91ae1f567997863387784e656cb7c7fccee40dea
[cascardo/linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
26
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include "internal.h"
36
37 int hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42 /*
43  * Minimum page order among possible hugepage sizes, set to a proper value
44  * at boot time.
45  */
46 static unsigned int minimum_order __read_mostly = UINT_MAX;
47
48 __initdata LIST_HEAD(huge_boot_pages);
49
50 /* for command line parsing */
51 static struct hstate * __initdata parsed_hstate;
52 static unsigned long __initdata default_hstate_max_huge_pages;
53 static unsigned long __initdata default_hstate_size;
54 static bool __initdata parsed_valid_hugepagesz = true;
55
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74         bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76         spin_unlock(&spool->lock);
77
78         /* If no pages are used, and no other handles to the subpool
79          * remain, give up any reservations mased on minimum size and
80          * free the subpool */
81         if (free) {
82                 if (spool->min_hpages != -1)
83                         hugetlb_acct_memory(spool->hstate,
84                                                 -spool->min_hpages);
85                 kfree(spool);
86         }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90                                                 long min_hpages)
91 {
92         struct hugepage_subpool *spool;
93
94         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95         if (!spool)
96                 return NULL;
97
98         spin_lock_init(&spool->lock);
99         spool->count = 1;
100         spool->max_hpages = max_hpages;
101         spool->hstate = h;
102         spool->min_hpages = min_hpages;
103
104         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105                 kfree(spool);
106                 return NULL;
107         }
108         spool->rsv_hpages = min_hpages;
109
110         return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115         spin_lock(&spool->lock);
116         BUG_ON(!spool->count);
117         spool->count--;
118         unlock_or_release_subpool(spool);
119 }
120
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130                                       long delta)
131 {
132         long ret = delta;
133
134         if (!spool)
135                 return ret;
136
137         spin_lock(&spool->lock);
138
139         if (spool->max_hpages != -1) {          /* maximum size accounting */
140                 if ((spool->used_hpages + delta) <= spool->max_hpages)
141                         spool->used_hpages += delta;
142                 else {
143                         ret = -ENOMEM;
144                         goto unlock_ret;
145                 }
146         }
147
148         /* minimum size accounting */
149         if (spool->min_hpages != -1 && spool->rsv_hpages) {
150                 if (delta > spool->rsv_hpages) {
151                         /*
152                          * Asking for more reserves than those already taken on
153                          * behalf of subpool.  Return difference.
154                          */
155                         ret = delta - spool->rsv_hpages;
156                         spool->rsv_hpages = 0;
157                 } else {
158                         ret = 0;        /* reserves already accounted for */
159                         spool->rsv_hpages -= delta;
160                 }
161         }
162
163 unlock_ret:
164         spin_unlock(&spool->lock);
165         return ret;
166 }
167
168 /*
169  * Subpool accounting for freeing and unreserving pages.
170  * Return the number of global page reservations that must be dropped.
171  * The return value may only be different than the passed value (delta)
172  * in the case where a subpool minimum size must be maintained.
173  */
174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
175                                        long delta)
176 {
177         long ret = delta;
178
179         if (!spool)
180                 return delta;
181
182         spin_lock(&spool->lock);
183
184         if (spool->max_hpages != -1)            /* maximum size accounting */
185                 spool->used_hpages -= delta;
186
187          /* minimum size accounting */
188         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189                 if (spool->rsv_hpages + delta <= spool->min_hpages)
190                         ret = 0;
191                 else
192                         ret = spool->rsv_hpages + delta - spool->min_hpages;
193
194                 spool->rsv_hpages += delta;
195                 if (spool->rsv_hpages > spool->min_hpages)
196                         spool->rsv_hpages = spool->min_hpages;
197         }
198
199         /*
200          * If hugetlbfs_put_super couldn't free spool due to an outstanding
201          * quota reference, free it now.
202          */
203         unlock_or_release_subpool(spool);
204
205         return ret;
206 }
207
208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
209 {
210         return HUGETLBFS_SB(inode->i_sb)->spool;
211 }
212
213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
214 {
215         return subpool_inode(file_inode(vma->vm_file));
216 }
217
218 /*
219  * Region tracking -- allows tracking of reservations and instantiated pages
220  *                    across the pages in a mapping.
221  *
222  * The region data structures are embedded into a resv_map and protected
223  * by a resv_map's lock.  The set of regions within the resv_map represent
224  * reservations for huge pages, or huge pages that have already been
225  * instantiated within the map.  The from and to elements are huge page
226  * indicies into the associated mapping.  from indicates the starting index
227  * of the region.  to represents the first index past the end of  the region.
228  *
229  * For example, a file region structure with from == 0 and to == 4 represents
230  * four huge pages in a mapping.  It is important to note that the to element
231  * represents the first element past the end of the region. This is used in
232  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
233  *
234  * Interval notation of the form [from, to) will be used to indicate that
235  * the endpoint from is inclusive and to is exclusive.
236  */
237 struct file_region {
238         struct list_head link;
239         long from;
240         long to;
241 };
242
243 /*
244  * Add the huge page range represented by [f, t) to the reserve
245  * map.  In the normal case, existing regions will be expanded
246  * to accommodate the specified range.  Sufficient regions should
247  * exist for expansion due to the previous call to region_chg
248  * with the same range.  However, it is possible that region_del
249  * could have been called after region_chg and modifed the map
250  * in such a way that no region exists to be expanded.  In this
251  * case, pull a region descriptor from the cache associated with
252  * the map and use that for the new range.
253  *
254  * Return the number of new huge pages added to the map.  This
255  * number is greater than or equal to zero.
256  */
257 static long region_add(struct resv_map *resv, long f, long t)
258 {
259         struct list_head *head = &resv->regions;
260         struct file_region *rg, *nrg, *trg;
261         long add = 0;
262
263         spin_lock(&resv->lock);
264         /* Locate the region we are either in or before. */
265         list_for_each_entry(rg, head, link)
266                 if (f <= rg->to)
267                         break;
268
269         /*
270          * If no region exists which can be expanded to include the
271          * specified range, the list must have been modified by an
272          * interleving call to region_del().  Pull a region descriptor
273          * from the cache and use it for this range.
274          */
275         if (&rg->link == head || t < rg->from) {
276                 VM_BUG_ON(resv->region_cache_count <= 0);
277
278                 resv->region_cache_count--;
279                 nrg = list_first_entry(&resv->region_cache, struct file_region,
280                                         link);
281                 list_del(&nrg->link);
282
283                 nrg->from = f;
284                 nrg->to = t;
285                 list_add(&nrg->link, rg->link.prev);
286
287                 add += t - f;
288                 goto out_locked;
289         }
290
291         /* Round our left edge to the current segment if it encloses us. */
292         if (f > rg->from)
293                 f = rg->from;
294
295         /* Check for and consume any regions we now overlap with. */
296         nrg = rg;
297         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298                 if (&rg->link == head)
299                         break;
300                 if (rg->from > t)
301                         break;
302
303                 /* If this area reaches higher then extend our area to
304                  * include it completely.  If this is not the first area
305                  * which we intend to reuse, free it. */
306                 if (rg->to > t)
307                         t = rg->to;
308                 if (rg != nrg) {
309                         /* Decrement return value by the deleted range.
310                          * Another range will span this area so that by
311                          * end of routine add will be >= zero
312                          */
313                         add -= (rg->to - rg->from);
314                         list_del(&rg->link);
315                         kfree(rg);
316                 }
317         }
318
319         add += (nrg->from - f);         /* Added to beginning of region */
320         nrg->from = f;
321         add += t - nrg->to;             /* Added to end of region */
322         nrg->to = t;
323
324 out_locked:
325         resv->adds_in_progress--;
326         spin_unlock(&resv->lock);
327         VM_BUG_ON(add < 0);
328         return add;
329 }
330
331 /*
332  * Examine the existing reserve map and determine how many
333  * huge pages in the specified range [f, t) are NOT currently
334  * represented.  This routine is called before a subsequent
335  * call to region_add that will actually modify the reserve
336  * map to add the specified range [f, t).  region_chg does
337  * not change the number of huge pages represented by the
338  * map.  However, if the existing regions in the map can not
339  * be expanded to represent the new range, a new file_region
340  * structure is added to the map as a placeholder.  This is
341  * so that the subsequent region_add call will have all the
342  * regions it needs and will not fail.
343  *
344  * Upon entry, region_chg will also examine the cache of region descriptors
345  * associated with the map.  If there are not enough descriptors cached, one
346  * will be allocated for the in progress add operation.
347  *
348  * Returns the number of huge pages that need to be added to the existing
349  * reservation map for the range [f, t).  This number is greater or equal to
350  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
351  * is needed and can not be allocated.
352  */
353 static long region_chg(struct resv_map *resv, long f, long t)
354 {
355         struct list_head *head = &resv->regions;
356         struct file_region *rg, *nrg = NULL;
357         long chg = 0;
358
359 retry:
360         spin_lock(&resv->lock);
361 retry_locked:
362         resv->adds_in_progress++;
363
364         /*
365          * Check for sufficient descriptors in the cache to accommodate
366          * the number of in progress add operations.
367          */
368         if (resv->adds_in_progress > resv->region_cache_count) {
369                 struct file_region *trg;
370
371                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372                 /* Must drop lock to allocate a new descriptor. */
373                 resv->adds_in_progress--;
374                 spin_unlock(&resv->lock);
375
376                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377                 if (!trg) {
378                         kfree(nrg);
379                         return -ENOMEM;
380                 }
381
382                 spin_lock(&resv->lock);
383                 list_add(&trg->link, &resv->region_cache);
384                 resv->region_cache_count++;
385                 goto retry_locked;
386         }
387
388         /* Locate the region we are before or in. */
389         list_for_each_entry(rg, head, link)
390                 if (f <= rg->to)
391                         break;
392
393         /* If we are below the current region then a new region is required.
394          * Subtle, allocate a new region at the position but make it zero
395          * size such that we can guarantee to record the reservation. */
396         if (&rg->link == head || t < rg->from) {
397                 if (!nrg) {
398                         resv->adds_in_progress--;
399                         spin_unlock(&resv->lock);
400                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
401                         if (!nrg)
402                                 return -ENOMEM;
403
404                         nrg->from = f;
405                         nrg->to   = f;
406                         INIT_LIST_HEAD(&nrg->link);
407                         goto retry;
408                 }
409
410                 list_add(&nrg->link, rg->link.prev);
411                 chg = t - f;
412                 goto out_nrg;
413         }
414
415         /* Round our left edge to the current segment if it encloses us. */
416         if (f > rg->from)
417                 f = rg->from;
418         chg = t - f;
419
420         /* Check for and consume any regions we now overlap with. */
421         list_for_each_entry(rg, rg->link.prev, link) {
422                 if (&rg->link == head)
423                         break;
424                 if (rg->from > t)
425                         goto out;
426
427                 /* We overlap with this area, if it extends further than
428                  * us then we must extend ourselves.  Account for its
429                  * existing reservation. */
430                 if (rg->to > t) {
431                         chg += rg->to - t;
432                         t = rg->to;
433                 }
434                 chg -= rg->to - rg->from;
435         }
436
437 out:
438         spin_unlock(&resv->lock);
439         /*  We already know we raced and no longer need the new region */
440         kfree(nrg);
441         return chg;
442 out_nrg:
443         spin_unlock(&resv->lock);
444         return chg;
445 }
446
447 /*
448  * Abort the in progress add operation.  The adds_in_progress field
449  * of the resv_map keeps track of the operations in progress between
450  * calls to region_chg and region_add.  Operations are sometimes
451  * aborted after the call to region_chg.  In such cases, region_abort
452  * is called to decrement the adds_in_progress counter.
453  *
454  * NOTE: The range arguments [f, t) are not needed or used in this
455  * routine.  They are kept to make reading the calling code easier as
456  * arguments will match the associated region_chg call.
457  */
458 static void region_abort(struct resv_map *resv, long f, long t)
459 {
460         spin_lock(&resv->lock);
461         VM_BUG_ON(!resv->region_cache_count);
462         resv->adds_in_progress--;
463         spin_unlock(&resv->lock);
464 }
465
466 /*
467  * Delete the specified range [f, t) from the reserve map.  If the
468  * t parameter is LONG_MAX, this indicates that ALL regions after f
469  * should be deleted.  Locate the regions which intersect [f, t)
470  * and either trim, delete or split the existing regions.
471  *
472  * Returns the number of huge pages deleted from the reserve map.
473  * In the normal case, the return value is zero or more.  In the
474  * case where a region must be split, a new region descriptor must
475  * be allocated.  If the allocation fails, -ENOMEM will be returned.
476  * NOTE: If the parameter t == LONG_MAX, then we will never split
477  * a region and possibly return -ENOMEM.  Callers specifying
478  * t == LONG_MAX do not need to check for -ENOMEM error.
479  */
480 static long region_del(struct resv_map *resv, long f, long t)
481 {
482         struct list_head *head = &resv->regions;
483         struct file_region *rg, *trg;
484         struct file_region *nrg = NULL;
485         long del = 0;
486
487 retry:
488         spin_lock(&resv->lock);
489         list_for_each_entry_safe(rg, trg, head, link) {
490                 /*
491                  * Skip regions before the range to be deleted.  file_region
492                  * ranges are normally of the form [from, to).  However, there
493                  * may be a "placeholder" entry in the map which is of the form
494                  * (from, to) with from == to.  Check for placeholder entries
495                  * at the beginning of the range to be deleted.
496                  */
497                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
498                         continue;
499
500                 if (rg->from >= t)
501                         break;
502
503                 if (f > rg->from && t < rg->to) { /* Must split region */
504                         /*
505                          * Check for an entry in the cache before dropping
506                          * lock and attempting allocation.
507                          */
508                         if (!nrg &&
509                             resv->region_cache_count > resv->adds_in_progress) {
510                                 nrg = list_first_entry(&resv->region_cache,
511                                                         struct file_region,
512                                                         link);
513                                 list_del(&nrg->link);
514                                 resv->region_cache_count--;
515                         }
516
517                         if (!nrg) {
518                                 spin_unlock(&resv->lock);
519                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
520                                 if (!nrg)
521                                         return -ENOMEM;
522                                 goto retry;
523                         }
524
525                         del += t - f;
526
527                         /* New entry for end of split region */
528                         nrg->from = t;
529                         nrg->to = rg->to;
530                         INIT_LIST_HEAD(&nrg->link);
531
532                         /* Original entry is trimmed */
533                         rg->to = f;
534
535                         list_add(&nrg->link, &rg->link);
536                         nrg = NULL;
537                         break;
538                 }
539
540                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541                         del += rg->to - rg->from;
542                         list_del(&rg->link);
543                         kfree(rg);
544                         continue;
545                 }
546
547                 if (f <= rg->from) {    /* Trim beginning of region */
548                         del += t - rg->from;
549                         rg->from = t;
550                 } else {                /* Trim end of region */
551                         del += rg->to - f;
552                         rg->to = f;
553                 }
554         }
555
556         spin_unlock(&resv->lock);
557         kfree(nrg);
558         return del;
559 }
560
561 /*
562  * A rare out of memory error was encountered which prevented removal of
563  * the reserve map region for a page.  The huge page itself was free'ed
564  * and removed from the page cache.  This routine will adjust the subpool
565  * usage count, and the global reserve count if needed.  By incrementing
566  * these counts, the reserve map entry which could not be deleted will
567  * appear as a "reserved" entry instead of simply dangling with incorrect
568  * counts.
569  */
570 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
571 {
572         struct hugepage_subpool *spool = subpool_inode(inode);
573         long rsv_adjust;
574
575         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
576         if (restore_reserve && rsv_adjust) {
577                 struct hstate *h = hstate_inode(inode);
578
579                 hugetlb_acct_memory(h, 1);
580         }
581 }
582
583 /*
584  * Count and return the number of huge pages in the reserve map
585  * that intersect with the range [f, t).
586  */
587 static long region_count(struct resv_map *resv, long f, long t)
588 {
589         struct list_head *head = &resv->regions;
590         struct file_region *rg;
591         long chg = 0;
592
593         spin_lock(&resv->lock);
594         /* Locate each segment we overlap with, and count that overlap. */
595         list_for_each_entry(rg, head, link) {
596                 long seg_from;
597                 long seg_to;
598
599                 if (rg->to <= f)
600                         continue;
601                 if (rg->from >= t)
602                         break;
603
604                 seg_from = max(rg->from, f);
605                 seg_to = min(rg->to, t);
606
607                 chg += seg_to - seg_from;
608         }
609         spin_unlock(&resv->lock);
610
611         return chg;
612 }
613
614 /*
615  * Convert the address within this vma to the page offset within
616  * the mapping, in pagecache page units; huge pages here.
617  */
618 static pgoff_t vma_hugecache_offset(struct hstate *h,
619                         struct vm_area_struct *vma, unsigned long address)
620 {
621         return ((address - vma->vm_start) >> huge_page_shift(h)) +
622                         (vma->vm_pgoff >> huge_page_order(h));
623 }
624
625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626                                      unsigned long address)
627 {
628         return vma_hugecache_offset(hstate_vma(vma), vma, address);
629 }
630 EXPORT_SYMBOL_GPL(linear_hugepage_index);
631
632 /*
633  * Return the size of the pages allocated when backing a VMA. In the majority
634  * cases this will be same size as used by the page table entries.
635  */
636 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
637 {
638         struct hstate *hstate;
639
640         if (!is_vm_hugetlb_page(vma))
641                 return PAGE_SIZE;
642
643         hstate = hstate_vma(vma);
644
645         return 1UL << huge_page_shift(hstate);
646 }
647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
648
649 /*
650  * Return the page size being used by the MMU to back a VMA. In the majority
651  * of cases, the page size used by the kernel matches the MMU size. On
652  * architectures where it differs, an architecture-specific version of this
653  * function is required.
654  */
655 #ifndef vma_mmu_pagesize
656 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
657 {
658         return vma_kernel_pagesize(vma);
659 }
660 #endif
661
662 /*
663  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
664  * bits of the reservation map pointer, which are always clear due to
665  * alignment.
666  */
667 #define HPAGE_RESV_OWNER    (1UL << 0)
668 #define HPAGE_RESV_UNMAPPED (1UL << 1)
669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
670
671 /*
672  * These helpers are used to track how many pages are reserved for
673  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674  * is guaranteed to have their future faults succeed.
675  *
676  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677  * the reserve counters are updated with the hugetlb_lock held. It is safe
678  * to reset the VMA at fork() time as it is not in use yet and there is no
679  * chance of the global counters getting corrupted as a result of the values.
680  *
681  * The private mapping reservation is represented in a subtly different
682  * manner to a shared mapping.  A shared mapping has a region map associated
683  * with the underlying file, this region map represents the backing file
684  * pages which have ever had a reservation assigned which this persists even
685  * after the page is instantiated.  A private mapping has a region map
686  * associated with the original mmap which is attached to all VMAs which
687  * reference it, this region map represents those offsets which have consumed
688  * reservation ie. where pages have been instantiated.
689  */
690 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
691 {
692         return (unsigned long)vma->vm_private_data;
693 }
694
695 static void set_vma_private_data(struct vm_area_struct *vma,
696                                                         unsigned long value)
697 {
698         vma->vm_private_data = (void *)value;
699 }
700
701 struct resv_map *resv_map_alloc(void)
702 {
703         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
704         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
705
706         if (!resv_map || !rg) {
707                 kfree(resv_map);
708                 kfree(rg);
709                 return NULL;
710         }
711
712         kref_init(&resv_map->refs);
713         spin_lock_init(&resv_map->lock);
714         INIT_LIST_HEAD(&resv_map->regions);
715
716         resv_map->adds_in_progress = 0;
717
718         INIT_LIST_HEAD(&resv_map->region_cache);
719         list_add(&rg->link, &resv_map->region_cache);
720         resv_map->region_cache_count = 1;
721
722         return resv_map;
723 }
724
725 void resv_map_release(struct kref *ref)
726 {
727         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
728         struct list_head *head = &resv_map->region_cache;
729         struct file_region *rg, *trg;
730
731         /* Clear out any active regions before we release the map. */
732         region_del(resv_map, 0, LONG_MAX);
733
734         /* ... and any entries left in the cache */
735         list_for_each_entry_safe(rg, trg, head, link) {
736                 list_del(&rg->link);
737                 kfree(rg);
738         }
739
740         VM_BUG_ON(resv_map->adds_in_progress);
741
742         kfree(resv_map);
743 }
744
745 static inline struct resv_map *inode_resv_map(struct inode *inode)
746 {
747         return inode->i_mapping->private_data;
748 }
749
750 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
751 {
752         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753         if (vma->vm_flags & VM_MAYSHARE) {
754                 struct address_space *mapping = vma->vm_file->f_mapping;
755                 struct inode *inode = mapping->host;
756
757                 return inode_resv_map(inode);
758
759         } else {
760                 return (struct resv_map *)(get_vma_private_data(vma) &
761                                                         ~HPAGE_RESV_MASK);
762         }
763 }
764
765 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
766 {
767         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
768         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
769
770         set_vma_private_data(vma, (get_vma_private_data(vma) &
771                                 HPAGE_RESV_MASK) | (unsigned long)map);
772 }
773
774 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
775 {
776         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
777         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
778
779         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
780 }
781
782 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
783 {
784         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
785
786         return (get_vma_private_data(vma) & flag) != 0;
787 }
788
789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
791 {
792         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
793         if (!(vma->vm_flags & VM_MAYSHARE))
794                 vma->vm_private_data = (void *)0;
795 }
796
797 /* Returns true if the VMA has associated reserve pages */
798 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
799 {
800         if (vma->vm_flags & VM_NORESERVE) {
801                 /*
802                  * This address is already reserved by other process(chg == 0),
803                  * so, we should decrement reserved count. Without decrementing,
804                  * reserve count remains after releasing inode, because this
805                  * allocated page will go into page cache and is regarded as
806                  * coming from reserved pool in releasing step.  Currently, we
807                  * don't have any other solution to deal with this situation
808                  * properly, so add work-around here.
809                  */
810                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
811                         return true;
812                 else
813                         return false;
814         }
815
816         /* Shared mappings always use reserves */
817         if (vma->vm_flags & VM_MAYSHARE) {
818                 /*
819                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
820                  * be a region map for all pages.  The only situation where
821                  * there is no region map is if a hole was punched via
822                  * fallocate.  In this case, there really are no reverves to
823                  * use.  This situation is indicated if chg != 0.
824                  */
825                 if (chg)
826                         return false;
827                 else
828                         return true;
829         }
830
831         /*
832          * Only the process that called mmap() has reserves for
833          * private mappings.
834          */
835         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
836                 /*
837                  * Like the shared case above, a hole punch or truncate
838                  * could have been performed on the private mapping.
839                  * Examine the value of chg to determine if reserves
840                  * actually exist or were previously consumed.
841                  * Very Subtle - The value of chg comes from a previous
842                  * call to vma_needs_reserves().  The reserve map for
843                  * private mappings has different (opposite) semantics
844                  * than that of shared mappings.  vma_needs_reserves()
845                  * has already taken this difference in semantics into
846                  * account.  Therefore, the meaning of chg is the same
847                  * as in the shared case above.  Code could easily be
848                  * combined, but keeping it separate draws attention to
849                  * subtle differences.
850                  */
851                 if (chg)
852                         return false;
853                 else
854                         return true;
855         }
856
857         return false;
858 }
859
860 static void enqueue_huge_page(struct hstate *h, struct page *page)
861 {
862         int nid = page_to_nid(page);
863         list_move(&page->lru, &h->hugepage_freelists[nid]);
864         h->free_huge_pages++;
865         h->free_huge_pages_node[nid]++;
866 }
867
868 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
869 {
870         struct page *page;
871
872         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
873                 if (!is_migrate_isolate_page(page))
874                         break;
875         /*
876          * if 'non-isolated free hugepage' not found on the list,
877          * the allocation fails.
878          */
879         if (&h->hugepage_freelists[nid] == &page->lru)
880                 return NULL;
881         list_move(&page->lru, &h->hugepage_activelist);
882         set_page_refcounted(page);
883         h->free_huge_pages--;
884         h->free_huge_pages_node[nid]--;
885         return page;
886 }
887
888 /* Movability of hugepages depends on migration support. */
889 static inline gfp_t htlb_alloc_mask(struct hstate *h)
890 {
891         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
892                 return GFP_HIGHUSER_MOVABLE;
893         else
894                 return GFP_HIGHUSER;
895 }
896
897 static struct page *dequeue_huge_page_vma(struct hstate *h,
898                                 struct vm_area_struct *vma,
899                                 unsigned long address, int avoid_reserve,
900                                 long chg)
901 {
902         struct page *page = NULL;
903         struct mempolicy *mpol;
904         nodemask_t *nodemask;
905         struct zonelist *zonelist;
906         struct zone *zone;
907         struct zoneref *z;
908         unsigned int cpuset_mems_cookie;
909
910         /*
911          * A child process with MAP_PRIVATE mappings created by their parent
912          * have no page reserves. This check ensures that reservations are
913          * not "stolen". The child may still get SIGKILLed
914          */
915         if (!vma_has_reserves(vma, chg) &&
916                         h->free_huge_pages - h->resv_huge_pages == 0)
917                 goto err;
918
919         /* If reserves cannot be used, ensure enough pages are in the pool */
920         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
921                 goto err;
922
923 retry_cpuset:
924         cpuset_mems_cookie = read_mems_allowed_begin();
925         zonelist = huge_zonelist(vma, address,
926                                         htlb_alloc_mask(h), &mpol, &nodemask);
927
928         for_each_zone_zonelist_nodemask(zone, z, zonelist,
929                                                 MAX_NR_ZONES - 1, nodemask) {
930                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
931                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
932                         if (page) {
933                                 if (avoid_reserve)
934                                         break;
935                                 if (!vma_has_reserves(vma, chg))
936                                         break;
937
938                                 SetPagePrivate(page);
939                                 h->resv_huge_pages--;
940                                 break;
941                         }
942                 }
943         }
944
945         mpol_cond_put(mpol);
946         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
947                 goto retry_cpuset;
948         return page;
949
950 err:
951         return NULL;
952 }
953
954 /*
955  * common helper functions for hstate_next_node_to_{alloc|free}.
956  * We may have allocated or freed a huge page based on a different
957  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
958  * be outside of *nodes_allowed.  Ensure that we use an allowed
959  * node for alloc or free.
960  */
961 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
962 {
963         nid = next_node_in(nid, *nodes_allowed);
964         VM_BUG_ON(nid >= MAX_NUMNODES);
965
966         return nid;
967 }
968
969 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
970 {
971         if (!node_isset(nid, *nodes_allowed))
972                 nid = next_node_allowed(nid, nodes_allowed);
973         return nid;
974 }
975
976 /*
977  * returns the previously saved node ["this node"] from which to
978  * allocate a persistent huge page for the pool and advance the
979  * next node from which to allocate, handling wrap at end of node
980  * mask.
981  */
982 static int hstate_next_node_to_alloc(struct hstate *h,
983                                         nodemask_t *nodes_allowed)
984 {
985         int nid;
986
987         VM_BUG_ON(!nodes_allowed);
988
989         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
990         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
991
992         return nid;
993 }
994
995 /*
996  * helper for free_pool_huge_page() - return the previously saved
997  * node ["this node"] from which to free a huge page.  Advance the
998  * next node id whether or not we find a free huge page to free so
999  * that the next attempt to free addresses the next node.
1000  */
1001 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1002 {
1003         int nid;
1004
1005         VM_BUG_ON(!nodes_allowed);
1006
1007         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1008         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1009
1010         return nid;
1011 }
1012
1013 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1014         for (nr_nodes = nodes_weight(*mask);                            \
1015                 nr_nodes > 0 &&                                         \
1016                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1017                 nr_nodes--)
1018
1019 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1020         for (nr_nodes = nodes_weight(*mask);                            \
1021                 nr_nodes > 0 &&                                         \
1022                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1023                 nr_nodes--)
1024
1025 #if (defined(CONFIG_X86_64) || defined(CONFIG_S390)) && \
1026         ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1027         defined(CONFIG_CMA))
1028 static void destroy_compound_gigantic_page(struct page *page,
1029                                         unsigned int order)
1030 {
1031         int i;
1032         int nr_pages = 1 << order;
1033         struct page *p = page + 1;
1034
1035         atomic_set(compound_mapcount_ptr(page), 0);
1036         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1037                 clear_compound_head(p);
1038                 set_page_refcounted(p);
1039         }
1040
1041         set_compound_order(page, 0);
1042         __ClearPageHead(page);
1043 }
1044
1045 static void free_gigantic_page(struct page *page, unsigned int order)
1046 {
1047         free_contig_range(page_to_pfn(page), 1 << order);
1048 }
1049
1050 static int __alloc_gigantic_page(unsigned long start_pfn,
1051                                 unsigned long nr_pages)
1052 {
1053         unsigned long end_pfn = start_pfn + nr_pages;
1054         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1055 }
1056
1057 static bool pfn_range_valid_gigantic(struct zone *z,
1058                         unsigned long start_pfn, unsigned long nr_pages)
1059 {
1060         unsigned long i, end_pfn = start_pfn + nr_pages;
1061         struct page *page;
1062
1063         for (i = start_pfn; i < end_pfn; i++) {
1064                 if (!pfn_valid(i))
1065                         return false;
1066
1067                 page = pfn_to_page(i);
1068
1069                 if (page_zone(page) != z)
1070                         return false;
1071
1072                 if (PageReserved(page))
1073                         return false;
1074
1075                 if (page_count(page) > 0)
1076                         return false;
1077
1078                 if (PageHuge(page))
1079                         return false;
1080         }
1081
1082         return true;
1083 }
1084
1085 static bool zone_spans_last_pfn(const struct zone *zone,
1086                         unsigned long start_pfn, unsigned long nr_pages)
1087 {
1088         unsigned long last_pfn = start_pfn + nr_pages - 1;
1089         return zone_spans_pfn(zone, last_pfn);
1090 }
1091
1092 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1093 {
1094         unsigned long nr_pages = 1 << order;
1095         unsigned long ret, pfn, flags;
1096         struct zone *z;
1097
1098         z = NODE_DATA(nid)->node_zones;
1099         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1100                 spin_lock_irqsave(&z->lock, flags);
1101
1102                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1103                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1104                         if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1105                                 /*
1106                                  * We release the zone lock here because
1107                                  * alloc_contig_range() will also lock the zone
1108                                  * at some point. If there's an allocation
1109                                  * spinning on this lock, it may win the race
1110                                  * and cause alloc_contig_range() to fail...
1111                                  */
1112                                 spin_unlock_irqrestore(&z->lock, flags);
1113                                 ret = __alloc_gigantic_page(pfn, nr_pages);
1114                                 if (!ret)
1115                                         return pfn_to_page(pfn);
1116                                 spin_lock_irqsave(&z->lock, flags);
1117                         }
1118                         pfn += nr_pages;
1119                 }
1120
1121                 spin_unlock_irqrestore(&z->lock, flags);
1122         }
1123
1124         return NULL;
1125 }
1126
1127 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1128 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1129
1130 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1131 {
1132         struct page *page;
1133
1134         page = alloc_gigantic_page(nid, huge_page_order(h));
1135         if (page) {
1136                 prep_compound_gigantic_page(page, huge_page_order(h));
1137                 prep_new_huge_page(h, page, nid);
1138         }
1139
1140         return page;
1141 }
1142
1143 static int alloc_fresh_gigantic_page(struct hstate *h,
1144                                 nodemask_t *nodes_allowed)
1145 {
1146         struct page *page = NULL;
1147         int nr_nodes, node;
1148
1149         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1150                 page = alloc_fresh_gigantic_page_node(h, node);
1151                 if (page)
1152                         return 1;
1153         }
1154
1155         return 0;
1156 }
1157
1158 static inline bool gigantic_page_supported(void) { return true; }
1159 #else
1160 static inline bool gigantic_page_supported(void) { return false; }
1161 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1162 static inline void destroy_compound_gigantic_page(struct page *page,
1163                                                 unsigned int order) { }
1164 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1165                                         nodemask_t *nodes_allowed) { return 0; }
1166 #endif
1167
1168 static void update_and_free_page(struct hstate *h, struct page *page)
1169 {
1170         int i;
1171
1172         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1173                 return;
1174
1175         h->nr_huge_pages--;
1176         h->nr_huge_pages_node[page_to_nid(page)]--;
1177         for (i = 0; i < pages_per_huge_page(h); i++) {
1178                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1179                                 1 << PG_referenced | 1 << PG_dirty |
1180                                 1 << PG_active | 1 << PG_private |
1181                                 1 << PG_writeback);
1182         }
1183         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1184         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1185         set_page_refcounted(page);
1186         if (hstate_is_gigantic(h)) {
1187                 destroy_compound_gigantic_page(page, huge_page_order(h));
1188                 free_gigantic_page(page, huge_page_order(h));
1189         } else {
1190                 __free_pages(page, huge_page_order(h));
1191         }
1192 }
1193
1194 struct hstate *size_to_hstate(unsigned long size)
1195 {
1196         struct hstate *h;
1197
1198         for_each_hstate(h) {
1199                 if (huge_page_size(h) == size)
1200                         return h;
1201         }
1202         return NULL;
1203 }
1204
1205 /*
1206  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1207  * to hstate->hugepage_activelist.)
1208  *
1209  * This function can be called for tail pages, but never returns true for them.
1210  */
1211 bool page_huge_active(struct page *page)
1212 {
1213         VM_BUG_ON_PAGE(!PageHuge(page), page);
1214         return PageHead(page) && PagePrivate(&page[1]);
1215 }
1216
1217 /* never called for tail page */
1218 static void set_page_huge_active(struct page *page)
1219 {
1220         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1221         SetPagePrivate(&page[1]);
1222 }
1223
1224 static void clear_page_huge_active(struct page *page)
1225 {
1226         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227         ClearPagePrivate(&page[1]);
1228 }
1229
1230 void free_huge_page(struct page *page)
1231 {
1232         /*
1233          * Can't pass hstate in here because it is called from the
1234          * compound page destructor.
1235          */
1236         struct hstate *h = page_hstate(page);
1237         int nid = page_to_nid(page);
1238         struct hugepage_subpool *spool =
1239                 (struct hugepage_subpool *)page_private(page);
1240         bool restore_reserve;
1241
1242         set_page_private(page, 0);
1243         page->mapping = NULL;
1244         VM_BUG_ON_PAGE(page_count(page), page);
1245         VM_BUG_ON_PAGE(page_mapcount(page), page);
1246         restore_reserve = PagePrivate(page);
1247         ClearPagePrivate(page);
1248
1249         /*
1250          * A return code of zero implies that the subpool will be under its
1251          * minimum size if the reservation is not restored after page is free.
1252          * Therefore, force restore_reserve operation.
1253          */
1254         if (hugepage_subpool_put_pages(spool, 1) == 0)
1255                 restore_reserve = true;
1256
1257         spin_lock(&hugetlb_lock);
1258         clear_page_huge_active(page);
1259         hugetlb_cgroup_uncharge_page(hstate_index(h),
1260                                      pages_per_huge_page(h), page);
1261         if (restore_reserve)
1262                 h->resv_huge_pages++;
1263
1264         if (h->surplus_huge_pages_node[nid]) {
1265                 /* remove the page from active list */
1266                 list_del(&page->lru);
1267                 update_and_free_page(h, page);
1268                 h->surplus_huge_pages--;
1269                 h->surplus_huge_pages_node[nid]--;
1270         } else {
1271                 arch_clear_hugepage_flags(page);
1272                 enqueue_huge_page(h, page);
1273         }
1274         spin_unlock(&hugetlb_lock);
1275 }
1276
1277 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1278 {
1279         INIT_LIST_HEAD(&page->lru);
1280         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1281         spin_lock(&hugetlb_lock);
1282         set_hugetlb_cgroup(page, NULL);
1283         h->nr_huge_pages++;
1284         h->nr_huge_pages_node[nid]++;
1285         spin_unlock(&hugetlb_lock);
1286         put_page(page); /* free it into the hugepage allocator */
1287 }
1288
1289 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1290 {
1291         int i;
1292         int nr_pages = 1 << order;
1293         struct page *p = page + 1;
1294
1295         /* we rely on prep_new_huge_page to set the destructor */
1296         set_compound_order(page, order);
1297         __ClearPageReserved(page);
1298         __SetPageHead(page);
1299         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1300                 /*
1301                  * For gigantic hugepages allocated through bootmem at
1302                  * boot, it's safer to be consistent with the not-gigantic
1303                  * hugepages and clear the PG_reserved bit from all tail pages
1304                  * too.  Otherwse drivers using get_user_pages() to access tail
1305                  * pages may get the reference counting wrong if they see
1306                  * PG_reserved set on a tail page (despite the head page not
1307                  * having PG_reserved set).  Enforcing this consistency between
1308                  * head and tail pages allows drivers to optimize away a check
1309                  * on the head page when they need know if put_page() is needed
1310                  * after get_user_pages().
1311                  */
1312                 __ClearPageReserved(p);
1313                 set_page_count(p, 0);
1314                 set_compound_head(p, page);
1315         }
1316         atomic_set(compound_mapcount_ptr(page), -1);
1317 }
1318
1319 /*
1320  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1321  * transparent huge pages.  See the PageTransHuge() documentation for more
1322  * details.
1323  */
1324 int PageHuge(struct page *page)
1325 {
1326         if (!PageCompound(page))
1327                 return 0;
1328
1329         page = compound_head(page);
1330         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1331 }
1332 EXPORT_SYMBOL_GPL(PageHuge);
1333
1334 /*
1335  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1336  * normal or transparent huge pages.
1337  */
1338 int PageHeadHuge(struct page *page_head)
1339 {
1340         if (!PageHead(page_head))
1341                 return 0;
1342
1343         return get_compound_page_dtor(page_head) == free_huge_page;
1344 }
1345
1346 pgoff_t __basepage_index(struct page *page)
1347 {
1348         struct page *page_head = compound_head(page);
1349         pgoff_t index = page_index(page_head);
1350         unsigned long compound_idx;
1351
1352         if (!PageHuge(page_head))
1353                 return page_index(page);
1354
1355         if (compound_order(page_head) >= MAX_ORDER)
1356                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1357         else
1358                 compound_idx = page - page_head;
1359
1360         return (index << compound_order(page_head)) + compound_idx;
1361 }
1362
1363 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1364 {
1365         struct page *page;
1366
1367         page = __alloc_pages_node(nid,
1368                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1369                                                 __GFP_REPEAT|__GFP_NOWARN,
1370                 huge_page_order(h));
1371         if (page) {
1372                 prep_new_huge_page(h, page, nid);
1373         }
1374
1375         return page;
1376 }
1377
1378 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1379 {
1380         struct page *page;
1381         int nr_nodes, node;
1382         int ret = 0;
1383
1384         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1385                 page = alloc_fresh_huge_page_node(h, node);
1386                 if (page) {
1387                         ret = 1;
1388                         break;
1389                 }
1390         }
1391
1392         if (ret)
1393                 count_vm_event(HTLB_BUDDY_PGALLOC);
1394         else
1395                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1396
1397         return ret;
1398 }
1399
1400 /*
1401  * Free huge page from pool from next node to free.
1402  * Attempt to keep persistent huge pages more or less
1403  * balanced over allowed nodes.
1404  * Called with hugetlb_lock locked.
1405  */
1406 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1407                                                          bool acct_surplus)
1408 {
1409         int nr_nodes, node;
1410         int ret = 0;
1411
1412         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1413                 /*
1414                  * If we're returning unused surplus pages, only examine
1415                  * nodes with surplus pages.
1416                  */
1417                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1418                     !list_empty(&h->hugepage_freelists[node])) {
1419                         struct page *page =
1420                                 list_entry(h->hugepage_freelists[node].next,
1421                                           struct page, lru);
1422                         list_del(&page->lru);
1423                         h->free_huge_pages--;
1424                         h->free_huge_pages_node[node]--;
1425                         if (acct_surplus) {
1426                                 h->surplus_huge_pages--;
1427                                 h->surplus_huge_pages_node[node]--;
1428                         }
1429                         update_and_free_page(h, page);
1430                         ret = 1;
1431                         break;
1432                 }
1433         }
1434
1435         return ret;
1436 }
1437
1438 /*
1439  * Dissolve a given free hugepage into free buddy pages. This function does
1440  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1441  * number of free hugepages would be reduced below the number of reserved
1442  * hugepages.
1443  */
1444 static int dissolve_free_huge_page(struct page *page)
1445 {
1446         int rc = 0;
1447
1448         spin_lock(&hugetlb_lock);
1449         if (PageHuge(page) && !page_count(page)) {
1450                 struct page *head = compound_head(page);
1451                 struct hstate *h = page_hstate(head);
1452                 int nid = page_to_nid(head);
1453                 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1454                         rc = -EBUSY;
1455                         goto out;
1456                 }
1457                 list_del(&head->lru);
1458                 h->free_huge_pages--;
1459                 h->free_huge_pages_node[nid]--;
1460                 h->max_huge_pages--;
1461                 update_and_free_page(h, head);
1462         }
1463 out:
1464         spin_unlock(&hugetlb_lock);
1465         return rc;
1466 }
1467
1468 /*
1469  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1470  * make specified memory blocks removable from the system.
1471  * Note that this will dissolve a free gigantic hugepage completely, if any
1472  * part of it lies within the given range.
1473  * Also note that if dissolve_free_huge_page() returns with an error, all
1474  * free hugepages that were dissolved before that error are lost.
1475  */
1476 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1477 {
1478         unsigned long pfn;
1479         int rc = 0;
1480
1481         if (!hugepages_supported())
1482                 return rc;
1483
1484         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1485                 if (rc = dissolve_free_huge_page(pfn_to_page(pfn)))
1486                         break;
1487
1488         return rc;
1489 }
1490
1491 /*
1492  * There are 3 ways this can get called:
1493  * 1. With vma+addr: we use the VMA's memory policy
1494  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1495  *    page from any node, and let the buddy allocator itself figure
1496  *    it out.
1497  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1498  *    strictly from 'nid'
1499  */
1500 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1501                 struct vm_area_struct *vma, unsigned long addr, int nid)
1502 {
1503         int order = huge_page_order(h);
1504         gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1505         unsigned int cpuset_mems_cookie;
1506
1507         /*
1508          * We need a VMA to get a memory policy.  If we do not
1509          * have one, we use the 'nid' argument.
1510          *
1511          * The mempolicy stuff below has some non-inlined bits
1512          * and calls ->vm_ops.  That makes it hard to optimize at
1513          * compile-time, even when NUMA is off and it does
1514          * nothing.  This helps the compiler optimize it out.
1515          */
1516         if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1517                 /*
1518                  * If a specific node is requested, make sure to
1519                  * get memory from there, but only when a node
1520                  * is explicitly specified.
1521                  */
1522                 if (nid != NUMA_NO_NODE)
1523                         gfp |= __GFP_THISNODE;
1524                 /*
1525                  * Make sure to call something that can handle
1526                  * nid=NUMA_NO_NODE
1527                  */
1528                 return alloc_pages_node(nid, gfp, order);
1529         }
1530
1531         /*
1532          * OK, so we have a VMA.  Fetch the mempolicy and try to
1533          * allocate a huge page with it.  We will only reach this
1534          * when CONFIG_NUMA=y.
1535          */
1536         do {
1537                 struct page *page;
1538                 struct mempolicy *mpol;
1539                 struct zonelist *zl;
1540                 nodemask_t *nodemask;
1541
1542                 cpuset_mems_cookie = read_mems_allowed_begin();
1543                 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1544                 mpol_cond_put(mpol);
1545                 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1546                 if (page)
1547                         return page;
1548         } while (read_mems_allowed_retry(cpuset_mems_cookie));
1549
1550         return NULL;
1551 }
1552
1553 /*
1554  * There are two ways to allocate a huge page:
1555  * 1. When you have a VMA and an address (like a fault)
1556  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1557  *
1558  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1559  * this case which signifies that the allocation should be done with
1560  * respect for the VMA's memory policy.
1561  *
1562  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1563  * implies that memory policies will not be taken in to account.
1564  */
1565 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1566                 struct vm_area_struct *vma, unsigned long addr, int nid)
1567 {
1568         struct page *page;
1569         unsigned int r_nid;
1570
1571         if (hstate_is_gigantic(h))
1572                 return NULL;
1573
1574         /*
1575          * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1576          * This makes sure the caller is picking _one_ of the modes with which
1577          * we can call this function, not both.
1578          */
1579         if (vma || (addr != -1)) {
1580                 VM_WARN_ON_ONCE(addr == -1);
1581                 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1582         }
1583         /*
1584          * Assume we will successfully allocate the surplus page to
1585          * prevent racing processes from causing the surplus to exceed
1586          * overcommit
1587          *
1588          * This however introduces a different race, where a process B
1589          * tries to grow the static hugepage pool while alloc_pages() is
1590          * called by process A. B will only examine the per-node
1591          * counters in determining if surplus huge pages can be
1592          * converted to normal huge pages in adjust_pool_surplus(). A
1593          * won't be able to increment the per-node counter, until the
1594          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1595          * no more huge pages can be converted from surplus to normal
1596          * state (and doesn't try to convert again). Thus, we have a
1597          * case where a surplus huge page exists, the pool is grown, and
1598          * the surplus huge page still exists after, even though it
1599          * should just have been converted to a normal huge page. This
1600          * does not leak memory, though, as the hugepage will be freed
1601          * once it is out of use. It also does not allow the counters to
1602          * go out of whack in adjust_pool_surplus() as we don't modify
1603          * the node values until we've gotten the hugepage and only the
1604          * per-node value is checked there.
1605          */
1606         spin_lock(&hugetlb_lock);
1607         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1608                 spin_unlock(&hugetlb_lock);
1609                 return NULL;
1610         } else {
1611                 h->nr_huge_pages++;
1612                 h->surplus_huge_pages++;
1613         }
1614         spin_unlock(&hugetlb_lock);
1615
1616         page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1617
1618         spin_lock(&hugetlb_lock);
1619         if (page) {
1620                 INIT_LIST_HEAD(&page->lru);
1621                 r_nid = page_to_nid(page);
1622                 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1623                 set_hugetlb_cgroup(page, NULL);
1624                 /*
1625                  * We incremented the global counters already
1626                  */
1627                 h->nr_huge_pages_node[r_nid]++;
1628                 h->surplus_huge_pages_node[r_nid]++;
1629                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1630         } else {
1631                 h->nr_huge_pages--;
1632                 h->surplus_huge_pages--;
1633                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1634         }
1635         spin_unlock(&hugetlb_lock);
1636
1637         return page;
1638 }
1639
1640 /*
1641  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1642  * NUMA_NO_NODE, which means that it may be allocated
1643  * anywhere.
1644  */
1645 static
1646 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1647 {
1648         unsigned long addr = -1;
1649
1650         return __alloc_buddy_huge_page(h, NULL, addr, nid);
1651 }
1652
1653 /*
1654  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1655  */
1656 static
1657 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1658                 struct vm_area_struct *vma, unsigned long addr)
1659 {
1660         return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1661 }
1662
1663 /*
1664  * This allocation function is useful in the context where vma is irrelevant.
1665  * E.g. soft-offlining uses this function because it only cares physical
1666  * address of error page.
1667  */
1668 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1669 {
1670         struct page *page = NULL;
1671
1672         spin_lock(&hugetlb_lock);
1673         if (h->free_huge_pages - h->resv_huge_pages > 0)
1674                 page = dequeue_huge_page_node(h, nid);
1675         spin_unlock(&hugetlb_lock);
1676
1677         if (!page)
1678                 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1679
1680         return page;
1681 }
1682
1683 /*
1684  * Increase the hugetlb pool such that it can accommodate a reservation
1685  * of size 'delta'.
1686  */
1687 static int gather_surplus_pages(struct hstate *h, int delta)
1688 {
1689         struct list_head surplus_list;
1690         struct page *page, *tmp;
1691         int ret, i;
1692         int needed, allocated;
1693         bool alloc_ok = true;
1694
1695         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1696         if (needed <= 0) {
1697                 h->resv_huge_pages += delta;
1698                 return 0;
1699         }
1700
1701         allocated = 0;
1702         INIT_LIST_HEAD(&surplus_list);
1703
1704         ret = -ENOMEM;
1705 retry:
1706         spin_unlock(&hugetlb_lock);
1707         for (i = 0; i < needed; i++) {
1708                 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1709                 if (!page) {
1710                         alloc_ok = false;
1711                         break;
1712                 }
1713                 list_add(&page->lru, &surplus_list);
1714         }
1715         allocated += i;
1716
1717         /*
1718          * After retaking hugetlb_lock, we need to recalculate 'needed'
1719          * because either resv_huge_pages or free_huge_pages may have changed.
1720          */
1721         spin_lock(&hugetlb_lock);
1722         needed = (h->resv_huge_pages + delta) -
1723                         (h->free_huge_pages + allocated);
1724         if (needed > 0) {
1725                 if (alloc_ok)
1726                         goto retry;
1727                 /*
1728                  * We were not able to allocate enough pages to
1729                  * satisfy the entire reservation so we free what
1730                  * we've allocated so far.
1731                  */
1732                 goto free;
1733         }
1734         /*
1735          * The surplus_list now contains _at_least_ the number of extra pages
1736          * needed to accommodate the reservation.  Add the appropriate number
1737          * of pages to the hugetlb pool and free the extras back to the buddy
1738          * allocator.  Commit the entire reservation here to prevent another
1739          * process from stealing the pages as they are added to the pool but
1740          * before they are reserved.
1741          */
1742         needed += allocated;
1743         h->resv_huge_pages += delta;
1744         ret = 0;
1745
1746         /* Free the needed pages to the hugetlb pool */
1747         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1748                 if ((--needed) < 0)
1749                         break;
1750                 /*
1751                  * This page is now managed by the hugetlb allocator and has
1752                  * no users -- drop the buddy allocator's reference.
1753                  */
1754                 put_page_testzero(page);
1755                 VM_BUG_ON_PAGE(page_count(page), page);
1756                 enqueue_huge_page(h, page);
1757         }
1758 free:
1759         spin_unlock(&hugetlb_lock);
1760
1761         /* Free unnecessary surplus pages to the buddy allocator */
1762         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1763                 put_page(page);
1764         spin_lock(&hugetlb_lock);
1765
1766         return ret;
1767 }
1768
1769 /*
1770  * When releasing a hugetlb pool reservation, any surplus pages that were
1771  * allocated to satisfy the reservation must be explicitly freed if they were
1772  * never used.
1773  * Called with hugetlb_lock held.
1774  */
1775 static void return_unused_surplus_pages(struct hstate *h,
1776                                         unsigned long unused_resv_pages)
1777 {
1778         unsigned long nr_pages;
1779
1780         /* Uncommit the reservation */
1781         h->resv_huge_pages -= unused_resv_pages;
1782
1783         /* Cannot return gigantic pages currently */
1784         if (hstate_is_gigantic(h))
1785                 return;
1786
1787         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1788
1789         /*
1790          * We want to release as many surplus pages as possible, spread
1791          * evenly across all nodes with memory. Iterate across these nodes
1792          * until we can no longer free unreserved surplus pages. This occurs
1793          * when the nodes with surplus pages have no free pages.
1794          * free_pool_huge_page() will balance the the freed pages across the
1795          * on-line nodes with memory and will handle the hstate accounting.
1796          */
1797         while (nr_pages--) {
1798                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1799                         break;
1800                 cond_resched_lock(&hugetlb_lock);
1801         }
1802 }
1803
1804
1805 /*
1806  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1807  * are used by the huge page allocation routines to manage reservations.
1808  *
1809  * vma_needs_reservation is called to determine if the huge page at addr
1810  * within the vma has an associated reservation.  If a reservation is
1811  * needed, the value 1 is returned.  The caller is then responsible for
1812  * managing the global reservation and subpool usage counts.  After
1813  * the huge page has been allocated, vma_commit_reservation is called
1814  * to add the page to the reservation map.  If the page allocation fails,
1815  * the reservation must be ended instead of committed.  vma_end_reservation
1816  * is called in such cases.
1817  *
1818  * In the normal case, vma_commit_reservation returns the same value
1819  * as the preceding vma_needs_reservation call.  The only time this
1820  * is not the case is if a reserve map was changed between calls.  It
1821  * is the responsibility of the caller to notice the difference and
1822  * take appropriate action.
1823  */
1824 enum vma_resv_mode {
1825         VMA_NEEDS_RESV,
1826         VMA_COMMIT_RESV,
1827         VMA_END_RESV,
1828 };
1829 static long __vma_reservation_common(struct hstate *h,
1830                                 struct vm_area_struct *vma, unsigned long addr,
1831                                 enum vma_resv_mode mode)
1832 {
1833         struct resv_map *resv;
1834         pgoff_t idx;
1835         long ret;
1836
1837         resv = vma_resv_map(vma);
1838         if (!resv)
1839                 return 1;
1840
1841         idx = vma_hugecache_offset(h, vma, addr);
1842         switch (mode) {
1843         case VMA_NEEDS_RESV:
1844                 ret = region_chg(resv, idx, idx + 1);
1845                 break;
1846         case VMA_COMMIT_RESV:
1847                 ret = region_add(resv, idx, idx + 1);
1848                 break;
1849         case VMA_END_RESV:
1850                 region_abort(resv, idx, idx + 1);
1851                 ret = 0;
1852                 break;
1853         default:
1854                 BUG();
1855         }
1856
1857         if (vma->vm_flags & VM_MAYSHARE)
1858                 return ret;
1859         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1860                 /*
1861                  * In most cases, reserves always exist for private mappings.
1862                  * However, a file associated with mapping could have been
1863                  * hole punched or truncated after reserves were consumed.
1864                  * As subsequent fault on such a range will not use reserves.
1865                  * Subtle - The reserve map for private mappings has the
1866                  * opposite meaning than that of shared mappings.  If NO
1867                  * entry is in the reserve map, it means a reservation exists.
1868                  * If an entry exists in the reserve map, it means the
1869                  * reservation has already been consumed.  As a result, the
1870                  * return value of this routine is the opposite of the
1871                  * value returned from reserve map manipulation routines above.
1872                  */
1873                 if (ret)
1874                         return 0;
1875                 else
1876                         return 1;
1877         }
1878         else
1879                 return ret < 0 ? ret : 0;
1880 }
1881
1882 static long vma_needs_reservation(struct hstate *h,
1883                         struct vm_area_struct *vma, unsigned long addr)
1884 {
1885         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1886 }
1887
1888 static long vma_commit_reservation(struct hstate *h,
1889                         struct vm_area_struct *vma, unsigned long addr)
1890 {
1891         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1892 }
1893
1894 static void vma_end_reservation(struct hstate *h,
1895                         struct vm_area_struct *vma, unsigned long addr)
1896 {
1897         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1898 }
1899
1900 struct page *alloc_huge_page(struct vm_area_struct *vma,
1901                                     unsigned long addr, int avoid_reserve)
1902 {
1903         struct hugepage_subpool *spool = subpool_vma(vma);
1904         struct hstate *h = hstate_vma(vma);
1905         struct page *page;
1906         long map_chg, map_commit;
1907         long gbl_chg;
1908         int ret, idx;
1909         struct hugetlb_cgroup *h_cg;
1910
1911         idx = hstate_index(h);
1912         /*
1913          * Examine the region/reserve map to determine if the process
1914          * has a reservation for the page to be allocated.  A return
1915          * code of zero indicates a reservation exists (no change).
1916          */
1917         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1918         if (map_chg < 0)
1919                 return ERR_PTR(-ENOMEM);
1920
1921         /*
1922          * Processes that did not create the mapping will have no
1923          * reserves as indicated by the region/reserve map. Check
1924          * that the allocation will not exceed the subpool limit.
1925          * Allocations for MAP_NORESERVE mappings also need to be
1926          * checked against any subpool limit.
1927          */
1928         if (map_chg || avoid_reserve) {
1929                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1930                 if (gbl_chg < 0) {
1931                         vma_end_reservation(h, vma, addr);
1932                         return ERR_PTR(-ENOSPC);
1933                 }
1934
1935                 /*
1936                  * Even though there was no reservation in the region/reserve
1937                  * map, there could be reservations associated with the
1938                  * subpool that can be used.  This would be indicated if the
1939                  * return value of hugepage_subpool_get_pages() is zero.
1940                  * However, if avoid_reserve is specified we still avoid even
1941                  * the subpool reservations.
1942                  */
1943                 if (avoid_reserve)
1944                         gbl_chg = 1;
1945         }
1946
1947         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1948         if (ret)
1949                 goto out_subpool_put;
1950
1951         spin_lock(&hugetlb_lock);
1952         /*
1953          * glb_chg is passed to indicate whether or not a page must be taken
1954          * from the global free pool (global change).  gbl_chg == 0 indicates
1955          * a reservation exists for the allocation.
1956          */
1957         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1958         if (!page) {
1959                 spin_unlock(&hugetlb_lock);
1960                 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1961                 if (!page)
1962                         goto out_uncharge_cgroup;
1963                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1964                         SetPagePrivate(page);
1965                         h->resv_huge_pages--;
1966                 }
1967                 spin_lock(&hugetlb_lock);
1968                 list_move(&page->lru, &h->hugepage_activelist);
1969                 /* Fall through */
1970         }
1971         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1972         spin_unlock(&hugetlb_lock);
1973
1974         set_page_private(page, (unsigned long)spool);
1975
1976         map_commit = vma_commit_reservation(h, vma, addr);
1977         if (unlikely(map_chg > map_commit)) {
1978                 /*
1979                  * The page was added to the reservation map between
1980                  * vma_needs_reservation and vma_commit_reservation.
1981                  * This indicates a race with hugetlb_reserve_pages.
1982                  * Adjust for the subpool count incremented above AND
1983                  * in hugetlb_reserve_pages for the same page.  Also,
1984                  * the reservation count added in hugetlb_reserve_pages
1985                  * no longer applies.
1986                  */
1987                 long rsv_adjust;
1988
1989                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1990                 hugetlb_acct_memory(h, -rsv_adjust);
1991         }
1992         return page;
1993
1994 out_uncharge_cgroup:
1995         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1996 out_subpool_put:
1997         if (map_chg || avoid_reserve)
1998                 hugepage_subpool_put_pages(spool, 1);
1999         vma_end_reservation(h, vma, addr);
2000         return ERR_PTR(-ENOSPC);
2001 }
2002
2003 /*
2004  * alloc_huge_page()'s wrapper which simply returns the page if allocation
2005  * succeeds, otherwise NULL. This function is called from new_vma_page(),
2006  * where no ERR_VALUE is expected to be returned.
2007  */
2008 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2009                                 unsigned long addr, int avoid_reserve)
2010 {
2011         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2012         if (IS_ERR(page))
2013                 page = NULL;
2014         return page;
2015 }
2016
2017 int __weak alloc_bootmem_huge_page(struct hstate *h)
2018 {
2019         struct huge_bootmem_page *m;
2020         int nr_nodes, node;
2021
2022         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2023                 void *addr;
2024
2025                 addr = memblock_virt_alloc_try_nid_nopanic(
2026                                 huge_page_size(h), huge_page_size(h),
2027                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2028                 if (addr) {
2029                         /*
2030                          * Use the beginning of the huge page to store the
2031                          * huge_bootmem_page struct (until gather_bootmem
2032                          * puts them into the mem_map).
2033                          */
2034                         m = addr;
2035                         goto found;
2036                 }
2037         }
2038         return 0;
2039
2040 found:
2041         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2042         /* Put them into a private list first because mem_map is not up yet */
2043         list_add(&m->list, &huge_boot_pages);
2044         m->hstate = h;
2045         return 1;
2046 }
2047
2048 static void __init prep_compound_huge_page(struct page *page,
2049                 unsigned int order)
2050 {
2051         if (unlikely(order > (MAX_ORDER - 1)))
2052                 prep_compound_gigantic_page(page, order);
2053         else
2054                 prep_compound_page(page, order);
2055 }
2056
2057 /* Put bootmem huge pages into the standard lists after mem_map is up */
2058 static void __init gather_bootmem_prealloc(void)
2059 {
2060         struct huge_bootmem_page *m;
2061
2062         list_for_each_entry(m, &huge_boot_pages, list) {
2063                 struct hstate *h = m->hstate;
2064                 struct page *page;
2065
2066 #ifdef CONFIG_HIGHMEM
2067                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2068                 memblock_free_late(__pa(m),
2069                                    sizeof(struct huge_bootmem_page));
2070 #else
2071                 page = virt_to_page(m);
2072 #endif
2073                 WARN_ON(page_count(page) != 1);
2074                 prep_compound_huge_page(page, h->order);
2075                 WARN_ON(PageReserved(page));
2076                 prep_new_huge_page(h, page, page_to_nid(page));
2077                 /*
2078                  * If we had gigantic hugepages allocated at boot time, we need
2079                  * to restore the 'stolen' pages to totalram_pages in order to
2080                  * fix confusing memory reports from free(1) and another
2081                  * side-effects, like CommitLimit going negative.
2082                  */
2083                 if (hstate_is_gigantic(h))
2084                         adjust_managed_page_count(page, 1 << h->order);
2085         }
2086 }
2087
2088 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2089 {
2090         unsigned long i;
2091
2092         for (i = 0; i < h->max_huge_pages; ++i) {
2093                 if (hstate_is_gigantic(h)) {
2094                         if (!alloc_bootmem_huge_page(h))
2095                                 break;
2096                 } else if (!alloc_fresh_huge_page(h,
2097                                          &node_states[N_MEMORY]))
2098                         break;
2099         }
2100         h->max_huge_pages = i;
2101 }
2102
2103 static void __init hugetlb_init_hstates(void)
2104 {
2105         struct hstate *h;
2106
2107         for_each_hstate(h) {
2108                 if (minimum_order > huge_page_order(h))
2109                         minimum_order = huge_page_order(h);
2110
2111                 /* oversize hugepages were init'ed in early boot */
2112                 if (!hstate_is_gigantic(h))
2113                         hugetlb_hstate_alloc_pages(h);
2114         }
2115         VM_BUG_ON(minimum_order == UINT_MAX);
2116 }
2117
2118 static char * __init memfmt(char *buf, unsigned long n)
2119 {
2120         if (n >= (1UL << 30))
2121                 sprintf(buf, "%lu GB", n >> 30);
2122         else if (n >= (1UL << 20))
2123                 sprintf(buf, "%lu MB", n >> 20);
2124         else
2125                 sprintf(buf, "%lu KB", n >> 10);
2126         return buf;
2127 }
2128
2129 static void __init report_hugepages(void)
2130 {
2131         struct hstate *h;
2132
2133         for_each_hstate(h) {
2134                 char buf[32];
2135                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2136                         memfmt(buf, huge_page_size(h)),
2137                         h->free_huge_pages);
2138         }
2139 }
2140
2141 #ifdef CONFIG_HIGHMEM
2142 static void try_to_free_low(struct hstate *h, unsigned long count,
2143                                                 nodemask_t *nodes_allowed)
2144 {
2145         int i;
2146
2147         if (hstate_is_gigantic(h))
2148                 return;
2149
2150         for_each_node_mask(i, *nodes_allowed) {
2151                 struct page *page, *next;
2152                 struct list_head *freel = &h->hugepage_freelists[i];
2153                 list_for_each_entry_safe(page, next, freel, lru) {
2154                         if (count >= h->nr_huge_pages)
2155                                 return;
2156                         if (PageHighMem(page))
2157                                 continue;
2158                         list_del(&page->lru);
2159                         update_and_free_page(h, page);
2160                         h->free_huge_pages--;
2161                         h->free_huge_pages_node[page_to_nid(page)]--;
2162                 }
2163         }
2164 }
2165 #else
2166 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2167                                                 nodemask_t *nodes_allowed)
2168 {
2169 }
2170 #endif
2171
2172 /*
2173  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2174  * balanced by operating on them in a round-robin fashion.
2175  * Returns 1 if an adjustment was made.
2176  */
2177 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2178                                 int delta)
2179 {
2180         int nr_nodes, node;
2181
2182         VM_BUG_ON(delta != -1 && delta != 1);
2183
2184         if (delta < 0) {
2185                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2186                         if (h->surplus_huge_pages_node[node])
2187                                 goto found;
2188                 }
2189         } else {
2190                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2191                         if (h->surplus_huge_pages_node[node] <
2192                                         h->nr_huge_pages_node[node])
2193                                 goto found;
2194                 }
2195         }
2196         return 0;
2197
2198 found:
2199         h->surplus_huge_pages += delta;
2200         h->surplus_huge_pages_node[node] += delta;
2201         return 1;
2202 }
2203
2204 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2205 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2206                                                 nodemask_t *nodes_allowed)
2207 {
2208         unsigned long min_count, ret;
2209
2210         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2211                 return h->max_huge_pages;
2212
2213         /*
2214          * Increase the pool size
2215          * First take pages out of surplus state.  Then make up the
2216          * remaining difference by allocating fresh huge pages.
2217          *
2218          * We might race with __alloc_buddy_huge_page() here and be unable
2219          * to convert a surplus huge page to a normal huge page. That is
2220          * not critical, though, it just means the overall size of the
2221          * pool might be one hugepage larger than it needs to be, but
2222          * within all the constraints specified by the sysctls.
2223          */
2224         spin_lock(&hugetlb_lock);
2225         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2226                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2227                         break;
2228         }
2229
2230         while (count > persistent_huge_pages(h)) {
2231                 /*
2232                  * If this allocation races such that we no longer need the
2233                  * page, free_huge_page will handle it by freeing the page
2234                  * and reducing the surplus.
2235                  */
2236                 spin_unlock(&hugetlb_lock);
2237
2238                 /* yield cpu to avoid soft lockup */
2239                 cond_resched();
2240
2241                 if (hstate_is_gigantic(h))
2242                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2243                 else
2244                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2245                 spin_lock(&hugetlb_lock);
2246                 if (!ret)
2247                         goto out;
2248
2249                 /* Bail for signals. Probably ctrl-c from user */
2250                 if (signal_pending(current))
2251                         goto out;
2252         }
2253
2254         /*
2255          * Decrease the pool size
2256          * First return free pages to the buddy allocator (being careful
2257          * to keep enough around to satisfy reservations).  Then place
2258          * pages into surplus state as needed so the pool will shrink
2259          * to the desired size as pages become free.
2260          *
2261          * By placing pages into the surplus state independent of the
2262          * overcommit value, we are allowing the surplus pool size to
2263          * exceed overcommit. There are few sane options here. Since
2264          * __alloc_buddy_huge_page() is checking the global counter,
2265          * though, we'll note that we're not allowed to exceed surplus
2266          * and won't grow the pool anywhere else. Not until one of the
2267          * sysctls are changed, or the surplus pages go out of use.
2268          */
2269         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2270         min_count = max(count, min_count);
2271         try_to_free_low(h, min_count, nodes_allowed);
2272         while (min_count < persistent_huge_pages(h)) {
2273                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2274                         break;
2275                 cond_resched_lock(&hugetlb_lock);
2276         }
2277         while (count < persistent_huge_pages(h)) {
2278                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2279                         break;
2280         }
2281 out:
2282         ret = persistent_huge_pages(h);
2283         spin_unlock(&hugetlb_lock);
2284         return ret;
2285 }
2286
2287 #define HSTATE_ATTR_RO(_name) \
2288         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2289
2290 #define HSTATE_ATTR(_name) \
2291         static struct kobj_attribute _name##_attr = \
2292                 __ATTR(_name, 0644, _name##_show, _name##_store)
2293
2294 static struct kobject *hugepages_kobj;
2295 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2296
2297 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2298
2299 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2300 {
2301         int i;
2302
2303         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2304                 if (hstate_kobjs[i] == kobj) {
2305                         if (nidp)
2306                                 *nidp = NUMA_NO_NODE;
2307                         return &hstates[i];
2308                 }
2309
2310         return kobj_to_node_hstate(kobj, nidp);
2311 }
2312
2313 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2314                                         struct kobj_attribute *attr, char *buf)
2315 {
2316         struct hstate *h;
2317         unsigned long nr_huge_pages;
2318         int nid;
2319
2320         h = kobj_to_hstate(kobj, &nid);
2321         if (nid == NUMA_NO_NODE)
2322                 nr_huge_pages = h->nr_huge_pages;
2323         else
2324                 nr_huge_pages = h->nr_huge_pages_node[nid];
2325
2326         return sprintf(buf, "%lu\n", nr_huge_pages);
2327 }
2328
2329 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2330                                            struct hstate *h, int nid,
2331                                            unsigned long count, size_t len)
2332 {
2333         int err;
2334         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2335
2336         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2337                 err = -EINVAL;
2338                 goto out;
2339         }
2340
2341         if (nid == NUMA_NO_NODE) {
2342                 /*
2343                  * global hstate attribute
2344                  */
2345                 if (!(obey_mempolicy &&
2346                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2347                         NODEMASK_FREE(nodes_allowed);
2348                         nodes_allowed = &node_states[N_MEMORY];
2349                 }
2350         } else if (nodes_allowed) {
2351                 /*
2352                  * per node hstate attribute: adjust count to global,
2353                  * but restrict alloc/free to the specified node.
2354                  */
2355                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2356                 init_nodemask_of_node(nodes_allowed, nid);
2357         } else
2358                 nodes_allowed = &node_states[N_MEMORY];
2359
2360         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2361
2362         if (nodes_allowed != &node_states[N_MEMORY])
2363                 NODEMASK_FREE(nodes_allowed);
2364
2365         return len;
2366 out:
2367         NODEMASK_FREE(nodes_allowed);
2368         return err;
2369 }
2370
2371 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2372                                          struct kobject *kobj, const char *buf,
2373                                          size_t len)
2374 {
2375         struct hstate *h;
2376         unsigned long count;
2377         int nid;
2378         int err;
2379
2380         err = kstrtoul(buf, 10, &count);
2381         if (err)
2382                 return err;
2383
2384         h = kobj_to_hstate(kobj, &nid);
2385         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2386 }
2387
2388 static ssize_t nr_hugepages_show(struct kobject *kobj,
2389                                        struct kobj_attribute *attr, char *buf)
2390 {
2391         return nr_hugepages_show_common(kobj, attr, buf);
2392 }
2393
2394 static ssize_t nr_hugepages_store(struct kobject *kobj,
2395                struct kobj_attribute *attr, const char *buf, size_t len)
2396 {
2397         return nr_hugepages_store_common(false, kobj, buf, len);
2398 }
2399 HSTATE_ATTR(nr_hugepages);
2400
2401 #ifdef CONFIG_NUMA
2402
2403 /*
2404  * hstate attribute for optionally mempolicy-based constraint on persistent
2405  * huge page alloc/free.
2406  */
2407 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2408                                        struct kobj_attribute *attr, char *buf)
2409 {
2410         return nr_hugepages_show_common(kobj, attr, buf);
2411 }
2412
2413 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2414                struct kobj_attribute *attr, const char *buf, size_t len)
2415 {
2416         return nr_hugepages_store_common(true, kobj, buf, len);
2417 }
2418 HSTATE_ATTR(nr_hugepages_mempolicy);
2419 #endif
2420
2421
2422 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2423                                         struct kobj_attribute *attr, char *buf)
2424 {
2425         struct hstate *h = kobj_to_hstate(kobj, NULL);
2426         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2427 }
2428
2429 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2430                 struct kobj_attribute *attr, const char *buf, size_t count)
2431 {
2432         int err;
2433         unsigned long input;
2434         struct hstate *h = kobj_to_hstate(kobj, NULL);
2435
2436         if (hstate_is_gigantic(h))
2437                 return -EINVAL;
2438
2439         err = kstrtoul(buf, 10, &input);
2440         if (err)
2441                 return err;
2442
2443         spin_lock(&hugetlb_lock);
2444         h->nr_overcommit_huge_pages = input;
2445         spin_unlock(&hugetlb_lock);
2446
2447         return count;
2448 }
2449 HSTATE_ATTR(nr_overcommit_hugepages);
2450
2451 static ssize_t free_hugepages_show(struct kobject *kobj,
2452                                         struct kobj_attribute *attr, char *buf)
2453 {
2454         struct hstate *h;
2455         unsigned long free_huge_pages;
2456         int nid;
2457
2458         h = kobj_to_hstate(kobj, &nid);
2459         if (nid == NUMA_NO_NODE)
2460                 free_huge_pages = h->free_huge_pages;
2461         else
2462                 free_huge_pages = h->free_huge_pages_node[nid];
2463
2464         return sprintf(buf, "%lu\n", free_huge_pages);
2465 }
2466 HSTATE_ATTR_RO(free_hugepages);
2467
2468 static ssize_t resv_hugepages_show(struct kobject *kobj,
2469                                         struct kobj_attribute *attr, char *buf)
2470 {
2471         struct hstate *h = kobj_to_hstate(kobj, NULL);
2472         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2473 }
2474 HSTATE_ATTR_RO(resv_hugepages);
2475
2476 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2477                                         struct kobj_attribute *attr, char *buf)
2478 {
2479         struct hstate *h;
2480         unsigned long surplus_huge_pages;
2481         int nid;
2482
2483         h = kobj_to_hstate(kobj, &nid);
2484         if (nid == NUMA_NO_NODE)
2485                 surplus_huge_pages = h->surplus_huge_pages;
2486         else
2487                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2488
2489         return sprintf(buf, "%lu\n", surplus_huge_pages);
2490 }
2491 HSTATE_ATTR_RO(surplus_hugepages);
2492
2493 static struct attribute *hstate_attrs[] = {
2494         &nr_hugepages_attr.attr,
2495         &nr_overcommit_hugepages_attr.attr,
2496         &free_hugepages_attr.attr,
2497         &resv_hugepages_attr.attr,
2498         &surplus_hugepages_attr.attr,
2499 #ifdef CONFIG_NUMA
2500         &nr_hugepages_mempolicy_attr.attr,
2501 #endif
2502         NULL,
2503 };
2504
2505 static struct attribute_group hstate_attr_group = {
2506         .attrs = hstate_attrs,
2507 };
2508
2509 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2510                                     struct kobject **hstate_kobjs,
2511                                     struct attribute_group *hstate_attr_group)
2512 {
2513         int retval;
2514         int hi = hstate_index(h);
2515
2516         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2517         if (!hstate_kobjs[hi])
2518                 return -ENOMEM;
2519
2520         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2521         if (retval)
2522                 kobject_put(hstate_kobjs[hi]);
2523
2524         return retval;
2525 }
2526
2527 static void __init hugetlb_sysfs_init(void)
2528 {
2529         struct hstate *h;
2530         int err;
2531
2532         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2533         if (!hugepages_kobj)
2534                 return;
2535
2536         for_each_hstate(h) {
2537                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2538                                          hstate_kobjs, &hstate_attr_group);
2539                 if (err)
2540                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2541         }
2542 }
2543
2544 #ifdef CONFIG_NUMA
2545
2546 /*
2547  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2548  * with node devices in node_devices[] using a parallel array.  The array
2549  * index of a node device or _hstate == node id.
2550  * This is here to avoid any static dependency of the node device driver, in
2551  * the base kernel, on the hugetlb module.
2552  */
2553 struct node_hstate {
2554         struct kobject          *hugepages_kobj;
2555         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2556 };
2557 static struct node_hstate node_hstates[MAX_NUMNODES];
2558
2559 /*
2560  * A subset of global hstate attributes for node devices
2561  */
2562 static struct attribute *per_node_hstate_attrs[] = {
2563         &nr_hugepages_attr.attr,
2564         &free_hugepages_attr.attr,
2565         &surplus_hugepages_attr.attr,
2566         NULL,
2567 };
2568
2569 static struct attribute_group per_node_hstate_attr_group = {
2570         .attrs = per_node_hstate_attrs,
2571 };
2572
2573 /*
2574  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2575  * Returns node id via non-NULL nidp.
2576  */
2577 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2578 {
2579         int nid;
2580
2581         for (nid = 0; nid < nr_node_ids; nid++) {
2582                 struct node_hstate *nhs = &node_hstates[nid];
2583                 int i;
2584                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2585                         if (nhs->hstate_kobjs[i] == kobj) {
2586                                 if (nidp)
2587                                         *nidp = nid;
2588                                 return &hstates[i];
2589                         }
2590         }
2591
2592         BUG();
2593         return NULL;
2594 }
2595
2596 /*
2597  * Unregister hstate attributes from a single node device.
2598  * No-op if no hstate attributes attached.
2599  */
2600 static void hugetlb_unregister_node(struct node *node)
2601 {
2602         struct hstate *h;
2603         struct node_hstate *nhs = &node_hstates[node->dev.id];
2604
2605         if (!nhs->hugepages_kobj)
2606                 return;         /* no hstate attributes */
2607
2608         for_each_hstate(h) {
2609                 int idx = hstate_index(h);
2610                 if (nhs->hstate_kobjs[idx]) {
2611                         kobject_put(nhs->hstate_kobjs[idx]);
2612                         nhs->hstate_kobjs[idx] = NULL;
2613                 }
2614         }
2615
2616         kobject_put(nhs->hugepages_kobj);
2617         nhs->hugepages_kobj = NULL;
2618 }
2619
2620
2621 /*
2622  * Register hstate attributes for a single node device.
2623  * No-op if attributes already registered.
2624  */
2625 static void hugetlb_register_node(struct node *node)
2626 {
2627         struct hstate *h;
2628         struct node_hstate *nhs = &node_hstates[node->dev.id];
2629         int err;
2630
2631         if (nhs->hugepages_kobj)
2632                 return;         /* already allocated */
2633
2634         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2635                                                         &node->dev.kobj);
2636         if (!nhs->hugepages_kobj)
2637                 return;
2638
2639         for_each_hstate(h) {
2640                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2641                                                 nhs->hstate_kobjs,
2642                                                 &per_node_hstate_attr_group);
2643                 if (err) {
2644                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2645                                 h->name, node->dev.id);
2646                         hugetlb_unregister_node(node);
2647                         break;
2648                 }
2649         }
2650 }
2651
2652 /*
2653  * hugetlb init time:  register hstate attributes for all registered node
2654  * devices of nodes that have memory.  All on-line nodes should have
2655  * registered their associated device by this time.
2656  */
2657 static void __init hugetlb_register_all_nodes(void)
2658 {
2659         int nid;
2660
2661         for_each_node_state(nid, N_MEMORY) {
2662                 struct node *node = node_devices[nid];
2663                 if (node->dev.id == nid)
2664                         hugetlb_register_node(node);
2665         }
2666
2667         /*
2668          * Let the node device driver know we're here so it can
2669          * [un]register hstate attributes on node hotplug.
2670          */
2671         register_hugetlbfs_with_node(hugetlb_register_node,
2672                                      hugetlb_unregister_node);
2673 }
2674 #else   /* !CONFIG_NUMA */
2675
2676 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2677 {
2678         BUG();
2679         if (nidp)
2680                 *nidp = -1;
2681         return NULL;
2682 }
2683
2684 static void hugetlb_register_all_nodes(void) { }
2685
2686 #endif
2687
2688 static int __init hugetlb_init(void)
2689 {
2690         int i;
2691
2692         if (!hugepages_supported())
2693                 return 0;
2694
2695         if (!size_to_hstate(default_hstate_size)) {
2696                 default_hstate_size = HPAGE_SIZE;
2697                 if (!size_to_hstate(default_hstate_size))
2698                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2699         }
2700         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2701         if (default_hstate_max_huge_pages) {
2702                 if (!default_hstate.max_huge_pages)
2703                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2704         }
2705
2706         hugetlb_init_hstates();
2707         gather_bootmem_prealloc();
2708         report_hugepages();
2709
2710         hugetlb_sysfs_init();
2711         hugetlb_register_all_nodes();
2712         hugetlb_cgroup_file_init();
2713
2714 #ifdef CONFIG_SMP
2715         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2716 #else
2717         num_fault_mutexes = 1;
2718 #endif
2719         hugetlb_fault_mutex_table =
2720                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2721         BUG_ON(!hugetlb_fault_mutex_table);
2722
2723         for (i = 0; i < num_fault_mutexes; i++)
2724                 mutex_init(&hugetlb_fault_mutex_table[i]);
2725         return 0;
2726 }
2727 subsys_initcall(hugetlb_init);
2728
2729 /* Should be called on processing a hugepagesz=... option */
2730 void __init hugetlb_bad_size(void)
2731 {
2732         parsed_valid_hugepagesz = false;
2733 }
2734
2735 void __init hugetlb_add_hstate(unsigned int order)
2736 {
2737         struct hstate *h;
2738         unsigned long i;
2739
2740         if (size_to_hstate(PAGE_SIZE << order)) {
2741                 pr_warn("hugepagesz= specified twice, ignoring\n");
2742                 return;
2743         }
2744         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2745         BUG_ON(order == 0);
2746         h = &hstates[hugetlb_max_hstate++];
2747         h->order = order;
2748         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2749         h->nr_huge_pages = 0;
2750         h->free_huge_pages = 0;
2751         for (i = 0; i < MAX_NUMNODES; ++i)
2752                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2753         INIT_LIST_HEAD(&h->hugepage_activelist);
2754         h->next_nid_to_alloc = first_memory_node;
2755         h->next_nid_to_free = first_memory_node;
2756         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2757                                         huge_page_size(h)/1024);
2758
2759         parsed_hstate = h;
2760 }
2761
2762 static int __init hugetlb_nrpages_setup(char *s)
2763 {
2764         unsigned long *mhp;
2765         static unsigned long *last_mhp;
2766
2767         if (!parsed_valid_hugepagesz) {
2768                 pr_warn("hugepages = %s preceded by "
2769                         "an unsupported hugepagesz, ignoring\n", s);
2770                 parsed_valid_hugepagesz = true;
2771                 return 1;
2772         }
2773         /*
2774          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2775          * so this hugepages= parameter goes to the "default hstate".
2776          */
2777         else if (!hugetlb_max_hstate)
2778                 mhp = &default_hstate_max_huge_pages;
2779         else
2780                 mhp = &parsed_hstate->max_huge_pages;
2781
2782         if (mhp == last_mhp) {
2783                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2784                 return 1;
2785         }
2786
2787         if (sscanf(s, "%lu", mhp) <= 0)
2788                 *mhp = 0;
2789
2790         /*
2791          * Global state is always initialized later in hugetlb_init.
2792          * But we need to allocate >= MAX_ORDER hstates here early to still
2793          * use the bootmem allocator.
2794          */
2795         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2796                 hugetlb_hstate_alloc_pages(parsed_hstate);
2797
2798         last_mhp = mhp;
2799
2800         return 1;
2801 }
2802 __setup("hugepages=", hugetlb_nrpages_setup);
2803
2804 static int __init hugetlb_default_setup(char *s)
2805 {
2806         default_hstate_size = memparse(s, &s);
2807         return 1;
2808 }
2809 __setup("default_hugepagesz=", hugetlb_default_setup);
2810
2811 static unsigned int cpuset_mems_nr(unsigned int *array)
2812 {
2813         int node;
2814         unsigned int nr = 0;
2815
2816         for_each_node_mask(node, cpuset_current_mems_allowed)
2817                 nr += array[node];
2818
2819         return nr;
2820 }
2821
2822 #ifdef CONFIG_SYSCTL
2823 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2824                          struct ctl_table *table, int write,
2825                          void __user *buffer, size_t *length, loff_t *ppos)
2826 {
2827         struct hstate *h = &default_hstate;
2828         unsigned long tmp = h->max_huge_pages;
2829         int ret;
2830
2831         if (!hugepages_supported())
2832                 return -EOPNOTSUPP;
2833
2834         table->data = &tmp;
2835         table->maxlen = sizeof(unsigned long);
2836         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2837         if (ret)
2838                 goto out;
2839
2840         if (write)
2841                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2842                                                   NUMA_NO_NODE, tmp, *length);
2843 out:
2844         return ret;
2845 }
2846
2847 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2848                           void __user *buffer, size_t *length, loff_t *ppos)
2849 {
2850
2851         return hugetlb_sysctl_handler_common(false, table, write,
2852                                                         buffer, length, ppos);
2853 }
2854
2855 #ifdef CONFIG_NUMA
2856 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2857                           void __user *buffer, size_t *length, loff_t *ppos)
2858 {
2859         return hugetlb_sysctl_handler_common(true, table, write,
2860                                                         buffer, length, ppos);
2861 }
2862 #endif /* CONFIG_NUMA */
2863
2864 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2865                         void __user *buffer,
2866                         size_t *length, loff_t *ppos)
2867 {
2868         struct hstate *h = &default_hstate;
2869         unsigned long tmp;
2870         int ret;
2871
2872         if (!hugepages_supported())
2873                 return -EOPNOTSUPP;
2874
2875         tmp = h->nr_overcommit_huge_pages;
2876
2877         if (write && hstate_is_gigantic(h))
2878                 return -EINVAL;
2879
2880         table->data = &tmp;
2881         table->maxlen = sizeof(unsigned long);
2882         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2883         if (ret)
2884                 goto out;
2885
2886         if (write) {
2887                 spin_lock(&hugetlb_lock);
2888                 h->nr_overcommit_huge_pages = tmp;
2889                 spin_unlock(&hugetlb_lock);
2890         }
2891 out:
2892         return ret;
2893 }
2894
2895 #endif /* CONFIG_SYSCTL */
2896
2897 void hugetlb_report_meminfo(struct seq_file *m)
2898 {
2899         struct hstate *h = &default_hstate;
2900         if (!hugepages_supported())
2901                 return;
2902         seq_printf(m,
2903                         "HugePages_Total:   %5lu\n"
2904                         "HugePages_Free:    %5lu\n"
2905                         "HugePages_Rsvd:    %5lu\n"
2906                         "HugePages_Surp:    %5lu\n"
2907                         "Hugepagesize:   %8lu kB\n",
2908                         h->nr_huge_pages,
2909                         h->free_huge_pages,
2910                         h->resv_huge_pages,
2911                         h->surplus_huge_pages,
2912                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2913 }
2914
2915 int hugetlb_report_node_meminfo(int nid, char *buf)
2916 {
2917         struct hstate *h = &default_hstate;
2918         if (!hugepages_supported())
2919                 return 0;
2920         return sprintf(buf,
2921                 "Node %d HugePages_Total: %5u\n"
2922                 "Node %d HugePages_Free:  %5u\n"
2923                 "Node %d HugePages_Surp:  %5u\n",
2924                 nid, h->nr_huge_pages_node[nid],
2925                 nid, h->free_huge_pages_node[nid],
2926                 nid, h->surplus_huge_pages_node[nid]);
2927 }
2928
2929 void hugetlb_show_meminfo(void)
2930 {
2931         struct hstate *h;
2932         int nid;
2933
2934         if (!hugepages_supported())
2935                 return;
2936
2937         for_each_node_state(nid, N_MEMORY)
2938                 for_each_hstate(h)
2939                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2940                                 nid,
2941                                 h->nr_huge_pages_node[nid],
2942                                 h->free_huge_pages_node[nid],
2943                                 h->surplus_huge_pages_node[nid],
2944                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2945 }
2946
2947 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2948 {
2949         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2950                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2951 }
2952
2953 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2954 unsigned long hugetlb_total_pages(void)
2955 {
2956         struct hstate *h;
2957         unsigned long nr_total_pages = 0;
2958
2959         for_each_hstate(h)
2960                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2961         return nr_total_pages;
2962 }
2963
2964 static int hugetlb_acct_memory(struct hstate *h, long delta)
2965 {
2966         int ret = -ENOMEM;
2967
2968         spin_lock(&hugetlb_lock);
2969         /*
2970          * When cpuset is configured, it breaks the strict hugetlb page
2971          * reservation as the accounting is done on a global variable. Such
2972          * reservation is completely rubbish in the presence of cpuset because
2973          * the reservation is not checked against page availability for the
2974          * current cpuset. Application can still potentially OOM'ed by kernel
2975          * with lack of free htlb page in cpuset that the task is in.
2976          * Attempt to enforce strict accounting with cpuset is almost
2977          * impossible (or too ugly) because cpuset is too fluid that
2978          * task or memory node can be dynamically moved between cpusets.
2979          *
2980          * The change of semantics for shared hugetlb mapping with cpuset is
2981          * undesirable. However, in order to preserve some of the semantics,
2982          * we fall back to check against current free page availability as
2983          * a best attempt and hopefully to minimize the impact of changing
2984          * semantics that cpuset has.
2985          */
2986         if (delta > 0) {
2987                 if (gather_surplus_pages(h, delta) < 0)
2988                         goto out;
2989
2990                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2991                         return_unused_surplus_pages(h, delta);
2992                         goto out;
2993                 }
2994         }
2995
2996         ret = 0;
2997         if (delta < 0)
2998                 return_unused_surplus_pages(h, (unsigned long) -delta);
2999
3000 out:
3001         spin_unlock(&hugetlb_lock);
3002         return ret;
3003 }
3004
3005 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3006 {
3007         struct resv_map *resv = vma_resv_map(vma);
3008
3009         /*
3010          * This new VMA should share its siblings reservation map if present.
3011          * The VMA will only ever have a valid reservation map pointer where
3012          * it is being copied for another still existing VMA.  As that VMA
3013          * has a reference to the reservation map it cannot disappear until
3014          * after this open call completes.  It is therefore safe to take a
3015          * new reference here without additional locking.
3016          */
3017         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3018                 kref_get(&resv->refs);
3019 }
3020
3021 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3022 {
3023         struct hstate *h = hstate_vma(vma);
3024         struct resv_map *resv = vma_resv_map(vma);
3025         struct hugepage_subpool *spool = subpool_vma(vma);
3026         unsigned long reserve, start, end;
3027         long gbl_reserve;
3028
3029         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3030                 return;
3031
3032         start = vma_hugecache_offset(h, vma, vma->vm_start);
3033         end = vma_hugecache_offset(h, vma, vma->vm_end);
3034
3035         reserve = (end - start) - region_count(resv, start, end);
3036
3037         kref_put(&resv->refs, resv_map_release);
3038
3039         if (reserve) {
3040                 /*
3041                  * Decrement reserve counts.  The global reserve count may be
3042                  * adjusted if the subpool has a minimum size.
3043                  */
3044                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3045                 hugetlb_acct_memory(h, -gbl_reserve);
3046         }
3047 }
3048
3049 /*
3050  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3051  * handle_mm_fault() to try to instantiate regular-sized pages in the
3052  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3053  * this far.
3054  */
3055 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3056 {
3057         BUG();
3058         return 0;
3059 }
3060
3061 const struct vm_operations_struct hugetlb_vm_ops = {
3062         .fault = hugetlb_vm_op_fault,
3063         .open = hugetlb_vm_op_open,
3064         .close = hugetlb_vm_op_close,
3065 };
3066
3067 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3068                                 int writable)
3069 {
3070         pte_t entry;
3071
3072         if (writable) {
3073                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3074                                          vma->vm_page_prot)));
3075         } else {
3076                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3077                                            vma->vm_page_prot));
3078         }
3079         entry = pte_mkyoung(entry);
3080         entry = pte_mkhuge(entry);
3081         entry = arch_make_huge_pte(entry, vma, page, writable);
3082
3083         return entry;
3084 }
3085
3086 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3087                                    unsigned long address, pte_t *ptep)
3088 {
3089         pte_t entry;
3090
3091         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3092         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3093                 update_mmu_cache(vma, address, ptep);
3094 }
3095
3096 static int is_hugetlb_entry_migration(pte_t pte)
3097 {
3098         swp_entry_t swp;
3099
3100         if (huge_pte_none(pte) || pte_present(pte))
3101                 return 0;
3102         swp = pte_to_swp_entry(pte);
3103         if (non_swap_entry(swp) && is_migration_entry(swp))
3104                 return 1;
3105         else
3106                 return 0;
3107 }
3108
3109 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3110 {
3111         swp_entry_t swp;
3112
3113         if (huge_pte_none(pte) || pte_present(pte))
3114                 return 0;
3115         swp = pte_to_swp_entry(pte);
3116         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3117                 return 1;
3118         else
3119                 return 0;
3120 }
3121
3122 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3123                             struct vm_area_struct *vma)
3124 {
3125         pte_t *src_pte, *dst_pte, entry;
3126         struct page *ptepage;
3127         unsigned long addr;
3128         int cow;
3129         struct hstate *h = hstate_vma(vma);
3130         unsigned long sz = huge_page_size(h);
3131         unsigned long mmun_start;       /* For mmu_notifiers */
3132         unsigned long mmun_end;         /* For mmu_notifiers */
3133         int ret = 0;
3134
3135         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3136
3137         mmun_start = vma->vm_start;
3138         mmun_end = vma->vm_end;
3139         if (cow)
3140                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3141
3142         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3143                 spinlock_t *src_ptl, *dst_ptl;
3144                 src_pte = huge_pte_offset(src, addr);
3145                 if (!src_pte)
3146                         continue;
3147                 dst_pte = huge_pte_alloc(dst, addr, sz);
3148                 if (!dst_pte) {
3149                         ret = -ENOMEM;
3150                         break;
3151                 }
3152
3153                 /* If the pagetables are shared don't copy or take references */
3154                 if (dst_pte == src_pte)
3155                         continue;
3156
3157                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3158                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3159                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3160                 entry = huge_ptep_get(src_pte);
3161                 if (huge_pte_none(entry)) { /* skip none entry */
3162                         ;
3163                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3164                                     is_hugetlb_entry_hwpoisoned(entry))) {
3165                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3166
3167                         if (is_write_migration_entry(swp_entry) && cow) {
3168                                 /*
3169                                  * COW mappings require pages in both
3170                                  * parent and child to be set to read.
3171                                  */
3172                                 make_migration_entry_read(&swp_entry);
3173                                 entry = swp_entry_to_pte(swp_entry);
3174                                 set_huge_pte_at(src, addr, src_pte, entry);
3175                         }
3176                         set_huge_pte_at(dst, addr, dst_pte, entry);
3177                 } else {
3178                         if (cow) {
3179                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3180                                 mmu_notifier_invalidate_range(src, mmun_start,
3181                                                                    mmun_end);
3182                         }
3183                         entry = huge_ptep_get(src_pte);
3184                         ptepage = pte_page(entry);
3185                         get_page(ptepage);
3186                         page_dup_rmap(ptepage, true);
3187                         set_huge_pte_at(dst, addr, dst_pte, entry);
3188                         hugetlb_count_add(pages_per_huge_page(h), dst);
3189                 }
3190                 spin_unlock(src_ptl);
3191                 spin_unlock(dst_ptl);
3192         }
3193
3194         if (cow)
3195                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3196
3197         return ret;
3198 }
3199
3200 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3201                             unsigned long start, unsigned long end,
3202                             struct page *ref_page)
3203 {
3204         struct mm_struct *mm = vma->vm_mm;
3205         unsigned long address;
3206         pte_t *ptep;
3207         pte_t pte;
3208         spinlock_t *ptl;
3209         struct page *page;
3210         struct hstate *h = hstate_vma(vma);
3211         unsigned long sz = huge_page_size(h);
3212         const unsigned long mmun_start = start; /* For mmu_notifiers */
3213         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3214
3215         WARN_ON(!is_vm_hugetlb_page(vma));
3216         BUG_ON(start & ~huge_page_mask(h));
3217         BUG_ON(end & ~huge_page_mask(h));
3218
3219         tlb_start_vma(tlb, vma);
3220         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3221         address = start;
3222         for (; address < end; address += sz) {
3223                 ptep = huge_pte_offset(mm, address);
3224                 if (!ptep)
3225                         continue;
3226
3227                 ptl = huge_pte_lock(h, mm, ptep);
3228                 if (huge_pmd_unshare(mm, &address, ptep)) {
3229                         spin_unlock(ptl);
3230                         continue;
3231                 }
3232
3233                 pte = huge_ptep_get(ptep);
3234                 if (huge_pte_none(pte)) {
3235                         spin_unlock(ptl);
3236                         continue;
3237                 }
3238
3239                 /*
3240                  * Migrating hugepage or HWPoisoned hugepage is already
3241                  * unmapped and its refcount is dropped, so just clear pte here.
3242                  */
3243                 if (unlikely(!pte_present(pte))) {
3244                         huge_pte_clear(mm, address, ptep);
3245                         spin_unlock(ptl);
3246                         continue;
3247                 }
3248
3249                 page = pte_page(pte);
3250                 /*
3251                  * If a reference page is supplied, it is because a specific
3252                  * page is being unmapped, not a range. Ensure the page we
3253                  * are about to unmap is the actual page of interest.
3254                  */
3255                 if (ref_page) {
3256                         if (page != ref_page) {
3257                                 spin_unlock(ptl);
3258                                 continue;
3259                         }
3260                         /*
3261                          * Mark the VMA as having unmapped its page so that
3262                          * future faults in this VMA will fail rather than
3263                          * looking like data was lost
3264                          */
3265                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3266                 }
3267
3268                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3269                 tlb_remove_tlb_entry(tlb, ptep, address);
3270                 if (huge_pte_dirty(pte))
3271                         set_page_dirty(page);
3272
3273                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3274                 page_remove_rmap(page, true);
3275
3276                 spin_unlock(ptl);
3277                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3278                 /*
3279                  * Bail out after unmapping reference page if supplied
3280                  */
3281                 if (ref_page)
3282                         break;
3283         }
3284         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3285         tlb_end_vma(tlb, vma);
3286 }
3287
3288 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3289                           struct vm_area_struct *vma, unsigned long start,
3290                           unsigned long end, struct page *ref_page)
3291 {
3292         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3293
3294         /*
3295          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3296          * test will fail on a vma being torn down, and not grab a page table
3297          * on its way out.  We're lucky that the flag has such an appropriate
3298          * name, and can in fact be safely cleared here. We could clear it
3299          * before the __unmap_hugepage_range above, but all that's necessary
3300          * is to clear it before releasing the i_mmap_rwsem. This works
3301          * because in the context this is called, the VMA is about to be
3302          * destroyed and the i_mmap_rwsem is held.
3303          */
3304         vma->vm_flags &= ~VM_MAYSHARE;
3305 }
3306
3307 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3308                           unsigned long end, struct page *ref_page)
3309 {
3310         struct mm_struct *mm;
3311         struct mmu_gather tlb;
3312
3313         mm = vma->vm_mm;
3314
3315         tlb_gather_mmu(&tlb, mm, start, end);
3316         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3317         tlb_finish_mmu(&tlb, start, end);
3318 }
3319
3320 /*
3321  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3322  * mappping it owns the reserve page for. The intention is to unmap the page
3323  * from other VMAs and let the children be SIGKILLed if they are faulting the
3324  * same region.
3325  */
3326 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3327                               struct page *page, unsigned long address)
3328 {
3329         struct hstate *h = hstate_vma(vma);
3330         struct vm_area_struct *iter_vma;
3331         struct address_space *mapping;
3332         pgoff_t pgoff;
3333
3334         /*
3335          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3336          * from page cache lookup which is in HPAGE_SIZE units.
3337          */
3338         address = address & huge_page_mask(h);
3339         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3340                         vma->vm_pgoff;
3341         mapping = vma->vm_file->f_mapping;
3342
3343         /*
3344          * Take the mapping lock for the duration of the table walk. As
3345          * this mapping should be shared between all the VMAs,
3346          * __unmap_hugepage_range() is called as the lock is already held
3347          */
3348         i_mmap_lock_write(mapping);
3349         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3350                 /* Do not unmap the current VMA */
3351                 if (iter_vma == vma)
3352                         continue;
3353
3354                 /*
3355                  * Shared VMAs have their own reserves and do not affect
3356                  * MAP_PRIVATE accounting but it is possible that a shared
3357                  * VMA is using the same page so check and skip such VMAs.
3358                  */
3359                 if (iter_vma->vm_flags & VM_MAYSHARE)
3360                         continue;
3361
3362                 /*
3363                  * Unmap the page from other VMAs without their own reserves.
3364                  * They get marked to be SIGKILLed if they fault in these
3365                  * areas. This is because a future no-page fault on this VMA
3366                  * could insert a zeroed page instead of the data existing
3367                  * from the time of fork. This would look like data corruption
3368                  */
3369                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3370                         unmap_hugepage_range(iter_vma, address,
3371                                              address + huge_page_size(h), page);
3372         }
3373         i_mmap_unlock_write(mapping);
3374 }
3375
3376 /*
3377  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3378  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3379  * cannot race with other handlers or page migration.
3380  * Keep the pte_same checks anyway to make transition from the mutex easier.
3381  */
3382 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3383                         unsigned long address, pte_t *ptep, pte_t pte,
3384                         struct page *pagecache_page, spinlock_t *ptl)
3385 {
3386         struct hstate *h = hstate_vma(vma);
3387         struct page *old_page, *new_page;
3388         int ret = 0, outside_reserve = 0;
3389         unsigned long mmun_start;       /* For mmu_notifiers */
3390         unsigned long mmun_end;         /* For mmu_notifiers */
3391
3392         old_page = pte_page(pte);
3393
3394 retry_avoidcopy:
3395         /* If no-one else is actually using this page, avoid the copy
3396          * and just make the page writable */
3397         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3398                 page_move_anon_rmap(old_page, vma);
3399                 set_huge_ptep_writable(vma, address, ptep);
3400                 return 0;
3401         }
3402
3403         /*
3404          * If the process that created a MAP_PRIVATE mapping is about to
3405          * perform a COW due to a shared page count, attempt to satisfy
3406          * the allocation without using the existing reserves. The pagecache
3407          * page is used to determine if the reserve at this address was
3408          * consumed or not. If reserves were used, a partial faulted mapping
3409          * at the time of fork() could consume its reserves on COW instead
3410          * of the full address range.
3411          */
3412         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3413                         old_page != pagecache_page)
3414                 outside_reserve = 1;
3415
3416         get_page(old_page);
3417
3418         /*
3419          * Drop page table lock as buddy allocator may be called. It will
3420          * be acquired again before returning to the caller, as expected.
3421          */
3422         spin_unlock(ptl);
3423         new_page = alloc_huge_page(vma, address, outside_reserve);
3424
3425         if (IS_ERR(new_page)) {
3426                 /*
3427                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3428                  * it is due to references held by a child and an insufficient
3429                  * huge page pool. To guarantee the original mappers
3430                  * reliability, unmap the page from child processes. The child
3431                  * may get SIGKILLed if it later faults.
3432                  */
3433                 if (outside_reserve) {
3434                         put_page(old_page);
3435                         BUG_ON(huge_pte_none(pte));
3436                         unmap_ref_private(mm, vma, old_page, address);
3437                         BUG_ON(huge_pte_none(pte));
3438                         spin_lock(ptl);
3439                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3440                         if (likely(ptep &&
3441                                    pte_same(huge_ptep_get(ptep), pte)))
3442                                 goto retry_avoidcopy;
3443                         /*
3444                          * race occurs while re-acquiring page table
3445                          * lock, and our job is done.
3446                          */
3447                         return 0;
3448                 }
3449
3450                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3451                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3452                 goto out_release_old;
3453         }
3454
3455         /*
3456          * When the original hugepage is shared one, it does not have
3457          * anon_vma prepared.
3458          */
3459         if (unlikely(anon_vma_prepare(vma))) {
3460                 ret = VM_FAULT_OOM;
3461                 goto out_release_all;
3462         }
3463
3464         copy_user_huge_page(new_page, old_page, address, vma,
3465                             pages_per_huge_page(h));
3466         __SetPageUptodate(new_page);
3467         set_page_huge_active(new_page);
3468
3469         mmun_start = address & huge_page_mask(h);
3470         mmun_end = mmun_start + huge_page_size(h);
3471         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3472
3473         /*
3474          * Retake the page table lock to check for racing updates
3475          * before the page tables are altered
3476          */
3477         spin_lock(ptl);
3478         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3479         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3480                 ClearPagePrivate(new_page);
3481
3482                 /* Break COW */
3483                 huge_ptep_clear_flush(vma, address, ptep);
3484                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3485                 set_huge_pte_at(mm, address, ptep,
3486                                 make_huge_pte(vma, new_page, 1));
3487                 page_remove_rmap(old_page, true);
3488                 hugepage_add_new_anon_rmap(new_page, vma, address);
3489                 /* Make the old page be freed below */
3490                 new_page = old_page;
3491         }
3492         spin_unlock(ptl);
3493         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3494 out_release_all:
3495         put_page(new_page);
3496 out_release_old:
3497         put_page(old_page);
3498
3499         spin_lock(ptl); /* Caller expects lock to be held */
3500         return ret;
3501 }
3502
3503 /* Return the pagecache page at a given address within a VMA */
3504 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3505                         struct vm_area_struct *vma, unsigned long address)
3506 {
3507         struct address_space *mapping;
3508         pgoff_t idx;
3509
3510         mapping = vma->vm_file->f_mapping;
3511         idx = vma_hugecache_offset(h, vma, address);
3512
3513         return find_lock_page(mapping, idx);
3514 }
3515
3516 /*
3517  * Return whether there is a pagecache page to back given address within VMA.
3518  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3519  */
3520 static bool hugetlbfs_pagecache_present(struct hstate *h,
3521                         struct vm_area_struct *vma, unsigned long address)
3522 {
3523         struct address_space *mapping;
3524         pgoff_t idx;
3525         struct page *page;
3526
3527         mapping = vma->vm_file->f_mapping;
3528         idx = vma_hugecache_offset(h, vma, address);
3529
3530         page = find_get_page(mapping, idx);
3531         if (page)
3532                 put_page(page);
3533         return page != NULL;
3534 }
3535
3536 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3537                            pgoff_t idx)
3538 {
3539         struct inode *inode = mapping->host;
3540         struct hstate *h = hstate_inode(inode);
3541         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3542
3543         if (err)
3544                 return err;
3545         ClearPagePrivate(page);
3546
3547         spin_lock(&inode->i_lock);
3548         inode->i_blocks += blocks_per_huge_page(h);
3549         spin_unlock(&inode->i_lock);
3550         return 0;
3551 }
3552
3553 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3554                            struct address_space *mapping, pgoff_t idx,
3555                            unsigned long address, pte_t *ptep, unsigned int flags)
3556 {
3557         struct hstate *h = hstate_vma(vma);
3558         int ret = VM_FAULT_SIGBUS;
3559         int anon_rmap = 0;
3560         unsigned long size;
3561         struct page *page;
3562         pte_t new_pte;
3563         spinlock_t *ptl;
3564
3565         /*
3566          * Currently, we are forced to kill the process in the event the
3567          * original mapper has unmapped pages from the child due to a failed
3568          * COW. Warn that such a situation has occurred as it may not be obvious
3569          */
3570         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3571                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3572                            current->pid);
3573                 return ret;
3574         }
3575
3576         /*
3577          * Use page lock to guard against racing truncation
3578          * before we get page_table_lock.
3579          */
3580 retry:
3581         page = find_lock_page(mapping, idx);
3582         if (!page) {
3583                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3584                 if (idx >= size)
3585                         goto out;
3586                 page = alloc_huge_page(vma, address, 0);
3587                 if (IS_ERR(page)) {
3588                         ret = PTR_ERR(page);
3589                         if (ret == -ENOMEM)
3590                                 ret = VM_FAULT_OOM;
3591                         else
3592                                 ret = VM_FAULT_SIGBUS;
3593                         goto out;
3594                 }
3595                 clear_huge_page(page, address, pages_per_huge_page(h));
3596                 __SetPageUptodate(page);
3597                 set_page_huge_active(page);
3598
3599                 if (vma->vm_flags & VM_MAYSHARE) {
3600                         int err = huge_add_to_page_cache(page, mapping, idx);
3601                         if (err) {
3602                                 put_page(page);
3603                                 if (err == -EEXIST)
3604                                         goto retry;
3605                                 goto out;
3606                         }
3607                 } else {
3608                         lock_page(page);
3609                         if (unlikely(anon_vma_prepare(vma))) {
3610                                 ret = VM_FAULT_OOM;
3611                                 goto backout_unlocked;
3612                         }
3613                         anon_rmap = 1;
3614                 }
3615         } else {
3616                 /*
3617                  * If memory error occurs between mmap() and fault, some process
3618                  * don't have hwpoisoned swap entry for errored virtual address.
3619                  * So we need to block hugepage fault by PG_hwpoison bit check.
3620                  */
3621                 if (unlikely(PageHWPoison(page))) {
3622                         ret = VM_FAULT_HWPOISON |
3623                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3624                         goto backout_unlocked;
3625                 }
3626         }
3627
3628         /*
3629          * If we are going to COW a private mapping later, we examine the
3630          * pending reservations for this page now. This will ensure that
3631          * any allocations necessary to record that reservation occur outside
3632          * the spinlock.
3633          */
3634         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3635                 if (vma_needs_reservation(h, vma, address) < 0) {
3636                         ret = VM_FAULT_OOM;
3637                         goto backout_unlocked;
3638                 }
3639                 /* Just decrements count, does not deallocate */
3640                 vma_end_reservation(h, vma, address);
3641         }
3642
3643         ptl = huge_pte_lockptr(h, mm, ptep);
3644         spin_lock(ptl);
3645         size = i_size_read(mapping->host) >> huge_page_shift(h);
3646         if (idx >= size)
3647                 goto backout;
3648
3649         ret = 0;
3650         if (!huge_pte_none(huge_ptep_get(ptep)))
3651                 goto backout;
3652
3653         if (anon_rmap) {
3654                 ClearPagePrivate(page);
3655                 hugepage_add_new_anon_rmap(page, vma, address);
3656         } else
3657                 page_dup_rmap(page, true);
3658         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3659                                 && (vma->vm_flags & VM_SHARED)));
3660         set_huge_pte_at(mm, address, ptep, new_pte);
3661
3662         hugetlb_count_add(pages_per_huge_page(h), mm);
3663         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3664                 /* Optimization, do the COW without a second fault */
3665                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3666         }
3667
3668         spin_unlock(ptl);
3669         unlock_page(page);
3670 out:
3671         return ret;
3672
3673 backout:
3674         spin_unlock(ptl);
3675 backout_unlocked:
3676         unlock_page(page);
3677         put_page(page);
3678         goto out;
3679 }
3680
3681 #ifdef CONFIG_SMP
3682 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3683                             struct vm_area_struct *vma,
3684                             struct address_space *mapping,
3685                             pgoff_t idx, unsigned long address)
3686 {
3687         unsigned long key[2];
3688         u32 hash;
3689
3690         if (vma->vm_flags & VM_SHARED) {
3691                 key[0] = (unsigned long) mapping;
3692                 key[1] = idx;
3693         } else {
3694                 key[0] = (unsigned long) mm;
3695                 key[1] = address >> huge_page_shift(h);
3696         }
3697
3698         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3699
3700         return hash & (num_fault_mutexes - 1);
3701 }
3702 #else
3703 /*
3704  * For uniprocesor systems we always use a single mutex, so just
3705  * return 0 and avoid the hashing overhead.
3706  */
3707 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3708                             struct vm_area_struct *vma,
3709                             struct address_space *mapping,
3710                             pgoff_t idx, unsigned long address)
3711 {
3712         return 0;
3713 }
3714 #endif
3715
3716 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3717                         unsigned long address, unsigned int flags)
3718 {
3719         pte_t *ptep, entry;
3720         spinlock_t *ptl;
3721         int ret;
3722         u32 hash;
3723         pgoff_t idx;
3724         struct page *page = NULL;
3725         struct page *pagecache_page = NULL;
3726         struct hstate *h = hstate_vma(vma);
3727         struct address_space *mapping;
3728         int need_wait_lock = 0;
3729
3730         address &= huge_page_mask(h);
3731
3732         ptep = huge_pte_offset(mm, address);
3733         if (ptep) {
3734                 entry = huge_ptep_get(ptep);
3735                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3736                         migration_entry_wait_huge(vma, mm, ptep);
3737                         return 0;
3738                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3739                         return VM_FAULT_HWPOISON_LARGE |
3740                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3741         } else {
3742                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3743                 if (!ptep)
3744                         return VM_FAULT_OOM;
3745         }
3746
3747         mapping = vma->vm_file->f_mapping;
3748         idx = vma_hugecache_offset(h, vma, address);
3749
3750         /*
3751          * Serialize hugepage allocation and instantiation, so that we don't
3752          * get spurious allocation failures if two CPUs race to instantiate
3753          * the same page in the page cache.
3754          */
3755         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3756         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3757
3758         entry = huge_ptep_get(ptep);
3759         if (huge_pte_none(entry)) {
3760                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3761                 goto out_mutex;
3762         }
3763
3764         ret = 0;
3765
3766         /*
3767          * entry could be a migration/hwpoison entry at this point, so this
3768          * check prevents the kernel from going below assuming that we have
3769          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3770          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3771          * handle it.
3772          */
3773         if (!pte_present(entry))
3774                 goto out_mutex;
3775
3776         /*
3777          * If we are going to COW the mapping later, we examine the pending
3778          * reservations for this page now. This will ensure that any
3779          * allocations necessary to record that reservation occur outside the
3780          * spinlock. For private mappings, we also lookup the pagecache
3781          * page now as it is used to determine if a reservation has been
3782          * consumed.
3783          */
3784         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3785                 if (vma_needs_reservation(h, vma, address) < 0) {
3786                         ret = VM_FAULT_OOM;
3787                         goto out_mutex;
3788                 }
3789                 /* Just decrements count, does not deallocate */
3790                 vma_end_reservation(h, vma, address);
3791
3792                 if (!(vma->vm_flags & VM_MAYSHARE))
3793                         pagecache_page = hugetlbfs_pagecache_page(h,
3794                                                                 vma, address);
3795         }
3796
3797         ptl = huge_pte_lock(h, mm, ptep);
3798
3799         /* Check for a racing update before calling hugetlb_cow */
3800         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3801                 goto out_ptl;
3802
3803         /*
3804          * hugetlb_cow() requires page locks of pte_page(entry) and
3805          * pagecache_page, so here we need take the former one
3806          * when page != pagecache_page or !pagecache_page.
3807          */
3808         page = pte_page(entry);
3809         if (page != pagecache_page)
3810                 if (!trylock_page(page)) {
3811                         need_wait_lock = 1;
3812                         goto out_ptl;
3813                 }
3814
3815         get_page(page);
3816
3817         if (flags & FAULT_FLAG_WRITE) {
3818                 if (!huge_pte_write(entry)) {
3819                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3820                                         pagecache_page, ptl);
3821                         goto out_put_page;
3822                 }
3823                 entry = huge_pte_mkdirty(entry);
3824         }
3825         entry = pte_mkyoung(entry);
3826         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3827                                                 flags & FAULT_FLAG_WRITE))
3828                 update_mmu_cache(vma, address, ptep);
3829 out_put_page:
3830         if (page != pagecache_page)
3831                 unlock_page(page);
3832         put_page(page);
3833 out_ptl:
3834         spin_unlock(ptl);
3835
3836         if (pagecache_page) {
3837                 unlock_page(pagecache_page);
3838                 put_page(pagecache_page);
3839         }
3840 out_mutex:
3841         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3842         /*
3843          * Generally it's safe to hold refcount during waiting page lock. But
3844          * here we just wait to defer the next page fault to avoid busy loop and
3845          * the page is not used after unlocked before returning from the current
3846          * page fault. So we are safe from accessing freed page, even if we wait
3847          * here without taking refcount.
3848          */
3849         if (need_wait_lock)
3850                 wait_on_page_locked(page);
3851         return ret;
3852 }
3853
3854 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3855                          struct page **pages, struct vm_area_struct **vmas,
3856                          unsigned long *position, unsigned long *nr_pages,
3857                          long i, unsigned int flags)
3858 {
3859         unsigned long pfn_offset;
3860         unsigned long vaddr = *position;
3861         unsigned long remainder = *nr_pages;
3862         struct hstate *h = hstate_vma(vma);
3863
3864         while (vaddr < vma->vm_end && remainder) {
3865                 pte_t *pte;
3866                 spinlock_t *ptl = NULL;
3867                 int absent;
3868                 struct page *page;
3869
3870                 /*
3871                  * If we have a pending SIGKILL, don't keep faulting pages and
3872                  * potentially allocating memory.
3873                  */
3874                 if (unlikely(fatal_signal_pending(current))) {
3875                         remainder = 0;
3876                         break;
3877                 }
3878
3879                 /*
3880                  * Some archs (sparc64, sh*) have multiple pte_ts to
3881                  * each hugepage.  We have to make sure we get the
3882                  * first, for the page indexing below to work.
3883                  *
3884                  * Note that page table lock is not held when pte is null.
3885                  */
3886                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3887                 if (pte)
3888                         ptl = huge_pte_lock(h, mm, pte);
3889                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3890
3891                 /*
3892                  * When coredumping, it suits get_dump_page if we just return
3893                  * an error where there's an empty slot with no huge pagecache
3894                  * to back it.  This way, we avoid allocating a hugepage, and
3895                  * the sparse dumpfile avoids allocating disk blocks, but its
3896                  * huge holes still show up with zeroes where they need to be.
3897                  */
3898                 if (absent && (flags & FOLL_DUMP) &&
3899                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3900                         if (pte)
3901                                 spin_unlock(ptl);
3902                         remainder = 0;
3903                         break;
3904                 }
3905
3906                 /*
3907                  * We need call hugetlb_fault for both hugepages under migration
3908                  * (in which case hugetlb_fault waits for the migration,) and
3909                  * hwpoisoned hugepages (in which case we need to prevent the
3910                  * caller from accessing to them.) In order to do this, we use
3911                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3912                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3913                  * both cases, and because we can't follow correct pages
3914                  * directly from any kind of swap entries.
3915                  */
3916                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3917                     ((flags & FOLL_WRITE) &&
3918                       !huge_pte_write(huge_ptep_get(pte)))) {
3919                         int ret;
3920
3921                         if (pte)
3922                                 spin_unlock(ptl);
3923                         ret = hugetlb_fault(mm, vma, vaddr,
3924                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3925                         if (!(ret & VM_FAULT_ERROR))
3926                                 continue;
3927
3928                         remainder = 0;
3929                         break;
3930                 }
3931
3932                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3933                 page = pte_page(huge_ptep_get(pte));
3934 same_page:
3935                 if (pages) {
3936                         pages[i] = mem_map_offset(page, pfn_offset);
3937                         get_page(pages[i]);
3938                 }
3939
3940                 if (vmas)
3941                         vmas[i] = vma;
3942
3943                 vaddr += PAGE_SIZE;
3944                 ++pfn_offset;
3945                 --remainder;
3946                 ++i;
3947                 if (vaddr < vma->vm_end && remainder &&
3948                                 pfn_offset < pages_per_huge_page(h)) {
3949                         /*
3950                          * We use pfn_offset to avoid touching the pageframes
3951                          * of this compound page.
3952                          */
3953                         goto same_page;
3954                 }
3955                 spin_unlock(ptl);
3956         }
3957         *nr_pages = remainder;
3958         *position = vaddr;
3959
3960         return i ? i : -EFAULT;
3961 }
3962
3963 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
3964 /*
3965  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
3966  * implement this.
3967  */
3968 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
3969 #endif
3970
3971 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3972                 unsigned long address, unsigned long end, pgprot_t newprot)
3973 {
3974         struct mm_struct *mm = vma->vm_mm;
3975         unsigned long start = address;
3976         pte_t *ptep;
3977         pte_t pte;
3978         struct hstate *h = hstate_vma(vma);
3979         unsigned long pages = 0;
3980
3981         BUG_ON(address >= end);
3982         flush_cache_range(vma, address, end);
3983
3984         mmu_notifier_invalidate_range_start(mm, start, end);
3985         i_mmap_lock_write(vma->vm_file->f_mapping);
3986         for (; address < end; address += huge_page_size(h)) {
3987                 spinlock_t *ptl;
3988                 ptep = huge_pte_offset(mm, address);
3989                 if (!ptep)
3990                         continue;
3991                 ptl = huge_pte_lock(h, mm, ptep);
3992                 if (huge_pmd_unshare(mm, &address, ptep)) {
3993                         pages++;
3994                         spin_unlock(ptl);
3995                         continue;
3996                 }
3997                 pte = huge_ptep_get(ptep);
3998                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3999                         spin_unlock(ptl);
4000                         continue;
4001                 }
4002                 if (unlikely(is_hugetlb_entry_migration(pte))) {
4003                         swp_entry_t entry = pte_to_swp_entry(pte);
4004
4005                         if (is_write_migration_entry(entry)) {
4006                                 pte_t newpte;
4007
4008                                 make_migration_entry_read(&entry);
4009                                 newpte = swp_entry_to_pte(entry);
4010                                 set_huge_pte_at(mm, address, ptep, newpte);
4011                                 pages++;
4012                         }
4013                         spin_unlock(ptl);
4014                         continue;
4015                 }
4016                 if (!huge_pte_none(pte)) {
4017                         pte = huge_ptep_get_and_clear(mm, address, ptep);
4018                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4019                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4020                         set_huge_pte_at(mm, address, ptep, pte);
4021                         pages++;
4022                 }
4023                 spin_unlock(ptl);
4024         }
4025         /*
4026          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4027          * may have cleared our pud entry and done put_page on the page table:
4028          * once we release i_mmap_rwsem, another task can do the final put_page
4029          * and that page table be reused and filled with junk.
4030          */
4031         flush_hugetlb_tlb_range(vma, start, end);
4032         mmu_notifier_invalidate_range(mm, start, end);
4033         i_mmap_unlock_write(vma->vm_file->f_mapping);
4034         mmu_notifier_invalidate_range_end(mm, start, end);
4035
4036         return pages << h->order;
4037 }
4038
4039 int hugetlb_reserve_pages(struct inode *inode,
4040                                         long from, long to,
4041                                         struct vm_area_struct *vma,
4042                                         vm_flags_t vm_flags)
4043 {
4044         long ret, chg;
4045         struct hstate *h = hstate_inode(inode);
4046         struct hugepage_subpool *spool = subpool_inode(inode);
4047         struct resv_map *resv_map;
4048         long gbl_reserve;
4049
4050         /*
4051          * Only apply hugepage reservation if asked. At fault time, an
4052          * attempt will be made for VM_NORESERVE to allocate a page
4053          * without using reserves
4054          */
4055         if (vm_flags & VM_NORESERVE)
4056                 return 0;
4057
4058         /*
4059          * Shared mappings base their reservation on the number of pages that
4060          * are already allocated on behalf of the file. Private mappings need
4061          * to reserve the full area even if read-only as mprotect() may be
4062          * called to make the mapping read-write. Assume !vma is a shm mapping
4063          */
4064         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4065                 resv_map = inode_resv_map(inode);
4066
4067                 chg = region_chg(resv_map, from, to);
4068
4069         } else {
4070                 resv_map = resv_map_alloc();
4071                 if (!resv_map)
4072                         return -ENOMEM;
4073
4074                 chg = to - from;
4075
4076                 set_vma_resv_map(vma, resv_map);
4077                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4078         }
4079
4080         if (chg < 0) {
4081                 ret = chg;
4082                 goto out_err;
4083         }
4084
4085         /*
4086          * There must be enough pages in the subpool for the mapping. If
4087          * the subpool has a minimum size, there may be some global
4088          * reservations already in place (gbl_reserve).
4089          */
4090         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4091         if (gbl_reserve < 0) {
4092                 ret = -ENOSPC;
4093                 goto out_err;
4094         }
4095
4096         /*
4097          * Check enough hugepages are available for the reservation.
4098          * Hand the pages back to the subpool if there are not
4099          */
4100         ret = hugetlb_acct_memory(h, gbl_reserve);
4101         if (ret < 0) {
4102                 /* put back original number of pages, chg */
4103                 (void)hugepage_subpool_put_pages(spool, chg);
4104                 goto out_err;
4105         }
4106
4107         /*
4108          * Account for the reservations made. Shared mappings record regions
4109          * that have reservations as they are shared by multiple VMAs.
4110          * When the last VMA disappears, the region map says how much
4111          * the reservation was and the page cache tells how much of
4112          * the reservation was consumed. Private mappings are per-VMA and
4113          * only the consumed reservations are tracked. When the VMA
4114          * disappears, the original reservation is the VMA size and the
4115          * consumed reservations are stored in the map. Hence, nothing
4116          * else has to be done for private mappings here
4117          */
4118         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4119                 long add = region_add(resv_map, from, to);
4120
4121                 if (unlikely(chg > add)) {
4122                         /*
4123                          * pages in this range were added to the reserve
4124                          * map between region_chg and region_add.  This
4125                          * indicates a race with alloc_huge_page.  Adjust
4126                          * the subpool and reserve counts modified above
4127                          * based on the difference.
4128                          */
4129                         long rsv_adjust;
4130
4131                         rsv_adjust = hugepage_subpool_put_pages(spool,
4132                                                                 chg - add);
4133                         hugetlb_acct_memory(h, -rsv_adjust);
4134                 }
4135         }
4136         return 0;
4137 out_err:
4138         if (!vma || vma->vm_flags & VM_MAYSHARE)
4139                 region_abort(resv_map, from, to);
4140         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4141                 kref_put(&resv_map->refs, resv_map_release);
4142         return ret;
4143 }
4144
4145 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4146                                                                 long freed)
4147 {
4148         struct hstate *h = hstate_inode(inode);
4149         struct resv_map *resv_map = inode_resv_map(inode);
4150         long chg = 0;
4151         struct hugepage_subpool *spool = subpool_inode(inode);
4152         long gbl_reserve;
4153
4154         if (resv_map) {
4155                 chg = region_del(resv_map, start, end);
4156                 /*
4157                  * region_del() can fail in the rare case where a region
4158                  * must be split and another region descriptor can not be
4159                  * allocated.  If end == LONG_MAX, it will not fail.
4160                  */
4161                 if (chg < 0)
4162                         return chg;
4163         }
4164
4165         spin_lock(&inode->i_lock);
4166         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4167         spin_unlock(&inode->i_lock);
4168
4169         /*
4170          * If the subpool has a minimum size, the number of global
4171          * reservations to be released may be adjusted.
4172          */
4173         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4174         hugetlb_acct_memory(h, -gbl_reserve);
4175
4176         return 0;
4177 }
4178
4179 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4180 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4181                                 struct vm_area_struct *vma,
4182                                 unsigned long addr, pgoff_t idx)
4183 {
4184         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4185                                 svma->vm_start;
4186         unsigned long sbase = saddr & PUD_MASK;
4187         unsigned long s_end = sbase + PUD_SIZE;
4188
4189         /* Allow segments to share if only one is marked locked */
4190         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4191         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4192
4193         /*
4194          * match the virtual addresses, permission and the alignment of the
4195          * page table page.
4196          */
4197         if (pmd_index(addr) != pmd_index(saddr) ||
4198             vm_flags != svm_flags ||
4199             sbase < svma->vm_start || svma->vm_end < s_end)
4200                 return 0;
4201
4202         return saddr;
4203 }
4204
4205 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4206 {
4207         unsigned long base = addr & PUD_MASK;
4208         unsigned long end = base + PUD_SIZE;
4209
4210         /*
4211          * check on proper vm_flags and page table alignment
4212          */
4213         if (vma->vm_flags & VM_MAYSHARE &&
4214             vma->vm_start <= base && end <= vma->vm_end)
4215                 return true;
4216         return false;
4217 }
4218
4219 /*
4220  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4221  * and returns the corresponding pte. While this is not necessary for the
4222  * !shared pmd case because we can allocate the pmd later as well, it makes the
4223  * code much cleaner. pmd allocation is essential for the shared case because
4224  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4225  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4226  * bad pmd for sharing.
4227  */
4228 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4229 {
4230         struct vm_area_struct *vma = find_vma(mm, addr);
4231         struct address_space *mapping = vma->vm_file->f_mapping;
4232         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4233                         vma->vm_pgoff;
4234         struct vm_area_struct *svma;
4235         unsigned long saddr;
4236         pte_t *spte = NULL;
4237         pte_t *pte;
4238         spinlock_t *ptl;
4239
4240         if (!vma_shareable(vma, addr))
4241                 return (pte_t *)pmd_alloc(mm, pud, addr);
4242
4243         i_mmap_lock_write(mapping);
4244         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4245                 if (svma == vma)
4246                         continue;
4247
4248                 saddr = page_table_shareable(svma, vma, addr, idx);
4249                 if (saddr) {
4250                         spte = huge_pte_offset(svma->vm_mm, saddr);
4251                         if (spte) {
4252                                 get_page(virt_to_page(spte));
4253                                 break;
4254                         }
4255                 }
4256         }
4257
4258         if (!spte)
4259                 goto out;
4260
4261         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4262         spin_lock(ptl);
4263         if (pud_none(*pud)) {
4264                 pud_populate(mm, pud,
4265                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4266                 mm_inc_nr_pmds(mm);
4267         } else {
4268                 put_page(virt_to_page(spte));
4269         }
4270         spin_unlock(ptl);
4271 out:
4272         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4273         i_mmap_unlock_write(mapping);
4274         return pte;
4275 }
4276
4277 /*
4278  * unmap huge page backed by shared pte.
4279  *
4280  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4281  * indicated by page_count > 1, unmap is achieved by clearing pud and
4282  * decrementing the ref count. If count == 1, the pte page is not shared.
4283  *
4284  * called with page table lock held.
4285  *
4286  * returns: 1 successfully unmapped a shared pte page
4287  *          0 the underlying pte page is not shared, or it is the last user
4288  */
4289 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4290 {
4291         pgd_t *pgd = pgd_offset(mm, *addr);
4292         pud_t *pud = pud_offset(pgd, *addr);
4293
4294         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4295         if (page_count(virt_to_page(ptep)) == 1)
4296                 return 0;
4297
4298         pud_clear(pud);
4299         put_page(virt_to_page(ptep));
4300         mm_dec_nr_pmds(mm);
4301         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4302         return 1;
4303 }
4304 #define want_pmd_share()        (1)
4305 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4306 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4307 {
4308         return NULL;
4309 }
4310
4311 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4312 {
4313         return 0;
4314 }
4315 #define want_pmd_share()        (0)
4316 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4317
4318 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4319 pte_t *huge_pte_alloc(struct mm_struct *mm,
4320                         unsigned long addr, unsigned long sz)
4321 {
4322         pgd_t *pgd;
4323         pud_t *pud;
4324         pte_t *pte = NULL;
4325
4326         pgd = pgd_offset(mm, addr);
4327         pud = pud_alloc(mm, pgd, addr);
4328         if (pud) {
4329                 if (sz == PUD_SIZE) {
4330                         pte = (pte_t *)pud;
4331                 } else {
4332                         BUG_ON(sz != PMD_SIZE);
4333                         if (want_pmd_share() && pud_none(*pud))
4334                                 pte = huge_pmd_share(mm, addr, pud);
4335                         else
4336                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4337                 }
4338         }
4339         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4340
4341         return pte;
4342 }
4343
4344 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4345 {
4346         pgd_t *pgd;
4347         pud_t *pud;
4348         pmd_t *pmd = NULL;
4349
4350         pgd = pgd_offset(mm, addr);
4351         if (pgd_present(*pgd)) {
4352                 pud = pud_offset(pgd, addr);
4353                 if (pud_present(*pud)) {
4354                         if (pud_huge(*pud))
4355                                 return (pte_t *)pud;
4356                         pmd = pmd_offset(pud, addr);
4357                 }
4358         }
4359         return (pte_t *) pmd;
4360 }
4361
4362 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4363
4364 /*
4365  * These functions are overwritable if your architecture needs its own
4366  * behavior.
4367  */
4368 struct page * __weak
4369 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4370                               int write)
4371 {
4372         return ERR_PTR(-EINVAL);
4373 }
4374
4375 struct page * __weak
4376 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4377                 pmd_t *pmd, int flags)
4378 {
4379         struct page *page = NULL;
4380         spinlock_t *ptl;
4381 retry:
4382         ptl = pmd_lockptr(mm, pmd);
4383         spin_lock(ptl);
4384         /*
4385          * make sure that the address range covered by this pmd is not
4386          * unmapped from other threads.
4387          */
4388         if (!pmd_huge(*pmd))
4389                 goto out;
4390         if (pmd_present(*pmd)) {
4391                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4392                 if (flags & FOLL_GET)
4393                         get_page(page);
4394         } else {
4395                 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4396                         spin_unlock(ptl);
4397                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4398                         goto retry;
4399                 }
4400                 /*
4401                  * hwpoisoned entry is treated as no_page_table in
4402                  * follow_page_mask().
4403                  */
4404         }
4405 out:
4406         spin_unlock(ptl);
4407         return page;
4408 }
4409
4410 struct page * __weak
4411 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4412                 pud_t *pud, int flags)
4413 {
4414         if (flags & FOLL_GET)
4415                 return NULL;
4416
4417         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4418 }
4419
4420 #ifdef CONFIG_MEMORY_FAILURE
4421
4422 /*
4423  * This function is called from memory failure code.
4424  */
4425 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4426 {
4427         struct hstate *h = page_hstate(hpage);
4428         int nid = page_to_nid(hpage);
4429         int ret = -EBUSY;
4430
4431         spin_lock(&hugetlb_lock);
4432         /*
4433          * Just checking !page_huge_active is not enough, because that could be
4434          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4435          */
4436         if (!page_huge_active(hpage) && !page_count(hpage)) {
4437                 /*
4438                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4439                  * but dangling hpage->lru can trigger list-debug warnings
4440                  * (this happens when we call unpoison_memory() on it),
4441                  * so let it point to itself with list_del_init().
4442                  */
4443                 list_del_init(&hpage->lru);
4444                 set_page_refcounted(hpage);
4445                 h->free_huge_pages--;
4446                 h->free_huge_pages_node[nid]--;
4447                 ret = 0;
4448         }
4449         spin_unlock(&hugetlb_lock);
4450         return ret;
4451 }
4452 #endif
4453
4454 bool isolate_huge_page(struct page *page, struct list_head *list)
4455 {
4456         bool ret = true;
4457
4458         VM_BUG_ON_PAGE(!PageHead(page), page);
4459         spin_lock(&hugetlb_lock);
4460         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4461                 ret = false;
4462                 goto unlock;
4463         }
4464         clear_page_huge_active(page);
4465         list_move_tail(&page->lru, list);
4466 unlock:
4467         spin_unlock(&hugetlb_lock);
4468         return ret;
4469 }
4470
4471 void putback_active_hugepage(struct page *page)
4472 {
4473         VM_BUG_ON_PAGE(!PageHead(page), page);
4474         spin_lock(&hugetlb_lock);
4475         set_page_huge_active(page);
4476         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4477         spin_unlock(&hugetlb_lock);
4478         put_page(page);
4479 }