ath10k: rename board_data in struct ath10k
[cascardo/linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include "internal.h"
34
35 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52  */
53 DEFINE_SPINLOCK(hugetlb_lock);
54
55 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56 {
57         bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59         spin_unlock(&spool->lock);
60
61         /* If no pages are used, and no other handles to the subpool
62          * remain, free the subpool the subpool remain */
63         if (free)
64                 kfree(spool);
65 }
66
67 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68 {
69         struct hugepage_subpool *spool;
70
71         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72         if (!spool)
73                 return NULL;
74
75         spin_lock_init(&spool->lock);
76         spool->count = 1;
77         spool->max_hpages = nr_blocks;
78         spool->used_hpages = 0;
79
80         return spool;
81 }
82
83 void hugepage_put_subpool(struct hugepage_subpool *spool)
84 {
85         spin_lock(&spool->lock);
86         BUG_ON(!spool->count);
87         spool->count--;
88         unlock_or_release_subpool(spool);
89 }
90
91 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92                                       long delta)
93 {
94         int ret = 0;
95
96         if (!spool)
97                 return 0;
98
99         spin_lock(&spool->lock);
100         if ((spool->used_hpages + delta) <= spool->max_hpages) {
101                 spool->used_hpages += delta;
102         } else {
103                 ret = -ENOMEM;
104         }
105         spin_unlock(&spool->lock);
106
107         return ret;
108 }
109
110 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111                                        long delta)
112 {
113         if (!spool)
114                 return;
115
116         spin_lock(&spool->lock);
117         spool->used_hpages -= delta;
118         /* If hugetlbfs_put_super couldn't free spool due to
119         * an outstanding quota reference, free it now. */
120         unlock_or_release_subpool(spool);
121 }
122
123 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124 {
125         return HUGETLBFS_SB(inode->i_sb)->spool;
126 }
127
128 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129 {
130         return subpool_inode(file_inode(vma->vm_file));
131 }
132
133 /*
134  * Region tracking -- allows tracking of reservations and instantiated pages
135  *                    across the pages in a mapping.
136  *
137  * The region data structures are protected by a combination of the mmap_sem
138  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
139  * must either hold the mmap_sem for write, or the mmap_sem for read and
140  * the hugetlb_instantiation mutex:
141  *
142  *      down_write(&mm->mmap_sem);
143  * or
144  *      down_read(&mm->mmap_sem);
145  *      mutex_lock(&hugetlb_instantiation_mutex);
146  */
147 struct file_region {
148         struct list_head link;
149         long from;
150         long to;
151 };
152
153 static long region_add(struct list_head *head, long f, long t)
154 {
155         struct file_region *rg, *nrg, *trg;
156
157         /* Locate the region we are either in or before. */
158         list_for_each_entry(rg, head, link)
159                 if (f <= rg->to)
160                         break;
161
162         /* Round our left edge to the current segment if it encloses us. */
163         if (f > rg->from)
164                 f = rg->from;
165
166         /* Check for and consume any regions we now overlap with. */
167         nrg = rg;
168         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169                 if (&rg->link == head)
170                         break;
171                 if (rg->from > t)
172                         break;
173
174                 /* If this area reaches higher then extend our area to
175                  * include it completely.  If this is not the first area
176                  * which we intend to reuse, free it. */
177                 if (rg->to > t)
178                         t = rg->to;
179                 if (rg != nrg) {
180                         list_del(&rg->link);
181                         kfree(rg);
182                 }
183         }
184         nrg->from = f;
185         nrg->to = t;
186         return 0;
187 }
188
189 static long region_chg(struct list_head *head, long f, long t)
190 {
191         struct file_region *rg, *nrg;
192         long chg = 0;
193
194         /* Locate the region we are before or in. */
195         list_for_each_entry(rg, head, link)
196                 if (f <= rg->to)
197                         break;
198
199         /* If we are below the current region then a new region is required.
200          * Subtle, allocate a new region at the position but make it zero
201          * size such that we can guarantee to record the reservation. */
202         if (&rg->link == head || t < rg->from) {
203                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204                 if (!nrg)
205                         return -ENOMEM;
206                 nrg->from = f;
207                 nrg->to   = f;
208                 INIT_LIST_HEAD(&nrg->link);
209                 list_add(&nrg->link, rg->link.prev);
210
211                 return t - f;
212         }
213
214         /* Round our left edge to the current segment if it encloses us. */
215         if (f > rg->from)
216                 f = rg->from;
217         chg = t - f;
218
219         /* Check for and consume any regions we now overlap with. */
220         list_for_each_entry(rg, rg->link.prev, link) {
221                 if (&rg->link == head)
222                         break;
223                 if (rg->from > t)
224                         return chg;
225
226                 /* We overlap with this area, if it extends further than
227                  * us then we must extend ourselves.  Account for its
228                  * existing reservation. */
229                 if (rg->to > t) {
230                         chg += rg->to - t;
231                         t = rg->to;
232                 }
233                 chg -= rg->to - rg->from;
234         }
235         return chg;
236 }
237
238 static long region_truncate(struct list_head *head, long end)
239 {
240         struct file_region *rg, *trg;
241         long chg = 0;
242
243         /* Locate the region we are either in or before. */
244         list_for_each_entry(rg, head, link)
245                 if (end <= rg->to)
246                         break;
247         if (&rg->link == head)
248                 return 0;
249
250         /* If we are in the middle of a region then adjust it. */
251         if (end > rg->from) {
252                 chg = rg->to - end;
253                 rg->to = end;
254                 rg = list_entry(rg->link.next, typeof(*rg), link);
255         }
256
257         /* Drop any remaining regions. */
258         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259                 if (&rg->link == head)
260                         break;
261                 chg += rg->to - rg->from;
262                 list_del(&rg->link);
263                 kfree(rg);
264         }
265         return chg;
266 }
267
268 static long region_count(struct list_head *head, long f, long t)
269 {
270         struct file_region *rg;
271         long chg = 0;
272
273         /* Locate each segment we overlap with, and count that overlap. */
274         list_for_each_entry(rg, head, link) {
275                 long seg_from;
276                 long seg_to;
277
278                 if (rg->to <= f)
279                         continue;
280                 if (rg->from >= t)
281                         break;
282
283                 seg_from = max(rg->from, f);
284                 seg_to = min(rg->to, t);
285
286                 chg += seg_to - seg_from;
287         }
288
289         return chg;
290 }
291
292 /*
293  * Convert the address within this vma to the page offset within
294  * the mapping, in pagecache page units; huge pages here.
295  */
296 static pgoff_t vma_hugecache_offset(struct hstate *h,
297                         struct vm_area_struct *vma, unsigned long address)
298 {
299         return ((address - vma->vm_start) >> huge_page_shift(h)) +
300                         (vma->vm_pgoff >> huge_page_order(h));
301 }
302
303 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304                                      unsigned long address)
305 {
306         return vma_hugecache_offset(hstate_vma(vma), vma, address);
307 }
308
309 /*
310  * Return the size of the pages allocated when backing a VMA. In the majority
311  * cases this will be same size as used by the page table entries.
312  */
313 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314 {
315         struct hstate *hstate;
316
317         if (!is_vm_hugetlb_page(vma))
318                 return PAGE_SIZE;
319
320         hstate = hstate_vma(vma);
321
322         return 1UL << huge_page_shift(hstate);
323 }
324 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325
326 /*
327  * Return the page size being used by the MMU to back a VMA. In the majority
328  * of cases, the page size used by the kernel matches the MMU size. On
329  * architectures where it differs, an architecture-specific version of this
330  * function is required.
331  */
332 #ifndef vma_mmu_pagesize
333 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334 {
335         return vma_kernel_pagesize(vma);
336 }
337 #endif
338
339 /*
340  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
341  * bits of the reservation map pointer, which are always clear due to
342  * alignment.
343  */
344 #define HPAGE_RESV_OWNER    (1UL << 0)
345 #define HPAGE_RESV_UNMAPPED (1UL << 1)
346 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347
348 /*
349  * These helpers are used to track how many pages are reserved for
350  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351  * is guaranteed to have their future faults succeed.
352  *
353  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354  * the reserve counters are updated with the hugetlb_lock held. It is safe
355  * to reset the VMA at fork() time as it is not in use yet and there is no
356  * chance of the global counters getting corrupted as a result of the values.
357  *
358  * The private mapping reservation is represented in a subtly different
359  * manner to a shared mapping.  A shared mapping has a region map associated
360  * with the underlying file, this region map represents the backing file
361  * pages which have ever had a reservation assigned which this persists even
362  * after the page is instantiated.  A private mapping has a region map
363  * associated with the original mmap which is attached to all VMAs which
364  * reference it, this region map represents those offsets which have consumed
365  * reservation ie. where pages have been instantiated.
366  */
367 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368 {
369         return (unsigned long)vma->vm_private_data;
370 }
371
372 static void set_vma_private_data(struct vm_area_struct *vma,
373                                                         unsigned long value)
374 {
375         vma->vm_private_data = (void *)value;
376 }
377
378 struct resv_map {
379         struct kref refs;
380         struct list_head regions;
381 };
382
383 static struct resv_map *resv_map_alloc(void)
384 {
385         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386         if (!resv_map)
387                 return NULL;
388
389         kref_init(&resv_map->refs);
390         INIT_LIST_HEAD(&resv_map->regions);
391
392         return resv_map;
393 }
394
395 static void resv_map_release(struct kref *ref)
396 {
397         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399         /* Clear out any active regions before we release the map. */
400         region_truncate(&resv_map->regions, 0);
401         kfree(resv_map);
402 }
403
404 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 {
406         VM_BUG_ON(!is_vm_hugetlb_page(vma));
407         if (!(vma->vm_flags & VM_MAYSHARE))
408                 return (struct resv_map *)(get_vma_private_data(vma) &
409                                                         ~HPAGE_RESV_MASK);
410         return NULL;
411 }
412
413 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 {
415         VM_BUG_ON(!is_vm_hugetlb_page(vma));
416         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417
418         set_vma_private_data(vma, (get_vma_private_data(vma) &
419                                 HPAGE_RESV_MASK) | (unsigned long)map);
420 }
421
422 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423 {
424         VM_BUG_ON(!is_vm_hugetlb_page(vma));
425         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426
427         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 }
429
430 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431 {
432         VM_BUG_ON(!is_vm_hugetlb_page(vma));
433
434         return (get_vma_private_data(vma) & flag) != 0;
435 }
436
437 /* Decrement the reserved pages in the hugepage pool by one */
438 static void decrement_hugepage_resv_vma(struct hstate *h,
439                         struct vm_area_struct *vma)
440 {
441         if (vma->vm_flags & VM_NORESERVE)
442                 return;
443
444         if (vma->vm_flags & VM_MAYSHARE) {
445                 /* Shared mappings always use reserves */
446                 h->resv_huge_pages--;
447         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
448                 /*
449                  * Only the process that called mmap() has reserves for
450                  * private mappings.
451                  */
452                 h->resv_huge_pages--;
453         }
454 }
455
456 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
457 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
458 {
459         VM_BUG_ON(!is_vm_hugetlb_page(vma));
460         if (!(vma->vm_flags & VM_MAYSHARE))
461                 vma->vm_private_data = (void *)0;
462 }
463
464 /* Returns true if the VMA has associated reserve pages */
465 static int vma_has_reserves(struct vm_area_struct *vma)
466 {
467         if (vma->vm_flags & VM_MAYSHARE)
468                 return 1;
469         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
470                 return 1;
471         return 0;
472 }
473
474 static void copy_gigantic_page(struct page *dst, struct page *src)
475 {
476         int i;
477         struct hstate *h = page_hstate(src);
478         struct page *dst_base = dst;
479         struct page *src_base = src;
480
481         for (i = 0; i < pages_per_huge_page(h); ) {
482                 cond_resched();
483                 copy_highpage(dst, src);
484
485                 i++;
486                 dst = mem_map_next(dst, dst_base, i);
487                 src = mem_map_next(src, src_base, i);
488         }
489 }
490
491 void copy_huge_page(struct page *dst, struct page *src)
492 {
493         int i;
494         struct hstate *h = page_hstate(src);
495
496         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
497                 copy_gigantic_page(dst, src);
498                 return;
499         }
500
501         might_sleep();
502         for (i = 0; i < pages_per_huge_page(h); i++) {
503                 cond_resched();
504                 copy_highpage(dst + i, src + i);
505         }
506 }
507
508 static void enqueue_huge_page(struct hstate *h, struct page *page)
509 {
510         int nid = page_to_nid(page);
511         list_move(&page->lru, &h->hugepage_freelists[nid]);
512         h->free_huge_pages++;
513         h->free_huge_pages_node[nid]++;
514 }
515
516 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
517 {
518         struct page *page;
519
520         if (list_empty(&h->hugepage_freelists[nid]))
521                 return NULL;
522         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
523         list_move(&page->lru, &h->hugepage_activelist);
524         set_page_refcounted(page);
525         h->free_huge_pages--;
526         h->free_huge_pages_node[nid]--;
527         return page;
528 }
529
530 static struct page *dequeue_huge_page_vma(struct hstate *h,
531                                 struct vm_area_struct *vma,
532                                 unsigned long address, int avoid_reserve)
533 {
534         struct page *page = NULL;
535         struct mempolicy *mpol;
536         nodemask_t *nodemask;
537         struct zonelist *zonelist;
538         struct zone *zone;
539         struct zoneref *z;
540         unsigned int cpuset_mems_cookie;
541
542 retry_cpuset:
543         cpuset_mems_cookie = get_mems_allowed();
544         zonelist = huge_zonelist(vma, address,
545                                         htlb_alloc_mask, &mpol, &nodemask);
546         /*
547          * A child process with MAP_PRIVATE mappings created by their parent
548          * have no page reserves. This check ensures that reservations are
549          * not "stolen". The child may still get SIGKILLed
550          */
551         if (!vma_has_reserves(vma) &&
552                         h->free_huge_pages - h->resv_huge_pages == 0)
553                 goto err;
554
555         /* If reserves cannot be used, ensure enough pages are in the pool */
556         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
557                 goto err;
558
559         for_each_zone_zonelist_nodemask(zone, z, zonelist,
560                                                 MAX_NR_ZONES - 1, nodemask) {
561                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
562                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
563                         if (page) {
564                                 if (!avoid_reserve)
565                                         decrement_hugepage_resv_vma(h, vma);
566                                 break;
567                         }
568                 }
569         }
570
571         mpol_cond_put(mpol);
572         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
573                 goto retry_cpuset;
574         return page;
575
576 err:
577         mpol_cond_put(mpol);
578         return NULL;
579 }
580
581 static void update_and_free_page(struct hstate *h, struct page *page)
582 {
583         int i;
584
585         VM_BUG_ON(h->order >= MAX_ORDER);
586
587         h->nr_huge_pages--;
588         h->nr_huge_pages_node[page_to_nid(page)]--;
589         for (i = 0; i < pages_per_huge_page(h); i++) {
590                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
591                                 1 << PG_referenced | 1 << PG_dirty |
592                                 1 << PG_active | 1 << PG_reserved |
593                                 1 << PG_private | 1 << PG_writeback);
594         }
595         VM_BUG_ON(hugetlb_cgroup_from_page(page));
596         set_compound_page_dtor(page, NULL);
597         set_page_refcounted(page);
598         arch_release_hugepage(page);
599         __free_pages(page, huge_page_order(h));
600 }
601
602 struct hstate *size_to_hstate(unsigned long size)
603 {
604         struct hstate *h;
605
606         for_each_hstate(h) {
607                 if (huge_page_size(h) == size)
608                         return h;
609         }
610         return NULL;
611 }
612
613 static void free_huge_page(struct page *page)
614 {
615         /*
616          * Can't pass hstate in here because it is called from the
617          * compound page destructor.
618          */
619         struct hstate *h = page_hstate(page);
620         int nid = page_to_nid(page);
621         struct hugepage_subpool *spool =
622                 (struct hugepage_subpool *)page_private(page);
623
624         set_page_private(page, 0);
625         page->mapping = NULL;
626         BUG_ON(page_count(page));
627         BUG_ON(page_mapcount(page));
628
629         spin_lock(&hugetlb_lock);
630         hugetlb_cgroup_uncharge_page(hstate_index(h),
631                                      pages_per_huge_page(h), page);
632         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
633                 /* remove the page from active list */
634                 list_del(&page->lru);
635                 update_and_free_page(h, page);
636                 h->surplus_huge_pages--;
637                 h->surplus_huge_pages_node[nid]--;
638         } else {
639                 arch_clear_hugepage_flags(page);
640                 enqueue_huge_page(h, page);
641         }
642         spin_unlock(&hugetlb_lock);
643         hugepage_subpool_put_pages(spool, 1);
644 }
645
646 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
647 {
648         INIT_LIST_HEAD(&page->lru);
649         set_compound_page_dtor(page, free_huge_page);
650         spin_lock(&hugetlb_lock);
651         set_hugetlb_cgroup(page, NULL);
652         h->nr_huge_pages++;
653         h->nr_huge_pages_node[nid]++;
654         spin_unlock(&hugetlb_lock);
655         put_page(page); /* free it into the hugepage allocator */
656 }
657
658 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
659 {
660         int i;
661         int nr_pages = 1 << order;
662         struct page *p = page + 1;
663
664         /* we rely on prep_new_huge_page to set the destructor */
665         set_compound_order(page, order);
666         __SetPageHead(page);
667         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
668                 __SetPageTail(p);
669                 set_page_count(p, 0);
670                 p->first_page = page;
671         }
672 }
673
674 /*
675  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
676  * transparent huge pages.  See the PageTransHuge() documentation for more
677  * details.
678  */
679 int PageHuge(struct page *page)
680 {
681         compound_page_dtor *dtor;
682
683         if (!PageCompound(page))
684                 return 0;
685
686         page = compound_head(page);
687         dtor = get_compound_page_dtor(page);
688
689         return dtor == free_huge_page;
690 }
691 EXPORT_SYMBOL_GPL(PageHuge);
692
693 pgoff_t __basepage_index(struct page *page)
694 {
695         struct page *page_head = compound_head(page);
696         pgoff_t index = page_index(page_head);
697         unsigned long compound_idx;
698
699         if (!PageHuge(page_head))
700                 return page_index(page);
701
702         if (compound_order(page_head) >= MAX_ORDER)
703                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
704         else
705                 compound_idx = page - page_head;
706
707         return (index << compound_order(page_head)) + compound_idx;
708 }
709
710 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
711 {
712         struct page *page;
713
714         if (h->order >= MAX_ORDER)
715                 return NULL;
716
717         page = alloc_pages_exact_node(nid,
718                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
719                                                 __GFP_REPEAT|__GFP_NOWARN,
720                 huge_page_order(h));
721         if (page) {
722                 if (arch_prepare_hugepage(page)) {
723                         __free_pages(page, huge_page_order(h));
724                         return NULL;
725                 }
726                 prep_new_huge_page(h, page, nid);
727         }
728
729         return page;
730 }
731
732 /*
733  * common helper functions for hstate_next_node_to_{alloc|free}.
734  * We may have allocated or freed a huge page based on a different
735  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
736  * be outside of *nodes_allowed.  Ensure that we use an allowed
737  * node for alloc or free.
738  */
739 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
740 {
741         nid = next_node(nid, *nodes_allowed);
742         if (nid == MAX_NUMNODES)
743                 nid = first_node(*nodes_allowed);
744         VM_BUG_ON(nid >= MAX_NUMNODES);
745
746         return nid;
747 }
748
749 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
750 {
751         if (!node_isset(nid, *nodes_allowed))
752                 nid = next_node_allowed(nid, nodes_allowed);
753         return nid;
754 }
755
756 /*
757  * returns the previously saved node ["this node"] from which to
758  * allocate a persistent huge page for the pool and advance the
759  * next node from which to allocate, handling wrap at end of node
760  * mask.
761  */
762 static int hstate_next_node_to_alloc(struct hstate *h,
763                                         nodemask_t *nodes_allowed)
764 {
765         int nid;
766
767         VM_BUG_ON(!nodes_allowed);
768
769         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
770         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
771
772         return nid;
773 }
774
775 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
776 {
777         struct page *page;
778         int start_nid;
779         int next_nid;
780         int ret = 0;
781
782         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
783         next_nid = start_nid;
784
785         do {
786                 page = alloc_fresh_huge_page_node(h, next_nid);
787                 if (page) {
788                         ret = 1;
789                         break;
790                 }
791                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
792         } while (next_nid != start_nid);
793
794         if (ret)
795                 count_vm_event(HTLB_BUDDY_PGALLOC);
796         else
797                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
798
799         return ret;
800 }
801
802 /*
803  * helper for free_pool_huge_page() - return the previously saved
804  * node ["this node"] from which to free a huge page.  Advance the
805  * next node id whether or not we find a free huge page to free so
806  * that the next attempt to free addresses the next node.
807  */
808 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
809 {
810         int nid;
811
812         VM_BUG_ON(!nodes_allowed);
813
814         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
815         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
816
817         return nid;
818 }
819
820 /*
821  * Free huge page from pool from next node to free.
822  * Attempt to keep persistent huge pages more or less
823  * balanced over allowed nodes.
824  * Called with hugetlb_lock locked.
825  */
826 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
827                                                          bool acct_surplus)
828 {
829         int start_nid;
830         int next_nid;
831         int ret = 0;
832
833         start_nid = hstate_next_node_to_free(h, nodes_allowed);
834         next_nid = start_nid;
835
836         do {
837                 /*
838                  * If we're returning unused surplus pages, only examine
839                  * nodes with surplus pages.
840                  */
841                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
842                     !list_empty(&h->hugepage_freelists[next_nid])) {
843                         struct page *page =
844                                 list_entry(h->hugepage_freelists[next_nid].next,
845                                           struct page, lru);
846                         list_del(&page->lru);
847                         h->free_huge_pages--;
848                         h->free_huge_pages_node[next_nid]--;
849                         if (acct_surplus) {
850                                 h->surplus_huge_pages--;
851                                 h->surplus_huge_pages_node[next_nid]--;
852                         }
853                         update_and_free_page(h, page);
854                         ret = 1;
855                         break;
856                 }
857                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
858         } while (next_nid != start_nid);
859
860         return ret;
861 }
862
863 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
864 {
865         struct page *page;
866         unsigned int r_nid;
867
868         if (h->order >= MAX_ORDER)
869                 return NULL;
870
871         /*
872          * Assume we will successfully allocate the surplus page to
873          * prevent racing processes from causing the surplus to exceed
874          * overcommit
875          *
876          * This however introduces a different race, where a process B
877          * tries to grow the static hugepage pool while alloc_pages() is
878          * called by process A. B will only examine the per-node
879          * counters in determining if surplus huge pages can be
880          * converted to normal huge pages in adjust_pool_surplus(). A
881          * won't be able to increment the per-node counter, until the
882          * lock is dropped by B, but B doesn't drop hugetlb_lock until
883          * no more huge pages can be converted from surplus to normal
884          * state (and doesn't try to convert again). Thus, we have a
885          * case where a surplus huge page exists, the pool is grown, and
886          * the surplus huge page still exists after, even though it
887          * should just have been converted to a normal huge page. This
888          * does not leak memory, though, as the hugepage will be freed
889          * once it is out of use. It also does not allow the counters to
890          * go out of whack in adjust_pool_surplus() as we don't modify
891          * the node values until we've gotten the hugepage and only the
892          * per-node value is checked there.
893          */
894         spin_lock(&hugetlb_lock);
895         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
896                 spin_unlock(&hugetlb_lock);
897                 return NULL;
898         } else {
899                 h->nr_huge_pages++;
900                 h->surplus_huge_pages++;
901         }
902         spin_unlock(&hugetlb_lock);
903
904         if (nid == NUMA_NO_NODE)
905                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
906                                    __GFP_REPEAT|__GFP_NOWARN,
907                                    huge_page_order(h));
908         else
909                 page = alloc_pages_exact_node(nid,
910                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
911                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
912
913         if (page && arch_prepare_hugepage(page)) {
914                 __free_pages(page, huge_page_order(h));
915                 page = NULL;
916         }
917
918         spin_lock(&hugetlb_lock);
919         if (page) {
920                 INIT_LIST_HEAD(&page->lru);
921                 r_nid = page_to_nid(page);
922                 set_compound_page_dtor(page, free_huge_page);
923                 set_hugetlb_cgroup(page, NULL);
924                 /*
925                  * We incremented the global counters already
926                  */
927                 h->nr_huge_pages_node[r_nid]++;
928                 h->surplus_huge_pages_node[r_nid]++;
929                 __count_vm_event(HTLB_BUDDY_PGALLOC);
930         } else {
931                 h->nr_huge_pages--;
932                 h->surplus_huge_pages--;
933                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
934         }
935         spin_unlock(&hugetlb_lock);
936
937         return page;
938 }
939
940 /*
941  * This allocation function is useful in the context where vma is irrelevant.
942  * E.g. soft-offlining uses this function because it only cares physical
943  * address of error page.
944  */
945 struct page *alloc_huge_page_node(struct hstate *h, int nid)
946 {
947         struct page *page;
948
949         spin_lock(&hugetlb_lock);
950         page = dequeue_huge_page_node(h, nid);
951         spin_unlock(&hugetlb_lock);
952
953         if (!page)
954                 page = alloc_buddy_huge_page(h, nid);
955
956         return page;
957 }
958
959 /*
960  * Increase the hugetlb pool such that it can accommodate a reservation
961  * of size 'delta'.
962  */
963 static int gather_surplus_pages(struct hstate *h, int delta)
964 {
965         struct list_head surplus_list;
966         struct page *page, *tmp;
967         int ret, i;
968         int needed, allocated;
969         bool alloc_ok = true;
970
971         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
972         if (needed <= 0) {
973                 h->resv_huge_pages += delta;
974                 return 0;
975         }
976
977         allocated = 0;
978         INIT_LIST_HEAD(&surplus_list);
979
980         ret = -ENOMEM;
981 retry:
982         spin_unlock(&hugetlb_lock);
983         for (i = 0; i < needed; i++) {
984                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
985                 if (!page) {
986                         alloc_ok = false;
987                         break;
988                 }
989                 list_add(&page->lru, &surplus_list);
990         }
991         allocated += i;
992
993         /*
994          * After retaking hugetlb_lock, we need to recalculate 'needed'
995          * because either resv_huge_pages or free_huge_pages may have changed.
996          */
997         spin_lock(&hugetlb_lock);
998         needed = (h->resv_huge_pages + delta) -
999                         (h->free_huge_pages + allocated);
1000         if (needed > 0) {
1001                 if (alloc_ok)
1002                         goto retry;
1003                 /*
1004                  * We were not able to allocate enough pages to
1005                  * satisfy the entire reservation so we free what
1006                  * we've allocated so far.
1007                  */
1008                 goto free;
1009         }
1010         /*
1011          * The surplus_list now contains _at_least_ the number of extra pages
1012          * needed to accommodate the reservation.  Add the appropriate number
1013          * of pages to the hugetlb pool and free the extras back to the buddy
1014          * allocator.  Commit the entire reservation here to prevent another
1015          * process from stealing the pages as they are added to the pool but
1016          * before they are reserved.
1017          */
1018         needed += allocated;
1019         h->resv_huge_pages += delta;
1020         ret = 0;
1021
1022         /* Free the needed pages to the hugetlb pool */
1023         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1024                 if ((--needed) < 0)
1025                         break;
1026                 /*
1027                  * This page is now managed by the hugetlb allocator and has
1028                  * no users -- drop the buddy allocator's reference.
1029                  */
1030                 put_page_testzero(page);
1031                 VM_BUG_ON(page_count(page));
1032                 enqueue_huge_page(h, page);
1033         }
1034 free:
1035         spin_unlock(&hugetlb_lock);
1036
1037         /* Free unnecessary surplus pages to the buddy allocator */
1038         if (!list_empty(&surplus_list)) {
1039                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1040                         put_page(page);
1041                 }
1042         }
1043         spin_lock(&hugetlb_lock);
1044
1045         return ret;
1046 }
1047
1048 /*
1049  * When releasing a hugetlb pool reservation, any surplus pages that were
1050  * allocated to satisfy the reservation must be explicitly freed if they were
1051  * never used.
1052  * Called with hugetlb_lock held.
1053  */
1054 static void return_unused_surplus_pages(struct hstate *h,
1055                                         unsigned long unused_resv_pages)
1056 {
1057         unsigned long nr_pages;
1058
1059         /* Uncommit the reservation */
1060         h->resv_huge_pages -= unused_resv_pages;
1061
1062         /* Cannot return gigantic pages currently */
1063         if (h->order >= MAX_ORDER)
1064                 return;
1065
1066         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1067
1068         /*
1069          * We want to release as many surplus pages as possible, spread
1070          * evenly across all nodes with memory. Iterate across these nodes
1071          * until we can no longer free unreserved surplus pages. This occurs
1072          * when the nodes with surplus pages have no free pages.
1073          * free_pool_huge_page() will balance the the freed pages across the
1074          * on-line nodes with memory and will handle the hstate accounting.
1075          */
1076         while (nr_pages--) {
1077                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1078                         break;
1079         }
1080 }
1081
1082 /*
1083  * Determine if the huge page at addr within the vma has an associated
1084  * reservation.  Where it does not we will need to logically increase
1085  * reservation and actually increase subpool usage before an allocation
1086  * can occur.  Where any new reservation would be required the
1087  * reservation change is prepared, but not committed.  Once the page
1088  * has been allocated from the subpool and instantiated the change should
1089  * be committed via vma_commit_reservation.  No action is required on
1090  * failure.
1091  */
1092 static long vma_needs_reservation(struct hstate *h,
1093                         struct vm_area_struct *vma, unsigned long addr)
1094 {
1095         struct address_space *mapping = vma->vm_file->f_mapping;
1096         struct inode *inode = mapping->host;
1097
1098         if (vma->vm_flags & VM_MAYSHARE) {
1099                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1100                 return region_chg(&inode->i_mapping->private_list,
1101                                                         idx, idx + 1);
1102
1103         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1104                 return 1;
1105
1106         } else  {
1107                 long err;
1108                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1109                 struct resv_map *reservations = vma_resv_map(vma);
1110
1111                 err = region_chg(&reservations->regions, idx, idx + 1);
1112                 if (err < 0)
1113                         return err;
1114                 return 0;
1115         }
1116 }
1117 static void vma_commit_reservation(struct hstate *h,
1118                         struct vm_area_struct *vma, unsigned long addr)
1119 {
1120         struct address_space *mapping = vma->vm_file->f_mapping;
1121         struct inode *inode = mapping->host;
1122
1123         if (vma->vm_flags & VM_MAYSHARE) {
1124                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1125                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1126
1127         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1128                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1129                 struct resv_map *reservations = vma_resv_map(vma);
1130
1131                 /* Mark this page used in the map. */
1132                 region_add(&reservations->regions, idx, idx + 1);
1133         }
1134 }
1135
1136 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1137                                     unsigned long addr, int avoid_reserve)
1138 {
1139         struct hugepage_subpool *spool = subpool_vma(vma);
1140         struct hstate *h = hstate_vma(vma);
1141         struct page *page;
1142         long chg;
1143         int ret, idx;
1144         struct hugetlb_cgroup *h_cg;
1145
1146         idx = hstate_index(h);
1147         /*
1148          * Processes that did not create the mapping will have no
1149          * reserves and will not have accounted against subpool
1150          * limit. Check that the subpool limit can be made before
1151          * satisfying the allocation MAP_NORESERVE mappings may also
1152          * need pages and subpool limit allocated allocated if no reserve
1153          * mapping overlaps.
1154          */
1155         chg = vma_needs_reservation(h, vma, addr);
1156         if (chg < 0)
1157                 return ERR_PTR(-ENOMEM);
1158         if (chg)
1159                 if (hugepage_subpool_get_pages(spool, chg))
1160                         return ERR_PTR(-ENOSPC);
1161
1162         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1163         if (ret) {
1164                 hugepage_subpool_put_pages(spool, chg);
1165                 return ERR_PTR(-ENOSPC);
1166         }
1167         spin_lock(&hugetlb_lock);
1168         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1169         if (page) {
1170                 /* update page cgroup details */
1171                 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1172                                              h_cg, page);
1173                 spin_unlock(&hugetlb_lock);
1174         } else {
1175                 spin_unlock(&hugetlb_lock);
1176                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1177                 if (!page) {
1178                         hugetlb_cgroup_uncharge_cgroup(idx,
1179                                                        pages_per_huge_page(h),
1180                                                        h_cg);
1181                         hugepage_subpool_put_pages(spool, chg);
1182                         return ERR_PTR(-ENOSPC);
1183                 }
1184                 spin_lock(&hugetlb_lock);
1185                 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1186                                              h_cg, page);
1187                 list_move(&page->lru, &h->hugepage_activelist);
1188                 spin_unlock(&hugetlb_lock);
1189         }
1190
1191         set_page_private(page, (unsigned long)spool);
1192
1193         vma_commit_reservation(h, vma, addr);
1194         return page;
1195 }
1196
1197 int __weak alloc_bootmem_huge_page(struct hstate *h)
1198 {
1199         struct huge_bootmem_page *m;
1200         int nr_nodes = nodes_weight(node_states[N_MEMORY]);
1201
1202         while (nr_nodes) {
1203                 void *addr;
1204
1205                 addr = __alloc_bootmem_node_nopanic(
1206                                 NODE_DATA(hstate_next_node_to_alloc(h,
1207                                                 &node_states[N_MEMORY])),
1208                                 huge_page_size(h), huge_page_size(h), 0);
1209
1210                 if (addr) {
1211                         /*
1212                          * Use the beginning of the huge page to store the
1213                          * huge_bootmem_page struct (until gather_bootmem
1214                          * puts them into the mem_map).
1215                          */
1216                         m = addr;
1217                         goto found;
1218                 }
1219                 nr_nodes--;
1220         }
1221         return 0;
1222
1223 found:
1224         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1225         /* Put them into a private list first because mem_map is not up yet */
1226         list_add(&m->list, &huge_boot_pages);
1227         m->hstate = h;
1228         return 1;
1229 }
1230
1231 static void prep_compound_huge_page(struct page *page, int order)
1232 {
1233         if (unlikely(order > (MAX_ORDER - 1)))
1234                 prep_compound_gigantic_page(page, order);
1235         else
1236                 prep_compound_page(page, order);
1237 }
1238
1239 /* Put bootmem huge pages into the standard lists after mem_map is up */
1240 static void __init gather_bootmem_prealloc(void)
1241 {
1242         struct huge_bootmem_page *m;
1243
1244         list_for_each_entry(m, &huge_boot_pages, list) {
1245                 struct hstate *h = m->hstate;
1246                 struct page *page;
1247
1248 #ifdef CONFIG_HIGHMEM
1249                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1250                 free_bootmem_late((unsigned long)m,
1251                                   sizeof(struct huge_bootmem_page));
1252 #else
1253                 page = virt_to_page(m);
1254 #endif
1255                 __ClearPageReserved(page);
1256                 WARN_ON(page_count(page) != 1);
1257                 prep_compound_huge_page(page, h->order);
1258                 prep_new_huge_page(h, page, page_to_nid(page));
1259                 /*
1260                  * If we had gigantic hugepages allocated at boot time, we need
1261                  * to restore the 'stolen' pages to totalram_pages in order to
1262                  * fix confusing memory reports from free(1) and another
1263                  * side-effects, like CommitLimit going negative.
1264                  */
1265                 if (h->order > (MAX_ORDER - 1))
1266                         adjust_managed_page_count(page, 1 << h->order);
1267         }
1268 }
1269
1270 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1271 {
1272         unsigned long i;
1273
1274         for (i = 0; i < h->max_huge_pages; ++i) {
1275                 if (h->order >= MAX_ORDER) {
1276                         if (!alloc_bootmem_huge_page(h))
1277                                 break;
1278                 } else if (!alloc_fresh_huge_page(h,
1279                                          &node_states[N_MEMORY]))
1280                         break;
1281         }
1282         h->max_huge_pages = i;
1283 }
1284
1285 static void __init hugetlb_init_hstates(void)
1286 {
1287         struct hstate *h;
1288
1289         for_each_hstate(h) {
1290                 /* oversize hugepages were init'ed in early boot */
1291                 if (h->order < MAX_ORDER)
1292                         hugetlb_hstate_alloc_pages(h);
1293         }
1294 }
1295
1296 static char * __init memfmt(char *buf, unsigned long n)
1297 {
1298         if (n >= (1UL << 30))
1299                 sprintf(buf, "%lu GB", n >> 30);
1300         else if (n >= (1UL << 20))
1301                 sprintf(buf, "%lu MB", n >> 20);
1302         else
1303                 sprintf(buf, "%lu KB", n >> 10);
1304         return buf;
1305 }
1306
1307 static void __init report_hugepages(void)
1308 {
1309         struct hstate *h;
1310
1311         for_each_hstate(h) {
1312                 char buf[32];
1313                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1314                         memfmt(buf, huge_page_size(h)),
1315                         h->free_huge_pages);
1316         }
1317 }
1318
1319 #ifdef CONFIG_HIGHMEM
1320 static void try_to_free_low(struct hstate *h, unsigned long count,
1321                                                 nodemask_t *nodes_allowed)
1322 {
1323         int i;
1324
1325         if (h->order >= MAX_ORDER)
1326                 return;
1327
1328         for_each_node_mask(i, *nodes_allowed) {
1329                 struct page *page, *next;
1330                 struct list_head *freel = &h->hugepage_freelists[i];
1331                 list_for_each_entry_safe(page, next, freel, lru) {
1332                         if (count >= h->nr_huge_pages)
1333                                 return;
1334                         if (PageHighMem(page))
1335                                 continue;
1336                         list_del(&page->lru);
1337                         update_and_free_page(h, page);
1338                         h->free_huge_pages--;
1339                         h->free_huge_pages_node[page_to_nid(page)]--;
1340                 }
1341         }
1342 }
1343 #else
1344 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1345                                                 nodemask_t *nodes_allowed)
1346 {
1347 }
1348 #endif
1349
1350 /*
1351  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1352  * balanced by operating on them in a round-robin fashion.
1353  * Returns 1 if an adjustment was made.
1354  */
1355 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1356                                 int delta)
1357 {
1358         int start_nid, next_nid;
1359         int ret = 0;
1360
1361         VM_BUG_ON(delta != -1 && delta != 1);
1362
1363         if (delta < 0)
1364                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1365         else
1366                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1367         next_nid = start_nid;
1368
1369         do {
1370                 int nid = next_nid;
1371                 if (delta < 0)  {
1372                         /*
1373                          * To shrink on this node, there must be a surplus page
1374                          */
1375                         if (!h->surplus_huge_pages_node[nid]) {
1376                                 next_nid = hstate_next_node_to_alloc(h,
1377                                                                 nodes_allowed);
1378                                 continue;
1379                         }
1380                 }
1381                 if (delta > 0) {
1382                         /*
1383                          * Surplus cannot exceed the total number of pages
1384                          */
1385                         if (h->surplus_huge_pages_node[nid] >=
1386                                                 h->nr_huge_pages_node[nid]) {
1387                                 next_nid = hstate_next_node_to_free(h,
1388                                                                 nodes_allowed);
1389                                 continue;
1390                         }
1391                 }
1392
1393                 h->surplus_huge_pages += delta;
1394                 h->surplus_huge_pages_node[nid] += delta;
1395                 ret = 1;
1396                 break;
1397         } while (next_nid != start_nid);
1398
1399         return ret;
1400 }
1401
1402 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1403 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1404                                                 nodemask_t *nodes_allowed)
1405 {
1406         unsigned long min_count, ret;
1407
1408         if (h->order >= MAX_ORDER)
1409                 return h->max_huge_pages;
1410
1411         /*
1412          * Increase the pool size
1413          * First take pages out of surplus state.  Then make up the
1414          * remaining difference by allocating fresh huge pages.
1415          *
1416          * We might race with alloc_buddy_huge_page() here and be unable
1417          * to convert a surplus huge page to a normal huge page. That is
1418          * not critical, though, it just means the overall size of the
1419          * pool might be one hugepage larger than it needs to be, but
1420          * within all the constraints specified by the sysctls.
1421          */
1422         spin_lock(&hugetlb_lock);
1423         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1424                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1425                         break;
1426         }
1427
1428         while (count > persistent_huge_pages(h)) {
1429                 /*
1430                  * If this allocation races such that we no longer need the
1431                  * page, free_huge_page will handle it by freeing the page
1432                  * and reducing the surplus.
1433                  */
1434                 spin_unlock(&hugetlb_lock);
1435                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1436                 spin_lock(&hugetlb_lock);
1437                 if (!ret)
1438                         goto out;
1439
1440                 /* Bail for signals. Probably ctrl-c from user */
1441                 if (signal_pending(current))
1442                         goto out;
1443         }
1444
1445         /*
1446          * Decrease the pool size
1447          * First return free pages to the buddy allocator (being careful
1448          * to keep enough around to satisfy reservations).  Then place
1449          * pages into surplus state as needed so the pool will shrink
1450          * to the desired size as pages become free.
1451          *
1452          * By placing pages into the surplus state independent of the
1453          * overcommit value, we are allowing the surplus pool size to
1454          * exceed overcommit. There are few sane options here. Since
1455          * alloc_buddy_huge_page() is checking the global counter,
1456          * though, we'll note that we're not allowed to exceed surplus
1457          * and won't grow the pool anywhere else. Not until one of the
1458          * sysctls are changed, or the surplus pages go out of use.
1459          */
1460         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1461         min_count = max(count, min_count);
1462         try_to_free_low(h, min_count, nodes_allowed);
1463         while (min_count < persistent_huge_pages(h)) {
1464                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1465                         break;
1466         }
1467         while (count < persistent_huge_pages(h)) {
1468                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1469                         break;
1470         }
1471 out:
1472         ret = persistent_huge_pages(h);
1473         spin_unlock(&hugetlb_lock);
1474         return ret;
1475 }
1476
1477 #define HSTATE_ATTR_RO(_name) \
1478         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1479
1480 #define HSTATE_ATTR(_name) \
1481         static struct kobj_attribute _name##_attr = \
1482                 __ATTR(_name, 0644, _name##_show, _name##_store)
1483
1484 static struct kobject *hugepages_kobj;
1485 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1486
1487 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1488
1489 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1490 {
1491         int i;
1492
1493         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1494                 if (hstate_kobjs[i] == kobj) {
1495                         if (nidp)
1496                                 *nidp = NUMA_NO_NODE;
1497                         return &hstates[i];
1498                 }
1499
1500         return kobj_to_node_hstate(kobj, nidp);
1501 }
1502
1503 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1504                                         struct kobj_attribute *attr, char *buf)
1505 {
1506         struct hstate *h;
1507         unsigned long nr_huge_pages;
1508         int nid;
1509
1510         h = kobj_to_hstate(kobj, &nid);
1511         if (nid == NUMA_NO_NODE)
1512                 nr_huge_pages = h->nr_huge_pages;
1513         else
1514                 nr_huge_pages = h->nr_huge_pages_node[nid];
1515
1516         return sprintf(buf, "%lu\n", nr_huge_pages);
1517 }
1518
1519 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1520                         struct kobject *kobj, struct kobj_attribute *attr,
1521                         const char *buf, size_t len)
1522 {
1523         int err;
1524         int nid;
1525         unsigned long count;
1526         struct hstate *h;
1527         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1528
1529         err = strict_strtoul(buf, 10, &count);
1530         if (err)
1531                 goto out;
1532
1533         h = kobj_to_hstate(kobj, &nid);
1534         if (h->order >= MAX_ORDER) {
1535                 err = -EINVAL;
1536                 goto out;
1537         }
1538
1539         if (nid == NUMA_NO_NODE) {
1540                 /*
1541                  * global hstate attribute
1542                  */
1543                 if (!(obey_mempolicy &&
1544                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1545                         NODEMASK_FREE(nodes_allowed);
1546                         nodes_allowed = &node_states[N_MEMORY];
1547                 }
1548         } else if (nodes_allowed) {
1549                 /*
1550                  * per node hstate attribute: adjust count to global,
1551                  * but restrict alloc/free to the specified node.
1552                  */
1553                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1554                 init_nodemask_of_node(nodes_allowed, nid);
1555         } else
1556                 nodes_allowed = &node_states[N_MEMORY];
1557
1558         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1559
1560         if (nodes_allowed != &node_states[N_MEMORY])
1561                 NODEMASK_FREE(nodes_allowed);
1562
1563         return len;
1564 out:
1565         NODEMASK_FREE(nodes_allowed);
1566         return err;
1567 }
1568
1569 static ssize_t nr_hugepages_show(struct kobject *kobj,
1570                                        struct kobj_attribute *attr, char *buf)
1571 {
1572         return nr_hugepages_show_common(kobj, attr, buf);
1573 }
1574
1575 static ssize_t nr_hugepages_store(struct kobject *kobj,
1576                struct kobj_attribute *attr, const char *buf, size_t len)
1577 {
1578         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1579 }
1580 HSTATE_ATTR(nr_hugepages);
1581
1582 #ifdef CONFIG_NUMA
1583
1584 /*
1585  * hstate attribute for optionally mempolicy-based constraint on persistent
1586  * huge page alloc/free.
1587  */
1588 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1589                                        struct kobj_attribute *attr, char *buf)
1590 {
1591         return nr_hugepages_show_common(kobj, attr, buf);
1592 }
1593
1594 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1595                struct kobj_attribute *attr, const char *buf, size_t len)
1596 {
1597         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1598 }
1599 HSTATE_ATTR(nr_hugepages_mempolicy);
1600 #endif
1601
1602
1603 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1604                                         struct kobj_attribute *attr, char *buf)
1605 {
1606         struct hstate *h = kobj_to_hstate(kobj, NULL);
1607         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1608 }
1609
1610 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1611                 struct kobj_attribute *attr, const char *buf, size_t count)
1612 {
1613         int err;
1614         unsigned long input;
1615         struct hstate *h = kobj_to_hstate(kobj, NULL);
1616
1617         if (h->order >= MAX_ORDER)
1618                 return -EINVAL;
1619
1620         err = strict_strtoul(buf, 10, &input);
1621         if (err)
1622                 return err;
1623
1624         spin_lock(&hugetlb_lock);
1625         h->nr_overcommit_huge_pages = input;
1626         spin_unlock(&hugetlb_lock);
1627
1628         return count;
1629 }
1630 HSTATE_ATTR(nr_overcommit_hugepages);
1631
1632 static ssize_t free_hugepages_show(struct kobject *kobj,
1633                                         struct kobj_attribute *attr, char *buf)
1634 {
1635         struct hstate *h;
1636         unsigned long free_huge_pages;
1637         int nid;
1638
1639         h = kobj_to_hstate(kobj, &nid);
1640         if (nid == NUMA_NO_NODE)
1641                 free_huge_pages = h->free_huge_pages;
1642         else
1643                 free_huge_pages = h->free_huge_pages_node[nid];
1644
1645         return sprintf(buf, "%lu\n", free_huge_pages);
1646 }
1647 HSTATE_ATTR_RO(free_hugepages);
1648
1649 static ssize_t resv_hugepages_show(struct kobject *kobj,
1650                                         struct kobj_attribute *attr, char *buf)
1651 {
1652         struct hstate *h = kobj_to_hstate(kobj, NULL);
1653         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1654 }
1655 HSTATE_ATTR_RO(resv_hugepages);
1656
1657 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1658                                         struct kobj_attribute *attr, char *buf)
1659 {
1660         struct hstate *h;
1661         unsigned long surplus_huge_pages;
1662         int nid;
1663
1664         h = kobj_to_hstate(kobj, &nid);
1665         if (nid == NUMA_NO_NODE)
1666                 surplus_huge_pages = h->surplus_huge_pages;
1667         else
1668                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1669
1670         return sprintf(buf, "%lu\n", surplus_huge_pages);
1671 }
1672 HSTATE_ATTR_RO(surplus_hugepages);
1673
1674 static struct attribute *hstate_attrs[] = {
1675         &nr_hugepages_attr.attr,
1676         &nr_overcommit_hugepages_attr.attr,
1677         &free_hugepages_attr.attr,
1678         &resv_hugepages_attr.attr,
1679         &surplus_hugepages_attr.attr,
1680 #ifdef CONFIG_NUMA
1681         &nr_hugepages_mempolicy_attr.attr,
1682 #endif
1683         NULL,
1684 };
1685
1686 static struct attribute_group hstate_attr_group = {
1687         .attrs = hstate_attrs,
1688 };
1689
1690 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1691                                     struct kobject **hstate_kobjs,
1692                                     struct attribute_group *hstate_attr_group)
1693 {
1694         int retval;
1695         int hi = hstate_index(h);
1696
1697         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1698         if (!hstate_kobjs[hi])
1699                 return -ENOMEM;
1700
1701         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1702         if (retval)
1703                 kobject_put(hstate_kobjs[hi]);
1704
1705         return retval;
1706 }
1707
1708 static void __init hugetlb_sysfs_init(void)
1709 {
1710         struct hstate *h;
1711         int err;
1712
1713         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1714         if (!hugepages_kobj)
1715                 return;
1716
1717         for_each_hstate(h) {
1718                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1719                                          hstate_kobjs, &hstate_attr_group);
1720                 if (err)
1721                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1722         }
1723 }
1724
1725 #ifdef CONFIG_NUMA
1726
1727 /*
1728  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1729  * with node devices in node_devices[] using a parallel array.  The array
1730  * index of a node device or _hstate == node id.
1731  * This is here to avoid any static dependency of the node device driver, in
1732  * the base kernel, on the hugetlb module.
1733  */
1734 struct node_hstate {
1735         struct kobject          *hugepages_kobj;
1736         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1737 };
1738 struct node_hstate node_hstates[MAX_NUMNODES];
1739
1740 /*
1741  * A subset of global hstate attributes for node devices
1742  */
1743 static struct attribute *per_node_hstate_attrs[] = {
1744         &nr_hugepages_attr.attr,
1745         &free_hugepages_attr.attr,
1746         &surplus_hugepages_attr.attr,
1747         NULL,
1748 };
1749
1750 static struct attribute_group per_node_hstate_attr_group = {
1751         .attrs = per_node_hstate_attrs,
1752 };
1753
1754 /*
1755  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1756  * Returns node id via non-NULL nidp.
1757  */
1758 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1759 {
1760         int nid;
1761
1762         for (nid = 0; nid < nr_node_ids; nid++) {
1763                 struct node_hstate *nhs = &node_hstates[nid];
1764                 int i;
1765                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1766                         if (nhs->hstate_kobjs[i] == kobj) {
1767                                 if (nidp)
1768                                         *nidp = nid;
1769                                 return &hstates[i];
1770                         }
1771         }
1772
1773         BUG();
1774         return NULL;
1775 }
1776
1777 /*
1778  * Unregister hstate attributes from a single node device.
1779  * No-op if no hstate attributes attached.
1780  */
1781 static void hugetlb_unregister_node(struct node *node)
1782 {
1783         struct hstate *h;
1784         struct node_hstate *nhs = &node_hstates[node->dev.id];
1785
1786         if (!nhs->hugepages_kobj)
1787                 return;         /* no hstate attributes */
1788
1789         for_each_hstate(h) {
1790                 int idx = hstate_index(h);
1791                 if (nhs->hstate_kobjs[idx]) {
1792                         kobject_put(nhs->hstate_kobjs[idx]);
1793                         nhs->hstate_kobjs[idx] = NULL;
1794                 }
1795         }
1796
1797         kobject_put(nhs->hugepages_kobj);
1798         nhs->hugepages_kobj = NULL;
1799 }
1800
1801 /*
1802  * hugetlb module exit:  unregister hstate attributes from node devices
1803  * that have them.
1804  */
1805 static void hugetlb_unregister_all_nodes(void)
1806 {
1807         int nid;
1808
1809         /*
1810          * disable node device registrations.
1811          */
1812         register_hugetlbfs_with_node(NULL, NULL);
1813
1814         /*
1815          * remove hstate attributes from any nodes that have them.
1816          */
1817         for (nid = 0; nid < nr_node_ids; nid++)
1818                 hugetlb_unregister_node(node_devices[nid]);
1819 }
1820
1821 /*
1822  * Register hstate attributes for a single node device.
1823  * No-op if attributes already registered.
1824  */
1825 static void hugetlb_register_node(struct node *node)
1826 {
1827         struct hstate *h;
1828         struct node_hstate *nhs = &node_hstates[node->dev.id];
1829         int err;
1830
1831         if (nhs->hugepages_kobj)
1832                 return;         /* already allocated */
1833
1834         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1835                                                         &node->dev.kobj);
1836         if (!nhs->hugepages_kobj)
1837                 return;
1838
1839         for_each_hstate(h) {
1840                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1841                                                 nhs->hstate_kobjs,
1842                                                 &per_node_hstate_attr_group);
1843                 if (err) {
1844                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1845                                 h->name, node->dev.id);
1846                         hugetlb_unregister_node(node);
1847                         break;
1848                 }
1849         }
1850 }
1851
1852 /*
1853  * hugetlb init time:  register hstate attributes for all registered node
1854  * devices of nodes that have memory.  All on-line nodes should have
1855  * registered their associated device by this time.
1856  */
1857 static void hugetlb_register_all_nodes(void)
1858 {
1859         int nid;
1860
1861         for_each_node_state(nid, N_MEMORY) {
1862                 struct node *node = node_devices[nid];
1863                 if (node->dev.id == nid)
1864                         hugetlb_register_node(node);
1865         }
1866
1867         /*
1868          * Let the node device driver know we're here so it can
1869          * [un]register hstate attributes on node hotplug.
1870          */
1871         register_hugetlbfs_with_node(hugetlb_register_node,
1872                                      hugetlb_unregister_node);
1873 }
1874 #else   /* !CONFIG_NUMA */
1875
1876 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1877 {
1878         BUG();
1879         if (nidp)
1880                 *nidp = -1;
1881         return NULL;
1882 }
1883
1884 static void hugetlb_unregister_all_nodes(void) { }
1885
1886 static void hugetlb_register_all_nodes(void) { }
1887
1888 #endif
1889
1890 static void __exit hugetlb_exit(void)
1891 {
1892         struct hstate *h;
1893
1894         hugetlb_unregister_all_nodes();
1895
1896         for_each_hstate(h) {
1897                 kobject_put(hstate_kobjs[hstate_index(h)]);
1898         }
1899
1900         kobject_put(hugepages_kobj);
1901 }
1902 module_exit(hugetlb_exit);
1903
1904 static int __init hugetlb_init(void)
1905 {
1906         /* Some platform decide whether they support huge pages at boot
1907          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1908          * there is no such support
1909          */
1910         if (HPAGE_SHIFT == 0)
1911                 return 0;
1912
1913         if (!size_to_hstate(default_hstate_size)) {
1914                 default_hstate_size = HPAGE_SIZE;
1915                 if (!size_to_hstate(default_hstate_size))
1916                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1917         }
1918         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1919         if (default_hstate_max_huge_pages)
1920                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1921
1922         hugetlb_init_hstates();
1923         gather_bootmem_prealloc();
1924         report_hugepages();
1925
1926         hugetlb_sysfs_init();
1927         hugetlb_register_all_nodes();
1928         hugetlb_cgroup_file_init();
1929
1930         return 0;
1931 }
1932 module_init(hugetlb_init);
1933
1934 /* Should be called on processing a hugepagesz=... option */
1935 void __init hugetlb_add_hstate(unsigned order)
1936 {
1937         struct hstate *h;
1938         unsigned long i;
1939
1940         if (size_to_hstate(PAGE_SIZE << order)) {
1941                 pr_warning("hugepagesz= specified twice, ignoring\n");
1942                 return;
1943         }
1944         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1945         BUG_ON(order == 0);
1946         h = &hstates[hugetlb_max_hstate++];
1947         h->order = order;
1948         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1949         h->nr_huge_pages = 0;
1950         h->free_huge_pages = 0;
1951         for (i = 0; i < MAX_NUMNODES; ++i)
1952                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1953         INIT_LIST_HEAD(&h->hugepage_activelist);
1954         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1955         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1956         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1957                                         huge_page_size(h)/1024);
1958
1959         parsed_hstate = h;
1960 }
1961
1962 static int __init hugetlb_nrpages_setup(char *s)
1963 {
1964         unsigned long *mhp;
1965         static unsigned long *last_mhp;
1966
1967         /*
1968          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1969          * so this hugepages= parameter goes to the "default hstate".
1970          */
1971         if (!hugetlb_max_hstate)
1972                 mhp = &default_hstate_max_huge_pages;
1973         else
1974                 mhp = &parsed_hstate->max_huge_pages;
1975
1976         if (mhp == last_mhp) {
1977                 pr_warning("hugepages= specified twice without "
1978                            "interleaving hugepagesz=, ignoring\n");
1979                 return 1;
1980         }
1981
1982         if (sscanf(s, "%lu", mhp) <= 0)
1983                 *mhp = 0;
1984
1985         /*
1986          * Global state is always initialized later in hugetlb_init.
1987          * But we need to allocate >= MAX_ORDER hstates here early to still
1988          * use the bootmem allocator.
1989          */
1990         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1991                 hugetlb_hstate_alloc_pages(parsed_hstate);
1992
1993         last_mhp = mhp;
1994
1995         return 1;
1996 }
1997 __setup("hugepages=", hugetlb_nrpages_setup);
1998
1999 static int __init hugetlb_default_setup(char *s)
2000 {
2001         default_hstate_size = memparse(s, &s);
2002         return 1;
2003 }
2004 __setup("default_hugepagesz=", hugetlb_default_setup);
2005
2006 static unsigned int cpuset_mems_nr(unsigned int *array)
2007 {
2008         int node;
2009         unsigned int nr = 0;
2010
2011         for_each_node_mask(node, cpuset_current_mems_allowed)
2012                 nr += array[node];
2013
2014         return nr;
2015 }
2016
2017 #ifdef CONFIG_SYSCTL
2018 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2019                          struct ctl_table *table, int write,
2020                          void __user *buffer, size_t *length, loff_t *ppos)
2021 {
2022         struct hstate *h = &default_hstate;
2023         unsigned long tmp;
2024         int ret;
2025
2026         tmp = h->max_huge_pages;
2027
2028         if (write && h->order >= MAX_ORDER)
2029                 return -EINVAL;
2030
2031         table->data = &tmp;
2032         table->maxlen = sizeof(unsigned long);
2033         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2034         if (ret)
2035                 goto out;
2036
2037         if (write) {
2038                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2039                                                 GFP_KERNEL | __GFP_NORETRY);
2040                 if (!(obey_mempolicy &&
2041                                init_nodemask_of_mempolicy(nodes_allowed))) {
2042                         NODEMASK_FREE(nodes_allowed);
2043                         nodes_allowed = &node_states[N_MEMORY];
2044                 }
2045                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2046
2047                 if (nodes_allowed != &node_states[N_MEMORY])
2048                         NODEMASK_FREE(nodes_allowed);
2049         }
2050 out:
2051         return ret;
2052 }
2053
2054 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2055                           void __user *buffer, size_t *length, loff_t *ppos)
2056 {
2057
2058         return hugetlb_sysctl_handler_common(false, table, write,
2059                                                         buffer, length, ppos);
2060 }
2061
2062 #ifdef CONFIG_NUMA
2063 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2064                           void __user *buffer, size_t *length, loff_t *ppos)
2065 {
2066         return hugetlb_sysctl_handler_common(true, table, write,
2067                                                         buffer, length, ppos);
2068 }
2069 #endif /* CONFIG_NUMA */
2070
2071 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2072                         void __user *buffer,
2073                         size_t *length, loff_t *ppos)
2074 {
2075         proc_dointvec(table, write, buffer, length, ppos);
2076         if (hugepages_treat_as_movable)
2077                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2078         else
2079                 htlb_alloc_mask = GFP_HIGHUSER;
2080         return 0;
2081 }
2082
2083 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2084                         void __user *buffer,
2085                         size_t *length, loff_t *ppos)
2086 {
2087         struct hstate *h = &default_hstate;
2088         unsigned long tmp;
2089         int ret;
2090
2091         tmp = h->nr_overcommit_huge_pages;
2092
2093         if (write && h->order >= MAX_ORDER)
2094                 return -EINVAL;
2095
2096         table->data = &tmp;
2097         table->maxlen = sizeof(unsigned long);
2098         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2099         if (ret)
2100                 goto out;
2101
2102         if (write) {
2103                 spin_lock(&hugetlb_lock);
2104                 h->nr_overcommit_huge_pages = tmp;
2105                 spin_unlock(&hugetlb_lock);
2106         }
2107 out:
2108         return ret;
2109 }
2110
2111 #endif /* CONFIG_SYSCTL */
2112
2113 void hugetlb_report_meminfo(struct seq_file *m)
2114 {
2115         struct hstate *h = &default_hstate;
2116         seq_printf(m,
2117                         "HugePages_Total:   %5lu\n"
2118                         "HugePages_Free:    %5lu\n"
2119                         "HugePages_Rsvd:    %5lu\n"
2120                         "HugePages_Surp:    %5lu\n"
2121                         "Hugepagesize:   %8lu kB\n",
2122                         h->nr_huge_pages,
2123                         h->free_huge_pages,
2124                         h->resv_huge_pages,
2125                         h->surplus_huge_pages,
2126                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2127 }
2128
2129 int hugetlb_report_node_meminfo(int nid, char *buf)
2130 {
2131         struct hstate *h = &default_hstate;
2132         return sprintf(buf,
2133                 "Node %d HugePages_Total: %5u\n"
2134                 "Node %d HugePages_Free:  %5u\n"
2135                 "Node %d HugePages_Surp:  %5u\n",
2136                 nid, h->nr_huge_pages_node[nid],
2137                 nid, h->free_huge_pages_node[nid],
2138                 nid, h->surplus_huge_pages_node[nid]);
2139 }
2140
2141 void hugetlb_show_meminfo(void)
2142 {
2143         struct hstate *h;
2144         int nid;
2145
2146         for_each_node_state(nid, N_MEMORY)
2147                 for_each_hstate(h)
2148                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2149                                 nid,
2150                                 h->nr_huge_pages_node[nid],
2151                                 h->free_huge_pages_node[nid],
2152                                 h->surplus_huge_pages_node[nid],
2153                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2154 }
2155
2156 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2157 unsigned long hugetlb_total_pages(void)
2158 {
2159         struct hstate *h;
2160         unsigned long nr_total_pages = 0;
2161
2162         for_each_hstate(h)
2163                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2164         return nr_total_pages;
2165 }
2166
2167 static int hugetlb_acct_memory(struct hstate *h, long delta)
2168 {
2169         int ret = -ENOMEM;
2170
2171         spin_lock(&hugetlb_lock);
2172         /*
2173          * When cpuset is configured, it breaks the strict hugetlb page
2174          * reservation as the accounting is done on a global variable. Such
2175          * reservation is completely rubbish in the presence of cpuset because
2176          * the reservation is not checked against page availability for the
2177          * current cpuset. Application can still potentially OOM'ed by kernel
2178          * with lack of free htlb page in cpuset that the task is in.
2179          * Attempt to enforce strict accounting with cpuset is almost
2180          * impossible (or too ugly) because cpuset is too fluid that
2181          * task or memory node can be dynamically moved between cpusets.
2182          *
2183          * The change of semantics for shared hugetlb mapping with cpuset is
2184          * undesirable. However, in order to preserve some of the semantics,
2185          * we fall back to check against current free page availability as
2186          * a best attempt and hopefully to minimize the impact of changing
2187          * semantics that cpuset has.
2188          */
2189         if (delta > 0) {
2190                 if (gather_surplus_pages(h, delta) < 0)
2191                         goto out;
2192
2193                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2194                         return_unused_surplus_pages(h, delta);
2195                         goto out;
2196                 }
2197         }
2198
2199         ret = 0;
2200         if (delta < 0)
2201                 return_unused_surplus_pages(h, (unsigned long) -delta);
2202
2203 out:
2204         spin_unlock(&hugetlb_lock);
2205         return ret;
2206 }
2207
2208 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2209 {
2210         struct resv_map *reservations = vma_resv_map(vma);
2211
2212         /*
2213          * This new VMA should share its siblings reservation map if present.
2214          * The VMA will only ever have a valid reservation map pointer where
2215          * it is being copied for another still existing VMA.  As that VMA
2216          * has a reference to the reservation map it cannot disappear until
2217          * after this open call completes.  It is therefore safe to take a
2218          * new reference here without additional locking.
2219          */
2220         if (reservations)
2221                 kref_get(&reservations->refs);
2222 }
2223
2224 static void resv_map_put(struct vm_area_struct *vma)
2225 {
2226         struct resv_map *reservations = vma_resv_map(vma);
2227
2228         if (!reservations)
2229                 return;
2230         kref_put(&reservations->refs, resv_map_release);
2231 }
2232
2233 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2234 {
2235         struct hstate *h = hstate_vma(vma);
2236         struct resv_map *reservations = vma_resv_map(vma);
2237         struct hugepage_subpool *spool = subpool_vma(vma);
2238         unsigned long reserve;
2239         unsigned long start;
2240         unsigned long end;
2241
2242         if (reservations) {
2243                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2244                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2245
2246                 reserve = (end - start) -
2247                         region_count(&reservations->regions, start, end);
2248
2249                 resv_map_put(vma);
2250
2251                 if (reserve) {
2252                         hugetlb_acct_memory(h, -reserve);
2253                         hugepage_subpool_put_pages(spool, reserve);
2254                 }
2255         }
2256 }
2257
2258 /*
2259  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2260  * handle_mm_fault() to try to instantiate regular-sized pages in the
2261  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2262  * this far.
2263  */
2264 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2265 {
2266         BUG();
2267         return 0;
2268 }
2269
2270 const struct vm_operations_struct hugetlb_vm_ops = {
2271         .fault = hugetlb_vm_op_fault,
2272         .open = hugetlb_vm_op_open,
2273         .close = hugetlb_vm_op_close,
2274 };
2275
2276 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2277                                 int writable)
2278 {
2279         pte_t entry;
2280
2281         if (writable) {
2282                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2283                                          vma->vm_page_prot)));
2284         } else {
2285                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2286                                            vma->vm_page_prot));
2287         }
2288         entry = pte_mkyoung(entry);
2289         entry = pte_mkhuge(entry);
2290         entry = arch_make_huge_pte(entry, vma, page, writable);
2291
2292         return entry;
2293 }
2294
2295 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2296                                    unsigned long address, pte_t *ptep)
2297 {
2298         pte_t entry;
2299
2300         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2301         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2302                 update_mmu_cache(vma, address, ptep);
2303 }
2304
2305
2306 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2307                             struct vm_area_struct *vma)
2308 {
2309         pte_t *src_pte, *dst_pte, entry;
2310         struct page *ptepage;
2311         unsigned long addr;
2312         int cow;
2313         struct hstate *h = hstate_vma(vma);
2314         unsigned long sz = huge_page_size(h);
2315
2316         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2317
2318         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2319                 src_pte = huge_pte_offset(src, addr);
2320                 if (!src_pte)
2321                         continue;
2322                 dst_pte = huge_pte_alloc(dst, addr, sz);
2323                 if (!dst_pte)
2324                         goto nomem;
2325
2326                 /* If the pagetables are shared don't copy or take references */
2327                 if (dst_pte == src_pte)
2328                         continue;
2329
2330                 spin_lock(&dst->page_table_lock);
2331                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2332                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2333                         if (cow)
2334                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2335                         entry = huge_ptep_get(src_pte);
2336                         ptepage = pte_page(entry);
2337                         get_page(ptepage);
2338                         page_dup_rmap(ptepage);
2339                         set_huge_pte_at(dst, addr, dst_pte, entry);
2340                 }
2341                 spin_unlock(&src->page_table_lock);
2342                 spin_unlock(&dst->page_table_lock);
2343         }
2344         return 0;
2345
2346 nomem:
2347         return -ENOMEM;
2348 }
2349
2350 static int is_hugetlb_entry_migration(pte_t pte)
2351 {
2352         swp_entry_t swp;
2353
2354         if (huge_pte_none(pte) || pte_present(pte))
2355                 return 0;
2356         swp = pte_to_swp_entry(pte);
2357         if (non_swap_entry(swp) && is_migration_entry(swp))
2358                 return 1;
2359         else
2360                 return 0;
2361 }
2362
2363 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2364 {
2365         swp_entry_t swp;
2366
2367         if (huge_pte_none(pte) || pte_present(pte))
2368                 return 0;
2369         swp = pte_to_swp_entry(pte);
2370         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2371                 return 1;
2372         else
2373                 return 0;
2374 }
2375
2376 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2377                             unsigned long start, unsigned long end,
2378                             struct page *ref_page)
2379 {
2380         int force_flush = 0;
2381         struct mm_struct *mm = vma->vm_mm;
2382         unsigned long address;
2383         pte_t *ptep;
2384         pte_t pte;
2385         struct page *page;
2386         struct hstate *h = hstate_vma(vma);
2387         unsigned long sz = huge_page_size(h);
2388         const unsigned long mmun_start = start; /* For mmu_notifiers */
2389         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2390
2391         WARN_ON(!is_vm_hugetlb_page(vma));
2392         BUG_ON(start & ~huge_page_mask(h));
2393         BUG_ON(end & ~huge_page_mask(h));
2394
2395         tlb_start_vma(tlb, vma);
2396         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2397 again:
2398         spin_lock(&mm->page_table_lock);
2399         for (address = start; address < end; address += sz) {
2400                 ptep = huge_pte_offset(mm, address);
2401                 if (!ptep)
2402                         continue;
2403
2404                 if (huge_pmd_unshare(mm, &address, ptep))
2405                         continue;
2406
2407                 pte = huge_ptep_get(ptep);
2408                 if (huge_pte_none(pte))
2409                         continue;
2410
2411                 /*
2412                  * HWPoisoned hugepage is already unmapped and dropped reference
2413                  */
2414                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2415                         huge_pte_clear(mm, address, ptep);
2416                         continue;
2417                 }
2418
2419                 page = pte_page(pte);
2420                 /*
2421                  * If a reference page is supplied, it is because a specific
2422                  * page is being unmapped, not a range. Ensure the page we
2423                  * are about to unmap is the actual page of interest.
2424                  */
2425                 if (ref_page) {
2426                         if (page != ref_page)
2427                                 continue;
2428
2429                         /*
2430                          * Mark the VMA as having unmapped its page so that
2431                          * future faults in this VMA will fail rather than
2432                          * looking like data was lost
2433                          */
2434                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2435                 }
2436
2437                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2438                 tlb_remove_tlb_entry(tlb, ptep, address);
2439                 if (huge_pte_dirty(pte))
2440                         set_page_dirty(page);
2441
2442                 page_remove_rmap(page);
2443                 force_flush = !__tlb_remove_page(tlb, page);
2444                 if (force_flush)
2445                         break;
2446                 /* Bail out after unmapping reference page if supplied */
2447                 if (ref_page)
2448                         break;
2449         }
2450         spin_unlock(&mm->page_table_lock);
2451         /*
2452          * mmu_gather ran out of room to batch pages, we break out of
2453          * the PTE lock to avoid doing the potential expensive TLB invalidate
2454          * and page-free while holding it.
2455          */
2456         if (force_flush) {
2457                 force_flush = 0;
2458                 tlb_flush_mmu(tlb);
2459                 if (address < end && !ref_page)
2460                         goto again;
2461         }
2462         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2463         tlb_end_vma(tlb, vma);
2464 }
2465
2466 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2467                           struct vm_area_struct *vma, unsigned long start,
2468                           unsigned long end, struct page *ref_page)
2469 {
2470         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2471
2472         /*
2473          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2474          * test will fail on a vma being torn down, and not grab a page table
2475          * on its way out.  We're lucky that the flag has such an appropriate
2476          * name, and can in fact be safely cleared here. We could clear it
2477          * before the __unmap_hugepage_range above, but all that's necessary
2478          * is to clear it before releasing the i_mmap_mutex. This works
2479          * because in the context this is called, the VMA is about to be
2480          * destroyed and the i_mmap_mutex is held.
2481          */
2482         vma->vm_flags &= ~VM_MAYSHARE;
2483 }
2484
2485 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2486                           unsigned long end, struct page *ref_page)
2487 {
2488         struct mm_struct *mm;
2489         struct mmu_gather tlb;
2490
2491         mm = vma->vm_mm;
2492
2493         tlb_gather_mmu(&tlb, mm, 0);
2494         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2495         tlb_finish_mmu(&tlb, start, end);
2496 }
2497
2498 /*
2499  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2500  * mappping it owns the reserve page for. The intention is to unmap the page
2501  * from other VMAs and let the children be SIGKILLed if they are faulting the
2502  * same region.
2503  */
2504 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2505                                 struct page *page, unsigned long address)
2506 {
2507         struct hstate *h = hstate_vma(vma);
2508         struct vm_area_struct *iter_vma;
2509         struct address_space *mapping;
2510         pgoff_t pgoff;
2511
2512         /*
2513          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2514          * from page cache lookup which is in HPAGE_SIZE units.
2515          */
2516         address = address & huge_page_mask(h);
2517         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2518                         vma->vm_pgoff;
2519         mapping = file_inode(vma->vm_file)->i_mapping;
2520
2521         /*
2522          * Take the mapping lock for the duration of the table walk. As
2523          * this mapping should be shared between all the VMAs,
2524          * __unmap_hugepage_range() is called as the lock is already held
2525          */
2526         mutex_lock(&mapping->i_mmap_mutex);
2527         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2528                 /* Do not unmap the current VMA */
2529                 if (iter_vma == vma)
2530                         continue;
2531
2532                 /*
2533                  * Unmap the page from other VMAs without their own reserves.
2534                  * They get marked to be SIGKILLed if they fault in these
2535                  * areas. This is because a future no-page fault on this VMA
2536                  * could insert a zeroed page instead of the data existing
2537                  * from the time of fork. This would look like data corruption
2538                  */
2539                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2540                         unmap_hugepage_range(iter_vma, address,
2541                                              address + huge_page_size(h), page);
2542         }
2543         mutex_unlock(&mapping->i_mmap_mutex);
2544
2545         return 1;
2546 }
2547
2548 /*
2549  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2550  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2551  * cannot race with other handlers or page migration.
2552  * Keep the pte_same checks anyway to make transition from the mutex easier.
2553  */
2554 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2555                         unsigned long address, pte_t *ptep, pte_t pte,
2556                         struct page *pagecache_page)
2557 {
2558         struct hstate *h = hstate_vma(vma);
2559         struct page *old_page, *new_page;
2560         int avoidcopy;
2561         int outside_reserve = 0;
2562         unsigned long mmun_start;       /* For mmu_notifiers */
2563         unsigned long mmun_end;         /* For mmu_notifiers */
2564
2565         old_page = pte_page(pte);
2566
2567 retry_avoidcopy:
2568         /* If no-one else is actually using this page, avoid the copy
2569          * and just make the page writable */
2570         avoidcopy = (page_mapcount(old_page) == 1);
2571         if (avoidcopy) {
2572                 if (PageAnon(old_page))
2573                         page_move_anon_rmap(old_page, vma, address);
2574                 set_huge_ptep_writable(vma, address, ptep);
2575                 return 0;
2576         }
2577
2578         /*
2579          * If the process that created a MAP_PRIVATE mapping is about to
2580          * perform a COW due to a shared page count, attempt to satisfy
2581          * the allocation without using the existing reserves. The pagecache
2582          * page is used to determine if the reserve at this address was
2583          * consumed or not. If reserves were used, a partial faulted mapping
2584          * at the time of fork() could consume its reserves on COW instead
2585          * of the full address range.
2586          */
2587         if (!(vma->vm_flags & VM_MAYSHARE) &&
2588                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2589                         old_page != pagecache_page)
2590                 outside_reserve = 1;
2591
2592         page_cache_get(old_page);
2593
2594         /* Drop page_table_lock as buddy allocator may be called */
2595         spin_unlock(&mm->page_table_lock);
2596         new_page = alloc_huge_page(vma, address, outside_reserve);
2597
2598         if (IS_ERR(new_page)) {
2599                 long err = PTR_ERR(new_page);
2600                 page_cache_release(old_page);
2601
2602                 /*
2603                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2604                  * it is due to references held by a child and an insufficient
2605                  * huge page pool. To guarantee the original mappers
2606                  * reliability, unmap the page from child processes. The child
2607                  * may get SIGKILLed if it later faults.
2608                  */
2609                 if (outside_reserve) {
2610                         BUG_ON(huge_pte_none(pte));
2611                         if (unmap_ref_private(mm, vma, old_page, address)) {
2612                                 BUG_ON(huge_pte_none(pte));
2613                                 spin_lock(&mm->page_table_lock);
2614                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2615                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2616                                         goto retry_avoidcopy;
2617                                 /*
2618                                  * race occurs while re-acquiring page_table_lock, and
2619                                  * our job is done.
2620                                  */
2621                                 return 0;
2622                         }
2623                         WARN_ON_ONCE(1);
2624                 }
2625
2626                 /* Caller expects lock to be held */
2627                 spin_lock(&mm->page_table_lock);
2628                 if (err == -ENOMEM)
2629                         return VM_FAULT_OOM;
2630                 else
2631                         return VM_FAULT_SIGBUS;
2632         }
2633
2634         /*
2635          * When the original hugepage is shared one, it does not have
2636          * anon_vma prepared.
2637          */
2638         if (unlikely(anon_vma_prepare(vma))) {
2639                 page_cache_release(new_page);
2640                 page_cache_release(old_page);
2641                 /* Caller expects lock to be held */
2642                 spin_lock(&mm->page_table_lock);
2643                 return VM_FAULT_OOM;
2644         }
2645
2646         copy_user_huge_page(new_page, old_page, address, vma,
2647                             pages_per_huge_page(h));
2648         __SetPageUptodate(new_page);
2649
2650         mmun_start = address & huge_page_mask(h);
2651         mmun_end = mmun_start + huge_page_size(h);
2652         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2653         /*
2654          * Retake the page_table_lock to check for racing updates
2655          * before the page tables are altered
2656          */
2657         spin_lock(&mm->page_table_lock);
2658         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2659         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2660                 /* Break COW */
2661                 huge_ptep_clear_flush(vma, address, ptep);
2662                 set_huge_pte_at(mm, address, ptep,
2663                                 make_huge_pte(vma, new_page, 1));
2664                 page_remove_rmap(old_page);
2665                 hugepage_add_new_anon_rmap(new_page, vma, address);
2666                 /* Make the old page be freed below */
2667                 new_page = old_page;
2668         }
2669         spin_unlock(&mm->page_table_lock);
2670         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2671         /* Caller expects lock to be held */
2672         spin_lock(&mm->page_table_lock);
2673         page_cache_release(new_page);
2674         page_cache_release(old_page);
2675         return 0;
2676 }
2677
2678 /* Return the pagecache page at a given address within a VMA */
2679 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2680                         struct vm_area_struct *vma, unsigned long address)
2681 {
2682         struct address_space *mapping;
2683         pgoff_t idx;
2684
2685         mapping = vma->vm_file->f_mapping;
2686         idx = vma_hugecache_offset(h, vma, address);
2687
2688         return find_lock_page(mapping, idx);
2689 }
2690
2691 /*
2692  * Return whether there is a pagecache page to back given address within VMA.
2693  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2694  */
2695 static bool hugetlbfs_pagecache_present(struct hstate *h,
2696                         struct vm_area_struct *vma, unsigned long address)
2697 {
2698         struct address_space *mapping;
2699         pgoff_t idx;
2700         struct page *page;
2701
2702         mapping = vma->vm_file->f_mapping;
2703         idx = vma_hugecache_offset(h, vma, address);
2704
2705         page = find_get_page(mapping, idx);
2706         if (page)
2707                 put_page(page);
2708         return page != NULL;
2709 }
2710
2711 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2712                         unsigned long address, pte_t *ptep, unsigned int flags)
2713 {
2714         struct hstate *h = hstate_vma(vma);
2715         int ret = VM_FAULT_SIGBUS;
2716         int anon_rmap = 0;
2717         pgoff_t idx;
2718         unsigned long size;
2719         struct page *page;
2720         struct address_space *mapping;
2721         pte_t new_pte;
2722
2723         /*
2724          * Currently, we are forced to kill the process in the event the
2725          * original mapper has unmapped pages from the child due to a failed
2726          * COW. Warn that such a situation has occurred as it may not be obvious
2727          */
2728         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2729                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2730                            current->pid);
2731                 return ret;
2732         }
2733
2734         mapping = vma->vm_file->f_mapping;
2735         idx = vma_hugecache_offset(h, vma, address);
2736
2737         /*
2738          * Use page lock to guard against racing truncation
2739          * before we get page_table_lock.
2740          */
2741 retry:
2742         page = find_lock_page(mapping, idx);
2743         if (!page) {
2744                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2745                 if (idx >= size)
2746                         goto out;
2747                 page = alloc_huge_page(vma, address, 0);
2748                 if (IS_ERR(page)) {
2749                         ret = PTR_ERR(page);
2750                         if (ret == -ENOMEM)
2751                                 ret = VM_FAULT_OOM;
2752                         else
2753                                 ret = VM_FAULT_SIGBUS;
2754                         goto out;
2755                 }
2756                 clear_huge_page(page, address, pages_per_huge_page(h));
2757                 __SetPageUptodate(page);
2758
2759                 if (vma->vm_flags & VM_MAYSHARE) {
2760                         int err;
2761                         struct inode *inode = mapping->host;
2762
2763                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2764                         if (err) {
2765                                 put_page(page);
2766                                 if (err == -EEXIST)
2767                                         goto retry;
2768                                 goto out;
2769                         }
2770
2771                         spin_lock(&inode->i_lock);
2772                         inode->i_blocks += blocks_per_huge_page(h);
2773                         spin_unlock(&inode->i_lock);
2774                 } else {
2775                         lock_page(page);
2776                         if (unlikely(anon_vma_prepare(vma))) {
2777                                 ret = VM_FAULT_OOM;
2778                                 goto backout_unlocked;
2779                         }
2780                         anon_rmap = 1;
2781                 }
2782         } else {
2783                 /*
2784                  * If memory error occurs between mmap() and fault, some process
2785                  * don't have hwpoisoned swap entry for errored virtual address.
2786                  * So we need to block hugepage fault by PG_hwpoison bit check.
2787                  */
2788                 if (unlikely(PageHWPoison(page))) {
2789                         ret = VM_FAULT_HWPOISON |
2790                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2791                         goto backout_unlocked;
2792                 }
2793         }
2794
2795         /*
2796          * If we are going to COW a private mapping later, we examine the
2797          * pending reservations for this page now. This will ensure that
2798          * any allocations necessary to record that reservation occur outside
2799          * the spinlock.
2800          */
2801         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2802                 if (vma_needs_reservation(h, vma, address) < 0) {
2803                         ret = VM_FAULT_OOM;
2804                         goto backout_unlocked;
2805                 }
2806
2807         spin_lock(&mm->page_table_lock);
2808         size = i_size_read(mapping->host) >> huge_page_shift(h);
2809         if (idx >= size)
2810                 goto backout;
2811
2812         ret = 0;
2813         if (!huge_pte_none(huge_ptep_get(ptep)))
2814                 goto backout;
2815
2816         if (anon_rmap)
2817                 hugepage_add_new_anon_rmap(page, vma, address);
2818         else
2819                 page_dup_rmap(page);
2820         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2821                                 && (vma->vm_flags & VM_SHARED)));
2822         set_huge_pte_at(mm, address, ptep, new_pte);
2823
2824         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2825                 /* Optimization, do the COW without a second fault */
2826                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2827         }
2828
2829         spin_unlock(&mm->page_table_lock);
2830         unlock_page(page);
2831 out:
2832         return ret;
2833
2834 backout:
2835         spin_unlock(&mm->page_table_lock);
2836 backout_unlocked:
2837         unlock_page(page);
2838         put_page(page);
2839         goto out;
2840 }
2841
2842 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2843                         unsigned long address, unsigned int flags)
2844 {
2845         pte_t *ptep;
2846         pte_t entry;
2847         int ret;
2848         struct page *page = NULL;
2849         struct page *pagecache_page = NULL;
2850         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2851         struct hstate *h = hstate_vma(vma);
2852
2853         address &= huge_page_mask(h);
2854
2855         ptep = huge_pte_offset(mm, address);
2856         if (ptep) {
2857                 entry = huge_ptep_get(ptep);
2858                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2859                         migration_entry_wait_huge(mm, ptep);
2860                         return 0;
2861                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2862                         return VM_FAULT_HWPOISON_LARGE |
2863                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2864         }
2865
2866         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2867         if (!ptep)
2868                 return VM_FAULT_OOM;
2869
2870         /*
2871          * Serialize hugepage allocation and instantiation, so that we don't
2872          * get spurious allocation failures if two CPUs race to instantiate
2873          * the same page in the page cache.
2874          */
2875         mutex_lock(&hugetlb_instantiation_mutex);
2876         entry = huge_ptep_get(ptep);
2877         if (huge_pte_none(entry)) {
2878                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2879                 goto out_mutex;
2880         }
2881
2882         ret = 0;
2883
2884         /*
2885          * If we are going to COW the mapping later, we examine the pending
2886          * reservations for this page now. This will ensure that any
2887          * allocations necessary to record that reservation occur outside the
2888          * spinlock. For private mappings, we also lookup the pagecache
2889          * page now as it is used to determine if a reservation has been
2890          * consumed.
2891          */
2892         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2893                 if (vma_needs_reservation(h, vma, address) < 0) {
2894                         ret = VM_FAULT_OOM;
2895                         goto out_mutex;
2896                 }
2897
2898                 if (!(vma->vm_flags & VM_MAYSHARE))
2899                         pagecache_page = hugetlbfs_pagecache_page(h,
2900                                                                 vma, address);
2901         }
2902
2903         /*
2904          * hugetlb_cow() requires page locks of pte_page(entry) and
2905          * pagecache_page, so here we need take the former one
2906          * when page != pagecache_page or !pagecache_page.
2907          * Note that locking order is always pagecache_page -> page,
2908          * so no worry about deadlock.
2909          */
2910         page = pte_page(entry);
2911         get_page(page);
2912         if (page != pagecache_page)
2913                 lock_page(page);
2914
2915         spin_lock(&mm->page_table_lock);
2916         /* Check for a racing update before calling hugetlb_cow */
2917         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2918                 goto out_page_table_lock;
2919
2920
2921         if (flags & FAULT_FLAG_WRITE) {
2922                 if (!huge_pte_write(entry)) {
2923                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2924                                                         pagecache_page);
2925                         goto out_page_table_lock;
2926                 }
2927                 entry = huge_pte_mkdirty(entry);
2928         }
2929         entry = pte_mkyoung(entry);
2930         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2931                                                 flags & FAULT_FLAG_WRITE))
2932                 update_mmu_cache(vma, address, ptep);
2933
2934 out_page_table_lock:
2935         spin_unlock(&mm->page_table_lock);
2936
2937         if (pagecache_page) {
2938                 unlock_page(pagecache_page);
2939                 put_page(pagecache_page);
2940         }
2941         if (page != pagecache_page)
2942                 unlock_page(page);
2943         put_page(page);
2944
2945 out_mutex:
2946         mutex_unlock(&hugetlb_instantiation_mutex);
2947
2948         return ret;
2949 }
2950
2951 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2952                          struct page **pages, struct vm_area_struct **vmas,
2953                          unsigned long *position, unsigned long *nr_pages,
2954                          long i, unsigned int flags)
2955 {
2956         unsigned long pfn_offset;
2957         unsigned long vaddr = *position;
2958         unsigned long remainder = *nr_pages;
2959         struct hstate *h = hstate_vma(vma);
2960
2961         spin_lock(&mm->page_table_lock);
2962         while (vaddr < vma->vm_end && remainder) {
2963                 pte_t *pte;
2964                 int absent;
2965                 struct page *page;
2966
2967                 /*
2968                  * Some archs (sparc64, sh*) have multiple pte_ts to
2969                  * each hugepage.  We have to make sure we get the
2970                  * first, for the page indexing below to work.
2971                  */
2972                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2973                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2974
2975                 /*
2976                  * When coredumping, it suits get_dump_page if we just return
2977                  * an error where there's an empty slot with no huge pagecache
2978                  * to back it.  This way, we avoid allocating a hugepage, and
2979                  * the sparse dumpfile avoids allocating disk blocks, but its
2980                  * huge holes still show up with zeroes where they need to be.
2981                  */
2982                 if (absent && (flags & FOLL_DUMP) &&
2983                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2984                         remainder = 0;
2985                         break;
2986                 }
2987
2988                 /*
2989                  * We need call hugetlb_fault for both hugepages under migration
2990                  * (in which case hugetlb_fault waits for the migration,) and
2991                  * hwpoisoned hugepages (in which case we need to prevent the
2992                  * caller from accessing to them.) In order to do this, we use
2993                  * here is_swap_pte instead of is_hugetlb_entry_migration and
2994                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2995                  * both cases, and because we can't follow correct pages
2996                  * directly from any kind of swap entries.
2997                  */
2998                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2999                     ((flags & FOLL_WRITE) &&
3000                       !huge_pte_write(huge_ptep_get(pte)))) {
3001                         int ret;
3002
3003                         spin_unlock(&mm->page_table_lock);
3004                         ret = hugetlb_fault(mm, vma, vaddr,
3005                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3006                         spin_lock(&mm->page_table_lock);
3007                         if (!(ret & VM_FAULT_ERROR))
3008                                 continue;
3009
3010                         remainder = 0;
3011                         break;
3012                 }
3013
3014                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3015                 page = pte_page(huge_ptep_get(pte));
3016 same_page:
3017                 if (pages) {
3018                         pages[i] = mem_map_offset(page, pfn_offset);
3019                         get_page(pages[i]);
3020                 }
3021
3022                 if (vmas)
3023                         vmas[i] = vma;
3024
3025                 vaddr += PAGE_SIZE;
3026                 ++pfn_offset;
3027                 --remainder;
3028                 ++i;
3029                 if (vaddr < vma->vm_end && remainder &&
3030                                 pfn_offset < pages_per_huge_page(h)) {
3031                         /*
3032                          * We use pfn_offset to avoid touching the pageframes
3033                          * of this compound page.
3034                          */
3035                         goto same_page;
3036                 }
3037         }
3038         spin_unlock(&mm->page_table_lock);
3039         *nr_pages = remainder;
3040         *position = vaddr;
3041
3042         return i ? i : -EFAULT;
3043 }
3044
3045 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3046                 unsigned long address, unsigned long end, pgprot_t newprot)
3047 {
3048         struct mm_struct *mm = vma->vm_mm;
3049         unsigned long start = address;
3050         pte_t *ptep;
3051         pte_t pte;
3052         struct hstate *h = hstate_vma(vma);
3053         unsigned long pages = 0;
3054
3055         BUG_ON(address >= end);
3056         flush_cache_range(vma, address, end);
3057
3058         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3059         spin_lock(&mm->page_table_lock);
3060         for (; address < end; address += huge_page_size(h)) {
3061                 ptep = huge_pte_offset(mm, address);
3062                 if (!ptep)
3063                         continue;
3064                 if (huge_pmd_unshare(mm, &address, ptep)) {
3065                         pages++;
3066                         continue;
3067                 }
3068                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3069                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3070                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3071                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3072                         set_huge_pte_at(mm, address, ptep, pte);
3073                         pages++;
3074                 }
3075         }
3076         spin_unlock(&mm->page_table_lock);
3077         /*
3078          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3079          * may have cleared our pud entry and done put_page on the page table:
3080          * once we release i_mmap_mutex, another task can do the final put_page
3081          * and that page table be reused and filled with junk.
3082          */
3083         flush_tlb_range(vma, start, end);
3084         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3085
3086         return pages << h->order;
3087 }
3088
3089 int hugetlb_reserve_pages(struct inode *inode,
3090                                         long from, long to,
3091                                         struct vm_area_struct *vma,
3092                                         vm_flags_t vm_flags)
3093 {
3094         long ret, chg;
3095         struct hstate *h = hstate_inode(inode);
3096         struct hugepage_subpool *spool = subpool_inode(inode);
3097
3098         /*
3099          * Only apply hugepage reservation if asked. At fault time, an
3100          * attempt will be made for VM_NORESERVE to allocate a page
3101          * without using reserves
3102          */
3103         if (vm_flags & VM_NORESERVE)
3104                 return 0;
3105
3106         /*
3107          * Shared mappings base their reservation on the number of pages that
3108          * are already allocated on behalf of the file. Private mappings need
3109          * to reserve the full area even if read-only as mprotect() may be
3110          * called to make the mapping read-write. Assume !vma is a shm mapping
3111          */
3112         if (!vma || vma->vm_flags & VM_MAYSHARE)
3113                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3114         else {
3115                 struct resv_map *resv_map = resv_map_alloc();
3116                 if (!resv_map)
3117                         return -ENOMEM;
3118
3119                 chg = to - from;
3120
3121                 set_vma_resv_map(vma, resv_map);
3122                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3123         }
3124
3125         if (chg < 0) {
3126                 ret = chg;
3127                 goto out_err;
3128         }
3129
3130         /* There must be enough pages in the subpool for the mapping */
3131         if (hugepage_subpool_get_pages(spool, chg)) {
3132                 ret = -ENOSPC;
3133                 goto out_err;
3134         }
3135
3136         /*
3137          * Check enough hugepages are available for the reservation.
3138          * Hand the pages back to the subpool if there are not
3139          */
3140         ret = hugetlb_acct_memory(h, chg);
3141         if (ret < 0) {
3142                 hugepage_subpool_put_pages(spool, chg);
3143                 goto out_err;
3144         }
3145
3146         /*
3147          * Account for the reservations made. Shared mappings record regions
3148          * that have reservations as they are shared by multiple VMAs.
3149          * When the last VMA disappears, the region map says how much
3150          * the reservation was and the page cache tells how much of
3151          * the reservation was consumed. Private mappings are per-VMA and
3152          * only the consumed reservations are tracked. When the VMA
3153          * disappears, the original reservation is the VMA size and the
3154          * consumed reservations are stored in the map. Hence, nothing
3155          * else has to be done for private mappings here
3156          */
3157         if (!vma || vma->vm_flags & VM_MAYSHARE)
3158                 region_add(&inode->i_mapping->private_list, from, to);
3159         return 0;
3160 out_err:
3161         if (vma)
3162                 resv_map_put(vma);
3163         return ret;
3164 }
3165
3166 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3167 {
3168         struct hstate *h = hstate_inode(inode);
3169         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3170         struct hugepage_subpool *spool = subpool_inode(inode);
3171
3172         spin_lock(&inode->i_lock);
3173         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3174         spin_unlock(&inode->i_lock);
3175
3176         hugepage_subpool_put_pages(spool, (chg - freed));
3177         hugetlb_acct_memory(h, -(chg - freed));
3178 }
3179
3180 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3181 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3182                                 struct vm_area_struct *vma,
3183                                 unsigned long addr, pgoff_t idx)
3184 {
3185         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3186                                 svma->vm_start;
3187         unsigned long sbase = saddr & PUD_MASK;
3188         unsigned long s_end = sbase + PUD_SIZE;
3189
3190         /* Allow segments to share if only one is marked locked */
3191         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3192         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3193
3194         /*
3195          * match the virtual addresses, permission and the alignment of the
3196          * page table page.
3197          */
3198         if (pmd_index(addr) != pmd_index(saddr) ||
3199             vm_flags != svm_flags ||
3200             sbase < svma->vm_start || svma->vm_end < s_end)
3201                 return 0;
3202
3203         return saddr;
3204 }
3205
3206 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3207 {
3208         unsigned long base = addr & PUD_MASK;
3209         unsigned long end = base + PUD_SIZE;
3210
3211         /*
3212          * check on proper vm_flags and page table alignment
3213          */
3214         if (vma->vm_flags & VM_MAYSHARE &&
3215             vma->vm_start <= base && end <= vma->vm_end)
3216                 return 1;
3217         return 0;
3218 }
3219
3220 /*
3221  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3222  * and returns the corresponding pte. While this is not necessary for the
3223  * !shared pmd case because we can allocate the pmd later as well, it makes the
3224  * code much cleaner. pmd allocation is essential for the shared case because
3225  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3226  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3227  * bad pmd for sharing.
3228  */
3229 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3230 {
3231         struct vm_area_struct *vma = find_vma(mm, addr);
3232         struct address_space *mapping = vma->vm_file->f_mapping;
3233         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3234                         vma->vm_pgoff;
3235         struct vm_area_struct *svma;
3236         unsigned long saddr;
3237         pte_t *spte = NULL;
3238         pte_t *pte;
3239
3240         if (!vma_shareable(vma, addr))
3241                 return (pte_t *)pmd_alloc(mm, pud, addr);
3242
3243         mutex_lock(&mapping->i_mmap_mutex);
3244         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3245                 if (svma == vma)
3246                         continue;
3247
3248                 saddr = page_table_shareable(svma, vma, addr, idx);
3249                 if (saddr) {
3250                         spte = huge_pte_offset(svma->vm_mm, saddr);
3251                         if (spte) {
3252                                 get_page(virt_to_page(spte));
3253                                 break;
3254                         }
3255                 }
3256         }
3257
3258         if (!spte)
3259                 goto out;
3260
3261         spin_lock(&mm->page_table_lock);
3262         if (pud_none(*pud))
3263                 pud_populate(mm, pud,
3264                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3265         else
3266                 put_page(virt_to_page(spte));
3267         spin_unlock(&mm->page_table_lock);
3268 out:
3269         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3270         mutex_unlock(&mapping->i_mmap_mutex);
3271         return pte;
3272 }
3273
3274 /*
3275  * unmap huge page backed by shared pte.
3276  *
3277  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3278  * indicated by page_count > 1, unmap is achieved by clearing pud and
3279  * decrementing the ref count. If count == 1, the pte page is not shared.
3280  *
3281  * called with vma->vm_mm->page_table_lock held.
3282  *
3283  * returns: 1 successfully unmapped a shared pte page
3284  *          0 the underlying pte page is not shared, or it is the last user
3285  */
3286 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3287 {
3288         pgd_t *pgd = pgd_offset(mm, *addr);
3289         pud_t *pud = pud_offset(pgd, *addr);
3290
3291         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3292         if (page_count(virt_to_page(ptep)) == 1)
3293                 return 0;
3294
3295         pud_clear(pud);
3296         put_page(virt_to_page(ptep));
3297         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3298         return 1;
3299 }
3300 #define want_pmd_share()        (1)
3301 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3302 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3303 {
3304         return NULL;
3305 }
3306 #define want_pmd_share()        (0)
3307 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3308
3309 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3310 pte_t *huge_pte_alloc(struct mm_struct *mm,
3311                         unsigned long addr, unsigned long sz)
3312 {
3313         pgd_t *pgd;
3314         pud_t *pud;
3315         pte_t *pte = NULL;
3316
3317         pgd = pgd_offset(mm, addr);
3318         pud = pud_alloc(mm, pgd, addr);
3319         if (pud) {
3320                 if (sz == PUD_SIZE) {
3321                         pte = (pte_t *)pud;
3322                 } else {
3323                         BUG_ON(sz != PMD_SIZE);
3324                         if (want_pmd_share() && pud_none(*pud))
3325                                 pte = huge_pmd_share(mm, addr, pud);
3326                         else
3327                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3328                 }
3329         }
3330         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3331
3332         return pte;
3333 }
3334
3335 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3336 {
3337         pgd_t *pgd;
3338         pud_t *pud;
3339         pmd_t *pmd = NULL;
3340
3341         pgd = pgd_offset(mm, addr);
3342         if (pgd_present(*pgd)) {
3343                 pud = pud_offset(pgd, addr);
3344                 if (pud_present(*pud)) {
3345                         if (pud_huge(*pud))
3346                                 return (pte_t *)pud;
3347                         pmd = pmd_offset(pud, addr);
3348                 }
3349         }
3350         return (pte_t *) pmd;
3351 }
3352
3353 struct page *
3354 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3355                 pmd_t *pmd, int write)
3356 {
3357         struct page *page;
3358
3359         page = pte_page(*(pte_t *)pmd);
3360         if (page)
3361                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3362         return page;
3363 }
3364
3365 struct page *
3366 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3367                 pud_t *pud, int write)
3368 {
3369         struct page *page;
3370
3371         page = pte_page(*(pte_t *)pud);
3372         if (page)
3373                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3374         return page;
3375 }
3376
3377 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3378
3379 /* Can be overriden by architectures */
3380 __attribute__((weak)) struct page *
3381 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3382                pud_t *pud, int write)
3383 {
3384         BUG();
3385         return NULL;
3386 }
3387
3388 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3389
3390 #ifdef CONFIG_MEMORY_FAILURE
3391
3392 /* Should be called in hugetlb_lock */
3393 static int is_hugepage_on_freelist(struct page *hpage)
3394 {
3395         struct page *page;
3396         struct page *tmp;
3397         struct hstate *h = page_hstate(hpage);
3398         int nid = page_to_nid(hpage);
3399
3400         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3401                 if (page == hpage)
3402                         return 1;
3403         return 0;
3404 }
3405
3406 /*
3407  * This function is called from memory failure code.
3408  * Assume the caller holds page lock of the head page.
3409  */
3410 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3411 {
3412         struct hstate *h = page_hstate(hpage);
3413         int nid = page_to_nid(hpage);
3414         int ret = -EBUSY;
3415
3416         spin_lock(&hugetlb_lock);
3417         if (is_hugepage_on_freelist(hpage)) {
3418                 /*
3419                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3420                  * but dangling hpage->lru can trigger list-debug warnings
3421                  * (this happens when we call unpoison_memory() on it),
3422                  * so let it point to itself with list_del_init().
3423                  */
3424                 list_del_init(&hpage->lru);
3425                 set_page_refcounted(hpage);
3426                 h->free_huge_pages--;
3427                 h->free_huge_pages_node[nid]--;
3428                 ret = 0;
3429         }
3430         spin_unlock(&hugetlb_lock);
3431         return ret;
3432 }
3433 #endif