->max_pgoff)
1990                         break;
1991 repeat:
1992                 page = radix_tree_deref_slot(slot);
1993                 if (unlikely(!page))
1994                         goto next;
1995                 if (radix_tree_exception(page)) {
1996                         if (radix_tree_deref_retry(page))
1997                                 break;
1998                         else
1999                                 goto next;
2000                 }
2001
2002                 if (!page_cache_get_speculative(page))
2003                         goto repeat;
2004
2005                 /* Has the page moved? */
2006                 if (unlikely(page != *slot)) {
2007                         page_cache_release(page);
2008                         goto repeat;
2009                 }
2010
2011                 if (!PageUptodate(page) ||
2012                                 PageReadahead(page) ||
2013                                 PageHWPoison(page))
2014                         goto skip;
2015                 if (!trylock_page(page))
2016                         goto skip;
2017
2018                 if (page->mapping != mapping || !PageUptodate(page))
2019                         goto unlock;
2020
2021                 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2022                 if (page->index >= size >> PAGE_CACHE_SHIFT)
2023                         goto unlock;
2024
2025                 pte = vmf->pte + page->index - vmf->pgoff;
2026                 if (!pte_none(*pte))
2027                         goto unlock;
2028
2029                 if (file->f_ra.mmap_miss > 0)
2030                         file->f_ra.mmap_miss--;
2031                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2032                 do_set_pte(vma, addr, page, pte, false, false);
2033                 unlock_page(page);
2034                 goto next;
2035 unlock:
2036                 unlock_page(page);
2037 skip:
2038                 page_cache_release(page);
2039 next:
2040                 if (iter.index == vmf->max_pgoff)
2041                         break;
2042         }
2043         rcu_read_unlock();
2044 }
2045 EXPORT_SYMBOL(filemap_map_pages);
2046
2047 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2048 {
2049         struct page *page = vmf->page;
2050         struct inode *inode = file_inode(vma->vm_file);
2051         int ret = VM_FAULT_LOCKED;
2052
2053         sb_start_pagefault(inode->i_sb);
2054         file_update_time(vma->vm_file);
2055         lock_page(page);
2056         if (page->mapping != inode->i_mapping) {
2057                 unlock_page(page);
2058                 ret = VM_FAULT_NOPAGE;
2059                 goto out;
2060         }
2061         /*
2062          * We mark the page dirty already here so that when freeze is in
2063          * progress, we are guaranteed that writeback during freezing will
2064          * see the dirty page and writeprotect it again.
2065          */
2066         set_page_dirty(page);
2067         wait_for_stable_page(page);
2068 out:
2069         sb_end_pagefault(inode->i_sb);
2070         return ret;
2071 }
2072 EXPORT_SYMBOL(filemap_page_mkwrite);
2073
2074 const struct vm_operations_struct generic_file_vm_ops = {
2075         .fault          = filemap_fault,
2076         .map_pages      = filemap_map_pages,
2077         .page_mkwrite   = filemap_page_mkwrite,
2078         .remap_pages    = generic_file_remap_pages,
2079 };
2080
2081 /* This is used for a general mmap of a disk file */
2082
2083 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2084 {
2085         struct address_space *mapping = file->f_mapping;
2086
2087         if (!mapping->a_ops->readpage)
2088                 return -ENOEXEC;
2089         file_accessed(file);
2090         vma->vm_ops = &generic_file_vm_ops;
2091         return 0;
2092 }
2093
2094 /*
2095  * This is for filesystems which do not implement ->writepage.
2096  */
2097 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2098 {
2099         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2100                 return -EINVAL;
2101         return generic_file_mmap(file, vma);
2102 }
2103 #else
2104 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2105 {
2106         return -ENOSYS;
2107 }
2108 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2109 {
2110         return -ENOSYS;
2111 }
2112 #endif /* CONFIG_MMU */
2113
2114 EXPORT_SYMBOL(generic_file_mmap);
2115 EXPORT_SYMBOL(generic_file_readonly_mmap);
2116
2117 static struct page *wait_on_page_read(struct page *page)
2118 {
2119         if (!IS_ERR(page)) {
2120                 wait_on_page_locked(page);
2121                 if (!PageUptodate(page)) {
2122                         page_cache_release(page);
2123                         page = ERR_PTR(-EIO);
2124                 }
2125         }
2126         return page;
2127 }
2128
2129 static struct page *__read_cache_page(struct address_space *mapping,
2130                                 pgoff_t index,
2131                                 int (*filler)(void *, struct page *),
2132                                 void *data,
2133                                 gfp_t gfp)
2134 {
2135         struct page *page;
2136         int err;
2137 repeat:
2138         page = find_get_page(mapping, index);
2139         if (!page) {
2140                 page = __page_cache_alloc(gfp | __GFP_COLD);
2141                 if (!page)
2142                         return ERR_PTR(-ENOMEM);
2143                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2144                 if (unlikely(err)) {
2145                         page_cache_release(page);
2146                         if (err == -EEXIST)
2147                                 goto repeat;
2148                         /* Presumably ENOMEM for radix tree node */
2149                         return ERR_PTR(err);
2150                 }
2151                 err = filler(data, page);
2152                 if (err < 0) {
2153                         page_cache_release(page);
2154                         page = ERR_PTR(err);
2155                 } else {
2156                         page = wait_on_page_read(page);
2157                 }
2158         }
2159         return page;
2160 }
2161
2162 static struct page *do_read_cache_page(struct address_space *mapping,
2163                                 pgoff_t index,
2164                                 int (*filler)(void *, struct page *),
2165                                 void *data,
2166                                 gfp_t gfp)
2167
2168 {
2169         struct page *page;
2170         int err;
2171
2172 retry:
2173         page = __read_cache_page(mapping, index, filler, data, gfp);
2174         if (IS_ERR(page))
2175                 return page;
2176         if (PageUptodate(page))
2177                 goto out;
2178
2179         lock_page(page);
2180         if (!page->mapping) {
2181                 unlock_page(page);
2182                 page_cache_release(page);
2183                 goto retry;
2184         }
2185         if (PageUptodate(page)) {
2186                 unlock_page(page);
2187                 goto out;
2188         }
2189         err = filler(data, page);
2190         if (err < 0) {
2191                 page_cache_release(page);
2192                 return ERR_PTR(err);
2193         } else {
2194                 page = wait_on_page_read(page);
2195                 if (IS_ERR(page))
2196                         return page;
2197         }
2198 out:
2199         mark_page_accessed(page);
2200         return page;
2201 }
2202
2203 /**
2204  * read_cache_page - read into page cache, fill it if needed
2205  * @mapping:    the page's address_space
2206  * @index:      the page index
2207  * @filler:     function to perform the read
2208  * @data:       first arg to filler(data, page) function, often left as NULL
2209  *
2210  * Read into the page cache. If a page already exists, and PageUptodate() is
2211  * not set, try to fill the page and wait for it to become unlocked.
2212  *
2213  * If the page does not get brought uptodate, return -EIO.
2214  */
2215 struct page *read_cache_page(struct address_space *mapping,
2216                                 pgoff_t index,
2217                                 int (*filler)(void *, struct page *),
2218                                 void *data)
2219 {
2220         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2221 }
2222 EXPORT_SYMBOL(read_cache_page);
2223
2224 /**
2225  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2226  * @mapping:    the page's address_space
2227  * @index:      the page index
2228  * @gfp:        the page allocator flags to use if allocating
2229  *
2230  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2231  * any new page allocations done using the specified allocation flags.
2232  *
2233  * If the page does not get brought uptodate, return -EIO.
2234  */
2235 struct page *read_cache_page_gfp(struct address_space *mapping,
2236                                 pgoff_t index,
2237                                 gfp_t gfp)
2238 {
2239         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2240
2241         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2242 }
2243 EXPORT_SYMBOL(read_cache_page_gfp);
2244
2245 /*
2246  * Performs necessary checks before doing a write
2247  *
2248  * Can adjust writing position or amount of bytes to write.
2249  * Returns appropriate error code that caller should return or
2250  * zero in case that write should be allowed.
2251  */
2252 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2253 {
2254         struct inode *inode = file->f_mapping->host;
2255         unsigned long limit = rlimit(RLIMIT_FSIZE);
2256
2257         if (unlikely(*pos < 0))
2258                 return -EINVAL;
2259
2260         if (!isblk) {
2261                 /* FIXME: this is for backwards compatibility with 2.4 */
2262                 if (file->f_flags & O_APPEND)
2263                         *pos = i_size_read(inode);
2264
2265                 if (limit != RLIM_INFINITY) {
2266                         if (*pos >= limit) {
2267                                 send_sig(SIGXFSZ, current, 0);
2268                                 return -EFBIG;
2269                         }
2270                         if (*count > limit - (typeof(limit))*pos) {
2271                                 *count = limit - (typeof(limit))*pos;
2272                         }
2273                 }
2274         }
2275
2276         /*
2277          * LFS rule
2278          */
2279         if (unlikely(*pos + *count > MAX_NON_LFS &&
2280                                 !(file->f_flags & O_LARGEFILE))) {
2281                 if (*pos >= MAX_NON_LFS) {
2282                         return -EFBIG;
2283                 }
2284                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2285                         *count = MAX_NON_LFS - (unsigned long)*pos;
2286                 }
2287         }
2288
2289         /*
2290          * Are we about to exceed the fs block limit ?
2291          *
2292          * If we have written data it becomes a short write.  If we have
2293          * exceeded without writing data we send a signal and return EFBIG.
2294          * Linus frestrict idea will clean these up nicely..
2295          */
2296         if (likely(!isblk)) {
2297                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2298                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2299                                 return -EFBIG;
2300                         }
2301                         /* zero-length writes at ->s_maxbytes are OK */
2302                 }
2303
2304                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2305                         *count = inode->i_sb->s_maxbytes - *pos;
2306         } else {
2307 #ifdef CONFIG_BLOCK
2308                 loff_t isize;
2309                 if (bdev_read_only(I_BDEV(inode)))
2310                         return -EPERM;
2311                 isize = i_size_read(inode);
2312                 if (*pos >= isize) {
2313                         if (*count || *pos > isize)
2314                                 return -ENOSPC;
2315                 }
2316
2317                 if (*pos + *count > isize)
2318                         *count = isize - *pos;
2319 #else
2320                 return -EPERM;
2321 #endif
2322         }
2323         return 0;
2324 }
2325 EXPORT_SYMBOL(generic_write_checks);
2326
2327 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2328                                 loff_t pos, unsigned len, unsigned flags,
2329                                 struct page **pagep, void **fsdata)
2330 {
2331         const struct address_space_operations *aops = mapping->a_ops;
2332
2333         return aops->write_begin(file, mapping, pos, len, flags,
2334                                                         pagep, fsdata);
2335 }
2336 EXPORT_SYMBOL(pagecache_write_begin);
2337
2338 int pagecache_write_end(struct file *file, struct address_space *mapping,
2339                                 loff_t pos, unsigned len, unsigned copied,
2340                                 struct page *page, void *fsdata)
2341 {
2342         const struct address_space_operations *aops = mapping->a_ops;
2343
2344         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2345 }
2346 EXPORT_SYMBOL(pagecache_write_end);
2347
2348 ssize_t
2349 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2350 {
2351         struct file     *file = iocb->ki_filp;
2352         struct address_space *mapping = file->f_mapping;
2353         struct inode    *inode = mapping->host;
2354         ssize_t         written;
2355         size_t          write_len;
2356         pgoff_t         end;
2357         struct iov_iter data;
2358
2359         write_len = iov_iter_count(from);
2360         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2361
2362         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2363         if (written)
2364                 goto out;
2365
2366         /*
2367          * After a write we want buffered reads to be sure to go to disk to get
2368          * the new data.  We invalidate clean cached page from the region we're
2369          * about to write.  We do this *before* the write so that we can return
2370          * without clobbering -EIOCBQUEUED from ->direct_IO().
2371          */
2372         if (mapping->nrpages) {
2373                 written = invalidate_inode_pages2_range(mapping,
2374                                         pos >> PAGE_CACHE_SHIFT, end);
2375                 /*
2376                  * If a page can not be invalidated, return 0 to fall back
2377                  * to buffered write.
2378                  */
2379                 if (written) {
2380                         if (written == -EBUSY)
2381                                 return 0;
2382                         goto out;
2383                 }
2384         }
2385
2386         data = *from;
2387         written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
2388
2389         /*
2390          * Finally, try again to invalidate clean pages which might have been
2391          * cached by non-direct readahead, or faulted in by get_user_pages()
2392          * if the source of the write was an mmap'ed region of the file
2393          * we're writing.  Either one is a pretty crazy thing to do,
2394          * so we don't support it 100%.  If this invalidation
2395          * fails, tough, the write still worked...
2396          */
2397         if (mapping->nrpages) {
2398                 invalidate_inode_pages2_range(mapping,
2399                                               pos >> PAGE_CACHE_SHIFT, end);
2400         }
2401
2402         if (written > 0) {
2403                 pos += written;
2404                 iov_iter_advance(from, written);
2405                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2406                         i_size_write(inode, pos);
2407                         mark_inode_dirty(inode);
2408                 }
2409                 iocb->ki_pos = pos;
2410         }
2411 out:
2412         return written;
2413 }
2414 EXPORT_SYMBOL(generic_file_direct_write);
2415
2416 /*
2417  * Find or create a page at the given pagecache position. Return the locked
2418  * page. This function is specifically for buffered writes.
2419  */
2420 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2421                                         pgoff_t index, unsigned flags)
2422 {
2423         struct page *page;
2424         int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2425
2426         if (flags & AOP_FLAG_NOFS)
2427                 fgp_flags |= FGP_NOFS;
2428
2429         page = pagecache_get_page(mapping, index, fgp_flags,
2430                         mapping_gfp_mask(mapping),
2431                         GFP_KERNEL);
2432         if (page)
2433                 wait_for_stable_page(page);
2434
2435         return page;
2436 }
2437 EXPORT_SYMBOL(grab_cache_page_write_begin);
2438
2439 ssize_t generic_perform_write(struct file *file,
2440                                 struct iov_iter *i, loff_t pos)
2441 {
2442         struct address_space *mapping = file->f_mapping;
2443         const struct address_space_operations *a_ops = mapping->a_ops;
2444         long status = 0;
2445         ssize_t written = 0;
2446         unsigned int flags = 0;
2447
2448         /*
2449          * Copies from kernel address space cannot fail (NFSD is a big user).
2450          */
2451         if (segment_eq(get_fs(), KERNEL_DS))
2452                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2453
2454         do {
2455                 struct page *page;
2456                 unsigned long offset;   /* Offset into pagecache page */
2457                 unsigned long bytes;    /* Bytes to write to page */
2458                 size_t copied;          /* Bytes copied from user */
2459                 void *fsdata;
2460
2461                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2462                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2463                                                 iov_iter_count(i));
2464
2465 again:
2466                 /*
2467                  * Bring in the user page that we will copy from _first_.
2468                  * Otherwise there's a nasty deadlock on copying from the
2469                  * same page as we're writing to, without it being marked
2470                  * up-to-date.
2471                  *
2472                  * Not only is this an optimisation, but it is also required
2473                  * to check that the address is actually valid, when atomic
2474                  * usercopies are used, below.
2475                  */
2476                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2477                         status = -EFAULT;
2478                         break;
2479                 }
2480
2481                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2482                                                 &page, &fsdata);
2483                 if (unlikely(status < 0))
2484                         break;
2485
2486                 if (mapping_writably_mapped(mapping))
2487                         flush_dcache_page(page);
2488
2489                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2490                 flush_dcache_page(page);
2491
2492                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2493                                                 page, fsdata);
2494                 if (unlikely(status < 0))
2495                         break;
2496                 copied = status;
2497
2498                 cond_resched();
2499
2500                 iov_iter_advance(i, copied);
2501                 if (unlikely(copied == 0)) {
2502                         /*
2503                          * If we were unable to copy any data at all, we must
2504                          * fall back to a single segment length write.
2505                          *
2506                          * If we didn't fallback here, we could livelock
2507                          * because not all segments in the iov can be copied at
2508                          * once without a pagefault.
2509                          */
2510                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2511                                                 iov_iter_single_seg_count(i));
2512                         goto again;
2513                 }
2514                 pos += copied;
2515                 written += copied;
2516
2517                 balance_dirty_pages_ratelimited(mapping);
2518                 if (fatal_signal_pending(current)) {
2519                         status = -EINTR;
2520                         break;
2521                 }
2522         } while (iov_iter_count(i));
2523
2524         return written ? written : status;
2525 }
2526 EXPORT_SYMBOL(generic_perform_write);
2527
2528 /**
2529  * __generic_file_write_iter - write data to a file
2530  * @iocb:       IO state structure (file, offset, etc.)
2531  * @from:       iov_iter with data to write
2532  *
2533  * This function does all the work needed for actually writing data to a
2534  * file. It does all basic checks, removes SUID from the file, updates
2535  * modification times and calls proper subroutines depending on whether we
2536  * do direct IO or a standard buffered write.
2537  *
2538  * It expects i_mutex to be grabbed unless we work on a block device or similar
2539  * object which does not need locking at all.
2540  *
2541  * This function does *not* take care of syncing data in case of O_SYNC write.
2542  * A caller has to handle it. This is mainly due to the fact that we want to
2543  * avoid syncing under i_mutex.
2544  */
2545 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2546 {
2547         struct file *file = iocb->ki_filp;
2548         struct address_space * mapping = file->f_mapping;
2549         struct inode    *inode = mapping->host;
2550         loff_t          pos = iocb->ki_pos;
2551         ssize_t         written = 0;
2552         ssize_t         err;
2553         ssize_t         status;
2554         size_t          count = iov_iter_count(from);
2555
2556         /* We can write back this queue in page reclaim */
2557         current->backing_dev_info = mapping->backing_dev_info;
2558         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2559         if (err)
2560                 goto out;
2561
2562         if (count == 0)
2563                 goto out;
2564
2565         iov_iter_truncate(from, count);
2566
2567         err = file_remove_suid(file);
2568         if (err)
2569                 goto out;
2570
2571         err = file_update_time(file);
2572         if (err)
2573                 goto out;
2574
2575         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2576         if (unlikely(file->f_flags & O_DIRECT)) {
2577                 loff_t endbyte;
2578
2579                 written = generic_file_direct_write(iocb, from, pos);
2580                 if (written < 0 || written == count)
2581                         goto out;
2582
2583                 /*
2584                  * direct-io write to a hole: fall through to buffered I/O
2585                  * for completing the rest of the request.
2586                  */
2587                 pos += written;
2588                 count -= written;
2589
2590                 status = generic_perform_write(file, from, pos);
2591                 /*
2592                  * If generic_perform_write() returned a synchronous error
2593                  * then we want to return the number of bytes which were
2594                  * direct-written, or the error code if that was zero.  Note
2595                  * that this differs from normal direct-io semantics, which
2596                  * will return -EFOO even if some bytes were written.
2597                  */
2598                 if (unlikely(status < 0) && !written) {
2599                         err = status;
2600                         goto out;
2601                 }
2602                 iocb->ki_pos = pos + status;
2603                 /*
2604                  * We need to ensure that the page cache pages are written to
2605                  * disk and invalidated to preserve the expected O_DIRECT
2606                  * semantics.
2607                  */
2608                 endbyte = pos + status - 1;
2609                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2610                 if (err == 0) {
2611                         written += status;
2612                         invalidate_mapping_pages(mapping,
2613                                                  pos >> PAGE_CACHE_SHIFT,
2614                                                  endbyte >> PAGE_CACHE_SHIFT);
2615                 } else {
2616                         /*
2617                          * We don't know how much we wrote, so just return
2618                          * the number of bytes which were direct-written
2619                          */
2620                 }
2621         } else {
2622                 written = generic_perform_write(file, from, pos);
2623                 if (likely(written >= 0))
2624                         iocb->ki_pos = pos + written;
2625         }
2626 out:
2627         current->backing_dev_info = NULL;
2628         return written ? written : err;
2629 }
2630 EXPORT_SYMBOL(__generic_file_write_iter);
2631
2632 /**
2633  * generic_file_write_iter - write data to a file
2634  * @iocb:       IO state structure
2635  * @from:       iov_iter with data to write
2636  *
2637  * This is a wrapper around __generic_file_write_iter() to be used by most
2638  * filesystems. It takes care of syncing the file in case of O_SYNC file
2639  * and acquires i_mutex as needed.
2640  */
2641 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2642 {
2643         struct file *file = iocb->ki_filp;
2644         struct inode *inode = file->f_mapping->host;
2645         ssize_t ret;
2646
2647         mutex_lock(&inode->i_mutex);
2648         ret = __generic_file_write_iter(iocb, from);
2649         mutex_unlock(&inode->i_mutex);
2650
2651         if (ret > 0) {
2652                 ssize_t err;
2653
2654                 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2655                 if (err < 0)
2656                         ret = err;
2657         }
2658         return ret;
2659 }
2660 EXPORT_SYMBOL(generic_file_write_iter);
2661
2662 /**
2663  * try_to_release_page() - release old fs-specific metadata on a page
2664  *
2665  * @page: the page which the kernel is trying to free
2666  * @gfp_mask: memory allocation flags (and I/O mode)
2667  *
2668  * The address_space is to try to release any data against the page
2669  * (presumably at page->private).  If the release was successful, return `1'.
2670  * Otherwise return zero.
2671  *
2672  * This may also be called if PG_fscache is set on a page, indicating that the
2673  * page is known to the local caching routines.
2674  *
2675  * The @gfp_mask argument specifies whether I/O may be performed to release
2676  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2677  *
2678  */
2679 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2680 {
2681         struct address_space * const mapping = page->mapping;
2682
2683         BUG_ON(!PageLocked(page));
2684         if (PageWriteback(page))
2685                 return 0;
2686
2687         if (mapping && mapping->a_ops->releasepage)
2688                 return mapping->a_ops->releasepage(page, gfp_mask);
2689         return try_to_free_buffers(page);
2690 }
2691
2692 EXPORT_SYMBOL(try_to_release_page);