shmem: add huge pages support
[cascardo/linux.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/shmem_fs.h>
34
35 #include <asm/tlb.h>
36 #include <asm/pgalloc.h>
37 #include "internal.h"
38
39 enum scan_result {
40         SCAN_FAIL,
41         SCAN_SUCCEED,
42         SCAN_PMD_NULL,
43         SCAN_EXCEED_NONE_PTE,
44         SCAN_PTE_NON_PRESENT,
45         SCAN_PAGE_RO,
46         SCAN_NO_REFERENCED_PAGE,
47         SCAN_PAGE_NULL,
48         SCAN_SCAN_ABORT,
49         SCAN_PAGE_COUNT,
50         SCAN_PAGE_LRU,
51         SCAN_PAGE_LOCK,
52         SCAN_PAGE_ANON,
53         SCAN_PAGE_COMPOUND,
54         SCAN_ANY_PROCESS,
55         SCAN_VMA_NULL,
56         SCAN_VMA_CHECK,
57         SCAN_ADDRESS_RANGE,
58         SCAN_SWAP_CACHE_PAGE,
59         SCAN_DEL_PAGE_LRU,
60         SCAN_ALLOC_HUGE_PAGE_FAIL,
61         SCAN_CGROUP_CHARGE_FAIL,
62         SCAN_EXCEED_SWAP_PTE
63 };
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/huge_memory.h>
67
68 /*
69  * By default transparent hugepage support is disabled in order that avoid
70  * to risk increase the memory footprint of applications without a guaranteed
71  * benefit. When transparent hugepage support is enabled, is for all mappings,
72  * and khugepaged scans all mappings.
73  * Defrag is invoked by khugepaged hugepage allocations and by page faults
74  * for all hugepage allocations.
75  */
76 unsigned long transparent_hugepage_flags __read_mostly =
77 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
78         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
79 #endif
80 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
81         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
82 #endif
83         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
84         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
85         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
86
87 /* default scan 8*512 pte (or vmas) every 30 second */
88 static unsigned int khugepaged_pages_to_scan __read_mostly;
89 static unsigned int khugepaged_pages_collapsed;
90 static unsigned int khugepaged_full_scans;
91 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
92 /* during fragmentation poll the hugepage allocator once every minute */
93 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
94 static unsigned long khugepaged_sleep_expire;
95 static struct task_struct *khugepaged_thread __read_mostly;
96 static DEFINE_MUTEX(khugepaged_mutex);
97 static DEFINE_SPINLOCK(khugepaged_mm_lock);
98 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
99 /*
100  * default collapse hugepages if there is at least one pte mapped like
101  * it would have happened if the vma was large enough during page
102  * fault.
103  */
104 static unsigned int khugepaged_max_ptes_none __read_mostly;
105 static unsigned int khugepaged_max_ptes_swap __read_mostly;
106
107 static int khugepaged(void *none);
108 static int khugepaged_slab_init(void);
109 static void khugepaged_slab_exit(void);
110
111 #define MM_SLOTS_HASH_BITS 10
112 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
113
114 static struct kmem_cache *mm_slot_cache __read_mostly;
115
116 /**
117  * struct mm_slot - hash lookup from mm to mm_slot
118  * @hash: hash collision list
119  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
120  * @mm: the mm that this information is valid for
121  */
122 struct mm_slot {
123         struct hlist_node hash;
124         struct list_head mm_node;
125         struct mm_struct *mm;
126 };
127
128 /**
129  * struct khugepaged_scan - cursor for scanning
130  * @mm_head: the head of the mm list to scan
131  * @mm_slot: the current mm_slot we are scanning
132  * @address: the next address inside that to be scanned
133  *
134  * There is only the one khugepaged_scan instance of this cursor structure.
135  */
136 struct khugepaged_scan {
137         struct list_head mm_head;
138         struct mm_slot *mm_slot;
139         unsigned long address;
140 };
141 static struct khugepaged_scan khugepaged_scan = {
142         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
143 };
144
145 static struct shrinker deferred_split_shrinker;
146
147 static void set_recommended_min_free_kbytes(void)
148 {
149         struct zone *zone;
150         int nr_zones = 0;
151         unsigned long recommended_min;
152
153         for_each_populated_zone(zone)
154                 nr_zones++;
155
156         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
157         recommended_min = pageblock_nr_pages * nr_zones * 2;
158
159         /*
160          * Make sure that on average at least two pageblocks are almost free
161          * of another type, one for a migratetype to fall back to and a
162          * second to avoid subsequent fallbacks of other types There are 3
163          * MIGRATE_TYPES we care about.
164          */
165         recommended_min += pageblock_nr_pages * nr_zones *
166                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
167
168         /* don't ever allow to reserve more than 5% of the lowmem */
169         recommended_min = min(recommended_min,
170                               (unsigned long) nr_free_buffer_pages() / 20);
171         recommended_min <<= (PAGE_SHIFT-10);
172
173         if (recommended_min > min_free_kbytes) {
174                 if (user_min_free_kbytes >= 0)
175                         pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
176                                 min_free_kbytes, recommended_min);
177
178                 min_free_kbytes = recommended_min;
179         }
180         setup_per_zone_wmarks();
181 }
182
183 static int start_stop_khugepaged(void)
184 {
185         int err = 0;
186         if (khugepaged_enabled()) {
187                 if (!khugepaged_thread)
188                         khugepaged_thread = kthread_run(khugepaged, NULL,
189                                                         "khugepaged");
190                 if (IS_ERR(khugepaged_thread)) {
191                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
192                         err = PTR_ERR(khugepaged_thread);
193                         khugepaged_thread = NULL;
194                         goto fail;
195                 }
196
197                 if (!list_empty(&khugepaged_scan.mm_head))
198                         wake_up_interruptible(&khugepaged_wait);
199
200                 set_recommended_min_free_kbytes();
201         } else if (khugepaged_thread) {
202                 kthread_stop(khugepaged_thread);
203                 khugepaged_thread = NULL;
204         }
205 fail:
206         return err;
207 }
208
209 static atomic_t huge_zero_refcount;
210 struct page *huge_zero_page __read_mostly;
211
212 struct page *get_huge_zero_page(void)
213 {
214         struct page *zero_page;
215 retry:
216         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
217                 return READ_ONCE(huge_zero_page);
218
219         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
220                         HPAGE_PMD_ORDER);
221         if (!zero_page) {
222                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
223                 return NULL;
224         }
225         count_vm_event(THP_ZERO_PAGE_ALLOC);
226         preempt_disable();
227         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
228                 preempt_enable();
229                 __free_pages(zero_page, compound_order(zero_page));
230                 goto retry;
231         }
232
233         /* We take additional reference here. It will be put back by shrinker */
234         atomic_set(&huge_zero_refcount, 2);
235         preempt_enable();
236         return READ_ONCE(huge_zero_page);
237 }
238
239 void put_huge_zero_page(void)
240 {
241         /*
242          * Counter should never go to zero here. Only shrinker can put
243          * last reference.
244          */
245         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
246 }
247
248 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
249                                         struct shrink_control *sc)
250 {
251         /* we can free zero page only if last reference remains */
252         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
253 }
254
255 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
256                                        struct shrink_control *sc)
257 {
258         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
259                 struct page *zero_page = xchg(&huge_zero_page, NULL);
260                 BUG_ON(zero_page == NULL);
261                 __free_pages(zero_page, compound_order(zero_page));
262                 return HPAGE_PMD_NR;
263         }
264
265         return 0;
266 }
267
268 static struct shrinker huge_zero_page_shrinker = {
269         .count_objects = shrink_huge_zero_page_count,
270         .scan_objects = shrink_huge_zero_page_scan,
271         .seeks = DEFAULT_SEEKS,
272 };
273
274 #ifdef CONFIG_SYSFS
275
276 static ssize_t triple_flag_store(struct kobject *kobj,
277                                  struct kobj_attribute *attr,
278                                  const char *buf, size_t count,
279                                  enum transparent_hugepage_flag enabled,
280                                  enum transparent_hugepage_flag deferred,
281                                  enum transparent_hugepage_flag req_madv)
282 {
283         if (!memcmp("defer", buf,
284                     min(sizeof("defer")-1, count))) {
285                 if (enabled == deferred)
286                         return -EINVAL;
287                 clear_bit(enabled, &transparent_hugepage_flags);
288                 clear_bit(req_madv, &transparent_hugepage_flags);
289                 set_bit(deferred, &transparent_hugepage_flags);
290         } else if (!memcmp("always", buf,
291                     min(sizeof("always")-1, count))) {
292                 clear_bit(deferred, &transparent_hugepage_flags);
293                 clear_bit(req_madv, &transparent_hugepage_flags);
294                 set_bit(enabled, &transparent_hugepage_flags);
295         } else if (!memcmp("madvise", buf,
296                            min(sizeof("madvise")-1, count))) {
297                 clear_bit(enabled, &transparent_hugepage_flags);
298                 clear_bit(deferred, &transparent_hugepage_flags);
299                 set_bit(req_madv, &transparent_hugepage_flags);
300         } else if (!memcmp("never", buf,
301                            min(sizeof("never")-1, count))) {
302                 clear_bit(enabled, &transparent_hugepage_flags);
303                 clear_bit(req_madv, &transparent_hugepage_flags);
304                 clear_bit(deferred, &transparent_hugepage_flags);
305         } else
306                 return -EINVAL;
307
308         return count;
309 }
310
311 static ssize_t enabled_show(struct kobject *kobj,
312                             struct kobj_attribute *attr, char *buf)
313 {
314         if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
315                 return sprintf(buf, "[always] madvise never\n");
316         else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
317                 return sprintf(buf, "always [madvise] never\n");
318         else
319                 return sprintf(buf, "always madvise [never]\n");
320 }
321
322 static ssize_t enabled_store(struct kobject *kobj,
323                              struct kobj_attribute *attr,
324                              const char *buf, size_t count)
325 {
326         ssize_t ret;
327
328         ret = triple_flag_store(kobj, attr, buf, count,
329                                 TRANSPARENT_HUGEPAGE_FLAG,
330                                 TRANSPARENT_HUGEPAGE_FLAG,
331                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
332
333         if (ret > 0) {
334                 int err;
335
336                 mutex_lock(&khugepaged_mutex);
337                 err = start_stop_khugepaged();
338                 mutex_unlock(&khugepaged_mutex);
339
340                 if (err)
341                         ret = err;
342         }
343
344         return ret;
345 }
346 static struct kobj_attribute enabled_attr =
347         __ATTR(enabled, 0644, enabled_show, enabled_store);
348
349 static ssize_t single_flag_show(struct kobject *kobj,
350                                 struct kobj_attribute *attr, char *buf,
351                                 enum transparent_hugepage_flag flag)
352 {
353         return sprintf(buf, "%d\n",
354                        !!test_bit(flag, &transparent_hugepage_flags));
355 }
356
357 static ssize_t single_flag_store(struct kobject *kobj,
358                                  struct kobj_attribute *attr,
359                                  const char *buf, size_t count,
360                                  enum transparent_hugepage_flag flag)
361 {
362         unsigned long value;
363         int ret;
364
365         ret = kstrtoul(buf, 10, &value);
366         if (ret < 0)
367                 return ret;
368         if (value > 1)
369                 return -EINVAL;
370
371         if (value)
372                 set_bit(flag, &transparent_hugepage_flags);
373         else
374                 clear_bit(flag, &transparent_hugepage_flags);
375
376         return count;
377 }
378
379 /*
380  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
381  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
382  * memory just to allocate one more hugepage.
383  */
384 static ssize_t defrag_show(struct kobject *kobj,
385                            struct kobj_attribute *attr, char *buf)
386 {
387         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
388                 return sprintf(buf, "[always] defer madvise never\n");
389         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
390                 return sprintf(buf, "always [defer] madvise never\n");
391         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
392                 return sprintf(buf, "always defer [madvise] never\n");
393         else
394                 return sprintf(buf, "always defer madvise [never]\n");
395
396 }
397 static ssize_t defrag_store(struct kobject *kobj,
398                             struct kobj_attribute *attr,
399                             const char *buf, size_t count)
400 {
401         return triple_flag_store(kobj, attr, buf, count,
402                                  TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
403                                  TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
404                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
405 }
406 static struct kobj_attribute defrag_attr =
407         __ATTR(defrag, 0644, defrag_show, defrag_store);
408
409 static ssize_t use_zero_page_show(struct kobject *kobj,
410                 struct kobj_attribute *attr, char *buf)
411 {
412         return single_flag_show(kobj, attr, buf,
413                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
414 }
415 static ssize_t use_zero_page_store(struct kobject *kobj,
416                 struct kobj_attribute *attr, const char *buf, size_t count)
417 {
418         return single_flag_store(kobj, attr, buf, count,
419                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
420 }
421 static struct kobj_attribute use_zero_page_attr =
422         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
423 #ifdef CONFIG_DEBUG_VM
424 static ssize_t debug_cow_show(struct kobject *kobj,
425                                 struct kobj_attribute *attr, char *buf)
426 {
427         return single_flag_show(kobj, attr, buf,
428                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
429 }
430 static ssize_t debug_cow_store(struct kobject *kobj,
431                                struct kobj_attribute *attr,
432                                const char *buf, size_t count)
433 {
434         return single_flag_store(kobj, attr, buf, count,
435                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
436 }
437 static struct kobj_attribute debug_cow_attr =
438         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
439 #endif /* CONFIG_DEBUG_VM */
440
441 static struct attribute *hugepage_attr[] = {
442         &enabled_attr.attr,
443         &defrag_attr.attr,
444         &use_zero_page_attr.attr,
445 #ifdef CONFIG_SHMEM
446         &shmem_enabled_attr.attr,
447 #endif
448 #ifdef CONFIG_DEBUG_VM
449         &debug_cow_attr.attr,
450 #endif
451         NULL,
452 };
453
454 static struct attribute_group hugepage_attr_group = {
455         .attrs = hugepage_attr,
456 };
457
458 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
459                                          struct kobj_attribute *attr,
460                                          char *buf)
461 {
462         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
463 }
464
465 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
466                                           struct kobj_attribute *attr,
467                                           const char *buf, size_t count)
468 {
469         unsigned long msecs;
470         int err;
471
472         err = kstrtoul(buf, 10, &msecs);
473         if (err || msecs > UINT_MAX)
474                 return -EINVAL;
475
476         khugepaged_scan_sleep_millisecs = msecs;
477         khugepaged_sleep_expire = 0;
478         wake_up_interruptible(&khugepaged_wait);
479
480         return count;
481 }
482 static struct kobj_attribute scan_sleep_millisecs_attr =
483         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
484                scan_sleep_millisecs_store);
485
486 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
487                                           struct kobj_attribute *attr,
488                                           char *buf)
489 {
490         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
491 }
492
493 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
494                                            struct kobj_attribute *attr,
495                                            const char *buf, size_t count)
496 {
497         unsigned long msecs;
498         int err;
499
500         err = kstrtoul(buf, 10, &msecs);
501         if (err || msecs > UINT_MAX)
502                 return -EINVAL;
503
504         khugepaged_alloc_sleep_millisecs = msecs;
505         khugepaged_sleep_expire = 0;
506         wake_up_interruptible(&khugepaged_wait);
507
508         return count;
509 }
510 static struct kobj_attribute alloc_sleep_millisecs_attr =
511         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
512                alloc_sleep_millisecs_store);
513
514 static ssize_t pages_to_scan_show(struct kobject *kobj,
515                                   struct kobj_attribute *attr,
516                                   char *buf)
517 {
518         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
519 }
520 static ssize_t pages_to_scan_store(struct kobject *kobj,
521                                    struct kobj_attribute *attr,
522                                    const char *buf, size_t count)
523 {
524         int err;
525         unsigned long pages;
526
527         err = kstrtoul(buf, 10, &pages);
528         if (err || !pages || pages > UINT_MAX)
529                 return -EINVAL;
530
531         khugepaged_pages_to_scan = pages;
532
533         return count;
534 }
535 static struct kobj_attribute pages_to_scan_attr =
536         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
537                pages_to_scan_store);
538
539 static ssize_t pages_collapsed_show(struct kobject *kobj,
540                                     struct kobj_attribute *attr,
541                                     char *buf)
542 {
543         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
544 }
545 static struct kobj_attribute pages_collapsed_attr =
546         __ATTR_RO(pages_collapsed);
547
548 static ssize_t full_scans_show(struct kobject *kobj,
549                                struct kobj_attribute *attr,
550                                char *buf)
551 {
552         return sprintf(buf, "%u\n", khugepaged_full_scans);
553 }
554 static struct kobj_attribute full_scans_attr =
555         __ATTR_RO(full_scans);
556
557 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
558                                       struct kobj_attribute *attr, char *buf)
559 {
560         return single_flag_show(kobj, attr, buf,
561                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
562 }
563 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
564                                        struct kobj_attribute *attr,
565                                        const char *buf, size_t count)
566 {
567         return single_flag_store(kobj, attr, buf, count,
568                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
569 }
570 static struct kobj_attribute khugepaged_defrag_attr =
571         __ATTR(defrag, 0644, khugepaged_defrag_show,
572                khugepaged_defrag_store);
573
574 /*
575  * max_ptes_none controls if khugepaged should collapse hugepages over
576  * any unmapped ptes in turn potentially increasing the memory
577  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
578  * reduce the available free memory in the system as it
579  * runs. Increasing max_ptes_none will instead potentially reduce the
580  * free memory in the system during the khugepaged scan.
581  */
582 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
583                                              struct kobj_attribute *attr,
584                                              char *buf)
585 {
586         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
587 }
588 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
589                                               struct kobj_attribute *attr,
590                                               const char *buf, size_t count)
591 {
592         int err;
593         unsigned long max_ptes_none;
594
595         err = kstrtoul(buf, 10, &max_ptes_none);
596         if (err || max_ptes_none > HPAGE_PMD_NR-1)
597                 return -EINVAL;
598
599         khugepaged_max_ptes_none = max_ptes_none;
600
601         return count;
602 }
603 static struct kobj_attribute khugepaged_max_ptes_none_attr =
604         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
605                khugepaged_max_ptes_none_store);
606
607 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
608                                              struct kobj_attribute *attr,
609                                              char *buf)
610 {
611         return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
612 }
613
614 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
615                                               struct kobj_attribute *attr,
616                                               const char *buf, size_t count)
617 {
618         int err;
619         unsigned long max_ptes_swap;
620
621         err  = kstrtoul(buf, 10, &max_ptes_swap);
622         if (err || max_ptes_swap > HPAGE_PMD_NR-1)
623                 return -EINVAL;
624
625         khugepaged_max_ptes_swap = max_ptes_swap;
626
627         return count;
628 }
629
630 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
631         __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
632                khugepaged_max_ptes_swap_store);
633
634 static struct attribute *khugepaged_attr[] = {
635         &khugepaged_defrag_attr.attr,
636         &khugepaged_max_ptes_none_attr.attr,
637         &pages_to_scan_attr.attr,
638         &pages_collapsed_attr.attr,
639         &full_scans_attr.attr,
640         &scan_sleep_millisecs_attr.attr,
641         &alloc_sleep_millisecs_attr.attr,
642         &khugepaged_max_ptes_swap_attr.attr,
643         NULL,
644 };
645
646 static struct attribute_group khugepaged_attr_group = {
647         .attrs = khugepaged_attr,
648         .name = "khugepaged",
649 };
650
651 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
652 {
653         int err;
654
655         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
656         if (unlikely(!*hugepage_kobj)) {
657                 pr_err("failed to create transparent hugepage kobject\n");
658                 return -ENOMEM;
659         }
660
661         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
662         if (err) {
663                 pr_err("failed to register transparent hugepage group\n");
664                 goto delete_obj;
665         }
666
667         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
668         if (err) {
669                 pr_err("failed to register transparent hugepage group\n");
670                 goto remove_hp_group;
671         }
672
673         return 0;
674
675 remove_hp_group:
676         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
677 delete_obj:
678         kobject_put(*hugepage_kobj);
679         return err;
680 }
681
682 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
683 {
684         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
685         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
686         kobject_put(hugepage_kobj);
687 }
688 #else
689 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
690 {
691         return 0;
692 }
693
694 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
695 {
696 }
697 #endif /* CONFIG_SYSFS */
698
699 static int __init hugepage_init(void)
700 {
701         int err;
702         struct kobject *hugepage_kobj;
703
704         if (!has_transparent_hugepage()) {
705                 transparent_hugepage_flags = 0;
706                 return -EINVAL;
707         }
708
709         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
710         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
711         khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
712         /*
713          * hugepages can't be allocated by the buddy allocator
714          */
715         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
716         /*
717          * we use page->mapping and page->index in second tail page
718          * as list_head: assuming THP order >= 2
719          */
720         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
721
722         err = hugepage_init_sysfs(&hugepage_kobj);
723         if (err)
724                 goto err_sysfs;
725
726         err = khugepaged_slab_init();
727         if (err)
728                 goto err_slab;
729
730         err = register_shrinker(&huge_zero_page_shrinker);
731         if (err)
732                 goto err_hzp_shrinker;
733         err = register_shrinker(&deferred_split_shrinker);
734         if (err)
735                 goto err_split_shrinker;
736
737         /*
738          * By default disable transparent hugepages on smaller systems,
739          * where the extra memory used could hurt more than TLB overhead
740          * is likely to save.  The admin can still enable it through /sys.
741          */
742         if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
743                 transparent_hugepage_flags = 0;
744                 return 0;
745         }
746
747         err = start_stop_khugepaged();
748         if (err)
749                 goto err_khugepaged;
750
751         return 0;
752 err_khugepaged:
753         unregister_shrinker(&deferred_split_shrinker);
754 err_split_shrinker:
755         unregister_shrinker(&huge_zero_page_shrinker);
756 err_hzp_shrinker:
757         khugepaged_slab_exit();
758 err_slab:
759         hugepage_exit_sysfs(hugepage_kobj);
760 err_sysfs:
761         return err;
762 }
763 subsys_initcall(hugepage_init);
764
765 static int __init setup_transparent_hugepage(char *str)
766 {
767         int ret = 0;
768         if (!str)
769                 goto out;
770         if (!strcmp(str, "always")) {
771                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
772                         &transparent_hugepage_flags);
773                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
774                           &transparent_hugepage_flags);
775                 ret = 1;
776         } else if (!strcmp(str, "madvise")) {
777                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
778                           &transparent_hugepage_flags);
779                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
780                         &transparent_hugepage_flags);
781                 ret = 1;
782         } else if (!strcmp(str, "never")) {
783                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
784                           &transparent_hugepage_flags);
785                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
786                           &transparent_hugepage_flags);
787                 ret = 1;
788         }
789 out:
790         if (!ret)
791                 pr_warn("transparent_hugepage= cannot parse, ignored\n");
792         return ret;
793 }
794 __setup("transparent_hugepage=", setup_transparent_hugepage);
795
796 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
797 {
798         if (likely(vma->vm_flags & VM_WRITE))
799                 pmd = pmd_mkwrite(pmd);
800         return pmd;
801 }
802
803 static inline struct list_head *page_deferred_list(struct page *page)
804 {
805         /*
806          * ->lru in the tail pages is occupied by compound_head.
807          * Let's use ->mapping + ->index in the second tail page as list_head.
808          */
809         return (struct list_head *)&page[2].mapping;
810 }
811
812 void prep_transhuge_page(struct page *page)
813 {
814         /*
815          * we use page->mapping and page->indexlru in second tail page
816          * as list_head: assuming THP order >= 2
817          */
818
819         INIT_LIST_HEAD(page_deferred_list(page));
820         set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
821 }
822
823 static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
824                 gfp_t gfp)
825 {
826         struct vm_area_struct *vma = fe->vma;
827         struct mem_cgroup *memcg;
828         pgtable_t pgtable;
829         unsigned long haddr = fe->address & HPAGE_PMD_MASK;
830
831         VM_BUG_ON_PAGE(!PageCompound(page), page);
832
833         if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
834                 put_page(page);
835                 count_vm_event(THP_FAULT_FALLBACK);
836                 return VM_FAULT_FALLBACK;
837         }
838
839         pgtable = pte_alloc_one(vma->vm_mm, haddr);
840         if (unlikely(!pgtable)) {
841                 mem_cgroup_cancel_charge(page, memcg, true);
842                 put_page(page);
843                 return VM_FAULT_OOM;
844         }
845
846         clear_huge_page(page, haddr, HPAGE_PMD_NR);
847         /*
848          * The memory barrier inside __SetPageUptodate makes sure that
849          * clear_huge_page writes become visible before the set_pmd_at()
850          * write.
851          */
852         __SetPageUptodate(page);
853
854         fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
855         if (unlikely(!pmd_none(*fe->pmd))) {
856                 spin_unlock(fe->ptl);
857                 mem_cgroup_cancel_charge(page, memcg, true);
858                 put_page(page);
859                 pte_free(vma->vm_mm, pgtable);
860         } else {
861                 pmd_t entry;
862
863                 /* Deliver the page fault to userland */
864                 if (userfaultfd_missing(vma)) {
865                         int ret;
866
867                         spin_unlock(fe->ptl);
868                         mem_cgroup_cancel_charge(page, memcg, true);
869                         put_page(page);
870                         pte_free(vma->vm_mm, pgtable);
871                         ret = handle_userfault(fe, VM_UFFD_MISSING);
872                         VM_BUG_ON(ret & VM_FAULT_FALLBACK);
873                         return ret;
874                 }
875
876                 entry = mk_huge_pmd(page, vma->vm_page_prot);
877                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
878                 page_add_new_anon_rmap(page, vma, haddr, true);
879                 mem_cgroup_commit_charge(page, memcg, false, true);
880                 lru_cache_add_active_or_unevictable(page, vma);
881                 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
882                 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
883                 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
884                 atomic_long_inc(&vma->vm_mm->nr_ptes);
885                 spin_unlock(fe->ptl);
886                 count_vm_event(THP_FAULT_ALLOC);
887         }
888
889         return 0;
890 }
891
892 /*
893  * If THP is set to always then directly reclaim/compact as necessary
894  * If set to defer then do no reclaim and defer to khugepaged
895  * If set to madvise and the VMA is flagged then directly reclaim/compact
896  */
897 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
898 {
899         gfp_t reclaim_flags = 0;
900
901         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
902             (vma->vm_flags & VM_HUGEPAGE))
903                 reclaim_flags = __GFP_DIRECT_RECLAIM;
904         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
905                 reclaim_flags = __GFP_KSWAPD_RECLAIM;
906         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
907                 reclaim_flags = __GFP_DIRECT_RECLAIM;
908
909         return GFP_TRANSHUGE | reclaim_flags;
910 }
911
912 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
913 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
914 {
915         return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
916 }
917
918 /* Caller must hold page table lock. */
919 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
920                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
921                 struct page *zero_page)
922 {
923         pmd_t entry;
924         if (!pmd_none(*pmd))
925                 return false;
926         entry = mk_pmd(zero_page, vma->vm_page_prot);
927         entry = pmd_mkhuge(entry);
928         if (pgtable)
929                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
930         set_pmd_at(mm, haddr, pmd, entry);
931         atomic_long_inc(&mm->nr_ptes);
932         return true;
933 }
934
935 int do_huge_pmd_anonymous_page(struct fault_env *fe)
936 {
937         struct vm_area_struct *vma = fe->vma;
938         gfp_t gfp;
939         struct page *page;
940         unsigned long haddr = fe->address & HPAGE_PMD_MASK;
941
942         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
943                 return VM_FAULT_FALLBACK;
944         if (unlikely(anon_vma_prepare(vma)))
945                 return VM_FAULT_OOM;
946         if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
947                 return VM_FAULT_OOM;
948         if (!(fe->flags & FAULT_FLAG_WRITE) &&
949                         !mm_forbids_zeropage(vma->vm_mm) &&
950                         transparent_hugepage_use_zero_page()) {
951                 pgtable_t pgtable;
952                 struct page *zero_page;
953                 bool set;
954                 int ret;
955                 pgtable = pte_alloc_one(vma->vm_mm, haddr);
956                 if (unlikely(!pgtable))
957                         return VM_FAULT_OOM;
958                 zero_page = get_huge_zero_page();
959                 if (unlikely(!zero_page)) {
960                         pte_free(vma->vm_mm, pgtable);
961                         count_vm_event(THP_FAULT_FALLBACK);
962                         return VM_FAULT_FALLBACK;
963                 }
964                 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
965                 ret = 0;
966                 set = false;
967                 if (pmd_none(*fe->pmd)) {
968                         if (userfaultfd_missing(vma)) {
969                                 spin_unlock(fe->ptl);
970                                 ret = handle_userfault(fe, VM_UFFD_MISSING);
971                                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
972                         } else {
973                                 set_huge_zero_page(pgtable, vma->vm_mm, vma,
974                                                    haddr, fe->pmd, zero_page);
975                                 spin_unlock(fe->ptl);
976                                 set = true;
977                         }
978                 } else
979                         spin_unlock(fe->ptl);
980                 if (!set) {
981                         pte_free(vma->vm_mm, pgtable);
982                         put_huge_zero_page();
983                 }
984                 return ret;
985         }
986         gfp = alloc_hugepage_direct_gfpmask(vma);
987         page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
988         if (unlikely(!page)) {
989                 count_vm_event(THP_FAULT_FALLBACK);
990                 return VM_FAULT_FALLBACK;
991         }
992         prep_transhuge_page(page);
993         return __do_huge_pmd_anonymous_page(fe, page, gfp);
994 }
995
996 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
997                 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
998 {
999         struct mm_struct *mm = vma->vm_mm;
1000         pmd_t entry;
1001         spinlock_t *ptl;
1002
1003         ptl = pmd_lock(mm, pmd);
1004         entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1005         if (pfn_t_devmap(pfn))
1006                 entry = pmd_mkdevmap(entry);
1007         if (write) {
1008                 entry = pmd_mkyoung(pmd_mkdirty(entry));
1009                 entry = maybe_pmd_mkwrite(entry, vma);
1010         }
1011         set_pmd_at(mm, addr, pmd, entry);
1012         update_mmu_cache_pmd(vma, addr, pmd);
1013         spin_unlock(ptl);
1014 }
1015
1016 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1017                         pmd_t *pmd, pfn_t pfn, bool write)
1018 {
1019         pgprot_t pgprot = vma->vm_page_prot;
1020         /*
1021          * If we had pmd_special, we could avoid all these restrictions,
1022          * but we need to be consistent with PTEs and architectures that
1023          * can't support a 'special' bit.
1024          */
1025         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1026         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1027                                                 (VM_PFNMAP|VM_MIXEDMAP));
1028         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1029         BUG_ON(!pfn_t_devmap(pfn));
1030
1031         if (addr < vma->vm_start || addr >= vma->vm_end)
1032                 return VM_FAULT_SIGBUS;
1033         if (track_pfn_insert(vma, &pgprot, pfn))
1034                 return VM_FAULT_SIGBUS;
1035         insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1036         return VM_FAULT_NOPAGE;
1037 }
1038 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1039
1040 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1041                 pmd_t *pmd)
1042 {
1043         pmd_t _pmd;
1044
1045         /*
1046          * We should set the dirty bit only for FOLL_WRITE but for now
1047          * the dirty bit in the pmd is meaningless.  And if the dirty
1048          * bit will become meaningful and we'll only set it with
1049          * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1050          * set the young bit, instead of the current set_pmd_at.
1051          */
1052         _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1053         if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1054                                 pmd, _pmd,  1))
1055                 update_mmu_cache_pmd(vma, addr, pmd);
1056 }
1057
1058 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1059                 pmd_t *pmd, int flags)
1060 {
1061         unsigned long pfn = pmd_pfn(*pmd);
1062         struct mm_struct *mm = vma->vm_mm;
1063         struct dev_pagemap *pgmap;
1064         struct page *page;
1065
1066         assert_spin_locked(pmd_lockptr(mm, pmd));
1067
1068         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1069                 return NULL;
1070
1071         if (pmd_present(*pmd) && pmd_devmap(*pmd))
1072                 /* pass */;
1073         else
1074                 return NULL;
1075
1076         if (flags & FOLL_TOUCH)
1077                 touch_pmd(vma, addr, pmd);
1078
1079         /*
1080          * device mapped pages can only be returned if the
1081          * caller will manage the page reference count.
1082          */
1083         if (!(flags & FOLL_GET))
1084                 return ERR_PTR(-EEXIST);
1085
1086         pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1087         pgmap = get_dev_pagemap(pfn, NULL);
1088         if (!pgmap)
1089                 return ERR_PTR(-EFAULT);
1090         page = pfn_to_page(pfn);
1091         get_page(page);
1092         put_dev_pagemap(pgmap);
1093
1094         return page;
1095 }
1096
1097 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1098                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1099                   struct vm_area_struct *vma)
1100 {
1101         spinlock_t *dst_ptl, *src_ptl;
1102         struct page *src_page;
1103         pmd_t pmd;
1104         pgtable_t pgtable = NULL;
1105         int ret = -ENOMEM;
1106
1107         /* Skip if can be re-fill on fault */
1108         if (!vma_is_anonymous(vma))
1109                 return 0;
1110
1111         pgtable = pte_alloc_one(dst_mm, addr);
1112         if (unlikely(!pgtable))
1113                 goto out;
1114
1115         dst_ptl = pmd_lock(dst_mm, dst_pmd);
1116         src_ptl = pmd_lockptr(src_mm, src_pmd);
1117         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1118
1119         ret = -EAGAIN;
1120         pmd = *src_pmd;
1121         if (unlikely(!pmd_trans_huge(pmd))) {
1122                 pte_free(dst_mm, pgtable);
1123                 goto out_unlock;
1124         }
1125         /*
1126          * When page table lock is held, the huge zero pmd should not be
1127          * under splitting since we don't split the page itself, only pmd to
1128          * a page table.
1129          */
1130         if (is_huge_zero_pmd(pmd)) {
1131                 struct page *zero_page;
1132                 /*
1133                  * get_huge_zero_page() will never allocate a new page here,
1134                  * since we already have a zero page to copy. It just takes a
1135                  * reference.
1136                  */
1137                 zero_page = get_huge_zero_page();
1138                 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1139                                 zero_page);
1140                 ret = 0;
1141                 goto out_unlock;
1142         }
1143
1144         src_page = pmd_page(pmd);
1145         VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1146         get_page(src_page);
1147         page_dup_rmap(src_page, true);
1148         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1149         atomic_long_inc(&dst_mm->nr_ptes);
1150         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1151
1152         pmdp_set_wrprotect(src_mm, addr, src_pmd);
1153         pmd = pmd_mkold(pmd_wrprotect(pmd));
1154         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1155
1156         ret = 0;
1157 out_unlock:
1158         spin_unlock(src_ptl);
1159         spin_unlock(dst_ptl);
1160 out:
1161         return ret;
1162 }
1163
1164 void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
1165 {
1166         pmd_t entry;
1167         unsigned long haddr;
1168
1169         fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
1170         if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1171                 goto unlock;
1172
1173         entry = pmd_mkyoung(orig_pmd);
1174         haddr = fe->address & HPAGE_PMD_MASK;
1175         if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
1176                                 fe->flags & FAULT_FLAG_WRITE))
1177                 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
1178
1179 unlock:
1180         spin_unlock(fe->ptl);
1181 }
1182
1183 static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
1184                 struct page *page)
1185 {
1186         struct vm_area_struct *vma = fe->vma;
1187         unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1188         struct mem_cgroup *memcg;
1189         pgtable_t pgtable;
1190         pmd_t _pmd;
1191         int ret = 0, i;
1192         struct page **pages;
1193         unsigned long mmun_start;       /* For mmu_notifiers */
1194         unsigned long mmun_end;         /* For mmu_notifiers */
1195
1196         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1197                         GFP_KERNEL);
1198         if (unlikely(!pages)) {
1199                 ret |= VM_FAULT_OOM;
1200                 goto out;
1201         }
1202
1203         for (i = 0; i < HPAGE_PMD_NR; i++) {
1204                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1205                                                __GFP_OTHER_NODE, vma,
1206                                                fe->address, page_to_nid(page));
1207                 if (unlikely(!pages[i] ||
1208                              mem_cgroup_try_charge(pages[i], vma->vm_mm,
1209                                      GFP_KERNEL, &memcg, false))) {
1210                         if (pages[i])
1211                                 put_page(pages[i]);
1212                         while (--i >= 0) {
1213                                 memcg = (void *)page_private(pages[i]);
1214                                 set_page_private(pages[i], 0);
1215                                 mem_cgroup_cancel_charge(pages[i], memcg,
1216                                                 false);
1217                                 put_page(pages[i]);
1218                         }
1219                         kfree(pages);
1220                         ret |= VM_FAULT_OOM;
1221                         goto out;
1222                 }
1223                 set_page_private(pages[i], (unsigned long)memcg);
1224         }
1225
1226         for (i = 0; i < HPAGE_PMD_NR; i++) {
1227                 copy_user_highpage(pages[i], page + i,
1228                                    haddr + PAGE_SIZE * i, vma);
1229                 __SetPageUptodate(pages[i]);
1230                 cond_resched();
1231         }
1232
1233         mmun_start = haddr;
1234         mmun_end   = haddr + HPAGE_PMD_SIZE;
1235         mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1236
1237         fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1238         if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1239                 goto out_free_pages;
1240         VM_BUG_ON_PAGE(!PageHead(page), page);
1241
1242         pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1243         /* leave pmd empty until pte is filled */
1244
1245         pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
1246         pmd_populate(vma->vm_mm, &_pmd, pgtable);
1247
1248         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1249                 pte_t entry;
1250                 entry = mk_pte(pages[i], vma->vm_page_prot);
1251                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1252                 memcg = (void *)page_private(pages[i]);
1253                 set_page_private(pages[i], 0);
1254                 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
1255                 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1256                 lru_cache_add_active_or_unevictable(pages[i], vma);
1257                 fe->pte = pte_offset_map(&_pmd, haddr);
1258                 VM_BUG_ON(!pte_none(*fe->pte));
1259                 set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
1260                 pte_unmap(fe->pte);
1261         }
1262         kfree(pages);
1263
1264         smp_wmb(); /* make pte visible before pmd */
1265         pmd_populate(vma->vm_mm, fe->pmd, pgtable);
1266         page_remove_rmap(page, true);
1267         spin_unlock(fe->ptl);
1268
1269         mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1270
1271         ret |= VM_FAULT_WRITE;
1272         put_page(page);
1273
1274 out:
1275         return ret;
1276
1277 out_free_pages:
1278         spin_unlock(fe->ptl);
1279         mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1280         for (i = 0; i < HPAGE_PMD_NR; i++) {
1281                 memcg = (void *)page_private(pages[i]);
1282                 set_page_private(pages[i], 0);
1283                 mem_cgroup_cancel_charge(pages[i], memcg, false);
1284                 put_page(pages[i]);
1285         }
1286         kfree(pages);
1287         goto out;
1288 }
1289
1290 int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
1291 {
1292         struct vm_area_struct *vma = fe->vma;
1293         struct page *page = NULL, *new_page;
1294         struct mem_cgroup *memcg;
1295         unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1296         unsigned long mmun_start;       /* For mmu_notifiers */
1297         unsigned long mmun_end;         /* For mmu_notifiers */
1298         gfp_t huge_gfp;                 /* for allocation and charge */
1299         int ret = 0;
1300
1301         fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
1302         VM_BUG_ON_VMA(!vma->anon_vma, vma);
1303         if (is_huge_zero_pmd(orig_pmd))
1304                 goto alloc;
1305         spin_lock(fe->ptl);
1306         if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1307                 goto out_unlock;
1308
1309         page = pmd_page(orig_pmd);
1310         VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1311         /*
1312          * We can only reuse the page if nobody else maps the huge page or it's
1313          * part.
1314          */
1315         if (page_trans_huge_mapcount(page, NULL) == 1) {
1316                 pmd_t entry;
1317                 entry = pmd_mkyoung(orig_pmd);
1318                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1319                 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry,  1))
1320                         update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1321                 ret |= VM_FAULT_WRITE;
1322                 goto out_unlock;
1323         }
1324         get_page(page);
1325         spin_unlock(fe->ptl);
1326 alloc:
1327         if (transparent_hugepage_enabled(vma) &&
1328             !transparent_hugepage_debug_cow()) {
1329                 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1330                 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1331         } else
1332                 new_page = NULL;
1333
1334         if (likely(new_page)) {
1335                 prep_transhuge_page(new_page);
1336         } else {
1337                 if (!page) {
1338                         split_huge_pmd(vma, fe->pmd, fe->address);
1339                         ret |= VM_FAULT_FALLBACK;
1340                 } else {
1341                         ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
1342                         if (ret & VM_FAULT_OOM) {
1343                                 split_huge_pmd(vma, fe->pmd, fe->address);
1344                                 ret |= VM_FAULT_FALLBACK;
1345                         }
1346                         put_page(page);
1347                 }
1348                 count_vm_event(THP_FAULT_FALLBACK);
1349                 goto out;
1350         }
1351
1352         if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1353                                         huge_gfp, &memcg, true))) {
1354                 put_page(new_page);
1355                 split_huge_pmd(vma, fe->pmd, fe->address);
1356                 if (page)
1357                         put_page(page);
1358                 ret |= VM_FAULT_FALLBACK;
1359                 count_vm_event(THP_FAULT_FALLBACK);
1360                 goto out;
1361         }
1362
1363         count_vm_event(THP_FAULT_ALLOC);
1364
1365         if (!page)
1366                 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1367         else
1368                 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1369         __SetPageUptodate(new_page);
1370
1371         mmun_start = haddr;
1372         mmun_end   = haddr + HPAGE_PMD_SIZE;
1373         mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1374
1375         spin_lock(fe->ptl);
1376         if (page)
1377                 put_page(page);
1378         if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1379                 spin_unlock(fe->ptl);
1380                 mem_cgroup_cancel_charge(new_page, memcg, true);
1381                 put_page(new_page);
1382                 goto out_mn;
1383         } else {
1384                 pmd_t entry;
1385                 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1386                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1387                 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1388                 page_add_new_anon_rmap(new_page, vma, haddr, true);
1389                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1390                 lru_cache_add_active_or_unevictable(new_page, vma);
1391                 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1392                 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1393                 if (!page) {
1394                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1395                         put_huge_zero_page();
1396                 } else {
1397                         VM_BUG_ON_PAGE(!PageHead(page), page);
1398                         page_remove_rmap(page, true);
1399                         put_page(page);
1400                 }
1401                 ret |= VM_FAULT_WRITE;
1402         }
1403         spin_unlock(fe->ptl);
1404 out_mn:
1405         mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1406 out:
1407         return ret;
1408 out_unlock:
1409         spin_unlock(fe->ptl);
1410         return ret;
1411 }
1412
1413 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1414                                    unsigned long addr,
1415                                    pmd_t *pmd,
1416                                    unsigned int flags)
1417 {
1418         struct mm_struct *mm = vma->vm_mm;
1419         struct page *page = NULL;
1420
1421         assert_spin_locked(pmd_lockptr(mm, pmd));
1422
1423         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1424                 goto out;
1425
1426         /* Avoid dumping huge zero page */
1427         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1428                 return ERR_PTR(-EFAULT);
1429
1430         /* Full NUMA hinting faults to serialise migration in fault paths */
1431         if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1432                 goto out;
1433
1434         page = pmd_page(*pmd);
1435         VM_BUG_ON_PAGE(!PageHead(page), page);
1436         if (flags & FOLL_TOUCH)
1437                 touch_pmd(vma, addr, pmd);
1438         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1439                 /*
1440                  * We don't mlock() pte-mapped THPs. This way we can avoid
1441                  * leaking mlocked pages into non-VM_LOCKED VMAs.
1442                  *
1443                  * For anon THP:
1444                  *
1445                  * In most cases the pmd is the only mapping of the page as we
1446                  * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1447                  * writable private mappings in populate_vma_page_range().
1448                  *
1449                  * The only scenario when we have the page shared here is if we
1450                  * mlocking read-only mapping shared over fork(). We skip
1451                  * mlocking such pages.
1452                  *
1453                  * For file THP:
1454                  *
1455                  * We can expect PageDoubleMap() to be stable under page lock:
1456                  * for file pages we set it in page_add_file_rmap(), which
1457                  * requires page to be locked.
1458                  */
1459
1460                 if (PageAnon(page) && compound_mapcount(page) != 1)
1461                         goto skip_mlock;
1462                 if (PageDoubleMap(page) || !page->mapping)
1463                         goto skip_mlock;
1464                 if (!trylock_page(page))
1465                         goto skip_mlock;
1466                 lru_add_drain();
1467                 if (page->mapping && !PageDoubleMap(page))
1468                         mlock_vma_page(page);
1469                 unlock_page(page);
1470         }
1471 skip_mlock:
1472         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1473         VM_BUG_ON_PAGE(!PageCompound(page), page);
1474         if (flags & FOLL_GET)
1475                 get_page(page);
1476
1477 out:
1478         return page;
1479 }
1480
1481 /* NUMA hinting page fault entry point for trans huge pmds */
1482 int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1483 {
1484         struct vm_area_struct *vma = fe->vma;
1485         struct anon_vma *anon_vma = NULL;
1486         struct page *page;
1487         unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1488         int page_nid = -1, this_nid = numa_node_id();
1489         int target_nid, last_cpupid = -1;
1490         bool page_locked;
1491         bool migrated = false;
1492         bool was_writable;
1493         int flags = 0;
1494
1495         /* A PROT_NONE fault should not end up here */
1496         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1497
1498         fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1499         if (unlikely(!pmd_same(pmd, *fe->pmd)))
1500                 goto out_unlock;
1501
1502         /*
1503          * If there are potential migrations, wait for completion and retry
1504          * without disrupting NUMA hinting information. Do not relock and
1505          * check_same as the page may no longer be mapped.
1506          */
1507         if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1508                 page = pmd_page(*fe->pmd);
1509                 spin_unlock(fe->ptl);
1510                 wait_on_page_locked(page);
1511                 goto out;
1512         }
1513
1514         page = pmd_page(pmd);
1515         BUG_ON(is_huge_zero_page(page));
1516         page_nid = page_to_nid(page);
1517         last_cpupid = page_cpupid_last(page);
1518         count_vm_numa_event(NUMA_HINT_FAULTS);
1519         if (page_nid == this_nid) {
1520                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1521                 flags |= TNF_FAULT_LOCAL;
1522         }
1523
1524         /* See similar comment in do_numa_page for explanation */
1525         if (!(vma->vm_flags & VM_WRITE))
1526                 flags |= TNF_NO_GROUP;
1527
1528         /*
1529          * Acquire the page lock to serialise THP migrations but avoid dropping
1530          * page_table_lock if at all possible
1531          */
1532         page_locked = trylock_page(page);
1533         target_nid = mpol_misplaced(page, vma, haddr);
1534         if (target_nid == -1) {
1535                 /* If the page was locked, there are no parallel migrations */
1536                 if (page_locked)
1537                         goto clear_pmdnuma;
1538         }
1539
1540         /* Migration could have started since the pmd_trans_migrating check */
1541         if (!page_locked) {
1542                 spin_unlock(fe->ptl);
1543                 wait_on_page_locked(page);
1544                 page_nid = -1;
1545                 goto out;
1546         }
1547
1548         /*
1549          * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1550          * to serialises splits
1551          */
1552         get_page(page);
1553         spin_unlock(fe->ptl);
1554         anon_vma = page_lock_anon_vma_read(page);
1555
1556         /* Confirm the PMD did not change while page_table_lock was released */
1557         spin_lock(fe->ptl);
1558         if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1559                 unlock_page(page);
1560                 put_page(page);
1561                 page_nid = -1;
1562                 goto out_unlock;
1563         }
1564
1565         /* Bail if we fail to protect against THP splits for any reason */
1566         if (unlikely(!anon_vma)) {
1567                 put_page(page);
1568                 page_nid = -1;
1569                 goto clear_pmdnuma;
1570         }
1571
1572         /*
1573          * Migrate the THP to the requested node, returns with page unlocked
1574          * and access rights restored.
1575          */
1576         spin_unlock(fe->ptl);
1577         migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1578                                 fe->pmd, pmd, fe->address, page, target_nid);
1579         if (migrated) {
1580                 flags |= TNF_MIGRATED;
1581                 page_nid = target_nid;
1582         } else
1583                 flags |= TNF_MIGRATE_FAIL;
1584
1585         goto out;
1586 clear_pmdnuma:
1587         BUG_ON(!PageLocked(page));
1588         was_writable = pmd_write(pmd);
1589         pmd = pmd_modify(pmd, vma->vm_page_prot);
1590         pmd = pmd_mkyoung(pmd);
1591         if (was_writable)
1592                 pmd = pmd_mkwrite(pmd);
1593         set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1594         update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1595         unlock_page(page);
1596 out_unlock:
1597         spin_unlock(fe->ptl);
1598
1599 out:
1600         if (anon_vma)
1601                 page_unlock_anon_vma_read(anon_vma);
1602
1603         if (page_nid != -1)
1604                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1605
1606         return 0;
1607 }
1608
1609 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1610                 pmd_t *pmd, unsigned long addr, unsigned long next)
1611
1612 {
1613         spinlock_t *ptl;
1614         pmd_t orig_pmd;
1615         struct page *page;
1616         struct mm_struct *mm = tlb->mm;
1617         int ret = 0;
1618
1619         ptl = pmd_trans_huge_lock(pmd, vma);
1620         if (!ptl)
1621                 goto out_unlocked;
1622
1623         orig_pmd = *pmd;
1624         if (is_huge_zero_pmd(orig_pmd)) {
1625                 ret = 1;
1626                 goto out;
1627         }
1628
1629         page = pmd_page(orig_pmd);
1630         /*
1631          * If other processes are mapping this page, we couldn't discard
1632          * the page unless they all do MADV_FREE so let's skip the page.
1633          */
1634         if (page_mapcount(page) != 1)
1635                 goto out;
1636
1637         if (!trylock_page(page))
1638                 goto out;
1639
1640         /*
1641          * If user want to discard part-pages of THP, split it so MADV_FREE
1642          * will deactivate only them.
1643          */
1644         if (next - addr != HPAGE_PMD_SIZE) {
1645                 get_page(page);
1646                 spin_unlock(ptl);
1647                 split_huge_page(page);
1648                 put_page(page);
1649                 unlock_page(page);
1650                 goto out_unlocked;
1651         }
1652
1653         if (PageDirty(page))
1654                 ClearPageDirty(page);
1655         unlock_page(page);
1656
1657         if (PageActive(page))
1658                 deactivate_page(page);
1659
1660         if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1661                 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1662                         tlb->fullmm);
1663                 orig_pmd = pmd_mkold(orig_pmd);
1664                 orig_pmd = pmd_mkclean(orig_pmd);
1665
1666                 set_pmd_at(mm, addr, pmd, orig_pmd);
1667                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1668         }
1669         ret = 1;
1670 out:
1671         spin_unlock(ptl);
1672 out_unlocked:
1673         return ret;
1674 }
1675
1676 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1677                  pmd_t *pmd, unsigned long addr)
1678 {
1679         pmd_t orig_pmd;
1680         spinlock_t *ptl;
1681
1682         ptl = __pmd_trans_huge_lock(pmd, vma);
1683         if (!ptl)
1684                 return 0;
1685         /*
1686          * For architectures like ppc64 we look at deposited pgtable
1687          * when calling pmdp_huge_get_and_clear. So do the
1688          * pgtable_trans_huge_withdraw after finishing pmdp related
1689          * operations.
1690          */
1691         orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1692                         tlb->fullmm);
1693         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1694         if (vma_is_dax(vma)) {
1695                 spin_unlock(ptl);
1696                 if (is_huge_zero_pmd(orig_pmd))
1697                         tlb_remove_page(tlb, pmd_page(orig_pmd));
1698         } else if (is_huge_zero_pmd(orig_pmd)) {
1699                 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1700                 atomic_long_dec(&tlb->mm->nr_ptes);
1701                 spin_unlock(ptl);
1702                 tlb_remove_page(tlb, pmd_page(orig_pmd));
1703         } else {
1704                 struct page *page = pmd_page(orig_pmd);
1705                 page_remove_rmap(page, true);
1706                 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1707                 VM_BUG_ON_PAGE(!PageHead(page), page);
1708                 if (PageAnon(page)) {
1709                         pgtable_t pgtable;
1710                         pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1711                         pte_free(tlb->mm, pgtable);
1712                         atomic_long_dec(&tlb->mm->nr_ptes);
1713                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1714                 } else {
1715                         add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1716                 }
1717                 spin_unlock(ptl);
1718                 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1719         }
1720         return 1;
1721 }
1722
1723 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1724                   unsigned long new_addr, unsigned long old_end,
1725                   pmd_t *old_pmd, pmd_t *new_pmd)
1726 {
1727         spinlock_t *old_ptl, *new_ptl;
1728         pmd_t pmd;
1729         struct mm_struct *mm = vma->vm_mm;
1730
1731         if ((old_addr & ~HPAGE_PMD_MASK) ||
1732             (new_addr & ~HPAGE_PMD_MASK) ||
1733             old_end - old_addr < HPAGE_PMD_SIZE)
1734                 return false;
1735
1736         /*
1737          * The destination pmd shouldn't be established, free_pgtables()
1738          * should have release it.
1739          */
1740         if (WARN_ON(!pmd_none(*new_pmd))) {
1741                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1742                 return false;
1743         }
1744
1745         /*
1746          * We don't have to worry about the ordering of src and dst
1747          * ptlocks because exclusive mmap_sem prevents deadlock.
1748          */
1749         old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1750         if (old_ptl) {
1751                 new_ptl = pmd_lockptr(mm, new_pmd);
1752                 if (new_ptl != old_ptl)
1753                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1754                 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1755                 VM_BUG_ON(!pmd_none(*new_pmd));
1756
1757                 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1758                                 vma_is_anonymous(vma)) {
1759                         pgtable_t pgtable;
1760                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1761                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1762                 }
1763                 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1764                 if (new_ptl != old_ptl)
1765                         spin_unlock(new_ptl);
1766                 spin_unlock(old_ptl);
1767                 return true;
1768         }
1769         return false;
1770 }
1771
1772 /*
1773  * Returns
1774  *  - 0 if PMD could not be locked
1775  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1776  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1777  */
1778 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1779                 unsigned long addr, pgprot_t newprot, int prot_numa)
1780 {
1781         struct mm_struct *mm = vma->vm_mm;
1782         spinlock_t *ptl;
1783         int ret = 0;
1784
1785         ptl = __pmd_trans_huge_lock(pmd, vma);
1786         if (ptl) {
1787                 pmd_t entry;
1788                 bool preserve_write = prot_numa && pmd_write(*pmd);
1789                 ret = 1;
1790
1791                 /*
1792                  * Avoid trapping faults against the zero page. The read-only
1793                  * data is likely to be read-cached on the local CPU and
1794                  * local/remote hits to the zero page are not interesting.
1795                  */
1796                 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1797                         spin_unlock(ptl);
1798                         return ret;
1799                 }
1800
1801                 if (!prot_numa || !pmd_protnone(*pmd)) {
1802                         entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1803                         entry = pmd_modify(entry, newprot);
1804                         if (preserve_write)
1805                                 entry = pmd_mkwrite(entry);
1806                         ret = HPAGE_PMD_NR;
1807                         set_pmd_at(mm, addr, pmd, entry);
1808                         BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1809                                         pmd_write(entry));
1810                 }
1811                 spin_unlock(ptl);
1812         }
1813
1814         return ret;
1815 }
1816
1817 /*
1818  * Returns true if a given pmd maps a thp, false otherwise.
1819  *
1820  * Note that if it returns true, this routine returns without unlocking page
1821  * table lock. So callers must unlock it.
1822  */
1823 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1824 {
1825         spinlock_t *ptl;
1826         ptl = pmd_lock(vma->vm_mm, pmd);
1827         if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1828                 return ptl;
1829         spin_unlock(ptl);
1830         return NULL;
1831 }
1832
1833 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1834
1835 int hugepage_madvise(struct vm_area_struct *vma,
1836                      unsigned long *vm_flags, int advice)
1837 {
1838         switch (advice) {
1839         case MADV_HUGEPAGE:
1840 #ifdef CONFIG_S390
1841                 /*
1842                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1843                  * can't handle this properly after s390_enable_sie, so we simply
1844                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
1845                  */
1846                 if (mm_has_pgste(vma->vm_mm))
1847                         return 0;
1848 #endif
1849                 /*
1850                  * Be somewhat over-protective like KSM for now!
1851                  */
1852                 if (*vm_flags & VM_NO_THP)
1853                         return -EINVAL;
1854                 *vm_flags &= ~VM_NOHUGEPAGE;
1855                 *vm_flags |= VM_HUGEPAGE;
1856                 /*
1857                  * If the vma become good for khugepaged to scan,
1858                  * register it here without waiting a page fault that
1859                  * may not happen any time soon.
1860                  */
1861                 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1862                         return -ENOMEM;
1863                 break;
1864         case MADV_NOHUGEPAGE:
1865                 /*
1866                  * Be somewhat over-protective like KSM for now!
1867                  */
1868                 if (*vm_flags & VM_NO_THP)
1869                         return -EINVAL;
1870                 *vm_flags &= ~VM_HUGEPAGE;
1871                 *vm_flags |= VM_NOHUGEPAGE;
1872                 /*
1873                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1874                  * this vma even if we leave the mm registered in khugepaged if
1875                  * it got registered before VM_NOHUGEPAGE was set.
1876                  */
1877                 break;
1878         }
1879
1880         return 0;
1881 }
1882
1883 static int __init khugepaged_slab_init(void)
1884 {
1885         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1886                                           sizeof(struct mm_slot),
1887                                           __alignof__(struct mm_slot), 0, NULL);
1888         if (!mm_slot_cache)
1889                 return -ENOMEM;
1890
1891         return 0;
1892 }
1893
1894 static void __init khugepaged_slab_exit(void)
1895 {
1896         kmem_cache_destroy(mm_slot_cache);
1897 }
1898
1899 static inline struct mm_slot *alloc_mm_slot(void)
1900 {
1901         if (!mm_slot_cache)     /* initialization failed */
1902                 return NULL;
1903         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1904 }
1905
1906 static inline void free_mm_slot(struct mm_slot *mm_slot)
1907 {
1908         kmem_cache_free(mm_slot_cache, mm_slot);
1909 }
1910
1911 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1912 {
1913         struct mm_slot *mm_slot;
1914
1915         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1916                 if (mm == mm_slot->mm)
1917                         return mm_slot;
1918
1919         return NULL;
1920 }
1921
1922 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1923                                     struct mm_slot *mm_slot)
1924 {
1925         mm_slot->mm = mm;
1926         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1927 }
1928
1929 static inline int khugepaged_test_exit(struct mm_struct *mm)
1930 {
1931         return atomic_read(&mm->mm_users) == 0;
1932 }
1933
1934 int __khugepaged_enter(struct mm_struct *mm)
1935 {
1936         struct mm_slot *mm_slot;
1937         int wakeup;
1938
1939         mm_slot = alloc_mm_slot();
1940         if (!mm_slot)
1941                 return -ENOMEM;
1942
1943         /* __khugepaged_exit() must not run from under us */
1944         VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1945         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1946                 free_mm_slot(mm_slot);
1947                 return 0;
1948         }
1949
1950         spin_lock(&khugepaged_mm_lock);
1951         insert_to_mm_slots_hash(mm, mm_slot);
1952         /*
1953          * Insert just behind the scanning cursor, to let the area settle
1954          * down a little.
1955          */
1956         wakeup = list_empty(&khugepaged_scan.mm_head);
1957         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1958         spin_unlock(&khugepaged_mm_lock);
1959
1960         atomic_inc(&mm->mm_count);
1961         if (wakeup)
1962                 wake_up_interruptible(&khugepaged_wait);
1963
1964         return 0;
1965 }
1966
1967 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1968                                unsigned long vm_flags)
1969 {
1970         unsigned long hstart, hend;
1971         if (!vma->anon_vma)
1972                 /*
1973                  * Not yet faulted in so we will register later in the
1974                  * page fault if needed.
1975                  */
1976                 return 0;
1977         if (vma->vm_ops || (vm_flags & VM_NO_THP))
1978                 /* khugepaged not yet working on file or special mappings */
1979                 return 0;
1980         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1981         hend = vma->vm_end & HPAGE_PMD_MASK;
1982         if (hstart < hend)
1983                 return khugepaged_enter(vma, vm_flags);
1984         return 0;
1985 }
1986
1987 void __khugepaged_exit(struct mm_struct *mm)
1988 {
1989         struct mm_slot *mm_slot;
1990         int free = 0;
1991
1992         spin_lock(&khugepaged_mm_lock);
1993         mm_slot = get_mm_slot(mm);
1994         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1995                 hash_del(&mm_slot->hash);
1996                 list_del(&mm_slot->mm_node);
1997                 free = 1;
1998         }
1999         spin_unlock(&khugepaged_mm_lock);
2000
2001         if (free) {
2002                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2003                 free_mm_slot(mm_slot);
2004                 mmdrop(mm);
2005         } else if (mm_slot) {
2006                 /*
2007                  * This is required to serialize against
2008                  * khugepaged_test_exit() (which is guaranteed to run
2009                  * under mmap sem read mode). Stop here (after we
2010                  * return all pagetables will be destroyed) until
2011                  * khugepaged has finished working on the pagetables
2012                  * under the mmap_sem.
2013                  */
2014                 down_write(&mm->mmap_sem);
2015                 up_write(&mm->mmap_sem);
2016         }
2017 }
2018
2019 static void release_pte_page(struct page *page)
2020 {
2021         /* 0 stands for page_is_file_cache(page) == false */
2022         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2023         unlock_page(page);
2024         putback_lru_page(page);
2025 }
2026
2027 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2028 {
2029         while (--_pte >= pte) {
2030                 pte_t pteval = *_pte;
2031                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2032                         release_pte_page(pte_page(pteval));
2033         }
2034 }
2035
2036 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2037                                         unsigned long address,
2038                                         pte_t *pte)
2039 {
2040         struct page *page = NULL;
2041         pte_t *_pte;
2042         int none_or_zero = 0, result = 0;
2043         bool referenced = false, writable = false;
2044
2045         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2046              _pte++, address += PAGE_SIZE) {
2047                 pte_t pteval = *_pte;
2048                 if (pte_none(pteval) || (pte_present(pteval) &&
2049                                 is_zero_pfn(pte_pfn(pteval)))) {
2050                         if (!userfaultfd_armed(vma) &&
2051                             ++none_or_zero <= khugepaged_max_ptes_none) {
2052                                 continue;
2053                         } else {
2054                                 result = SCAN_EXCEED_NONE_PTE;
2055                                 goto out;
2056                         }
2057                 }
2058                 if (!pte_present(pteval)) {
2059                         result = SCAN_PTE_NON_PRESENT;
2060                         goto out;
2061                 }
2062                 page = vm_normal_page(vma, address, pteval);
2063                 if (unlikely(!page)) {
2064                         result = SCAN_PAGE_NULL;
2065                         goto out;
2066                 }
2067
2068                 VM_BUG_ON_PAGE(PageCompound(page), page);
2069                 VM_BUG_ON_PAGE(!PageAnon(page), page);
2070                 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2071
2072                 /*
2073                  * We can do it before isolate_lru_page because the
2074                  * page can't be freed from under us. NOTE: PG_lock
2075                  * is needed to serialize against split_huge_page
2076                  * when invoked from the VM.
2077                  */
2078                 if (!trylock_page(page)) {
2079                         result = SCAN_PAGE_LOCK;
2080                         goto out;
2081                 }
2082
2083                 /*
2084                  * cannot use mapcount: can't collapse if there's a gup pin.
2085                  * The page must only be referenced by the scanned process
2086                  * and page swap cache.
2087                  */
2088                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2089                         unlock_page(page);
2090                         result = SCAN_PAGE_COUNT;
2091                         goto out;
2092                 }
2093                 if (pte_write(pteval)) {
2094                         writable = true;
2095                 } else {
2096                         if (PageSwapCache(page) &&
2097                             !reuse_swap_page(page, NULL)) {
2098                                 unlock_page(page);
2099                                 result = SCAN_SWAP_CACHE_PAGE;
2100                                 goto out;
2101                         }
2102                         /*
2103                          * Page is not in the swap cache. It can be collapsed
2104                          * into a THP.
2105                          */
2106                 }
2107
2108                 /*
2109                  * Isolate the page to avoid collapsing an hugepage
2110                  * currently in use by the VM.
2111                  */
2112                 if (isolate_lru_page(page)) {
2113                         unlock_page(page);
2114                         result = SCAN_DEL_PAGE_LRU;
2115                         goto out;
2116                 }
2117                 /* 0 stands for page_is_file_cache(page) == false */
2118                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2119                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2120                 VM_BUG_ON_PAGE(PageLRU(page), page);
2121
2122                 /* If there is no mapped pte young don't collapse the page */
2123                 if (pte_young(pteval) ||
2124                     page_is_young(page) || PageReferenced(page) ||
2125                     mmu_notifier_test_young(vma->vm_mm, address))
2126                         referenced = true;
2127         }
2128         if (likely(writable)) {
2129                 if (likely(referenced)) {
2130                         result = SCAN_SUCCEED;
2131                         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2132                                                             referenced, writable, result);
2133                         return 1;
2134                 }
2135         } else {
2136                 result = SCAN_PAGE_RO;
2137         }
2138
2139 out:
2140         release_pte_pages(pte, _pte);
2141         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2142                                             referenced, writable, result);
2143         return 0;
2144 }
2145
2146 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2147                                       struct vm_area_struct *vma,
2148                                       unsigned long address,
2149                                       spinlock_t *ptl)
2150 {
2151         pte_t *_pte;
2152         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2153                 pte_t pteval = *_pte;
2154                 struct page *src_page;
2155
2156                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2157                         clear_user_highpage(page, address);
2158                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2159                         if (is_zero_pfn(pte_pfn(pteval))) {
2160                                 /*
2161                                  * ptl mostly unnecessary.
2162                                  */
2163                                 spin_lock(ptl);
2164                                 /*
2165                                  * paravirt calls inside pte_clear here are
2166                                  * superfluous.
2167                                  */
2168                                 pte_clear(vma->vm_mm, address, _pte);
2169                                 spin_unlock(ptl);
2170                         }
2171                 } else {
2172                         src_page = pte_page(pteval);
2173                         copy_user_highpage(page, src_page, address, vma);
2174                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2175                         release_pte_page(src_page);
2176                         /*
2177                          * ptl mostly unnecessary, but preempt has to
2178                          * be disabled to update the per-cpu stats
2179                          * inside page_remove_rmap().
2180                          */
2181                         spin_lock(ptl);
2182                         /*
2183                          * paravirt calls inside pte_clear here are
2184                          * superfluous.
2185                          */
2186                         pte_clear(vma->vm_mm, address, _pte);
2187                         page_remove_rmap(src_page, false);
2188                         spin_unlock(ptl);
2189                         free_page_and_swap_cache(src_page);
2190                 }
2191
2192                 address += PAGE_SIZE;
2193                 page++;
2194         }
2195 }
2196
2197 static void khugepaged_alloc_sleep(void)
2198 {
2199         DEFINE_WAIT(wait);
2200
2201         add_wait_queue(&khugepaged_wait, &wait);
2202         freezable_schedule_timeout_interruptible(
2203                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2204         remove_wait_queue(&khugepaged_wait, &wait);
2205 }
2206
2207 static int khugepaged_node_load[MAX_NUMNODES];
2208
2209 static bool khugepaged_scan_abort(int nid)
2210 {
2211         int i;
2212
2213         /*
2214          * If zone_reclaim_mode is disabled, then no extra effort is made to
2215          * allocate memory locally.
2216          */
2217         if (!zone_reclaim_mode)
2218                 return false;
2219
2220         /* If there is a count for this node already, it must be acceptable */
2221         if (khugepaged_node_load[nid])
2222                 return false;
2223
2224         for (i = 0; i < MAX_NUMNODES; i++) {
2225                 if (!khugepaged_node_load[i])
2226                         continue;
2227                 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2228                         return true;
2229         }
2230         return false;
2231 }
2232
2233 #ifdef CONFIG_NUMA
2234 static int khugepaged_find_target_node(void)
2235 {
2236         static int last_khugepaged_target_node = NUMA_NO_NODE;
2237         int nid, target_node = 0, max_value = 0;
2238
2239         /* find first node with max normal pages hit */
2240         for (nid = 0; nid < MAX_NUMNODES; nid++)
2241                 if (khugepaged_node_load[nid] > max_value) {
2242                         max_value = khugepaged_node_load[nid];
2243                         target_node = nid;
2244                 }
2245
2246         /* do some balance if several nodes have the same hit record */
2247         if (target_node <= last_khugepaged_target_node)
2248                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2249                                 nid++)
2250                         if (max_value == khugepaged_node_load[nid]) {
2251                                 target_node = nid;
2252                                 break;
2253                         }
2254
2255         last_khugepaged_target_node = target_node;
2256         return target_node;
2257 }
2258
2259 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2260 {
2261         if (IS_ERR(*hpage)) {
2262                 if (!*wait)
2263                         return false;
2264
2265                 *wait = false;
2266                 *hpage = NULL;
2267                 khugepaged_alloc_sleep();
2268         } else if (*hpage) {
2269                 put_page(*hpage);
2270                 *hpage = NULL;
2271         }
2272
2273         return true;
2274 }
2275
2276 static struct page *
2277 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2278                        unsigned long address, int node)
2279 {
2280         VM_BUG_ON_PAGE(*hpage, *hpage);
2281
2282         /*
2283          * Before allocating the hugepage, release the mmap_sem read lock.
2284          * The allocation can take potentially a long time if it involves
2285          * sync compaction, and we do not need to hold the mmap_sem during
2286          * that. We will recheck the vma after taking it again in write mode.
2287          */
2288         up_read(&mm->mmap_sem);
2289
2290         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2291         if (unlikely(!*hpage)) {
2292                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2293                 *hpage = ERR_PTR(-ENOMEM);
2294                 return NULL;
2295         }
2296
2297         prep_transhuge_page(*hpage);
2298         count_vm_event(THP_COLLAPSE_ALLOC);
2299         return *hpage;
2300 }
2301 #else
2302 static int khugepaged_find_target_node(void)
2303 {
2304         return 0;
2305 }
2306
2307 static inline struct page *alloc_khugepaged_hugepage(void)
2308 {
2309         struct page *page;
2310
2311         page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2312                            HPAGE_PMD_ORDER);
2313         if (page)
2314                 prep_transhuge_page(page);
2315         return page;
2316 }
2317
2318 static struct page *khugepaged_alloc_hugepage(bool *wait)
2319 {
2320         struct page *hpage;
2321
2322         do {
2323                 hpage = alloc_khugepaged_hugepage();
2324                 if (!hpage) {
2325                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2326                         if (!*wait)
2327                                 return NULL;
2328
2329                         *wait = false;
2330                         khugepaged_alloc_sleep();
2331                 } else
2332                         count_vm_event(THP_COLLAPSE_ALLOC);
2333         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2334
2335         return hpage;
2336 }
2337
2338 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2339 {
2340         if (!*hpage)
2341                 *hpage = khugepaged_alloc_hugepage(wait);
2342
2343         if (unlikely(!*hpage))
2344                 return false;
2345
2346         return true;
2347 }
2348
2349 static struct page *
2350 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2351                        unsigned long address, int node)
2352 {
2353         up_read(&mm->mmap_sem);
2354         VM_BUG_ON(!*hpage);
2355
2356         return  *hpage;
2357 }
2358 #endif
2359
2360 static bool hugepage_vma_check(struct vm_area_struct *vma)
2361 {
2362         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2363             (vma->vm_flags & VM_NOHUGEPAGE))
2364                 return false;
2365         if (!vma->anon_vma || vma->vm_ops)
2366                 return false;
2367         if (is_vma_temporary_stack(vma))
2368                 return false;
2369         return !(vma->vm_flags & VM_NO_THP);
2370 }
2371
2372 /*
2373  * If mmap_sem temporarily dropped, revalidate vma
2374  * before taking mmap_sem.
2375  * Return 0 if succeeds, otherwise return none-zero
2376  * value (scan code).
2377  */
2378
2379 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address)
2380 {
2381         struct vm_area_struct *vma;
2382         unsigned long hstart, hend;
2383
2384         if (unlikely(khugepaged_test_exit(mm)))
2385                 return SCAN_ANY_PROCESS;
2386
2387         vma = find_vma(mm, address);
2388         if (!vma)
2389                 return SCAN_VMA_NULL;
2390
2391         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2392         hend = vma->vm_end & HPAGE_PMD_MASK;
2393         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2394                 return SCAN_ADDRESS_RANGE;
2395         if (!hugepage_vma_check(vma))
2396                 return SCAN_VMA_CHECK;
2397         return 0;
2398 }
2399
2400 /*
2401  * Bring missing pages in from swap, to complete THP collapse.
2402  * Only done if khugepaged_scan_pmd believes it is worthwhile.
2403  *
2404  * Called and returns without pte mapped or spinlocks held,
2405  * but with mmap_sem held to protect against vma changes.
2406  */
2407
2408 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
2409                                         struct vm_area_struct *vma,
2410                                         unsigned long address, pmd_t *pmd)
2411 {
2412         pte_t pteval;
2413         int swapped_in = 0, ret = 0;
2414         struct fault_env fe = {
2415                 .vma = vma,
2416                 .address = address,
2417                 .flags = FAULT_FLAG_ALLOW_RETRY,
2418                 .pmd = pmd,
2419         };
2420
2421         fe.pte = pte_offset_map(pmd, address);
2422         for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE;
2423                         fe.pte++, fe.address += PAGE_SIZE) {
2424                 pteval = *fe.pte;
2425                 if (!is_swap_pte(pteval))
2426                         continue;
2427                 swapped_in++;
2428                 ret = do_swap_page(&fe, pteval);
2429                 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
2430                 if (ret & VM_FAULT_RETRY) {
2431                         down_read(&mm->mmap_sem);
2432                         /* vma is no longer available, don't continue to swapin */
2433                         if (hugepage_vma_revalidate(mm, address))
2434                                 return false;
2435                         /* check if the pmd is still valid */
2436                         if (mm_find_pmd(mm, address) != pmd)
2437                                 return false;
2438                 }
2439                 if (ret & VM_FAULT_ERROR) {
2440                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, 0);
2441                         return false;
2442                 }
2443                 /* pte is unmapped now, we need to map it */
2444                 fe.pte = pte_offset_map(pmd, fe.address);
2445         }
2446         fe.pte--;
2447         pte_unmap(fe.pte);
2448         trace_mm_collapse_huge_page_swapin(mm, swapped_in, 1);
2449         return true;
2450 }
2451
2452 static void collapse_huge_page(struct mm_struct *mm,
2453                                    unsigned long address,
2454                                    struct page **hpage,
2455                                    struct vm_area_struct *vma,
2456                                    int node)
2457 {
2458         pmd_t *pmd, _pmd;
2459         pte_t *pte;
2460         pgtable_t pgtable;
2461         struct page *new_page;
2462         spinlock_t *pmd_ptl, *pte_ptl;
2463         int isolated = 0, result = 0;
2464         struct mem_cgroup *memcg;
2465         unsigned long mmun_start;       /* For mmu_notifiers */
2466         unsigned long mmun_end;         /* For mmu_notifiers */
2467         gfp_t gfp;
2468
2469         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2470
2471         /* Only allocate from the target node */
2472         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
2473
2474         /* release the mmap_sem read lock. */
2475         new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2476         if (!new_page) {
2477                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2478                 goto out_nolock;
2479         }
2480
2481         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2482                 result = SCAN_CGROUP_CHARGE_FAIL;
2483                 goto out_nolock;
2484         }
2485
2486         down_read(&mm->mmap_sem);
2487         result = hugepage_vma_revalidate(mm, address);
2488         if (result) {
2489                 mem_cgroup_cancel_charge(new_page, memcg, true);
2490                 up_read(&mm->mmap_sem);
2491                 goto out_nolock;
2492         }
2493
2494         pmd = mm_find_pmd(mm, address);
2495         if (!pmd) {
2496                 result = SCAN_PMD_NULL;
2497                 mem_cgroup_cancel_charge(new_page, memcg, true);
2498                 up_read(&mm->mmap_sem);
2499                 goto out_nolock;
2500         }
2501
2502         /*
2503          * __collapse_huge_page_swapin always returns with mmap_sem locked.
2504          * If it fails, release mmap_sem and jump directly out.
2505          * Continuing to collapse causes inconsistency.
2506          */
2507         if (!__collapse_huge_page_swapin(mm, vma, address, pmd)) {
2508                 mem_cgroup_cancel_charge(new_page, memcg, true);
2509                 up_read(&mm->mmap_sem);
2510                 goto out_nolock;
2511         }
2512
2513         up_read(&mm->mmap_sem);
2514         /*
2515          * Prevent all access to pagetables with the exception of
2516          * gup_fast later handled by the ptep_clear_flush and the VM
2517          * handled by the anon_vma lock + PG_lock.
2518          */
2519         down_write(&mm->mmap_sem);
2520         result = hugepage_vma_revalidate(mm, address);
2521         if (result)
2522                 goto out;
2523         /* check if the pmd is still valid */
2524         if (mm_find_pmd(mm, address) != pmd)
2525                 goto out;
2526
2527         anon_vma_lock_write(vma->anon_vma);
2528
2529         pte = pte_offset_map(pmd, address);
2530         pte_ptl = pte_lockptr(mm, pmd);
2531
2532         mmun_start = address;
2533         mmun_end   = address + HPAGE_PMD_SIZE;
2534         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2535         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2536         /*
2537          * After this gup_fast can't run anymore. This also removes
2538          * any huge TLB entry from the CPU so we won't allow
2539          * huge and small TLB entries for the same virtual address
2540          * to avoid the risk of CPU bugs in that area.
2541          */
2542         _pmd = pmdp_collapse_flush(vma, address, pmd);
2543         spin_unlock(pmd_ptl);
2544         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2545
2546         spin_lock(pte_ptl);
2547         isolated = __collapse_huge_page_isolate(vma, address, pte);
2548         spin_unlock(pte_ptl);
2549
2550         if (unlikely(!isolated)) {
2551                 pte_unmap(pte);
2552                 spin_lock(pmd_ptl);
2553                 BUG_ON(!pmd_none(*pmd));
2554                 /*
2555                  * We can only use set_pmd_at when establishing
2556                  * hugepmds and never for establishing regular pmds that
2557                  * points to regular pagetables. Use pmd_populate for that
2558                  */
2559                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2560                 spin_unlock(pmd_ptl);
2561                 anon_vma_unlock_write(vma->anon_vma);
2562                 result = SCAN_FAIL;
2563                 goto out;
2564         }
2565
2566         /*
2567          * All pages are isolated and locked so anon_vma rmap
2568          * can't run anymore.
2569          */
2570         anon_vma_unlock_write(vma->anon_vma);
2571
2572         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2573         pte_unmap(pte);
2574         __SetPageUptodate(new_page);
2575         pgtable = pmd_pgtable(_pmd);
2576
2577         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2578         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2579
2580         /*
2581          * spin_lock() below is not the equivalent of smp_wmb(), so
2582          * this is needed to avoid the copy_huge_page writes to become
2583          * visible after the set_pmd_at() write.
2584          */
2585         smp_wmb();
2586
2587         spin_lock(pmd_ptl);
2588         BUG_ON(!pmd_none(*pmd));
2589         page_add_new_anon_rmap(new_page, vma, address, true);
2590         mem_cgroup_commit_charge(new_page, memcg, false, true);
2591         lru_cache_add_active_or_unevictable(new_page, vma);
2592         pgtable_trans_huge_deposit(mm, pmd, pgtable);
2593         set_pmd_at(mm, address, pmd, _pmd);
2594         update_mmu_cache_pmd(vma, address, pmd);
2595         spin_unlock(pmd_ptl);
2596
2597         *hpage = NULL;
2598
2599         khugepaged_pages_collapsed++;
2600         result = SCAN_SUCCEED;
2601 out_up_write:
2602         up_write(&mm->mmap_sem);
2603 out_nolock:
2604         trace_mm_collapse_huge_page(mm, isolated, result);
2605         return;
2606 out:
2607         mem_cgroup_cancel_charge(new_page, memcg, true);
2608         goto out_up_write;
2609 }
2610
2611 static int khugepaged_scan_pmd(struct mm_struct *mm,
2612                                struct vm_area_struct *vma,
2613                                unsigned long address,
2614                                struct page **hpage)
2615 {
2616         pmd_t *pmd;
2617         pte_t *pte, *_pte;
2618         int ret = 0, none_or_zero = 0, result = 0;
2619         struct page *page = NULL;
2620         unsigned long _address;
2621         spinlock_t *ptl;
2622         int node = NUMA_NO_NODE, unmapped = 0;
2623         bool writable = false, referenced = false;
2624
2625         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2626
2627         pmd = mm_find_pmd(mm, address);
2628         if (!pmd) {
2629                 result = SCAN_PMD_NULL;
2630                 goto out;
2631         }
2632
2633         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2634         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2635         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2636              _pte++, _address += PAGE_SIZE) {
2637                 pte_t pteval = *_pte;
2638                 if (is_swap_pte(pteval)) {
2639                         if (++unmapped <= khugepaged_max_ptes_swap) {
2640                                 continue;
2641                         } else {
2642                                 result = SCAN_EXCEED_SWAP_PTE;
2643                                 goto out_unmap;
2644                         }
2645                 }
2646                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2647                         if (!userfaultfd_armed(vma) &&
2648                             ++none_or_zero <= khugepaged_max_ptes_none) {
2649                                 continue;
2650                         } else {
2651                                 result = SCAN_EXCEED_NONE_PTE;
2652                                 goto out_unmap;
2653                         }
2654                 }
2655                 if (!pte_present(pteval)) {
2656                         result = SCAN_PTE_NON_PRESENT;
2657                         goto out_unmap;
2658                 }
2659                 if (pte_write(pteval))
2660                         writable = true;
2661
2662                 page = vm_normal_page(vma, _address, pteval);
2663                 if (unlikely(!page)) {
2664                         result = SCAN_PAGE_NULL;
2665                         goto out_unmap;
2666                 }
2667
2668                 /* TODO: teach khugepaged to collapse THP mapped with pte */
2669                 if (PageCompound(page)) {
2670                         result = SCAN_PAGE_COMPOUND;
2671                         goto out_unmap;
2672                 }
2673
2674                 /*
2675                  * Record which node the original page is from and save this
2676                  * information to khugepaged_node_load[].
2677                  * Khupaged will allocate hugepage from the node has the max
2678                  * hit record.
2679                  */
2680                 node = page_to_nid(page);
2681                 if (khugepaged_scan_abort(node)) {
2682                         result = SCAN_SCAN_ABORT;
2683                         goto out_unmap;
2684                 }
2685                 khugepaged_node_load[node]++;
2686                 if (!PageLRU(page)) {
2687                         result = SCAN_PAGE_LRU;
2688                         goto out_unmap;
2689                 }
2690                 if (PageLocked(page)) {
2691                         result = SCAN_PAGE_LOCK;
2692                         goto out_unmap;
2693                 }
2694                 if (!PageAnon(page)) {
2695                         result = SCAN_PAGE_ANON;
2696                         goto out_unmap;
2697                 }
2698
2699                 /*
2700                  * cannot use mapcount: can't collapse if there's a gup pin.
2701                  * The page must only be referenced by the scanned process
2702                  * and page swap cache.
2703                  */
2704                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2705                         result = SCAN_PAGE_COUNT;
2706                         goto out_unmap;
2707                 }
2708                 if (pte_young(pteval) ||
2709                     page_is_young(page) || PageReferenced(page) ||
2710                     mmu_notifier_test_young(vma->vm_mm, address))
2711                         referenced = true;
2712         }
2713         if (writable) {
2714                 if (referenced) {
2715                         result = SCAN_SUCCEED;
2716                         ret = 1;
2717                 } else {
2718                         result = SCAN_NO_REFERENCED_PAGE;
2719                 }
2720         } else {
2721                 result = SCAN_PAGE_RO;
2722         }
2723 out_unmap:
2724         pte_unmap_unlock(pte, ptl);
2725         if (ret) {
2726                 node = khugepaged_find_target_node();
2727                 /* collapse_huge_page will return with the mmap_sem released */
2728                 collapse_huge_page(mm, address, hpage, vma, node);
2729         }
2730 out:
2731         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2732                                      none_or_zero, result, unmapped);
2733         return ret;
2734 }
2735
2736 static void collect_mm_slot(struct mm_slot *mm_slot)
2737 {
2738         struct mm_struct *mm = mm_slot->mm;
2739
2740         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2741
2742         if (khugepaged_test_exit(mm)) {
2743                 /* free mm_slot */
2744                 hash_del(&mm_slot->hash);
2745                 list_del(&mm_slot->mm_node);
2746
2747                 /*
2748                  * Not strictly needed because the mm exited already.
2749                  *
2750                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2751                  */
2752
2753                 /* khugepaged_mm_lock actually not necessary for the below */
2754                 free_mm_slot(mm_slot);
2755                 mmdrop(mm);
2756         }
2757 }
2758
2759 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2760                                             struct page **hpage)
2761         __releases(&khugepaged_mm_lock)
2762         __acquires(&khugepaged_mm_lock)
2763 {
2764         struct mm_slot *mm_slot;
2765         struct mm_struct *mm;
2766         struct vm_area_struct *vma;
2767         int progress = 0;
2768
2769         VM_BUG_ON(!pages);
2770         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2771
2772         if (khugepaged_scan.mm_slot)
2773                 mm_slot = khugepaged_scan.mm_slot;
2774         else {
2775                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2776                                      struct mm_slot, mm_node);
2777                 khugepaged_scan.address = 0;
2778                 khugepaged_scan.mm_slot = mm_slot;
2779         }
2780         spin_unlock(&khugepaged_mm_lock);
2781
2782         mm = mm_slot->mm;
2783         down_read(&mm->mmap_sem);
2784         if (unlikely(khugepaged_test_exit(mm)))
2785                 vma = NULL;
2786         else
2787                 vma = find_vma(mm, khugepaged_scan.address);
2788
2789         progress++;
2790         for (; vma; vma = vma->vm_next) {
2791                 unsigned long hstart, hend;
2792
2793                 cond_resched();
2794                 if (unlikely(khugepaged_test_exit(mm))) {
2795                         progress++;
2796                         break;
2797                 }
2798                 if (!hugepage_vma_check(vma)) {
2799 skip:
2800                         progress++;
2801                         continue;
2802                 }
2803                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2804                 hend = vma->vm_end & HPAGE_PMD_MASK;
2805                 if (hstart >= hend)
2806                         goto skip;
2807                 if (khugepaged_scan.address > hend)
2808                         goto skip;
2809                 if (khugepaged_scan.address < hstart)
2810                         khugepaged_scan.address = hstart;
2811                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2812
2813                 while (khugepaged_scan.address < hend) {
2814                         int ret;
2815                         cond_resched();
2816                         if (unlikely(khugepaged_test_exit(mm)))
2817                                 goto breakouterloop;
2818
2819                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2820                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2821                                   hend);
2822                         ret = khugepaged_scan_pmd(mm, vma,
2823                                                   khugepaged_scan.address,
2824                                                   hpage);
2825                         /* move to next address */
2826                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2827                         progress += HPAGE_PMD_NR;
2828                         if (ret)
2829                                 /* we released mmap_sem so break loop */
2830                                 goto breakouterloop_mmap_sem;
2831                         if (progress >= pages)
2832                                 goto breakouterloop;
2833                 }
2834         }
2835 breakouterloop:
2836         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2837 breakouterloop_mmap_sem:
2838
2839         spin_lock(&khugepaged_mm_lock);
2840         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2841         /*
2842          * Release the current mm_slot if this mm is about to die, or
2843          * if we scanned all vmas of this mm.
2844          */
2845         if (khugepaged_test_exit(mm) || !vma) {
2846                 /*
2847                  * Make sure that if mm_users is reaching zero while
2848                  * khugepaged runs here, khugepaged_exit will find
2849                  * mm_slot not pointing to the exiting mm.
2850                  */
2851                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2852                         khugepaged_scan.mm_slot = list_entry(
2853                                 mm_slot->mm_node.next,
2854                                 struct mm_slot, mm_node);
2855                         khugepaged_scan.address = 0;
2856                 } else {
2857                         khugepaged_scan.mm_slot = NULL;
2858                         khugepaged_full_scans++;
2859                 }
2860
2861                 collect_mm_slot(mm_slot);
2862         }
2863
2864         return progress;
2865 }
2866
2867 static int khugepaged_has_work(void)
2868 {
2869         return !list_empty(&khugepaged_scan.mm_head) &&
2870                 khugepaged_enabled();
2871 }
2872
2873 static int khugepaged_wait_event(void)
2874 {
2875         return !list_empty(&khugepaged_scan.mm_head) ||
2876                 kthread_should_stop();
2877 }
2878
2879 static void khugepaged_do_scan(void)
2880 {
2881         struct page *hpage = NULL;
2882         unsigned int progress = 0, pass_through_head = 0;
2883         unsigned int pages = khugepaged_pages_to_scan;
2884         bool wait = true;
2885
2886         barrier(); /* write khugepaged_pages_to_scan to local stack */
2887
2888         while (progress < pages) {
2889                 if (!khugepaged_prealloc_page(&hpage, &wait))
2890                         break;
2891
2892                 cond_resched();
2893
2894                 if (unlikely(kthread_should_stop() || try_to_freeze()))
2895                         break;
2896
2897                 spin_lock(&khugepaged_mm_lock);
2898                 if (!khugepaged_scan.mm_slot)
2899                         pass_through_head++;
2900                 if (khugepaged_has_work() &&
2901                     pass_through_head < 2)
2902                         progress += khugepaged_scan_mm_slot(pages - progress,
2903                                                             &hpage);
2904                 else
2905                         progress = pages;
2906                 spin_unlock(&khugepaged_mm_lock);
2907         }
2908
2909         if (!IS_ERR_OR_NULL(hpage))
2910                 put_page(hpage);
2911 }
2912
2913 static bool khugepaged_should_wakeup(void)
2914 {
2915         return kthread_should_stop() ||
2916                time_after_eq(jiffies, khugepaged_sleep_expire);
2917 }
2918
2919 static void khugepaged_wait_work(void)
2920 {
2921         if (khugepaged_has_work()) {
2922                 const unsigned long scan_sleep_jiffies =
2923                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2924
2925                 if (!scan_sleep_jiffies)
2926                         return;
2927
2928                 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2929                 wait_event_freezable_timeout(khugepaged_wait,
2930                                              khugepaged_should_wakeup(),
2931                                              scan_sleep_jiffies);
2932                 return;
2933         }
2934
2935         if (khugepaged_enabled())
2936                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2937 }
2938
2939 static int khugepaged(void *none)
2940 {
2941         struct mm_slot *mm_slot;
2942
2943         set_freezable();
2944         set_user_nice(current, MAX_NICE);
2945
2946         while (!kthread_should_stop()) {
2947                 khugepaged_do_scan();
2948                 khugepaged_wait_work();
2949         }
2950
2951         spin_lock(&khugepaged_mm_lock);
2952         mm_slot = khugepaged_scan.mm_slot;
2953         khugepaged_scan.mm_slot = NULL;
2954         if (mm_slot)
2955                 collect_mm_slot(mm_slot);
2956         spin_unlock(&khugepaged_mm_lock);
2957         return 0;
2958 }
2959
2960 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2961                 unsigned long haddr, pmd_t *pmd)
2962 {
2963         struct mm_struct *mm = vma->vm_mm;
2964         pgtable_t pgtable;
2965         pmd_t _pmd;
2966         int i;
2967
2968         /* leave pmd empty until pte is filled */
2969         pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2970
2971         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2972         pmd_populate(mm, &_pmd, pgtable);
2973
2974         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2975                 pte_t *pte, entry;
2976                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2977                 entry = pte_mkspecial(entry);
2978                 pte = pte_offset_map(&_pmd, haddr);
2979                 VM_BUG_ON(!pte_none(*pte));
2980                 set_pte_at(mm, haddr, pte, entry);
2981                 pte_unmap(pte);
2982         }
2983         smp_wmb(); /* make pte visible before pmd */
2984         pmd_populate(mm, pmd, pgtable);
2985         put_huge_zero_page();
2986 }
2987
2988 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2989                 unsigned long haddr, bool freeze)
2990 {
2991         struct mm_struct *mm = vma->vm_mm;
2992         struct page *page;
2993         pgtable_t pgtable;
2994         pmd_t _pmd;
2995         bool young, write, dirty;
2996         unsigned long addr;
2997         int i;
2998
2999         VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
3000         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
3001         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
3002         VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
3003
3004         count_vm_event(THP_SPLIT_PMD);
3005
3006         if (!vma_is_anonymous(vma)) {
3007                 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
3008                 if (is_huge_zero_pmd(_pmd))
3009                         put_huge_zero_page();
3010                 if (vma_is_dax(vma))
3011                         return;
3012                 page = pmd_page(_pmd);
3013                 if (!PageReferenced(page) && pmd_young(_pmd))
3014                         SetPageReferenced(page);
3015                 page_remove_rmap(page, true);
3016                 put_page(page);
3017                 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
3018                 return;
3019         } else if (is_huge_zero_pmd(*pmd)) {
3020                 return __split_huge_zero_page_pmd(vma, haddr, pmd);
3021         }
3022
3023         page = pmd_page(*pmd);
3024         VM_BUG_ON_PAGE(!page_count(page), page);
3025         page_ref_add(page, HPAGE_PMD_NR - 1);
3026         write = pmd_write(*pmd);
3027         young = pmd_young(*pmd);
3028         dirty = pmd_dirty(*pmd);
3029
3030         pmdp_huge_split_prepare(vma, haddr, pmd);
3031         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
3032         pmd_populate(mm, &_pmd, pgtable);
3033
3034         for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
3035                 pte_t entry, *pte;
3036                 /*
3037                  * Note that NUMA hinting access restrictions are not
3038                  * transferred to avoid any possibility of altering
3039                  * permissions across VMAs.
3040                  */
3041                 if (freeze) {
3042                         swp_entry_t swp_entry;
3043                         swp_entry = make_migration_entry(page + i, write);
3044                         entry = swp_entry_to_pte(swp_entry);
3045                 } else {
3046                         entry = mk_pte(page + i, vma->vm_page_prot);
3047                         entry = maybe_mkwrite(entry, vma);
3048                         if (!write)
3049                                 entry = pte_wrprotect(entry);
3050                         if (!young)
3051                                 entry = pte_mkold(entry);
3052                 }
3053                 if (dirty)
3054                         SetPageDirty(page + i);
3055                 pte = pte_offset_map(&_pmd, addr);
3056                 BUG_ON(!pte_none(*pte));
3057                 set_pte_at(mm, addr, pte, entry);
3058                 atomic_inc(&page[i]._mapcount);
3059                 pte_unmap(pte);
3060         }
3061
3062         /*
3063          * Set PG_double_map before dropping compound_mapcount to avoid
3064          * false-negative page_mapped().
3065          */
3066         if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
3067                 for (i = 0; i < HPAGE_PMD_NR; i++)
3068                         atomic_inc(&page[i]._mapcount);
3069         }
3070
3071         if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
3072                 /* Last compound_mapcount is gone. */
3073                 __dec_zone_page_state(page, NR_ANON_THPS);
3074                 if (TestClearPageDoubleMap(page)) {
3075                         /* No need in mapcount reference anymore */
3076                         for (i = 0; i < HPAGE_PMD_NR; i++)
3077                                 atomic_dec(&page[i]._mapcount);
3078                 }
3079         }
3080
3081         smp_wmb(); /* make pte visible before pmd */
3082         /*
3083          * Up to this point the pmd is present and huge and userland has the
3084          * whole access to the hugepage during the split (which happens in
3085          * place). If we overwrite the pmd with the not-huge version pointing
3086          * to the pte here (which of course we could if all CPUs were bug
3087          * free), userland could trigger a small page size TLB miss on the
3088          * small sized TLB while the hugepage TLB entry is still established in
3089          * the huge TLB. Some CPU doesn't like that.
3090          * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
3091          * 383 on page 93. Intel should be safe but is also warns that it's
3092          * only safe if the permission and cache attributes of the two entries
3093          * loaded in the two TLB is identical (which should be the case here).
3094          * But it is generally safer to never allow small and huge TLB entries
3095          * for the same virtual address to be loaded simultaneously. So instead
3096          * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
3097          * current pmd notpresent (atomically because here the pmd_trans_huge
3098          * and pmd_trans_splitting must remain set at all times on the pmd
3099          * until the split is complete for this pmd), then we flush the SMP TLB
3100          * and finally we write the non-huge version of the pmd entry with
3101          * pmd_populate.
3102          */
3103         pmdp_invalidate(vma, haddr, pmd);
3104         pmd_populate(mm, pmd, pgtable);
3105
3106         if (freeze) {
3107                 for (i = 0; i < HPAGE_PMD_NR; i++) {
3108                         page_remove_rmap(page + i, false);
3109                         put_page(page + i);
3110                 }
3111         }
3112 }
3113
3114 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
3115                 unsigned long address, bool freeze, struct page *page)
3116 {
3117         spinlock_t *ptl;
3118         struct mm_struct *mm = vma->vm_mm;
3119         unsigned long haddr = address & HPAGE_PMD_MASK;
3120
3121         mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
3122         ptl = pmd_lock(mm, pmd);
3123
3124         /*
3125          * If caller asks to setup a migration entries, we need a page to check
3126          * pmd against. Otherwise we can end up replacing wrong page.
3127          */
3128         VM_BUG_ON(freeze && !page);
3129         if (page && page != pmd_page(*pmd))
3130                 goto out;
3131
3132         if (pmd_trans_huge(*pmd)) {
3133                 page = pmd_page(*pmd);
3134                 if (PageMlocked(page))
3135                         clear_page_mlock(page);
3136         } else if (!pmd_devmap(*pmd))
3137                 goto out;
3138         __split_huge_pmd_locked(vma, pmd, haddr, freeze);
3139 out:
3140         spin_unlock(ptl);
3141         mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3142 }
3143
3144 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3145                 bool freeze, struct page *page)
3146 {
3147         pgd_t *pgd;
3148         pud_t *pud;
3149         pmd_t *pmd;
3150
3151         pgd = pgd_offset(vma->vm_mm, address);
3152         if (!pgd_present(*pgd))
3153                 return;
3154
3155         pud = pud_offset(pgd, address);
3156         if (!pud_present(*pud))
3157                 return;
3158
3159         pmd = pmd_offset(pud, address);
3160
3161         __split_huge_pmd(vma, pmd, address, freeze, page);
3162 }
3163
3164 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3165                              unsigned long start,
3166                              unsigned long end,
3167                              long adjust_next)
3168 {
3169         /*
3170          * If the new start address isn't hpage aligned and it could
3171          * previously contain an hugepage: check if we need to split
3172          * an huge pmd.
3173          */
3174         if (start & ~HPAGE_PMD_MASK &&
3175             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3176             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3177                 split_huge_pmd_address(vma, start, false, NULL);
3178
3179         /*
3180          * If the new end address isn't hpage aligned and it could
3181          * previously contain an hugepage: check if we need to split
3182          * an huge pmd.
3183          */
3184         if (end & ~HPAGE_PMD_MASK &&
3185             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3186             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3187                 split_huge_pmd_address(vma, end, false, NULL);
3188
3189         /*
3190          * If we're also updating the vma->vm_next->vm_start, if the new
3191          * vm_next->vm_start isn't page aligned and it could previously
3192          * contain an hugepage: check if we need to split an huge pmd.
3193          */
3194         if (adjust_next > 0) {
3195                 struct vm_area_struct *next = vma->vm_next;
3196                 unsigned long nstart = next->vm_start;
3197                 nstart += adjust_next << PAGE_SHIFT;
3198                 if (nstart & ~HPAGE_PMD_MASK &&
3199                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3200                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3201                         split_huge_pmd_address(next, nstart, false, NULL);
3202         }
3203 }
3204
3205 static void freeze_page(struct page *page)
3206 {
3207         enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
3208                 TTU_RMAP_LOCKED;
3209         int i, ret;
3210
3211         VM_BUG_ON_PAGE(!PageHead(page), page);
3212
3213         if (PageAnon(page))
3214                 ttu_flags |= TTU_MIGRATION;
3215
3216         /* We only need TTU_SPLIT_HUGE_PMD once */
3217         ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3218         for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3219                 /* Cut short if the page is unmapped */
3220                 if (page_count(page) == 1)
3221                         return;
3222
3223                 ret = try_to_unmap(page + i, ttu_flags);
3224         }
3225         VM_BUG_ON_PAGE(ret, page + i - 1);
3226 }
3227
3228 static void unfreeze_page(struct page *page)
3229 {
3230         int i;
3231
3232         for (i = 0; i < HPAGE_PMD_NR; i++)
3233                 remove_migration_ptes(page + i, page + i, true);
3234 }
3235
3236 static void __split_huge_page_tail(struct page *head, int tail,
3237                 struct lruvec *lruvec, struct list_head *list)
3238 {
3239         struct page *page_tail = head + tail;
3240
3241         VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3242         VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
3243
3244         /*
3245          * tail_page->_refcount is zero and not changing from under us. But
3246          * get_page_unless_zero() may be running from under us on the
3247          * tail_page. If we used atomic_set() below instead of atomic_inc() or
3248          * atomic_add(), we would then run atomic_set() concurrently with
3249          * get_page_unless_zero(), and atomic_set() is implemented in C not
3250          * using locked ops. spin_unlock on x86 sometime uses locked ops
3251          * because of PPro errata 66, 92, so unless somebody can guarantee
3252          * atomic_set() here would be safe on all archs (and not only on x86),
3253          * it's safer to use atomic_inc()/atomic_add().
3254          */
3255         if (PageAnon(head)) {
3256                 page_ref_inc(page_tail);
3257         } else {
3258                 /* Additional pin to radix tree */
3259                 page_ref_add(page_tail, 2);
3260         }
3261
3262         page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3263         page_tail->flags |= (head->flags &
3264                         ((1L << PG_referenced) |
3265                          (1L << PG_swapbacked) |
3266                          (1L << PG_mlocked) |
3267                          (1L << PG_uptodate) |
3268                          (1L << PG_active) |
3269                          (1L << PG_locked) |
3270                          (1L << PG_unevictable) |
3271                          (1L << PG_dirty)));
3272
3273         /*
3274          * After clearing PageTail the gup refcount can be released.
3275          * Page flags also must be visible before we make the page non-compound.
3276          */
3277         smp_wmb();
3278
3279         clear_compound_head(page_tail);
3280
3281         if (page_is_young(head))
3282                 set_page_young(page_tail);
3283         if (page_is_idle(head))
3284                 set_page_idle(page_tail);
3285
3286         /* ->mapping in first tail page is compound_mapcount */
3287         VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3288                         page_tail);
3289         page_tail->mapping = head->mapping;
3290
3291         page_tail->index = head->index + tail;
3292         page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3293         lru_add_page_tail(head, page_tail, lruvec, list);
3294 }
3295
3296 static void __split_huge_page(struct page *page, struct list_head *list,
3297                 unsigned long flags)
3298 {
3299         struct page *head = compound_head(page);
3300         struct zone *zone = page_zone(head);
3301         struct lruvec *lruvec;
3302         pgoff_t end = -1;
3303         int i;
3304
3305         lruvec = mem_cgroup_page_lruvec(head, zone);
3306
3307         /* complete memcg works before add pages to LRU */
3308         mem_cgroup_split_huge_fixup(head);
3309
3310         if (!PageAnon(page))
3311                 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
3312
3313         for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
3314                 __split_huge_page_tail(head, i, lruvec, list);
3315                 /* Some pages can be beyond i_size: drop them from page cache */
3316                 if (head[i].index >= end) {
3317                         __ClearPageDirty(head + i);
3318                         __delete_from_page_cache(head + i, NULL);
3319                         if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
3320                                 shmem_uncharge(head->mapping->host, 1);
3321                         put_page(head + i);
3322                 }
3323         }
3324
3325         ClearPageCompound(head);
3326         /* See comment in __split_huge_page_tail() */
3327         if (PageAnon(head)) {
3328                 page_ref_inc(head);
3329         } else {
3330                 /* Additional pin to radix tree */
3331                 page_ref_add(head, 2);
3332                 spin_unlock(&head->mapping->tree_lock);
3333         }
3334
3335         spin_unlock_irqrestore(&page_zone(head)->lru_lock, flags);
3336
3337         unfreeze_page(head);
3338
3339         for (i = 0; i < HPAGE_PMD_NR; i++) {
3340                 struct page *subpage = head + i;
3341                 if (subpage == page)
3342                         continue;
3343                 unlock_page(subpage);
3344
3345                 /*
3346                  * Subpages may be freed if there wasn't any mapping
3347                  * like if add_to_swap() is running on a lru page that
3348                  * had its mapping zapped. And freeing these pages
3349                  * requires taking the lru_lock so we do the put_page
3350                  * of the tail pages after the split is complete.
3351                  */
3352                 put_page(subpage);
3353         }
3354 }
3355
3356 int total_mapcount(struct page *page)
3357 {
3358         int i, compound, ret;
3359
3360         VM_BUG_ON_PAGE(PageTail(page), page);
3361
3362         if (likely(!PageCompound(page)))
3363                 return atomic_read(&page->_mapcount) + 1;
3364
3365         compound = compound_mapcount(page);
3366         if (PageHuge(page))
3367                 return compound;
3368         ret = compound;
3369         for (i = 0; i < HPAGE_PMD_NR; i++)
3370                 ret += atomic_read(&page[i]._mapcount) + 1;
3371         /* File pages has compound_mapcount included in _mapcount */
3372         if (!PageAnon(page))
3373                 return ret - compound * HPAGE_PMD_NR;
3374         if (PageDoubleMap(page))
3375                 ret -= HPAGE_PMD_NR;
3376         return ret;
3377 }
3378
3379 /*
3380  * This calculates accurately how many mappings a transparent hugepage
3381  * has (unlike page_mapcount() which isn't fully accurate). This full
3382  * accuracy is primarily needed to know if copy-on-write faults can
3383  * reuse the page and change the mapping to read-write instead of
3384  * copying them. At the same time this returns the total_mapcount too.
3385  *
3386  * The function returns the highest mapcount any one of the subpages
3387  * has. If the return value is one, even if different processes are
3388  * mapping different subpages of the transparent hugepage, they can
3389  * all reuse it, because each process is reusing a different subpage.
3390  *
3391  * The total_mapcount is instead counting all virtual mappings of the
3392  * subpages. If the total_mapcount is equal to "one", it tells the
3393  * caller all mappings belong to the same "mm" and in turn the
3394  * anon_vma of the transparent hugepage can become the vma->anon_vma
3395  * local one as no other process may be mapping any of the subpages.
3396  *
3397  * It would be more accurate to replace page_mapcount() with
3398  * page_trans_huge_mapcount(), however we only use
3399  * page_trans_huge_mapcount() in the copy-on-write faults where we
3400  * need full accuracy to avoid breaking page pinning, because
3401  * page_trans_huge_mapcount() is slower than page_mapcount().
3402  */
3403 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3404 {
3405         int i, ret, _total_mapcount, mapcount;
3406
3407         /* hugetlbfs shouldn't call it */
3408         VM_BUG_ON_PAGE(PageHuge(page), page);
3409
3410         if (likely(!PageTransCompound(page))) {
3411                 mapcount = atomic_read(&page->_mapcount) + 1;
3412                 if (total_mapcount)
3413                         *total_mapcount = mapcount;
3414                 return mapcount;
3415         }
3416
3417         page = compound_head(page);
3418
3419         _total_mapcount = ret = 0;
3420         for (i = 0; i < HPAGE_PMD_NR; i++) {
3421                 mapcount = atomic_read(&page[i]._mapcount) + 1;
3422                 ret = max(ret, mapcount);
3423                 _total_mapcount += mapcount;
3424         }
3425         if (PageDoubleMap(page)) {
3426                 ret -= 1;
3427                 _total_mapcount -= HPAGE_PMD_NR;
3428         }
3429         mapcount = compound_mapcount(page);
3430         ret += mapcount;
3431         _total_mapcount += mapcount;
3432         if (total_mapcount)
3433                 *total_mapcount = _total_mapcount;
3434         return ret;
3435 }
3436
3437 /*
3438  * This function splits huge page into normal pages. @page can point to any
3439  * subpage of huge page to split. Split doesn't change the position of @page.
3440  *
3441  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3442  * The huge page must be locked.
3443  *
3444  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3445  *
3446  * Both head page and tail pages will inherit mapping, flags, and so on from
3447  * the hugepage.
3448  *
3449  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3450  * they are not mapped.
3451  *
3452  * Returns 0 if the hugepage is split successfully.
3453  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3454  * us.
3455  */
3456 int split_huge_page_to_list(struct page *page, struct list_head *list)
3457 {
3458         struct page *head = compound_head(page);
3459         struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3460         struct anon_vma *anon_vma = NULL;
3461         struct address_space *mapping = NULL;
3462         int count, mapcount, extra_pins, ret;
3463         bool mlocked;
3464         unsigned long flags;
3465
3466         VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3467         VM_BUG_ON_PAGE(!PageLocked(page), page);
3468         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3469         VM_BUG_ON_PAGE(!PageCompound(page), page);
3470
3471         if (PageAnon(head)) {
3472                 /*
3473                  * The caller does not necessarily hold an mmap_sem that would
3474                  * prevent the anon_vma disappearing so we first we take a
3475                  * reference to it and then lock the anon_vma for write. This
3476                  * is similar to page_lock_anon_vma_read except the write lock
3477                  * is taken to serialise against parallel split or collapse
3478                  * operations.
3479                  */
3480                 anon_vma = page_get_anon_vma(head);
3481                 if (!anon_vma) {
3482                         ret = -EBUSY;
3483                         goto out;
3484                 }
3485                 extra_pins = 0;
3486                 mapping = NULL;
3487                 anon_vma_lock_write(anon_vma);
3488         } else {
3489                 mapping = head->mapping;
3490
3491                 /* Truncated ? */
3492                 if (!mapping) {
3493                         ret = -EBUSY;
3494                         goto out;
3495                 }
3496
3497                 /* Addidional pins from radix tree */
3498                 extra_pins = HPAGE_PMD_NR;
3499                 anon_vma = NULL;
3500                 i_mmap_lock_read(mapping);
3501         }
3502
3503         /*
3504          * Racy check if we can split the page, before freeze_page() will
3505          * split PMDs
3506          */
3507         if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
3508                 ret = -EBUSY;
3509                 goto out_unlock;
3510         }
3511
3512         mlocked = PageMlocked(page);
3513         freeze_page(head);
3514         VM_BUG_ON_PAGE(compound_mapcount(head), head);
3515
3516         /* Make sure the page is not on per-CPU pagevec as it takes pin */
3517         if (mlocked)
3518                 lru_add_drain();
3519
3520         /* prevent PageLRU to go away from under us, and freeze lru stats */
3521         spin_lock_irqsave(&page_zone(head)->lru_lock, flags);
3522
3523         if (mapping) {
3524                 void **pslot;
3525
3526                 spin_lock(&mapping->tree_lock);
3527                 pslot = radix_tree_lookup_slot(&mapping->page_tree,
3528                                 page_index(head));
3529                 /*
3530                  * Check if the head page is present in radix tree.
3531                  * We assume all tail are present too, if head is there.
3532                  */
3533                 if (radix_tree_deref_slot_protected(pslot,
3534                                         &mapping->tree_lock) != head)
3535                         goto fail;
3536         }
3537
3538         /* Prevent deferred_split_scan() touching ->_refcount */
3539         spin_lock(&pgdata->split_queue_lock);
3540         count = page_count(head);
3541         mapcount = total_mapcount(head);
3542         if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
3543                 if (!list_empty(page_deferred_list(head))) {
3544                         pgdata->split_queue_len--;
3545                         list_del(page_deferred_list(head));
3546                 }
3547                 if (mapping)
3548                         __dec_zone_page_state(page, NR_SHMEM_THPS);
3549                 spin_unlock(&pgdata->split_queue_lock);
3550                 __split_huge_page(page, list, flags);
3551                 ret = 0;
3552         } else {
3553                 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3554                         pr_alert("total_mapcount: %u, page_count(): %u\n",
3555                                         mapcount, count);
3556                         if (PageTail(page))
3557                                 dump_page(head, NULL);
3558                         dump_page(page, "total_mapcount(head) > 0");
3559                         BUG();
3560                 }
3561                 spin_unlock(&pgdata->split_queue_lock);
3562 fail:           if (mapping)
3563                         spin_unlock(&mapping->tree_lock);
3564                 spin_unlock_irqrestore(&page_zone(head)->lru_lock, flags);
3565                 unfreeze_page(head);
3566                 ret = -EBUSY;
3567         }
3568
3569 out_unlock:
3570         if (anon_vma) {
3571                 anon_vma_unlock_write(anon_vma);
3572                 put_anon_vma(anon_vma);
3573         }
3574         if (mapping)
3575                 i_mmap_unlock_read(mapping);
3576 out:
3577         count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3578         return ret;
3579 }
3580
3581 void free_transhuge_page(struct page *page)
3582 {
3583         struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3584         unsigned long flags;
3585
3586         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3587         if (!list_empty(page_deferred_list(page))) {
3588                 pgdata->split_queue_len--;
3589                 list_del(page_deferred_list(page));
3590         }
3591         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3592         free_compound_page(page);
3593 }
3594
3595 void deferred_split_huge_page(struct page *page)
3596 {
3597         struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3598         unsigned long flags;
3599
3600         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3601
3602         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3603         if (list_empty(page_deferred_list(page))) {
3604                 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3605                 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3606                 pgdata->split_queue_len++;
3607         }
3608         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3609 }
3610
3611 static unsigned long deferred_split_count(struct shrinker *shrink,
3612                 struct shrink_control *sc)
3613 {
3614         struct pglist_data *pgdata = NODE_DATA(sc->nid);
3615         return ACCESS_ONCE(pgdata->split_queue_len);
3616 }
3617
3618 static unsigned long deferred_split_scan(struct shrinker *shrink,
3619                 struct shrink_control *sc)
3620 {
3621         struct pglist_data *pgdata = NODE_DATA(sc->nid);
3622         unsigned long flags;
3623         LIST_HEAD(list), *pos, *next;
3624         struct page *page;
3625         int split = 0;
3626
3627         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3628         /* Take pin on all head pages to avoid freeing them under us */
3629         list_for_each_safe(pos, next, &pgdata->split_queue) {
3630                 page = list_entry((void *)pos, struct page, mapping);
3631                 page = compound_head(page);
3632                 if (get_page_unless_zero(page)) {
3633                         list_move(page_deferred_list(page), &list);
3634                 } else {
3635                         /* We lost race with put_compound_page() */
3636                         list_del_init(page_deferred_list(page));
3637                         pgdata->split_queue_len--;
3638                 }
3639                 if (!--sc->nr_to_scan)
3640                         break;
3641         }
3642         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3643
3644         list_for_each_safe(pos, next, &list) {
3645                 page = list_entry((void *)pos, struct page, mapping);
3646                 lock_page(page);
3647                 /* split_huge_page() removes page from list on success */
3648                 if (!split_huge_page(page))
3649                         split++;
3650                 unlock_page(page);
3651                 put_page(page);
3652         }
3653
3654         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3655         list_splice_tail(&list, &pgdata->split_queue);
3656         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3657
3658         /*
3659          * Stop shrinker if we didn't split any page, but the queue is empty.
3660          * This can happen if pages were freed under us.
3661          */
3662         if (!split && list_empty(&pgdata->split_queue))
3663                 return SHRINK_STOP;
3664         return split;
3665 }
3666
3667 static struct shrinker deferred_split_shrinker = {
3668         .count_objects = deferred_split_count,
3669         .scan_objects = deferred_split_scan,
3670         .seeks = DEFAULT_SEEKS,
3671         .flags = SHRINKER_NUMA_AWARE,
3672 };
3673
3674 #ifdef CONFIG_DEBUG_FS
3675 static int split_huge_pages_set(void *data, u64 val)
3676 {
3677         struct zone *zone;
3678         struct page *page;
3679         unsigned long pfn, max_zone_pfn;
3680         unsigned long total = 0, split = 0;
3681
3682         if (val != 1)
3683                 return -EINVAL;
3684
3685         for_each_populated_zone(zone) {
3686                 max_zone_pfn = zone_end_pfn(zone);
3687                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3688                         if (!pfn_valid(pfn))
3689                                 continue;
3690
3691                         page = pfn_to_page(pfn);
3692                         if (!get_page_unless_zero(page))
3693                                 continue;
3694
3695                         if (zone != page_zone(page))
3696                                 goto next;
3697
3698                         if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
3699                                 goto next;
3700
3701                         total++;
3702                         lock_page(page);
3703                         if (!split_huge_page(page))
3704                                 split++;
3705                         unlock_page(page);
3706 next:
3707                         put_page(page);
3708                 }
3709         }
3710
3711         pr_info("%lu of %lu THP split\n", split, total);
3712
3713         return 0;
3714 }
3715 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3716                 "%llu\n");
3717
3718 static int __init split_huge_pages_debugfs(void)
3719 {
3720         void *ret;
3721
3722         ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3723                         &split_huge_pages_fops);
3724         if (!ret)
3725                 pr_warn("Failed to create split_huge_pages in debugfs");
3726         return 0;
3727 }
3728 late_initcall(split_huge_pages_debugfs);
3729 #endif