Merge tag 'regmap-fix-v4.8-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37
38 /*
39  * By default transparent hugepage support is disabled in order that avoid
40  * to risk increase the memory footprint of applications without a guaranteed
41  * benefit. When transparent hugepage support is enabled, is for all mappings,
42  * and khugepaged scans all mappings.
43  * Defrag is invoked by khugepaged hugepage allocations and by page faults
44  * for all hugepage allocations.
45  */
46 unsigned long transparent_hugepage_flags __read_mostly =
47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
48         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 #endif
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52 #endif
53         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
56
57 static struct shrinker deferred_split_shrinker;
58
59 static atomic_t huge_zero_refcount;
60 struct page *huge_zero_page __read_mostly;
61
62 struct page *get_huge_zero_page(void)
63 {
64         struct page *zero_page;
65 retry:
66         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67                 return READ_ONCE(huge_zero_page);
68
69         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70                         HPAGE_PMD_ORDER);
71         if (!zero_page) {
72                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73                 return NULL;
74         }
75         count_vm_event(THP_ZERO_PAGE_ALLOC);
76         preempt_disable();
77         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78                 preempt_enable();
79                 __free_pages(zero_page, compound_order(zero_page));
80                 goto retry;
81         }
82
83         /* We take additional reference here. It will be put back by shrinker */
84         atomic_set(&huge_zero_refcount, 2);
85         preempt_enable();
86         return READ_ONCE(huge_zero_page);
87 }
88
89 void put_huge_zero_page(void)
90 {
91         /*
92          * Counter should never go to zero here. Only shrinker can put
93          * last reference.
94          */
95         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
96 }
97
98 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
99                                         struct shrink_control *sc)
100 {
101         /* we can free zero page only if last reference remains */
102         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
103 }
104
105 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
106                                        struct shrink_control *sc)
107 {
108         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
109                 struct page *zero_page = xchg(&huge_zero_page, NULL);
110                 BUG_ON(zero_page == NULL);
111                 __free_pages(zero_page, compound_order(zero_page));
112                 return HPAGE_PMD_NR;
113         }
114
115         return 0;
116 }
117
118 static struct shrinker huge_zero_page_shrinker = {
119         .count_objects = shrink_huge_zero_page_count,
120         .scan_objects = shrink_huge_zero_page_scan,
121         .seeks = DEFAULT_SEEKS,
122 };
123
124 #ifdef CONFIG_SYSFS
125
126 static ssize_t triple_flag_store(struct kobject *kobj,
127                                  struct kobj_attribute *attr,
128                                  const char *buf, size_t count,
129                                  enum transparent_hugepage_flag enabled,
130                                  enum transparent_hugepage_flag deferred,
131                                  enum transparent_hugepage_flag req_madv)
132 {
133         if (!memcmp("defer", buf,
134                     min(sizeof("defer")-1, count))) {
135                 if (enabled == deferred)
136                         return -EINVAL;
137                 clear_bit(enabled, &transparent_hugepage_flags);
138                 clear_bit(req_madv, &transparent_hugepage_flags);
139                 set_bit(deferred, &transparent_hugepage_flags);
140         } else if (!memcmp("always", buf,
141                     min(sizeof("always")-1, count))) {
142                 clear_bit(deferred, &transparent_hugepage_flags);
143                 clear_bit(req_madv, &transparent_hugepage_flags);
144                 set_bit(enabled, &transparent_hugepage_flags);
145         } else if (!memcmp("madvise", buf,
146                            min(sizeof("madvise")-1, count))) {
147                 clear_bit(enabled, &transparent_hugepage_flags);
148                 clear_bit(deferred, &transparent_hugepage_flags);
149                 set_bit(req_madv, &transparent_hugepage_flags);
150         } else if (!memcmp("never", buf,
151                            min(sizeof("never")-1, count))) {
152                 clear_bit(enabled, &transparent_hugepage_flags);
153                 clear_bit(req_madv, &transparent_hugepage_flags);
154                 clear_bit(deferred, &transparent_hugepage_flags);
155         } else
156                 return -EINVAL;
157
158         return count;
159 }
160
161 static ssize_t enabled_show(struct kobject *kobj,
162                             struct kobj_attribute *attr, char *buf)
163 {
164         if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
165                 return sprintf(buf, "[always] madvise never\n");
166         else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
167                 return sprintf(buf, "always [madvise] never\n");
168         else
169                 return sprintf(buf, "always madvise [never]\n");
170 }
171
172 static ssize_t enabled_store(struct kobject *kobj,
173                              struct kobj_attribute *attr,
174                              const char *buf, size_t count)
175 {
176         ssize_t ret;
177
178         ret = triple_flag_store(kobj, attr, buf, count,
179                                 TRANSPARENT_HUGEPAGE_FLAG,
180                                 TRANSPARENT_HUGEPAGE_FLAG,
181                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
182
183         if (ret > 0) {
184                 int err = start_stop_khugepaged();
185                 if (err)
186                         ret = err;
187         }
188
189         return ret;
190 }
191 static struct kobj_attribute enabled_attr =
192         __ATTR(enabled, 0644, enabled_show, enabled_store);
193
194 ssize_t single_hugepage_flag_show(struct kobject *kobj,
195                                 struct kobj_attribute *attr, char *buf,
196                                 enum transparent_hugepage_flag flag)
197 {
198         return sprintf(buf, "%d\n",
199                        !!test_bit(flag, &transparent_hugepage_flags));
200 }
201
202 ssize_t single_hugepage_flag_store(struct kobject *kobj,
203                                  struct kobj_attribute *attr,
204                                  const char *buf, size_t count,
205                                  enum transparent_hugepage_flag flag)
206 {
207         unsigned long value;
208         int ret;
209
210         ret = kstrtoul(buf, 10, &value);
211         if (ret < 0)
212                 return ret;
213         if (value > 1)
214                 return -EINVAL;
215
216         if (value)
217                 set_bit(flag, &transparent_hugepage_flags);
218         else
219                 clear_bit(flag, &transparent_hugepage_flags);
220
221         return count;
222 }
223
224 /*
225  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
226  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
227  * memory just to allocate one more hugepage.
228  */
229 static ssize_t defrag_show(struct kobject *kobj,
230                            struct kobj_attribute *attr, char *buf)
231 {
232         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
233                 return sprintf(buf, "[always] defer madvise never\n");
234         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
235                 return sprintf(buf, "always [defer] madvise never\n");
236         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
237                 return sprintf(buf, "always defer [madvise] never\n");
238         else
239                 return sprintf(buf, "always defer madvise [never]\n");
240
241 }
242 static ssize_t defrag_store(struct kobject *kobj,
243                             struct kobj_attribute *attr,
244                             const char *buf, size_t count)
245 {
246         return triple_flag_store(kobj, attr, buf, count,
247                                  TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
248                                  TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
249                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
250 }
251 static struct kobj_attribute defrag_attr =
252         __ATTR(defrag, 0644, defrag_show, defrag_store);
253
254 static ssize_t use_zero_page_show(struct kobject *kobj,
255                 struct kobj_attribute *attr, char *buf)
256 {
257         return single_hugepage_flag_show(kobj, attr, buf,
258                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
259 }
260 static ssize_t use_zero_page_store(struct kobject *kobj,
261                 struct kobj_attribute *attr, const char *buf, size_t count)
262 {
263         return single_hugepage_flag_store(kobj, attr, buf, count,
264                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
265 }
266 static struct kobj_attribute use_zero_page_attr =
267         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
268 #ifdef CONFIG_DEBUG_VM
269 static ssize_t debug_cow_show(struct kobject *kobj,
270                                 struct kobj_attribute *attr, char *buf)
271 {
272         return single_hugepage_flag_show(kobj, attr, buf,
273                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
274 }
275 static ssize_t debug_cow_store(struct kobject *kobj,
276                                struct kobj_attribute *attr,
277                                const char *buf, size_t count)
278 {
279         return single_hugepage_flag_store(kobj, attr, buf, count,
280                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
281 }
282 static struct kobj_attribute debug_cow_attr =
283         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
284 #endif /* CONFIG_DEBUG_VM */
285
286 static struct attribute *hugepage_attr[] = {
287         &enabled_attr.attr,
288         &defrag_attr.attr,
289         &use_zero_page_attr.attr,
290 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
291         &shmem_enabled_attr.attr,
292 #endif
293 #ifdef CONFIG_DEBUG_VM
294         &debug_cow_attr.attr,
295 #endif
296         NULL,
297 };
298
299 static struct attribute_group hugepage_attr_group = {
300         .attrs = hugepage_attr,
301 };
302
303 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
304 {
305         int err;
306
307         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
308         if (unlikely(!*hugepage_kobj)) {
309                 pr_err("failed to create transparent hugepage kobject\n");
310                 return -ENOMEM;
311         }
312
313         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
314         if (err) {
315                 pr_err("failed to register transparent hugepage group\n");
316                 goto delete_obj;
317         }
318
319         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
320         if (err) {
321                 pr_err("failed to register transparent hugepage group\n");
322                 goto remove_hp_group;
323         }
324
325         return 0;
326
327 remove_hp_group:
328         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
329 delete_obj:
330         kobject_put(*hugepage_kobj);
331         return err;
332 }
333
334 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
335 {
336         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
337         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
338         kobject_put(hugepage_kobj);
339 }
340 #else
341 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
342 {
343         return 0;
344 }
345
346 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
347 {
348 }
349 #endif /* CONFIG_SYSFS */
350
351 static int __init hugepage_init(void)
352 {
353         int err;
354         struct kobject *hugepage_kobj;
355
356         if (!has_transparent_hugepage()) {
357                 transparent_hugepage_flags = 0;
358                 return -EINVAL;
359         }
360
361         /*
362          * hugepages can't be allocated by the buddy allocator
363          */
364         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
365         /*
366          * we use page->mapping and page->index in second tail page
367          * as list_head: assuming THP order >= 2
368          */
369         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
370
371         err = hugepage_init_sysfs(&hugepage_kobj);
372         if (err)
373                 goto err_sysfs;
374
375         err = khugepaged_init();
376         if (err)
377                 goto err_slab;
378
379         err = register_shrinker(&huge_zero_page_shrinker);
380         if (err)
381                 goto err_hzp_shrinker;
382         err = register_shrinker(&deferred_split_shrinker);
383         if (err)
384                 goto err_split_shrinker;
385
386         /*
387          * By default disable transparent hugepages on smaller systems,
388          * where the extra memory used could hurt more than TLB overhead
389          * is likely to save.  The admin can still enable it through /sys.
390          */
391         if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
392                 transparent_hugepage_flags = 0;
393                 return 0;
394         }
395
396         err = start_stop_khugepaged();
397         if (err)
398                 goto err_khugepaged;
399
400         return 0;
401 err_khugepaged:
402         unregister_shrinker(&deferred_split_shrinker);
403 err_split_shrinker:
404         unregister_shrinker(&huge_zero_page_shrinker);
405 err_hzp_shrinker:
406         khugepaged_destroy();
407 err_slab:
408         hugepage_exit_sysfs(hugepage_kobj);
409 err_sysfs:
410         return err;
411 }
412 subsys_initcall(hugepage_init);
413
414 static int __init setup_transparent_hugepage(char *str)
415 {
416         int ret = 0;
417         if (!str)
418                 goto out;
419         if (!strcmp(str, "always")) {
420                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
421                         &transparent_hugepage_flags);
422                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
423                           &transparent_hugepage_flags);
424                 ret = 1;
425         } else if (!strcmp(str, "madvise")) {
426                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
427                           &transparent_hugepage_flags);
428                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
429                         &transparent_hugepage_flags);
430                 ret = 1;
431         } else if (!strcmp(str, "never")) {
432                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
433                           &transparent_hugepage_flags);
434                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
435                           &transparent_hugepage_flags);
436                 ret = 1;
437         }
438 out:
439         if (!ret)
440                 pr_warn("transparent_hugepage= cannot parse, ignored\n");
441         return ret;
442 }
443 __setup("transparent_hugepage=", setup_transparent_hugepage);
444
445 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
446 {
447         if (likely(vma->vm_flags & VM_WRITE))
448                 pmd = pmd_mkwrite(pmd);
449         return pmd;
450 }
451
452 static inline struct list_head *page_deferred_list(struct page *page)
453 {
454         /*
455          * ->lru in the tail pages is occupied by compound_head.
456          * Let's use ->mapping + ->index in the second tail page as list_head.
457          */
458         return (struct list_head *)&page[2].mapping;
459 }
460
461 void prep_transhuge_page(struct page *page)
462 {
463         /*
464          * we use page->mapping and page->indexlru in second tail page
465          * as list_head: assuming THP order >= 2
466          */
467
468         INIT_LIST_HEAD(page_deferred_list(page));
469         set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
470 }
471
472 static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
473                 gfp_t gfp)
474 {
475         struct vm_area_struct *vma = fe->vma;
476         struct mem_cgroup *memcg;
477         pgtable_t pgtable;
478         unsigned long haddr = fe->address & HPAGE_PMD_MASK;
479
480         VM_BUG_ON_PAGE(!PageCompound(page), page);
481
482         if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
483                 put_page(page);
484                 count_vm_event(THP_FAULT_FALLBACK);
485                 return VM_FAULT_FALLBACK;
486         }
487
488         pgtable = pte_alloc_one(vma->vm_mm, haddr);
489         if (unlikely(!pgtable)) {
490                 mem_cgroup_cancel_charge(page, memcg, true);
491                 put_page(page);
492                 return VM_FAULT_OOM;
493         }
494
495         clear_huge_page(page, haddr, HPAGE_PMD_NR);
496         /*
497          * The memory barrier inside __SetPageUptodate makes sure that
498          * clear_huge_page writes become visible before the set_pmd_at()
499          * write.
500          */
501         __SetPageUptodate(page);
502
503         fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
504         if (unlikely(!pmd_none(*fe->pmd))) {
505                 spin_unlock(fe->ptl);
506                 mem_cgroup_cancel_charge(page, memcg, true);
507                 put_page(page);
508                 pte_free(vma->vm_mm, pgtable);
509         } else {
510                 pmd_t entry;
511
512                 /* Deliver the page fault to userland */
513                 if (userfaultfd_missing(vma)) {
514                         int ret;
515
516                         spin_unlock(fe->ptl);
517                         mem_cgroup_cancel_charge(page, memcg, true);
518                         put_page(page);
519                         pte_free(vma->vm_mm, pgtable);
520                         ret = handle_userfault(fe, VM_UFFD_MISSING);
521                         VM_BUG_ON(ret & VM_FAULT_FALLBACK);
522                         return ret;
523                 }
524
525                 entry = mk_huge_pmd(page, vma->vm_page_prot);
526                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
527                 page_add_new_anon_rmap(page, vma, haddr, true);
528                 mem_cgroup_commit_charge(page, memcg, false, true);
529                 lru_cache_add_active_or_unevictable(page, vma);
530                 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
531                 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
532                 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
533                 atomic_long_inc(&vma->vm_mm->nr_ptes);
534                 spin_unlock(fe->ptl);
535                 count_vm_event(THP_FAULT_ALLOC);
536         }
537
538         return 0;
539 }
540
541 /*
542  * If THP defrag is set to always then directly reclaim/compact as necessary
543  * If set to defer then do only background reclaim/compact and defer to khugepaged
544  * If set to madvise and the VMA is flagged then directly reclaim/compact
545  * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
546  */
547 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
548 {
549         bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
550
551         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
552                                 &transparent_hugepage_flags) && vma_madvised)
553                 return GFP_TRANSHUGE;
554         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
555                                                 &transparent_hugepage_flags))
556                 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
557         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
558                                                 &transparent_hugepage_flags))
559                 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
560
561         return GFP_TRANSHUGE_LIGHT;
562 }
563
564 /* Caller must hold page table lock. */
565 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
566                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
567                 struct page *zero_page)
568 {
569         pmd_t entry;
570         if (!pmd_none(*pmd))
571                 return false;
572         entry = mk_pmd(zero_page, vma->vm_page_prot);
573         entry = pmd_mkhuge(entry);
574         if (pgtable)
575                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
576         set_pmd_at(mm, haddr, pmd, entry);
577         atomic_long_inc(&mm->nr_ptes);
578         return true;
579 }
580
581 int do_huge_pmd_anonymous_page(struct fault_env *fe)
582 {
583         struct vm_area_struct *vma = fe->vma;
584         gfp_t gfp;
585         struct page *page;
586         unsigned long haddr = fe->address & HPAGE_PMD_MASK;
587
588         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
589                 return VM_FAULT_FALLBACK;
590         if (unlikely(anon_vma_prepare(vma)))
591                 return VM_FAULT_OOM;
592         if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
593                 return VM_FAULT_OOM;
594         if (!(fe->flags & FAULT_FLAG_WRITE) &&
595                         !mm_forbids_zeropage(vma->vm_mm) &&
596                         transparent_hugepage_use_zero_page()) {
597                 pgtable_t pgtable;
598                 struct page *zero_page;
599                 bool set;
600                 int ret;
601                 pgtable = pte_alloc_one(vma->vm_mm, haddr);
602                 if (unlikely(!pgtable))
603                         return VM_FAULT_OOM;
604                 zero_page = get_huge_zero_page();
605                 if (unlikely(!zero_page)) {
606                         pte_free(vma->vm_mm, pgtable);
607                         count_vm_event(THP_FAULT_FALLBACK);
608                         return VM_FAULT_FALLBACK;
609                 }
610                 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
611                 ret = 0;
612                 set = false;
613                 if (pmd_none(*fe->pmd)) {
614                         if (userfaultfd_missing(vma)) {
615                                 spin_unlock(fe->ptl);
616                                 ret = handle_userfault(fe, VM_UFFD_MISSING);
617                                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
618                         } else {
619                                 set_huge_zero_page(pgtable, vma->vm_mm, vma,
620                                                    haddr, fe->pmd, zero_page);
621                                 spin_unlock(fe->ptl);
622                                 set = true;
623                         }
624                 } else
625                         spin_unlock(fe->ptl);
626                 if (!set) {
627                         pte_free(vma->vm_mm, pgtable);
628                         put_huge_zero_page();
629                 }
630                 return ret;
631         }
632         gfp = alloc_hugepage_direct_gfpmask(vma);
633         page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
634         if (unlikely(!page)) {
635                 count_vm_event(THP_FAULT_FALLBACK);
636                 return VM_FAULT_FALLBACK;
637         }
638         prep_transhuge_page(page);
639         return __do_huge_pmd_anonymous_page(fe, page, gfp);
640 }
641
642 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
643                 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
644 {
645         struct mm_struct *mm = vma->vm_mm;
646         pmd_t entry;
647         spinlock_t *ptl;
648
649         ptl = pmd_lock(mm, pmd);
650         entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
651         if (pfn_t_devmap(pfn))
652                 entry = pmd_mkdevmap(entry);
653         if (write) {
654                 entry = pmd_mkyoung(pmd_mkdirty(entry));
655                 entry = maybe_pmd_mkwrite(entry, vma);
656         }
657         set_pmd_at(mm, addr, pmd, entry);
658         update_mmu_cache_pmd(vma, addr, pmd);
659         spin_unlock(ptl);
660 }
661
662 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
663                         pmd_t *pmd, pfn_t pfn, bool write)
664 {
665         pgprot_t pgprot = vma->vm_page_prot;
666         /*
667          * If we had pmd_special, we could avoid all these restrictions,
668          * but we need to be consistent with PTEs and architectures that
669          * can't support a 'special' bit.
670          */
671         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
672         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
673                                                 (VM_PFNMAP|VM_MIXEDMAP));
674         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
675         BUG_ON(!pfn_t_devmap(pfn));
676
677         if (addr < vma->vm_start || addr >= vma->vm_end)
678                 return VM_FAULT_SIGBUS;
679         if (track_pfn_insert(vma, &pgprot, pfn))
680                 return VM_FAULT_SIGBUS;
681         insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
682         return VM_FAULT_NOPAGE;
683 }
684 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
685
686 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
687                 pmd_t *pmd)
688 {
689         pmd_t _pmd;
690
691         /*
692          * We should set the dirty bit only for FOLL_WRITE but for now
693          * the dirty bit in the pmd is meaningless.  And if the dirty
694          * bit will become meaningful and we'll only set it with
695          * FOLL_WRITE, an atomic set_bit will be required on the pmd to
696          * set the young bit, instead of the current set_pmd_at.
697          */
698         _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
699         if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
700                                 pmd, _pmd,  1))
701                 update_mmu_cache_pmd(vma, addr, pmd);
702 }
703
704 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
705                 pmd_t *pmd, int flags)
706 {
707         unsigned long pfn = pmd_pfn(*pmd);
708         struct mm_struct *mm = vma->vm_mm;
709         struct dev_pagemap *pgmap;
710         struct page *page;
711
712         assert_spin_locked(pmd_lockptr(mm, pmd));
713
714         if (flags & FOLL_WRITE && !pmd_write(*pmd))
715                 return NULL;
716
717         if (pmd_present(*pmd) && pmd_devmap(*pmd))
718                 /* pass */;
719         else
720                 return NULL;
721
722         if (flags & FOLL_TOUCH)
723                 touch_pmd(vma, addr, pmd);
724
725         /*
726          * device mapped pages can only be returned if the
727          * caller will manage the page reference count.
728          */
729         if (!(flags & FOLL_GET))
730                 return ERR_PTR(-EEXIST);
731
732         pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
733         pgmap = get_dev_pagemap(pfn, NULL);
734         if (!pgmap)
735                 return ERR_PTR(-EFAULT);
736         page = pfn_to_page(pfn);
737         get_page(page);
738         put_dev_pagemap(pgmap);
739
740         return page;
741 }
742
743 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
744                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
745                   struct vm_area_struct *vma)
746 {
747         spinlock_t *dst_ptl, *src_ptl;
748         struct page *src_page;
749         pmd_t pmd;
750         pgtable_t pgtable = NULL;
751         int ret = -ENOMEM;
752
753         /* Skip if can be re-fill on fault */
754         if (!vma_is_anonymous(vma))
755                 return 0;
756
757         pgtable = pte_alloc_one(dst_mm, addr);
758         if (unlikely(!pgtable))
759                 goto out;
760
761         dst_ptl = pmd_lock(dst_mm, dst_pmd);
762         src_ptl = pmd_lockptr(src_mm, src_pmd);
763         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
764
765         ret = -EAGAIN;
766         pmd = *src_pmd;
767         if (unlikely(!pmd_trans_huge(pmd))) {
768                 pte_free(dst_mm, pgtable);
769                 goto out_unlock;
770         }
771         /*
772          * When page table lock is held, the huge zero pmd should not be
773          * under splitting since we don't split the page itself, only pmd to
774          * a page table.
775          */
776         if (is_huge_zero_pmd(pmd)) {
777                 struct page *zero_page;
778                 /*
779                  * get_huge_zero_page() will never allocate a new page here,
780                  * since we already have a zero page to copy. It just takes a
781                  * reference.
782                  */
783                 zero_page = get_huge_zero_page();
784                 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
785                                 zero_page);
786                 ret = 0;
787                 goto out_unlock;
788         }
789
790         src_page = pmd_page(pmd);
791         VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
792         get_page(src_page);
793         page_dup_rmap(src_page, true);
794         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
795         atomic_long_inc(&dst_mm->nr_ptes);
796         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
797
798         pmdp_set_wrprotect(src_mm, addr, src_pmd);
799         pmd = pmd_mkold(pmd_wrprotect(pmd));
800         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
801
802         ret = 0;
803 out_unlock:
804         spin_unlock(src_ptl);
805         spin_unlock(dst_ptl);
806 out:
807         return ret;
808 }
809
810 void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
811 {
812         pmd_t entry;
813         unsigned long haddr;
814
815         fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
816         if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
817                 goto unlock;
818
819         entry = pmd_mkyoung(orig_pmd);
820         haddr = fe->address & HPAGE_PMD_MASK;
821         if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
822                                 fe->flags & FAULT_FLAG_WRITE))
823                 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
824
825 unlock:
826         spin_unlock(fe->ptl);
827 }
828
829 static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
830                 struct page *page)
831 {
832         struct vm_area_struct *vma = fe->vma;
833         unsigned long haddr = fe->address & HPAGE_PMD_MASK;
834         struct mem_cgroup *memcg;
835         pgtable_t pgtable;
836         pmd_t _pmd;
837         int ret = 0, i;
838         struct page **pages;
839         unsigned long mmun_start;       /* For mmu_notifiers */
840         unsigned long mmun_end;         /* For mmu_notifiers */
841
842         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
843                         GFP_KERNEL);
844         if (unlikely(!pages)) {
845                 ret |= VM_FAULT_OOM;
846                 goto out;
847         }
848
849         for (i = 0; i < HPAGE_PMD_NR; i++) {
850                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
851                                                __GFP_OTHER_NODE, vma,
852                                                fe->address, page_to_nid(page));
853                 if (unlikely(!pages[i] ||
854                              mem_cgroup_try_charge(pages[i], vma->vm_mm,
855                                      GFP_KERNEL, &memcg, false))) {
856                         if (pages[i])
857                                 put_page(pages[i]);
858                         while (--i >= 0) {
859                                 memcg = (void *)page_private(pages[i]);
860                                 set_page_private(pages[i], 0);
861                                 mem_cgroup_cancel_charge(pages[i], memcg,
862                                                 false);
863                                 put_page(pages[i]);
864                         }
865                         kfree(pages);
866                         ret |= VM_FAULT_OOM;
867                         goto out;
868                 }
869                 set_page_private(pages[i], (unsigned long)memcg);
870         }
871
872         for (i = 0; i < HPAGE_PMD_NR; i++) {
873                 copy_user_highpage(pages[i], page + i,
874                                    haddr + PAGE_SIZE * i, vma);
875                 __SetPageUptodate(pages[i]);
876                 cond_resched();
877         }
878
879         mmun_start = haddr;
880         mmun_end   = haddr + HPAGE_PMD_SIZE;
881         mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
882
883         fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
884         if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
885                 goto out_free_pages;
886         VM_BUG_ON_PAGE(!PageHead(page), page);
887
888         pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
889         /* leave pmd empty until pte is filled */
890
891         pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
892         pmd_populate(vma->vm_mm, &_pmd, pgtable);
893
894         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
895                 pte_t entry;
896                 entry = mk_pte(pages[i], vma->vm_page_prot);
897                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
898                 memcg = (void *)page_private(pages[i]);
899                 set_page_private(pages[i], 0);
900                 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
901                 mem_cgroup_commit_charge(pages[i], memcg, false, false);
902                 lru_cache_add_active_or_unevictable(pages[i], vma);
903                 fe->pte = pte_offset_map(&_pmd, haddr);
904                 VM_BUG_ON(!pte_none(*fe->pte));
905                 set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
906                 pte_unmap(fe->pte);
907         }
908         kfree(pages);
909
910         smp_wmb(); /* make pte visible before pmd */
911         pmd_populate(vma->vm_mm, fe->pmd, pgtable);
912         page_remove_rmap(page, true);
913         spin_unlock(fe->ptl);
914
915         mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
916
917         ret |= VM_FAULT_WRITE;
918         put_page(page);
919
920 out:
921         return ret;
922
923 out_free_pages:
924         spin_unlock(fe->ptl);
925         mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
926         for (i = 0; i < HPAGE_PMD_NR; i++) {
927                 memcg = (void *)page_private(pages[i]);
928                 set_page_private(pages[i], 0);
929                 mem_cgroup_cancel_charge(pages[i], memcg, false);
930                 put_page(pages[i]);
931         }
932         kfree(pages);
933         goto out;
934 }
935
936 int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
937 {
938         struct vm_area_struct *vma = fe->vma;
939         struct page *page = NULL, *new_page;
940         struct mem_cgroup *memcg;
941         unsigned long haddr = fe->address & HPAGE_PMD_MASK;
942         unsigned long mmun_start;       /* For mmu_notifiers */
943         unsigned long mmun_end;         /* For mmu_notifiers */
944         gfp_t huge_gfp;                 /* for allocation and charge */
945         int ret = 0;
946
947         fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
948         VM_BUG_ON_VMA(!vma->anon_vma, vma);
949         if (is_huge_zero_pmd(orig_pmd))
950                 goto alloc;
951         spin_lock(fe->ptl);
952         if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
953                 goto out_unlock;
954
955         page = pmd_page(orig_pmd);
956         VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
957         /*
958          * We can only reuse the page if nobody else maps the huge page or it's
959          * part.
960          */
961         if (page_trans_huge_mapcount(page, NULL) == 1) {
962                 pmd_t entry;
963                 entry = pmd_mkyoung(orig_pmd);
964                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
965                 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry,  1))
966                         update_mmu_cache_pmd(vma, fe->address, fe->pmd);
967                 ret |= VM_FAULT_WRITE;
968                 goto out_unlock;
969         }
970         get_page(page);
971         spin_unlock(fe->ptl);
972 alloc:
973         if (transparent_hugepage_enabled(vma) &&
974             !transparent_hugepage_debug_cow()) {
975                 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
976                 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
977         } else
978                 new_page = NULL;
979
980         if (likely(new_page)) {
981                 prep_transhuge_page(new_page);
982         } else {
983                 if (!page) {
984                         split_huge_pmd(vma, fe->pmd, fe->address);
985                         ret |= VM_FAULT_FALLBACK;
986                 } else {
987                         ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
988                         if (ret & VM_FAULT_OOM) {
989                                 split_huge_pmd(vma, fe->pmd, fe->address);
990                                 ret |= VM_FAULT_FALLBACK;
991                         }
992                         put_page(page);
993                 }
994                 count_vm_event(THP_FAULT_FALLBACK);
995                 goto out;
996         }
997
998         if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
999                                         huge_gfp, &memcg, true))) {
1000                 put_page(new_page);
1001                 split_huge_pmd(vma, fe->pmd, fe->address);
1002                 if (page)
1003                         put_page(page);
1004                 ret |= VM_FAULT_FALLBACK;
1005                 count_vm_event(THP_FAULT_FALLBACK);
1006                 goto out;
1007         }
1008
1009         count_vm_event(THP_FAULT_ALLOC);
1010
1011         if (!page)
1012                 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1013         else
1014                 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1015         __SetPageUptodate(new_page);
1016
1017         mmun_start = haddr;
1018         mmun_end   = haddr + HPAGE_PMD_SIZE;
1019         mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1020
1021         spin_lock(fe->ptl);
1022         if (page)
1023                 put_page(page);
1024         if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1025                 spin_unlock(fe->ptl);
1026                 mem_cgroup_cancel_charge(new_page, memcg, true);
1027                 put_page(new_page);
1028                 goto out_mn;
1029         } else {
1030                 pmd_t entry;
1031                 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1032                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1033                 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1034                 page_add_new_anon_rmap(new_page, vma, haddr, true);
1035                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1036                 lru_cache_add_active_or_unevictable(new_page, vma);
1037                 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1038                 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1039                 if (!page) {
1040                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1041                         put_huge_zero_page();
1042                 } else {
1043                         VM_BUG_ON_PAGE(!PageHead(page), page);
1044                         page_remove_rmap(page, true);
1045                         put_page(page);
1046                 }
1047                 ret |= VM_FAULT_WRITE;
1048         }
1049         spin_unlock(fe->ptl);
1050 out_mn:
1051         mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1052 out:
1053         return ret;
1054 out_unlock:
1055         spin_unlock(fe->ptl);
1056         return ret;
1057 }
1058
1059 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1060                                    unsigned long addr,
1061                                    pmd_t *pmd,
1062                                    unsigned int flags)
1063 {
1064         struct mm_struct *mm = vma->vm_mm;
1065         struct page *page = NULL;
1066
1067         assert_spin_locked(pmd_lockptr(mm, pmd));
1068
1069         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1070                 goto out;
1071
1072         /* Avoid dumping huge zero page */
1073         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1074                 return ERR_PTR(-EFAULT);
1075
1076         /* Full NUMA hinting faults to serialise migration in fault paths */
1077         if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1078                 goto out;
1079
1080         page = pmd_page(*pmd);
1081         VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1082         if (flags & FOLL_TOUCH)
1083                 touch_pmd(vma, addr, pmd);
1084         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1085                 /*
1086                  * We don't mlock() pte-mapped THPs. This way we can avoid
1087                  * leaking mlocked pages into non-VM_LOCKED VMAs.
1088                  *
1089                  * For anon THP:
1090                  *
1091                  * In most cases the pmd is the only mapping of the page as we
1092                  * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1093                  * writable private mappings in populate_vma_page_range().
1094                  *
1095                  * The only scenario when we have the page shared here is if we
1096                  * mlocking read-only mapping shared over fork(). We skip
1097                  * mlocking such pages.
1098                  *
1099                  * For file THP:
1100                  *
1101                  * We can expect PageDoubleMap() to be stable under page lock:
1102                  * for file pages we set it in page_add_file_rmap(), which
1103                  * requires page to be locked.
1104                  */
1105
1106                 if (PageAnon(page) && compound_mapcount(page) != 1)
1107                         goto skip_mlock;
1108                 if (PageDoubleMap(page) || !page->mapping)
1109                         goto skip_mlock;
1110                 if (!trylock_page(page))
1111                         goto skip_mlock;
1112                 lru_add_drain();
1113                 if (page->mapping && !PageDoubleMap(page))
1114                         mlock_vma_page(page);
1115                 unlock_page(page);
1116         }
1117 skip_mlock:
1118         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1119         VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1120         if (flags & FOLL_GET)
1121                 get_page(page);
1122
1123 out:
1124         return page;
1125 }
1126
1127 /* NUMA hinting page fault entry point for trans huge pmds */
1128 int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1129 {
1130         struct vm_area_struct *vma = fe->vma;
1131         struct anon_vma *anon_vma = NULL;
1132         struct page *page;
1133         unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1134         int page_nid = -1, this_nid = numa_node_id();
1135         int target_nid, last_cpupid = -1;
1136         bool page_locked;
1137         bool migrated = false;
1138         bool was_writable;
1139         int flags = 0;
1140
1141         /* A PROT_NONE fault should not end up here */
1142         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1143
1144         fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1145         if (unlikely(!pmd_same(pmd, *fe->pmd)))
1146                 goto out_unlock;
1147
1148         /*
1149          * If there are potential migrations, wait for completion and retry
1150          * without disrupting NUMA hinting information. Do not relock and
1151          * check_same as the page may no longer be mapped.
1152          */
1153         if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1154                 page = pmd_page(*fe->pmd);
1155                 spin_unlock(fe->ptl);
1156                 wait_on_page_locked(page);
1157                 goto out;
1158         }
1159
1160         page = pmd_page(pmd);
1161         BUG_ON(is_huge_zero_page(page));
1162         page_nid = page_to_nid(page);
1163         last_cpupid = page_cpupid_last(page);
1164         count_vm_numa_event(NUMA_HINT_FAULTS);
1165         if (page_nid == this_nid) {
1166                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1167                 flags |= TNF_FAULT_LOCAL;
1168         }
1169
1170         /* See similar comment in do_numa_page for explanation */
1171         if (!(vma->vm_flags & VM_WRITE))
1172                 flags |= TNF_NO_GROUP;
1173
1174         /*
1175          * Acquire the page lock to serialise THP migrations but avoid dropping
1176          * page_table_lock if at all possible
1177          */
1178         page_locked = trylock_page(page);
1179         target_nid = mpol_misplaced(page, vma, haddr);
1180         if (target_nid == -1) {
1181                 /* If the page was locked, there are no parallel migrations */
1182                 if (page_locked)
1183                         goto clear_pmdnuma;
1184         }
1185
1186         /* Migration could have started since the pmd_trans_migrating check */
1187         if (!page_locked) {
1188                 spin_unlock(fe->ptl);
1189                 wait_on_page_locked(page);
1190                 page_nid = -1;
1191                 goto out;
1192         }
1193
1194         /*
1195          * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1196          * to serialises splits
1197          */
1198         get_page(page);
1199         spin_unlock(fe->ptl);
1200         anon_vma = page_lock_anon_vma_read(page);
1201
1202         /* Confirm the PMD did not change while page_table_lock was released */
1203         spin_lock(fe->ptl);
1204         if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1205                 unlock_page(page);
1206                 put_page(page);
1207                 page_nid = -1;
1208                 goto out_unlock;
1209         }
1210
1211         /* Bail if we fail to protect against THP splits for any reason */
1212         if (unlikely(!anon_vma)) {
1213                 put_page(page);
1214                 page_nid = -1;
1215                 goto clear_pmdnuma;
1216         }
1217
1218         /*
1219          * Migrate the THP to the requested node, returns with page unlocked
1220          * and access rights restored.
1221          */
1222         spin_unlock(fe->ptl);
1223         migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1224                                 fe->pmd, pmd, fe->address, page, target_nid);
1225         if (migrated) {
1226                 flags |= TNF_MIGRATED;
1227                 page_nid = target_nid;
1228         } else
1229                 flags |= TNF_MIGRATE_FAIL;
1230
1231         goto out;
1232 clear_pmdnuma:
1233         BUG_ON(!PageLocked(page));
1234         was_writable = pmd_write(pmd);
1235         pmd = pmd_modify(pmd, vma->vm_page_prot);
1236         pmd = pmd_mkyoung(pmd);
1237         if (was_writable)
1238                 pmd = pmd_mkwrite(pmd);
1239         set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1240         update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1241         unlock_page(page);
1242 out_unlock:
1243         spin_unlock(fe->ptl);
1244
1245 out:
1246         if (anon_vma)
1247                 page_unlock_anon_vma_read(anon_vma);
1248
1249         if (page_nid != -1)
1250                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1251
1252         return 0;
1253 }
1254
1255 /*
1256  * Return true if we do MADV_FREE successfully on entire pmd page.
1257  * Otherwise, return false.
1258  */
1259 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1260                 pmd_t *pmd, unsigned long addr, unsigned long next)
1261 {
1262         spinlock_t *ptl;
1263         pmd_t orig_pmd;
1264         struct page *page;
1265         struct mm_struct *mm = tlb->mm;
1266         bool ret = false;
1267
1268         ptl = pmd_trans_huge_lock(pmd, vma);
1269         if (!ptl)
1270                 goto out_unlocked;
1271
1272         orig_pmd = *pmd;
1273         if (is_huge_zero_pmd(orig_pmd))
1274                 goto out;
1275
1276         page = pmd_page(orig_pmd);
1277         /*
1278          * If other processes are mapping this page, we couldn't discard
1279          * the page unless they all do MADV_FREE so let's skip the page.
1280          */
1281         if (page_mapcount(page) != 1)
1282                 goto out;
1283
1284         if (!trylock_page(page))
1285                 goto out;
1286
1287         /*
1288          * If user want to discard part-pages of THP, split it so MADV_FREE
1289          * will deactivate only them.
1290          */
1291         if (next - addr != HPAGE_PMD_SIZE) {
1292                 get_page(page);
1293                 spin_unlock(ptl);
1294                 split_huge_page(page);
1295                 put_page(page);
1296                 unlock_page(page);
1297                 goto out_unlocked;
1298         }
1299
1300         if (PageDirty(page))
1301                 ClearPageDirty(page);
1302         unlock_page(page);
1303
1304         if (PageActive(page))
1305                 deactivate_page(page);
1306
1307         if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1308                 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1309                         tlb->fullmm);
1310                 orig_pmd = pmd_mkold(orig_pmd);
1311                 orig_pmd = pmd_mkclean(orig_pmd);
1312
1313                 set_pmd_at(mm, addr, pmd, orig_pmd);
1314                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1315         }
1316         ret = true;
1317 out:
1318         spin_unlock(ptl);
1319 out_unlocked:
1320         return ret;
1321 }
1322
1323 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1324                  pmd_t *pmd, unsigned long addr)
1325 {
1326         pmd_t orig_pmd;
1327         spinlock_t *ptl;
1328
1329         ptl = __pmd_trans_huge_lock(pmd, vma);
1330         if (!ptl)
1331                 return 0;
1332         /*
1333          * For architectures like ppc64 we look at deposited pgtable
1334          * when calling pmdp_huge_get_and_clear. So do the
1335          * pgtable_trans_huge_withdraw after finishing pmdp related
1336          * operations.
1337          */
1338         orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1339                         tlb->fullmm);
1340         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1341         if (vma_is_dax(vma)) {
1342                 spin_unlock(ptl);
1343                 if (is_huge_zero_pmd(orig_pmd))
1344                         tlb_remove_page(tlb, pmd_page(orig_pmd));
1345         } else if (is_huge_zero_pmd(orig_pmd)) {
1346                 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1347                 atomic_long_dec(&tlb->mm->nr_ptes);
1348                 spin_unlock(ptl);
1349                 tlb_remove_page(tlb, pmd_page(orig_pmd));
1350         } else {
1351                 struct page *page = pmd_page(orig_pmd);
1352                 page_remove_rmap(page, true);
1353                 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1354                 VM_BUG_ON_PAGE(!PageHead(page), page);
1355                 if (PageAnon(page)) {
1356                         pgtable_t pgtable;
1357                         pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1358                         pte_free(tlb->mm, pgtable);
1359                         atomic_long_dec(&tlb->mm->nr_ptes);
1360                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1361                 } else {
1362                         add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1363                 }
1364                 spin_unlock(ptl);
1365                 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1366         }
1367         return 1;
1368 }
1369
1370 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1371                   unsigned long new_addr, unsigned long old_end,
1372                   pmd_t *old_pmd, pmd_t *new_pmd)
1373 {
1374         spinlock_t *old_ptl, *new_ptl;
1375         pmd_t pmd;
1376         struct mm_struct *mm = vma->vm_mm;
1377
1378         if ((old_addr & ~HPAGE_PMD_MASK) ||
1379             (new_addr & ~HPAGE_PMD_MASK) ||
1380             old_end - old_addr < HPAGE_PMD_SIZE)
1381                 return false;
1382
1383         /*
1384          * The destination pmd shouldn't be established, free_pgtables()
1385          * should have release it.
1386          */
1387         if (WARN_ON(!pmd_none(*new_pmd))) {
1388                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1389                 return false;
1390         }
1391
1392         /*
1393          * We don't have to worry about the ordering of src and dst
1394          * ptlocks because exclusive mmap_sem prevents deadlock.
1395          */
1396         old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1397         if (old_ptl) {
1398                 new_ptl = pmd_lockptr(mm, new_pmd);
1399                 if (new_ptl != old_ptl)
1400                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1401                 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1402                 VM_BUG_ON(!pmd_none(*new_pmd));
1403
1404                 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1405                                 vma_is_anonymous(vma)) {
1406                         pgtable_t pgtable;
1407                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1408                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1409                 }
1410                 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1411                 if (new_ptl != old_ptl)
1412                         spin_unlock(new_ptl);
1413                 spin_unlock(old_ptl);
1414                 return true;
1415         }
1416         return false;
1417 }
1418
1419 /*
1420  * Returns
1421  *  - 0 if PMD could not be locked
1422  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1423  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1424  */
1425 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1426                 unsigned long addr, pgprot_t newprot, int prot_numa)
1427 {
1428         struct mm_struct *mm = vma->vm_mm;
1429         spinlock_t *ptl;
1430         int ret = 0;
1431
1432         ptl = __pmd_trans_huge_lock(pmd, vma);
1433         if (ptl) {
1434                 pmd_t entry;
1435                 bool preserve_write = prot_numa && pmd_write(*pmd);
1436                 ret = 1;
1437
1438                 /*
1439                  * Avoid trapping faults against the zero page. The read-only
1440                  * data is likely to be read-cached on the local CPU and
1441                  * local/remote hits to the zero page are not interesting.
1442                  */
1443                 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1444                         spin_unlock(ptl);
1445                         return ret;
1446                 }
1447
1448                 if (!prot_numa || !pmd_protnone(*pmd)) {
1449                         entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1450                         entry = pmd_modify(entry, newprot);
1451                         if (preserve_write)
1452                                 entry = pmd_mkwrite(entry);
1453                         ret = HPAGE_PMD_NR;
1454                         set_pmd_at(mm, addr, pmd, entry);
1455                         BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1456                                         pmd_write(entry));
1457                 }
1458                 spin_unlock(ptl);
1459         }
1460
1461         return ret;
1462 }
1463
1464 /*
1465  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1466  *
1467  * Note that if it returns page table lock pointer, this routine returns without
1468  * unlocking page table lock. So callers must unlock it.
1469  */
1470 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1471 {
1472         spinlock_t *ptl;
1473         ptl = pmd_lock(vma->vm_mm, pmd);
1474         if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1475                 return ptl;
1476         spin_unlock(ptl);
1477         return NULL;
1478 }
1479
1480 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1481                 unsigned long haddr, pmd_t *pmd)
1482 {
1483         struct mm_struct *mm = vma->vm_mm;
1484         pgtable_t pgtable;
1485         pmd_t _pmd;
1486         int i;
1487
1488         /* leave pmd empty until pte is filled */
1489         pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1490
1491         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1492         pmd_populate(mm, &_pmd, pgtable);
1493
1494         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1495                 pte_t *pte, entry;
1496                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1497                 entry = pte_mkspecial(entry);
1498                 pte = pte_offset_map(&_pmd, haddr);
1499                 VM_BUG_ON(!pte_none(*pte));
1500                 set_pte_at(mm, haddr, pte, entry);
1501                 pte_unmap(pte);
1502         }
1503         smp_wmb(); /* make pte visible before pmd */
1504         pmd_populate(mm, pmd, pgtable);
1505         put_huge_zero_page();
1506 }
1507
1508 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1509                 unsigned long haddr, bool freeze)
1510 {
1511         struct mm_struct *mm = vma->vm_mm;
1512         struct page *page;
1513         pgtable_t pgtable;
1514         pmd_t _pmd;
1515         bool young, write, dirty, soft_dirty;
1516         unsigned long addr;
1517         int i;
1518
1519         VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1520         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1521         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1522         VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1523
1524         count_vm_event(THP_SPLIT_PMD);
1525
1526         if (!vma_is_anonymous(vma)) {
1527                 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1528                 if (is_huge_zero_pmd(_pmd))
1529                         put_huge_zero_page();
1530                 if (vma_is_dax(vma))
1531                         return;
1532                 page = pmd_page(_pmd);
1533                 if (!PageReferenced(page) && pmd_young(_pmd))
1534                         SetPageReferenced(page);
1535                 page_remove_rmap(page, true);
1536                 put_page(page);
1537                 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1538                 return;
1539         } else if (is_huge_zero_pmd(*pmd)) {
1540                 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1541         }
1542
1543         page = pmd_page(*pmd);
1544         VM_BUG_ON_PAGE(!page_count(page), page);
1545         page_ref_add(page, HPAGE_PMD_NR - 1);
1546         write = pmd_write(*pmd);
1547         young = pmd_young(*pmd);
1548         dirty = pmd_dirty(*pmd);
1549         soft_dirty = pmd_soft_dirty(*pmd);
1550
1551         pmdp_huge_split_prepare(vma, haddr, pmd);
1552         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1553         pmd_populate(mm, &_pmd, pgtable);
1554
1555         for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1556                 pte_t entry, *pte;
1557                 /*
1558                  * Note that NUMA hinting access restrictions are not
1559                  * transferred to avoid any possibility of altering
1560                  * permissions across VMAs.
1561                  */
1562                 if (freeze) {
1563                         swp_entry_t swp_entry;
1564                         swp_entry = make_migration_entry(page + i, write);
1565                         entry = swp_entry_to_pte(swp_entry);
1566                         if (soft_dirty)
1567                                 entry = pte_swp_mksoft_dirty(entry);
1568                 } else {
1569                         entry = mk_pte(page + i, vma->vm_page_prot);
1570                         entry = maybe_mkwrite(entry, vma);
1571                         if (!write)
1572                                 entry = pte_wrprotect(entry);
1573                         if (!young)
1574                                 entry = pte_mkold(entry);
1575                         if (soft_dirty)
1576                                 entry = pte_mksoft_dirty(entry);
1577                 }
1578                 if (dirty)
1579                         SetPageDirty(page + i);
1580                 pte = pte_offset_map(&_pmd, addr);
1581                 BUG_ON(!pte_none(*pte));
1582                 set_pte_at(mm, addr, pte, entry);
1583                 atomic_inc(&page[i]._mapcount);
1584                 pte_unmap(pte);
1585         }
1586
1587         /*
1588          * Set PG_double_map before dropping compound_mapcount to avoid
1589          * false-negative page_mapped().
1590          */
1591         if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1592                 for (i = 0; i < HPAGE_PMD_NR; i++)
1593                         atomic_inc(&page[i]._mapcount);
1594         }
1595
1596         if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1597                 /* Last compound_mapcount is gone. */
1598                 __dec_node_page_state(page, NR_ANON_THPS);
1599                 if (TestClearPageDoubleMap(page)) {
1600                         /* No need in mapcount reference anymore */
1601                         for (i = 0; i < HPAGE_PMD_NR; i++)
1602                                 atomic_dec(&page[i]._mapcount);
1603                 }
1604         }
1605
1606         smp_wmb(); /* make pte visible before pmd */
1607         /*
1608          * Up to this point the pmd is present and huge and userland has the
1609          * whole access to the hugepage during the split (which happens in
1610          * place). If we overwrite the pmd with the not-huge version pointing
1611          * to the pte here (which of course we could if all CPUs were bug
1612          * free), userland could trigger a small page size TLB miss on the
1613          * small sized TLB while the hugepage TLB entry is still established in
1614          * the huge TLB. Some CPU doesn't like that.
1615          * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1616          * 383 on page 93. Intel should be safe but is also warns that it's
1617          * only safe if the permission and cache attributes of the two entries
1618          * loaded in the two TLB is identical (which should be the case here).
1619          * But it is generally safer to never allow small and huge TLB entries
1620          * for the same virtual address to be loaded simultaneously. So instead
1621          * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1622          * current pmd notpresent (atomically because here the pmd_trans_huge
1623          * and pmd_trans_splitting must remain set at all times on the pmd
1624          * until the split is complete for this pmd), then we flush the SMP TLB
1625          * and finally we write the non-huge version of the pmd entry with
1626          * pmd_populate.
1627          */
1628         pmdp_invalidate(vma, haddr, pmd);
1629         pmd_populate(mm, pmd, pgtable);
1630
1631         if (freeze) {
1632                 for (i = 0; i < HPAGE_PMD_NR; i++) {
1633                         page_remove_rmap(page + i, false);
1634                         put_page(page + i);
1635                 }
1636         }
1637 }
1638
1639 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1640                 unsigned long address, bool freeze, struct page *page)
1641 {
1642         spinlock_t *ptl;
1643         struct mm_struct *mm = vma->vm_mm;
1644         unsigned long haddr = address & HPAGE_PMD_MASK;
1645
1646         mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1647         ptl = pmd_lock(mm, pmd);
1648
1649         /*
1650          * If caller asks to setup a migration entries, we need a page to check
1651          * pmd against. Otherwise we can end up replacing wrong page.
1652          */
1653         VM_BUG_ON(freeze && !page);
1654         if (page && page != pmd_page(*pmd))
1655                 goto out;
1656
1657         if (pmd_trans_huge(*pmd)) {
1658                 page = pmd_page(*pmd);
1659                 if (PageMlocked(page))
1660                         clear_page_mlock(page);
1661         } else if (!pmd_devmap(*pmd))
1662                 goto out;
1663         __split_huge_pmd_locked(vma, pmd, haddr, freeze);
1664 out:
1665         spin_unlock(ptl);
1666         mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1667 }
1668
1669 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1670                 bool freeze, struct page *page)
1671 {
1672         pgd_t *pgd;
1673         pud_t *pud;
1674         pmd_t *pmd;
1675
1676         pgd = pgd_offset(vma->vm_mm, address);
1677         if (!pgd_present(*pgd))
1678                 return;
1679
1680         pud = pud_offset(pgd, address);
1681         if (!pud_present(*pud))
1682                 return;
1683
1684         pmd = pmd_offset(pud, address);
1685
1686         __split_huge_pmd(vma, pmd, address, freeze, page);
1687 }
1688
1689 void vma_adjust_trans_huge(struct vm_area_struct *vma,
1690                              unsigned long start,
1691                              unsigned long end,
1692                              long adjust_next)
1693 {
1694         /*
1695          * If the new start address isn't hpage aligned and it could
1696          * previously contain an hugepage: check if we need to split
1697          * an huge pmd.
1698          */
1699         if (start & ~HPAGE_PMD_MASK &&
1700             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1701             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1702                 split_huge_pmd_address(vma, start, false, NULL);
1703
1704         /*
1705          * If the new end address isn't hpage aligned and it could
1706          * previously contain an hugepage: check if we need to split
1707          * an huge pmd.
1708          */
1709         if (end & ~HPAGE_PMD_MASK &&
1710             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1711             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1712                 split_huge_pmd_address(vma, end, false, NULL);
1713
1714         /*
1715          * If we're also updating the vma->vm_next->vm_start, if the new
1716          * vm_next->vm_start isn't page aligned and it could previously
1717          * contain an hugepage: check if we need to split an huge pmd.
1718          */
1719         if (adjust_next > 0) {
1720                 struct vm_area_struct *next = vma->vm_next;
1721                 unsigned long nstart = next->vm_start;
1722                 nstart += adjust_next << PAGE_SHIFT;
1723                 if (nstart & ~HPAGE_PMD_MASK &&
1724                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1725                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1726                         split_huge_pmd_address(next, nstart, false, NULL);
1727         }
1728 }
1729
1730 static void freeze_page(struct page *page)
1731 {
1732         enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1733                 TTU_RMAP_LOCKED;
1734         int i, ret;
1735
1736         VM_BUG_ON_PAGE(!PageHead(page), page);
1737
1738         if (PageAnon(page))
1739                 ttu_flags |= TTU_MIGRATION;
1740
1741         /* We only need TTU_SPLIT_HUGE_PMD once */
1742         ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1743         for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1744                 /* Cut short if the page is unmapped */
1745                 if (page_count(page) == 1)
1746                         return;
1747
1748                 ret = try_to_unmap(page + i, ttu_flags);
1749         }
1750         VM_BUG_ON_PAGE(ret, page + i - 1);
1751 }
1752
1753 static void unfreeze_page(struct page *page)
1754 {
1755         int i;
1756
1757         for (i = 0; i < HPAGE_PMD_NR; i++)
1758                 remove_migration_ptes(page + i, page + i, true);
1759 }
1760
1761 static void __split_huge_page_tail(struct page *head, int tail,
1762                 struct lruvec *lruvec, struct list_head *list)
1763 {
1764         struct page *page_tail = head + tail;
1765
1766         VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1767         VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1768
1769         /*
1770          * tail_page->_refcount is zero and not changing from under us. But
1771          * get_page_unless_zero() may be running from under us on the
1772          * tail_page. If we used atomic_set() below instead of atomic_inc() or
1773          * atomic_add(), we would then run atomic_set() concurrently with
1774          * get_page_unless_zero(), and atomic_set() is implemented in C not
1775          * using locked ops. spin_unlock on x86 sometime uses locked ops
1776          * because of PPro errata 66, 92, so unless somebody can guarantee
1777          * atomic_set() here would be safe on all archs (and not only on x86),
1778          * it's safer to use atomic_inc()/atomic_add().
1779          */
1780         if (PageAnon(head)) {
1781                 page_ref_inc(page_tail);
1782         } else {
1783                 /* Additional pin to radix tree */
1784                 page_ref_add(page_tail, 2);
1785         }
1786
1787         page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1788         page_tail->flags |= (head->flags &
1789                         ((1L << PG_referenced) |
1790                          (1L << PG_swapbacked) |
1791                          (1L << PG_mlocked) |
1792                          (1L << PG_uptodate) |
1793                          (1L << PG_active) |
1794                          (1L << PG_locked) |
1795                          (1L << PG_unevictable) |
1796                          (1L << PG_dirty)));
1797
1798         /*
1799          * After clearing PageTail the gup refcount can be released.
1800          * Page flags also must be visible before we make the page non-compound.
1801          */
1802         smp_wmb();
1803
1804         clear_compound_head(page_tail);
1805
1806         if (page_is_young(head))
1807                 set_page_young(page_tail);
1808         if (page_is_idle(head))
1809                 set_page_idle(page_tail);
1810
1811         /* ->mapping in first tail page is compound_mapcount */
1812         VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1813                         page_tail);
1814         page_tail->mapping = head->mapping;
1815
1816         page_tail->index = head->index + tail;
1817         page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1818         lru_add_page_tail(head, page_tail, lruvec, list);
1819 }
1820
1821 static void __split_huge_page(struct page *page, struct list_head *list,
1822                 unsigned long flags)
1823 {
1824         struct page *head = compound_head(page);
1825         struct zone *zone = page_zone(head);
1826         struct lruvec *lruvec;
1827         pgoff_t end = -1;
1828         int i;
1829
1830         lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
1831
1832         /* complete memcg works before add pages to LRU */
1833         mem_cgroup_split_huge_fixup(head);
1834
1835         if (!PageAnon(page))
1836                 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1837
1838         for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1839                 __split_huge_page_tail(head, i, lruvec, list);
1840                 /* Some pages can be beyond i_size: drop them from page cache */
1841                 if (head[i].index >= end) {
1842                         __ClearPageDirty(head + i);
1843                         __delete_from_page_cache(head + i, NULL);
1844                         if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1845                                 shmem_uncharge(head->mapping->host, 1);
1846                         put_page(head + i);
1847                 }
1848         }
1849
1850         ClearPageCompound(head);
1851         /* See comment in __split_huge_page_tail() */
1852         if (PageAnon(head)) {
1853                 page_ref_inc(head);
1854         } else {
1855                 /* Additional pin to radix tree */
1856                 page_ref_add(head, 2);
1857                 spin_unlock(&head->mapping->tree_lock);
1858         }
1859
1860         spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1861
1862         unfreeze_page(head);
1863
1864         for (i = 0; i < HPAGE_PMD_NR; i++) {
1865                 struct page *subpage = head + i;
1866                 if (subpage == page)
1867                         continue;
1868                 unlock_page(subpage);
1869
1870                 /*
1871                  * Subpages may be freed if there wasn't any mapping
1872                  * like if add_to_swap() is running on a lru page that
1873                  * had its mapping zapped. And freeing these pages
1874                  * requires taking the lru_lock so we do the put_page
1875                  * of the tail pages after the split is complete.
1876                  */
1877                 put_page(subpage);
1878         }
1879 }
1880
1881 int total_mapcount(struct page *page)
1882 {
1883         int i, compound, ret;
1884
1885         VM_BUG_ON_PAGE(PageTail(page), page);
1886
1887         if (likely(!PageCompound(page)))
1888                 return atomic_read(&page->_mapcount) + 1;
1889
1890         compound = compound_mapcount(page);
1891         if (PageHuge(page))
1892                 return compound;
1893         ret = compound;
1894         for (i = 0; i < HPAGE_PMD_NR; i++)
1895                 ret += atomic_read(&page[i]._mapcount) + 1;
1896         /* File pages has compound_mapcount included in _mapcount */
1897         if (!PageAnon(page))
1898                 return ret - compound * HPAGE_PMD_NR;
1899         if (PageDoubleMap(page))
1900                 ret -= HPAGE_PMD_NR;
1901         return ret;
1902 }
1903
1904 /*
1905  * This calculates accurately how many mappings a transparent hugepage
1906  * has (unlike page_mapcount() which isn't fully accurate). This full
1907  * accuracy is primarily needed to know if copy-on-write faults can
1908  * reuse the page and change the mapping to read-write instead of
1909  * copying them. At the same time this returns the total_mapcount too.
1910  *
1911  * The function returns the highest mapcount any one of the subpages
1912  * has. If the return value is one, even if different processes are
1913  * mapping different subpages of the transparent hugepage, they can
1914  * all reuse it, because each process is reusing a different subpage.
1915  *
1916  * The total_mapcount is instead counting all virtual mappings of the
1917  * subpages. If the total_mapcount is equal to "one", it tells the
1918  * caller all mappings belong to the same "mm" and in turn the
1919  * anon_vma of the transparent hugepage can become the vma->anon_vma
1920  * local one as no other process may be mapping any of the subpages.
1921  *
1922  * It would be more accurate to replace page_mapcount() with
1923  * page_trans_huge_mapcount(), however we only use
1924  * page_trans_huge_mapcount() in the copy-on-write faults where we
1925  * need full accuracy to avoid breaking page pinning, because
1926  * page_trans_huge_mapcount() is slower than page_mapcount().
1927  */
1928 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
1929 {
1930         int i, ret, _total_mapcount, mapcount;
1931
1932         /* hugetlbfs shouldn't call it */
1933         VM_BUG_ON_PAGE(PageHuge(page), page);
1934
1935         if (likely(!PageTransCompound(page))) {
1936                 mapcount = atomic_read(&page->_mapcount) + 1;
1937                 if (total_mapcount)
1938                         *total_mapcount = mapcount;
1939                 return mapcount;
1940         }
1941
1942         page = compound_head(page);
1943
1944         _total_mapcount = ret = 0;
1945         for (i = 0; i < HPAGE_PMD_NR; i++) {
1946                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1947                 ret = max(ret, mapcount);
1948                 _total_mapcount += mapcount;
1949         }
1950         if (PageDoubleMap(page)) {
1951                 ret -= 1;
1952                 _total_mapcount -= HPAGE_PMD_NR;
1953         }
1954         mapcount = compound_mapcount(page);
1955         ret += mapcount;
1956         _total_mapcount += mapcount;
1957         if (total_mapcount)
1958                 *total_mapcount = _total_mapcount;
1959         return ret;
1960 }
1961
1962 /*
1963  * This function splits huge page into normal pages. @page can point to any
1964  * subpage of huge page to split. Split doesn't change the position of @page.
1965  *
1966  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
1967  * The huge page must be locked.
1968  *
1969  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
1970  *
1971  * Both head page and tail pages will inherit mapping, flags, and so on from
1972  * the hugepage.
1973  *
1974  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
1975  * they are not mapped.
1976  *
1977  * Returns 0 if the hugepage is split successfully.
1978  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
1979  * us.
1980  */
1981 int split_huge_page_to_list(struct page *page, struct list_head *list)
1982 {
1983         struct page *head = compound_head(page);
1984         struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
1985         struct anon_vma *anon_vma = NULL;
1986         struct address_space *mapping = NULL;
1987         int count, mapcount, extra_pins, ret;
1988         bool mlocked;
1989         unsigned long flags;
1990
1991         VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
1992         VM_BUG_ON_PAGE(!PageLocked(page), page);
1993         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1994         VM_BUG_ON_PAGE(!PageCompound(page), page);
1995
1996         if (PageAnon(head)) {
1997                 /*
1998                  * The caller does not necessarily hold an mmap_sem that would
1999                  * prevent the anon_vma disappearing so we first we take a
2000                  * reference to it and then lock the anon_vma for write. This
2001                  * is similar to page_lock_anon_vma_read except the write lock
2002                  * is taken to serialise against parallel split or collapse
2003                  * operations.
2004                  */
2005                 anon_vma = page_get_anon_vma(head);
2006                 if (!anon_vma) {
2007                         ret = -EBUSY;
2008                         goto out;
2009                 }
2010                 extra_pins = 0;
2011                 mapping = NULL;
2012                 anon_vma_lock_write(anon_vma);
2013         } else {
2014                 mapping = head->mapping;
2015
2016                 /* Truncated ? */
2017                 if (!mapping) {
2018                         ret = -EBUSY;
2019                         goto out;
2020                 }
2021
2022                 /* Addidional pins from radix tree */
2023                 extra_pins = HPAGE_PMD_NR;
2024                 anon_vma = NULL;
2025                 i_mmap_lock_read(mapping);
2026         }
2027
2028         /*
2029          * Racy check if we can split the page, before freeze_page() will
2030          * split PMDs
2031          */
2032         if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2033                 ret = -EBUSY;
2034                 goto out_unlock;
2035         }
2036
2037         mlocked = PageMlocked(page);
2038         freeze_page(head);
2039         VM_BUG_ON_PAGE(compound_mapcount(head), head);
2040
2041         /* Make sure the page is not on per-CPU pagevec as it takes pin */
2042         if (mlocked)
2043                 lru_add_drain();
2044
2045         /* prevent PageLRU to go away from under us, and freeze lru stats */
2046         spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2047
2048         if (mapping) {
2049                 void **pslot;
2050
2051                 spin_lock(&mapping->tree_lock);
2052                 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2053                                 page_index(head));
2054                 /*
2055                  * Check if the head page is present in radix tree.
2056                  * We assume all tail are present too, if head is there.
2057                  */
2058                 if (radix_tree_deref_slot_protected(pslot,
2059                                         &mapping->tree_lock) != head)
2060                         goto fail;
2061         }
2062
2063         /* Prevent deferred_split_scan() touching ->_refcount */
2064         spin_lock(&pgdata->split_queue_lock);
2065         count = page_count(head);
2066         mapcount = total_mapcount(head);
2067         if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2068                 if (!list_empty(page_deferred_list(head))) {
2069                         pgdata->split_queue_len--;
2070                         list_del(page_deferred_list(head));
2071                 }
2072                 if (mapping)
2073                         __dec_node_page_state(page, NR_SHMEM_THPS);
2074                 spin_unlock(&pgdata->split_queue_lock);
2075                 __split_huge_page(page, list, flags);
2076                 ret = 0;
2077         } else {
2078                 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2079                         pr_alert("total_mapcount: %u, page_count(): %u\n",
2080                                         mapcount, count);
2081                         if (PageTail(page))
2082                                 dump_page(head, NULL);
2083                         dump_page(page, "total_mapcount(head) > 0");
2084                         BUG();
2085                 }
2086                 spin_unlock(&pgdata->split_queue_lock);
2087 fail:           if (mapping)
2088                         spin_unlock(&mapping->tree_lock);
2089                 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2090                 unfreeze_page(head);
2091                 ret = -EBUSY;
2092         }
2093
2094 out_unlock:
2095         if (anon_vma) {
2096                 anon_vma_unlock_write(anon_vma);
2097                 put_anon_vma(anon_vma);
2098         }
2099         if (mapping)
2100                 i_mmap_unlock_read(mapping);
2101 out:
2102         count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2103         return ret;
2104 }
2105
2106 void free_transhuge_page(struct page *page)
2107 {
2108         struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2109         unsigned long flags;
2110
2111         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2112         if (!list_empty(page_deferred_list(page))) {
2113                 pgdata->split_queue_len--;
2114                 list_del(page_deferred_list(page));
2115         }
2116         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2117         free_compound_page(page);
2118 }
2119
2120 void deferred_split_huge_page(struct page *page)
2121 {
2122         struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2123         unsigned long flags;
2124
2125         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2126
2127         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2128         if (list_empty(page_deferred_list(page))) {
2129                 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2130                 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2131                 pgdata->split_queue_len++;
2132         }
2133         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2134 }
2135
2136 static unsigned long deferred_split_count(struct shrinker *shrink,
2137                 struct shrink_control *sc)
2138 {
2139         struct pglist_data *pgdata = NODE_DATA(sc->nid);
2140         return ACCESS_ONCE(pgdata->split_queue_len);
2141 }
2142
2143 static unsigned long deferred_split_scan(struct shrinker *shrink,
2144                 struct shrink_control *sc)
2145 {
2146         struct pglist_data *pgdata = NODE_DATA(sc->nid);
2147         unsigned long flags;
2148         LIST_HEAD(list), *pos, *next;
2149         struct page *page;
2150         int split = 0;
2151
2152         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2153         /* Take pin on all head pages to avoid freeing them under us */
2154         list_for_each_safe(pos, next, &pgdata->split_queue) {
2155                 page = list_entry((void *)pos, struct page, mapping);
2156                 page = compound_head(page);
2157                 if (get_page_unless_zero(page)) {
2158                         list_move(page_deferred_list(page), &list);
2159                 } else {
2160                         /* We lost race with put_compound_page() */
2161                         list_del_init(page_deferred_list(page));
2162                         pgdata->split_queue_len--;
2163                 }
2164                 if (!--sc->nr_to_scan)
2165                         break;
2166         }
2167         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2168
2169         list_for_each_safe(pos, next, &list) {
2170                 page = list_entry((void *)pos, struct page, mapping);
2171                 lock_page(page);
2172                 /* split_huge_page() removes page from list on success */
2173                 if (!split_huge_page(page))
2174                         split++;
2175                 unlock_page(page);
2176                 put_page(page);
2177         }
2178
2179         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2180         list_splice_tail(&list, &pgdata->split_queue);
2181         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2182
2183         /*
2184          * Stop shrinker if we didn't split any page, but the queue is empty.
2185          * This can happen if pages were freed under us.
2186          */
2187         if (!split && list_empty(&pgdata->split_queue))
2188                 return SHRINK_STOP;
2189         return split;
2190 }
2191
2192 static struct shrinker deferred_split_shrinker = {
2193         .count_objects = deferred_split_count,
2194         .scan_objects = deferred_split_scan,
2195         .seeks = DEFAULT_SEEKS,
2196         .flags = SHRINKER_NUMA_AWARE,
2197 };
2198
2199 #ifdef CONFIG_DEBUG_FS
2200 static int split_huge_pages_set(void *data, u64 val)
2201 {
2202         struct zone *zone;
2203         struct page *page;
2204         unsigned long pfn, max_zone_pfn;
2205         unsigned long total = 0, split = 0;
2206
2207         if (val != 1)
2208                 return -EINVAL;
2209
2210         for_each_populated_zone(zone) {
2211                 max_zone_pfn = zone_end_pfn(zone);
2212                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2213                         if (!pfn_valid(pfn))
2214                                 continue;
2215
2216                         page = pfn_to_page(pfn);
2217                         if (!get_page_unless_zero(page))
2218                                 continue;
2219
2220                         if (zone != page_zone(page))
2221                                 goto next;
2222
2223                         if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2224                                 goto next;
2225
2226                         total++;
2227                         lock_page(page);
2228                         if (!split_huge_page(page))
2229                                 split++;
2230                         unlock_page(page);
2231 next:
2232                         put_page(page);
2233                 }
2234         }
2235
2236         pr_info("%lu of %lu THP split\n", split, total);
2237
2238         return 0;
2239 }
2240 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2241                 "%llu\n");
2242
2243 static int __init split_huge_pages_debugfs(void)
2244 {
2245         void *ret;
2246
2247         ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2248                         &split_huge_pages_fops);
2249         if (!ret)
2250                 pr_warn("Failed to create split_huge_pages in debugfs");
2251         return 0;
2252 }
2253 late_initcall(split_huge_pages_debugfs);
2254 #endif