mm, hugetlbfs: optimize when NUMA=n
[cascardo/linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74         bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76         spin_unlock(&spool->lock);
77
78         /* If no pages are used, and no other handles to the subpool
79          * remain, give up any reservations mased on minimum size and
80          * free the subpool */
81         if (free) {
82                 if (spool->min_hpages != -1)
83                         hugetlb_acct_memory(spool->hstate,
84                                                 -spool->min_hpages);
85                 kfree(spool);
86         }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90                                                 long min_hpages)
91 {
92         struct hugepage_subpool *spool;
93
94         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95         if (!spool)
96                 return NULL;
97
98         spin_lock_init(&spool->lock);
99         spool->count = 1;
100         spool->max_hpages = max_hpages;
101         spool->hstate = h;
102         spool->min_hpages = min_hpages;
103
104         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105                 kfree(spool);
106                 return NULL;
107         }
108         spool->rsv_hpages = min_hpages;
109
110         return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115         spin_lock(&spool->lock);
116         BUG_ON(!spool->count);
117         spool->count--;
118         unlock_or_release_subpool(spool);
119 }
120
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130                                       long delta)
131 {
132         long ret = delta;
133
134         if (!spool)
135                 return ret;
136
137         spin_lock(&spool->lock);
138
139         if (spool->max_hpages != -1) {          /* maximum size accounting */
140                 if ((spool->used_hpages + delta) <= spool->max_hpages)
141                         spool->used_hpages += delta;
142                 else {
143                         ret = -ENOMEM;
144                         goto unlock_ret;
145                 }
146         }
147
148         if (spool->min_hpages != -1) {          /* minimum size accounting */
149                 if (delta > spool->rsv_hpages) {
150                         /*
151                          * Asking for more reserves than those already taken on
152                          * behalf of subpool.  Return difference.
153                          */
154                         ret = delta - spool->rsv_hpages;
155                         spool->rsv_hpages = 0;
156                 } else {
157                         ret = 0;        /* reserves already accounted for */
158                         spool->rsv_hpages -= delta;
159                 }
160         }
161
162 unlock_ret:
163         spin_unlock(&spool->lock);
164         return ret;
165 }
166
167 /*
168  * Subpool accounting for freeing and unreserving pages.
169  * Return the number of global page reservations that must be dropped.
170  * The return value may only be different than the passed value (delta)
171  * in the case where a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174                                        long delta)
175 {
176         long ret = delta;
177
178         if (!spool)
179                 return delta;
180
181         spin_lock(&spool->lock);
182
183         if (spool->max_hpages != -1)            /* maximum size accounting */
184                 spool->used_hpages -= delta;
185
186         if (spool->min_hpages != -1) {          /* minimum size accounting */
187                 if (spool->rsv_hpages + delta <= spool->min_hpages)
188                         ret = 0;
189                 else
190                         ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192                 spool->rsv_hpages += delta;
193                 if (spool->rsv_hpages > spool->min_hpages)
194                         spool->rsv_hpages = spool->min_hpages;
195         }
196
197         /*
198          * If hugetlbfs_put_super couldn't free spool due to an outstanding
199          * quota reference, free it now.
200          */
201         unlock_or_release_subpool(spool);
202
203         return ret;
204 }
205
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207 {
208         return HUGETLBFS_SB(inode->i_sb)->spool;
209 }
210
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212 {
213         return subpool_inode(file_inode(vma->vm_file));
214 }
215
216 /*
217  * Region tracking -- allows tracking of reservations and instantiated pages
218  *                    across the pages in a mapping.
219  *
220  * The region data structures are embedded into a resv_map and protected
221  * by a resv_map's lock.  The set of regions within the resv_map represent
222  * reservations for huge pages, or huge pages that have already been
223  * instantiated within the map.  The from and to elements are huge page
224  * indicies into the associated mapping.  from indicates the starting index
225  * of the region.  to represents the first index past the end of  the region.
226  *
227  * For example, a file region structure with from == 0 and to == 4 represents
228  * four huge pages in a mapping.  It is important to note that the to element
229  * represents the first element past the end of the region. This is used in
230  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231  *
232  * Interval notation of the form [from, to) will be used to indicate that
233  * the endpoint from is inclusive and to is exclusive.
234  */
235 struct file_region {
236         struct list_head link;
237         long from;
238         long to;
239 };
240
241 /*
242  * Add the huge page range represented by [f, t) to the reserve
243  * map.  In the normal case, existing regions will be expanded
244  * to accommodate the specified range.  Sufficient regions should
245  * exist for expansion due to the previous call to region_chg
246  * with the same range.  However, it is possible that region_del
247  * could have been called after region_chg and modifed the map
248  * in such a way that no region exists to be expanded.  In this
249  * case, pull a region descriptor from the cache associated with
250  * the map and use that for the new range.
251  *
252  * Return the number of new huge pages added to the map.  This
253  * number is greater than or equal to zero.
254  */
255 static long region_add(struct resv_map *resv, long f, long t)
256 {
257         struct list_head *head = &resv->regions;
258         struct file_region *rg, *nrg, *trg;
259         long add = 0;
260
261         spin_lock(&resv->lock);
262         /* Locate the region we are either in or before. */
263         list_for_each_entry(rg, head, link)
264                 if (f <= rg->to)
265                         break;
266
267         /*
268          * If no region exists which can be expanded to include the
269          * specified range, the list must have been modified by an
270          * interleving call to region_del().  Pull a region descriptor
271          * from the cache and use it for this range.
272          */
273         if (&rg->link == head || t < rg->from) {
274                 VM_BUG_ON(resv->region_cache_count <= 0);
275
276                 resv->region_cache_count--;
277                 nrg = list_first_entry(&resv->region_cache, struct file_region,
278                                         link);
279                 list_del(&nrg->link);
280
281                 nrg->from = f;
282                 nrg->to = t;
283                 list_add(&nrg->link, rg->link.prev);
284
285                 add += t - f;
286                 goto out_locked;
287         }
288
289         /* Round our left edge to the current segment if it encloses us. */
290         if (f > rg->from)
291                 f = rg->from;
292
293         /* Check for and consume any regions we now overlap with. */
294         nrg = rg;
295         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
296                 if (&rg->link == head)
297                         break;
298                 if (rg->from > t)
299                         break;
300
301                 /* If this area reaches higher then extend our area to
302                  * include it completely.  If this is not the first area
303                  * which we intend to reuse, free it. */
304                 if (rg->to > t)
305                         t = rg->to;
306                 if (rg != nrg) {
307                         /* Decrement return value by the deleted range.
308                          * Another range will span this area so that by
309                          * end of routine add will be >= zero
310                          */
311                         add -= (rg->to - rg->from);
312                         list_del(&rg->link);
313                         kfree(rg);
314                 }
315         }
316
317         add += (nrg->from - f);         /* Added to beginning of region */
318         nrg->from = f;
319         add += t - nrg->to;             /* Added to end of region */
320         nrg->to = t;
321
322 out_locked:
323         resv->adds_in_progress--;
324         spin_unlock(&resv->lock);
325         VM_BUG_ON(add < 0);
326         return add;
327 }
328
329 /*
330  * Examine the existing reserve map and determine how many
331  * huge pages in the specified range [f, t) are NOT currently
332  * represented.  This routine is called before a subsequent
333  * call to region_add that will actually modify the reserve
334  * map to add the specified range [f, t).  region_chg does
335  * not change the number of huge pages represented by the
336  * map.  However, if the existing regions in the map can not
337  * be expanded to represent the new range, a new file_region
338  * structure is added to the map as a placeholder.  This is
339  * so that the subsequent region_add call will have all the
340  * regions it needs and will not fail.
341  *
342  * Upon entry, region_chg will also examine the cache of region descriptors
343  * associated with the map.  If there are not enough descriptors cached, one
344  * will be allocated for the in progress add operation.
345  *
346  * Returns the number of huge pages that need to be added to the existing
347  * reservation map for the range [f, t).  This number is greater or equal to
348  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
349  * is needed and can not be allocated.
350  */
351 static long region_chg(struct resv_map *resv, long f, long t)
352 {
353         struct list_head *head = &resv->regions;
354         struct file_region *rg, *nrg = NULL;
355         long chg = 0;
356
357 retry:
358         spin_lock(&resv->lock);
359 retry_locked:
360         resv->adds_in_progress++;
361
362         /*
363          * Check for sufficient descriptors in the cache to accommodate
364          * the number of in progress add operations.
365          */
366         if (resv->adds_in_progress > resv->region_cache_count) {
367                 struct file_region *trg;
368
369                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
370                 /* Must drop lock to allocate a new descriptor. */
371                 resv->adds_in_progress--;
372                 spin_unlock(&resv->lock);
373
374                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375                 if (!trg)
376                         return -ENOMEM;
377
378                 spin_lock(&resv->lock);
379                 list_add(&trg->link, &resv->region_cache);
380                 resv->region_cache_count++;
381                 goto retry_locked;
382         }
383
384         /* Locate the region we are before or in. */
385         list_for_each_entry(rg, head, link)
386                 if (f <= rg->to)
387                         break;
388
389         /* If we are below the current region then a new region is required.
390          * Subtle, allocate a new region at the position but make it zero
391          * size such that we can guarantee to record the reservation. */
392         if (&rg->link == head || t < rg->from) {
393                 if (!nrg) {
394                         resv->adds_in_progress--;
395                         spin_unlock(&resv->lock);
396                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
397                         if (!nrg)
398                                 return -ENOMEM;
399
400                         nrg->from = f;
401                         nrg->to   = f;
402                         INIT_LIST_HEAD(&nrg->link);
403                         goto retry;
404                 }
405
406                 list_add(&nrg->link, rg->link.prev);
407                 chg = t - f;
408                 goto out_nrg;
409         }
410
411         /* Round our left edge to the current segment if it encloses us. */
412         if (f > rg->from)
413                 f = rg->from;
414         chg = t - f;
415
416         /* Check for and consume any regions we now overlap with. */
417         list_for_each_entry(rg, rg->link.prev, link) {
418                 if (&rg->link == head)
419                         break;
420                 if (rg->from > t)
421                         goto out;
422
423                 /* We overlap with this area, if it extends further than
424                  * us then we must extend ourselves.  Account for its
425                  * existing reservation. */
426                 if (rg->to > t) {
427                         chg += rg->to - t;
428                         t = rg->to;
429                 }
430                 chg -= rg->to - rg->from;
431         }
432
433 out:
434         spin_unlock(&resv->lock);
435         /*  We already know we raced and no longer need the new region */
436         kfree(nrg);
437         return chg;
438 out_nrg:
439         spin_unlock(&resv->lock);
440         return chg;
441 }
442
443 /*
444  * Abort the in progress add operation.  The adds_in_progress field
445  * of the resv_map keeps track of the operations in progress between
446  * calls to region_chg and region_add.  Operations are sometimes
447  * aborted after the call to region_chg.  In such cases, region_abort
448  * is called to decrement the adds_in_progress counter.
449  *
450  * NOTE: The range arguments [f, t) are not needed or used in this
451  * routine.  They are kept to make reading the calling code easier as
452  * arguments will match the associated region_chg call.
453  */
454 static void region_abort(struct resv_map *resv, long f, long t)
455 {
456         spin_lock(&resv->lock);
457         VM_BUG_ON(!resv->region_cache_count);
458         resv->adds_in_progress--;
459         spin_unlock(&resv->lock);
460 }
461
462 /*
463  * Delete the specified range [f, t) from the reserve map.  If the
464  * t parameter is LONG_MAX, this indicates that ALL regions after f
465  * should be deleted.  Locate the regions which intersect [f, t)
466  * and either trim, delete or split the existing regions.
467  *
468  * Returns the number of huge pages deleted from the reserve map.
469  * In the normal case, the return value is zero or more.  In the
470  * case where a region must be split, a new region descriptor must
471  * be allocated.  If the allocation fails, -ENOMEM will be returned.
472  * NOTE: If the parameter t == LONG_MAX, then we will never split
473  * a region and possibly return -ENOMEM.  Callers specifying
474  * t == LONG_MAX do not need to check for -ENOMEM error.
475  */
476 static long region_del(struct resv_map *resv, long f, long t)
477 {
478         struct list_head *head = &resv->regions;
479         struct file_region *rg, *trg;
480         struct file_region *nrg = NULL;
481         long del = 0;
482
483 retry:
484         spin_lock(&resv->lock);
485         list_for_each_entry_safe(rg, trg, head, link) {
486                 if (rg->to <= f)
487                         continue;
488                 if (rg->from >= t)
489                         break;
490
491                 if (f > rg->from && t < rg->to) { /* Must split region */
492                         /*
493                          * Check for an entry in the cache before dropping
494                          * lock and attempting allocation.
495                          */
496                         if (!nrg &&
497                             resv->region_cache_count > resv->adds_in_progress) {
498                                 nrg = list_first_entry(&resv->region_cache,
499                                                         struct file_region,
500                                                         link);
501                                 list_del(&nrg->link);
502                                 resv->region_cache_count--;
503                         }
504
505                         if (!nrg) {
506                                 spin_unlock(&resv->lock);
507                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
508                                 if (!nrg)
509                                         return -ENOMEM;
510                                 goto retry;
511                         }
512
513                         del += t - f;
514
515                         /* New entry for end of split region */
516                         nrg->from = t;
517                         nrg->to = rg->to;
518                         INIT_LIST_HEAD(&nrg->link);
519
520                         /* Original entry is trimmed */
521                         rg->to = f;
522
523                         list_add(&nrg->link, &rg->link);
524                         nrg = NULL;
525                         break;
526                 }
527
528                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
529                         del += rg->to - rg->from;
530                         list_del(&rg->link);
531                         kfree(rg);
532                         continue;
533                 }
534
535                 if (f <= rg->from) {    /* Trim beginning of region */
536                         del += t - rg->from;
537                         rg->from = t;
538                 } else {                /* Trim end of region */
539                         del += rg->to - f;
540                         rg->to = f;
541                 }
542         }
543
544         spin_unlock(&resv->lock);
545         kfree(nrg);
546         return del;
547 }
548
549 /*
550  * A rare out of memory error was encountered which prevented removal of
551  * the reserve map region for a page.  The huge page itself was free'ed
552  * and removed from the page cache.  This routine will adjust the subpool
553  * usage count, and the global reserve count if needed.  By incrementing
554  * these counts, the reserve map entry which could not be deleted will
555  * appear as a "reserved" entry instead of simply dangling with incorrect
556  * counts.
557  */
558 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
559 {
560         struct hugepage_subpool *spool = subpool_inode(inode);
561         long rsv_adjust;
562
563         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
564         if (restore_reserve && rsv_adjust) {
565                 struct hstate *h = hstate_inode(inode);
566
567                 hugetlb_acct_memory(h, 1);
568         }
569 }
570
571 /*
572  * Count and return the number of huge pages in the reserve map
573  * that intersect with the range [f, t).
574  */
575 static long region_count(struct resv_map *resv, long f, long t)
576 {
577         struct list_head *head = &resv->regions;
578         struct file_region *rg;
579         long chg = 0;
580
581         spin_lock(&resv->lock);
582         /* Locate each segment we overlap with, and count that overlap. */
583         list_for_each_entry(rg, head, link) {
584                 long seg_from;
585                 long seg_to;
586
587                 if (rg->to <= f)
588                         continue;
589                 if (rg->from >= t)
590                         break;
591
592                 seg_from = max(rg->from, f);
593                 seg_to = min(rg->to, t);
594
595                 chg += seg_to - seg_from;
596         }
597         spin_unlock(&resv->lock);
598
599         return chg;
600 }
601
602 /*
603  * Convert the address within this vma to the page offset within
604  * the mapping, in pagecache page units; huge pages here.
605  */
606 static pgoff_t vma_hugecache_offset(struct hstate *h,
607                         struct vm_area_struct *vma, unsigned long address)
608 {
609         return ((address - vma->vm_start) >> huge_page_shift(h)) +
610                         (vma->vm_pgoff >> huge_page_order(h));
611 }
612
613 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
614                                      unsigned long address)
615 {
616         return vma_hugecache_offset(hstate_vma(vma), vma, address);
617 }
618
619 /*
620  * Return the size of the pages allocated when backing a VMA. In the majority
621  * cases this will be same size as used by the page table entries.
622  */
623 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
624 {
625         struct hstate *hstate;
626
627         if (!is_vm_hugetlb_page(vma))
628                 return PAGE_SIZE;
629
630         hstate = hstate_vma(vma);
631
632         return 1UL << huge_page_shift(hstate);
633 }
634 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
635
636 /*
637  * Return the page size being used by the MMU to back a VMA. In the majority
638  * of cases, the page size used by the kernel matches the MMU size. On
639  * architectures where it differs, an architecture-specific version of this
640  * function is required.
641  */
642 #ifndef vma_mmu_pagesize
643 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
644 {
645         return vma_kernel_pagesize(vma);
646 }
647 #endif
648
649 /*
650  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
651  * bits of the reservation map pointer, which are always clear due to
652  * alignment.
653  */
654 #define HPAGE_RESV_OWNER    (1UL << 0)
655 #define HPAGE_RESV_UNMAPPED (1UL << 1)
656 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
657
658 /*
659  * These helpers are used to track how many pages are reserved for
660  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
661  * is guaranteed to have their future faults succeed.
662  *
663  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
664  * the reserve counters are updated with the hugetlb_lock held. It is safe
665  * to reset the VMA at fork() time as it is not in use yet and there is no
666  * chance of the global counters getting corrupted as a result of the values.
667  *
668  * The private mapping reservation is represented in a subtly different
669  * manner to a shared mapping.  A shared mapping has a region map associated
670  * with the underlying file, this region map represents the backing file
671  * pages which have ever had a reservation assigned which this persists even
672  * after the page is instantiated.  A private mapping has a region map
673  * associated with the original mmap which is attached to all VMAs which
674  * reference it, this region map represents those offsets which have consumed
675  * reservation ie. where pages have been instantiated.
676  */
677 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
678 {
679         return (unsigned long)vma->vm_private_data;
680 }
681
682 static void set_vma_private_data(struct vm_area_struct *vma,
683                                                         unsigned long value)
684 {
685         vma->vm_private_data = (void *)value;
686 }
687
688 struct resv_map *resv_map_alloc(void)
689 {
690         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
691         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
692
693         if (!resv_map || !rg) {
694                 kfree(resv_map);
695                 kfree(rg);
696                 return NULL;
697         }
698
699         kref_init(&resv_map->refs);
700         spin_lock_init(&resv_map->lock);
701         INIT_LIST_HEAD(&resv_map->regions);
702
703         resv_map->adds_in_progress = 0;
704
705         INIT_LIST_HEAD(&resv_map->region_cache);
706         list_add(&rg->link, &resv_map->region_cache);
707         resv_map->region_cache_count = 1;
708
709         return resv_map;
710 }
711
712 void resv_map_release(struct kref *ref)
713 {
714         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
715         struct list_head *head = &resv_map->region_cache;
716         struct file_region *rg, *trg;
717
718         /* Clear out any active regions before we release the map. */
719         region_del(resv_map, 0, LONG_MAX);
720
721         /* ... and any entries left in the cache */
722         list_for_each_entry_safe(rg, trg, head, link) {
723                 list_del(&rg->link);
724                 kfree(rg);
725         }
726
727         VM_BUG_ON(resv_map->adds_in_progress);
728
729         kfree(resv_map);
730 }
731
732 static inline struct resv_map *inode_resv_map(struct inode *inode)
733 {
734         return inode->i_mapping->private_data;
735 }
736
737 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
738 {
739         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
740         if (vma->vm_flags & VM_MAYSHARE) {
741                 struct address_space *mapping = vma->vm_file->f_mapping;
742                 struct inode *inode = mapping->host;
743
744                 return inode_resv_map(inode);
745
746         } else {
747                 return (struct resv_map *)(get_vma_private_data(vma) &
748                                                         ~HPAGE_RESV_MASK);
749         }
750 }
751
752 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
753 {
754         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
756
757         set_vma_private_data(vma, (get_vma_private_data(vma) &
758                                 HPAGE_RESV_MASK) | (unsigned long)map);
759 }
760
761 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
762 {
763         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765
766         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
767 }
768
769 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
770 {
771         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772
773         return (get_vma_private_data(vma) & flag) != 0;
774 }
775
776 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
777 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
778 {
779         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780         if (!(vma->vm_flags & VM_MAYSHARE))
781                 vma->vm_private_data = (void *)0;
782 }
783
784 /* Returns true if the VMA has associated reserve pages */
785 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
786 {
787         if (vma->vm_flags & VM_NORESERVE) {
788                 /*
789                  * This address is already reserved by other process(chg == 0),
790                  * so, we should decrement reserved count. Without decrementing,
791                  * reserve count remains after releasing inode, because this
792                  * allocated page will go into page cache and is regarded as
793                  * coming from reserved pool in releasing step.  Currently, we
794                  * don't have any other solution to deal with this situation
795                  * properly, so add work-around here.
796                  */
797                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
798                         return true;
799                 else
800                         return false;
801         }
802
803         /* Shared mappings always use reserves */
804         if (vma->vm_flags & VM_MAYSHARE) {
805                 /*
806                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
807                  * be a region map for all pages.  The only situation where
808                  * there is no region map is if a hole was punched via
809                  * fallocate.  In this case, there really are no reverves to
810                  * use.  This situation is indicated if chg != 0.
811                  */
812                 if (chg)
813                         return false;
814                 else
815                         return true;
816         }
817
818         /*
819          * Only the process that called mmap() has reserves for
820          * private mappings.
821          */
822         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
823                 return true;
824
825         return false;
826 }
827
828 static void enqueue_huge_page(struct hstate *h, struct page *page)
829 {
830         int nid = page_to_nid(page);
831         list_move(&page->lru, &h->hugepage_freelists[nid]);
832         h->free_huge_pages++;
833         h->free_huge_pages_node[nid]++;
834 }
835
836 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
837 {
838         struct page *page;
839
840         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
841                 if (!is_migrate_isolate_page(page))
842                         break;
843         /*
844          * if 'non-isolated free hugepage' not found on the list,
845          * the allocation fails.
846          */
847         if (&h->hugepage_freelists[nid] == &page->lru)
848                 return NULL;
849         list_move(&page->lru, &h->hugepage_activelist);
850         set_page_refcounted(page);
851         h->free_huge_pages--;
852         h->free_huge_pages_node[nid]--;
853         return page;
854 }
855
856 /* Movability of hugepages depends on migration support. */
857 static inline gfp_t htlb_alloc_mask(struct hstate *h)
858 {
859         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
860                 return GFP_HIGHUSER_MOVABLE;
861         else
862                 return GFP_HIGHUSER;
863 }
864
865 static struct page *dequeue_huge_page_vma(struct hstate *h,
866                                 struct vm_area_struct *vma,
867                                 unsigned long address, int avoid_reserve,
868                                 long chg)
869 {
870         struct page *page = NULL;
871         struct mempolicy *mpol;
872         nodemask_t *nodemask;
873         struct zonelist *zonelist;
874         struct zone *zone;
875         struct zoneref *z;
876         unsigned int cpuset_mems_cookie;
877
878         /*
879          * A child process with MAP_PRIVATE mappings created by their parent
880          * have no page reserves. This check ensures that reservations are
881          * not "stolen". The child may still get SIGKILLed
882          */
883         if (!vma_has_reserves(vma, chg) &&
884                         h->free_huge_pages - h->resv_huge_pages == 0)
885                 goto err;
886
887         /* If reserves cannot be used, ensure enough pages are in the pool */
888         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
889                 goto err;
890
891 retry_cpuset:
892         cpuset_mems_cookie = read_mems_allowed_begin();
893         zonelist = huge_zonelist(vma, address,
894                                         htlb_alloc_mask(h), &mpol, &nodemask);
895
896         for_each_zone_zonelist_nodemask(zone, z, zonelist,
897                                                 MAX_NR_ZONES - 1, nodemask) {
898                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
899                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
900                         if (page) {
901                                 if (avoid_reserve)
902                                         break;
903                                 if (!vma_has_reserves(vma, chg))
904                                         break;
905
906                                 SetPagePrivate(page);
907                                 h->resv_huge_pages--;
908                                 break;
909                         }
910                 }
911         }
912
913         mpol_cond_put(mpol);
914         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
915                 goto retry_cpuset;
916         return page;
917
918 err:
919         return NULL;
920 }
921
922 /*
923  * common helper functions for hstate_next_node_to_{alloc|free}.
924  * We may have allocated or freed a huge page based on a different
925  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
926  * be outside of *nodes_allowed.  Ensure that we use an allowed
927  * node for alloc or free.
928  */
929 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
930 {
931         nid = next_node(nid, *nodes_allowed);
932         if (nid == MAX_NUMNODES)
933                 nid = first_node(*nodes_allowed);
934         VM_BUG_ON(nid >= MAX_NUMNODES);
935
936         return nid;
937 }
938
939 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
940 {
941         if (!node_isset(nid, *nodes_allowed))
942                 nid = next_node_allowed(nid, nodes_allowed);
943         return nid;
944 }
945
946 /*
947  * returns the previously saved node ["this node"] from which to
948  * allocate a persistent huge page for the pool and advance the
949  * next node from which to allocate, handling wrap at end of node
950  * mask.
951  */
952 static int hstate_next_node_to_alloc(struct hstate *h,
953                                         nodemask_t *nodes_allowed)
954 {
955         int nid;
956
957         VM_BUG_ON(!nodes_allowed);
958
959         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
960         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
961
962         return nid;
963 }
964
965 /*
966  * helper for free_pool_huge_page() - return the previously saved
967  * node ["this node"] from which to free a huge page.  Advance the
968  * next node id whether or not we find a free huge page to free so
969  * that the next attempt to free addresses the next node.
970  */
971 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
972 {
973         int nid;
974
975         VM_BUG_ON(!nodes_allowed);
976
977         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
978         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
979
980         return nid;
981 }
982
983 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
984         for (nr_nodes = nodes_weight(*mask);                            \
985                 nr_nodes > 0 &&                                         \
986                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
987                 nr_nodes--)
988
989 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
990         for (nr_nodes = nodes_weight(*mask);                            \
991                 nr_nodes > 0 &&                                         \
992                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
993                 nr_nodes--)
994
995 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
996 static void destroy_compound_gigantic_page(struct page *page,
997                                         unsigned long order)
998 {
999         int i;
1000         int nr_pages = 1 << order;
1001         struct page *p = page + 1;
1002
1003         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1004                 __ClearPageTail(p);
1005                 set_page_refcounted(p);
1006                 p->first_page = NULL;
1007         }
1008
1009         set_compound_order(page, 0);
1010         __ClearPageHead(page);
1011 }
1012
1013 static void free_gigantic_page(struct page *page, unsigned order)
1014 {
1015         free_contig_range(page_to_pfn(page), 1 << order);
1016 }
1017
1018 static int __alloc_gigantic_page(unsigned long start_pfn,
1019                                 unsigned long nr_pages)
1020 {
1021         unsigned long end_pfn = start_pfn + nr_pages;
1022         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1023 }
1024
1025 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1026                                 unsigned long nr_pages)
1027 {
1028         unsigned long i, end_pfn = start_pfn + nr_pages;
1029         struct page *page;
1030
1031         for (i = start_pfn; i < end_pfn; i++) {
1032                 if (!pfn_valid(i))
1033                         return false;
1034
1035                 page = pfn_to_page(i);
1036
1037                 if (PageReserved(page))
1038                         return false;
1039
1040                 if (page_count(page) > 0)
1041                         return false;
1042
1043                 if (PageHuge(page))
1044                         return false;
1045         }
1046
1047         return true;
1048 }
1049
1050 static bool zone_spans_last_pfn(const struct zone *zone,
1051                         unsigned long start_pfn, unsigned long nr_pages)
1052 {
1053         unsigned long last_pfn = start_pfn + nr_pages - 1;
1054         return zone_spans_pfn(zone, last_pfn);
1055 }
1056
1057 static struct page *alloc_gigantic_page(int nid, unsigned order)
1058 {
1059         unsigned long nr_pages = 1 << order;
1060         unsigned long ret, pfn, flags;
1061         struct zone *z;
1062
1063         z = NODE_DATA(nid)->node_zones;
1064         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1065                 spin_lock_irqsave(&z->lock, flags);
1066
1067                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1068                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1069                         if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1070                                 /*
1071                                  * We release the zone lock here because
1072                                  * alloc_contig_range() will also lock the zone
1073                                  * at some point. If there's an allocation
1074                                  * spinning on this lock, it may win the race
1075                                  * and cause alloc_contig_range() to fail...
1076                                  */
1077                                 spin_unlock_irqrestore(&z->lock, flags);
1078                                 ret = __alloc_gigantic_page(pfn, nr_pages);
1079                                 if (!ret)
1080                                         return pfn_to_page(pfn);
1081                                 spin_lock_irqsave(&z->lock, flags);
1082                         }
1083                         pfn += nr_pages;
1084                 }
1085
1086                 spin_unlock_irqrestore(&z->lock, flags);
1087         }
1088
1089         return NULL;
1090 }
1091
1092 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1093 static void prep_compound_gigantic_page(struct page *page, unsigned long order);
1094
1095 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1096 {
1097         struct page *page;
1098
1099         page = alloc_gigantic_page(nid, huge_page_order(h));
1100         if (page) {
1101                 prep_compound_gigantic_page(page, huge_page_order(h));
1102                 prep_new_huge_page(h, page, nid);
1103         }
1104
1105         return page;
1106 }
1107
1108 static int alloc_fresh_gigantic_page(struct hstate *h,
1109                                 nodemask_t *nodes_allowed)
1110 {
1111         struct page *page = NULL;
1112         int nr_nodes, node;
1113
1114         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1115                 page = alloc_fresh_gigantic_page_node(h, node);
1116                 if (page)
1117                         return 1;
1118         }
1119
1120         return 0;
1121 }
1122
1123 static inline bool gigantic_page_supported(void) { return true; }
1124 #else
1125 static inline bool gigantic_page_supported(void) { return false; }
1126 static inline void free_gigantic_page(struct page *page, unsigned order) { }
1127 static inline void destroy_compound_gigantic_page(struct page *page,
1128                                                 unsigned long order) { }
1129 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1130                                         nodemask_t *nodes_allowed) { return 0; }
1131 #endif
1132
1133 static void update_and_free_page(struct hstate *h, struct page *page)
1134 {
1135         int i;
1136
1137         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1138                 return;
1139
1140         h->nr_huge_pages--;
1141         h->nr_huge_pages_node[page_to_nid(page)]--;
1142         for (i = 0; i < pages_per_huge_page(h); i++) {
1143                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1144                                 1 << PG_referenced | 1 << PG_dirty |
1145                                 1 << PG_active | 1 << PG_private |
1146                                 1 << PG_writeback);
1147         }
1148         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1149         set_compound_page_dtor(page, NULL);
1150         set_page_refcounted(page);
1151         if (hstate_is_gigantic(h)) {
1152                 destroy_compound_gigantic_page(page, huge_page_order(h));
1153                 free_gigantic_page(page, huge_page_order(h));
1154         } else {
1155                 __free_pages(page, huge_page_order(h));
1156         }
1157 }
1158
1159 struct hstate *size_to_hstate(unsigned long size)
1160 {
1161         struct hstate *h;
1162
1163         for_each_hstate(h) {
1164                 if (huge_page_size(h) == size)
1165                         return h;
1166         }
1167         return NULL;
1168 }
1169
1170 /*
1171  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1172  * to hstate->hugepage_activelist.)
1173  *
1174  * This function can be called for tail pages, but never returns true for them.
1175  */
1176 bool page_huge_active(struct page *page)
1177 {
1178         VM_BUG_ON_PAGE(!PageHuge(page), page);
1179         return PageHead(page) && PagePrivate(&page[1]);
1180 }
1181
1182 /* never called for tail page */
1183 static void set_page_huge_active(struct page *page)
1184 {
1185         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1186         SetPagePrivate(&page[1]);
1187 }
1188
1189 static void clear_page_huge_active(struct page *page)
1190 {
1191         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1192         ClearPagePrivate(&page[1]);
1193 }
1194
1195 void free_huge_page(struct page *page)
1196 {
1197         /*
1198          * Can't pass hstate in here because it is called from the
1199          * compound page destructor.
1200          */
1201         struct hstate *h = page_hstate(page);
1202         int nid = page_to_nid(page);
1203         struct hugepage_subpool *spool =
1204                 (struct hugepage_subpool *)page_private(page);
1205         bool restore_reserve;
1206
1207         set_page_private(page, 0);
1208         page->mapping = NULL;
1209         BUG_ON(page_count(page));
1210         BUG_ON(page_mapcount(page));
1211         restore_reserve = PagePrivate(page);
1212         ClearPagePrivate(page);
1213
1214         /*
1215          * A return code of zero implies that the subpool will be under its
1216          * minimum size if the reservation is not restored after page is free.
1217          * Therefore, force restore_reserve operation.
1218          */
1219         if (hugepage_subpool_put_pages(spool, 1) == 0)
1220                 restore_reserve = true;
1221
1222         spin_lock(&hugetlb_lock);
1223         clear_page_huge_active(page);
1224         hugetlb_cgroup_uncharge_page(hstate_index(h),
1225                                      pages_per_huge_page(h), page);
1226         if (restore_reserve)
1227                 h->resv_huge_pages++;
1228
1229         if (h->surplus_huge_pages_node[nid]) {
1230                 /* remove the page from active list */
1231                 list_del(&page->lru);
1232                 update_and_free_page(h, page);
1233                 h->surplus_huge_pages--;
1234                 h->surplus_huge_pages_node[nid]--;
1235         } else {
1236                 arch_clear_hugepage_flags(page);
1237                 enqueue_huge_page(h, page);
1238         }
1239         spin_unlock(&hugetlb_lock);
1240 }
1241
1242 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1243 {
1244         INIT_LIST_HEAD(&page->lru);
1245         set_compound_page_dtor(page, free_huge_page);
1246         spin_lock(&hugetlb_lock);
1247         set_hugetlb_cgroup(page, NULL);
1248         h->nr_huge_pages++;
1249         h->nr_huge_pages_node[nid]++;
1250         spin_unlock(&hugetlb_lock);
1251         put_page(page); /* free it into the hugepage allocator */
1252 }
1253
1254 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1255 {
1256         int i;
1257         int nr_pages = 1 << order;
1258         struct page *p = page + 1;
1259
1260         /* we rely on prep_new_huge_page to set the destructor */
1261         set_compound_order(page, order);
1262         __SetPageHead(page);
1263         __ClearPageReserved(page);
1264         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1265                 /*
1266                  * For gigantic hugepages allocated through bootmem at
1267                  * boot, it's safer to be consistent with the not-gigantic
1268                  * hugepages and clear the PG_reserved bit from all tail pages
1269                  * too.  Otherwse drivers using get_user_pages() to access tail
1270                  * pages may get the reference counting wrong if they see
1271                  * PG_reserved set on a tail page (despite the head page not
1272                  * having PG_reserved set).  Enforcing this consistency between
1273                  * head and tail pages allows drivers to optimize away a check
1274                  * on the head page when they need know if put_page() is needed
1275                  * after get_user_pages().
1276                  */
1277                 __ClearPageReserved(p);
1278                 set_page_count(p, 0);
1279                 p->first_page = page;
1280                 /* Make sure p->first_page is always valid for PageTail() */
1281                 smp_wmb();
1282                 __SetPageTail(p);
1283         }
1284 }
1285
1286 /*
1287  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1288  * transparent huge pages.  See the PageTransHuge() documentation for more
1289  * details.
1290  */
1291 int PageHuge(struct page *page)
1292 {
1293         if (!PageCompound(page))
1294                 return 0;
1295
1296         page = compound_head(page);
1297         return get_compound_page_dtor(page) == free_huge_page;
1298 }
1299 EXPORT_SYMBOL_GPL(PageHuge);
1300
1301 /*
1302  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1303  * normal or transparent huge pages.
1304  */
1305 int PageHeadHuge(struct page *page_head)
1306 {
1307         if (!PageHead(page_head))
1308                 return 0;
1309
1310         return get_compound_page_dtor(page_head) == free_huge_page;
1311 }
1312
1313 pgoff_t __basepage_index(struct page *page)
1314 {
1315         struct page *page_head = compound_head(page);
1316         pgoff_t index = page_index(page_head);
1317         unsigned long compound_idx;
1318
1319         if (!PageHuge(page_head))
1320                 return page_index(page);
1321
1322         if (compound_order(page_head) >= MAX_ORDER)
1323                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1324         else
1325                 compound_idx = page - page_head;
1326
1327         return (index << compound_order(page_head)) + compound_idx;
1328 }
1329
1330 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1331 {
1332         struct page *page;
1333
1334         page = __alloc_pages_node(nid,
1335                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1336                                                 __GFP_REPEAT|__GFP_NOWARN,
1337                 huge_page_order(h));
1338         if (page) {
1339                 prep_new_huge_page(h, page, nid);
1340         }
1341
1342         return page;
1343 }
1344
1345 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1346 {
1347         struct page *page;
1348         int nr_nodes, node;
1349         int ret = 0;
1350
1351         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1352                 page = alloc_fresh_huge_page_node(h, node);
1353                 if (page) {
1354                         ret = 1;
1355                         break;
1356                 }
1357         }
1358
1359         if (ret)
1360                 count_vm_event(HTLB_BUDDY_PGALLOC);
1361         else
1362                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1363
1364         return ret;
1365 }
1366
1367 /*
1368  * Free huge page from pool from next node to free.
1369  * Attempt to keep persistent huge pages more or less
1370  * balanced over allowed nodes.
1371  * Called with hugetlb_lock locked.
1372  */
1373 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1374                                                          bool acct_surplus)
1375 {
1376         int nr_nodes, node;
1377         int ret = 0;
1378
1379         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1380                 /*
1381                  * If we're returning unused surplus pages, only examine
1382                  * nodes with surplus pages.
1383                  */
1384                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1385                     !list_empty(&h->hugepage_freelists[node])) {
1386                         struct page *page =
1387                                 list_entry(h->hugepage_freelists[node].next,
1388                                           struct page, lru);
1389                         list_del(&page->lru);
1390                         h->free_huge_pages--;
1391                         h->free_huge_pages_node[node]--;
1392                         if (acct_surplus) {
1393                                 h->surplus_huge_pages--;
1394                                 h->surplus_huge_pages_node[node]--;
1395                         }
1396                         update_and_free_page(h, page);
1397                         ret = 1;
1398                         break;
1399                 }
1400         }
1401
1402         return ret;
1403 }
1404
1405 /*
1406  * Dissolve a given free hugepage into free buddy pages. This function does
1407  * nothing for in-use (including surplus) hugepages.
1408  */
1409 static void dissolve_free_huge_page(struct page *page)
1410 {
1411         spin_lock(&hugetlb_lock);
1412         if (PageHuge(page) && !page_count(page)) {
1413                 struct hstate *h = page_hstate(page);
1414                 int nid = page_to_nid(page);
1415                 list_del(&page->lru);
1416                 h->free_huge_pages--;
1417                 h->free_huge_pages_node[nid]--;
1418                 update_and_free_page(h, page);
1419         }
1420         spin_unlock(&hugetlb_lock);
1421 }
1422
1423 /*
1424  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1425  * make specified memory blocks removable from the system.
1426  * Note that start_pfn should aligned with (minimum) hugepage size.
1427  */
1428 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1429 {
1430         unsigned long pfn;
1431
1432         if (!hugepages_supported())
1433                 return;
1434
1435         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1436         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1437                 dissolve_free_huge_page(pfn_to_page(pfn));
1438 }
1439
1440 /*
1441  * There are 3 ways this can get called:
1442  * 1. With vma+addr: we use the VMA's memory policy
1443  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1444  *    page from any node, and let the buddy allocator itself figure
1445  *    it out.
1446  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1447  *    strictly from 'nid'
1448  */
1449 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1450                 struct vm_area_struct *vma, unsigned long addr, int nid)
1451 {
1452         int order = huge_page_order(h);
1453         gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1454         unsigned int cpuset_mems_cookie;
1455
1456         /*
1457          * We need a VMA to get a memory policy.  If we do not
1458          * have one, we use the 'nid' argument.
1459          *
1460          * The mempolicy stuff below has some non-inlined bits
1461          * and calls ->vm_ops.  That makes it hard to optimize at
1462          * compile-time, even when NUMA is off and it does
1463          * nothing.  This helps the compiler optimize it out.
1464          */
1465         if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1466                 /*
1467                  * If a specific node is requested, make sure to
1468                  * get memory from there, but only when a node
1469                  * is explicitly specified.
1470                  */
1471                 if (nid != NUMA_NO_NODE)
1472                         gfp |= __GFP_THISNODE;
1473                 /*
1474                  * Make sure to call something that can handle
1475                  * nid=NUMA_NO_NODE
1476                  */
1477                 return alloc_pages_node(nid, gfp, order);
1478         }
1479
1480         /*
1481          * OK, so we have a VMA.  Fetch the mempolicy and try to
1482          * allocate a huge page with it.  We will only reach this
1483          * when CONFIG_NUMA=y.
1484          */
1485         do {
1486                 struct page *page;
1487                 struct mempolicy *mpol;
1488                 struct zonelist *zl;
1489                 nodemask_t *nodemask;
1490
1491                 cpuset_mems_cookie = read_mems_allowed_begin();
1492                 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1493                 mpol_cond_put(mpol);
1494                 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1495                 if (page)
1496                         return page;
1497         } while (read_mems_allowed_retry(cpuset_mems_cookie));
1498
1499         return NULL;
1500 }
1501
1502 /*
1503  * There are two ways to allocate a huge page:
1504  * 1. When you have a VMA and an address (like a fault)
1505  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1506  *
1507  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1508  * this case which signifies that the allocation should be done with
1509  * respect for the VMA's memory policy.
1510  *
1511  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1512  * implies that memory policies will not be taken in to account.
1513  */
1514 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1515                 struct vm_area_struct *vma, unsigned long addr, int nid)
1516 {
1517         struct page *page;
1518         unsigned int r_nid;
1519
1520         if (hstate_is_gigantic(h))
1521                 return NULL;
1522
1523         /*
1524          * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1525          * This makes sure the caller is picking _one_ of the modes with which
1526          * we can call this function, not both.
1527          */
1528         if (vma || (addr != -1)) {
1529                 VM_WARN_ON_ONCE(addr == -1);
1530                 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1531         }
1532         /*
1533          * Assume we will successfully allocate the surplus page to
1534          * prevent racing processes from causing the surplus to exceed
1535          * overcommit
1536          *
1537          * This however introduces a different race, where a process B
1538          * tries to grow the static hugepage pool while alloc_pages() is
1539          * called by process A. B will only examine the per-node
1540          * counters in determining if surplus huge pages can be
1541          * converted to normal huge pages in adjust_pool_surplus(). A
1542          * won't be able to increment the per-node counter, until the
1543          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1544          * no more huge pages can be converted from surplus to normal
1545          * state (and doesn't try to convert again). Thus, we have a
1546          * case where a surplus huge page exists, the pool is grown, and
1547          * the surplus huge page still exists after, even though it
1548          * should just have been converted to a normal huge page. This
1549          * does not leak memory, though, as the hugepage will be freed
1550          * once it is out of use. It also does not allow the counters to
1551          * go out of whack in adjust_pool_surplus() as we don't modify
1552          * the node values until we've gotten the hugepage and only the
1553          * per-node value is checked there.
1554          */
1555         spin_lock(&hugetlb_lock);
1556         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1557                 spin_unlock(&hugetlb_lock);
1558                 return NULL;
1559         } else {
1560                 h->nr_huge_pages++;
1561                 h->surplus_huge_pages++;
1562         }
1563         spin_unlock(&hugetlb_lock);
1564
1565         page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1566
1567         spin_lock(&hugetlb_lock);
1568         if (page) {
1569                 INIT_LIST_HEAD(&page->lru);
1570                 r_nid = page_to_nid(page);
1571                 set_compound_page_dtor(page, free_huge_page);
1572                 set_hugetlb_cgroup(page, NULL);
1573                 /*
1574                  * We incremented the global counters already
1575                  */
1576                 h->nr_huge_pages_node[r_nid]++;
1577                 h->surplus_huge_pages_node[r_nid]++;
1578                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1579         } else {
1580                 h->nr_huge_pages--;
1581                 h->surplus_huge_pages--;
1582                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1583         }
1584         spin_unlock(&hugetlb_lock);
1585
1586         return page;
1587 }
1588
1589 /*
1590  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1591  * NUMA_NO_NODE, which means that it may be allocated
1592  * anywhere.
1593  */
1594 static
1595 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1596 {
1597         unsigned long addr = -1;
1598
1599         return __alloc_buddy_huge_page(h, NULL, addr, nid);
1600 }
1601
1602 /*
1603  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1604  */
1605 static
1606 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1607                 struct vm_area_struct *vma, unsigned long addr)
1608 {
1609         return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1610 }
1611
1612 /*
1613  * This allocation function is useful in the context where vma is irrelevant.
1614  * E.g. soft-offlining uses this function because it only cares physical
1615  * address of error page.
1616  */
1617 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1618 {
1619         struct page *page = NULL;
1620
1621         spin_lock(&hugetlb_lock);
1622         if (h->free_huge_pages - h->resv_huge_pages > 0)
1623                 page = dequeue_huge_page_node(h, nid);
1624         spin_unlock(&hugetlb_lock);
1625
1626         if (!page)
1627                 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1628
1629         return page;
1630 }
1631
1632 /*
1633  * Increase the hugetlb pool such that it can accommodate a reservation
1634  * of size 'delta'.
1635  */
1636 static int gather_surplus_pages(struct hstate *h, int delta)
1637 {
1638         struct list_head surplus_list;
1639         struct page *page, *tmp;
1640         int ret, i;
1641         int needed, allocated;
1642         bool alloc_ok = true;
1643
1644         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1645         if (needed <= 0) {
1646                 h->resv_huge_pages += delta;
1647                 return 0;
1648         }
1649
1650         allocated = 0;
1651         INIT_LIST_HEAD(&surplus_list);
1652
1653         ret = -ENOMEM;
1654 retry:
1655         spin_unlock(&hugetlb_lock);
1656         for (i = 0; i < needed; i++) {
1657                 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1658                 if (!page) {
1659                         alloc_ok = false;
1660                         break;
1661                 }
1662                 list_add(&page->lru, &surplus_list);
1663         }
1664         allocated += i;
1665
1666         /*
1667          * After retaking hugetlb_lock, we need to recalculate 'needed'
1668          * because either resv_huge_pages or free_huge_pages may have changed.
1669          */
1670         spin_lock(&hugetlb_lock);
1671         needed = (h->resv_huge_pages + delta) -
1672                         (h->free_huge_pages + allocated);
1673         if (needed > 0) {
1674                 if (alloc_ok)
1675                         goto retry;
1676                 /*
1677                  * We were not able to allocate enough pages to
1678                  * satisfy the entire reservation so we free what
1679                  * we've allocated so far.
1680                  */
1681                 goto free;
1682         }
1683         /*
1684          * The surplus_list now contains _at_least_ the number of extra pages
1685          * needed to accommodate the reservation.  Add the appropriate number
1686          * of pages to the hugetlb pool and free the extras back to the buddy
1687          * allocator.  Commit the entire reservation here to prevent another
1688          * process from stealing the pages as they are added to the pool but
1689          * before they are reserved.
1690          */
1691         needed += allocated;
1692         h->resv_huge_pages += delta;
1693         ret = 0;
1694
1695         /* Free the needed pages to the hugetlb pool */
1696         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1697                 if ((--needed) < 0)
1698                         break;
1699                 /*
1700                  * This page is now managed by the hugetlb allocator and has
1701                  * no users -- drop the buddy allocator's reference.
1702                  */
1703                 put_page_testzero(page);
1704                 VM_BUG_ON_PAGE(page_count(page), page);
1705                 enqueue_huge_page(h, page);
1706         }
1707 free:
1708         spin_unlock(&hugetlb_lock);
1709
1710         /* Free unnecessary surplus pages to the buddy allocator */
1711         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1712                 put_page(page);
1713         spin_lock(&hugetlb_lock);
1714
1715         return ret;
1716 }
1717
1718 /*
1719  * When releasing a hugetlb pool reservation, any surplus pages that were
1720  * allocated to satisfy the reservation must be explicitly freed if they were
1721  * never used.
1722  * Called with hugetlb_lock held.
1723  */
1724 static void return_unused_surplus_pages(struct hstate *h,
1725                                         unsigned long unused_resv_pages)
1726 {
1727         unsigned long nr_pages;
1728
1729         /* Uncommit the reservation */
1730         h->resv_huge_pages -= unused_resv_pages;
1731
1732         /* Cannot return gigantic pages currently */
1733         if (hstate_is_gigantic(h))
1734                 return;
1735
1736         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1737
1738         /*
1739          * We want to release as many surplus pages as possible, spread
1740          * evenly across all nodes with memory. Iterate across these nodes
1741          * until we can no longer free unreserved surplus pages. This occurs
1742          * when the nodes with surplus pages have no free pages.
1743          * free_pool_huge_page() will balance the the freed pages across the
1744          * on-line nodes with memory and will handle the hstate accounting.
1745          */
1746         while (nr_pages--) {
1747                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1748                         break;
1749                 cond_resched_lock(&hugetlb_lock);
1750         }
1751 }
1752
1753
1754 /*
1755  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1756  * are used by the huge page allocation routines to manage reservations.
1757  *
1758  * vma_needs_reservation is called to determine if the huge page at addr
1759  * within the vma has an associated reservation.  If a reservation is
1760  * needed, the value 1 is returned.  The caller is then responsible for
1761  * managing the global reservation and subpool usage counts.  After
1762  * the huge page has been allocated, vma_commit_reservation is called
1763  * to add the page to the reservation map.  If the page allocation fails,
1764  * the reservation must be ended instead of committed.  vma_end_reservation
1765  * is called in such cases.
1766  *
1767  * In the normal case, vma_commit_reservation returns the same value
1768  * as the preceding vma_needs_reservation call.  The only time this
1769  * is not the case is if a reserve map was changed between calls.  It
1770  * is the responsibility of the caller to notice the difference and
1771  * take appropriate action.
1772  */
1773 enum vma_resv_mode {
1774         VMA_NEEDS_RESV,
1775         VMA_COMMIT_RESV,
1776         VMA_END_RESV,
1777 };
1778 static long __vma_reservation_common(struct hstate *h,
1779                                 struct vm_area_struct *vma, unsigned long addr,
1780                                 enum vma_resv_mode mode)
1781 {
1782         struct resv_map *resv;
1783         pgoff_t idx;
1784         long ret;
1785
1786         resv = vma_resv_map(vma);
1787         if (!resv)
1788                 return 1;
1789
1790         idx = vma_hugecache_offset(h, vma, addr);
1791         switch (mode) {
1792         case VMA_NEEDS_RESV:
1793                 ret = region_chg(resv, idx, idx + 1);
1794                 break;
1795         case VMA_COMMIT_RESV:
1796                 ret = region_add(resv, idx, idx + 1);
1797                 break;
1798         case VMA_END_RESV:
1799                 region_abort(resv, idx, idx + 1);
1800                 ret = 0;
1801                 break;
1802         default:
1803                 BUG();
1804         }
1805
1806         if (vma->vm_flags & VM_MAYSHARE)
1807                 return ret;
1808         else
1809                 return ret < 0 ? ret : 0;
1810 }
1811
1812 static long vma_needs_reservation(struct hstate *h,
1813                         struct vm_area_struct *vma, unsigned long addr)
1814 {
1815         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1816 }
1817
1818 static long vma_commit_reservation(struct hstate *h,
1819                         struct vm_area_struct *vma, unsigned long addr)
1820 {
1821         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1822 }
1823
1824 static void vma_end_reservation(struct hstate *h,
1825                         struct vm_area_struct *vma, unsigned long addr)
1826 {
1827         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1828 }
1829
1830 struct page *alloc_huge_page(struct vm_area_struct *vma,
1831                                     unsigned long addr, int avoid_reserve)
1832 {
1833         struct hugepage_subpool *spool = subpool_vma(vma);
1834         struct hstate *h = hstate_vma(vma);
1835         struct page *page;
1836         long map_chg, map_commit;
1837         long gbl_chg;
1838         int ret, idx;
1839         struct hugetlb_cgroup *h_cg;
1840
1841         idx = hstate_index(h);
1842         /*
1843          * Examine the region/reserve map to determine if the process
1844          * has a reservation for the page to be allocated.  A return
1845          * code of zero indicates a reservation exists (no change).
1846          */
1847         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1848         if (map_chg < 0)
1849                 return ERR_PTR(-ENOMEM);
1850
1851         /*
1852          * Processes that did not create the mapping will have no
1853          * reserves as indicated by the region/reserve map. Check
1854          * that the allocation will not exceed the subpool limit.
1855          * Allocations for MAP_NORESERVE mappings also need to be
1856          * checked against any subpool limit.
1857          */
1858         if (map_chg || avoid_reserve) {
1859                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1860                 if (gbl_chg < 0) {
1861                         vma_end_reservation(h, vma, addr);
1862                         return ERR_PTR(-ENOSPC);
1863                 }
1864
1865                 /*
1866                  * Even though there was no reservation in the region/reserve
1867                  * map, there could be reservations associated with the
1868                  * subpool that can be used.  This would be indicated if the
1869                  * return value of hugepage_subpool_get_pages() is zero.
1870                  * However, if avoid_reserve is specified we still avoid even
1871                  * the subpool reservations.
1872                  */
1873                 if (avoid_reserve)
1874                         gbl_chg = 1;
1875         }
1876
1877         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1878         if (ret)
1879                 goto out_subpool_put;
1880
1881         spin_lock(&hugetlb_lock);
1882         /*
1883          * glb_chg is passed to indicate whether or not a page must be taken
1884          * from the global free pool (global change).  gbl_chg == 0 indicates
1885          * a reservation exists for the allocation.
1886          */
1887         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1888         if (!page) {
1889                 spin_unlock(&hugetlb_lock);
1890                 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1891                 if (!page)
1892                         goto out_uncharge_cgroup;
1893
1894                 spin_lock(&hugetlb_lock);
1895                 list_move(&page->lru, &h->hugepage_activelist);
1896                 /* Fall through */
1897         }
1898         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1899         spin_unlock(&hugetlb_lock);
1900
1901         set_page_private(page, (unsigned long)spool);
1902
1903         map_commit = vma_commit_reservation(h, vma, addr);
1904         if (unlikely(map_chg > map_commit)) {
1905                 /*
1906                  * The page was added to the reservation map between
1907                  * vma_needs_reservation and vma_commit_reservation.
1908                  * This indicates a race with hugetlb_reserve_pages.
1909                  * Adjust for the subpool count incremented above AND
1910                  * in hugetlb_reserve_pages for the same page.  Also,
1911                  * the reservation count added in hugetlb_reserve_pages
1912                  * no longer applies.
1913                  */
1914                 long rsv_adjust;
1915
1916                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1917                 hugetlb_acct_memory(h, -rsv_adjust);
1918         }
1919         return page;
1920
1921 out_uncharge_cgroup:
1922         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1923 out_subpool_put:
1924         if (map_chg || avoid_reserve)
1925                 hugepage_subpool_put_pages(spool, 1);
1926         vma_end_reservation(h, vma, addr);
1927         return ERR_PTR(-ENOSPC);
1928 }
1929
1930 /*
1931  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1932  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1933  * where no ERR_VALUE is expected to be returned.
1934  */
1935 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1936                                 unsigned long addr, int avoid_reserve)
1937 {
1938         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1939         if (IS_ERR(page))
1940                 page = NULL;
1941         return page;
1942 }
1943
1944 int __weak alloc_bootmem_huge_page(struct hstate *h)
1945 {
1946         struct huge_bootmem_page *m;
1947         int nr_nodes, node;
1948
1949         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1950                 void *addr;
1951
1952                 addr = memblock_virt_alloc_try_nid_nopanic(
1953                                 huge_page_size(h), huge_page_size(h),
1954                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1955                 if (addr) {
1956                         /*
1957                          * Use the beginning of the huge page to store the
1958                          * huge_bootmem_page struct (until gather_bootmem
1959                          * puts them into the mem_map).
1960                          */
1961                         m = addr;
1962                         goto found;
1963                 }
1964         }
1965         return 0;
1966
1967 found:
1968         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1969         /* Put them into a private list first because mem_map is not up yet */
1970         list_add(&m->list, &huge_boot_pages);
1971         m->hstate = h;
1972         return 1;
1973 }
1974
1975 static void __init prep_compound_huge_page(struct page *page, int order)
1976 {
1977         if (unlikely(order > (MAX_ORDER - 1)))
1978                 prep_compound_gigantic_page(page, order);
1979         else
1980                 prep_compound_page(page, order);
1981 }
1982
1983 /* Put bootmem huge pages into the standard lists after mem_map is up */
1984 static void __init gather_bootmem_prealloc(void)
1985 {
1986         struct huge_bootmem_page *m;
1987
1988         list_for_each_entry(m, &huge_boot_pages, list) {
1989                 struct hstate *h = m->hstate;
1990                 struct page *page;
1991
1992 #ifdef CONFIG_HIGHMEM
1993                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1994                 memblock_free_late(__pa(m),
1995                                    sizeof(struct huge_bootmem_page));
1996 #else
1997                 page = virt_to_page(m);
1998 #endif
1999                 WARN_ON(page_count(page) != 1);
2000                 prep_compound_huge_page(page, h->order);
2001                 WARN_ON(PageReserved(page));
2002                 prep_new_huge_page(h, page, page_to_nid(page));
2003                 /*
2004                  * If we had gigantic hugepages allocated at boot time, we need
2005                  * to restore the 'stolen' pages to totalram_pages in order to
2006                  * fix confusing memory reports from free(1) and another
2007                  * side-effects, like CommitLimit going negative.
2008                  */
2009                 if (hstate_is_gigantic(h))
2010                         adjust_managed_page_count(page, 1 << h->order);
2011         }
2012 }
2013
2014 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2015 {
2016         unsigned long i;
2017
2018         for (i = 0; i < h->max_huge_pages; ++i) {
2019                 if (hstate_is_gigantic(h)) {
2020                         if (!alloc_bootmem_huge_page(h))
2021                                 break;
2022                 } else if (!alloc_fresh_huge_page(h,
2023                                          &node_states[N_MEMORY]))
2024                         break;
2025         }
2026         h->max_huge_pages = i;
2027 }
2028
2029 static void __init hugetlb_init_hstates(void)
2030 {
2031         struct hstate *h;
2032
2033         for_each_hstate(h) {
2034                 if (minimum_order > huge_page_order(h))
2035                         minimum_order = huge_page_order(h);
2036
2037                 /* oversize hugepages were init'ed in early boot */
2038                 if (!hstate_is_gigantic(h))
2039                         hugetlb_hstate_alloc_pages(h);
2040         }
2041         VM_BUG_ON(minimum_order == UINT_MAX);
2042 }
2043
2044 static char * __init memfmt(char *buf, unsigned long n)
2045 {
2046         if (n >= (1UL << 30))
2047                 sprintf(buf, "%lu GB", n >> 30);
2048         else if (n >= (1UL << 20))
2049                 sprintf(buf, "%lu MB", n >> 20);
2050         else
2051                 sprintf(buf, "%lu KB", n >> 10);
2052         return buf;
2053 }
2054
2055 static void __init report_hugepages(void)
2056 {
2057         struct hstate *h;
2058
2059         for_each_hstate(h) {
2060                 char buf[32];
2061                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2062                         memfmt(buf, huge_page_size(h)),
2063                         h->free_huge_pages);
2064         }
2065 }
2066
2067 #ifdef CONFIG_HIGHMEM
2068 static void try_to_free_low(struct hstate *h, unsigned long count,
2069                                                 nodemask_t *nodes_allowed)
2070 {
2071         int i;
2072
2073         if (hstate_is_gigantic(h))
2074                 return;
2075
2076         for_each_node_mask(i, *nodes_allowed) {
2077                 struct page *page, *next;
2078                 struct list_head *freel = &h->hugepage_freelists[i];
2079                 list_for_each_entry_safe(page, next, freel, lru) {
2080                         if (count >= h->nr_huge_pages)
2081                                 return;
2082                         if (PageHighMem(page))
2083                                 continue;
2084                         list_del(&page->lru);
2085                         update_and_free_page(h, page);
2086                         h->free_huge_pages--;
2087                         h->free_huge_pages_node[page_to_nid(page)]--;
2088                 }
2089         }
2090 }
2091 #else
2092 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2093                                                 nodemask_t *nodes_allowed)
2094 {
2095 }
2096 #endif
2097
2098 /*
2099  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2100  * balanced by operating on them in a round-robin fashion.
2101  * Returns 1 if an adjustment was made.
2102  */
2103 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2104                                 int delta)
2105 {
2106         int nr_nodes, node;
2107
2108         VM_BUG_ON(delta != -1 && delta != 1);
2109
2110         if (delta < 0) {
2111                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2112                         if (h->surplus_huge_pages_node[node])
2113                                 goto found;
2114                 }
2115         } else {
2116                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2117                         if (h->surplus_huge_pages_node[node] <
2118                                         h->nr_huge_pages_node[node])
2119                                 goto found;
2120                 }
2121         }
2122         return 0;
2123
2124 found:
2125         h->surplus_huge_pages += delta;
2126         h->surplus_huge_pages_node[node] += delta;
2127         return 1;
2128 }
2129
2130 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2131 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2132                                                 nodemask_t *nodes_allowed)
2133 {
2134         unsigned long min_count, ret;
2135
2136         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2137                 return h->max_huge_pages;
2138
2139         /*
2140          * Increase the pool size
2141          * First take pages out of surplus state.  Then make up the
2142          * remaining difference by allocating fresh huge pages.
2143          *
2144          * We might race with alloc_buddy_huge_page() here and be unable
2145          * to convert a surplus huge page to a normal huge page. That is
2146          * not critical, though, it just means the overall size of the
2147          * pool might be one hugepage larger than it needs to be, but
2148          * within all the constraints specified by the sysctls.
2149          */
2150         spin_lock(&hugetlb_lock);
2151         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2152                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2153                         break;
2154         }
2155
2156         while (count > persistent_huge_pages(h)) {
2157                 /*
2158                  * If this allocation races such that we no longer need the
2159                  * page, free_huge_page will handle it by freeing the page
2160                  * and reducing the surplus.
2161                  */
2162                 spin_unlock(&hugetlb_lock);
2163                 if (hstate_is_gigantic(h))
2164                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2165                 else
2166                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2167                 spin_lock(&hugetlb_lock);
2168                 if (!ret)
2169                         goto out;
2170
2171                 /* Bail for signals. Probably ctrl-c from user */
2172                 if (signal_pending(current))
2173                         goto out;
2174         }
2175
2176         /*
2177          * Decrease the pool size
2178          * First return free pages to the buddy allocator (being careful
2179          * to keep enough around to satisfy reservations).  Then place
2180          * pages into surplus state as needed so the pool will shrink
2181          * to the desired size as pages become free.
2182          *
2183          * By placing pages into the surplus state independent of the
2184          * overcommit value, we are allowing the surplus pool size to
2185          * exceed overcommit. There are few sane options here. Since
2186          * alloc_buddy_huge_page() is checking the global counter,
2187          * though, we'll note that we're not allowed to exceed surplus
2188          * and won't grow the pool anywhere else. Not until one of the
2189          * sysctls are changed, or the surplus pages go out of use.
2190          */
2191         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2192         min_count = max(count, min_count);
2193         try_to_free_low(h, min_count, nodes_allowed);
2194         while (min_count < persistent_huge_pages(h)) {
2195                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2196                         break;
2197                 cond_resched_lock(&hugetlb_lock);
2198         }
2199         while (count < persistent_huge_pages(h)) {
2200                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2201                         break;
2202         }
2203 out:
2204         ret = persistent_huge_pages(h);
2205         spin_unlock(&hugetlb_lock);
2206         return ret;
2207 }
2208
2209 #define HSTATE_ATTR_RO(_name) \
2210         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2211
2212 #define HSTATE_ATTR(_name) \
2213         static struct kobj_attribute _name##_attr = \
2214                 __ATTR(_name, 0644, _name##_show, _name##_store)
2215
2216 static struct kobject *hugepages_kobj;
2217 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2218
2219 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2220
2221 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2222 {
2223         int i;
2224
2225         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2226                 if (hstate_kobjs[i] == kobj) {
2227                         if (nidp)
2228                                 *nidp = NUMA_NO_NODE;
2229                         return &hstates[i];
2230                 }
2231
2232         return kobj_to_node_hstate(kobj, nidp);
2233 }
2234
2235 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2236                                         struct kobj_attribute *attr, char *buf)
2237 {
2238         struct hstate *h;
2239         unsigned long nr_huge_pages;
2240         int nid;
2241
2242         h = kobj_to_hstate(kobj, &nid);
2243         if (nid == NUMA_NO_NODE)
2244                 nr_huge_pages = h->nr_huge_pages;
2245         else
2246                 nr_huge_pages = h->nr_huge_pages_node[nid];
2247
2248         return sprintf(buf, "%lu\n", nr_huge_pages);
2249 }
2250
2251 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2252                                            struct hstate *h, int nid,
2253                                            unsigned long count, size_t len)
2254 {
2255         int err;
2256         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2257
2258         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2259                 err = -EINVAL;
2260                 goto out;
2261         }
2262
2263         if (nid == NUMA_NO_NODE) {
2264                 /*
2265                  * global hstate attribute
2266                  */
2267                 if (!(obey_mempolicy &&
2268                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2269                         NODEMASK_FREE(nodes_allowed);
2270                         nodes_allowed = &node_states[N_MEMORY];
2271                 }
2272         } else if (nodes_allowed) {
2273                 /*
2274                  * per node hstate attribute: adjust count to global,
2275                  * but restrict alloc/free to the specified node.
2276                  */
2277                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2278                 init_nodemask_of_node(nodes_allowed, nid);
2279         } else
2280                 nodes_allowed = &node_states[N_MEMORY];
2281
2282         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2283
2284         if (nodes_allowed != &node_states[N_MEMORY])
2285                 NODEMASK_FREE(nodes_allowed);
2286
2287         return len;
2288 out:
2289         NODEMASK_FREE(nodes_allowed);
2290         return err;
2291 }
2292
2293 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2294                                          struct kobject *kobj, const char *buf,
2295                                          size_t len)
2296 {
2297         struct hstate *h;
2298         unsigned long count;
2299         int nid;
2300         int err;
2301
2302         err = kstrtoul(buf, 10, &count);
2303         if (err)
2304                 return err;
2305
2306         h = kobj_to_hstate(kobj, &nid);
2307         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2308 }
2309
2310 static ssize_t nr_hugepages_show(struct kobject *kobj,
2311                                        struct kobj_attribute *attr, char *buf)
2312 {
2313         return nr_hugepages_show_common(kobj, attr, buf);
2314 }
2315
2316 static ssize_t nr_hugepages_store(struct kobject *kobj,
2317                struct kobj_attribute *attr, const char *buf, size_t len)
2318 {
2319         return nr_hugepages_store_common(false, kobj, buf, len);
2320 }
2321 HSTATE_ATTR(nr_hugepages);
2322
2323 #ifdef CONFIG_NUMA
2324
2325 /*
2326  * hstate attribute for optionally mempolicy-based constraint on persistent
2327  * huge page alloc/free.
2328  */
2329 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2330                                        struct kobj_attribute *attr, char *buf)
2331 {
2332         return nr_hugepages_show_common(kobj, attr, buf);
2333 }
2334
2335 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2336                struct kobj_attribute *attr, const char *buf, size_t len)
2337 {
2338         return nr_hugepages_store_common(true, kobj, buf, len);
2339 }
2340 HSTATE_ATTR(nr_hugepages_mempolicy);
2341 #endif
2342
2343
2344 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2345                                         struct kobj_attribute *attr, char *buf)
2346 {
2347         struct hstate *h = kobj_to_hstate(kobj, NULL);
2348         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2349 }
2350
2351 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2352                 struct kobj_attribute *attr, const char *buf, size_t count)
2353 {
2354         int err;
2355         unsigned long input;
2356         struct hstate *h = kobj_to_hstate(kobj, NULL);
2357
2358         if (hstate_is_gigantic(h))
2359                 return -EINVAL;
2360
2361         err = kstrtoul(buf, 10, &input);
2362         if (err)
2363                 return err;
2364
2365         spin_lock(&hugetlb_lock);
2366         h->nr_overcommit_huge_pages = input;
2367         spin_unlock(&hugetlb_lock);
2368
2369         return count;
2370 }
2371 HSTATE_ATTR(nr_overcommit_hugepages);
2372
2373 static ssize_t free_hugepages_show(struct kobject *kobj,
2374                                         struct kobj_attribute *attr, char *buf)
2375 {
2376         struct hstate *h;
2377         unsigned long free_huge_pages;
2378         int nid;
2379
2380         h = kobj_to_hstate(kobj, &nid);
2381         if (nid == NUMA_NO_NODE)
2382                 free_huge_pages = h->free_huge_pages;
2383         else
2384                 free_huge_pages = h->free_huge_pages_node[nid];
2385
2386         return sprintf(buf, "%lu\n", free_huge_pages);
2387 }
2388 HSTATE_ATTR_RO(free_hugepages);
2389
2390 static ssize_t resv_hugepages_show(struct kobject *kobj,
2391                                         struct kobj_attribute *attr, char *buf)
2392 {
2393         struct hstate *h = kobj_to_hstate(kobj, NULL);
2394         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2395 }
2396 HSTATE_ATTR_RO(resv_hugepages);
2397
2398 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2399                                         struct kobj_attribute *attr, char *buf)
2400 {
2401         struct hstate *h;
2402         unsigned long surplus_huge_pages;
2403         int nid;
2404
2405         h = kobj_to_hstate(kobj, &nid);
2406         if (nid == NUMA_NO_NODE)
2407                 surplus_huge_pages = h->surplus_huge_pages;
2408         else
2409                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2410
2411         return sprintf(buf, "%lu\n", surplus_huge_pages);
2412 }
2413 HSTATE_ATTR_RO(surplus_hugepages);
2414
2415 static struct attribute *hstate_attrs[] = {
2416         &nr_hugepages_attr.attr,
2417         &nr_overcommit_hugepages_attr.attr,
2418         &free_hugepages_attr.attr,
2419         &resv_hugepages_attr.attr,
2420         &surplus_hugepages_attr.attr,
2421 #ifdef CONFIG_NUMA
2422         &nr_hugepages_mempolicy_attr.attr,
2423 #endif
2424         NULL,
2425 };
2426
2427 static struct attribute_group hstate_attr_group = {
2428         .attrs = hstate_attrs,
2429 };
2430
2431 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2432                                     struct kobject **hstate_kobjs,
2433                                     struct attribute_group *hstate_attr_group)
2434 {
2435         int retval;
2436         int hi = hstate_index(h);
2437
2438         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2439         if (!hstate_kobjs[hi])
2440                 return -ENOMEM;
2441
2442         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2443         if (retval)
2444                 kobject_put(hstate_kobjs[hi]);
2445
2446         return retval;
2447 }
2448
2449 static void __init hugetlb_sysfs_init(void)
2450 {
2451         struct hstate *h;
2452         int err;
2453
2454         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2455         if (!hugepages_kobj)
2456                 return;
2457
2458         for_each_hstate(h) {
2459                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2460                                          hstate_kobjs, &hstate_attr_group);
2461                 if (err)
2462                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2463         }
2464 }
2465
2466 #ifdef CONFIG_NUMA
2467
2468 /*
2469  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2470  * with node devices in node_devices[] using a parallel array.  The array
2471  * index of a node device or _hstate == node id.
2472  * This is here to avoid any static dependency of the node device driver, in
2473  * the base kernel, on the hugetlb module.
2474  */
2475 struct node_hstate {
2476         struct kobject          *hugepages_kobj;
2477         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2478 };
2479 static struct node_hstate node_hstates[MAX_NUMNODES];
2480
2481 /*
2482  * A subset of global hstate attributes for node devices
2483  */
2484 static struct attribute *per_node_hstate_attrs[] = {
2485         &nr_hugepages_attr.attr,
2486         &free_hugepages_attr.attr,
2487         &surplus_hugepages_attr.attr,
2488         NULL,
2489 };
2490
2491 static struct attribute_group per_node_hstate_attr_group = {
2492         .attrs = per_node_hstate_attrs,
2493 };
2494
2495 /*
2496  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2497  * Returns node id via non-NULL nidp.
2498  */
2499 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2500 {
2501         int nid;
2502
2503         for (nid = 0; nid < nr_node_ids; nid++) {
2504                 struct node_hstate *nhs = &node_hstates[nid];
2505                 int i;
2506                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2507                         if (nhs->hstate_kobjs[i] == kobj) {
2508                                 if (nidp)
2509                                         *nidp = nid;
2510                                 return &hstates[i];
2511                         }
2512         }
2513
2514         BUG();
2515         return NULL;
2516 }
2517
2518 /*
2519  * Unregister hstate attributes from a single node device.
2520  * No-op if no hstate attributes attached.
2521  */
2522 static void hugetlb_unregister_node(struct node *node)
2523 {
2524         struct hstate *h;
2525         struct node_hstate *nhs = &node_hstates[node->dev.id];
2526
2527         if (!nhs->hugepages_kobj)
2528                 return;         /* no hstate attributes */
2529
2530         for_each_hstate(h) {
2531                 int idx = hstate_index(h);
2532                 if (nhs->hstate_kobjs[idx]) {
2533                         kobject_put(nhs->hstate_kobjs[idx]);
2534                         nhs->hstate_kobjs[idx] = NULL;
2535                 }
2536         }
2537
2538         kobject_put(nhs->hugepages_kobj);
2539         nhs->hugepages_kobj = NULL;
2540 }
2541
2542 /*
2543  * hugetlb module exit:  unregister hstate attributes from node devices
2544  * that have them.
2545  */
2546 static void hugetlb_unregister_all_nodes(void)
2547 {
2548         int nid;
2549
2550         /*
2551          * disable node device registrations.
2552          */
2553         register_hugetlbfs_with_node(NULL, NULL);
2554
2555         /*
2556          * remove hstate attributes from any nodes that have them.
2557          */
2558         for (nid = 0; nid < nr_node_ids; nid++)
2559                 hugetlb_unregister_node(node_devices[nid]);
2560 }
2561
2562 /*
2563  * Register hstate attributes for a single node device.
2564  * No-op if attributes already registered.
2565  */
2566 static void hugetlb_register_node(struct node *node)
2567 {
2568         struct hstate *h;
2569         struct node_hstate *nhs = &node_hstates[node->dev.id];
2570         int err;
2571
2572         if (nhs->hugepages_kobj)
2573                 return;         /* already allocated */
2574
2575         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2576                                                         &node->dev.kobj);
2577         if (!nhs->hugepages_kobj)
2578                 return;
2579
2580         for_each_hstate(h) {
2581                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2582                                                 nhs->hstate_kobjs,
2583                                                 &per_node_hstate_attr_group);
2584                 if (err) {
2585                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2586                                 h->name, node->dev.id);
2587                         hugetlb_unregister_node(node);
2588                         break;
2589                 }
2590         }
2591 }
2592
2593 /*
2594  * hugetlb init time:  register hstate attributes for all registered node
2595  * devices of nodes that have memory.  All on-line nodes should have
2596  * registered their associated device by this time.
2597  */
2598 static void __init hugetlb_register_all_nodes(void)
2599 {
2600         int nid;
2601
2602         for_each_node_state(nid, N_MEMORY) {
2603                 struct node *node = node_devices[nid];
2604                 if (node->dev.id == nid)
2605                         hugetlb_register_node(node);
2606         }
2607
2608         /*
2609          * Let the node device driver know we're here so it can
2610          * [un]register hstate attributes on node hotplug.
2611          */
2612         register_hugetlbfs_with_node(hugetlb_register_node,
2613                                      hugetlb_unregister_node);
2614 }
2615 #else   /* !CONFIG_NUMA */
2616
2617 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2618 {
2619         BUG();
2620         if (nidp)
2621                 *nidp = -1;
2622         return NULL;
2623 }
2624
2625 static void hugetlb_unregister_all_nodes(void) { }
2626
2627 static void hugetlb_register_all_nodes(void) { }
2628
2629 #endif
2630
2631 static void __exit hugetlb_exit(void)
2632 {
2633         struct hstate *h;
2634
2635         hugetlb_unregister_all_nodes();
2636
2637         for_each_hstate(h) {
2638                 kobject_put(hstate_kobjs[hstate_index(h)]);
2639         }
2640
2641         kobject_put(hugepages_kobj);
2642         kfree(hugetlb_fault_mutex_table);
2643 }
2644 module_exit(hugetlb_exit);
2645
2646 static int __init hugetlb_init(void)
2647 {
2648         int i;
2649
2650         if (!hugepages_supported())
2651                 return 0;
2652
2653         if (!size_to_hstate(default_hstate_size)) {
2654                 default_hstate_size = HPAGE_SIZE;
2655                 if (!size_to_hstate(default_hstate_size))
2656                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2657         }
2658         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2659         if (default_hstate_max_huge_pages)
2660                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2661
2662         hugetlb_init_hstates();
2663         gather_bootmem_prealloc();
2664         report_hugepages();
2665
2666         hugetlb_sysfs_init();
2667         hugetlb_register_all_nodes();
2668         hugetlb_cgroup_file_init();
2669
2670 #ifdef CONFIG_SMP
2671         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2672 #else
2673         num_fault_mutexes = 1;
2674 #endif
2675         hugetlb_fault_mutex_table =
2676                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2677         BUG_ON(!hugetlb_fault_mutex_table);
2678
2679         for (i = 0; i < num_fault_mutexes; i++)
2680                 mutex_init(&hugetlb_fault_mutex_table[i]);
2681         return 0;
2682 }
2683 module_init(hugetlb_init);
2684
2685 /* Should be called on processing a hugepagesz=... option */
2686 void __init hugetlb_add_hstate(unsigned order)
2687 {
2688         struct hstate *h;
2689         unsigned long i;
2690
2691         if (size_to_hstate(PAGE_SIZE << order)) {
2692                 pr_warning("hugepagesz= specified twice, ignoring\n");
2693                 return;
2694         }
2695         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2696         BUG_ON(order == 0);
2697         h = &hstates[hugetlb_max_hstate++];
2698         h->order = order;
2699         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2700         h->nr_huge_pages = 0;
2701         h->free_huge_pages = 0;
2702         for (i = 0; i < MAX_NUMNODES; ++i)
2703                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2704         INIT_LIST_HEAD(&h->hugepage_activelist);
2705         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2706         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2707         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2708                                         huge_page_size(h)/1024);
2709
2710         parsed_hstate = h;
2711 }
2712
2713 static int __init hugetlb_nrpages_setup(char *s)
2714 {
2715         unsigned long *mhp;
2716         static unsigned long *last_mhp;
2717
2718         /*
2719          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2720          * so this hugepages= parameter goes to the "default hstate".
2721          */
2722         if (!hugetlb_max_hstate)
2723                 mhp = &default_hstate_max_huge_pages;
2724         else
2725                 mhp = &parsed_hstate->max_huge_pages;
2726
2727         if (mhp == last_mhp) {
2728                 pr_warning("hugepages= specified twice without "
2729                            "interleaving hugepagesz=, ignoring\n");
2730                 return 1;
2731         }
2732
2733         if (sscanf(s, "%lu", mhp) <= 0)
2734                 *mhp = 0;
2735
2736         /*
2737          * Global state is always initialized later in hugetlb_init.
2738          * But we need to allocate >= MAX_ORDER hstates here early to still
2739          * use the bootmem allocator.
2740          */
2741         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2742                 hugetlb_hstate_alloc_pages(parsed_hstate);
2743
2744         last_mhp = mhp;
2745
2746         return 1;
2747 }
2748 __setup("hugepages=", hugetlb_nrpages_setup);
2749
2750 static int __init hugetlb_default_setup(char *s)
2751 {
2752         default_hstate_size = memparse(s, &s);
2753         return 1;
2754 }
2755 __setup("default_hugepagesz=", hugetlb_default_setup);
2756
2757 static unsigned int cpuset_mems_nr(unsigned int *array)
2758 {
2759         int node;
2760         unsigned int nr = 0;
2761
2762         for_each_node_mask(node, cpuset_current_mems_allowed)
2763                 nr += array[node];
2764
2765         return nr;
2766 }
2767
2768 #ifdef CONFIG_SYSCTL
2769 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2770                          struct ctl_table *table, int write,
2771                          void __user *buffer, size_t *length, loff_t *ppos)
2772 {
2773         struct hstate *h = &default_hstate;
2774         unsigned long tmp = h->max_huge_pages;
2775         int ret;
2776
2777         if (!hugepages_supported())
2778                 return -ENOTSUPP;
2779
2780         table->data = &tmp;
2781         table->maxlen = sizeof(unsigned long);
2782         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2783         if (ret)
2784                 goto out;
2785
2786         if (write)
2787                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2788                                                   NUMA_NO_NODE, tmp, *length);
2789 out:
2790         return ret;
2791 }
2792
2793 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2794                           void __user *buffer, size_t *length, loff_t *ppos)
2795 {
2796
2797         return hugetlb_sysctl_handler_common(false, table, write,
2798                                                         buffer, length, ppos);
2799 }
2800
2801 #ifdef CONFIG_NUMA
2802 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2803                           void __user *buffer, size_t *length, loff_t *ppos)
2804 {
2805         return hugetlb_sysctl_handler_common(true, table, write,
2806                                                         buffer, length, ppos);
2807 }
2808 #endif /* CONFIG_NUMA */
2809
2810 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2811                         void __user *buffer,
2812                         size_t *length, loff_t *ppos)
2813 {
2814         struct hstate *h = &default_hstate;
2815         unsigned long tmp;
2816         int ret;
2817
2818         if (!hugepages_supported())
2819                 return -ENOTSUPP;
2820
2821         tmp = h->nr_overcommit_huge_pages;
2822
2823         if (write && hstate_is_gigantic(h))
2824                 return -EINVAL;
2825
2826         table->data = &tmp;
2827         table->maxlen = sizeof(unsigned long);
2828         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2829         if (ret)
2830                 goto out;
2831
2832         if (write) {
2833                 spin_lock(&hugetlb_lock);
2834                 h->nr_overcommit_huge_pages = tmp;
2835                 spin_unlock(&hugetlb_lock);
2836         }
2837 out:
2838         return ret;
2839 }
2840
2841 #endif /* CONFIG_SYSCTL */
2842
2843 void hugetlb_report_meminfo(struct seq_file *m)
2844 {
2845         struct hstate *h = &default_hstate;
2846         if (!hugepages_supported())
2847                 return;
2848         seq_printf(m,
2849                         "HugePages_Total:   %5lu\n"
2850                         "HugePages_Free:    %5lu\n"
2851                         "HugePages_Rsvd:    %5lu\n"
2852                         "HugePages_Surp:    %5lu\n"
2853                         "Hugepagesize:   %8lu kB\n",
2854                         h->nr_huge_pages,
2855                         h->free_huge_pages,
2856                         h->resv_huge_pages,
2857                         h->surplus_huge_pages,
2858                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2859 }
2860
2861 int hugetlb_report_node_meminfo(int nid, char *buf)
2862 {
2863         struct hstate *h = &default_hstate;
2864         if (!hugepages_supported())
2865                 return 0;
2866         return sprintf(buf,
2867                 "Node %d HugePages_Total: %5u\n"
2868                 "Node %d HugePages_Free:  %5u\n"
2869                 "Node %d HugePages_Surp:  %5u\n",
2870                 nid, h->nr_huge_pages_node[nid],
2871                 nid, h->free_huge_pages_node[nid],
2872                 nid, h->surplus_huge_pages_node[nid]);
2873 }
2874
2875 void hugetlb_show_meminfo(void)
2876 {
2877         struct hstate *h;
2878         int nid;
2879
2880         if (!hugepages_supported())
2881                 return;
2882
2883         for_each_node_state(nid, N_MEMORY)
2884                 for_each_hstate(h)
2885                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2886                                 nid,
2887                                 h->nr_huge_pages_node[nid],
2888                                 h->free_huge_pages_node[nid],
2889                                 h->surplus_huge_pages_node[nid],
2890                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2891 }
2892
2893 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2894 {
2895         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2896                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2897 }
2898
2899 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2900 unsigned long hugetlb_total_pages(void)
2901 {
2902         struct hstate *h;
2903         unsigned long nr_total_pages = 0;
2904
2905         for_each_hstate(h)
2906                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2907         return nr_total_pages;
2908 }
2909
2910 static int hugetlb_acct_memory(struct hstate *h, long delta)
2911 {
2912         int ret = -ENOMEM;
2913
2914         spin_lock(&hugetlb_lock);
2915         /*
2916          * When cpuset is configured, it breaks the strict hugetlb page
2917          * reservation as the accounting is done on a global variable. Such
2918          * reservation is completely rubbish in the presence of cpuset because
2919          * the reservation is not checked against page availability for the
2920          * current cpuset. Application can still potentially OOM'ed by kernel
2921          * with lack of free htlb page in cpuset that the task is in.
2922          * Attempt to enforce strict accounting with cpuset is almost
2923          * impossible (or too ugly) because cpuset is too fluid that
2924          * task or memory node can be dynamically moved between cpusets.
2925          *
2926          * The change of semantics for shared hugetlb mapping with cpuset is
2927          * undesirable. However, in order to preserve some of the semantics,
2928          * we fall back to check against current free page availability as
2929          * a best attempt and hopefully to minimize the impact of changing
2930          * semantics that cpuset has.
2931          */
2932         if (delta > 0) {
2933                 if (gather_surplus_pages(h, delta) < 0)
2934                         goto out;
2935
2936                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2937                         return_unused_surplus_pages(h, delta);
2938                         goto out;
2939                 }
2940         }
2941
2942         ret = 0;
2943         if (delta < 0)
2944                 return_unused_surplus_pages(h, (unsigned long) -delta);
2945
2946 out:
2947         spin_unlock(&hugetlb_lock);
2948         return ret;
2949 }
2950
2951 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2952 {
2953         struct resv_map *resv = vma_resv_map(vma);
2954
2955         /*
2956          * This new VMA should share its siblings reservation map if present.
2957          * The VMA will only ever have a valid reservation map pointer where
2958          * it is being copied for another still existing VMA.  As that VMA
2959          * has a reference to the reservation map it cannot disappear until
2960          * after this open call completes.  It is therefore safe to take a
2961          * new reference here without additional locking.
2962          */
2963         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2964                 kref_get(&resv->refs);
2965 }
2966
2967 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2968 {
2969         struct hstate *h = hstate_vma(vma);
2970         struct resv_map *resv = vma_resv_map(vma);
2971         struct hugepage_subpool *spool = subpool_vma(vma);
2972         unsigned long reserve, start, end;
2973         long gbl_reserve;
2974
2975         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2976                 return;
2977
2978         start = vma_hugecache_offset(h, vma, vma->vm_start);
2979         end = vma_hugecache_offset(h, vma, vma->vm_end);
2980
2981         reserve = (end - start) - region_count(resv, start, end);
2982
2983         kref_put(&resv->refs, resv_map_release);
2984
2985         if (reserve) {
2986                 /*
2987                  * Decrement reserve counts.  The global reserve count may be
2988                  * adjusted if the subpool has a minimum size.
2989                  */
2990                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2991                 hugetlb_acct_memory(h, -gbl_reserve);
2992         }
2993 }
2994
2995 /*
2996  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2997  * handle_mm_fault() to try to instantiate regular-sized pages in the
2998  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2999  * this far.
3000  */
3001 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3002 {
3003         BUG();
3004         return 0;
3005 }
3006
3007 const struct vm_operations_struct hugetlb_vm_ops = {
3008         .fault = hugetlb_vm_op_fault,
3009         .open = hugetlb_vm_op_open,
3010         .close = hugetlb_vm_op_close,
3011 };
3012
3013 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3014                                 int writable)
3015 {
3016         pte_t entry;
3017
3018         if (writable) {
3019                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3020                                          vma->vm_page_prot)));
3021         } else {
3022                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3023                                            vma->vm_page_prot));
3024         }
3025         entry = pte_mkyoung(entry);
3026         entry = pte_mkhuge(entry);
3027         entry = arch_make_huge_pte(entry, vma, page, writable);
3028
3029         return entry;
3030 }
3031
3032 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3033                                    unsigned long address, pte_t *ptep)
3034 {
3035         pte_t entry;
3036
3037         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3038         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3039                 update_mmu_cache(vma, address, ptep);
3040 }
3041
3042 static int is_hugetlb_entry_migration(pte_t pte)
3043 {
3044         swp_entry_t swp;
3045
3046         if (huge_pte_none(pte) || pte_present(pte))
3047                 return 0;
3048         swp = pte_to_swp_entry(pte);
3049         if (non_swap_entry(swp) && is_migration_entry(swp))
3050                 return 1;
3051         else
3052                 return 0;
3053 }
3054
3055 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3056 {
3057         swp_entry_t swp;
3058
3059         if (huge_pte_none(pte) || pte_present(pte))
3060                 return 0;
3061         swp = pte_to_swp_entry(pte);
3062         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3063                 return 1;
3064         else
3065                 return 0;
3066 }
3067
3068 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3069                             struct vm_area_struct *vma)
3070 {
3071         pte_t *src_pte, *dst_pte, entry;
3072         struct page *ptepage;
3073         unsigned long addr;
3074         int cow;
3075         struct hstate *h = hstate_vma(vma);
3076         unsigned long sz = huge_page_size(h);
3077         unsigned long mmun_start;       /* For mmu_notifiers */
3078         unsigned long mmun_end;         /* For mmu_notifiers */
3079         int ret = 0;
3080
3081         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3082
3083         mmun_start = vma->vm_start;
3084         mmun_end = vma->vm_end;
3085         if (cow)
3086                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3087
3088         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3089                 spinlock_t *src_ptl, *dst_ptl;
3090                 src_pte = huge_pte_offset(src, addr);
3091                 if (!src_pte)
3092                         continue;
3093                 dst_pte = huge_pte_alloc(dst, addr, sz);
3094                 if (!dst_pte) {
3095                         ret = -ENOMEM;
3096                         break;
3097                 }
3098
3099                 /* If the pagetables are shared don't copy or take references */
3100                 if (dst_pte == src_pte)
3101                         continue;
3102
3103                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3104                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3105                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3106                 entry = huge_ptep_get(src_pte);
3107                 if (huge_pte_none(entry)) { /* skip none entry */
3108                         ;
3109                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3110                                     is_hugetlb_entry_hwpoisoned(entry))) {
3111                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3112
3113                         if (is_write_migration_entry(swp_entry) && cow) {
3114                                 /*
3115                                  * COW mappings require pages in both
3116                                  * parent and child to be set to read.
3117                                  */
3118                                 make_migration_entry_read(&swp_entry);
3119                                 entry = swp_entry_to_pte(swp_entry);
3120                                 set_huge_pte_at(src, addr, src_pte, entry);
3121                         }
3122                         set_huge_pte_at(dst, addr, dst_pte, entry);
3123                 } else {
3124                         if (cow) {
3125                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3126                                 mmu_notifier_invalidate_range(src, mmun_start,
3127                                                                    mmun_end);
3128                         }
3129                         entry = huge_ptep_get(src_pte);
3130                         ptepage = pte_page(entry);
3131                         get_page(ptepage);
3132                         page_dup_rmap(ptepage);
3133                         set_huge_pte_at(dst, addr, dst_pte, entry);
3134                         hugetlb_count_add(pages_per_huge_page(h), dst);
3135                 }
3136                 spin_unlock(src_ptl);
3137                 spin_unlock(dst_ptl);
3138         }
3139
3140         if (cow)
3141                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3142
3143         return ret;
3144 }
3145
3146 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3147                             unsigned long start, unsigned long end,
3148                             struct page *ref_page)
3149 {
3150         int force_flush = 0;
3151         struct mm_struct *mm = vma->vm_mm;
3152         unsigned long address;
3153         pte_t *ptep;
3154         pte_t pte;
3155         spinlock_t *ptl;
3156         struct page *page;
3157         struct hstate *h = hstate_vma(vma);
3158         unsigned long sz = huge_page_size(h);
3159         const unsigned long mmun_start = start; /* For mmu_notifiers */
3160         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3161
3162         WARN_ON(!is_vm_hugetlb_page(vma));
3163         BUG_ON(start & ~huge_page_mask(h));
3164         BUG_ON(end & ~huge_page_mask(h));
3165
3166         tlb_start_vma(tlb, vma);
3167         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3168         address = start;
3169 again:
3170         for (; address < end; address += sz) {
3171                 ptep = huge_pte_offset(mm, address);
3172                 if (!ptep)
3173                         continue;
3174
3175                 ptl = huge_pte_lock(h, mm, ptep);
3176                 if (huge_pmd_unshare(mm, &address, ptep))
3177                         goto unlock;
3178
3179                 pte = huge_ptep_get(ptep);
3180                 if (huge_pte_none(pte))
3181                         goto unlock;
3182
3183                 /*
3184                  * Migrating hugepage or HWPoisoned hugepage is already
3185                  * unmapped and its refcount is dropped, so just clear pte here.
3186                  */
3187                 if (unlikely(!pte_present(pte))) {
3188                         huge_pte_clear(mm, address, ptep);
3189                         goto unlock;
3190                 }
3191
3192                 page = pte_page(pte);
3193                 /*
3194                  * If a reference page is supplied, it is because a specific
3195                  * page is being unmapped, not a range. Ensure the page we
3196                  * are about to unmap is the actual page of interest.
3197                  */
3198                 if (ref_page) {
3199                         if (page != ref_page)
3200                                 goto unlock;
3201
3202                         /*
3203                          * Mark the VMA as having unmapped its page so that
3204                          * future faults in this VMA will fail rather than
3205                          * looking like data was lost
3206                          */
3207                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3208                 }
3209
3210                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3211                 tlb_remove_tlb_entry(tlb, ptep, address);
3212                 if (huge_pte_dirty(pte))
3213                         set_page_dirty(page);
3214
3215                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3216                 page_remove_rmap(page);
3217                 force_flush = !__tlb_remove_page(tlb, page);
3218                 if (force_flush) {
3219                         address += sz;
3220                         spin_unlock(ptl);
3221                         break;
3222                 }
3223                 /* Bail out after unmapping reference page if supplied */
3224                 if (ref_page) {
3225                         spin_unlock(ptl);
3226                         break;
3227                 }
3228 unlock:
3229                 spin_unlock(ptl);
3230         }
3231         /*
3232          * mmu_gather ran out of room to batch pages, we break out of
3233          * the PTE lock to avoid doing the potential expensive TLB invalidate
3234          * and page-free while holding it.
3235          */
3236         if (force_flush) {
3237                 force_flush = 0;
3238                 tlb_flush_mmu(tlb);
3239                 if (address < end && !ref_page)
3240                         goto again;
3241         }
3242         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3243         tlb_end_vma(tlb, vma);
3244 }
3245
3246 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3247                           struct vm_area_struct *vma, unsigned long start,
3248                           unsigned long end, struct page *ref_page)
3249 {
3250         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3251
3252         /*
3253          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3254          * test will fail on a vma being torn down, and not grab a page table
3255          * on its way out.  We're lucky that the flag has such an appropriate
3256          * name, and can in fact be safely cleared here. We could clear it
3257          * before the __unmap_hugepage_range above, but all that's necessary
3258          * is to clear it before releasing the i_mmap_rwsem. This works
3259          * because in the context this is called, the VMA is about to be
3260          * destroyed and the i_mmap_rwsem is held.
3261          */
3262         vma->vm_flags &= ~VM_MAYSHARE;
3263 }
3264
3265 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3266                           unsigned long end, struct page *ref_page)
3267 {
3268         struct mm_struct *mm;
3269         struct mmu_gather tlb;
3270
3271         mm = vma->vm_mm;
3272
3273         tlb_gather_mmu(&tlb, mm, start, end);
3274         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3275         tlb_finish_mmu(&tlb, start, end);
3276 }
3277
3278 /*
3279  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3280  * mappping it owns the reserve page for. The intention is to unmap the page
3281  * from other VMAs and let the children be SIGKILLed if they are faulting the
3282  * same region.
3283  */
3284 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3285                               struct page *page, unsigned long address)
3286 {
3287         struct hstate *h = hstate_vma(vma);
3288         struct vm_area_struct *iter_vma;
3289         struct address_space *mapping;
3290         pgoff_t pgoff;
3291
3292         /*
3293          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3294          * from page cache lookup which is in HPAGE_SIZE units.
3295          */
3296         address = address & huge_page_mask(h);
3297         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3298                         vma->vm_pgoff;
3299         mapping = file_inode(vma->vm_file)->i_mapping;
3300
3301         /*
3302          * Take the mapping lock for the duration of the table walk. As
3303          * this mapping should be shared between all the VMAs,
3304          * __unmap_hugepage_range() is called as the lock is already held
3305          */
3306         i_mmap_lock_write(mapping);
3307         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3308                 /* Do not unmap the current VMA */
3309                 if (iter_vma == vma)
3310                         continue;
3311
3312                 /*
3313                  * Shared VMAs have their own reserves and do not affect
3314                  * MAP_PRIVATE accounting but it is possible that a shared
3315                  * VMA is using the same page so check and skip such VMAs.
3316                  */
3317                 if (iter_vma->vm_flags & VM_MAYSHARE)
3318                         continue;
3319
3320                 /*
3321                  * Unmap the page from other VMAs without their own reserves.
3322                  * They get marked to be SIGKILLed if they fault in these
3323                  * areas. This is because a future no-page fault on this VMA
3324                  * could insert a zeroed page instead of the data existing
3325                  * from the time of fork. This would look like data corruption
3326                  */
3327                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3328                         unmap_hugepage_range(iter_vma, address,
3329                                              address + huge_page_size(h), page);
3330         }
3331         i_mmap_unlock_write(mapping);
3332 }
3333
3334 /*
3335  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3336  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3337  * cannot race with other handlers or page migration.
3338  * Keep the pte_same checks anyway to make transition from the mutex easier.
3339  */
3340 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3341                         unsigned long address, pte_t *ptep, pte_t pte,
3342                         struct page *pagecache_page, spinlock_t *ptl)
3343 {
3344         struct hstate *h = hstate_vma(vma);
3345         struct page *old_page, *new_page;
3346         int ret = 0, outside_reserve = 0;
3347         unsigned long mmun_start;       /* For mmu_notifiers */
3348         unsigned long mmun_end;         /* For mmu_notifiers */
3349
3350         old_page = pte_page(pte);
3351
3352 retry_avoidcopy:
3353         /* If no-one else is actually using this page, avoid the copy
3354          * and just make the page writable */
3355         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3356                 page_move_anon_rmap(old_page, vma, address);
3357                 set_huge_ptep_writable(vma, address, ptep);
3358                 return 0;
3359         }
3360
3361         /*
3362          * If the process that created a MAP_PRIVATE mapping is about to
3363          * perform a COW due to a shared page count, attempt to satisfy
3364          * the allocation without using the existing reserves. The pagecache
3365          * page is used to determine if the reserve at this address was
3366          * consumed or not. If reserves were used, a partial faulted mapping
3367          * at the time of fork() could consume its reserves on COW instead
3368          * of the full address range.
3369          */
3370         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3371                         old_page != pagecache_page)
3372                 outside_reserve = 1;
3373
3374         page_cache_get(old_page);
3375
3376         /*
3377          * Drop page table lock as buddy allocator may be called. It will
3378          * be acquired again before returning to the caller, as expected.
3379          */
3380         spin_unlock(ptl);
3381         new_page = alloc_huge_page(vma, address, outside_reserve);
3382
3383         if (IS_ERR(new_page)) {
3384                 /*
3385                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3386                  * it is due to references held by a child and an insufficient
3387                  * huge page pool. To guarantee the original mappers
3388                  * reliability, unmap the page from child processes. The child
3389                  * may get SIGKILLed if it later faults.
3390                  */
3391                 if (outside_reserve) {
3392                         page_cache_release(old_page);
3393                         BUG_ON(huge_pte_none(pte));
3394                         unmap_ref_private(mm, vma, old_page, address);
3395                         BUG_ON(huge_pte_none(pte));
3396                         spin_lock(ptl);
3397                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3398                         if (likely(ptep &&
3399                                    pte_same(huge_ptep_get(ptep), pte)))
3400                                 goto retry_avoidcopy;
3401                         /*
3402                          * race occurs while re-acquiring page table
3403                          * lock, and our job is done.
3404                          */
3405                         return 0;
3406                 }
3407
3408                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3409                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3410                 goto out_release_old;
3411         }
3412
3413         /*
3414          * When the original hugepage is shared one, it does not have
3415          * anon_vma prepared.
3416          */
3417         if (unlikely(anon_vma_prepare(vma))) {
3418                 ret = VM_FAULT_OOM;
3419                 goto out_release_all;
3420         }
3421
3422         copy_user_huge_page(new_page, old_page, address, vma,
3423                             pages_per_huge_page(h));
3424         __SetPageUptodate(new_page);
3425         set_page_huge_active(new_page);
3426
3427         mmun_start = address & huge_page_mask(h);
3428         mmun_end = mmun_start + huge_page_size(h);
3429         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3430
3431         /*
3432          * Retake the page table lock to check for racing updates
3433          * before the page tables are altered
3434          */
3435         spin_lock(ptl);
3436         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3437         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3438                 ClearPagePrivate(new_page);
3439
3440                 /* Break COW */
3441                 huge_ptep_clear_flush(vma, address, ptep);
3442                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3443                 set_huge_pte_at(mm, address, ptep,
3444                                 make_huge_pte(vma, new_page, 1));
3445                 page_remove_rmap(old_page);
3446                 hugepage_add_new_anon_rmap(new_page, vma, address);
3447                 /* Make the old page be freed below */
3448                 new_page = old_page;
3449         }
3450         spin_unlock(ptl);
3451         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3452 out_release_all:
3453         page_cache_release(new_page);
3454 out_release_old:
3455         page_cache_release(old_page);
3456
3457         spin_lock(ptl); /* Caller expects lock to be held */
3458         return ret;
3459 }
3460
3461 /* Return the pagecache page at a given address within a VMA */
3462 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3463                         struct vm_area_struct *vma, unsigned long address)
3464 {
3465         struct address_space *mapping;
3466         pgoff_t idx;
3467
3468         mapping = vma->vm_file->f_mapping;
3469         idx = vma_hugecache_offset(h, vma, address);
3470
3471         return find_lock_page(mapping, idx);
3472 }
3473
3474 /*
3475  * Return whether there is a pagecache page to back given address within VMA.
3476  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3477  */
3478 static bool hugetlbfs_pagecache_present(struct hstate *h,
3479                         struct vm_area_struct *vma, unsigned long address)
3480 {
3481         struct address_space *mapping;
3482         pgoff_t idx;
3483         struct page *page;
3484
3485         mapping = vma->vm_file->f_mapping;
3486         idx = vma_hugecache_offset(h, vma, address);
3487
3488         page = find_get_page(mapping, idx);
3489         if (page)
3490                 put_page(page);
3491         return page != NULL;
3492 }
3493
3494 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3495                            pgoff_t idx)
3496 {
3497         struct inode *inode = mapping->host;
3498         struct hstate *h = hstate_inode(inode);
3499         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3500
3501         if (err)
3502                 return err;
3503         ClearPagePrivate(page);
3504
3505         spin_lock(&inode->i_lock);
3506         inode->i_blocks += blocks_per_huge_page(h);
3507         spin_unlock(&inode->i_lock);
3508         return 0;
3509 }
3510
3511 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3512                            struct address_space *mapping, pgoff_t idx,
3513                            unsigned long address, pte_t *ptep, unsigned int flags)
3514 {
3515         struct hstate *h = hstate_vma(vma);
3516         int ret = VM_FAULT_SIGBUS;
3517         int anon_rmap = 0;
3518         unsigned long size;
3519         struct page *page;
3520         pte_t new_pte;
3521         spinlock_t *ptl;
3522
3523         /*
3524          * Currently, we are forced to kill the process in the event the
3525          * original mapper has unmapped pages from the child due to a failed
3526          * COW. Warn that such a situation has occurred as it may not be obvious
3527          */
3528         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3529                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3530                            current->pid);
3531                 return ret;
3532         }
3533
3534         /*
3535          * Use page lock to guard against racing truncation
3536          * before we get page_table_lock.
3537          */
3538 retry:
3539         page = find_lock_page(mapping, idx);
3540         if (!page) {
3541                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3542                 if (idx >= size)
3543                         goto out;
3544                 page = alloc_huge_page(vma, address, 0);
3545                 if (IS_ERR(page)) {
3546                         ret = PTR_ERR(page);
3547                         if (ret == -ENOMEM)
3548                                 ret = VM_FAULT_OOM;
3549                         else
3550                                 ret = VM_FAULT_SIGBUS;
3551                         goto out;
3552                 }
3553                 clear_huge_page(page, address, pages_per_huge_page(h));
3554                 __SetPageUptodate(page);
3555                 set_page_huge_active(page);
3556
3557                 if (vma->vm_flags & VM_MAYSHARE) {
3558                         int err = huge_add_to_page_cache(page, mapping, idx);
3559                         if (err) {
3560                                 put_page(page);
3561                                 if (err == -EEXIST)
3562                                         goto retry;
3563                                 goto out;
3564                         }
3565                 } else {
3566                         lock_page(page);
3567                         if (unlikely(anon_vma_prepare(vma))) {
3568                                 ret = VM_FAULT_OOM;
3569                                 goto backout_unlocked;
3570                         }
3571                         anon_rmap = 1;
3572                 }
3573         } else {
3574                 /*
3575                  * If memory error occurs between mmap() and fault, some process
3576                  * don't have hwpoisoned swap entry for errored virtual address.
3577                  * So we need to block hugepage fault by PG_hwpoison bit check.
3578                  */
3579                 if (unlikely(PageHWPoison(page))) {
3580                         ret = VM_FAULT_HWPOISON |
3581                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3582                         goto backout_unlocked;
3583                 }
3584         }
3585
3586         /*
3587          * If we are going to COW a private mapping later, we examine the
3588          * pending reservations for this page now. This will ensure that
3589          * any allocations necessary to record that reservation occur outside
3590          * the spinlock.
3591          */
3592         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3593                 if (vma_needs_reservation(h, vma, address) < 0) {
3594                         ret = VM_FAULT_OOM;
3595                         goto backout_unlocked;
3596                 }
3597                 /* Just decrements count, does not deallocate */
3598                 vma_end_reservation(h, vma, address);
3599         }
3600
3601         ptl = huge_pte_lockptr(h, mm, ptep);
3602         spin_lock(ptl);
3603         size = i_size_read(mapping->host) >> huge_page_shift(h);
3604         if (idx >= size)
3605                 goto backout;
3606
3607         ret = 0;
3608         if (!huge_pte_none(huge_ptep_get(ptep)))
3609                 goto backout;
3610
3611         if (anon_rmap) {
3612                 ClearPagePrivate(page);
3613                 hugepage_add_new_anon_rmap(page, vma, address);
3614         } else
3615                 page_dup_rmap(page);
3616         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3617                                 && (vma->vm_flags & VM_SHARED)));
3618         set_huge_pte_at(mm, address, ptep, new_pte);
3619
3620         hugetlb_count_add(pages_per_huge_page(h), mm);
3621         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3622                 /* Optimization, do the COW without a second fault */
3623                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3624         }
3625
3626         spin_unlock(ptl);
3627         unlock_page(page);
3628 out:
3629         return ret;
3630
3631 backout:
3632         spin_unlock(ptl);
3633 backout_unlocked:
3634         unlock_page(page);
3635         put_page(page);
3636         goto out;
3637 }
3638
3639 #ifdef CONFIG_SMP
3640 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3641                             struct vm_area_struct *vma,
3642                             struct address_space *mapping,
3643                             pgoff_t idx, unsigned long address)
3644 {
3645         unsigned long key[2];
3646         u32 hash;
3647
3648         if (vma->vm_flags & VM_SHARED) {
3649                 key[0] = (unsigned long) mapping;
3650                 key[1] = idx;
3651         } else {
3652                 key[0] = (unsigned long) mm;
3653                 key[1] = address >> huge_page_shift(h);
3654         }
3655
3656         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3657
3658         return hash & (num_fault_mutexes - 1);
3659 }
3660 #else
3661 /*
3662  * For uniprocesor systems we always use a single mutex, so just
3663  * return 0 and avoid the hashing overhead.
3664  */
3665 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3666                             struct vm_area_struct *vma,
3667                             struct address_space *mapping,
3668                             pgoff_t idx, unsigned long address)
3669 {
3670         return 0;
3671 }
3672 #endif
3673
3674 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3675                         unsigned long address, unsigned int flags)
3676 {
3677         pte_t *ptep, entry;
3678         spinlock_t *ptl;
3679         int ret;
3680         u32 hash;
3681         pgoff_t idx;
3682         struct page *page = NULL;
3683         struct page *pagecache_page = NULL;
3684         struct hstate *h = hstate_vma(vma);
3685         struct address_space *mapping;
3686         int need_wait_lock = 0;
3687
3688         address &= huge_page_mask(h);
3689
3690         ptep = huge_pte_offset(mm, address);
3691         if (ptep) {
3692                 entry = huge_ptep_get(ptep);
3693                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3694                         migration_entry_wait_huge(vma, mm, ptep);
3695                         return 0;
3696                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3697                         return VM_FAULT_HWPOISON_LARGE |
3698                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3699         }
3700
3701         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3702         if (!ptep)
3703                 return VM_FAULT_OOM;
3704
3705         mapping = vma->vm_file->f_mapping;
3706         idx = vma_hugecache_offset(h, vma, address);
3707
3708         /*
3709          * Serialize hugepage allocation and instantiation, so that we don't
3710          * get spurious allocation failures if two CPUs race to instantiate
3711          * the same page in the page cache.
3712          */
3713         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3714         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3715
3716         entry = huge_ptep_get(ptep);
3717         if (huge_pte_none(entry)) {
3718                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3719                 goto out_mutex;
3720         }
3721
3722         ret = 0;
3723
3724         /*
3725          * entry could be a migration/hwpoison entry at this point, so this
3726          * check prevents the kernel from going below assuming that we have
3727          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3728          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3729          * handle it.
3730          */
3731         if (!pte_present(entry))
3732                 goto out_mutex;
3733
3734         /*
3735          * If we are going to COW the mapping later, we examine the pending
3736          * reservations for this page now. This will ensure that any
3737          * allocations necessary to record that reservation occur outside the
3738          * spinlock. For private mappings, we also lookup the pagecache
3739          * page now as it is used to determine if a reservation has been
3740          * consumed.
3741          */
3742         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3743                 if (vma_needs_reservation(h, vma, address) < 0) {
3744                         ret = VM_FAULT_OOM;
3745                         goto out_mutex;
3746                 }
3747                 /* Just decrements count, does not deallocate */
3748                 vma_end_reservation(h, vma, address);
3749
3750                 if (!(vma->vm_flags & VM_MAYSHARE))
3751                         pagecache_page = hugetlbfs_pagecache_page(h,
3752                                                                 vma, address);
3753         }
3754
3755         ptl = huge_pte_lock(h, mm, ptep);
3756
3757         /* Check for a racing update before calling hugetlb_cow */
3758         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3759                 goto out_ptl;
3760
3761         /*
3762          * hugetlb_cow() requires page locks of pte_page(entry) and
3763          * pagecache_page, so here we need take the former one
3764          * when page != pagecache_page or !pagecache_page.
3765          */
3766         page = pte_page(entry);
3767         if (page != pagecache_page)
3768                 if (!trylock_page(page)) {
3769                         need_wait_lock = 1;
3770                         goto out_ptl;
3771                 }
3772
3773         get_page(page);
3774
3775         if (flags & FAULT_FLAG_WRITE) {
3776                 if (!huge_pte_write(entry)) {
3777                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3778                                         pagecache_page, ptl);
3779                         goto out_put_page;
3780                 }
3781                 entry = huge_pte_mkdirty(entry);
3782         }
3783         entry = pte_mkyoung(entry);
3784         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3785                                                 flags & FAULT_FLAG_WRITE))
3786                 update_mmu_cache(vma, address, ptep);
3787 out_put_page:
3788         if (page != pagecache_page)
3789                 unlock_page(page);
3790         put_page(page);
3791 out_ptl:
3792         spin_unlock(ptl);
3793
3794         if (pagecache_page) {
3795                 unlock_page(pagecache_page);
3796                 put_page(pagecache_page);
3797         }
3798 out_mutex:
3799         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3800         /*
3801          * Generally it's safe to hold refcount during waiting page lock. But
3802          * here we just wait to defer the next page fault to avoid busy loop and
3803          * the page is not used after unlocked before returning from the current
3804          * page fault. So we are safe from accessing freed page, even if we wait
3805          * here without taking refcount.
3806          */
3807         if (need_wait_lock)
3808                 wait_on_page_locked(page);
3809         return ret;
3810 }
3811
3812 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3813                          struct page **pages, struct vm_area_struct **vmas,
3814                          unsigned long *position, unsigned long *nr_pages,
3815                          long i, unsigned int flags)
3816 {
3817         unsigned long pfn_offset;
3818         unsigned long vaddr = *position;
3819         unsigned long remainder = *nr_pages;
3820         struct hstate *h = hstate_vma(vma);
3821
3822         while (vaddr < vma->vm_end && remainder) {
3823                 pte_t *pte;
3824                 spinlock_t *ptl = NULL;
3825                 int absent;
3826                 struct page *page;
3827
3828                 /*
3829                  * If we have a pending SIGKILL, don't keep faulting pages and
3830                  * potentially allocating memory.
3831                  */
3832                 if (unlikely(fatal_signal_pending(current))) {
3833                         remainder = 0;
3834                         break;
3835                 }
3836
3837                 /*
3838                  * Some archs (sparc64, sh*) have multiple pte_ts to
3839                  * each hugepage.  We have to make sure we get the
3840                  * first, for the page indexing below to work.
3841                  *
3842                  * Note that page table lock is not held when pte is null.
3843                  */
3844                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3845                 if (pte)
3846                         ptl = huge_pte_lock(h, mm, pte);
3847                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3848
3849                 /*
3850                  * When coredumping, it suits get_dump_page if we just return
3851                  * an error where there's an empty slot with no huge pagecache
3852                  * to back it.  This way, we avoid allocating a hugepage, and
3853                  * the sparse dumpfile avoids allocating disk blocks, but its
3854                  * huge holes still show up with zeroes where they need to be.
3855                  */
3856                 if (absent && (flags & FOLL_DUMP) &&
3857                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3858                         if (pte)
3859                                 spin_unlock(ptl);
3860                         remainder = 0;
3861                         break;
3862                 }
3863
3864                 /*
3865                  * We need call hugetlb_fault for both hugepages under migration
3866                  * (in which case hugetlb_fault waits for the migration,) and
3867                  * hwpoisoned hugepages (in which case we need to prevent the
3868                  * caller from accessing to them.) In order to do this, we use
3869                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3870                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3871                  * both cases, and because we can't follow correct pages
3872                  * directly from any kind of swap entries.
3873                  */
3874                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3875                     ((flags & FOLL_WRITE) &&
3876                       !huge_pte_write(huge_ptep_get(pte)))) {
3877                         int ret;
3878
3879                         if (pte)
3880                                 spin_unlock(ptl);
3881                         ret = hugetlb_fault(mm, vma, vaddr,
3882                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3883                         if (!(ret & VM_FAULT_ERROR))
3884                                 continue;
3885
3886                         remainder = 0;
3887                         break;
3888                 }
3889
3890                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3891                 page = pte_page(huge_ptep_get(pte));
3892 same_page:
3893                 if (pages) {
3894                         pages[i] = mem_map_offset(page, pfn_offset);
3895                         get_page_foll(pages[i]);
3896                 }
3897
3898                 if (vmas)
3899                         vmas[i] = vma;
3900
3901                 vaddr += PAGE_SIZE;
3902                 ++pfn_offset;
3903                 --remainder;
3904                 ++i;
3905                 if (vaddr < vma->vm_end && remainder &&
3906                                 pfn_offset < pages_per_huge_page(h)) {
3907                         /*
3908                          * We use pfn_offset to avoid touching the pageframes
3909                          * of this compound page.
3910                          */
3911                         goto same_page;
3912                 }
3913                 spin_unlock(ptl);
3914         }
3915         *nr_pages = remainder;
3916         *position = vaddr;
3917
3918         return i ? i : -EFAULT;
3919 }
3920
3921 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3922                 unsigned long address, unsigned long end, pgprot_t newprot)
3923 {
3924         struct mm_struct *mm = vma->vm_mm;
3925         unsigned long start = address;
3926         pte_t *ptep;
3927         pte_t pte;
3928         struct hstate *h = hstate_vma(vma);
3929         unsigned long pages = 0;
3930
3931         BUG_ON(address >= end);
3932         flush_cache_range(vma, address, end);
3933
3934         mmu_notifier_invalidate_range_start(mm, start, end);
3935         i_mmap_lock_write(vma->vm_file->f_mapping);
3936         for (; address < end; address += huge_page_size(h)) {
3937                 spinlock_t *ptl;
3938                 ptep = huge_pte_offset(mm, address);
3939                 if (!ptep)
3940                         continue;
3941                 ptl = huge_pte_lock(h, mm, ptep);
3942                 if (huge_pmd_unshare(mm, &address, ptep)) {
3943                         pages++;
3944                         spin_unlock(ptl);
3945                         continue;
3946                 }
3947                 pte = huge_ptep_get(ptep);
3948                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3949                         spin_unlock(ptl);
3950                         continue;
3951                 }
3952                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3953                         swp_entry_t entry = pte_to_swp_entry(pte);
3954
3955                         if (is_write_migration_entry(entry)) {
3956                                 pte_t newpte;
3957
3958                                 make_migration_entry_read(&entry);
3959                                 newpte = swp_entry_to_pte(entry);
3960                                 set_huge_pte_at(mm, address, ptep, newpte);
3961                                 pages++;
3962                         }
3963                         spin_unlock(ptl);
3964                         continue;
3965                 }
3966                 if (!huge_pte_none(pte)) {
3967                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3968                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3969                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3970                         set_huge_pte_at(mm, address, ptep, pte);
3971                         pages++;
3972                 }
3973                 spin_unlock(ptl);
3974         }
3975         /*
3976          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3977          * may have cleared our pud entry and done put_page on the page table:
3978          * once we release i_mmap_rwsem, another task can do the final put_page
3979          * and that page table be reused and filled with junk.
3980          */
3981         flush_tlb_range(vma, start, end);
3982         mmu_notifier_invalidate_range(mm, start, end);
3983         i_mmap_unlock_write(vma->vm_file->f_mapping);
3984         mmu_notifier_invalidate_range_end(mm, start, end);
3985
3986         return pages << h->order;
3987 }
3988
3989 int hugetlb_reserve_pages(struct inode *inode,
3990                                         long from, long to,
3991                                         struct vm_area_struct *vma,
3992                                         vm_flags_t vm_flags)
3993 {
3994         long ret, chg;
3995         struct hstate *h = hstate_inode(inode);
3996         struct hugepage_subpool *spool = subpool_inode(inode);
3997         struct resv_map *resv_map;
3998         long gbl_reserve;
3999
4000         /*
4001          * Only apply hugepage reservation if asked. At fault time, an
4002          * attempt will be made for VM_NORESERVE to allocate a page
4003          * without using reserves
4004          */
4005         if (vm_flags & VM_NORESERVE)
4006                 return 0;
4007
4008         /*
4009          * Shared mappings base their reservation on the number of pages that
4010          * are already allocated on behalf of the file. Private mappings need
4011          * to reserve the full area even if read-only as mprotect() may be
4012          * called to make the mapping read-write. Assume !vma is a shm mapping
4013          */
4014         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4015                 resv_map = inode_resv_map(inode);
4016
4017                 chg = region_chg(resv_map, from, to);
4018
4019         } else {
4020                 resv_map = resv_map_alloc();
4021                 if (!resv_map)
4022                         return -ENOMEM;
4023
4024                 chg = to - from;
4025
4026                 set_vma_resv_map(vma, resv_map);
4027                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4028         }
4029
4030         if (chg < 0) {
4031                 ret = chg;
4032                 goto out_err;
4033         }
4034
4035         /*
4036          * There must be enough pages in the subpool for the mapping. If
4037          * the subpool has a minimum size, there may be some global
4038          * reservations already in place (gbl_reserve).
4039          */
4040         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4041         if (gbl_reserve < 0) {
4042                 ret = -ENOSPC;
4043                 goto out_err;
4044         }
4045
4046         /*
4047          * Check enough hugepages are available for the reservation.
4048          * Hand the pages back to the subpool if there are not
4049          */
4050         ret = hugetlb_acct_memory(h, gbl_reserve);
4051         if (ret < 0) {
4052                 /* put back original number of pages, chg */
4053                 (void)hugepage_subpool_put_pages(spool, chg);
4054                 goto out_err;
4055         }
4056
4057         /*
4058          * Account for the reservations made. Shared mappings record regions
4059          * that have reservations as they are shared by multiple VMAs.
4060          * When the last VMA disappears, the region map says how much
4061          * the reservation was and the page cache tells how much of
4062          * the reservation was consumed. Private mappings are per-VMA and
4063          * only the consumed reservations are tracked. When the VMA
4064          * disappears, the original reservation is the VMA size and the
4065          * consumed reservations are stored in the map. Hence, nothing
4066          * else has to be done for private mappings here
4067          */
4068         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4069                 long add = region_add(resv_map, from, to);
4070
4071                 if (unlikely(chg > add)) {
4072                         /*
4073                          * pages in this range were added to the reserve
4074                          * map between region_chg and region_add.  This
4075                          * indicates a race with alloc_huge_page.  Adjust
4076                          * the subpool and reserve counts modified above
4077                          * based on the difference.
4078                          */
4079                         long rsv_adjust;
4080
4081                         rsv_adjust = hugepage_subpool_put_pages(spool,
4082                                                                 chg - add);
4083                         hugetlb_acct_memory(h, -rsv_adjust);
4084                 }
4085         }
4086         return 0;
4087 out_err:
4088         if (!vma || vma->vm_flags & VM_MAYSHARE)
4089                 region_abort(resv_map, from, to);
4090         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4091                 kref_put(&resv_map->refs, resv_map_release);
4092         return ret;
4093 }
4094
4095 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4096                                                                 long freed)
4097 {
4098         struct hstate *h = hstate_inode(inode);
4099         struct resv_map *resv_map = inode_resv_map(inode);
4100         long chg = 0;
4101         struct hugepage_subpool *spool = subpool_inode(inode);
4102         long gbl_reserve;
4103
4104         if (resv_map) {
4105                 chg = region_del(resv_map, start, end);
4106                 /*
4107                  * region_del() can fail in the rare case where a region
4108                  * must be split and another region descriptor can not be
4109                  * allocated.  If end == LONG_MAX, it will not fail.
4110                  */
4111                 if (chg < 0)
4112                         return chg;
4113         }
4114
4115         spin_lock(&inode->i_lock);
4116         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4117         spin_unlock(&inode->i_lock);
4118
4119         /*
4120          * If the subpool has a minimum size, the number of global
4121          * reservations to be released may be adjusted.
4122          */
4123         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4124         hugetlb_acct_memory(h, -gbl_reserve);
4125
4126         return 0;
4127 }
4128
4129 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4130 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4131                                 struct vm_area_struct *vma,
4132                                 unsigned long addr, pgoff_t idx)
4133 {
4134         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4135                                 svma->vm_start;
4136         unsigned long sbase = saddr & PUD_MASK;
4137         unsigned long s_end = sbase + PUD_SIZE;
4138
4139         /* Allow segments to share if only one is marked locked */
4140         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
4141         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
4142
4143         /*
4144          * match the virtual addresses, permission and the alignment of the
4145          * page table page.
4146          */
4147         if (pmd_index(addr) != pmd_index(saddr) ||
4148             vm_flags != svm_flags ||
4149             sbase < svma->vm_start || svma->vm_end < s_end)
4150                 return 0;
4151
4152         return saddr;
4153 }
4154
4155 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4156 {
4157         unsigned long base = addr & PUD_MASK;
4158         unsigned long end = base + PUD_SIZE;
4159
4160         /*
4161          * check on proper vm_flags and page table alignment
4162          */
4163         if (vma->vm_flags & VM_MAYSHARE &&
4164             vma->vm_start <= base && end <= vma->vm_end)
4165                 return true;
4166         return false;
4167 }
4168
4169 /*
4170  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4171  * and returns the corresponding pte. While this is not necessary for the
4172  * !shared pmd case because we can allocate the pmd later as well, it makes the
4173  * code much cleaner. pmd allocation is essential for the shared case because
4174  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4175  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4176  * bad pmd for sharing.
4177  */
4178 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4179 {
4180         struct vm_area_struct *vma = find_vma(mm, addr);
4181         struct address_space *mapping = vma->vm_file->f_mapping;
4182         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4183                         vma->vm_pgoff;
4184         struct vm_area_struct *svma;
4185         unsigned long saddr;
4186         pte_t *spte = NULL;
4187         pte_t *pte;
4188         spinlock_t *ptl;
4189
4190         if (!vma_shareable(vma, addr))
4191                 return (pte_t *)pmd_alloc(mm, pud, addr);
4192
4193         i_mmap_lock_write(mapping);
4194         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4195                 if (svma == vma)
4196                         continue;
4197
4198                 saddr = page_table_shareable(svma, vma, addr, idx);
4199                 if (saddr) {
4200                         spte = huge_pte_offset(svma->vm_mm, saddr);
4201                         if (spte) {
4202                                 mm_inc_nr_pmds(mm);
4203                                 get_page(virt_to_page(spte));
4204                                 break;
4205                         }
4206                 }
4207         }
4208
4209         if (!spte)
4210                 goto out;
4211
4212         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4213         spin_lock(ptl);
4214         if (pud_none(*pud)) {
4215                 pud_populate(mm, pud,
4216                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4217         } else {
4218                 put_page(virt_to_page(spte));
4219                 mm_inc_nr_pmds(mm);
4220         }
4221         spin_unlock(ptl);
4222 out:
4223         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4224         i_mmap_unlock_write(mapping);
4225         return pte;
4226 }
4227
4228 /*
4229  * unmap huge page backed by shared pte.
4230  *
4231  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4232  * indicated by page_count > 1, unmap is achieved by clearing pud and
4233  * decrementing the ref count. If count == 1, the pte page is not shared.
4234  *
4235  * called with page table lock held.
4236  *
4237  * returns: 1 successfully unmapped a shared pte page
4238  *          0 the underlying pte page is not shared, or it is the last user
4239  */
4240 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4241 {
4242         pgd_t *pgd = pgd_offset(mm, *addr);
4243         pud_t *pud = pud_offset(pgd, *addr);
4244
4245         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4246         if (page_count(virt_to_page(ptep)) == 1)
4247                 return 0;
4248
4249         pud_clear(pud);
4250         put_page(virt_to_page(ptep));
4251         mm_dec_nr_pmds(mm);
4252         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4253         return 1;
4254 }
4255 #define want_pmd_share()        (1)
4256 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4257 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4258 {
4259         return NULL;
4260 }
4261
4262 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4263 {
4264         return 0;
4265 }
4266 #define want_pmd_share()        (0)
4267 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4268
4269 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4270 pte_t *huge_pte_alloc(struct mm_struct *mm,
4271                         unsigned long addr, unsigned long sz)
4272 {
4273         pgd_t *pgd;
4274         pud_t *pud;
4275         pte_t *pte = NULL;
4276
4277         pgd = pgd_offset(mm, addr);
4278         pud = pud_alloc(mm, pgd, addr);
4279         if (pud) {
4280                 if (sz == PUD_SIZE) {
4281                         pte = (pte_t *)pud;
4282                 } else {
4283                         BUG_ON(sz != PMD_SIZE);
4284                         if (want_pmd_share() && pud_none(*pud))
4285                                 pte = huge_pmd_share(mm, addr, pud);
4286                         else
4287                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4288                 }
4289         }
4290         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4291
4292         return pte;
4293 }
4294
4295 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4296 {
4297         pgd_t *pgd;
4298         pud_t *pud;
4299         pmd_t *pmd = NULL;
4300
4301         pgd = pgd_offset(mm, addr);
4302         if (pgd_present(*pgd)) {
4303                 pud = pud_offset(pgd, addr);
4304                 if (pud_present(*pud)) {
4305                         if (pud_huge(*pud))
4306                                 return (pte_t *)pud;
4307                         pmd = pmd_offset(pud, addr);
4308                 }
4309         }
4310         return (pte_t *) pmd;
4311 }
4312
4313 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4314
4315 /*
4316  * These functions are overwritable if your architecture needs its own
4317  * behavior.
4318  */
4319 struct page * __weak
4320 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4321                               int write)
4322 {
4323         return ERR_PTR(-EINVAL);
4324 }
4325
4326 struct page * __weak
4327 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4328                 pmd_t *pmd, int flags)
4329 {
4330         struct page *page = NULL;
4331         spinlock_t *ptl;
4332 retry:
4333         ptl = pmd_lockptr(mm, pmd);
4334         spin_lock(ptl);
4335         /*
4336          * make sure that the address range covered by this pmd is not
4337          * unmapped from other threads.
4338          */
4339         if (!pmd_huge(*pmd))
4340                 goto out;
4341         if (pmd_present(*pmd)) {
4342                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4343                 if (flags & FOLL_GET)
4344                         get_page(page);
4345         } else {
4346                 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4347                         spin_unlock(ptl);
4348                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4349                         goto retry;
4350                 }
4351                 /*
4352                  * hwpoisoned entry is treated as no_page_table in
4353                  * follow_page_mask().
4354                  */
4355         }
4356 out:
4357         spin_unlock(ptl);
4358         return page;
4359 }
4360
4361 struct page * __weak
4362 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4363                 pud_t *pud, int flags)
4364 {
4365         if (flags & FOLL_GET)
4366                 return NULL;
4367
4368         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4369 }
4370
4371 #ifdef CONFIG_MEMORY_FAILURE
4372
4373 /*
4374  * This function is called from memory failure code.
4375  * Assume the caller holds page lock of the head page.
4376  */
4377 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4378 {
4379         struct hstate *h = page_hstate(hpage);
4380         int nid = page_to_nid(hpage);
4381         int ret = -EBUSY;
4382
4383         spin_lock(&hugetlb_lock);
4384         /*
4385          * Just checking !page_huge_active is not enough, because that could be
4386          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4387          */
4388         if (!page_huge_active(hpage) && !page_count(hpage)) {
4389                 /*
4390                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4391                  * but dangling hpage->lru can trigger list-debug warnings
4392                  * (this happens when we call unpoison_memory() on it),
4393                  * so let it point to itself with list_del_init().
4394                  */
4395                 list_del_init(&hpage->lru);
4396                 set_page_refcounted(hpage);
4397                 h->free_huge_pages--;
4398                 h->free_huge_pages_node[nid]--;
4399                 ret = 0;
4400         }
4401         spin_unlock(&hugetlb_lock);
4402         return ret;
4403 }
4404 #endif
4405
4406 bool isolate_huge_page(struct page *page, struct list_head *list)
4407 {
4408         bool ret = true;
4409
4410         VM_BUG_ON_PAGE(!PageHead(page), page);
4411         spin_lock(&hugetlb_lock);
4412         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4413                 ret = false;
4414                 goto unlock;
4415         }
4416         clear_page_huge_active(page);
4417         list_move_tail(&page->lru, list);
4418 unlock:
4419         spin_unlock(&hugetlb_lock);
4420         return ret;
4421 }
4422
4423 void putback_active_hugepage(struct page *page)
4424 {
4425         VM_BUG_ON_PAGE(!PageHead(page), page);
4426         spin_lock(&hugetlb_lock);
4427         set_page_huge_active(page);
4428         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4429         spin_unlock(&hugetlb_lock);
4430         put_page(page);
4431 }