thp: make MADV_HUGEPAGE check for mm->def_flags
[cascardo/linux.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <asm/tlb.h>
21 #include <asm/pgalloc.h>
22 #include "internal.h"
23
24 /*
25  * By default transparent hugepage support is enabled for all mappings
26  * and khugepaged scans all mappings. Defrag is only invoked by
27  * khugepaged hugepage allocations and by page faults inside
28  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29  * allocations.
30  */
31 unsigned long transparent_hugepage_flags __read_mostly =
32 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
34 #endif
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37 #endif
38         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40
41 /* default scan 8*512 pte (or vmas) every 30 second */
42 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43 static unsigned int khugepaged_pages_collapsed;
44 static unsigned int khugepaged_full_scans;
45 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46 /* during fragmentation poll the hugepage allocator once every minute */
47 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48 static struct task_struct *khugepaged_thread __read_mostly;
49 static DEFINE_MUTEX(khugepaged_mutex);
50 static DEFINE_SPINLOCK(khugepaged_mm_lock);
51 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52 /*
53  * default collapse hugepages if there is at least one pte mapped like
54  * it would have happened if the vma was large enough during page
55  * fault.
56  */
57 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58
59 static int khugepaged(void *none);
60 static int mm_slots_hash_init(void);
61 static int khugepaged_slab_init(void);
62 static void khugepaged_slab_free(void);
63
64 #define MM_SLOTS_HASH_HEADS 1024
65 static struct hlist_head *mm_slots_hash __read_mostly;
66 static struct kmem_cache *mm_slot_cache __read_mostly;
67
68 /**
69  * struct mm_slot - hash lookup from mm to mm_slot
70  * @hash: hash collision list
71  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72  * @mm: the mm that this information is valid for
73  */
74 struct mm_slot {
75         struct hlist_node hash;
76         struct list_head mm_node;
77         struct mm_struct *mm;
78 };
79
80 /**
81  * struct khugepaged_scan - cursor for scanning
82  * @mm_head: the head of the mm list to scan
83  * @mm_slot: the current mm_slot we are scanning
84  * @address: the next address inside that to be scanned
85  *
86  * There is only the one khugepaged_scan instance of this cursor structure.
87  */
88 struct khugepaged_scan {
89         struct list_head mm_head;
90         struct mm_slot *mm_slot;
91         unsigned long address;
92 };
93 static struct khugepaged_scan khugepaged_scan = {
94         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
95 };
96
97
98 static int set_recommended_min_free_kbytes(void)
99 {
100         struct zone *zone;
101         int nr_zones = 0;
102         unsigned long recommended_min;
103         extern int min_free_kbytes;
104
105         if (!khugepaged_enabled())
106                 return 0;
107
108         for_each_populated_zone(zone)
109                 nr_zones++;
110
111         /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
112         recommended_min = pageblock_nr_pages * nr_zones * 2;
113
114         /*
115          * Make sure that on average at least two pageblocks are almost free
116          * of another type, one for a migratetype to fall back to and a
117          * second to avoid subsequent fallbacks of other types There are 3
118          * MIGRATE_TYPES we care about.
119          */
120         recommended_min += pageblock_nr_pages * nr_zones *
121                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
122
123         /* don't ever allow to reserve more than 5% of the lowmem */
124         recommended_min = min(recommended_min,
125                               (unsigned long) nr_free_buffer_pages() / 20);
126         recommended_min <<= (PAGE_SHIFT-10);
127
128         if (recommended_min > min_free_kbytes)
129                 min_free_kbytes = recommended_min;
130         setup_per_zone_wmarks();
131         return 0;
132 }
133 late_initcall(set_recommended_min_free_kbytes);
134
135 static int start_khugepaged(void)
136 {
137         int err = 0;
138         if (khugepaged_enabled()) {
139                 if (!khugepaged_thread)
140                         khugepaged_thread = kthread_run(khugepaged, NULL,
141                                                         "khugepaged");
142                 if (unlikely(IS_ERR(khugepaged_thread))) {
143                         printk(KERN_ERR
144                                "khugepaged: kthread_run(khugepaged) failed\n");
145                         err = PTR_ERR(khugepaged_thread);
146                         khugepaged_thread = NULL;
147                 }
148
149                 if (!list_empty(&khugepaged_scan.mm_head))
150                         wake_up_interruptible(&khugepaged_wait);
151
152                 set_recommended_min_free_kbytes();
153         } else if (khugepaged_thread) {
154                 kthread_stop(khugepaged_thread);
155                 khugepaged_thread = NULL;
156         }
157
158         return err;
159 }
160
161 #ifdef CONFIG_SYSFS
162
163 static ssize_t double_flag_show(struct kobject *kobj,
164                                 struct kobj_attribute *attr, char *buf,
165                                 enum transparent_hugepage_flag enabled,
166                                 enum transparent_hugepage_flag req_madv)
167 {
168         if (test_bit(enabled, &transparent_hugepage_flags)) {
169                 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
170                 return sprintf(buf, "[always] madvise never\n");
171         } else if (test_bit(req_madv, &transparent_hugepage_flags))
172                 return sprintf(buf, "always [madvise] never\n");
173         else
174                 return sprintf(buf, "always madvise [never]\n");
175 }
176 static ssize_t double_flag_store(struct kobject *kobj,
177                                  struct kobj_attribute *attr,
178                                  const char *buf, size_t count,
179                                  enum transparent_hugepage_flag enabled,
180                                  enum transparent_hugepage_flag req_madv)
181 {
182         if (!memcmp("always", buf,
183                     min(sizeof("always")-1, count))) {
184                 set_bit(enabled, &transparent_hugepage_flags);
185                 clear_bit(req_madv, &transparent_hugepage_flags);
186         } else if (!memcmp("madvise", buf,
187                            min(sizeof("madvise")-1, count))) {
188                 clear_bit(enabled, &transparent_hugepage_flags);
189                 set_bit(req_madv, &transparent_hugepage_flags);
190         } else if (!memcmp("never", buf,
191                            min(sizeof("never")-1, count))) {
192                 clear_bit(enabled, &transparent_hugepage_flags);
193                 clear_bit(req_madv, &transparent_hugepage_flags);
194         } else
195                 return -EINVAL;
196
197         return count;
198 }
199
200 static ssize_t enabled_show(struct kobject *kobj,
201                             struct kobj_attribute *attr, char *buf)
202 {
203         return double_flag_show(kobj, attr, buf,
204                                 TRANSPARENT_HUGEPAGE_FLAG,
205                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
206 }
207 static ssize_t enabled_store(struct kobject *kobj,
208                              struct kobj_attribute *attr,
209                              const char *buf, size_t count)
210 {
211         ssize_t ret;
212
213         ret = double_flag_store(kobj, attr, buf, count,
214                                 TRANSPARENT_HUGEPAGE_FLAG,
215                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
216
217         if (ret > 0) {
218                 int err;
219
220                 mutex_lock(&khugepaged_mutex);
221                 err = start_khugepaged();
222                 mutex_unlock(&khugepaged_mutex);
223
224                 if (err)
225                         ret = err;
226         }
227
228         return ret;
229 }
230 static struct kobj_attribute enabled_attr =
231         __ATTR(enabled, 0644, enabled_show, enabled_store);
232
233 static ssize_t single_flag_show(struct kobject *kobj,
234                                 struct kobj_attribute *attr, char *buf,
235                                 enum transparent_hugepage_flag flag)
236 {
237         return sprintf(buf, "%d\n",
238                        !!test_bit(flag, &transparent_hugepage_flags));
239 }
240
241 static ssize_t single_flag_store(struct kobject *kobj,
242                                  struct kobj_attribute *attr,
243                                  const char *buf, size_t count,
244                                  enum transparent_hugepage_flag flag)
245 {
246         unsigned long value;
247         int ret;
248
249         ret = kstrtoul(buf, 10, &value);
250         if (ret < 0)
251                 return ret;
252         if (value > 1)
253                 return -EINVAL;
254
255         if (value)
256                 set_bit(flag, &transparent_hugepage_flags);
257         else
258                 clear_bit(flag, &transparent_hugepage_flags);
259
260         return count;
261 }
262
263 /*
264  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
265  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
266  * memory just to allocate one more hugepage.
267  */
268 static ssize_t defrag_show(struct kobject *kobj,
269                            struct kobj_attribute *attr, char *buf)
270 {
271         return double_flag_show(kobj, attr, buf,
272                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
273                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
274 }
275 static ssize_t defrag_store(struct kobject *kobj,
276                             struct kobj_attribute *attr,
277                             const char *buf, size_t count)
278 {
279         return double_flag_store(kobj, attr, buf, count,
280                                  TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
281                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
282 }
283 static struct kobj_attribute defrag_attr =
284         __ATTR(defrag, 0644, defrag_show, defrag_store);
285
286 #ifdef CONFIG_DEBUG_VM
287 static ssize_t debug_cow_show(struct kobject *kobj,
288                                 struct kobj_attribute *attr, char *buf)
289 {
290         return single_flag_show(kobj, attr, buf,
291                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
292 }
293 static ssize_t debug_cow_store(struct kobject *kobj,
294                                struct kobj_attribute *attr,
295                                const char *buf, size_t count)
296 {
297         return single_flag_store(kobj, attr, buf, count,
298                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
299 }
300 static struct kobj_attribute debug_cow_attr =
301         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
302 #endif /* CONFIG_DEBUG_VM */
303
304 static struct attribute *hugepage_attr[] = {
305         &enabled_attr.attr,
306         &defrag_attr.attr,
307 #ifdef CONFIG_DEBUG_VM
308         &debug_cow_attr.attr,
309 #endif
310         NULL,
311 };
312
313 static struct attribute_group hugepage_attr_group = {
314         .attrs = hugepage_attr,
315 };
316
317 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
318                                          struct kobj_attribute *attr,
319                                          char *buf)
320 {
321         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
322 }
323
324 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
325                                           struct kobj_attribute *attr,
326                                           const char *buf, size_t count)
327 {
328         unsigned long msecs;
329         int err;
330
331         err = strict_strtoul(buf, 10, &msecs);
332         if (err || msecs > UINT_MAX)
333                 return -EINVAL;
334
335         khugepaged_scan_sleep_millisecs = msecs;
336         wake_up_interruptible(&khugepaged_wait);
337
338         return count;
339 }
340 static struct kobj_attribute scan_sleep_millisecs_attr =
341         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
342                scan_sleep_millisecs_store);
343
344 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
345                                           struct kobj_attribute *attr,
346                                           char *buf)
347 {
348         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
349 }
350
351 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
352                                            struct kobj_attribute *attr,
353                                            const char *buf, size_t count)
354 {
355         unsigned long msecs;
356         int err;
357
358         err = strict_strtoul(buf, 10, &msecs);
359         if (err || msecs > UINT_MAX)
360                 return -EINVAL;
361
362         khugepaged_alloc_sleep_millisecs = msecs;
363         wake_up_interruptible(&khugepaged_wait);
364
365         return count;
366 }
367 static struct kobj_attribute alloc_sleep_millisecs_attr =
368         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
369                alloc_sleep_millisecs_store);
370
371 static ssize_t pages_to_scan_show(struct kobject *kobj,
372                                   struct kobj_attribute *attr,
373                                   char *buf)
374 {
375         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
376 }
377 static ssize_t pages_to_scan_store(struct kobject *kobj,
378                                    struct kobj_attribute *attr,
379                                    const char *buf, size_t count)
380 {
381         int err;
382         unsigned long pages;
383
384         err = strict_strtoul(buf, 10, &pages);
385         if (err || !pages || pages > UINT_MAX)
386                 return -EINVAL;
387
388         khugepaged_pages_to_scan = pages;
389
390         return count;
391 }
392 static struct kobj_attribute pages_to_scan_attr =
393         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
394                pages_to_scan_store);
395
396 static ssize_t pages_collapsed_show(struct kobject *kobj,
397                                     struct kobj_attribute *attr,
398                                     char *buf)
399 {
400         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
401 }
402 static struct kobj_attribute pages_collapsed_attr =
403         __ATTR_RO(pages_collapsed);
404
405 static ssize_t full_scans_show(struct kobject *kobj,
406                                struct kobj_attribute *attr,
407                                char *buf)
408 {
409         return sprintf(buf, "%u\n", khugepaged_full_scans);
410 }
411 static struct kobj_attribute full_scans_attr =
412         __ATTR_RO(full_scans);
413
414 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
415                                       struct kobj_attribute *attr, char *buf)
416 {
417         return single_flag_show(kobj, attr, buf,
418                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
419 }
420 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
421                                        struct kobj_attribute *attr,
422                                        const char *buf, size_t count)
423 {
424         return single_flag_store(kobj, attr, buf, count,
425                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
426 }
427 static struct kobj_attribute khugepaged_defrag_attr =
428         __ATTR(defrag, 0644, khugepaged_defrag_show,
429                khugepaged_defrag_store);
430
431 /*
432  * max_ptes_none controls if khugepaged should collapse hugepages over
433  * any unmapped ptes in turn potentially increasing the memory
434  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
435  * reduce the available free memory in the system as it
436  * runs. Increasing max_ptes_none will instead potentially reduce the
437  * free memory in the system during the khugepaged scan.
438  */
439 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
440                                              struct kobj_attribute *attr,
441                                              char *buf)
442 {
443         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
444 }
445 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
446                                               struct kobj_attribute *attr,
447                                               const char *buf, size_t count)
448 {
449         int err;
450         unsigned long max_ptes_none;
451
452         err = strict_strtoul(buf, 10, &max_ptes_none);
453         if (err || max_ptes_none > HPAGE_PMD_NR-1)
454                 return -EINVAL;
455
456         khugepaged_max_ptes_none = max_ptes_none;
457
458         return count;
459 }
460 static struct kobj_attribute khugepaged_max_ptes_none_attr =
461         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
462                khugepaged_max_ptes_none_store);
463
464 static struct attribute *khugepaged_attr[] = {
465         &khugepaged_defrag_attr.attr,
466         &khugepaged_max_ptes_none_attr.attr,
467         &pages_to_scan_attr.attr,
468         &pages_collapsed_attr.attr,
469         &full_scans_attr.attr,
470         &scan_sleep_millisecs_attr.attr,
471         &alloc_sleep_millisecs_attr.attr,
472         NULL,
473 };
474
475 static struct attribute_group khugepaged_attr_group = {
476         .attrs = khugepaged_attr,
477         .name = "khugepaged",
478 };
479
480 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
481 {
482         int err;
483
484         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
485         if (unlikely(!*hugepage_kobj)) {
486                 printk(KERN_ERR "hugepage: failed kobject create\n");
487                 return -ENOMEM;
488         }
489
490         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
491         if (err) {
492                 printk(KERN_ERR "hugepage: failed register hugeage group\n");
493                 goto delete_obj;
494         }
495
496         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
497         if (err) {
498                 printk(KERN_ERR "hugepage: failed register hugeage group\n");
499                 goto remove_hp_group;
500         }
501
502         return 0;
503
504 remove_hp_group:
505         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
506 delete_obj:
507         kobject_put(*hugepage_kobj);
508         return err;
509 }
510
511 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
512 {
513         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
514         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
515         kobject_put(hugepage_kobj);
516 }
517 #else
518 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
519 {
520         return 0;
521 }
522
523 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
524 {
525 }
526 #endif /* CONFIG_SYSFS */
527
528 static int __init hugepage_init(void)
529 {
530         int err;
531         struct kobject *hugepage_kobj;
532
533         if (!has_transparent_hugepage()) {
534                 transparent_hugepage_flags = 0;
535                 return -EINVAL;
536         }
537
538         err = hugepage_init_sysfs(&hugepage_kobj);
539         if (err)
540                 return err;
541
542         err = khugepaged_slab_init();
543         if (err)
544                 goto out;
545
546         err = mm_slots_hash_init();
547         if (err) {
548                 khugepaged_slab_free();
549                 goto out;
550         }
551
552         /*
553          * By default disable transparent hugepages on smaller systems,
554          * where the extra memory used could hurt more than TLB overhead
555          * is likely to save.  The admin can still enable it through /sys.
556          */
557         if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
558                 transparent_hugepage_flags = 0;
559
560         start_khugepaged();
561
562         return 0;
563 out:
564         hugepage_exit_sysfs(hugepage_kobj);
565         return err;
566 }
567 module_init(hugepage_init)
568
569 static int __init setup_transparent_hugepage(char *str)
570 {
571         int ret = 0;
572         if (!str)
573                 goto out;
574         if (!strcmp(str, "always")) {
575                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
576                         &transparent_hugepage_flags);
577                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
578                           &transparent_hugepage_flags);
579                 ret = 1;
580         } else if (!strcmp(str, "madvise")) {
581                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
582                           &transparent_hugepage_flags);
583                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
584                         &transparent_hugepage_flags);
585                 ret = 1;
586         } else if (!strcmp(str, "never")) {
587                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
588                           &transparent_hugepage_flags);
589                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
590                           &transparent_hugepage_flags);
591                 ret = 1;
592         }
593 out:
594         if (!ret)
595                 printk(KERN_WARNING
596                        "transparent_hugepage= cannot parse, ignored\n");
597         return ret;
598 }
599 __setup("transparent_hugepage=", setup_transparent_hugepage);
600
601 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
602 {
603         if (likely(vma->vm_flags & VM_WRITE))
604                 pmd = pmd_mkwrite(pmd);
605         return pmd;
606 }
607
608 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
609                                         struct vm_area_struct *vma,
610                                         unsigned long haddr, pmd_t *pmd,
611                                         struct page *page)
612 {
613         pgtable_t pgtable;
614
615         VM_BUG_ON(!PageCompound(page));
616         pgtable = pte_alloc_one(mm, haddr);
617         if (unlikely(!pgtable))
618                 return VM_FAULT_OOM;
619
620         clear_huge_page(page, haddr, HPAGE_PMD_NR);
621         __SetPageUptodate(page);
622
623         spin_lock(&mm->page_table_lock);
624         if (unlikely(!pmd_none(*pmd))) {
625                 spin_unlock(&mm->page_table_lock);
626                 mem_cgroup_uncharge_page(page);
627                 put_page(page);
628                 pte_free(mm, pgtable);
629         } else {
630                 pmd_t entry;
631                 entry = mk_pmd(page, vma->vm_page_prot);
632                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
633                 entry = pmd_mkhuge(entry);
634                 /*
635                  * The spinlocking to take the lru_lock inside
636                  * page_add_new_anon_rmap() acts as a full memory
637                  * barrier to be sure clear_huge_page writes become
638                  * visible after the set_pmd_at() write.
639                  */
640                 page_add_new_anon_rmap(page, vma, haddr);
641                 set_pmd_at(mm, haddr, pmd, entry);
642                 pgtable_trans_huge_deposit(mm, pgtable);
643                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
644                 mm->nr_ptes++;
645                 spin_unlock(&mm->page_table_lock);
646         }
647
648         return 0;
649 }
650
651 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
652 {
653         return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
654 }
655
656 static inline struct page *alloc_hugepage_vma(int defrag,
657                                               struct vm_area_struct *vma,
658                                               unsigned long haddr, int nd,
659                                               gfp_t extra_gfp)
660 {
661         return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
662                                HPAGE_PMD_ORDER, vma, haddr, nd);
663 }
664
665 #ifndef CONFIG_NUMA
666 static inline struct page *alloc_hugepage(int defrag)
667 {
668         return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
669                            HPAGE_PMD_ORDER);
670 }
671 #endif
672
673 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
674                                unsigned long address, pmd_t *pmd,
675                                unsigned int flags)
676 {
677         struct page *page;
678         unsigned long haddr = address & HPAGE_PMD_MASK;
679         pte_t *pte;
680
681         if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
682                 if (unlikely(anon_vma_prepare(vma)))
683                         return VM_FAULT_OOM;
684                 if (unlikely(khugepaged_enter(vma)))
685                         return VM_FAULT_OOM;
686                 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
687                                           vma, haddr, numa_node_id(), 0);
688                 if (unlikely(!page)) {
689                         count_vm_event(THP_FAULT_FALLBACK);
690                         goto out;
691                 }
692                 count_vm_event(THP_FAULT_ALLOC);
693                 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
694                         put_page(page);
695                         goto out;
696                 }
697                 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
698                                                           page))) {
699                         mem_cgroup_uncharge_page(page);
700                         put_page(page);
701                         goto out;
702                 }
703
704                 return 0;
705         }
706 out:
707         /*
708          * Use __pte_alloc instead of pte_alloc_map, because we can't
709          * run pte_offset_map on the pmd, if an huge pmd could
710          * materialize from under us from a different thread.
711          */
712         if (unlikely(__pte_alloc(mm, vma, pmd, address)))
713                 return VM_FAULT_OOM;
714         /* if an huge pmd materialized from under us just retry later */
715         if (unlikely(pmd_trans_huge(*pmd)))
716                 return 0;
717         /*
718          * A regular pmd is established and it can't morph into a huge pmd
719          * from under us anymore at this point because we hold the mmap_sem
720          * read mode and khugepaged takes it in write mode. So now it's
721          * safe to run pte_offset_map().
722          */
723         pte = pte_offset_map(pmd, address);
724         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
725 }
726
727 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
728                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
729                   struct vm_area_struct *vma)
730 {
731         struct page *src_page;
732         pmd_t pmd;
733         pgtable_t pgtable;
734         int ret;
735
736         ret = -ENOMEM;
737         pgtable = pte_alloc_one(dst_mm, addr);
738         if (unlikely(!pgtable))
739                 goto out;
740
741         spin_lock(&dst_mm->page_table_lock);
742         spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
743
744         ret = -EAGAIN;
745         pmd = *src_pmd;
746         if (unlikely(!pmd_trans_huge(pmd))) {
747                 pte_free(dst_mm, pgtable);
748                 goto out_unlock;
749         }
750         if (unlikely(pmd_trans_splitting(pmd))) {
751                 /* split huge page running from under us */
752                 spin_unlock(&src_mm->page_table_lock);
753                 spin_unlock(&dst_mm->page_table_lock);
754                 pte_free(dst_mm, pgtable);
755
756                 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
757                 goto out;
758         }
759         src_page = pmd_page(pmd);
760         VM_BUG_ON(!PageHead(src_page));
761         get_page(src_page);
762         page_dup_rmap(src_page);
763         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
764
765         pmdp_set_wrprotect(src_mm, addr, src_pmd);
766         pmd = pmd_mkold(pmd_wrprotect(pmd));
767         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
768         pgtable_trans_huge_deposit(dst_mm, pgtable);
769         dst_mm->nr_ptes++;
770
771         ret = 0;
772 out_unlock:
773         spin_unlock(&src_mm->page_table_lock);
774         spin_unlock(&dst_mm->page_table_lock);
775 out:
776         return ret;
777 }
778
779 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
780                                         struct vm_area_struct *vma,
781                                         unsigned long address,
782                                         pmd_t *pmd, pmd_t orig_pmd,
783                                         struct page *page,
784                                         unsigned long haddr)
785 {
786         pgtable_t pgtable;
787         pmd_t _pmd;
788         int ret = 0, i;
789         struct page **pages;
790
791         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
792                         GFP_KERNEL);
793         if (unlikely(!pages)) {
794                 ret |= VM_FAULT_OOM;
795                 goto out;
796         }
797
798         for (i = 0; i < HPAGE_PMD_NR; i++) {
799                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
800                                                __GFP_OTHER_NODE,
801                                                vma, address, page_to_nid(page));
802                 if (unlikely(!pages[i] ||
803                              mem_cgroup_newpage_charge(pages[i], mm,
804                                                        GFP_KERNEL))) {
805                         if (pages[i])
806                                 put_page(pages[i]);
807                         mem_cgroup_uncharge_start();
808                         while (--i >= 0) {
809                                 mem_cgroup_uncharge_page(pages[i]);
810                                 put_page(pages[i]);
811                         }
812                         mem_cgroup_uncharge_end();
813                         kfree(pages);
814                         ret |= VM_FAULT_OOM;
815                         goto out;
816                 }
817         }
818
819         for (i = 0; i < HPAGE_PMD_NR; i++) {
820                 copy_user_highpage(pages[i], page + i,
821                                    haddr + PAGE_SIZE * i, vma);
822                 __SetPageUptodate(pages[i]);
823                 cond_resched();
824         }
825
826         spin_lock(&mm->page_table_lock);
827         if (unlikely(!pmd_same(*pmd, orig_pmd)))
828                 goto out_free_pages;
829         VM_BUG_ON(!PageHead(page));
830
831         pmdp_clear_flush_notify(vma, haddr, pmd);
832         /* leave pmd empty until pte is filled */
833
834         pgtable = pgtable_trans_huge_withdraw(mm);
835         pmd_populate(mm, &_pmd, pgtable);
836
837         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
838                 pte_t *pte, entry;
839                 entry = mk_pte(pages[i], vma->vm_page_prot);
840                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
841                 page_add_new_anon_rmap(pages[i], vma, haddr);
842                 pte = pte_offset_map(&_pmd, haddr);
843                 VM_BUG_ON(!pte_none(*pte));
844                 set_pte_at(mm, haddr, pte, entry);
845                 pte_unmap(pte);
846         }
847         kfree(pages);
848
849         smp_wmb(); /* make pte visible before pmd */
850         pmd_populate(mm, pmd, pgtable);
851         page_remove_rmap(page);
852         spin_unlock(&mm->page_table_lock);
853
854         ret |= VM_FAULT_WRITE;
855         put_page(page);
856
857 out:
858         return ret;
859
860 out_free_pages:
861         spin_unlock(&mm->page_table_lock);
862         mem_cgroup_uncharge_start();
863         for (i = 0; i < HPAGE_PMD_NR; i++) {
864                 mem_cgroup_uncharge_page(pages[i]);
865                 put_page(pages[i]);
866         }
867         mem_cgroup_uncharge_end();
868         kfree(pages);
869         goto out;
870 }
871
872 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
873                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
874 {
875         int ret = 0;
876         struct page *page, *new_page;
877         unsigned long haddr;
878
879         VM_BUG_ON(!vma->anon_vma);
880         spin_lock(&mm->page_table_lock);
881         if (unlikely(!pmd_same(*pmd, orig_pmd)))
882                 goto out_unlock;
883
884         page = pmd_page(orig_pmd);
885         VM_BUG_ON(!PageCompound(page) || !PageHead(page));
886         haddr = address & HPAGE_PMD_MASK;
887         if (page_mapcount(page) == 1) {
888                 pmd_t entry;
889                 entry = pmd_mkyoung(orig_pmd);
890                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
891                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
892                         update_mmu_cache(vma, address, entry);
893                 ret |= VM_FAULT_WRITE;
894                 goto out_unlock;
895         }
896         get_page(page);
897         spin_unlock(&mm->page_table_lock);
898
899         if (transparent_hugepage_enabled(vma) &&
900             !transparent_hugepage_debug_cow())
901                 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
902                                               vma, haddr, numa_node_id(), 0);
903         else
904                 new_page = NULL;
905
906         if (unlikely(!new_page)) {
907                 count_vm_event(THP_FAULT_FALLBACK);
908                 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
909                                                    pmd, orig_pmd, page, haddr);
910                 if (ret & VM_FAULT_OOM)
911                         split_huge_page(page);
912                 put_page(page);
913                 goto out;
914         }
915         count_vm_event(THP_FAULT_ALLOC);
916
917         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
918                 put_page(new_page);
919                 split_huge_page(page);
920                 put_page(page);
921                 ret |= VM_FAULT_OOM;
922                 goto out;
923         }
924
925         copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
926         __SetPageUptodate(new_page);
927
928         spin_lock(&mm->page_table_lock);
929         put_page(page);
930         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
931                 spin_unlock(&mm->page_table_lock);
932                 mem_cgroup_uncharge_page(new_page);
933                 put_page(new_page);
934                 goto out;
935         } else {
936                 pmd_t entry;
937                 VM_BUG_ON(!PageHead(page));
938                 entry = mk_pmd(new_page, vma->vm_page_prot);
939                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
940                 entry = pmd_mkhuge(entry);
941                 pmdp_clear_flush_notify(vma, haddr, pmd);
942                 page_add_new_anon_rmap(new_page, vma, haddr);
943                 set_pmd_at(mm, haddr, pmd, entry);
944                 update_mmu_cache(vma, address, entry);
945                 page_remove_rmap(page);
946                 put_page(page);
947                 ret |= VM_FAULT_WRITE;
948         }
949 out_unlock:
950         spin_unlock(&mm->page_table_lock);
951 out:
952         return ret;
953 }
954
955 struct page *follow_trans_huge_pmd(struct mm_struct *mm,
956                                    unsigned long addr,
957                                    pmd_t *pmd,
958                                    unsigned int flags)
959 {
960         struct page *page = NULL;
961
962         assert_spin_locked(&mm->page_table_lock);
963
964         if (flags & FOLL_WRITE && !pmd_write(*pmd))
965                 goto out;
966
967         page = pmd_page(*pmd);
968         VM_BUG_ON(!PageHead(page));
969         if (flags & FOLL_TOUCH) {
970                 pmd_t _pmd;
971                 /*
972                  * We should set the dirty bit only for FOLL_WRITE but
973                  * for now the dirty bit in the pmd is meaningless.
974                  * And if the dirty bit will become meaningful and
975                  * we'll only set it with FOLL_WRITE, an atomic
976                  * set_bit will be required on the pmd to set the
977                  * young bit, instead of the current set_pmd_at.
978                  */
979                 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
980                 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
981         }
982         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
983         VM_BUG_ON(!PageCompound(page));
984         if (flags & FOLL_GET)
985                 get_page_foll(page);
986
987 out:
988         return page;
989 }
990
991 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
992                  pmd_t *pmd, unsigned long addr)
993 {
994         int ret = 0;
995
996         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
997                 struct page *page;
998                 pgtable_t pgtable;
999                 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
1000                 page = pmd_page(*pmd);
1001                 pmd_clear(pmd);
1002                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1003                 page_remove_rmap(page);
1004                 VM_BUG_ON(page_mapcount(page) < 0);
1005                 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1006                 VM_BUG_ON(!PageHead(page));
1007                 tlb->mm->nr_ptes--;
1008                 spin_unlock(&tlb->mm->page_table_lock);
1009                 tlb_remove_page(tlb, page);
1010                 pte_free(tlb->mm, pgtable);
1011                 ret = 1;
1012         }
1013         return ret;
1014 }
1015
1016 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1017                 unsigned long addr, unsigned long end,
1018                 unsigned char *vec)
1019 {
1020         int ret = 0;
1021
1022         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1023                 /*
1024                  * All logical pages in the range are present
1025                  * if backed by a huge page.
1026                  */
1027                 spin_unlock(&vma->vm_mm->page_table_lock);
1028                 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1029                 ret = 1;
1030         }
1031
1032         return ret;
1033 }
1034
1035 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1036                   unsigned long old_addr,
1037                   unsigned long new_addr, unsigned long old_end,
1038                   pmd_t *old_pmd, pmd_t *new_pmd)
1039 {
1040         int ret = 0;
1041         pmd_t pmd;
1042
1043         struct mm_struct *mm = vma->vm_mm;
1044
1045         if ((old_addr & ~HPAGE_PMD_MASK) ||
1046             (new_addr & ~HPAGE_PMD_MASK) ||
1047             old_end - old_addr < HPAGE_PMD_SIZE ||
1048             (new_vma->vm_flags & VM_NOHUGEPAGE))
1049                 goto out;
1050
1051         /*
1052          * The destination pmd shouldn't be established, free_pgtables()
1053          * should have release it.
1054          */
1055         if (WARN_ON(!pmd_none(*new_pmd))) {
1056                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1057                 goto out;
1058         }
1059
1060         ret = __pmd_trans_huge_lock(old_pmd, vma);
1061         if (ret == 1) {
1062                 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1063                 VM_BUG_ON(!pmd_none(*new_pmd));
1064                 set_pmd_at(mm, new_addr, new_pmd, pmd);
1065                 spin_unlock(&mm->page_table_lock);
1066         }
1067 out:
1068         return ret;
1069 }
1070
1071 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1072                 unsigned long addr, pgprot_t newprot)
1073 {
1074         struct mm_struct *mm = vma->vm_mm;
1075         int ret = 0;
1076
1077         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1078                 pmd_t entry;
1079                 entry = pmdp_get_and_clear(mm, addr, pmd);
1080                 entry = pmd_modify(entry, newprot);
1081                 set_pmd_at(mm, addr, pmd, entry);
1082                 spin_unlock(&vma->vm_mm->page_table_lock);
1083                 ret = 1;
1084         }
1085
1086         return ret;
1087 }
1088
1089 /*
1090  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1091  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1092  *
1093  * Note that if it returns 1, this routine returns without unlocking page
1094  * table locks. So callers must unlock them.
1095  */
1096 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1097 {
1098         spin_lock(&vma->vm_mm->page_table_lock);
1099         if (likely(pmd_trans_huge(*pmd))) {
1100                 if (unlikely(pmd_trans_splitting(*pmd))) {
1101                         spin_unlock(&vma->vm_mm->page_table_lock);
1102                         wait_split_huge_page(vma->anon_vma, pmd);
1103                         return -1;
1104                 } else {
1105                         /* Thp mapped by 'pmd' is stable, so we can
1106                          * handle it as it is. */
1107                         return 1;
1108                 }
1109         }
1110         spin_unlock(&vma->vm_mm->page_table_lock);
1111         return 0;
1112 }
1113
1114 pmd_t *page_check_address_pmd(struct page *page,
1115                               struct mm_struct *mm,
1116                               unsigned long address,
1117                               enum page_check_address_pmd_flag flag)
1118 {
1119         pgd_t *pgd;
1120         pud_t *pud;
1121         pmd_t *pmd, *ret = NULL;
1122
1123         if (address & ~HPAGE_PMD_MASK)
1124                 goto out;
1125
1126         pgd = pgd_offset(mm, address);
1127         if (!pgd_present(*pgd))
1128                 goto out;
1129
1130         pud = pud_offset(pgd, address);
1131         if (!pud_present(*pud))
1132                 goto out;
1133
1134         pmd = pmd_offset(pud, address);
1135         if (pmd_none(*pmd))
1136                 goto out;
1137         if (pmd_page(*pmd) != page)
1138                 goto out;
1139         /*
1140          * split_vma() may create temporary aliased mappings. There is
1141          * no risk as long as all huge pmd are found and have their
1142          * splitting bit set before __split_huge_page_refcount
1143          * runs. Finding the same huge pmd more than once during the
1144          * same rmap walk is not a problem.
1145          */
1146         if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1147             pmd_trans_splitting(*pmd))
1148                 goto out;
1149         if (pmd_trans_huge(*pmd)) {
1150                 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1151                           !pmd_trans_splitting(*pmd));
1152                 ret = pmd;
1153         }
1154 out:
1155         return ret;
1156 }
1157
1158 static int __split_huge_page_splitting(struct page *page,
1159                                        struct vm_area_struct *vma,
1160                                        unsigned long address)
1161 {
1162         struct mm_struct *mm = vma->vm_mm;
1163         pmd_t *pmd;
1164         int ret = 0;
1165
1166         spin_lock(&mm->page_table_lock);
1167         pmd = page_check_address_pmd(page, mm, address,
1168                                      PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1169         if (pmd) {
1170                 /*
1171                  * We can't temporarily set the pmd to null in order
1172                  * to split it, the pmd must remain marked huge at all
1173                  * times or the VM won't take the pmd_trans_huge paths
1174                  * and it won't wait on the anon_vma->root->mutex to
1175                  * serialize against split_huge_page*.
1176                  */
1177                 pmdp_splitting_flush_notify(vma, address, pmd);
1178                 ret = 1;
1179         }
1180         spin_unlock(&mm->page_table_lock);
1181
1182         return ret;
1183 }
1184
1185 static void __split_huge_page_refcount(struct page *page)
1186 {
1187         int i;
1188         struct zone *zone = page_zone(page);
1189         struct lruvec *lruvec;
1190         int tail_count = 0;
1191
1192         /* prevent PageLRU to go away from under us, and freeze lru stats */
1193         spin_lock_irq(&zone->lru_lock);
1194         lruvec = mem_cgroup_page_lruvec(page, zone);
1195
1196         compound_lock(page);
1197         /* complete memcg works before add pages to LRU */
1198         mem_cgroup_split_huge_fixup(page);
1199
1200         for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1201                 struct page *page_tail = page + i;
1202
1203                 /* tail_page->_mapcount cannot change */
1204                 BUG_ON(page_mapcount(page_tail) < 0);
1205                 tail_count += page_mapcount(page_tail);
1206                 /* check for overflow */
1207                 BUG_ON(tail_count < 0);
1208                 BUG_ON(atomic_read(&page_tail->_count) != 0);
1209                 /*
1210                  * tail_page->_count is zero and not changing from
1211                  * under us. But get_page_unless_zero() may be running
1212                  * from under us on the tail_page. If we used
1213                  * atomic_set() below instead of atomic_add(), we
1214                  * would then run atomic_set() concurrently with
1215                  * get_page_unless_zero(), and atomic_set() is
1216                  * implemented in C not using locked ops. spin_unlock
1217                  * on x86 sometime uses locked ops because of PPro
1218                  * errata 66, 92, so unless somebody can guarantee
1219                  * atomic_set() here would be safe on all archs (and
1220                  * not only on x86), it's safer to use atomic_add().
1221                  */
1222                 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1223                            &page_tail->_count);
1224
1225                 /* after clearing PageTail the gup refcount can be released */
1226                 smp_mb();
1227
1228                 /*
1229                  * retain hwpoison flag of the poisoned tail page:
1230                  *   fix for the unsuitable process killed on Guest Machine(KVM)
1231                  *   by the memory-failure.
1232                  */
1233                 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1234                 page_tail->flags |= (page->flags &
1235                                      ((1L << PG_referenced) |
1236                                       (1L << PG_swapbacked) |
1237                                       (1L << PG_mlocked) |
1238                                       (1L << PG_uptodate)));
1239                 page_tail->flags |= (1L << PG_dirty);
1240
1241                 /* clear PageTail before overwriting first_page */
1242                 smp_wmb();
1243
1244                 /*
1245                  * __split_huge_page_splitting() already set the
1246                  * splitting bit in all pmd that could map this
1247                  * hugepage, that will ensure no CPU can alter the
1248                  * mapcount on the head page. The mapcount is only
1249                  * accounted in the head page and it has to be
1250                  * transferred to all tail pages in the below code. So
1251                  * for this code to be safe, the split the mapcount
1252                  * can't change. But that doesn't mean userland can't
1253                  * keep changing and reading the page contents while
1254                  * we transfer the mapcount, so the pmd splitting
1255                  * status is achieved setting a reserved bit in the
1256                  * pmd, not by clearing the present bit.
1257                 */
1258                 page_tail->_mapcount = page->_mapcount;
1259
1260                 BUG_ON(page_tail->mapping);
1261                 page_tail->mapping = page->mapping;
1262
1263                 page_tail->index = page->index + i;
1264
1265                 BUG_ON(!PageAnon(page_tail));
1266                 BUG_ON(!PageUptodate(page_tail));
1267                 BUG_ON(!PageDirty(page_tail));
1268                 BUG_ON(!PageSwapBacked(page_tail));
1269
1270                 lru_add_page_tail(page, page_tail, lruvec);
1271         }
1272         atomic_sub(tail_count, &page->_count);
1273         BUG_ON(atomic_read(&page->_count) <= 0);
1274
1275         __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1276         __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1277
1278         ClearPageCompound(page);
1279         compound_unlock(page);
1280         spin_unlock_irq(&zone->lru_lock);
1281
1282         for (i = 1; i < HPAGE_PMD_NR; i++) {
1283                 struct page *page_tail = page + i;
1284                 BUG_ON(page_count(page_tail) <= 0);
1285                 /*
1286                  * Tail pages may be freed if there wasn't any mapping
1287                  * like if add_to_swap() is running on a lru page that
1288                  * had its mapping zapped. And freeing these pages
1289                  * requires taking the lru_lock so we do the put_page
1290                  * of the tail pages after the split is complete.
1291                  */
1292                 put_page(page_tail);
1293         }
1294
1295         /*
1296          * Only the head page (now become a regular page) is required
1297          * to be pinned by the caller.
1298          */
1299         BUG_ON(page_count(page) <= 0);
1300 }
1301
1302 static int __split_huge_page_map(struct page *page,
1303                                  struct vm_area_struct *vma,
1304                                  unsigned long address)
1305 {
1306         struct mm_struct *mm = vma->vm_mm;
1307         pmd_t *pmd, _pmd;
1308         int ret = 0, i;
1309         pgtable_t pgtable;
1310         unsigned long haddr;
1311
1312         spin_lock(&mm->page_table_lock);
1313         pmd = page_check_address_pmd(page, mm, address,
1314                                      PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1315         if (pmd) {
1316                 pgtable = pgtable_trans_huge_withdraw(mm);
1317                 pmd_populate(mm, &_pmd, pgtable);
1318
1319                 haddr = address;
1320                 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1321                         pte_t *pte, entry;
1322                         BUG_ON(PageCompound(page+i));
1323                         entry = mk_pte(page + i, vma->vm_page_prot);
1324                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1325                         if (!pmd_write(*pmd))
1326                                 entry = pte_wrprotect(entry);
1327                         else
1328                                 BUG_ON(page_mapcount(page) != 1);
1329                         if (!pmd_young(*pmd))
1330                                 entry = pte_mkold(entry);
1331                         pte = pte_offset_map(&_pmd, haddr);
1332                         BUG_ON(!pte_none(*pte));
1333                         set_pte_at(mm, haddr, pte, entry);
1334                         pte_unmap(pte);
1335                 }
1336
1337                 smp_wmb(); /* make pte visible before pmd */
1338                 /*
1339                  * Up to this point the pmd is present and huge and
1340                  * userland has the whole access to the hugepage
1341                  * during the split (which happens in place). If we
1342                  * overwrite the pmd with the not-huge version
1343                  * pointing to the pte here (which of course we could
1344                  * if all CPUs were bug free), userland could trigger
1345                  * a small page size TLB miss on the small sized TLB
1346                  * while the hugepage TLB entry is still established
1347                  * in the huge TLB. Some CPU doesn't like that. See
1348                  * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1349                  * Erratum 383 on page 93. Intel should be safe but is
1350                  * also warns that it's only safe if the permission
1351                  * and cache attributes of the two entries loaded in
1352                  * the two TLB is identical (which should be the case
1353                  * here). But it is generally safer to never allow
1354                  * small and huge TLB entries for the same virtual
1355                  * address to be loaded simultaneously. So instead of
1356                  * doing "pmd_populate(); flush_tlb_range();" we first
1357                  * mark the current pmd notpresent (atomically because
1358                  * here the pmd_trans_huge and pmd_trans_splitting
1359                  * must remain set at all times on the pmd until the
1360                  * split is complete for this pmd), then we flush the
1361                  * SMP TLB and finally we write the non-huge version
1362                  * of the pmd entry with pmd_populate.
1363                  */
1364                 pmdp_invalidate(vma, address, pmd);
1365                 pmd_populate(mm, pmd, pgtable);
1366                 ret = 1;
1367         }
1368         spin_unlock(&mm->page_table_lock);
1369
1370         return ret;
1371 }
1372
1373 /* must be called with anon_vma->root->mutex hold */
1374 static void __split_huge_page(struct page *page,
1375                               struct anon_vma *anon_vma)
1376 {
1377         int mapcount, mapcount2;
1378         struct anon_vma_chain *avc;
1379
1380         BUG_ON(!PageHead(page));
1381         BUG_ON(PageTail(page));
1382
1383         mapcount = 0;
1384         list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1385                 struct vm_area_struct *vma = avc->vma;
1386                 unsigned long addr = vma_address(page, vma);
1387                 BUG_ON(is_vma_temporary_stack(vma));
1388                 if (addr == -EFAULT)
1389                         continue;
1390                 mapcount += __split_huge_page_splitting(page, vma, addr);
1391         }
1392         /*
1393          * It is critical that new vmas are added to the tail of the
1394          * anon_vma list. This guarantes that if copy_huge_pmd() runs
1395          * and establishes a child pmd before
1396          * __split_huge_page_splitting() freezes the parent pmd (so if
1397          * we fail to prevent copy_huge_pmd() from running until the
1398          * whole __split_huge_page() is complete), we will still see
1399          * the newly established pmd of the child later during the
1400          * walk, to be able to set it as pmd_trans_splitting too.
1401          */
1402         if (mapcount != page_mapcount(page))
1403                 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1404                        mapcount, page_mapcount(page));
1405         BUG_ON(mapcount != page_mapcount(page));
1406
1407         __split_huge_page_refcount(page);
1408
1409         mapcount2 = 0;
1410         list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1411                 struct vm_area_struct *vma = avc->vma;
1412                 unsigned long addr = vma_address(page, vma);
1413                 BUG_ON(is_vma_temporary_stack(vma));
1414                 if (addr == -EFAULT)
1415                         continue;
1416                 mapcount2 += __split_huge_page_map(page, vma, addr);
1417         }
1418         if (mapcount != mapcount2)
1419                 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1420                        mapcount, mapcount2, page_mapcount(page));
1421         BUG_ON(mapcount != mapcount2);
1422 }
1423
1424 int split_huge_page(struct page *page)
1425 {
1426         struct anon_vma *anon_vma;
1427         int ret = 1;
1428
1429         BUG_ON(!PageAnon(page));
1430         anon_vma = page_lock_anon_vma(page);
1431         if (!anon_vma)
1432                 goto out;
1433         ret = 0;
1434         if (!PageCompound(page))
1435                 goto out_unlock;
1436
1437         BUG_ON(!PageSwapBacked(page));
1438         __split_huge_page(page, anon_vma);
1439         count_vm_event(THP_SPLIT);
1440
1441         BUG_ON(PageCompound(page));
1442 out_unlock:
1443         page_unlock_anon_vma(anon_vma);
1444 out:
1445         return ret;
1446 }
1447
1448 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1449
1450 int hugepage_madvise(struct vm_area_struct *vma,
1451                      unsigned long *vm_flags, int advice)
1452 {
1453         struct mm_struct *mm = vma->vm_mm;
1454
1455         switch (advice) {
1456         case MADV_HUGEPAGE:
1457                 /*
1458                  * Be somewhat over-protective like KSM for now!
1459                  */
1460                 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1461                         return -EINVAL;
1462                 if (mm->def_flags & VM_NOHUGEPAGE)
1463                         return -EINVAL;
1464                 *vm_flags &= ~VM_NOHUGEPAGE;
1465                 *vm_flags |= VM_HUGEPAGE;
1466                 /*
1467                  * If the vma become good for khugepaged to scan,
1468                  * register it here without waiting a page fault that
1469                  * may not happen any time soon.
1470                  */
1471                 if (unlikely(khugepaged_enter_vma_merge(vma)))
1472                         return -ENOMEM;
1473                 break;
1474         case MADV_NOHUGEPAGE:
1475                 /*
1476                  * Be somewhat over-protective like KSM for now!
1477                  */
1478                 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1479                         return -EINVAL;
1480                 *vm_flags &= ~VM_HUGEPAGE;
1481                 *vm_flags |= VM_NOHUGEPAGE;
1482                 /*
1483                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1484                  * this vma even if we leave the mm registered in khugepaged if
1485                  * it got registered before VM_NOHUGEPAGE was set.
1486                  */
1487                 break;
1488         }
1489
1490         return 0;
1491 }
1492
1493 static int __init khugepaged_slab_init(void)
1494 {
1495         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1496                                           sizeof(struct mm_slot),
1497                                           __alignof__(struct mm_slot), 0, NULL);
1498         if (!mm_slot_cache)
1499                 return -ENOMEM;
1500
1501         return 0;
1502 }
1503
1504 static void __init khugepaged_slab_free(void)
1505 {
1506         kmem_cache_destroy(mm_slot_cache);
1507         mm_slot_cache = NULL;
1508 }
1509
1510 static inline struct mm_slot *alloc_mm_slot(void)
1511 {
1512         if (!mm_slot_cache)     /* initialization failed */
1513                 return NULL;
1514         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1515 }
1516
1517 static inline void free_mm_slot(struct mm_slot *mm_slot)
1518 {
1519         kmem_cache_free(mm_slot_cache, mm_slot);
1520 }
1521
1522 static int __init mm_slots_hash_init(void)
1523 {
1524         mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1525                                 GFP_KERNEL);
1526         if (!mm_slots_hash)
1527                 return -ENOMEM;
1528         return 0;
1529 }
1530
1531 #if 0
1532 static void __init mm_slots_hash_free(void)
1533 {
1534         kfree(mm_slots_hash);
1535         mm_slots_hash = NULL;
1536 }
1537 #endif
1538
1539 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1540 {
1541         struct mm_slot *mm_slot;
1542         struct hlist_head *bucket;
1543         struct hlist_node *node;
1544
1545         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1546                                 % MM_SLOTS_HASH_HEADS];
1547         hlist_for_each_entry(mm_slot, node, bucket, hash) {
1548                 if (mm == mm_slot->mm)
1549                         return mm_slot;
1550         }
1551         return NULL;
1552 }
1553
1554 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1555                                     struct mm_slot *mm_slot)
1556 {
1557         struct hlist_head *bucket;
1558
1559         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1560                                 % MM_SLOTS_HASH_HEADS];
1561         mm_slot->mm = mm;
1562         hlist_add_head(&mm_slot->hash, bucket);
1563 }
1564
1565 static inline int khugepaged_test_exit(struct mm_struct *mm)
1566 {
1567         return atomic_read(&mm->mm_users) == 0;
1568 }
1569
1570 int __khugepaged_enter(struct mm_struct *mm)
1571 {
1572         struct mm_slot *mm_slot;
1573         int wakeup;
1574
1575         mm_slot = alloc_mm_slot();
1576         if (!mm_slot)
1577                 return -ENOMEM;
1578
1579         /* __khugepaged_exit() must not run from under us */
1580         VM_BUG_ON(khugepaged_test_exit(mm));
1581         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1582                 free_mm_slot(mm_slot);
1583                 return 0;
1584         }
1585
1586         spin_lock(&khugepaged_mm_lock);
1587         insert_to_mm_slots_hash(mm, mm_slot);
1588         /*
1589          * Insert just behind the scanning cursor, to let the area settle
1590          * down a little.
1591          */
1592         wakeup = list_empty(&khugepaged_scan.mm_head);
1593         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1594         spin_unlock(&khugepaged_mm_lock);
1595
1596         atomic_inc(&mm->mm_count);
1597         if (wakeup)
1598                 wake_up_interruptible(&khugepaged_wait);
1599
1600         return 0;
1601 }
1602
1603 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1604 {
1605         unsigned long hstart, hend;
1606         if (!vma->anon_vma)
1607                 /*
1608                  * Not yet faulted in so we will register later in the
1609                  * page fault if needed.
1610                  */
1611                 return 0;
1612         if (vma->vm_ops)
1613                 /* khugepaged not yet working on file or special mappings */
1614                 return 0;
1615         VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1616         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1617         hend = vma->vm_end & HPAGE_PMD_MASK;
1618         if (hstart < hend)
1619                 return khugepaged_enter(vma);
1620         return 0;
1621 }
1622
1623 void __khugepaged_exit(struct mm_struct *mm)
1624 {
1625         struct mm_slot *mm_slot;
1626         int free = 0;
1627
1628         spin_lock(&khugepaged_mm_lock);
1629         mm_slot = get_mm_slot(mm);
1630         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1631                 hlist_del(&mm_slot->hash);
1632                 list_del(&mm_slot->mm_node);
1633                 free = 1;
1634         }
1635         spin_unlock(&khugepaged_mm_lock);
1636
1637         if (free) {
1638                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1639                 free_mm_slot(mm_slot);
1640                 mmdrop(mm);
1641         } else if (mm_slot) {
1642                 /*
1643                  * This is required to serialize against
1644                  * khugepaged_test_exit() (which is guaranteed to run
1645                  * under mmap sem read mode). Stop here (after we
1646                  * return all pagetables will be destroyed) until
1647                  * khugepaged has finished working on the pagetables
1648                  * under the mmap_sem.
1649                  */
1650                 down_write(&mm->mmap_sem);
1651                 up_write(&mm->mmap_sem);
1652         }
1653 }
1654
1655 static void release_pte_page(struct page *page)
1656 {
1657         /* 0 stands for page_is_file_cache(page) == false */
1658         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1659         unlock_page(page);
1660         putback_lru_page(page);
1661 }
1662
1663 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1664 {
1665         while (--_pte >= pte) {
1666                 pte_t pteval = *_pte;
1667                 if (!pte_none(pteval))
1668                         release_pte_page(pte_page(pteval));
1669         }
1670 }
1671
1672 static void release_all_pte_pages(pte_t *pte)
1673 {
1674         release_pte_pages(pte, pte + HPAGE_PMD_NR);
1675 }
1676
1677 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1678                                         unsigned long address,
1679                                         pte_t *pte)
1680 {
1681         struct page *page;
1682         pte_t *_pte;
1683         int referenced = 0, isolated = 0, none = 0;
1684         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1685              _pte++, address += PAGE_SIZE) {
1686                 pte_t pteval = *_pte;
1687                 if (pte_none(pteval)) {
1688                         if (++none <= khugepaged_max_ptes_none)
1689                                 continue;
1690                         else {
1691                                 release_pte_pages(pte, _pte);
1692                                 goto out;
1693                         }
1694                 }
1695                 if (!pte_present(pteval) || !pte_write(pteval)) {
1696                         release_pte_pages(pte, _pte);
1697                         goto out;
1698                 }
1699                 page = vm_normal_page(vma, address, pteval);
1700                 if (unlikely(!page)) {
1701                         release_pte_pages(pte, _pte);
1702                         goto out;
1703                 }
1704                 VM_BUG_ON(PageCompound(page));
1705                 BUG_ON(!PageAnon(page));
1706                 VM_BUG_ON(!PageSwapBacked(page));
1707
1708                 /* cannot use mapcount: can't collapse if there's a gup pin */
1709                 if (page_count(page) != 1) {
1710                         release_pte_pages(pte, _pte);
1711                         goto out;
1712                 }
1713                 /*
1714                  * We can do it before isolate_lru_page because the
1715                  * page can't be freed from under us. NOTE: PG_lock
1716                  * is needed to serialize against split_huge_page
1717                  * when invoked from the VM.
1718                  */
1719                 if (!trylock_page(page)) {
1720                         release_pte_pages(pte, _pte);
1721                         goto out;
1722                 }
1723                 /*
1724                  * Isolate the page to avoid collapsing an hugepage
1725                  * currently in use by the VM.
1726                  */
1727                 if (isolate_lru_page(page)) {
1728                         unlock_page(page);
1729                         release_pte_pages(pte, _pte);
1730                         goto out;
1731                 }
1732                 /* 0 stands for page_is_file_cache(page) == false */
1733                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1734                 VM_BUG_ON(!PageLocked(page));
1735                 VM_BUG_ON(PageLRU(page));
1736
1737                 /* If there is no mapped pte young don't collapse the page */
1738                 if (pte_young(pteval) || PageReferenced(page) ||
1739                     mmu_notifier_test_young(vma->vm_mm, address))
1740                         referenced = 1;
1741         }
1742         if (unlikely(!referenced))
1743                 release_all_pte_pages(pte);
1744         else
1745                 isolated = 1;
1746 out:
1747         return isolated;
1748 }
1749
1750 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1751                                       struct vm_area_struct *vma,
1752                                       unsigned long address,
1753                                       spinlock_t *ptl)
1754 {
1755         pte_t *_pte;
1756         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1757                 pte_t pteval = *_pte;
1758                 struct page *src_page;
1759
1760                 if (pte_none(pteval)) {
1761                         clear_user_highpage(page, address);
1762                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1763                 } else {
1764                         src_page = pte_page(pteval);
1765                         copy_user_highpage(page, src_page, address, vma);
1766                         VM_BUG_ON(page_mapcount(src_page) != 1);
1767                         release_pte_page(src_page);
1768                         /*
1769                          * ptl mostly unnecessary, but preempt has to
1770                          * be disabled to update the per-cpu stats
1771                          * inside page_remove_rmap().
1772                          */
1773                         spin_lock(ptl);
1774                         /*
1775                          * paravirt calls inside pte_clear here are
1776                          * superfluous.
1777                          */
1778                         pte_clear(vma->vm_mm, address, _pte);
1779                         page_remove_rmap(src_page);
1780                         spin_unlock(ptl);
1781                         free_page_and_swap_cache(src_page);
1782                 }
1783
1784                 address += PAGE_SIZE;
1785                 page++;
1786         }
1787 }
1788
1789 static void khugepaged_alloc_sleep(void)
1790 {
1791         wait_event_freezable_timeout(khugepaged_wait, false,
1792                         msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
1793 }
1794
1795 #ifdef CONFIG_NUMA
1796 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1797 {
1798         if (IS_ERR(*hpage)) {
1799                 if (!*wait)
1800                         return false;
1801
1802                 *wait = false;
1803                 khugepaged_alloc_sleep();
1804         } else if (*hpage) {
1805                 put_page(*hpage);
1806                 *hpage = NULL;
1807         }
1808
1809         return true;
1810 }
1811
1812 static struct page
1813 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1814                        struct vm_area_struct *vma, unsigned long address,
1815                        int node)
1816 {
1817         VM_BUG_ON(*hpage);
1818         /*
1819          * Allocate the page while the vma is still valid and under
1820          * the mmap_sem read mode so there is no memory allocation
1821          * later when we take the mmap_sem in write mode. This is more
1822          * friendly behavior (OTOH it may actually hide bugs) to
1823          * filesystems in userland with daemons allocating memory in
1824          * the userland I/O paths.  Allocating memory with the
1825          * mmap_sem in read mode is good idea also to allow greater
1826          * scalability.
1827          */
1828         *hpage  = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1829                                       node, __GFP_OTHER_NODE);
1830
1831         /*
1832          * After allocating the hugepage, release the mmap_sem read lock in
1833          * preparation for taking it in write mode.
1834          */
1835         up_read(&mm->mmap_sem);
1836         if (unlikely(!*hpage)) {
1837                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1838                 *hpage = ERR_PTR(-ENOMEM);
1839                 return NULL;
1840         }
1841
1842         count_vm_event(THP_COLLAPSE_ALLOC);
1843         return *hpage;
1844 }
1845 #else
1846 static struct page *khugepaged_alloc_hugepage(bool *wait)
1847 {
1848         struct page *hpage;
1849
1850         do {
1851                 hpage = alloc_hugepage(khugepaged_defrag());
1852                 if (!hpage) {
1853                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1854                         if (!*wait)
1855                                 return NULL;
1856
1857                         *wait = false;
1858                         khugepaged_alloc_sleep();
1859                 } else
1860                         count_vm_event(THP_COLLAPSE_ALLOC);
1861         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
1862
1863         return hpage;
1864 }
1865
1866 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1867 {
1868         if (!*hpage)
1869                 *hpage = khugepaged_alloc_hugepage(wait);
1870
1871         if (unlikely(!*hpage))
1872                 return false;
1873
1874         return true;
1875 }
1876
1877 static struct page
1878 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1879                        struct vm_area_struct *vma, unsigned long address,
1880                        int node)
1881 {
1882         up_read(&mm->mmap_sem);
1883         VM_BUG_ON(!*hpage);
1884         return  *hpage;
1885 }
1886 #endif
1887
1888 static void collapse_huge_page(struct mm_struct *mm,
1889                                    unsigned long address,
1890                                    struct page **hpage,
1891                                    struct vm_area_struct *vma,
1892                                    int node)
1893 {
1894         pgd_t *pgd;
1895         pud_t *pud;
1896         pmd_t *pmd, _pmd;
1897         pte_t *pte;
1898         pgtable_t pgtable;
1899         struct page *new_page;
1900         spinlock_t *ptl;
1901         int isolated;
1902         unsigned long hstart, hend;
1903
1904         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1905
1906         /* release the mmap_sem read lock. */
1907         new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
1908         if (!new_page)
1909                 return;
1910
1911         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
1912                 return;
1913
1914         /*
1915          * Prevent all access to pagetables with the exception of
1916          * gup_fast later hanlded by the ptep_clear_flush and the VM
1917          * handled by the anon_vma lock + PG_lock.
1918          */
1919         down_write(&mm->mmap_sem);
1920         if (unlikely(khugepaged_test_exit(mm)))
1921                 goto out;
1922
1923         vma = find_vma(mm, address);
1924         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1925         hend = vma->vm_end & HPAGE_PMD_MASK;
1926         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1927                 goto out;
1928
1929         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1930             (vma->vm_flags & VM_NOHUGEPAGE))
1931                 goto out;
1932
1933         if (!vma->anon_vma || vma->vm_ops)
1934                 goto out;
1935         if (is_vma_temporary_stack(vma))
1936                 goto out;
1937         VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1938
1939         pgd = pgd_offset(mm, address);
1940         if (!pgd_present(*pgd))
1941                 goto out;
1942
1943         pud = pud_offset(pgd, address);
1944         if (!pud_present(*pud))
1945                 goto out;
1946
1947         pmd = pmd_offset(pud, address);
1948         /* pmd can't go away or become huge under us */
1949         if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1950                 goto out;
1951
1952         anon_vma_lock(vma->anon_vma);
1953
1954         pte = pte_offset_map(pmd, address);
1955         ptl = pte_lockptr(mm, pmd);
1956
1957         spin_lock(&mm->page_table_lock); /* probably unnecessary */
1958         /*
1959          * After this gup_fast can't run anymore. This also removes
1960          * any huge TLB entry from the CPU so we won't allow
1961          * huge and small TLB entries for the same virtual address
1962          * to avoid the risk of CPU bugs in that area.
1963          */
1964         _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1965         spin_unlock(&mm->page_table_lock);
1966
1967         spin_lock(ptl);
1968         isolated = __collapse_huge_page_isolate(vma, address, pte);
1969         spin_unlock(ptl);
1970
1971         if (unlikely(!isolated)) {
1972                 pte_unmap(pte);
1973                 spin_lock(&mm->page_table_lock);
1974                 BUG_ON(!pmd_none(*pmd));
1975                 set_pmd_at(mm, address, pmd, _pmd);
1976                 spin_unlock(&mm->page_table_lock);
1977                 anon_vma_unlock(vma->anon_vma);
1978                 goto out;
1979         }
1980
1981         /*
1982          * All pages are isolated and locked so anon_vma rmap
1983          * can't run anymore.
1984          */
1985         anon_vma_unlock(vma->anon_vma);
1986
1987         __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1988         pte_unmap(pte);
1989         __SetPageUptodate(new_page);
1990         pgtable = pmd_pgtable(_pmd);
1991
1992         _pmd = mk_pmd(new_page, vma->vm_page_prot);
1993         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1994         _pmd = pmd_mkhuge(_pmd);
1995
1996         /*
1997          * spin_lock() below is not the equivalent of smp_wmb(), so
1998          * this is needed to avoid the copy_huge_page writes to become
1999          * visible after the set_pmd_at() write.
2000          */
2001         smp_wmb();
2002
2003         spin_lock(&mm->page_table_lock);
2004         BUG_ON(!pmd_none(*pmd));
2005         page_add_new_anon_rmap(new_page, vma, address);
2006         set_pmd_at(mm, address, pmd, _pmd);
2007         update_mmu_cache(vma, address, _pmd);
2008         pgtable_trans_huge_deposit(mm, pgtable);
2009         spin_unlock(&mm->page_table_lock);
2010
2011         *hpage = NULL;
2012
2013         khugepaged_pages_collapsed++;
2014 out_up_write:
2015         up_write(&mm->mmap_sem);
2016         return;
2017
2018 out:
2019         mem_cgroup_uncharge_page(new_page);
2020         goto out_up_write;
2021 }
2022
2023 static int khugepaged_scan_pmd(struct mm_struct *mm,
2024                                struct vm_area_struct *vma,
2025                                unsigned long address,
2026                                struct page **hpage)
2027 {
2028         pgd_t *pgd;
2029         pud_t *pud;
2030         pmd_t *pmd;
2031         pte_t *pte, *_pte;
2032         int ret = 0, referenced = 0, none = 0;
2033         struct page *page;
2034         unsigned long _address;
2035         spinlock_t *ptl;
2036         int node = -1;
2037
2038         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2039
2040         pgd = pgd_offset(mm, address);
2041         if (!pgd_present(*pgd))
2042                 goto out;
2043
2044         pud = pud_offset(pgd, address);
2045         if (!pud_present(*pud))
2046                 goto out;
2047
2048         pmd = pmd_offset(pud, address);
2049         if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2050                 goto out;
2051
2052         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2053         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2054              _pte++, _address += PAGE_SIZE) {
2055                 pte_t pteval = *_pte;
2056                 if (pte_none(pteval)) {
2057                         if (++none <= khugepaged_max_ptes_none)
2058                                 continue;
2059                         else
2060                                 goto out_unmap;
2061                 }
2062                 if (!pte_present(pteval) || !pte_write(pteval))
2063                         goto out_unmap;
2064                 page = vm_normal_page(vma, _address, pteval);
2065                 if (unlikely(!page))
2066                         goto out_unmap;
2067                 /*
2068                  * Chose the node of the first page. This could
2069                  * be more sophisticated and look at more pages,
2070                  * but isn't for now.
2071                  */
2072                 if (node == -1)
2073                         node = page_to_nid(page);
2074                 VM_BUG_ON(PageCompound(page));
2075                 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2076                         goto out_unmap;
2077                 /* cannot use mapcount: can't collapse if there's a gup pin */
2078                 if (page_count(page) != 1)
2079                         goto out_unmap;
2080                 if (pte_young(pteval) || PageReferenced(page) ||
2081                     mmu_notifier_test_young(vma->vm_mm, address))
2082                         referenced = 1;
2083         }
2084         if (referenced)
2085                 ret = 1;
2086 out_unmap:
2087         pte_unmap_unlock(pte, ptl);
2088         if (ret)
2089                 /* collapse_huge_page will return with the mmap_sem released */
2090                 collapse_huge_page(mm, address, hpage, vma, node);
2091 out:
2092         return ret;
2093 }
2094
2095 static void collect_mm_slot(struct mm_slot *mm_slot)
2096 {
2097         struct mm_struct *mm = mm_slot->mm;
2098
2099         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2100
2101         if (khugepaged_test_exit(mm)) {
2102                 /* free mm_slot */
2103                 hlist_del(&mm_slot->hash);
2104                 list_del(&mm_slot->mm_node);
2105
2106                 /*
2107                  * Not strictly needed because the mm exited already.
2108                  *
2109                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2110                  */
2111
2112                 /* khugepaged_mm_lock actually not necessary for the below */
2113                 free_mm_slot(mm_slot);
2114                 mmdrop(mm);
2115         }
2116 }
2117
2118 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2119                                             struct page **hpage)
2120         __releases(&khugepaged_mm_lock)
2121         __acquires(&khugepaged_mm_lock)
2122 {
2123         struct mm_slot *mm_slot;
2124         struct mm_struct *mm;
2125         struct vm_area_struct *vma;
2126         int progress = 0;
2127
2128         VM_BUG_ON(!pages);
2129         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2130
2131         if (khugepaged_scan.mm_slot)
2132                 mm_slot = khugepaged_scan.mm_slot;
2133         else {
2134                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2135                                      struct mm_slot, mm_node);
2136                 khugepaged_scan.address = 0;
2137                 khugepaged_scan.mm_slot = mm_slot;
2138         }
2139         spin_unlock(&khugepaged_mm_lock);
2140
2141         mm = mm_slot->mm;
2142         down_read(&mm->mmap_sem);
2143         if (unlikely(khugepaged_test_exit(mm)))
2144                 vma = NULL;
2145         else
2146                 vma = find_vma(mm, khugepaged_scan.address);
2147
2148         progress++;
2149         for (; vma; vma = vma->vm_next) {
2150                 unsigned long hstart, hend;
2151
2152                 cond_resched();
2153                 if (unlikely(khugepaged_test_exit(mm))) {
2154                         progress++;
2155                         break;
2156                 }
2157
2158                 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2159                      !khugepaged_always()) ||
2160                     (vma->vm_flags & VM_NOHUGEPAGE)) {
2161                 skip:
2162                         progress++;
2163                         continue;
2164                 }
2165                 if (!vma->anon_vma || vma->vm_ops)
2166                         goto skip;
2167                 if (is_vma_temporary_stack(vma))
2168                         goto skip;
2169                 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2170
2171                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2172                 hend = vma->vm_end & HPAGE_PMD_MASK;
2173                 if (hstart >= hend)
2174                         goto skip;
2175                 if (khugepaged_scan.address > hend)
2176                         goto skip;
2177                 if (khugepaged_scan.address < hstart)
2178                         khugepaged_scan.address = hstart;
2179                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2180
2181                 while (khugepaged_scan.address < hend) {
2182                         int ret;
2183                         cond_resched();
2184                         if (unlikely(khugepaged_test_exit(mm)))
2185                                 goto breakouterloop;
2186
2187                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2188                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2189                                   hend);
2190                         ret = khugepaged_scan_pmd(mm, vma,
2191                                                   khugepaged_scan.address,
2192                                                   hpage);
2193                         /* move to next address */
2194                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2195                         progress += HPAGE_PMD_NR;
2196                         if (ret)
2197                                 /* we released mmap_sem so break loop */
2198                                 goto breakouterloop_mmap_sem;
2199                         if (progress >= pages)
2200                                 goto breakouterloop;
2201                 }
2202         }
2203 breakouterloop:
2204         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2205 breakouterloop_mmap_sem:
2206
2207         spin_lock(&khugepaged_mm_lock);
2208         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2209         /*
2210          * Release the current mm_slot if this mm is about to die, or
2211          * if we scanned all vmas of this mm.
2212          */
2213         if (khugepaged_test_exit(mm) || !vma) {
2214                 /*
2215                  * Make sure that if mm_users is reaching zero while
2216                  * khugepaged runs here, khugepaged_exit will find
2217                  * mm_slot not pointing to the exiting mm.
2218                  */
2219                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2220                         khugepaged_scan.mm_slot = list_entry(
2221                                 mm_slot->mm_node.next,
2222                                 struct mm_slot, mm_node);
2223                         khugepaged_scan.address = 0;
2224                 } else {
2225                         khugepaged_scan.mm_slot = NULL;
2226                         khugepaged_full_scans++;
2227                 }
2228
2229                 collect_mm_slot(mm_slot);
2230         }
2231
2232         return progress;
2233 }
2234
2235 static int khugepaged_has_work(void)
2236 {
2237         return !list_empty(&khugepaged_scan.mm_head) &&
2238                 khugepaged_enabled();
2239 }
2240
2241 static int khugepaged_wait_event(void)
2242 {
2243         return !list_empty(&khugepaged_scan.mm_head) ||
2244                 kthread_should_stop();
2245 }
2246
2247 static void khugepaged_do_scan(void)
2248 {
2249         struct page *hpage = NULL;
2250         unsigned int progress = 0, pass_through_head = 0;
2251         unsigned int pages = khugepaged_pages_to_scan;
2252         bool wait = true;
2253
2254         barrier(); /* write khugepaged_pages_to_scan to local stack */
2255
2256         while (progress < pages) {
2257                 if (!khugepaged_prealloc_page(&hpage, &wait))
2258                         break;
2259
2260                 cond_resched();
2261
2262                 if (unlikely(kthread_should_stop() || freezing(current)))
2263                         break;
2264
2265                 spin_lock(&khugepaged_mm_lock);
2266                 if (!khugepaged_scan.mm_slot)
2267                         pass_through_head++;
2268                 if (khugepaged_has_work() &&
2269                     pass_through_head < 2)
2270                         progress += khugepaged_scan_mm_slot(pages - progress,
2271                                                             &hpage);
2272                 else
2273                         progress = pages;
2274                 spin_unlock(&khugepaged_mm_lock);
2275         }
2276
2277         if (!IS_ERR_OR_NULL(hpage))
2278                 put_page(hpage);
2279 }
2280
2281 static void khugepaged_wait_work(void)
2282 {
2283         try_to_freeze();
2284
2285         if (khugepaged_has_work()) {
2286                 if (!khugepaged_scan_sleep_millisecs)
2287                         return;
2288
2289                 wait_event_freezable_timeout(khugepaged_wait,
2290                                              kthread_should_stop(),
2291                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2292                 return;
2293         }
2294
2295         if (khugepaged_enabled())
2296                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2297 }
2298
2299 static int khugepaged(void *none)
2300 {
2301         struct mm_slot *mm_slot;
2302
2303         set_freezable();
2304         set_user_nice(current, 19);
2305
2306         while (!kthread_should_stop()) {
2307                 khugepaged_do_scan();
2308                 khugepaged_wait_work();
2309         }
2310
2311         spin_lock(&khugepaged_mm_lock);
2312         mm_slot = khugepaged_scan.mm_slot;
2313         khugepaged_scan.mm_slot = NULL;
2314         if (mm_slot)
2315                 collect_mm_slot(mm_slot);
2316         spin_unlock(&khugepaged_mm_lock);
2317         return 0;
2318 }
2319
2320 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2321 {
2322         struct page *page;
2323
2324         spin_lock(&mm->page_table_lock);
2325         if (unlikely(!pmd_trans_huge(*pmd))) {
2326                 spin_unlock(&mm->page_table_lock);
2327                 return;
2328         }
2329         page = pmd_page(*pmd);
2330         VM_BUG_ON(!page_count(page));
2331         get_page(page);
2332         spin_unlock(&mm->page_table_lock);
2333
2334         split_huge_page(page);
2335
2336         put_page(page);
2337         BUG_ON(pmd_trans_huge(*pmd));
2338 }
2339
2340 static void split_huge_page_address(struct mm_struct *mm,
2341                                     unsigned long address)
2342 {
2343         pgd_t *pgd;
2344         pud_t *pud;
2345         pmd_t *pmd;
2346
2347         VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2348
2349         pgd = pgd_offset(mm, address);
2350         if (!pgd_present(*pgd))
2351                 return;
2352
2353         pud = pud_offset(pgd, address);
2354         if (!pud_present(*pud))
2355                 return;
2356
2357         pmd = pmd_offset(pud, address);
2358         if (!pmd_present(*pmd))
2359                 return;
2360         /*
2361          * Caller holds the mmap_sem write mode, so a huge pmd cannot
2362          * materialize from under us.
2363          */
2364         split_huge_page_pmd(mm, pmd);
2365 }
2366
2367 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2368                              unsigned long start,
2369                              unsigned long end,
2370                              long adjust_next)
2371 {
2372         /*
2373          * If the new start address isn't hpage aligned and it could
2374          * previously contain an hugepage: check if we need to split
2375          * an huge pmd.
2376          */
2377         if (start & ~HPAGE_PMD_MASK &&
2378             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2379             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2380                 split_huge_page_address(vma->vm_mm, start);
2381
2382         /*
2383          * If the new end address isn't hpage aligned and it could
2384          * previously contain an hugepage: check if we need to split
2385          * an huge pmd.
2386          */
2387         if (end & ~HPAGE_PMD_MASK &&
2388             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2389             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2390                 split_huge_page_address(vma->vm_mm, end);
2391
2392         /*
2393          * If we're also updating the vma->vm_next->vm_start, if the new
2394          * vm_next->vm_start isn't page aligned and it could previously
2395          * contain an hugepage: check if we need to split an huge pmd.
2396          */
2397         if (adjust_next > 0) {
2398                 struct vm_area_struct *next = vma->vm_next;
2399                 unsigned long nstart = next->vm_start;
2400                 nstart += adjust_next << PAGE_SHIFT;
2401                 if (nstart & ~HPAGE_PMD_MASK &&
2402                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2403                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2404                         split_huge_page_address(next->vm_mm, nstart);
2405         }
2406 }