mm: convert pr_warning to pr_warn
[cascardo/linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
26
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include "internal.h"
36
37 int hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42 /*
43  * Minimum page order among possible hugepage sizes, set to a proper value
44  * at boot time.
45  */
46 static unsigned int minimum_order __read_mostly = UINT_MAX;
47
48 __initdata LIST_HEAD(huge_boot_pages);
49
50 /* for command line parsing */
51 static struct hstate * __initdata parsed_hstate;
52 static unsigned long __initdata default_hstate_max_huge_pages;
53 static unsigned long __initdata default_hstate_size;
54
55 /*
56  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
57  * free_huge_pages, and surplus_huge_pages.
58  */
59 DEFINE_SPINLOCK(hugetlb_lock);
60
61 /*
62  * Serializes faults on the same logical page.  This is used to
63  * prevent spurious OOMs when the hugepage pool is fully utilized.
64  */
65 static int num_fault_mutexes;
66 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
67
68 /* Forward declaration */
69 static int hugetlb_acct_memory(struct hstate *h, long delta);
70
71 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
72 {
73         bool free = (spool->count == 0) && (spool->used_hpages == 0);
74
75         spin_unlock(&spool->lock);
76
77         /* If no pages are used, and no other handles to the subpool
78          * remain, give up any reservations mased on minimum size and
79          * free the subpool */
80         if (free) {
81                 if (spool->min_hpages != -1)
82                         hugetlb_acct_memory(spool->hstate,
83                                                 -spool->min_hpages);
84                 kfree(spool);
85         }
86 }
87
88 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
89                                                 long min_hpages)
90 {
91         struct hugepage_subpool *spool;
92
93         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
94         if (!spool)
95                 return NULL;
96
97         spin_lock_init(&spool->lock);
98         spool->count = 1;
99         spool->max_hpages = max_hpages;
100         spool->hstate = h;
101         spool->min_hpages = min_hpages;
102
103         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
104                 kfree(spool);
105                 return NULL;
106         }
107         spool->rsv_hpages = min_hpages;
108
109         return spool;
110 }
111
112 void hugepage_put_subpool(struct hugepage_subpool *spool)
113 {
114         spin_lock(&spool->lock);
115         BUG_ON(!spool->count);
116         spool->count--;
117         unlock_or_release_subpool(spool);
118 }
119
120 /*
121  * Subpool accounting for allocating and reserving pages.
122  * Return -ENOMEM if there are not enough resources to satisfy the
123  * the request.  Otherwise, return the number of pages by which the
124  * global pools must be adjusted (upward).  The returned value may
125  * only be different than the passed value (delta) in the case where
126  * a subpool minimum size must be manitained.
127  */
128 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
129                                       long delta)
130 {
131         long ret = delta;
132
133         if (!spool)
134                 return ret;
135
136         spin_lock(&spool->lock);
137
138         if (spool->max_hpages != -1) {          /* maximum size accounting */
139                 if ((spool->used_hpages + delta) <= spool->max_hpages)
140                         spool->used_hpages += delta;
141                 else {
142                         ret = -ENOMEM;
143                         goto unlock_ret;
144                 }
145         }
146
147         if (spool->min_hpages != -1) {          /* minimum size accounting */
148                 if (delta > spool->rsv_hpages) {
149                         /*
150                          * Asking for more reserves than those already taken on
151                          * behalf of subpool.  Return difference.
152                          */
153                         ret = delta - spool->rsv_hpages;
154                         spool->rsv_hpages = 0;
155                 } else {
156                         ret = 0;        /* reserves already accounted for */
157                         spool->rsv_hpages -= delta;
158                 }
159         }
160
161 unlock_ret:
162         spin_unlock(&spool->lock);
163         return ret;
164 }
165
166 /*
167  * Subpool accounting for freeing and unreserving pages.
168  * Return the number of global page reservations that must be dropped.
169  * The return value may only be different than the passed value (delta)
170  * in the case where a subpool minimum size must be maintained.
171  */
172 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
173                                        long delta)
174 {
175         long ret = delta;
176
177         if (!spool)
178                 return delta;
179
180         spin_lock(&spool->lock);
181
182         if (spool->max_hpages != -1)            /* maximum size accounting */
183                 spool->used_hpages -= delta;
184
185         if (spool->min_hpages != -1) {          /* minimum size accounting */
186                 if (spool->rsv_hpages + delta <= spool->min_hpages)
187                         ret = 0;
188                 else
189                         ret = spool->rsv_hpages + delta - spool->min_hpages;
190
191                 spool->rsv_hpages += delta;
192                 if (spool->rsv_hpages > spool->min_hpages)
193                         spool->rsv_hpages = spool->min_hpages;
194         }
195
196         /*
197          * If hugetlbfs_put_super couldn't free spool due to an outstanding
198          * quota reference, free it now.
199          */
200         unlock_or_release_subpool(spool);
201
202         return ret;
203 }
204
205 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
206 {
207         return HUGETLBFS_SB(inode->i_sb)->spool;
208 }
209
210 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
211 {
212         return subpool_inode(file_inode(vma->vm_file));
213 }
214
215 /*
216  * Region tracking -- allows tracking of reservations and instantiated pages
217  *                    across the pages in a mapping.
218  *
219  * The region data structures are embedded into a resv_map and protected
220  * by a resv_map's lock.  The set of regions within the resv_map represent
221  * reservations for huge pages, or huge pages that have already been
222  * instantiated within the map.  The from and to elements are huge page
223  * indicies into the associated mapping.  from indicates the starting index
224  * of the region.  to represents the first index past the end of  the region.
225  *
226  * For example, a file region structure with from == 0 and to == 4 represents
227  * four huge pages in a mapping.  It is important to note that the to element
228  * represents the first element past the end of the region. This is used in
229  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
230  *
231  * Interval notation of the form [from, to) will be used to indicate that
232  * the endpoint from is inclusive and to is exclusive.
233  */
234 struct file_region {
235         struct list_head link;
236         long from;
237         long to;
238 };
239
240 /*
241  * Add the huge page range represented by [f, t) to the reserve
242  * map.  In the normal case, existing regions will be expanded
243  * to accommodate the specified range.  Sufficient regions should
244  * exist for expansion due to the previous call to region_chg
245  * with the same range.  However, it is possible that region_del
246  * could have been called after region_chg and modifed the map
247  * in such a way that no region exists to be expanded.  In this
248  * case, pull a region descriptor from the cache associated with
249  * the map and use that for the new range.
250  *
251  * Return the number of new huge pages added to the map.  This
252  * number is greater than or equal to zero.
253  */
254 static long region_add(struct resv_map *resv, long f, long t)
255 {
256         struct list_head *head = &resv->regions;
257         struct file_region *rg, *nrg, *trg;
258         long add = 0;
259
260         spin_lock(&resv->lock);
261         /* Locate the region we are either in or before. */
262         list_for_each_entry(rg, head, link)
263                 if (f <= rg->to)
264                         break;
265
266         /*
267          * If no region exists which can be expanded to include the
268          * specified range, the list must have been modified by an
269          * interleving call to region_del().  Pull a region descriptor
270          * from the cache and use it for this range.
271          */
272         if (&rg->link == head || t < rg->from) {
273                 VM_BUG_ON(resv->region_cache_count <= 0);
274
275                 resv->region_cache_count--;
276                 nrg = list_first_entry(&resv->region_cache, struct file_region,
277                                         link);
278                 list_del(&nrg->link);
279
280                 nrg->from = f;
281                 nrg->to = t;
282                 list_add(&nrg->link, rg->link.prev);
283
284                 add += t - f;
285                 goto out_locked;
286         }
287
288         /* Round our left edge to the current segment if it encloses us. */
289         if (f > rg->from)
290                 f = rg->from;
291
292         /* Check for and consume any regions we now overlap with. */
293         nrg = rg;
294         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
295                 if (&rg->link == head)
296                         break;
297                 if (rg->from > t)
298                         break;
299
300                 /* If this area reaches higher then extend our area to
301                  * include it completely.  If this is not the first area
302                  * which we intend to reuse, free it. */
303                 if (rg->to > t)
304                         t = rg->to;
305                 if (rg != nrg) {
306                         /* Decrement return value by the deleted range.
307                          * Another range will span this area so that by
308                          * end of routine add will be >= zero
309                          */
310                         add -= (rg->to - rg->from);
311                         list_del(&rg->link);
312                         kfree(rg);
313                 }
314         }
315
316         add += (nrg->from - f);         /* Added to beginning of region */
317         nrg->from = f;
318         add += t - nrg->to;             /* Added to end of region */
319         nrg->to = t;
320
321 out_locked:
322         resv->adds_in_progress--;
323         spin_unlock(&resv->lock);
324         VM_BUG_ON(add < 0);
325         return add;
326 }
327
328 /*
329  * Examine the existing reserve map and determine how many
330  * huge pages in the specified range [f, t) are NOT currently
331  * represented.  This routine is called before a subsequent
332  * call to region_add that will actually modify the reserve
333  * map to add the specified range [f, t).  region_chg does
334  * not change the number of huge pages represented by the
335  * map.  However, if the existing regions in the map can not
336  * be expanded to represent the new range, a new file_region
337  * structure is added to the map as a placeholder.  This is
338  * so that the subsequent region_add call will have all the
339  * regions it needs and will not fail.
340  *
341  * Upon entry, region_chg will also examine the cache of region descriptors
342  * associated with the map.  If there are not enough descriptors cached, one
343  * will be allocated for the in progress add operation.
344  *
345  * Returns the number of huge pages that need to be added to the existing
346  * reservation map for the range [f, t).  This number is greater or equal to
347  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
348  * is needed and can not be allocated.
349  */
350 static long region_chg(struct resv_map *resv, long f, long t)
351 {
352         struct list_head *head = &resv->regions;
353         struct file_region *rg, *nrg = NULL;
354         long chg = 0;
355
356 retry:
357         spin_lock(&resv->lock);
358 retry_locked:
359         resv->adds_in_progress++;
360
361         /*
362          * Check for sufficient descriptors in the cache to accommodate
363          * the number of in progress add operations.
364          */
365         if (resv->adds_in_progress > resv->region_cache_count) {
366                 struct file_region *trg;
367
368                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
369                 /* Must drop lock to allocate a new descriptor. */
370                 resv->adds_in_progress--;
371                 spin_unlock(&resv->lock);
372
373                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
374                 if (!trg) {
375                         kfree(nrg);
376                         return -ENOMEM;
377                 }
378
379                 spin_lock(&resv->lock);
380                 list_add(&trg->link, &resv->region_cache);
381                 resv->region_cache_count++;
382                 goto retry_locked;
383         }
384
385         /* Locate the region we are before or in. */
386         list_for_each_entry(rg, head, link)
387                 if (f <= rg->to)
388                         break;
389
390         /* If we are below the current region then a new region is required.
391          * Subtle, allocate a new region at the position but make it zero
392          * size such that we can guarantee to record the reservation. */
393         if (&rg->link == head || t < rg->from) {
394                 if (!nrg) {
395                         resv->adds_in_progress--;
396                         spin_unlock(&resv->lock);
397                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
398                         if (!nrg)
399                                 return -ENOMEM;
400
401                         nrg->from = f;
402                         nrg->to   = f;
403                         INIT_LIST_HEAD(&nrg->link);
404                         goto retry;
405                 }
406
407                 list_add(&nrg->link, rg->link.prev);
408                 chg = t - f;
409                 goto out_nrg;
410         }
411
412         /* Round our left edge to the current segment if it encloses us. */
413         if (f > rg->from)
414                 f = rg->from;
415         chg = t - f;
416
417         /* Check for and consume any regions we now overlap with. */
418         list_for_each_entry(rg, rg->link.prev, link) {
419                 if (&rg->link == head)
420                         break;
421                 if (rg->from > t)
422                         goto out;
423
424                 /* We overlap with this area, if it extends further than
425                  * us then we must extend ourselves.  Account for its
426                  * existing reservation. */
427                 if (rg->to > t) {
428                         chg += rg->to - t;
429                         t = rg->to;
430                 }
431                 chg -= rg->to - rg->from;
432         }
433
434 out:
435         spin_unlock(&resv->lock);
436         /*  We already know we raced and no longer need the new region */
437         kfree(nrg);
438         return chg;
439 out_nrg:
440         spin_unlock(&resv->lock);
441         return chg;
442 }
443
444 /*
445  * Abort the in progress add operation.  The adds_in_progress field
446  * of the resv_map keeps track of the operations in progress between
447  * calls to region_chg and region_add.  Operations are sometimes
448  * aborted after the call to region_chg.  In such cases, region_abort
449  * is called to decrement the adds_in_progress counter.
450  *
451  * NOTE: The range arguments [f, t) are not needed or used in this
452  * routine.  They are kept to make reading the calling code easier as
453  * arguments will match the associated region_chg call.
454  */
455 static void region_abort(struct resv_map *resv, long f, long t)
456 {
457         spin_lock(&resv->lock);
458         VM_BUG_ON(!resv->region_cache_count);
459         resv->adds_in_progress--;
460         spin_unlock(&resv->lock);
461 }
462
463 /*
464  * Delete the specified range [f, t) from the reserve map.  If the
465  * t parameter is LONG_MAX, this indicates that ALL regions after f
466  * should be deleted.  Locate the regions which intersect [f, t)
467  * and either trim, delete or split the existing regions.
468  *
469  * Returns the number of huge pages deleted from the reserve map.
470  * In the normal case, the return value is zero or more.  In the
471  * case where a region must be split, a new region descriptor must
472  * be allocated.  If the allocation fails, -ENOMEM will be returned.
473  * NOTE: If the parameter t == LONG_MAX, then we will never split
474  * a region and possibly return -ENOMEM.  Callers specifying
475  * t == LONG_MAX do not need to check for -ENOMEM error.
476  */
477 static long region_del(struct resv_map *resv, long f, long t)
478 {
479         struct list_head *head = &resv->regions;
480         struct file_region *rg, *trg;
481         struct file_region *nrg = NULL;
482         long del = 0;
483
484 retry:
485         spin_lock(&resv->lock);
486         list_for_each_entry_safe(rg, trg, head, link) {
487                 /*
488                  * Skip regions before the range to be deleted.  file_region
489                  * ranges are normally of the form [from, to).  However, there
490                  * may be a "placeholder" entry in the map which is of the form
491                  * (from, to) with from == to.  Check for placeholder entries
492                  * at the beginning of the range to be deleted.
493                  */
494                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
495                         continue;
496
497                 if (rg->from >= t)
498                         break;
499
500                 if (f > rg->from && t < rg->to) { /* Must split region */
501                         /*
502                          * Check for an entry in the cache before dropping
503                          * lock and attempting allocation.
504                          */
505                         if (!nrg &&
506                             resv->region_cache_count > resv->adds_in_progress) {
507                                 nrg = list_first_entry(&resv->region_cache,
508                                                         struct file_region,
509                                                         link);
510                                 list_del(&nrg->link);
511                                 resv->region_cache_count--;
512                         }
513
514                         if (!nrg) {
515                                 spin_unlock(&resv->lock);
516                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
517                                 if (!nrg)
518                                         return -ENOMEM;
519                                 goto retry;
520                         }
521
522                         del += t - f;
523
524                         /* New entry for end of split region */
525                         nrg->from = t;
526                         nrg->to = rg->to;
527                         INIT_LIST_HEAD(&nrg->link);
528
529                         /* Original entry is trimmed */
530                         rg->to = f;
531
532                         list_add(&nrg->link, &rg->link);
533                         nrg = NULL;
534                         break;
535                 }
536
537                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
538                         del += rg->to - rg->from;
539                         list_del(&rg->link);
540                         kfree(rg);
541                         continue;
542                 }
543
544                 if (f <= rg->from) {    /* Trim beginning of region */
545                         del += t - rg->from;
546                         rg->from = t;
547                 } else {                /* Trim end of region */
548                         del += rg->to - f;
549                         rg->to = f;
550                 }
551         }
552
553         spin_unlock(&resv->lock);
554         kfree(nrg);
555         return del;
556 }
557
558 /*
559  * A rare out of memory error was encountered which prevented removal of
560  * the reserve map region for a page.  The huge page itself was free'ed
561  * and removed from the page cache.  This routine will adjust the subpool
562  * usage count, and the global reserve count if needed.  By incrementing
563  * these counts, the reserve map entry which could not be deleted will
564  * appear as a "reserved" entry instead of simply dangling with incorrect
565  * counts.
566  */
567 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
568 {
569         struct hugepage_subpool *spool = subpool_inode(inode);
570         long rsv_adjust;
571
572         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
573         if (restore_reserve && rsv_adjust) {
574                 struct hstate *h = hstate_inode(inode);
575
576                 hugetlb_acct_memory(h, 1);
577         }
578 }
579
580 /*
581  * Count and return the number of huge pages in the reserve map
582  * that intersect with the range [f, t).
583  */
584 static long region_count(struct resv_map *resv, long f, long t)
585 {
586         struct list_head *head = &resv->regions;
587         struct file_region *rg;
588         long chg = 0;
589
590         spin_lock(&resv->lock);
591         /* Locate each segment we overlap with, and count that overlap. */
592         list_for_each_entry(rg, head, link) {
593                 long seg_from;
594                 long seg_to;
595
596                 if (rg->to <= f)
597                         continue;
598                 if (rg->from >= t)
599                         break;
600
601                 seg_from = max(rg->from, f);
602                 seg_to = min(rg->to, t);
603
604                 chg += seg_to - seg_from;
605         }
606         spin_unlock(&resv->lock);
607
608         return chg;
609 }
610
611 /*
612  * Convert the address within this vma to the page offset within
613  * the mapping, in pagecache page units; huge pages here.
614  */
615 static pgoff_t vma_hugecache_offset(struct hstate *h,
616                         struct vm_area_struct *vma, unsigned long address)
617 {
618         return ((address - vma->vm_start) >> huge_page_shift(h)) +
619                         (vma->vm_pgoff >> huge_page_order(h));
620 }
621
622 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
623                                      unsigned long address)
624 {
625         return vma_hugecache_offset(hstate_vma(vma), vma, address);
626 }
627
628 /*
629  * Return the size of the pages allocated when backing a VMA. In the majority
630  * cases this will be same size as used by the page table entries.
631  */
632 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
633 {
634         struct hstate *hstate;
635
636         if (!is_vm_hugetlb_page(vma))
637                 return PAGE_SIZE;
638
639         hstate = hstate_vma(vma);
640
641         return 1UL << huge_page_shift(hstate);
642 }
643 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
644
645 /*
646  * Return the page size being used by the MMU to back a VMA. In the majority
647  * of cases, the page size used by the kernel matches the MMU size. On
648  * architectures where it differs, an architecture-specific version of this
649  * function is required.
650  */
651 #ifndef vma_mmu_pagesize
652 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
653 {
654         return vma_kernel_pagesize(vma);
655 }
656 #endif
657
658 /*
659  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
660  * bits of the reservation map pointer, which are always clear due to
661  * alignment.
662  */
663 #define HPAGE_RESV_OWNER    (1UL << 0)
664 #define HPAGE_RESV_UNMAPPED (1UL << 1)
665 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
666
667 /*
668  * These helpers are used to track how many pages are reserved for
669  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
670  * is guaranteed to have their future faults succeed.
671  *
672  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
673  * the reserve counters are updated with the hugetlb_lock held. It is safe
674  * to reset the VMA at fork() time as it is not in use yet and there is no
675  * chance of the global counters getting corrupted as a result of the values.
676  *
677  * The private mapping reservation is represented in a subtly different
678  * manner to a shared mapping.  A shared mapping has a region map associated
679  * with the underlying file, this region map represents the backing file
680  * pages which have ever had a reservation assigned which this persists even
681  * after the page is instantiated.  A private mapping has a region map
682  * associated with the original mmap which is attached to all VMAs which
683  * reference it, this region map represents those offsets which have consumed
684  * reservation ie. where pages have been instantiated.
685  */
686 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
687 {
688         return (unsigned long)vma->vm_private_data;
689 }
690
691 static void set_vma_private_data(struct vm_area_struct *vma,
692                                                         unsigned long value)
693 {
694         vma->vm_private_data = (void *)value;
695 }
696
697 struct resv_map *resv_map_alloc(void)
698 {
699         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
700         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
701
702         if (!resv_map || !rg) {
703                 kfree(resv_map);
704                 kfree(rg);
705                 return NULL;
706         }
707
708         kref_init(&resv_map->refs);
709         spin_lock_init(&resv_map->lock);
710         INIT_LIST_HEAD(&resv_map->regions);
711
712         resv_map->adds_in_progress = 0;
713
714         INIT_LIST_HEAD(&resv_map->region_cache);
715         list_add(&rg->link, &resv_map->region_cache);
716         resv_map->region_cache_count = 1;
717
718         return resv_map;
719 }
720
721 void resv_map_release(struct kref *ref)
722 {
723         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
724         struct list_head *head = &resv_map->region_cache;
725         struct file_region *rg, *trg;
726
727         /* Clear out any active regions before we release the map. */
728         region_del(resv_map, 0, LONG_MAX);
729
730         /* ... and any entries left in the cache */
731         list_for_each_entry_safe(rg, trg, head, link) {
732                 list_del(&rg->link);
733                 kfree(rg);
734         }
735
736         VM_BUG_ON(resv_map->adds_in_progress);
737
738         kfree(resv_map);
739 }
740
741 static inline struct resv_map *inode_resv_map(struct inode *inode)
742 {
743         return inode->i_mapping->private_data;
744 }
745
746 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
747 {
748         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
749         if (vma->vm_flags & VM_MAYSHARE) {
750                 struct address_space *mapping = vma->vm_file->f_mapping;
751                 struct inode *inode = mapping->host;
752
753                 return inode_resv_map(inode);
754
755         } else {
756                 return (struct resv_map *)(get_vma_private_data(vma) &
757                                                         ~HPAGE_RESV_MASK);
758         }
759 }
760
761 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
762 {
763         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765
766         set_vma_private_data(vma, (get_vma_private_data(vma) &
767                                 HPAGE_RESV_MASK) | (unsigned long)map);
768 }
769
770 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
771 {
772         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774
775         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
776 }
777
778 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
779 {
780         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
781
782         return (get_vma_private_data(vma) & flag) != 0;
783 }
784
785 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
786 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
787 {
788         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
789         if (!(vma->vm_flags & VM_MAYSHARE))
790                 vma->vm_private_data = (void *)0;
791 }
792
793 /* Returns true if the VMA has associated reserve pages */
794 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
795 {
796         if (vma->vm_flags & VM_NORESERVE) {
797                 /*
798                  * This address is already reserved by other process(chg == 0),
799                  * so, we should decrement reserved count. Without decrementing,
800                  * reserve count remains after releasing inode, because this
801                  * allocated page will go into page cache and is regarded as
802                  * coming from reserved pool in releasing step.  Currently, we
803                  * don't have any other solution to deal with this situation
804                  * properly, so add work-around here.
805                  */
806                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
807                         return true;
808                 else
809                         return false;
810         }
811
812         /* Shared mappings always use reserves */
813         if (vma->vm_flags & VM_MAYSHARE) {
814                 /*
815                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
816                  * be a region map for all pages.  The only situation where
817                  * there is no region map is if a hole was punched via
818                  * fallocate.  In this case, there really are no reverves to
819                  * use.  This situation is indicated if chg != 0.
820                  */
821                 if (chg)
822                         return false;
823                 else
824                         return true;
825         }
826
827         /*
828          * Only the process that called mmap() has reserves for
829          * private mappings.
830          */
831         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
832                 return true;
833
834         return false;
835 }
836
837 static void enqueue_huge_page(struct hstate *h, struct page *page)
838 {
839         int nid = page_to_nid(page);
840         list_move(&page->lru, &h->hugepage_freelists[nid]);
841         h->free_huge_pages++;
842         h->free_huge_pages_node[nid]++;
843 }
844
845 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
846 {
847         struct page *page;
848
849         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
850                 if (!is_migrate_isolate_page(page))
851                         break;
852         /*
853          * if 'non-isolated free hugepage' not found on the list,
854          * the allocation fails.
855          */
856         if (&h->hugepage_freelists[nid] == &page->lru)
857                 return NULL;
858         list_move(&page->lru, &h->hugepage_activelist);
859         set_page_refcounted(page);
860         h->free_huge_pages--;
861         h->free_huge_pages_node[nid]--;
862         return page;
863 }
864
865 /* Movability of hugepages depends on migration support. */
866 static inline gfp_t htlb_alloc_mask(struct hstate *h)
867 {
868         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
869                 return GFP_HIGHUSER_MOVABLE;
870         else
871                 return GFP_HIGHUSER;
872 }
873
874 static struct page *dequeue_huge_page_vma(struct hstate *h,
875                                 struct vm_area_struct *vma,
876                                 unsigned long address, int avoid_reserve,
877                                 long chg)
878 {
879         struct page *page = NULL;
880         struct mempolicy *mpol;
881         nodemask_t *nodemask;
882         struct zonelist *zonelist;
883         struct zone *zone;
884         struct zoneref *z;
885         unsigned int cpuset_mems_cookie;
886
887         /*
888          * A child process with MAP_PRIVATE mappings created by their parent
889          * have no page reserves. This check ensures that reservations are
890          * not "stolen". The child may still get SIGKILLed
891          */
892         if (!vma_has_reserves(vma, chg) &&
893                         h->free_huge_pages - h->resv_huge_pages == 0)
894                 goto err;
895
896         /* If reserves cannot be used, ensure enough pages are in the pool */
897         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
898                 goto err;
899
900 retry_cpuset:
901         cpuset_mems_cookie = read_mems_allowed_begin();
902         zonelist = huge_zonelist(vma, address,
903                                         htlb_alloc_mask(h), &mpol, &nodemask);
904
905         for_each_zone_zonelist_nodemask(zone, z, zonelist,
906                                                 MAX_NR_ZONES - 1, nodemask) {
907                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
908                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
909                         if (page) {
910                                 if (avoid_reserve)
911                                         break;
912                                 if (!vma_has_reserves(vma, chg))
913                                         break;
914
915                                 SetPagePrivate(page);
916                                 h->resv_huge_pages--;
917                                 break;
918                         }
919                 }
920         }
921
922         mpol_cond_put(mpol);
923         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
924                 goto retry_cpuset;
925         return page;
926
927 err:
928         return NULL;
929 }
930
931 /*
932  * common helper functions for hstate_next_node_to_{alloc|free}.
933  * We may have allocated or freed a huge page based on a different
934  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
935  * be outside of *nodes_allowed.  Ensure that we use an allowed
936  * node for alloc or free.
937  */
938 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
939 {
940         nid = next_node(nid, *nodes_allowed);
941         if (nid == MAX_NUMNODES)
942                 nid = first_node(*nodes_allowed);
943         VM_BUG_ON(nid >= MAX_NUMNODES);
944
945         return nid;
946 }
947
948 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
949 {
950         if (!node_isset(nid, *nodes_allowed))
951                 nid = next_node_allowed(nid, nodes_allowed);
952         return nid;
953 }
954
955 /*
956  * returns the previously saved node ["this node"] from which to
957  * allocate a persistent huge page for the pool and advance the
958  * next node from which to allocate, handling wrap at end of node
959  * mask.
960  */
961 static int hstate_next_node_to_alloc(struct hstate *h,
962                                         nodemask_t *nodes_allowed)
963 {
964         int nid;
965
966         VM_BUG_ON(!nodes_allowed);
967
968         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
969         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
970
971         return nid;
972 }
973
974 /*
975  * helper for free_pool_huge_page() - return the previously saved
976  * node ["this node"] from which to free a huge page.  Advance the
977  * next node id whether or not we find a free huge page to free so
978  * that the next attempt to free addresses the next node.
979  */
980 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
981 {
982         int nid;
983
984         VM_BUG_ON(!nodes_allowed);
985
986         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
987         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
988
989         return nid;
990 }
991
992 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
993         for (nr_nodes = nodes_weight(*mask);                            \
994                 nr_nodes > 0 &&                                         \
995                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
996                 nr_nodes--)
997
998 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
999         for (nr_nodes = nodes_weight(*mask);                            \
1000                 nr_nodes > 0 &&                                         \
1001                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1002                 nr_nodes--)
1003
1004 #if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
1005 static void destroy_compound_gigantic_page(struct page *page,
1006                                         unsigned int order)
1007 {
1008         int i;
1009         int nr_pages = 1 << order;
1010         struct page *p = page + 1;
1011
1012         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1013                 clear_compound_head(p);
1014                 set_page_refcounted(p);
1015         }
1016
1017         set_compound_order(page, 0);
1018         __ClearPageHead(page);
1019 }
1020
1021 static void free_gigantic_page(struct page *page, unsigned int order)
1022 {
1023         free_contig_range(page_to_pfn(page), 1 << order);
1024 }
1025
1026 static int __alloc_gigantic_page(unsigned long start_pfn,
1027                                 unsigned long nr_pages)
1028 {
1029         unsigned long end_pfn = start_pfn + nr_pages;
1030         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1031 }
1032
1033 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1034                                 unsigned long nr_pages)
1035 {
1036         unsigned long i, end_pfn = start_pfn + nr_pages;
1037         struct page *page;
1038
1039         for (i = start_pfn; i < end_pfn; i++) {
1040                 if (!pfn_valid(i))
1041                         return false;
1042
1043                 page = pfn_to_page(i);
1044
1045                 if (PageReserved(page))
1046                         return false;
1047
1048                 if (page_count(page) > 0)
1049                         return false;
1050
1051                 if (PageHuge(page))
1052                         return false;
1053         }
1054
1055         return true;
1056 }
1057
1058 static bool zone_spans_last_pfn(const struct zone *zone,
1059                         unsigned long start_pfn, unsigned long nr_pages)
1060 {
1061         unsigned long last_pfn = start_pfn + nr_pages - 1;
1062         return zone_spans_pfn(zone, last_pfn);
1063 }
1064
1065 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1066 {
1067         unsigned long nr_pages = 1 << order;
1068         unsigned long ret, pfn, flags;
1069         struct zone *z;
1070
1071         z = NODE_DATA(nid)->node_zones;
1072         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1073                 spin_lock_irqsave(&z->lock, flags);
1074
1075                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1076                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1077                         if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1078                                 /*
1079                                  * We release the zone lock here because
1080                                  * alloc_contig_range() will also lock the zone
1081                                  * at some point. If there's an allocation
1082                                  * spinning on this lock, it may win the race
1083                                  * and cause alloc_contig_range() to fail...
1084                                  */
1085                                 spin_unlock_irqrestore(&z->lock, flags);
1086                                 ret = __alloc_gigantic_page(pfn, nr_pages);
1087                                 if (!ret)
1088                                         return pfn_to_page(pfn);
1089                                 spin_lock_irqsave(&z->lock, flags);
1090                         }
1091                         pfn += nr_pages;
1092                 }
1093
1094                 spin_unlock_irqrestore(&z->lock, flags);
1095         }
1096
1097         return NULL;
1098 }
1099
1100 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1101 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1102
1103 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1104 {
1105         struct page *page;
1106
1107         page = alloc_gigantic_page(nid, huge_page_order(h));
1108         if (page) {
1109                 prep_compound_gigantic_page(page, huge_page_order(h));
1110                 prep_new_huge_page(h, page, nid);
1111         }
1112
1113         return page;
1114 }
1115
1116 static int alloc_fresh_gigantic_page(struct hstate *h,
1117                                 nodemask_t *nodes_allowed)
1118 {
1119         struct page *page = NULL;
1120         int nr_nodes, node;
1121
1122         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1123                 page = alloc_fresh_gigantic_page_node(h, node);
1124                 if (page)
1125                         return 1;
1126         }
1127
1128         return 0;
1129 }
1130
1131 static inline bool gigantic_page_supported(void) { return true; }
1132 #else
1133 static inline bool gigantic_page_supported(void) { return false; }
1134 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1135 static inline void destroy_compound_gigantic_page(struct page *page,
1136                                                 unsigned int order) { }
1137 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1138                                         nodemask_t *nodes_allowed) { return 0; }
1139 #endif
1140
1141 static void update_and_free_page(struct hstate *h, struct page *page)
1142 {
1143         int i;
1144
1145         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1146                 return;
1147
1148         h->nr_huge_pages--;
1149         h->nr_huge_pages_node[page_to_nid(page)]--;
1150         for (i = 0; i < pages_per_huge_page(h); i++) {
1151                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1152                                 1 << PG_referenced | 1 << PG_dirty |
1153                                 1 << PG_active | 1 << PG_private |
1154                                 1 << PG_writeback);
1155         }
1156         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1157         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1158         set_page_refcounted(page);
1159         if (hstate_is_gigantic(h)) {
1160                 destroy_compound_gigantic_page(page, huge_page_order(h));
1161                 free_gigantic_page(page, huge_page_order(h));
1162         } else {
1163                 __free_pages(page, huge_page_order(h));
1164         }
1165 }
1166
1167 struct hstate *size_to_hstate(unsigned long size)
1168 {
1169         struct hstate *h;
1170
1171         for_each_hstate(h) {
1172                 if (huge_page_size(h) == size)
1173                         return h;
1174         }
1175         return NULL;
1176 }
1177
1178 /*
1179  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1180  * to hstate->hugepage_activelist.)
1181  *
1182  * This function can be called for tail pages, but never returns true for them.
1183  */
1184 bool page_huge_active(struct page *page)
1185 {
1186         VM_BUG_ON_PAGE(!PageHuge(page), page);
1187         return PageHead(page) && PagePrivate(&page[1]);
1188 }
1189
1190 /* never called for tail page */
1191 static void set_page_huge_active(struct page *page)
1192 {
1193         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1194         SetPagePrivate(&page[1]);
1195 }
1196
1197 static void clear_page_huge_active(struct page *page)
1198 {
1199         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1200         ClearPagePrivate(&page[1]);
1201 }
1202
1203 void free_huge_page(struct page *page)
1204 {
1205         /*
1206          * Can't pass hstate in here because it is called from the
1207          * compound page destructor.
1208          */
1209         struct hstate *h = page_hstate(page);
1210         int nid = page_to_nid(page);
1211         struct hugepage_subpool *spool =
1212                 (struct hugepage_subpool *)page_private(page);
1213         bool restore_reserve;
1214
1215         set_page_private(page, 0);
1216         page->mapping = NULL;
1217         VM_BUG_ON_PAGE(page_count(page), page);
1218         VM_BUG_ON_PAGE(page_mapcount(page), page);
1219         restore_reserve = PagePrivate(page);
1220         ClearPagePrivate(page);
1221
1222         /*
1223          * A return code of zero implies that the subpool will be under its
1224          * minimum size if the reservation is not restored after page is free.
1225          * Therefore, force restore_reserve operation.
1226          */
1227         if (hugepage_subpool_put_pages(spool, 1) == 0)
1228                 restore_reserve = true;
1229
1230         spin_lock(&hugetlb_lock);
1231         clear_page_huge_active(page);
1232         hugetlb_cgroup_uncharge_page(hstate_index(h),
1233                                      pages_per_huge_page(h), page);
1234         if (restore_reserve)
1235                 h->resv_huge_pages++;
1236
1237         if (h->surplus_huge_pages_node[nid]) {
1238                 /* remove the page from active list */
1239                 list_del(&page->lru);
1240                 update_and_free_page(h, page);
1241                 h->surplus_huge_pages--;
1242                 h->surplus_huge_pages_node[nid]--;
1243         } else {
1244                 arch_clear_hugepage_flags(page);
1245                 enqueue_huge_page(h, page);
1246         }
1247         spin_unlock(&hugetlb_lock);
1248 }
1249
1250 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1251 {
1252         INIT_LIST_HEAD(&page->lru);
1253         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1254         spin_lock(&hugetlb_lock);
1255         set_hugetlb_cgroup(page, NULL);
1256         h->nr_huge_pages++;
1257         h->nr_huge_pages_node[nid]++;
1258         spin_unlock(&hugetlb_lock);
1259         put_page(page); /* free it into the hugepage allocator */
1260 }
1261
1262 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1263 {
1264         int i;
1265         int nr_pages = 1 << order;
1266         struct page *p = page + 1;
1267
1268         /* we rely on prep_new_huge_page to set the destructor */
1269         set_compound_order(page, order);
1270         __ClearPageReserved(page);
1271         __SetPageHead(page);
1272         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1273                 /*
1274                  * For gigantic hugepages allocated through bootmem at
1275                  * boot, it's safer to be consistent with the not-gigantic
1276                  * hugepages and clear the PG_reserved bit from all tail pages
1277                  * too.  Otherwse drivers using get_user_pages() to access tail
1278                  * pages may get the reference counting wrong if they see
1279                  * PG_reserved set on a tail page (despite the head page not
1280                  * having PG_reserved set).  Enforcing this consistency between
1281                  * head and tail pages allows drivers to optimize away a check
1282                  * on the head page when they need know if put_page() is needed
1283                  * after get_user_pages().
1284                  */
1285                 __ClearPageReserved(p);
1286                 set_page_count(p, 0);
1287                 set_compound_head(p, page);
1288         }
1289         atomic_set(compound_mapcount_ptr(page), -1);
1290 }
1291
1292 /*
1293  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1294  * transparent huge pages.  See the PageTransHuge() documentation for more
1295  * details.
1296  */
1297 int PageHuge(struct page *page)
1298 {
1299         if (!PageCompound(page))
1300                 return 0;
1301
1302         page = compound_head(page);
1303         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1304 }
1305 EXPORT_SYMBOL_GPL(PageHuge);
1306
1307 /*
1308  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1309  * normal or transparent huge pages.
1310  */
1311 int PageHeadHuge(struct page *page_head)
1312 {
1313         if (!PageHead(page_head))
1314                 return 0;
1315
1316         return get_compound_page_dtor(page_head) == free_huge_page;
1317 }
1318
1319 pgoff_t __basepage_index(struct page *page)
1320 {
1321         struct page *page_head = compound_head(page);
1322         pgoff_t index = page_index(page_head);
1323         unsigned long compound_idx;
1324
1325         if (!PageHuge(page_head))
1326                 return page_index(page);
1327
1328         if (compound_order(page_head) >= MAX_ORDER)
1329                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1330         else
1331                 compound_idx = page - page_head;
1332
1333         return (index << compound_order(page_head)) + compound_idx;
1334 }
1335
1336 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1337 {
1338         struct page *page;
1339
1340         page = __alloc_pages_node(nid,
1341                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1342                                                 __GFP_REPEAT|__GFP_NOWARN,
1343                 huge_page_order(h));
1344         if (page) {
1345                 prep_new_huge_page(h, page, nid);
1346         }
1347
1348         return page;
1349 }
1350
1351 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1352 {
1353         struct page *page;
1354         int nr_nodes, node;
1355         int ret = 0;
1356
1357         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1358                 page = alloc_fresh_huge_page_node(h, node);
1359                 if (page) {
1360                         ret = 1;
1361                         break;
1362                 }
1363         }
1364
1365         if (ret)
1366                 count_vm_event(HTLB_BUDDY_PGALLOC);
1367         else
1368                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1369
1370         return ret;
1371 }
1372
1373 /*
1374  * Free huge page from pool from next node to free.
1375  * Attempt to keep persistent huge pages more or less
1376  * balanced over allowed nodes.
1377  * Called with hugetlb_lock locked.
1378  */
1379 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1380                                                          bool acct_surplus)
1381 {
1382         int nr_nodes, node;
1383         int ret = 0;
1384
1385         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1386                 /*
1387                  * If we're returning unused surplus pages, only examine
1388                  * nodes with surplus pages.
1389                  */
1390                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1391                     !list_empty(&h->hugepage_freelists[node])) {
1392                         struct page *page =
1393                                 list_entry(h->hugepage_freelists[node].next,
1394                                           struct page, lru);
1395                         list_del(&page->lru);
1396                         h->free_huge_pages--;
1397                         h->free_huge_pages_node[node]--;
1398                         if (acct_surplus) {
1399                                 h->surplus_huge_pages--;
1400                                 h->surplus_huge_pages_node[node]--;
1401                         }
1402                         update_and_free_page(h, page);
1403                         ret = 1;
1404                         break;
1405                 }
1406         }
1407
1408         return ret;
1409 }
1410
1411 /*
1412  * Dissolve a given free hugepage into free buddy pages. This function does
1413  * nothing for in-use (including surplus) hugepages.
1414  */
1415 static void dissolve_free_huge_page(struct page *page)
1416 {
1417         spin_lock(&hugetlb_lock);
1418         if (PageHuge(page) && !page_count(page)) {
1419                 struct hstate *h = page_hstate(page);
1420                 int nid = page_to_nid(page);
1421                 list_del(&page->lru);
1422                 h->free_huge_pages--;
1423                 h->free_huge_pages_node[nid]--;
1424                 update_and_free_page(h, page);
1425         }
1426         spin_unlock(&hugetlb_lock);
1427 }
1428
1429 /*
1430  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1431  * make specified memory blocks removable from the system.
1432  * Note that start_pfn should aligned with (minimum) hugepage size.
1433  */
1434 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1435 {
1436         unsigned long pfn;
1437
1438         if (!hugepages_supported())
1439                 return;
1440
1441         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1442         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1443                 dissolve_free_huge_page(pfn_to_page(pfn));
1444 }
1445
1446 /*
1447  * There are 3 ways this can get called:
1448  * 1. With vma+addr: we use the VMA's memory policy
1449  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1450  *    page from any node, and let the buddy allocator itself figure
1451  *    it out.
1452  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1453  *    strictly from 'nid'
1454  */
1455 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1456                 struct vm_area_struct *vma, unsigned long addr, int nid)
1457 {
1458         int order = huge_page_order(h);
1459         gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1460         unsigned int cpuset_mems_cookie;
1461
1462         /*
1463          * We need a VMA to get a memory policy.  If we do not
1464          * have one, we use the 'nid' argument.
1465          *
1466          * The mempolicy stuff below has some non-inlined bits
1467          * and calls ->vm_ops.  That makes it hard to optimize at
1468          * compile-time, even when NUMA is off and it does
1469          * nothing.  This helps the compiler optimize it out.
1470          */
1471         if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1472                 /*
1473                  * If a specific node is requested, make sure to
1474                  * get memory from there, but only when a node
1475                  * is explicitly specified.
1476                  */
1477                 if (nid != NUMA_NO_NODE)
1478                         gfp |= __GFP_THISNODE;
1479                 /*
1480                  * Make sure to call something that can handle
1481                  * nid=NUMA_NO_NODE
1482                  */
1483                 return alloc_pages_node(nid, gfp, order);
1484         }
1485
1486         /*
1487          * OK, so we have a VMA.  Fetch the mempolicy and try to
1488          * allocate a huge page with it.  We will only reach this
1489          * when CONFIG_NUMA=y.
1490          */
1491         do {
1492                 struct page *page;
1493                 struct mempolicy *mpol;
1494                 struct zonelist *zl;
1495                 nodemask_t *nodemask;
1496
1497                 cpuset_mems_cookie = read_mems_allowed_begin();
1498                 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1499                 mpol_cond_put(mpol);
1500                 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1501                 if (page)
1502                         return page;
1503         } while (read_mems_allowed_retry(cpuset_mems_cookie));
1504
1505         return NULL;
1506 }
1507
1508 /*
1509  * There are two ways to allocate a huge page:
1510  * 1. When you have a VMA and an address (like a fault)
1511  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1512  *
1513  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1514  * this case which signifies that the allocation should be done with
1515  * respect for the VMA's memory policy.
1516  *
1517  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1518  * implies that memory policies will not be taken in to account.
1519  */
1520 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1521                 struct vm_area_struct *vma, unsigned long addr, int nid)
1522 {
1523         struct page *page;
1524         unsigned int r_nid;
1525
1526         if (hstate_is_gigantic(h))
1527                 return NULL;
1528
1529         /*
1530          * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1531          * This makes sure the caller is picking _one_ of the modes with which
1532          * we can call this function, not both.
1533          */
1534         if (vma || (addr != -1)) {
1535                 VM_WARN_ON_ONCE(addr == -1);
1536                 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1537         }
1538         /*
1539          * Assume we will successfully allocate the surplus page to
1540          * prevent racing processes from causing the surplus to exceed
1541          * overcommit
1542          *
1543          * This however introduces a different race, where a process B
1544          * tries to grow the static hugepage pool while alloc_pages() is
1545          * called by process A. B will only examine the per-node
1546          * counters in determining if surplus huge pages can be
1547          * converted to normal huge pages in adjust_pool_surplus(). A
1548          * won't be able to increment the per-node counter, until the
1549          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1550          * no more huge pages can be converted from surplus to normal
1551          * state (and doesn't try to convert again). Thus, we have a
1552          * case where a surplus huge page exists, the pool is grown, and
1553          * the surplus huge page still exists after, even though it
1554          * should just have been converted to a normal huge page. This
1555          * does not leak memory, though, as the hugepage will be freed
1556          * once it is out of use. It also does not allow the counters to
1557          * go out of whack in adjust_pool_surplus() as we don't modify
1558          * the node values until we've gotten the hugepage and only the
1559          * per-node value is checked there.
1560          */
1561         spin_lock(&hugetlb_lock);
1562         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1563                 spin_unlock(&hugetlb_lock);
1564                 return NULL;
1565         } else {
1566                 h->nr_huge_pages++;
1567                 h->surplus_huge_pages++;
1568         }
1569         spin_unlock(&hugetlb_lock);
1570
1571         page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1572
1573         spin_lock(&hugetlb_lock);
1574         if (page) {
1575                 INIT_LIST_HEAD(&page->lru);
1576                 r_nid = page_to_nid(page);
1577                 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1578                 set_hugetlb_cgroup(page, NULL);
1579                 /*
1580                  * We incremented the global counters already
1581                  */
1582                 h->nr_huge_pages_node[r_nid]++;
1583                 h->surplus_huge_pages_node[r_nid]++;
1584                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1585         } else {
1586                 h->nr_huge_pages--;
1587                 h->surplus_huge_pages--;
1588                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1589         }
1590         spin_unlock(&hugetlb_lock);
1591
1592         return page;
1593 }
1594
1595 /*
1596  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1597  * NUMA_NO_NODE, which means that it may be allocated
1598  * anywhere.
1599  */
1600 static
1601 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1602 {
1603         unsigned long addr = -1;
1604
1605         return __alloc_buddy_huge_page(h, NULL, addr, nid);
1606 }
1607
1608 /*
1609  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1610  */
1611 static
1612 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1613                 struct vm_area_struct *vma, unsigned long addr)
1614 {
1615         return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1616 }
1617
1618 /*
1619  * This allocation function is useful in the context where vma is irrelevant.
1620  * E.g. soft-offlining uses this function because it only cares physical
1621  * address of error page.
1622  */
1623 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1624 {
1625         struct page *page = NULL;
1626
1627         spin_lock(&hugetlb_lock);
1628         if (h->free_huge_pages - h->resv_huge_pages > 0)
1629                 page = dequeue_huge_page_node(h, nid);
1630         spin_unlock(&hugetlb_lock);
1631
1632         if (!page)
1633                 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1634
1635         return page;
1636 }
1637
1638 /*
1639  * Increase the hugetlb pool such that it can accommodate a reservation
1640  * of size 'delta'.
1641  */
1642 static int gather_surplus_pages(struct hstate *h, int delta)
1643 {
1644         struct list_head surplus_list;
1645         struct page *page, *tmp;
1646         int ret, i;
1647         int needed, allocated;
1648         bool alloc_ok = true;
1649
1650         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1651         if (needed <= 0) {
1652                 h->resv_huge_pages += delta;
1653                 return 0;
1654         }
1655
1656         allocated = 0;
1657         INIT_LIST_HEAD(&surplus_list);
1658
1659         ret = -ENOMEM;
1660 retry:
1661         spin_unlock(&hugetlb_lock);
1662         for (i = 0; i < needed; i++) {
1663                 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1664                 if (!page) {
1665                         alloc_ok = false;
1666                         break;
1667                 }
1668                 list_add(&page->lru, &surplus_list);
1669         }
1670         allocated += i;
1671
1672         /*
1673          * After retaking hugetlb_lock, we need to recalculate 'needed'
1674          * because either resv_huge_pages or free_huge_pages may have changed.
1675          */
1676         spin_lock(&hugetlb_lock);
1677         needed = (h->resv_huge_pages + delta) -
1678                         (h->free_huge_pages + allocated);
1679         if (needed > 0) {
1680                 if (alloc_ok)
1681                         goto retry;
1682                 /*
1683                  * We were not able to allocate enough pages to
1684                  * satisfy the entire reservation so we free what
1685                  * we've allocated so far.
1686                  */
1687                 goto free;
1688         }
1689         /*
1690          * The surplus_list now contains _at_least_ the number of extra pages
1691          * needed to accommodate the reservation.  Add the appropriate number
1692          * of pages to the hugetlb pool and free the extras back to the buddy
1693          * allocator.  Commit the entire reservation here to prevent another
1694          * process from stealing the pages as they are added to the pool but
1695          * before they are reserved.
1696          */
1697         needed += allocated;
1698         h->resv_huge_pages += delta;
1699         ret = 0;
1700
1701         /* Free the needed pages to the hugetlb pool */
1702         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1703                 if ((--needed) < 0)
1704                         break;
1705                 /*
1706                  * This page is now managed by the hugetlb allocator and has
1707                  * no users -- drop the buddy allocator's reference.
1708                  */
1709                 put_page_testzero(page);
1710                 VM_BUG_ON_PAGE(page_count(page), page);
1711                 enqueue_huge_page(h, page);
1712         }
1713 free:
1714         spin_unlock(&hugetlb_lock);
1715
1716         /* Free unnecessary surplus pages to the buddy allocator */
1717         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1718                 put_page(page);
1719         spin_lock(&hugetlb_lock);
1720
1721         return ret;
1722 }
1723
1724 /*
1725  * When releasing a hugetlb pool reservation, any surplus pages that were
1726  * allocated to satisfy the reservation must be explicitly freed if they were
1727  * never used.
1728  * Called with hugetlb_lock held.
1729  */
1730 static void return_unused_surplus_pages(struct hstate *h,
1731                                         unsigned long unused_resv_pages)
1732 {
1733         unsigned long nr_pages;
1734
1735         /* Uncommit the reservation */
1736         h->resv_huge_pages -= unused_resv_pages;
1737
1738         /* Cannot return gigantic pages currently */
1739         if (hstate_is_gigantic(h))
1740                 return;
1741
1742         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1743
1744         /*
1745          * We want to release as many surplus pages as possible, spread
1746          * evenly across all nodes with memory. Iterate across these nodes
1747          * until we can no longer free unreserved surplus pages. This occurs
1748          * when the nodes with surplus pages have no free pages.
1749          * free_pool_huge_page() will balance the the freed pages across the
1750          * on-line nodes with memory and will handle the hstate accounting.
1751          */
1752         while (nr_pages--) {
1753                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1754                         break;
1755                 cond_resched_lock(&hugetlb_lock);
1756         }
1757 }
1758
1759
1760 /*
1761  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1762  * are used by the huge page allocation routines to manage reservations.
1763  *
1764  * vma_needs_reservation is called to determine if the huge page at addr
1765  * within the vma has an associated reservation.  If a reservation is
1766  * needed, the value 1 is returned.  The caller is then responsible for
1767  * managing the global reservation and subpool usage counts.  After
1768  * the huge page has been allocated, vma_commit_reservation is called
1769  * to add the page to the reservation map.  If the page allocation fails,
1770  * the reservation must be ended instead of committed.  vma_end_reservation
1771  * is called in such cases.
1772  *
1773  * In the normal case, vma_commit_reservation returns the same value
1774  * as the preceding vma_needs_reservation call.  The only time this
1775  * is not the case is if a reserve map was changed between calls.  It
1776  * is the responsibility of the caller to notice the difference and
1777  * take appropriate action.
1778  */
1779 enum vma_resv_mode {
1780         VMA_NEEDS_RESV,
1781         VMA_COMMIT_RESV,
1782         VMA_END_RESV,
1783 };
1784 static long __vma_reservation_common(struct hstate *h,
1785                                 struct vm_area_struct *vma, unsigned long addr,
1786                                 enum vma_resv_mode mode)
1787 {
1788         struct resv_map *resv;
1789         pgoff_t idx;
1790         long ret;
1791
1792         resv = vma_resv_map(vma);
1793         if (!resv)
1794                 return 1;
1795
1796         idx = vma_hugecache_offset(h, vma, addr);
1797         switch (mode) {
1798         case VMA_NEEDS_RESV:
1799                 ret = region_chg(resv, idx, idx + 1);
1800                 break;
1801         case VMA_COMMIT_RESV:
1802                 ret = region_add(resv, idx, idx + 1);
1803                 break;
1804         case VMA_END_RESV:
1805                 region_abort(resv, idx, idx + 1);
1806                 ret = 0;
1807                 break;
1808         default:
1809                 BUG();
1810         }
1811
1812         if (vma->vm_flags & VM_MAYSHARE)
1813                 return ret;
1814         else
1815                 return ret < 0 ? ret : 0;
1816 }
1817
1818 static long vma_needs_reservation(struct hstate *h,
1819                         struct vm_area_struct *vma, unsigned long addr)
1820 {
1821         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1822 }
1823
1824 static long vma_commit_reservation(struct hstate *h,
1825                         struct vm_area_struct *vma, unsigned long addr)
1826 {
1827         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1828 }
1829
1830 static void vma_end_reservation(struct hstate *h,
1831                         struct vm_area_struct *vma, unsigned long addr)
1832 {
1833         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1834 }
1835
1836 struct page *alloc_huge_page(struct vm_area_struct *vma,
1837                                     unsigned long addr, int avoid_reserve)
1838 {
1839         struct hugepage_subpool *spool = subpool_vma(vma);
1840         struct hstate *h = hstate_vma(vma);
1841         struct page *page;
1842         long map_chg, map_commit;
1843         long gbl_chg;
1844         int ret, idx;
1845         struct hugetlb_cgroup *h_cg;
1846
1847         idx = hstate_index(h);
1848         /*
1849          * Examine the region/reserve map to determine if the process
1850          * has a reservation for the page to be allocated.  A return
1851          * code of zero indicates a reservation exists (no change).
1852          */
1853         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1854         if (map_chg < 0)
1855                 return ERR_PTR(-ENOMEM);
1856
1857         /*
1858          * Processes that did not create the mapping will have no
1859          * reserves as indicated by the region/reserve map. Check
1860          * that the allocation will not exceed the subpool limit.
1861          * Allocations for MAP_NORESERVE mappings also need to be
1862          * checked against any subpool limit.
1863          */
1864         if (map_chg || avoid_reserve) {
1865                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1866                 if (gbl_chg < 0) {
1867                         vma_end_reservation(h, vma, addr);
1868                         return ERR_PTR(-ENOSPC);
1869                 }
1870
1871                 /*
1872                  * Even though there was no reservation in the region/reserve
1873                  * map, there could be reservations associated with the
1874                  * subpool that can be used.  This would be indicated if the
1875                  * return value of hugepage_subpool_get_pages() is zero.
1876                  * However, if avoid_reserve is specified we still avoid even
1877                  * the subpool reservations.
1878                  */
1879                 if (avoid_reserve)
1880                         gbl_chg = 1;
1881         }
1882
1883         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1884         if (ret)
1885                 goto out_subpool_put;
1886
1887         spin_lock(&hugetlb_lock);
1888         /*
1889          * glb_chg is passed to indicate whether or not a page must be taken
1890          * from the global free pool (global change).  gbl_chg == 0 indicates
1891          * a reservation exists for the allocation.
1892          */
1893         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1894         if (!page) {
1895                 spin_unlock(&hugetlb_lock);
1896                 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1897                 if (!page)
1898                         goto out_uncharge_cgroup;
1899                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1900                         SetPagePrivate(page);
1901                         h->resv_huge_pages--;
1902                 }
1903                 spin_lock(&hugetlb_lock);
1904                 list_move(&page->lru, &h->hugepage_activelist);
1905                 /* Fall through */
1906         }
1907         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1908         spin_unlock(&hugetlb_lock);
1909
1910         set_page_private(page, (unsigned long)spool);
1911
1912         map_commit = vma_commit_reservation(h, vma, addr);
1913         if (unlikely(map_chg > map_commit)) {
1914                 /*
1915                  * The page was added to the reservation map between
1916                  * vma_needs_reservation and vma_commit_reservation.
1917                  * This indicates a race with hugetlb_reserve_pages.
1918                  * Adjust for the subpool count incremented above AND
1919                  * in hugetlb_reserve_pages for the same page.  Also,
1920                  * the reservation count added in hugetlb_reserve_pages
1921                  * no longer applies.
1922                  */
1923                 long rsv_adjust;
1924
1925                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1926                 hugetlb_acct_memory(h, -rsv_adjust);
1927         }
1928         return page;
1929
1930 out_uncharge_cgroup:
1931         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1932 out_subpool_put:
1933         if (map_chg || avoid_reserve)
1934                 hugepage_subpool_put_pages(spool, 1);
1935         vma_end_reservation(h, vma, addr);
1936         return ERR_PTR(-ENOSPC);
1937 }
1938
1939 /*
1940  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1941  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1942  * where no ERR_VALUE is expected to be returned.
1943  */
1944 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1945                                 unsigned long addr, int avoid_reserve)
1946 {
1947         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1948         if (IS_ERR(page))
1949                 page = NULL;
1950         return page;
1951 }
1952
1953 int __weak alloc_bootmem_huge_page(struct hstate *h)
1954 {
1955         struct huge_bootmem_page *m;
1956         int nr_nodes, node;
1957
1958         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1959                 void *addr;
1960
1961                 addr = memblock_virt_alloc_try_nid_nopanic(
1962                                 huge_page_size(h), huge_page_size(h),
1963                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1964                 if (addr) {
1965                         /*
1966                          * Use the beginning of the huge page to store the
1967                          * huge_bootmem_page struct (until gather_bootmem
1968                          * puts them into the mem_map).
1969                          */
1970                         m = addr;
1971                         goto found;
1972                 }
1973         }
1974         return 0;
1975
1976 found:
1977         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1978         /* Put them into a private list first because mem_map is not up yet */
1979         list_add(&m->list, &huge_boot_pages);
1980         m->hstate = h;
1981         return 1;
1982 }
1983
1984 static void __init prep_compound_huge_page(struct page *page,
1985                 unsigned int order)
1986 {
1987         if (unlikely(order > (MAX_ORDER - 1)))
1988                 prep_compound_gigantic_page(page, order);
1989         else
1990                 prep_compound_page(page, order);
1991 }
1992
1993 /* Put bootmem huge pages into the standard lists after mem_map is up */
1994 static void __init gather_bootmem_prealloc(void)
1995 {
1996         struct huge_bootmem_page *m;
1997
1998         list_for_each_entry(m, &huge_boot_pages, list) {
1999                 struct hstate *h = m->hstate;
2000                 struct page *page;
2001
2002 #ifdef CONFIG_HIGHMEM
2003                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2004                 memblock_free_late(__pa(m),
2005                                    sizeof(struct huge_bootmem_page));
2006 #else
2007                 page = virt_to_page(m);
2008 #endif
2009                 WARN_ON(page_count(page) != 1);
2010                 prep_compound_huge_page(page, h->order);
2011                 WARN_ON(PageReserved(page));
2012                 prep_new_huge_page(h, page, page_to_nid(page));
2013                 /*
2014                  * If we had gigantic hugepages allocated at boot time, we need
2015                  * to restore the 'stolen' pages to totalram_pages in order to
2016                  * fix confusing memory reports from free(1) and another
2017                  * side-effects, like CommitLimit going negative.
2018                  */
2019                 if (hstate_is_gigantic(h))
2020                         adjust_managed_page_count(page, 1 << h->order);
2021         }
2022 }
2023
2024 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2025 {
2026         unsigned long i;
2027
2028         for (i = 0; i < h->max_huge_pages; ++i) {
2029                 if (hstate_is_gigantic(h)) {
2030                         if (!alloc_bootmem_huge_page(h))
2031                                 break;
2032                 } else if (!alloc_fresh_huge_page(h,
2033                                          &node_states[N_MEMORY]))
2034                         break;
2035         }
2036         h->max_huge_pages = i;
2037 }
2038
2039 static void __init hugetlb_init_hstates(void)
2040 {
2041         struct hstate *h;
2042
2043         for_each_hstate(h) {
2044                 if (minimum_order > huge_page_order(h))
2045                         minimum_order = huge_page_order(h);
2046
2047                 /* oversize hugepages were init'ed in early boot */
2048                 if (!hstate_is_gigantic(h))
2049                         hugetlb_hstate_alloc_pages(h);
2050         }
2051         VM_BUG_ON(minimum_order == UINT_MAX);
2052 }
2053
2054 static char * __init memfmt(char *buf, unsigned long n)
2055 {
2056         if (n >= (1UL << 30))
2057                 sprintf(buf, "%lu GB", n >> 30);
2058         else if (n >= (1UL << 20))
2059                 sprintf(buf, "%lu MB", n >> 20);
2060         else
2061                 sprintf(buf, "%lu KB", n >> 10);
2062         return buf;
2063 }
2064
2065 static void __init report_hugepages(void)
2066 {
2067         struct hstate *h;
2068
2069         for_each_hstate(h) {
2070                 char buf[32];
2071                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2072                         memfmt(buf, huge_page_size(h)),
2073                         h->free_huge_pages);
2074         }
2075 }
2076
2077 #ifdef CONFIG_HIGHMEM
2078 static void try_to_free_low(struct hstate *h, unsigned long count,
2079                                                 nodemask_t *nodes_allowed)
2080 {
2081         int i;
2082
2083         if (hstate_is_gigantic(h))
2084                 return;
2085
2086         for_each_node_mask(i, *nodes_allowed) {
2087                 struct page *page, *next;
2088                 struct list_head *freel = &h->hugepage_freelists[i];
2089                 list_for_each_entry_safe(page, next, freel, lru) {
2090                         if (count >= h->nr_huge_pages)
2091                                 return;
2092                         if (PageHighMem(page))
2093                                 continue;
2094                         list_del(&page->lru);
2095                         update_and_free_page(h, page);
2096                         h->free_huge_pages--;
2097                         h->free_huge_pages_node[page_to_nid(page)]--;
2098                 }
2099         }
2100 }
2101 #else
2102 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2103                                                 nodemask_t *nodes_allowed)
2104 {
2105 }
2106 #endif
2107
2108 /*
2109  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2110  * balanced by operating on them in a round-robin fashion.
2111  * Returns 1 if an adjustment was made.
2112  */
2113 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2114                                 int delta)
2115 {
2116         int nr_nodes, node;
2117
2118         VM_BUG_ON(delta != -1 && delta != 1);
2119
2120         if (delta < 0) {
2121                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2122                         if (h->surplus_huge_pages_node[node])
2123                                 goto found;
2124                 }
2125         } else {
2126                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2127                         if (h->surplus_huge_pages_node[node] <
2128                                         h->nr_huge_pages_node[node])
2129                                 goto found;
2130                 }
2131         }
2132         return 0;
2133
2134 found:
2135         h->surplus_huge_pages += delta;
2136         h->surplus_huge_pages_node[node] += delta;
2137         return 1;
2138 }
2139
2140 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2141 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2142                                                 nodemask_t *nodes_allowed)
2143 {
2144         unsigned long min_count, ret;
2145
2146         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2147                 return h->max_huge_pages;
2148
2149         /*
2150          * Increase the pool size
2151          * First take pages out of surplus state.  Then make up the
2152          * remaining difference by allocating fresh huge pages.
2153          *
2154          * We might race with __alloc_buddy_huge_page() here and be unable
2155          * to convert a surplus huge page to a normal huge page. That is
2156          * not critical, though, it just means the overall size of the
2157          * pool might be one hugepage larger than it needs to be, but
2158          * within all the constraints specified by the sysctls.
2159          */
2160         spin_lock(&hugetlb_lock);
2161         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2162                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2163                         break;
2164         }
2165
2166         while (count > persistent_huge_pages(h)) {
2167                 /*
2168                  * If this allocation races such that we no longer need the
2169                  * page, free_huge_page will handle it by freeing the page
2170                  * and reducing the surplus.
2171                  */
2172                 spin_unlock(&hugetlb_lock);
2173                 if (hstate_is_gigantic(h))
2174                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2175                 else
2176                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2177                 spin_lock(&hugetlb_lock);
2178                 if (!ret)
2179                         goto out;
2180
2181                 /* Bail for signals. Probably ctrl-c from user */
2182                 if (signal_pending(current))
2183                         goto out;
2184         }
2185
2186         /*
2187          * Decrease the pool size
2188          * First return free pages to the buddy allocator (being careful
2189          * to keep enough around to satisfy reservations).  Then place
2190          * pages into surplus state as needed so the pool will shrink
2191          * to the desired size as pages become free.
2192          *
2193          * By placing pages into the surplus state independent of the
2194          * overcommit value, we are allowing the surplus pool size to
2195          * exceed overcommit. There are few sane options here. Since
2196          * __alloc_buddy_huge_page() is checking the global counter,
2197          * though, we'll note that we're not allowed to exceed surplus
2198          * and won't grow the pool anywhere else. Not until one of the
2199          * sysctls are changed, or the surplus pages go out of use.
2200          */
2201         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2202         min_count = max(count, min_count);
2203         try_to_free_low(h, min_count, nodes_allowed);
2204         while (min_count < persistent_huge_pages(h)) {
2205                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2206                         break;
2207                 cond_resched_lock(&hugetlb_lock);
2208         }
2209         while (count < persistent_huge_pages(h)) {
2210                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2211                         break;
2212         }
2213 out:
2214         ret = persistent_huge_pages(h);
2215         spin_unlock(&hugetlb_lock);
2216         return ret;
2217 }
2218
2219 #define HSTATE_ATTR_RO(_name) \
2220         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2221
2222 #define HSTATE_ATTR(_name) \
2223         static struct kobj_attribute _name##_attr = \
2224                 __ATTR(_name, 0644, _name##_show, _name##_store)
2225
2226 static struct kobject *hugepages_kobj;
2227 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2228
2229 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2230
2231 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2232 {
2233         int i;
2234
2235         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2236                 if (hstate_kobjs[i] == kobj) {
2237                         if (nidp)
2238                                 *nidp = NUMA_NO_NODE;
2239                         return &hstates[i];
2240                 }
2241
2242         return kobj_to_node_hstate(kobj, nidp);
2243 }
2244
2245 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2246                                         struct kobj_attribute *attr, char *buf)
2247 {
2248         struct hstate *h;
2249         unsigned long nr_huge_pages;
2250         int nid;
2251
2252         h = kobj_to_hstate(kobj, &nid);
2253         if (nid == NUMA_NO_NODE)
2254                 nr_huge_pages = h->nr_huge_pages;
2255         else
2256                 nr_huge_pages = h->nr_huge_pages_node[nid];
2257
2258         return sprintf(buf, "%lu\n", nr_huge_pages);
2259 }
2260
2261 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2262                                            struct hstate *h, int nid,
2263                                            unsigned long count, size_t len)
2264 {
2265         int err;
2266         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2267
2268         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2269                 err = -EINVAL;
2270                 goto out;
2271         }
2272
2273         if (nid == NUMA_NO_NODE) {
2274                 /*
2275                  * global hstate attribute
2276                  */
2277                 if (!(obey_mempolicy &&
2278                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2279                         NODEMASK_FREE(nodes_allowed);
2280                         nodes_allowed = &node_states[N_MEMORY];
2281                 }
2282         } else if (nodes_allowed) {
2283                 /*
2284                  * per node hstate attribute: adjust count to global,
2285                  * but restrict alloc/free to the specified node.
2286                  */
2287                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2288                 init_nodemask_of_node(nodes_allowed, nid);
2289         } else
2290                 nodes_allowed = &node_states[N_MEMORY];
2291
2292         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2293
2294         if (nodes_allowed != &node_states[N_MEMORY])
2295                 NODEMASK_FREE(nodes_allowed);
2296
2297         return len;
2298 out:
2299         NODEMASK_FREE(nodes_allowed);
2300         return err;
2301 }
2302
2303 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2304                                          struct kobject *kobj, const char *buf,
2305                                          size_t len)
2306 {
2307         struct hstate *h;
2308         unsigned long count;
2309         int nid;
2310         int err;
2311
2312         err = kstrtoul(buf, 10, &count);
2313         if (err)
2314                 return err;
2315
2316         h = kobj_to_hstate(kobj, &nid);
2317         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2318 }
2319
2320 static ssize_t nr_hugepages_show(struct kobject *kobj,
2321                                        struct kobj_attribute *attr, char *buf)
2322 {
2323         return nr_hugepages_show_common(kobj, attr, buf);
2324 }
2325
2326 static ssize_t nr_hugepages_store(struct kobject *kobj,
2327                struct kobj_attribute *attr, const char *buf, size_t len)
2328 {
2329         return nr_hugepages_store_common(false, kobj, buf, len);
2330 }
2331 HSTATE_ATTR(nr_hugepages);
2332
2333 #ifdef CONFIG_NUMA
2334
2335 /*
2336  * hstate attribute for optionally mempolicy-based constraint on persistent
2337  * huge page alloc/free.
2338  */
2339 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2340                                        struct kobj_attribute *attr, char *buf)
2341 {
2342         return nr_hugepages_show_common(kobj, attr, buf);
2343 }
2344
2345 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2346                struct kobj_attribute *attr, const char *buf, size_t len)
2347 {
2348         return nr_hugepages_store_common(true, kobj, buf, len);
2349 }
2350 HSTATE_ATTR(nr_hugepages_mempolicy);
2351 #endif
2352
2353
2354 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2355                                         struct kobj_attribute *attr, char *buf)
2356 {
2357         struct hstate *h = kobj_to_hstate(kobj, NULL);
2358         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2359 }
2360
2361 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2362                 struct kobj_attribute *attr, const char *buf, size_t count)
2363 {
2364         int err;
2365         unsigned long input;
2366         struct hstate *h = kobj_to_hstate(kobj, NULL);
2367
2368         if (hstate_is_gigantic(h))
2369                 return -EINVAL;
2370
2371         err = kstrtoul(buf, 10, &input);
2372         if (err)
2373                 return err;
2374
2375         spin_lock(&hugetlb_lock);
2376         h->nr_overcommit_huge_pages = input;
2377         spin_unlock(&hugetlb_lock);
2378
2379         return count;
2380 }
2381 HSTATE_ATTR(nr_overcommit_hugepages);
2382
2383 static ssize_t free_hugepages_show(struct kobject *kobj,
2384                                         struct kobj_attribute *attr, char *buf)
2385 {
2386         struct hstate *h;
2387         unsigned long free_huge_pages;
2388         int nid;
2389
2390         h = kobj_to_hstate(kobj, &nid);
2391         if (nid == NUMA_NO_NODE)
2392                 free_huge_pages = h->free_huge_pages;
2393         else
2394                 free_huge_pages = h->free_huge_pages_node[nid];
2395
2396         return sprintf(buf, "%lu\n", free_huge_pages);
2397 }
2398 HSTATE_ATTR_RO(free_hugepages);
2399
2400 static ssize_t resv_hugepages_show(struct kobject *kobj,
2401                                         struct kobj_attribute *attr, char *buf)
2402 {
2403         struct hstate *h = kobj_to_hstate(kobj, NULL);
2404         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2405 }
2406 HSTATE_ATTR_RO(resv_hugepages);
2407
2408 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2409                                         struct kobj_attribute *attr, char *buf)
2410 {
2411         struct hstate *h;
2412         unsigned long surplus_huge_pages;
2413         int nid;
2414
2415         h = kobj_to_hstate(kobj, &nid);
2416         if (nid == NUMA_NO_NODE)
2417                 surplus_huge_pages = h->surplus_huge_pages;
2418         else
2419                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2420
2421         return sprintf(buf, "%lu\n", surplus_huge_pages);
2422 }
2423 HSTATE_ATTR_RO(surplus_hugepages);
2424
2425 static struct attribute *hstate_attrs[] = {
2426         &nr_hugepages_attr.attr,
2427         &nr_overcommit_hugepages_attr.attr,
2428         &free_hugepages_attr.attr,
2429         &resv_hugepages_attr.attr,
2430         &surplus_hugepages_attr.attr,
2431 #ifdef CONFIG_NUMA
2432         &nr_hugepages_mempolicy_attr.attr,
2433 #endif
2434         NULL,
2435 };
2436
2437 static struct attribute_group hstate_attr_group = {
2438         .attrs = hstate_attrs,
2439 };
2440
2441 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2442                                     struct kobject **hstate_kobjs,
2443                                     struct attribute_group *hstate_attr_group)
2444 {
2445         int retval;
2446         int hi = hstate_index(h);
2447
2448         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2449         if (!hstate_kobjs[hi])
2450                 return -ENOMEM;
2451
2452         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2453         if (retval)
2454                 kobject_put(hstate_kobjs[hi]);
2455
2456         return retval;
2457 }
2458
2459 static void __init hugetlb_sysfs_init(void)
2460 {
2461         struct hstate *h;
2462         int err;
2463
2464         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2465         if (!hugepages_kobj)
2466                 return;
2467
2468         for_each_hstate(h) {
2469                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2470                                          hstate_kobjs, &hstate_attr_group);
2471                 if (err)
2472                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2473         }
2474 }
2475
2476 #ifdef CONFIG_NUMA
2477
2478 /*
2479  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2480  * with node devices in node_devices[] using a parallel array.  The array
2481  * index of a node device or _hstate == node id.
2482  * This is here to avoid any static dependency of the node device driver, in
2483  * the base kernel, on the hugetlb module.
2484  */
2485 struct node_hstate {
2486         struct kobject          *hugepages_kobj;
2487         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2488 };
2489 static struct node_hstate node_hstates[MAX_NUMNODES];
2490
2491 /*
2492  * A subset of global hstate attributes for node devices
2493  */
2494 static struct attribute *per_node_hstate_attrs[] = {
2495         &nr_hugepages_attr.attr,
2496         &free_hugepages_attr.attr,
2497         &surplus_hugepages_attr.attr,
2498         NULL,
2499 };
2500
2501 static struct attribute_group per_node_hstate_attr_group = {
2502         .attrs = per_node_hstate_attrs,
2503 };
2504
2505 /*
2506  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2507  * Returns node id via non-NULL nidp.
2508  */
2509 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2510 {
2511         int nid;
2512
2513         for (nid = 0; nid < nr_node_ids; nid++) {
2514                 struct node_hstate *nhs = &node_hstates[nid];
2515                 int i;
2516                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2517                         if (nhs->hstate_kobjs[i] == kobj) {
2518                                 if (nidp)
2519                                         *nidp = nid;
2520                                 return &hstates[i];
2521                         }
2522         }
2523
2524         BUG();
2525         return NULL;
2526 }
2527
2528 /*
2529  * Unregister hstate attributes from a single node device.
2530  * No-op if no hstate attributes attached.
2531  */
2532 static void hugetlb_unregister_node(struct node *node)
2533 {
2534         struct hstate *h;
2535         struct node_hstate *nhs = &node_hstates[node->dev.id];
2536
2537         if (!nhs->hugepages_kobj)
2538                 return;         /* no hstate attributes */
2539
2540         for_each_hstate(h) {
2541                 int idx = hstate_index(h);
2542                 if (nhs->hstate_kobjs[idx]) {
2543                         kobject_put(nhs->hstate_kobjs[idx]);
2544                         nhs->hstate_kobjs[idx] = NULL;
2545                 }
2546         }
2547
2548         kobject_put(nhs->hugepages_kobj);
2549         nhs->hugepages_kobj = NULL;
2550 }
2551
2552
2553 /*
2554  * Register hstate attributes for a single node device.
2555  * No-op if attributes already registered.
2556  */
2557 static void hugetlb_register_node(struct node *node)
2558 {
2559         struct hstate *h;
2560         struct node_hstate *nhs = &node_hstates[node->dev.id];
2561         int err;
2562
2563         if (nhs->hugepages_kobj)
2564                 return;         /* already allocated */
2565
2566         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2567                                                         &node->dev.kobj);
2568         if (!nhs->hugepages_kobj)
2569                 return;
2570
2571         for_each_hstate(h) {
2572                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2573                                                 nhs->hstate_kobjs,
2574                                                 &per_node_hstate_attr_group);
2575                 if (err) {
2576                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2577                                 h->name, node->dev.id);
2578                         hugetlb_unregister_node(node);
2579                         break;
2580                 }
2581         }
2582 }
2583
2584 /*
2585  * hugetlb init time:  register hstate attributes for all registered node
2586  * devices of nodes that have memory.  All on-line nodes should have
2587  * registered their associated device by this time.
2588  */
2589 static void __init hugetlb_register_all_nodes(void)
2590 {
2591         int nid;
2592
2593         for_each_node_state(nid, N_MEMORY) {
2594                 struct node *node = node_devices[nid];
2595                 if (node->dev.id == nid)
2596                         hugetlb_register_node(node);
2597         }
2598
2599         /*
2600          * Let the node device driver know we're here so it can
2601          * [un]register hstate attributes on node hotplug.
2602          */
2603         register_hugetlbfs_with_node(hugetlb_register_node,
2604                                      hugetlb_unregister_node);
2605 }
2606 #else   /* !CONFIG_NUMA */
2607
2608 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2609 {
2610         BUG();
2611         if (nidp)
2612                 *nidp = -1;
2613         return NULL;
2614 }
2615
2616 static void hugetlb_register_all_nodes(void) { }
2617
2618 #endif
2619
2620 static int __init hugetlb_init(void)
2621 {
2622         int i;
2623
2624         if (!hugepages_supported())
2625                 return 0;
2626
2627         if (!size_to_hstate(default_hstate_size)) {
2628                 default_hstate_size = HPAGE_SIZE;
2629                 if (!size_to_hstate(default_hstate_size))
2630                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2631         }
2632         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2633         if (default_hstate_max_huge_pages) {
2634                 if (!default_hstate.max_huge_pages)
2635                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2636         }
2637
2638         hugetlb_init_hstates();
2639         gather_bootmem_prealloc();
2640         report_hugepages();
2641
2642         hugetlb_sysfs_init();
2643         hugetlb_register_all_nodes();
2644         hugetlb_cgroup_file_init();
2645
2646 #ifdef CONFIG_SMP
2647         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2648 #else
2649         num_fault_mutexes = 1;
2650 #endif
2651         hugetlb_fault_mutex_table =
2652                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2653         BUG_ON(!hugetlb_fault_mutex_table);
2654
2655         for (i = 0; i < num_fault_mutexes; i++)
2656                 mutex_init(&hugetlb_fault_mutex_table[i]);
2657         return 0;
2658 }
2659 subsys_initcall(hugetlb_init);
2660
2661 /* Should be called on processing a hugepagesz=... option */
2662 void __init hugetlb_add_hstate(unsigned int order)
2663 {
2664         struct hstate *h;
2665         unsigned long i;
2666
2667         if (size_to_hstate(PAGE_SIZE << order)) {
2668                 pr_warn("hugepagesz= specified twice, ignoring\n");
2669                 return;
2670         }
2671         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2672         BUG_ON(order == 0);
2673         h = &hstates[hugetlb_max_hstate++];
2674         h->order = order;
2675         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2676         h->nr_huge_pages = 0;
2677         h->free_huge_pages = 0;
2678         for (i = 0; i < MAX_NUMNODES; ++i)
2679                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2680         INIT_LIST_HEAD(&h->hugepage_activelist);
2681         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2682         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2683         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2684                                         huge_page_size(h)/1024);
2685
2686         parsed_hstate = h;
2687 }
2688
2689 static int __init hugetlb_nrpages_setup(char *s)
2690 {
2691         unsigned long *mhp;
2692         static unsigned long *last_mhp;
2693
2694         /*
2695          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2696          * so this hugepages= parameter goes to the "default hstate".
2697          */
2698         if (!hugetlb_max_hstate)
2699                 mhp = &default_hstate_max_huge_pages;
2700         else
2701                 mhp = &parsed_hstate->max_huge_pages;
2702
2703         if (mhp == last_mhp) {
2704                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2705                 return 1;
2706         }
2707
2708         if (sscanf(s, "%lu", mhp) <= 0)
2709                 *mhp = 0;
2710
2711         /*
2712          * Global state is always initialized later in hugetlb_init.
2713          * But we need to allocate >= MAX_ORDER hstates here early to still
2714          * use the bootmem allocator.
2715          */
2716         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2717                 hugetlb_hstate_alloc_pages(parsed_hstate);
2718
2719         last_mhp = mhp;
2720
2721         return 1;
2722 }
2723 __setup("hugepages=", hugetlb_nrpages_setup);
2724
2725 static int __init hugetlb_default_setup(char *s)
2726 {
2727         default_hstate_size = memparse(s, &s);
2728         return 1;
2729 }
2730 __setup("default_hugepagesz=", hugetlb_default_setup);
2731
2732 static unsigned int cpuset_mems_nr(unsigned int *array)
2733 {
2734         int node;
2735         unsigned int nr = 0;
2736
2737         for_each_node_mask(node, cpuset_current_mems_allowed)
2738                 nr += array[node];
2739
2740         return nr;
2741 }
2742
2743 #ifdef CONFIG_SYSCTL
2744 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2745                          struct ctl_table *table, int write,
2746                          void __user *buffer, size_t *length, loff_t *ppos)
2747 {
2748         struct hstate *h = &default_hstate;
2749         unsigned long tmp = h->max_huge_pages;
2750         int ret;
2751
2752         if (!hugepages_supported())
2753                 return -EOPNOTSUPP;
2754
2755         table->data = &tmp;
2756         table->maxlen = sizeof(unsigned long);
2757         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2758         if (ret)
2759                 goto out;
2760
2761         if (write)
2762                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2763                                                   NUMA_NO_NODE, tmp, *length);
2764 out:
2765         return ret;
2766 }
2767
2768 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2769                           void __user *buffer, size_t *length, loff_t *ppos)
2770 {
2771
2772         return hugetlb_sysctl_handler_common(false, table, write,
2773                                                         buffer, length, ppos);
2774 }
2775
2776 #ifdef CONFIG_NUMA
2777 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2778                           void __user *buffer, size_t *length, loff_t *ppos)
2779 {
2780         return hugetlb_sysctl_handler_common(true, table, write,
2781                                                         buffer, length, ppos);
2782 }
2783 #endif /* CONFIG_NUMA */
2784
2785 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2786                         void __user *buffer,
2787                         size_t *length, loff_t *ppos)
2788 {
2789         struct hstate *h = &default_hstate;
2790         unsigned long tmp;
2791         int ret;
2792
2793         if (!hugepages_supported())
2794                 return -EOPNOTSUPP;
2795
2796         tmp = h->nr_overcommit_huge_pages;
2797
2798         if (write && hstate_is_gigantic(h))
2799                 return -EINVAL;
2800
2801         table->data = &tmp;
2802         table->maxlen = sizeof(unsigned long);
2803         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2804         if (ret)
2805                 goto out;
2806
2807         if (write) {
2808                 spin_lock(&hugetlb_lock);
2809                 h->nr_overcommit_huge_pages = tmp;
2810                 spin_unlock(&hugetlb_lock);
2811         }
2812 out:
2813         return ret;
2814 }
2815
2816 #endif /* CONFIG_SYSCTL */
2817
2818 void hugetlb_report_meminfo(struct seq_file *m)
2819 {
2820         struct hstate *h = &default_hstate;
2821         if (!hugepages_supported())
2822                 return;
2823         seq_printf(m,
2824                         "HugePages_Total:   %5lu\n"
2825                         "HugePages_Free:    %5lu\n"
2826                         "HugePages_Rsvd:    %5lu\n"
2827                         "HugePages_Surp:    %5lu\n"
2828                         "Hugepagesize:   %8lu kB\n",
2829                         h->nr_huge_pages,
2830                         h->free_huge_pages,
2831                         h->resv_huge_pages,
2832                         h->surplus_huge_pages,
2833                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2834 }
2835
2836 int hugetlb_report_node_meminfo(int nid, char *buf)
2837 {
2838         struct hstate *h = &default_hstate;
2839         if (!hugepages_supported())
2840                 return 0;
2841         return sprintf(buf,
2842                 "Node %d HugePages_Total: %5u\n"
2843                 "Node %d HugePages_Free:  %5u\n"
2844                 "Node %d HugePages_Surp:  %5u\n",
2845                 nid, h->nr_huge_pages_node[nid],
2846                 nid, h->free_huge_pages_node[nid],
2847                 nid, h->surplus_huge_pages_node[nid]);
2848 }
2849
2850 void hugetlb_show_meminfo(void)
2851 {
2852         struct hstate *h;
2853         int nid;
2854
2855         if (!hugepages_supported())
2856                 return;
2857
2858         for_each_node_state(nid, N_MEMORY)
2859                 for_each_hstate(h)
2860                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2861                                 nid,
2862                                 h->nr_huge_pages_node[nid],
2863                                 h->free_huge_pages_node[nid],
2864                                 h->surplus_huge_pages_node[nid],
2865                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2866 }
2867
2868 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2869 {
2870         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2871                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2872 }
2873
2874 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2875 unsigned long hugetlb_total_pages(void)
2876 {
2877         struct hstate *h;
2878         unsigned long nr_total_pages = 0;
2879
2880         for_each_hstate(h)
2881                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2882         return nr_total_pages;
2883 }
2884
2885 static int hugetlb_acct_memory(struct hstate *h, long delta)
2886 {
2887         int ret = -ENOMEM;
2888
2889         spin_lock(&hugetlb_lock);
2890         /*
2891          * When cpuset is configured, it breaks the strict hugetlb page
2892          * reservation as the accounting is done on a global variable. Such
2893          * reservation is completely rubbish in the presence of cpuset because
2894          * the reservation is not checked against page availability for the
2895          * current cpuset. Application can still potentially OOM'ed by kernel
2896          * with lack of free htlb page in cpuset that the task is in.
2897          * Attempt to enforce strict accounting with cpuset is almost
2898          * impossible (or too ugly) because cpuset is too fluid that
2899          * task or memory node can be dynamically moved between cpusets.
2900          *
2901          * The change of semantics for shared hugetlb mapping with cpuset is
2902          * undesirable. However, in order to preserve some of the semantics,
2903          * we fall back to check against current free page availability as
2904          * a best attempt and hopefully to minimize the impact of changing
2905          * semantics that cpuset has.
2906          */
2907         if (delta > 0) {
2908                 if (gather_surplus_pages(h, delta) < 0)
2909                         goto out;
2910
2911                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2912                         return_unused_surplus_pages(h, delta);
2913                         goto out;
2914                 }
2915         }
2916
2917         ret = 0;
2918         if (delta < 0)
2919                 return_unused_surplus_pages(h, (unsigned long) -delta);
2920
2921 out:
2922         spin_unlock(&hugetlb_lock);
2923         return ret;
2924 }
2925
2926 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2927 {
2928         struct resv_map *resv = vma_resv_map(vma);
2929
2930         /*
2931          * This new VMA should share its siblings reservation map if present.
2932          * The VMA will only ever have a valid reservation map pointer where
2933          * it is being copied for another still existing VMA.  As that VMA
2934          * has a reference to the reservation map it cannot disappear until
2935          * after this open call completes.  It is therefore safe to take a
2936          * new reference here without additional locking.
2937          */
2938         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2939                 kref_get(&resv->refs);
2940 }
2941
2942 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2943 {
2944         struct hstate *h = hstate_vma(vma);
2945         struct resv_map *resv = vma_resv_map(vma);
2946         struct hugepage_subpool *spool = subpool_vma(vma);
2947         unsigned long reserve, start, end;
2948         long gbl_reserve;
2949
2950         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2951                 return;
2952
2953         start = vma_hugecache_offset(h, vma, vma->vm_start);
2954         end = vma_hugecache_offset(h, vma, vma->vm_end);
2955
2956         reserve = (end - start) - region_count(resv, start, end);
2957
2958         kref_put(&resv->refs, resv_map_release);
2959
2960         if (reserve) {
2961                 /*
2962                  * Decrement reserve counts.  The global reserve count may be
2963                  * adjusted if the subpool has a minimum size.
2964                  */
2965                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2966                 hugetlb_acct_memory(h, -gbl_reserve);
2967         }
2968 }
2969
2970 /*
2971  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2972  * handle_mm_fault() to try to instantiate regular-sized pages in the
2973  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2974  * this far.
2975  */
2976 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2977 {
2978         BUG();
2979         return 0;
2980 }
2981
2982 const struct vm_operations_struct hugetlb_vm_ops = {
2983         .fault = hugetlb_vm_op_fault,
2984         .open = hugetlb_vm_op_open,
2985         .close = hugetlb_vm_op_close,
2986 };
2987
2988 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2989                                 int writable)
2990 {
2991         pte_t entry;
2992
2993         if (writable) {
2994                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2995                                          vma->vm_page_prot)));
2996         } else {
2997                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2998                                            vma->vm_page_prot));
2999         }
3000         entry = pte_mkyoung(entry);
3001         entry = pte_mkhuge(entry);
3002         entry = arch_make_huge_pte(entry, vma, page, writable);
3003
3004         return entry;
3005 }
3006
3007 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3008                                    unsigned long address, pte_t *ptep)
3009 {
3010         pte_t entry;
3011
3012         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3013         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3014                 update_mmu_cache(vma, address, ptep);
3015 }
3016
3017 static int is_hugetlb_entry_migration(pte_t pte)
3018 {
3019         swp_entry_t swp;
3020
3021         if (huge_pte_none(pte) || pte_present(pte))
3022                 return 0;
3023         swp = pte_to_swp_entry(pte);
3024         if (non_swap_entry(swp) && is_migration_entry(swp))
3025                 return 1;
3026         else
3027                 return 0;
3028 }
3029
3030 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3031 {
3032         swp_entry_t swp;
3033
3034         if (huge_pte_none(pte) || pte_present(pte))
3035                 return 0;
3036         swp = pte_to_swp_entry(pte);
3037         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3038                 return 1;
3039         else
3040                 return 0;
3041 }
3042
3043 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3044                             struct vm_area_struct *vma)
3045 {
3046         pte_t *src_pte, *dst_pte, entry;
3047         struct page *ptepage;
3048         unsigned long addr;
3049         int cow;
3050         struct hstate *h = hstate_vma(vma);
3051         unsigned long sz = huge_page_size(h);
3052         unsigned long mmun_start;       /* For mmu_notifiers */
3053         unsigned long mmun_end;         /* For mmu_notifiers */
3054         int ret = 0;
3055
3056         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3057
3058         mmun_start = vma->vm_start;
3059         mmun_end = vma->vm_end;
3060         if (cow)
3061                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3062
3063         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3064                 spinlock_t *src_ptl, *dst_ptl;
3065                 src_pte = huge_pte_offset(src, addr);
3066                 if (!src_pte)
3067                         continue;
3068                 dst_pte = huge_pte_alloc(dst, addr, sz);
3069                 if (!dst_pte) {
3070                         ret = -ENOMEM;
3071                         break;
3072                 }
3073
3074                 /* If the pagetables are shared don't copy or take references */
3075                 if (dst_pte == src_pte)
3076                         continue;
3077
3078                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3079                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3080                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3081                 entry = huge_ptep_get(src_pte);
3082                 if (huge_pte_none(entry)) { /* skip none entry */
3083                         ;
3084                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3085                                     is_hugetlb_entry_hwpoisoned(entry))) {
3086                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3087
3088                         if (is_write_migration_entry(swp_entry) && cow) {
3089                                 /*
3090                                  * COW mappings require pages in both
3091                                  * parent and child to be set to read.
3092                                  */
3093                                 make_migration_entry_read(&swp_entry);
3094                                 entry = swp_entry_to_pte(swp_entry);
3095                                 set_huge_pte_at(src, addr, src_pte, entry);
3096                         }
3097                         set_huge_pte_at(dst, addr, dst_pte, entry);
3098                 } else {
3099                         if (cow) {
3100                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3101                                 mmu_notifier_invalidate_range(src, mmun_start,
3102                                                                    mmun_end);
3103                         }
3104                         entry = huge_ptep_get(src_pte);
3105                         ptepage = pte_page(entry);
3106                         get_page(ptepage);
3107                         page_dup_rmap(ptepage, true);
3108                         set_huge_pte_at(dst, addr, dst_pte, entry);
3109                         hugetlb_count_add(pages_per_huge_page(h), dst);
3110                 }
3111                 spin_unlock(src_ptl);
3112                 spin_unlock(dst_ptl);
3113         }
3114
3115         if (cow)
3116                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3117
3118         return ret;
3119 }
3120
3121 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3122                             unsigned long start, unsigned long end,
3123                             struct page *ref_page)
3124 {
3125         int force_flush = 0;
3126         struct mm_struct *mm = vma->vm_mm;
3127         unsigned long address;
3128         pte_t *ptep;
3129         pte_t pte;
3130         spinlock_t *ptl;
3131         struct page *page;
3132         struct hstate *h = hstate_vma(vma);
3133         unsigned long sz = huge_page_size(h);
3134         const unsigned long mmun_start = start; /* For mmu_notifiers */
3135         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3136
3137         WARN_ON(!is_vm_hugetlb_page(vma));
3138         BUG_ON(start & ~huge_page_mask(h));
3139         BUG_ON(end & ~huge_page_mask(h));
3140
3141         tlb_start_vma(tlb, vma);
3142         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3143         address = start;
3144 again:
3145         for (; address < end; address += sz) {
3146                 ptep = huge_pte_offset(mm, address);
3147                 if (!ptep)
3148                         continue;
3149
3150                 ptl = huge_pte_lock(h, mm, ptep);
3151                 if (huge_pmd_unshare(mm, &address, ptep))
3152                         goto unlock;
3153
3154                 pte = huge_ptep_get(ptep);
3155                 if (huge_pte_none(pte))
3156                         goto unlock;
3157
3158                 /*
3159                  * Migrating hugepage or HWPoisoned hugepage is already
3160                  * unmapped and its refcount is dropped, so just clear pte here.
3161                  */
3162                 if (unlikely(!pte_present(pte))) {
3163                         huge_pte_clear(mm, address, ptep);
3164                         goto unlock;
3165                 }
3166
3167                 page = pte_page(pte);
3168                 /*
3169                  * If a reference page is supplied, it is because a specific
3170                  * page is being unmapped, not a range. Ensure the page we
3171                  * are about to unmap is the actual page of interest.
3172                  */
3173                 if (ref_page) {
3174                         if (page != ref_page)
3175                                 goto unlock;
3176
3177                         /*
3178                          * Mark the VMA as having unmapped its page so that
3179                          * future faults in this VMA will fail rather than
3180                          * looking like data was lost
3181                          */
3182                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3183                 }
3184
3185                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3186                 tlb_remove_tlb_entry(tlb, ptep, address);
3187                 if (huge_pte_dirty(pte))
3188                         set_page_dirty(page);
3189
3190                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3191                 page_remove_rmap(page, true);
3192                 force_flush = !__tlb_remove_page(tlb, page);
3193                 if (force_flush) {
3194                         address += sz;
3195                         spin_unlock(ptl);
3196                         break;
3197                 }
3198                 /* Bail out after unmapping reference page if supplied */
3199                 if (ref_page) {
3200                         spin_unlock(ptl);
3201                         break;
3202                 }
3203 unlock:
3204                 spin_unlock(ptl);
3205         }
3206         /*
3207          * mmu_gather ran out of room to batch pages, we break out of
3208          * the PTE lock to avoid doing the potential expensive TLB invalidate
3209          * and page-free while holding it.
3210          */
3211         if (force_flush) {
3212                 force_flush = 0;
3213                 tlb_flush_mmu(tlb);
3214                 if (address < end && !ref_page)
3215                         goto again;
3216         }
3217         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3218         tlb_end_vma(tlb, vma);
3219 }
3220
3221 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3222                           struct vm_area_struct *vma, unsigned long start,
3223                           unsigned long end, struct page *ref_page)
3224 {
3225         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3226
3227         /*
3228          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3229          * test will fail on a vma being torn down, and not grab a page table
3230          * on its way out.  We're lucky that the flag has such an appropriate
3231          * name, and can in fact be safely cleared here. We could clear it
3232          * before the __unmap_hugepage_range above, but all that's necessary
3233          * is to clear it before releasing the i_mmap_rwsem. This works
3234          * because in the context this is called, the VMA is about to be
3235          * destroyed and the i_mmap_rwsem is held.
3236          */
3237         vma->vm_flags &= ~VM_MAYSHARE;
3238 }
3239
3240 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3241                           unsigned long end, struct page *ref_page)
3242 {
3243         struct mm_struct *mm;
3244         struct mmu_gather tlb;
3245
3246         mm = vma->vm_mm;
3247
3248         tlb_gather_mmu(&tlb, mm, start, end);
3249         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3250         tlb_finish_mmu(&tlb, start, end);
3251 }
3252
3253 /*
3254  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3255  * mappping it owns the reserve page for. The intention is to unmap the page
3256  * from other VMAs and let the children be SIGKILLed if they are faulting the
3257  * same region.
3258  */
3259 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3260                               struct page *page, unsigned long address)
3261 {
3262         struct hstate *h = hstate_vma(vma);
3263         struct vm_area_struct *iter_vma;
3264         struct address_space *mapping;
3265         pgoff_t pgoff;
3266
3267         /*
3268          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3269          * from page cache lookup which is in HPAGE_SIZE units.
3270          */
3271         address = address & huge_page_mask(h);
3272         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3273                         vma->vm_pgoff;
3274         mapping = file_inode(vma->vm_file)->i_mapping;
3275
3276         /*
3277          * Take the mapping lock for the duration of the table walk. As
3278          * this mapping should be shared between all the VMAs,
3279          * __unmap_hugepage_range() is called as the lock is already held
3280          */
3281         i_mmap_lock_write(mapping);
3282         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3283                 /* Do not unmap the current VMA */
3284                 if (iter_vma == vma)
3285                         continue;
3286
3287                 /*
3288                  * Shared VMAs have their own reserves and do not affect
3289                  * MAP_PRIVATE accounting but it is possible that a shared
3290                  * VMA is using the same page so check and skip such VMAs.
3291                  */
3292                 if (iter_vma->vm_flags & VM_MAYSHARE)
3293                         continue;
3294
3295                 /*
3296                  * Unmap the page from other VMAs without their own reserves.
3297                  * They get marked to be SIGKILLed if they fault in these
3298                  * areas. This is because a future no-page fault on this VMA
3299                  * could insert a zeroed page instead of the data existing
3300                  * from the time of fork. This would look like data corruption
3301                  */
3302                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3303                         unmap_hugepage_range(iter_vma, address,
3304                                              address + huge_page_size(h), page);
3305         }
3306         i_mmap_unlock_write(mapping);
3307 }
3308
3309 /*
3310  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3311  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3312  * cannot race with other handlers or page migration.
3313  * Keep the pte_same checks anyway to make transition from the mutex easier.
3314  */
3315 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3316                         unsigned long address, pte_t *ptep, pte_t pte,
3317                         struct page *pagecache_page, spinlock_t *ptl)
3318 {
3319         struct hstate *h = hstate_vma(vma);
3320         struct page *old_page, *new_page;
3321         int ret = 0, outside_reserve = 0;
3322         unsigned long mmun_start;       /* For mmu_notifiers */
3323         unsigned long mmun_end;         /* For mmu_notifiers */
3324
3325         old_page = pte_page(pte);
3326
3327 retry_avoidcopy:
3328         /* If no-one else is actually using this page, avoid the copy
3329          * and just make the page writable */
3330         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3331                 page_move_anon_rmap(old_page, vma, address);
3332                 set_huge_ptep_writable(vma, address, ptep);
3333                 return 0;
3334         }
3335
3336         /*
3337          * If the process that created a MAP_PRIVATE mapping is about to
3338          * perform a COW due to a shared page count, attempt to satisfy
3339          * the allocation without using the existing reserves. The pagecache
3340          * page is used to determine if the reserve at this address was
3341          * consumed or not. If reserves were used, a partial faulted mapping
3342          * at the time of fork() could consume its reserves on COW instead
3343          * of the full address range.
3344          */
3345         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3346                         old_page != pagecache_page)
3347                 outside_reserve = 1;
3348
3349         page_cache_get(old_page);
3350
3351         /*
3352          * Drop page table lock as buddy allocator may be called. It will
3353          * be acquired again before returning to the caller, as expected.
3354          */
3355         spin_unlock(ptl);
3356         new_page = alloc_huge_page(vma, address, outside_reserve);
3357
3358         if (IS_ERR(new_page)) {
3359                 /*
3360                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3361                  * it is due to references held by a child and an insufficient
3362                  * huge page pool. To guarantee the original mappers
3363                  * reliability, unmap the page from child processes. The child
3364                  * may get SIGKILLed if it later faults.
3365                  */
3366                 if (outside_reserve) {
3367                         page_cache_release(old_page);
3368                         BUG_ON(huge_pte_none(pte));
3369                         unmap_ref_private(mm, vma, old_page, address);
3370                         BUG_ON(huge_pte_none(pte));
3371                         spin_lock(ptl);
3372                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3373                         if (likely(ptep &&
3374                                    pte_same(huge_ptep_get(ptep), pte)))
3375                                 goto retry_avoidcopy;
3376                         /*
3377                          * race occurs while re-acquiring page table
3378                          * lock, and our job is done.
3379                          */
3380                         return 0;
3381                 }
3382
3383                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3384                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3385                 goto out_release_old;
3386         }
3387
3388         /*
3389          * When the original hugepage is shared one, it does not have
3390          * anon_vma prepared.
3391          */
3392         if (unlikely(anon_vma_prepare(vma))) {
3393                 ret = VM_FAULT_OOM;
3394                 goto out_release_all;
3395         }
3396
3397         copy_user_huge_page(new_page, old_page, address, vma,
3398                             pages_per_huge_page(h));
3399         __SetPageUptodate(new_page);
3400         set_page_huge_active(new_page);
3401
3402         mmun_start = address & huge_page_mask(h);
3403         mmun_end = mmun_start + huge_page_size(h);
3404         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3405
3406         /*
3407          * Retake the page table lock to check for racing updates
3408          * before the page tables are altered
3409          */
3410         spin_lock(ptl);
3411         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3412         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3413                 ClearPagePrivate(new_page);
3414
3415                 /* Break COW */
3416                 huge_ptep_clear_flush(vma, address, ptep);
3417                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3418                 set_huge_pte_at(mm, address, ptep,
3419                                 make_huge_pte(vma, new_page, 1));
3420                 page_remove_rmap(old_page, true);
3421                 hugepage_add_new_anon_rmap(new_page, vma, address);
3422                 /* Make the old page be freed below */
3423                 new_page = old_page;
3424         }
3425         spin_unlock(ptl);
3426         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3427 out_release_all:
3428         page_cache_release(new_page);
3429 out_release_old:
3430         page_cache_release(old_page);
3431
3432         spin_lock(ptl); /* Caller expects lock to be held */
3433         return ret;
3434 }
3435
3436 /* Return the pagecache page at a given address within a VMA */
3437 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3438                         struct vm_area_struct *vma, unsigned long address)
3439 {
3440         struct address_space *mapping;
3441         pgoff_t idx;
3442
3443         mapping = vma->vm_file->f_mapping;
3444         idx = vma_hugecache_offset(h, vma, address);
3445
3446         return find_lock_page(mapping, idx);
3447 }
3448
3449 /*
3450  * Return whether there is a pagecache page to back given address within VMA.
3451  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3452  */
3453 static bool hugetlbfs_pagecache_present(struct hstate *h,
3454                         struct vm_area_struct *vma, unsigned long address)
3455 {
3456         struct address_space *mapping;
3457         pgoff_t idx;
3458         struct page *page;
3459
3460         mapping = vma->vm_file->f_mapping;
3461         idx = vma_hugecache_offset(h, vma, address);
3462
3463         page = find_get_page(mapping, idx);
3464         if (page)
3465                 put_page(page);
3466         return page != NULL;
3467 }
3468
3469 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3470                            pgoff_t idx)
3471 {
3472         struct inode *inode = mapping->host;
3473         struct hstate *h = hstate_inode(inode);
3474         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3475
3476         if (err)
3477                 return err;
3478         ClearPagePrivate(page);
3479
3480         spin_lock(&inode->i_lock);
3481         inode->i_blocks += blocks_per_huge_page(h);
3482         spin_unlock(&inode->i_lock);
3483         return 0;
3484 }
3485
3486 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3487                            struct address_space *mapping, pgoff_t idx,
3488                            unsigned long address, pte_t *ptep, unsigned int flags)
3489 {
3490         struct hstate *h = hstate_vma(vma);
3491         int ret = VM_FAULT_SIGBUS;
3492         int anon_rmap = 0;
3493         unsigned long size;
3494         struct page *page;
3495         pte_t new_pte;
3496         spinlock_t *ptl;
3497
3498         /*
3499          * Currently, we are forced to kill the process in the event the
3500          * original mapper has unmapped pages from the child due to a failed
3501          * COW. Warn that such a situation has occurred as it may not be obvious
3502          */
3503         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3504                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3505                            current->pid);
3506                 return ret;
3507         }
3508
3509         /*
3510          * Use page lock to guard against racing truncation
3511          * before we get page_table_lock.
3512          */
3513 retry:
3514         page = find_lock_page(mapping, idx);
3515         if (!page) {
3516                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3517                 if (idx >= size)
3518                         goto out;
3519                 page = alloc_huge_page(vma, address, 0);
3520                 if (IS_ERR(page)) {
3521                         ret = PTR_ERR(page);
3522                         if (ret == -ENOMEM)
3523                                 ret = VM_FAULT_OOM;
3524                         else
3525                                 ret = VM_FAULT_SIGBUS;
3526                         goto out;
3527                 }
3528                 clear_huge_page(page, address, pages_per_huge_page(h));
3529                 __SetPageUptodate(page);
3530                 set_page_huge_active(page);
3531
3532                 if (vma->vm_flags & VM_MAYSHARE) {
3533                         int err = huge_add_to_page_cache(page, mapping, idx);
3534                         if (err) {
3535                                 put_page(page);
3536                                 if (err == -EEXIST)
3537                                         goto retry;
3538                                 goto out;
3539                         }
3540                 } else {
3541                         lock_page(page);
3542                         if (unlikely(anon_vma_prepare(vma))) {
3543                                 ret = VM_FAULT_OOM;
3544                                 goto backout_unlocked;
3545                         }
3546                         anon_rmap = 1;
3547                 }
3548         } else {
3549                 /*
3550                  * If memory error occurs between mmap() and fault, some process
3551                  * don't have hwpoisoned swap entry for errored virtual address.
3552                  * So we need to block hugepage fault by PG_hwpoison bit check.
3553                  */
3554                 if (unlikely(PageHWPoison(page))) {
3555                         ret = VM_FAULT_HWPOISON |
3556                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3557                         goto backout_unlocked;
3558                 }
3559         }
3560
3561         /*
3562          * If we are going to COW a private mapping later, we examine the
3563          * pending reservations for this page now. This will ensure that
3564          * any allocations necessary to record that reservation occur outside
3565          * the spinlock.
3566          */
3567         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3568                 if (vma_needs_reservation(h, vma, address) < 0) {
3569                         ret = VM_FAULT_OOM;
3570                         goto backout_unlocked;
3571                 }
3572                 /* Just decrements count, does not deallocate */
3573                 vma_end_reservation(h, vma, address);
3574         }
3575
3576         ptl = huge_pte_lockptr(h, mm, ptep);
3577         spin_lock(ptl);
3578         size = i_size_read(mapping->host) >> huge_page_shift(h);
3579         if (idx >= size)
3580                 goto backout;
3581
3582         ret = 0;
3583         if (!huge_pte_none(huge_ptep_get(ptep)))
3584                 goto backout;
3585
3586         if (anon_rmap) {
3587                 ClearPagePrivate(page);
3588                 hugepage_add_new_anon_rmap(page, vma, address);
3589         } else
3590                 page_dup_rmap(page, true);
3591         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3592                                 && (vma->vm_flags & VM_SHARED)));
3593         set_huge_pte_at(mm, address, ptep, new_pte);
3594
3595         hugetlb_count_add(pages_per_huge_page(h), mm);
3596         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3597                 /* Optimization, do the COW without a second fault */
3598                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3599         }
3600
3601         spin_unlock(ptl);
3602         unlock_page(page);
3603 out:
3604         return ret;
3605
3606 backout:
3607         spin_unlock(ptl);
3608 backout_unlocked:
3609         unlock_page(page);
3610         put_page(page);
3611         goto out;
3612 }
3613
3614 #ifdef CONFIG_SMP
3615 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3616                             struct vm_area_struct *vma,
3617                             struct address_space *mapping,
3618                             pgoff_t idx, unsigned long address)
3619 {
3620         unsigned long key[2];
3621         u32 hash;
3622
3623         if (vma->vm_flags & VM_SHARED) {
3624                 key[0] = (unsigned long) mapping;
3625                 key[1] = idx;
3626         } else {
3627                 key[0] = (unsigned long) mm;
3628                 key[1] = address >> huge_page_shift(h);
3629         }
3630
3631         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3632
3633         return hash & (num_fault_mutexes - 1);
3634 }
3635 #else
3636 /*
3637  * For uniprocesor systems we always use a single mutex, so just
3638  * return 0 and avoid the hashing overhead.
3639  */
3640 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3641                             struct vm_area_struct *vma,
3642                             struct address_space *mapping,
3643                             pgoff_t idx, unsigned long address)
3644 {
3645         return 0;
3646 }
3647 #endif
3648
3649 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3650                         unsigned long address, unsigned int flags)
3651 {
3652         pte_t *ptep, entry;
3653         spinlock_t *ptl;
3654         int ret;
3655         u32 hash;
3656         pgoff_t idx;
3657         struct page *page = NULL;
3658         struct page *pagecache_page = NULL;
3659         struct hstate *h = hstate_vma(vma);
3660         struct address_space *mapping;
3661         int need_wait_lock = 0;
3662
3663         address &= huge_page_mask(h);
3664
3665         ptep = huge_pte_offset(mm, address);
3666         if (ptep) {
3667                 entry = huge_ptep_get(ptep);
3668                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3669                         migration_entry_wait_huge(vma, mm, ptep);
3670                         return 0;
3671                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3672                         return VM_FAULT_HWPOISON_LARGE |
3673                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3674         } else {
3675                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3676                 if (!ptep)
3677                         return VM_FAULT_OOM;
3678         }
3679
3680         mapping = vma->vm_file->f_mapping;
3681         idx = vma_hugecache_offset(h, vma, address);
3682
3683         /*
3684          * Serialize hugepage allocation and instantiation, so that we don't
3685          * get spurious allocation failures if two CPUs race to instantiate
3686          * the same page in the page cache.
3687          */
3688         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3689         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3690
3691         entry = huge_ptep_get(ptep);
3692         if (huge_pte_none(entry)) {
3693                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3694                 goto out_mutex;
3695         }
3696
3697         ret = 0;
3698
3699         /*
3700          * entry could be a migration/hwpoison entry at this point, so this
3701          * check prevents the kernel from going below assuming that we have
3702          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3703          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3704          * handle it.
3705          */
3706         if (!pte_present(entry))
3707                 goto out_mutex;
3708
3709         /*
3710          * If we are going to COW the mapping later, we examine the pending
3711          * reservations for this page now. This will ensure that any
3712          * allocations necessary to record that reservation occur outside the
3713          * spinlock. For private mappings, we also lookup the pagecache
3714          * page now as it is used to determine if a reservation has been
3715          * consumed.
3716          */
3717         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3718                 if (vma_needs_reservation(h, vma, address) < 0) {
3719                         ret = VM_FAULT_OOM;
3720                         goto out_mutex;
3721                 }
3722                 /* Just decrements count, does not deallocate */
3723                 vma_end_reservation(h, vma, address);
3724
3725                 if (!(vma->vm_flags & VM_MAYSHARE))
3726                         pagecache_page = hugetlbfs_pagecache_page(h,
3727                                                                 vma, address);
3728         }
3729
3730         ptl = huge_pte_lock(h, mm, ptep);
3731
3732         /* Check for a racing update before calling hugetlb_cow */
3733         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3734                 goto out_ptl;
3735
3736         /*
3737          * hugetlb_cow() requires page locks of pte_page(entry) and
3738          * pagecache_page, so here we need take the former one
3739          * when page != pagecache_page or !pagecache_page.
3740          */
3741         page = pte_page(entry);
3742         if (page != pagecache_page)
3743                 if (!trylock_page(page)) {
3744                         need_wait_lock = 1;
3745                         goto out_ptl;
3746                 }
3747
3748         get_page(page);
3749
3750         if (flags & FAULT_FLAG_WRITE) {
3751                 if (!huge_pte_write(entry)) {
3752                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3753                                         pagecache_page, ptl);
3754                         goto out_put_page;
3755                 }
3756                 entry = huge_pte_mkdirty(entry);
3757         }
3758         entry = pte_mkyoung(entry);
3759         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3760                                                 flags & FAULT_FLAG_WRITE))
3761                 update_mmu_cache(vma, address, ptep);
3762 out_put_page:
3763         if (page != pagecache_page)
3764                 unlock_page(page);
3765         put_page(page);
3766 out_ptl:
3767         spin_unlock(ptl);
3768
3769         if (pagecache_page) {
3770                 unlock_page(pagecache_page);
3771                 put_page(pagecache_page);
3772         }
3773 out_mutex:
3774         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3775         /*
3776          * Generally it's safe to hold refcount during waiting page lock. But
3777          * here we just wait to defer the next page fault to avoid busy loop and
3778          * the page is not used after unlocked before returning from the current
3779          * page fault. So we are safe from accessing freed page, even if we wait
3780          * here without taking refcount.
3781          */
3782         if (need_wait_lock)
3783                 wait_on_page_locked(page);
3784         return ret;
3785 }
3786
3787 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3788                          struct page **pages, struct vm_area_struct **vmas,
3789                          unsigned long *position, unsigned long *nr_pages,
3790                          long i, unsigned int flags)
3791 {
3792         unsigned long pfn_offset;
3793         unsigned long vaddr = *position;
3794         unsigned long remainder = *nr_pages;
3795         struct hstate *h = hstate_vma(vma);
3796
3797         while (vaddr < vma->vm_end && remainder) {
3798                 pte_t *pte;
3799                 spinlock_t *ptl = NULL;
3800                 int absent;
3801                 struct page *page;
3802
3803                 /*
3804                  * If we have a pending SIGKILL, don't keep faulting pages and
3805                  * potentially allocating memory.
3806                  */
3807                 if (unlikely(fatal_signal_pending(current))) {
3808                         remainder = 0;
3809                         break;
3810                 }
3811
3812                 /*
3813                  * Some archs (sparc64, sh*) have multiple pte_ts to
3814                  * each hugepage.  We have to make sure we get the
3815                  * first, for the page indexing below to work.
3816                  *
3817                  * Note that page table lock is not held when pte is null.
3818                  */
3819                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3820                 if (pte)
3821                         ptl = huge_pte_lock(h, mm, pte);
3822                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3823
3824                 /*
3825                  * When coredumping, it suits get_dump_page if we just return
3826                  * an error where there's an empty slot with no huge pagecache
3827                  * to back it.  This way, we avoid allocating a hugepage, and
3828                  * the sparse dumpfile avoids allocating disk blocks, but its
3829                  * huge holes still show up with zeroes where they need to be.
3830                  */
3831                 if (absent && (flags & FOLL_DUMP) &&
3832                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3833                         if (pte)
3834                                 spin_unlock(ptl);
3835                         remainder = 0;
3836                         break;
3837                 }
3838
3839                 /*
3840                  * We need call hugetlb_fault for both hugepages under migration
3841                  * (in which case hugetlb_fault waits for the migration,) and
3842                  * hwpoisoned hugepages (in which case we need to prevent the
3843                  * caller from accessing to them.) In order to do this, we use
3844                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3845                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3846                  * both cases, and because we can't follow correct pages
3847                  * directly from any kind of swap entries.
3848                  */
3849                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3850                     ((flags & FOLL_WRITE) &&
3851                       !huge_pte_write(huge_ptep_get(pte)))) {
3852                         int ret;
3853
3854                         if (pte)
3855                                 spin_unlock(ptl);
3856                         ret = hugetlb_fault(mm, vma, vaddr,
3857                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3858                         if (!(ret & VM_FAULT_ERROR))
3859                                 continue;
3860
3861                         remainder = 0;
3862                         break;
3863                 }
3864
3865                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3866                 page = pte_page(huge_ptep_get(pte));
3867 same_page:
3868                 if (pages) {
3869                         pages[i] = mem_map_offset(page, pfn_offset);
3870                         get_page(pages[i]);
3871                 }
3872
3873                 if (vmas)
3874                         vmas[i] = vma;
3875
3876                 vaddr += PAGE_SIZE;
3877                 ++pfn_offset;
3878                 --remainder;
3879                 ++i;
3880                 if (vaddr < vma->vm_end && remainder &&
3881                                 pfn_offset < pages_per_huge_page(h)) {
3882                         /*
3883                          * We use pfn_offset to avoid touching the pageframes
3884                          * of this compound page.
3885                          */
3886                         goto same_page;
3887                 }
3888                 spin_unlock(ptl);
3889         }
3890         *nr_pages = remainder;
3891         *position = vaddr;
3892
3893         return i ? i : -EFAULT;
3894 }
3895
3896 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3897                 unsigned long address, unsigned long end, pgprot_t newprot)
3898 {
3899         struct mm_struct *mm = vma->vm_mm;
3900         unsigned long start = address;
3901         pte_t *ptep;
3902         pte_t pte;
3903         struct hstate *h = hstate_vma(vma);
3904         unsigned long pages = 0;
3905
3906         BUG_ON(address >= end);
3907         flush_cache_range(vma, address, end);
3908
3909         mmu_notifier_invalidate_range_start(mm, start, end);
3910         i_mmap_lock_write(vma->vm_file->f_mapping);
3911         for (; address < end; address += huge_page_size(h)) {
3912                 spinlock_t *ptl;
3913                 ptep = huge_pte_offset(mm, address);
3914                 if (!ptep)
3915                         continue;
3916                 ptl = huge_pte_lock(h, mm, ptep);
3917                 if (huge_pmd_unshare(mm, &address, ptep)) {
3918                         pages++;
3919                         spin_unlock(ptl);
3920                         continue;
3921                 }
3922                 pte = huge_ptep_get(ptep);
3923                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3924                         spin_unlock(ptl);
3925                         continue;
3926                 }
3927                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3928                         swp_entry_t entry = pte_to_swp_entry(pte);
3929
3930                         if (is_write_migration_entry(entry)) {
3931                                 pte_t newpte;
3932
3933                                 make_migration_entry_read(&entry);
3934                                 newpte = swp_entry_to_pte(entry);
3935                                 set_huge_pte_at(mm, address, ptep, newpte);
3936                                 pages++;
3937                         }
3938                         spin_unlock(ptl);
3939                         continue;
3940                 }
3941                 if (!huge_pte_none(pte)) {
3942                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3943                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3944                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3945                         set_huge_pte_at(mm, address, ptep, pte);
3946                         pages++;
3947                 }
3948                 spin_unlock(ptl);
3949         }
3950         /*
3951          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3952          * may have cleared our pud entry and done put_page on the page table:
3953          * once we release i_mmap_rwsem, another task can do the final put_page
3954          * and that page table be reused and filled with junk.
3955          */
3956         flush_tlb_range(vma, start, end);
3957         mmu_notifier_invalidate_range(mm, start, end);
3958         i_mmap_unlock_write(vma->vm_file->f_mapping);
3959         mmu_notifier_invalidate_range_end(mm, start, end);
3960
3961         return pages << h->order;
3962 }
3963
3964 int hugetlb_reserve_pages(struct inode *inode,
3965                                         long from, long to,
3966                                         struct vm_area_struct *vma,
3967                                         vm_flags_t vm_flags)
3968 {
3969         long ret, chg;
3970         struct hstate *h = hstate_inode(inode);
3971         struct hugepage_subpool *spool = subpool_inode(inode);
3972         struct resv_map *resv_map;
3973         long gbl_reserve;
3974
3975         /*
3976          * Only apply hugepage reservation if asked. At fault time, an
3977          * attempt will be made for VM_NORESERVE to allocate a page
3978          * without using reserves
3979          */
3980         if (vm_flags & VM_NORESERVE)
3981                 return 0;
3982
3983         /*
3984          * Shared mappings base their reservation on the number of pages that
3985          * are already allocated on behalf of the file. Private mappings need
3986          * to reserve the full area even if read-only as mprotect() may be
3987          * called to make the mapping read-write. Assume !vma is a shm mapping
3988          */
3989         if (!vma || vma->vm_flags & VM_MAYSHARE) {
3990                 resv_map = inode_resv_map(inode);
3991
3992                 chg = region_chg(resv_map, from, to);
3993
3994         } else {
3995                 resv_map = resv_map_alloc();
3996                 if (!resv_map)
3997                         return -ENOMEM;
3998
3999                 chg = to - from;
4000
4001                 set_vma_resv_map(vma, resv_map);
4002                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4003         }
4004
4005         if (chg < 0) {
4006                 ret = chg;
4007                 goto out_err;
4008         }
4009
4010         /*
4011          * There must be enough pages in the subpool for the mapping. If
4012          * the subpool has a minimum size, there may be some global
4013          * reservations already in place (gbl_reserve).
4014          */
4015         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4016         if (gbl_reserve < 0) {
4017                 ret = -ENOSPC;
4018                 goto out_err;
4019         }
4020
4021         /*
4022          * Check enough hugepages are available for the reservation.
4023          * Hand the pages back to the subpool if there are not
4024          */
4025         ret = hugetlb_acct_memory(h, gbl_reserve);
4026         if (ret < 0) {
4027                 /* put back original number of pages, chg */
4028                 (void)hugepage_subpool_put_pages(spool, chg);
4029                 goto out_err;
4030         }
4031
4032         /*
4033          * Account for the reservations made. Shared mappings record regions
4034          * that have reservations as they are shared by multiple VMAs.
4035          * When the last VMA disappears, the region map says how much
4036          * the reservation was and the page cache tells how much of
4037          * the reservation was consumed. Private mappings are per-VMA and
4038          * only the consumed reservations are tracked. When the VMA
4039          * disappears, the original reservation is the VMA size and the
4040          * consumed reservations are stored in the map. Hence, nothing
4041          * else has to be done for private mappings here
4042          */
4043         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4044                 long add = region_add(resv_map, from, to);
4045
4046                 if (unlikely(chg > add)) {
4047                         /*
4048                          * pages in this range were added to the reserve
4049                          * map between region_chg and region_add.  This
4050                          * indicates a race with alloc_huge_page.  Adjust
4051                          * the subpool and reserve counts modified above
4052                          * based on the difference.
4053                          */
4054                         long rsv_adjust;
4055
4056                         rsv_adjust = hugepage_subpool_put_pages(spool,
4057                                                                 chg - add);
4058                         hugetlb_acct_memory(h, -rsv_adjust);
4059                 }
4060         }
4061         return 0;
4062 out_err:
4063         if (!vma || vma->vm_flags & VM_MAYSHARE)
4064                 region_abort(resv_map, from, to);
4065         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4066                 kref_put(&resv_map->refs, resv_map_release);
4067         return ret;
4068 }
4069
4070 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4071                                                                 long freed)
4072 {
4073         struct hstate *h = hstate_inode(inode);
4074         struct resv_map *resv_map = inode_resv_map(inode);
4075         long chg = 0;
4076         struct hugepage_subpool *spool = subpool_inode(inode);
4077         long gbl_reserve;
4078
4079         if (resv_map) {
4080                 chg = region_del(resv_map, start, end);
4081                 /*
4082                  * region_del() can fail in the rare case where a region
4083                  * must be split and another region descriptor can not be
4084                  * allocated.  If end == LONG_MAX, it will not fail.
4085                  */
4086                 if (chg < 0)
4087                         return chg;
4088         }
4089
4090         spin_lock(&inode->i_lock);
4091         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4092         spin_unlock(&inode->i_lock);
4093
4094         /*
4095          * If the subpool has a minimum size, the number of global
4096          * reservations to be released may be adjusted.
4097          */
4098         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4099         hugetlb_acct_memory(h, -gbl_reserve);
4100
4101         return 0;
4102 }
4103
4104 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4105 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4106                                 struct vm_area_struct *vma,
4107                                 unsigned long addr, pgoff_t idx)
4108 {
4109         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4110                                 svma->vm_start;
4111         unsigned long sbase = saddr & PUD_MASK;
4112         unsigned long s_end = sbase + PUD_SIZE;
4113
4114         /* Allow segments to share if only one is marked locked */
4115         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4116         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4117
4118         /*
4119          * match the virtual addresses, permission and the alignment of the
4120          * page table page.
4121          */
4122         if (pmd_index(addr) != pmd_index(saddr) ||
4123             vm_flags != svm_flags ||
4124             sbase < svma->vm_start || svma->vm_end < s_end)
4125                 return 0;
4126
4127         return saddr;
4128 }
4129
4130 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4131 {
4132         unsigned long base = addr & PUD_MASK;
4133         unsigned long end = base + PUD_SIZE;
4134
4135         /*
4136          * check on proper vm_flags and page table alignment
4137          */
4138         if (vma->vm_flags & VM_MAYSHARE &&
4139             vma->vm_start <= base && end <= vma->vm_end)
4140                 return true;
4141         return false;
4142 }
4143
4144 /*
4145  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4146  * and returns the corresponding pte. While this is not necessary for the
4147  * !shared pmd case because we can allocate the pmd later as well, it makes the
4148  * code much cleaner. pmd allocation is essential for the shared case because
4149  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4150  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4151  * bad pmd for sharing.
4152  */
4153 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4154 {
4155         struct vm_area_struct *vma = find_vma(mm, addr);
4156         struct address_space *mapping = vma->vm_file->f_mapping;
4157         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4158                         vma->vm_pgoff;
4159         struct vm_area_struct *svma;
4160         unsigned long saddr;
4161         pte_t *spte = NULL;
4162         pte_t *pte;
4163         spinlock_t *ptl;
4164
4165         if (!vma_shareable(vma, addr))
4166                 return (pte_t *)pmd_alloc(mm, pud, addr);
4167
4168         i_mmap_lock_write(mapping);
4169         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4170                 if (svma == vma)
4171                         continue;
4172
4173                 saddr = page_table_shareable(svma, vma, addr, idx);
4174                 if (saddr) {
4175                         spte = huge_pte_offset(svma->vm_mm, saddr);
4176                         if (spte) {
4177                                 mm_inc_nr_pmds(mm);
4178                                 get_page(virt_to_page(spte));
4179                                 break;
4180                         }
4181                 }
4182         }
4183
4184         if (!spte)
4185                 goto out;
4186
4187         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4188         spin_lock(ptl);
4189         if (pud_none(*pud)) {
4190                 pud_populate(mm, pud,
4191                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4192         } else {
4193                 put_page(virt_to_page(spte));
4194                 mm_inc_nr_pmds(mm);
4195         }
4196         spin_unlock(ptl);
4197 out:
4198         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4199         i_mmap_unlock_write(mapping);
4200         return pte;
4201 }
4202
4203 /*
4204  * unmap huge page backed by shared pte.
4205  *
4206  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4207  * indicated by page_count > 1, unmap is achieved by clearing pud and
4208  * decrementing the ref count. If count == 1, the pte page is not shared.
4209  *
4210  * called with page table lock held.
4211  *
4212  * returns: 1 successfully unmapped a shared pte page
4213  *          0 the underlying pte page is not shared, or it is the last user
4214  */
4215 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4216 {
4217         pgd_t *pgd = pgd_offset(mm, *addr);
4218         pud_t *pud = pud_offset(pgd, *addr);
4219
4220         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4221         if (page_count(virt_to_page(ptep)) == 1)
4222                 return 0;
4223
4224         pud_clear(pud);
4225         put_page(virt_to_page(ptep));
4226         mm_dec_nr_pmds(mm);
4227         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4228         return 1;
4229 }
4230 #define want_pmd_share()        (1)
4231 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4232 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4233 {
4234         return NULL;
4235 }
4236
4237 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4238 {
4239         return 0;
4240 }
4241 #define want_pmd_share()        (0)
4242 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4243
4244 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4245 pte_t *huge_pte_alloc(struct mm_struct *mm,
4246                         unsigned long addr, unsigned long sz)
4247 {
4248         pgd_t *pgd;
4249         pud_t *pud;
4250         pte_t *pte = NULL;
4251
4252         pgd = pgd_offset(mm, addr);
4253         pud = pud_alloc(mm, pgd, addr);
4254         if (pud) {
4255                 if (sz == PUD_SIZE) {
4256                         pte = (pte_t *)pud;
4257                 } else {
4258                         BUG_ON(sz != PMD_SIZE);
4259                         if (want_pmd_share() && pud_none(*pud))
4260                                 pte = huge_pmd_share(mm, addr, pud);
4261                         else
4262                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4263                 }
4264         }
4265         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4266
4267         return pte;
4268 }
4269
4270 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4271 {
4272         pgd_t *pgd;
4273         pud_t *pud;
4274         pmd_t *pmd = NULL;
4275
4276         pgd = pgd_offset(mm, addr);
4277         if (pgd_present(*pgd)) {
4278                 pud = pud_offset(pgd, addr);
4279                 if (pud_present(*pud)) {
4280                         if (pud_huge(*pud))
4281                                 return (pte_t *)pud;
4282                         pmd = pmd_offset(pud, addr);
4283                 }
4284         }
4285         return (pte_t *) pmd;
4286 }
4287
4288 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4289
4290 /*
4291  * These functions are overwritable if your architecture needs its own
4292  * behavior.
4293  */
4294 struct page * __weak
4295 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4296                               int write)
4297 {
4298         return ERR_PTR(-EINVAL);
4299 }
4300
4301 struct page * __weak
4302 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4303                 pmd_t *pmd, int flags)
4304 {
4305         struct page *page = NULL;
4306         spinlock_t *ptl;
4307 retry:
4308         ptl = pmd_lockptr(mm, pmd);
4309         spin_lock(ptl);
4310         /*
4311          * make sure that the address range covered by this pmd is not
4312          * unmapped from other threads.
4313          */
4314         if (!pmd_huge(*pmd))
4315                 goto out;
4316         if (pmd_present(*pmd)) {
4317                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4318                 if (flags & FOLL_GET)
4319                         get_page(page);
4320         } else {
4321                 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4322                         spin_unlock(ptl);
4323                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4324                         goto retry;
4325                 }
4326                 /*
4327                  * hwpoisoned entry is treated as no_page_table in
4328                  * follow_page_mask().
4329                  */
4330         }
4331 out:
4332         spin_unlock(ptl);
4333         return page;
4334 }
4335
4336 struct page * __weak
4337 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4338                 pud_t *pud, int flags)
4339 {
4340         if (flags & FOLL_GET)
4341                 return NULL;
4342
4343         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4344 }
4345
4346 #ifdef CONFIG_MEMORY_FAILURE
4347
4348 /*
4349  * This function is called from memory failure code.
4350  * Assume the caller holds page lock of the head page.
4351  */
4352 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4353 {
4354         struct hstate *h = page_hstate(hpage);
4355         int nid = page_to_nid(hpage);
4356         int ret = -EBUSY;
4357
4358         spin_lock(&hugetlb_lock);
4359         /*
4360          * Just checking !page_huge_active is not enough, because that could be
4361          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4362          */
4363         if (!page_huge_active(hpage) && !page_count(hpage)) {
4364                 /*
4365                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4366                  * but dangling hpage->lru can trigger list-debug warnings
4367                  * (this happens when we call unpoison_memory() on it),
4368                  * so let it point to itself with list_del_init().
4369                  */
4370                 list_del_init(&hpage->lru);
4371                 set_page_refcounted(hpage);
4372                 h->free_huge_pages--;
4373                 h->free_huge_pages_node[nid]--;
4374                 ret = 0;
4375         }
4376         spin_unlock(&hugetlb_lock);
4377         return ret;
4378 }
4379 #endif
4380
4381 bool isolate_huge_page(struct page *page, struct list_head *list)
4382 {
4383         bool ret = true;
4384
4385         VM_BUG_ON_PAGE(!PageHead(page), page);
4386         spin_lock(&hugetlb_lock);
4387         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4388                 ret = false;
4389                 goto unlock;
4390         }
4391         clear_page_huge_active(page);
4392         list_move_tail(&page->lru, list);
4393 unlock:
4394         spin_unlock(&hugetlb_lock);
4395         return ret;
4396 }
4397
4398 void putback_active_hugepage(struct page *page)
4399 {
4400         VM_BUG_ON_PAGE(!PageHead(page), page);
4401         spin_lock(&hugetlb_lock);
4402         set_page_huge_active(page);
4403         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4404         spin_unlock(&hugetlb_lock);
4405         put_page(page);
4406 }