Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[cascardo/linux.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)         (x)
46 #define DO_NUMA(x)      do { (x); } while (0)
47 #else
48 #define NUMA(x)         (0)
49 #define DO_NUMA(x)      do { } while (0)
50 #endif
51
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  *
91  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92  * stable trees and multiple unstable trees: one of each for each NUMA node.
93  */
94
95 /**
96  * struct mm_slot - ksm information per mm that is being scanned
97  * @link: link to the mm_slots hash list
98  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100  * @mm: the mm that this information is valid for
101  */
102 struct mm_slot {
103         struct hlist_node link;
104         struct list_head mm_list;
105         struct rmap_item *rmap_list;
106         struct mm_struct *mm;
107 };
108
109 /**
110  * struct ksm_scan - cursor for scanning
111  * @mm_slot: the current mm_slot we are scanning
112  * @address: the next address inside that to be scanned
113  * @rmap_list: link to the next rmap to be scanned in the rmap_list
114  * @seqnr: count of completed full scans (needed when removing unstable node)
115  *
116  * There is only the one ksm_scan instance of this cursor structure.
117  */
118 struct ksm_scan {
119         struct mm_slot *mm_slot;
120         unsigned long address;
121         struct rmap_item **rmap_list;
122         unsigned long seqnr;
123 };
124
125 /**
126  * struct stable_node - node of the stable rbtree
127  * @node: rb node of this ksm page in the stable tree
128  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129  * @list: linked into migrate_nodes, pending placement in the proper node tree
130  * @hlist: hlist head of rmap_items using this ksm page
131  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133  */
134 struct stable_node {
135         union {
136                 struct rb_node node;    /* when node of stable tree */
137                 struct {                /* when listed for migration */
138                         struct list_head *head;
139                         struct list_head list;
140                 };
141         };
142         struct hlist_head hlist;
143         unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145         int nid;
146 #endif
147 };
148
149 /**
150  * struct rmap_item - reverse mapping item for virtual addresses
151  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153  * @nid: NUMA node id of unstable tree in which linked (may not match page)
154  * @mm: the memory structure this rmap_item is pointing into
155  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156  * @oldchecksum: previous checksum of the page at that virtual address
157  * @node: rb node of this rmap_item in the unstable tree
158  * @head: pointer to stable_node heading this list in the stable tree
159  * @hlist: link into hlist of rmap_items hanging off that stable_node
160  */
161 struct rmap_item {
162         struct rmap_item *rmap_list;
163         union {
164                 struct anon_vma *anon_vma;      /* when stable */
165 #ifdef CONFIG_NUMA
166                 int nid;                /* when node of unstable tree */
167 #endif
168         };
169         struct mm_struct *mm;
170         unsigned long address;          /* + low bits used for flags below */
171         unsigned int oldchecksum;       /* when unstable */
172         union {
173                 struct rb_node node;    /* when node of unstable tree */
174                 struct {                /* when listed from stable tree */
175                         struct stable_node *head;
176                         struct hlist_node hlist;
177                 };
178         };
179 };
180
181 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
183 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
184
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196
197 static struct mm_slot ksm_mm_head = {
198         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201         .mm_slot = &ksm_mm_head,
202 };
203
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes  1U
232 #define ksm_nr_node_ids         1
233 #endif
234
235 #define KSM_RUN_STOP    0
236 #define KSM_RUN_MERGE   1
237 #define KSM_RUN_UNMERGE 2
238 #define KSM_RUN_OFFLINE 4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
241
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
245
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247                 sizeof(struct __struct), __alignof__(struct __struct),\
248                 (__flags), NULL)
249
250 static int __init ksm_slab_init(void)
251 {
252         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253         if (!rmap_item_cache)
254                 goto out;
255
256         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257         if (!stable_node_cache)
258                 goto out_free1;
259
260         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261         if (!mm_slot_cache)
262                 goto out_free2;
263
264         return 0;
265
266 out_free2:
267         kmem_cache_destroy(stable_node_cache);
268 out_free1:
269         kmem_cache_destroy(rmap_item_cache);
270 out:
271         return -ENOMEM;
272 }
273
274 static void __init ksm_slab_free(void)
275 {
276         kmem_cache_destroy(mm_slot_cache);
277         kmem_cache_destroy(stable_node_cache);
278         kmem_cache_destroy(rmap_item_cache);
279         mm_slot_cache = NULL;
280 }
281
282 static inline struct rmap_item *alloc_rmap_item(void)
283 {
284         struct rmap_item *rmap_item;
285
286         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
287         if (rmap_item)
288                 ksm_rmap_items++;
289         return rmap_item;
290 }
291
292 static inline void free_rmap_item(struct rmap_item *rmap_item)
293 {
294         ksm_rmap_items--;
295         rmap_item->mm = NULL;   /* debug safety */
296         kmem_cache_free(rmap_item_cache, rmap_item);
297 }
298
299 static inline struct stable_node *alloc_stable_node(void)
300 {
301         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
302 }
303
304 static inline void free_stable_node(struct stable_node *stable_node)
305 {
306         kmem_cache_free(stable_node_cache, stable_node);
307 }
308
309 static inline struct mm_slot *alloc_mm_slot(void)
310 {
311         if (!mm_slot_cache)     /* initialization failed */
312                 return NULL;
313         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
314 }
315
316 static inline void free_mm_slot(struct mm_slot *mm_slot)
317 {
318         kmem_cache_free(mm_slot_cache, mm_slot);
319 }
320
321 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
322 {
323         struct mm_slot *slot;
324
325         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
326                 if (slot->mm == mm)
327                         return slot;
328
329         return NULL;
330 }
331
332 static void insert_to_mm_slots_hash(struct mm_struct *mm,
333                                     struct mm_slot *mm_slot)
334 {
335         mm_slot->mm = mm;
336         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
337 }
338
339 /*
340  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
341  * page tables after it has passed through ksm_exit() - which, if necessary,
342  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
343  * a special flag: they can just back out as soon as mm_users goes to zero.
344  * ksm_test_exit() is used throughout to make this test for exit: in some
345  * places for correctness, in some places just to avoid unnecessary work.
346  */
347 static inline bool ksm_test_exit(struct mm_struct *mm)
348 {
349         return atomic_read(&mm->mm_users) == 0;
350 }
351
352 /*
353  * We use break_ksm to break COW on a ksm page: it's a stripped down
354  *
355  *      if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
356  *              put_page(page);
357  *
358  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
359  * in case the application has unmapped and remapped mm,addr meanwhile.
360  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
361  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
362  *
363  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
364  * of the process that owns 'vma'.  We also do not want to enforce
365  * protection keys here anyway.
366  */
367 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
368 {
369         struct page *page;
370         int ret = 0;
371
372         do {
373                 cond_resched();
374                 page = follow_page(vma, addr,
375                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
376                 if (IS_ERR_OR_NULL(page))
377                         break;
378                 if (PageKsm(page))
379                         ret = handle_mm_fault(vma, addr,
380                                         FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
381                 else
382                         ret = VM_FAULT_WRITE;
383                 put_page(page);
384         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
385         /*
386          * We must loop because handle_mm_fault() may back out if there's
387          * any difficulty e.g. if pte accessed bit gets updated concurrently.
388          *
389          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
390          * COW has been broken, even if the vma does not permit VM_WRITE;
391          * but note that a concurrent fault might break PageKsm for us.
392          *
393          * VM_FAULT_SIGBUS could occur if we race with truncation of the
394          * backing file, which also invalidates anonymous pages: that's
395          * okay, that truncation will have unmapped the PageKsm for us.
396          *
397          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
398          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
399          * current task has TIF_MEMDIE set, and will be OOM killed on return
400          * to user; and ksmd, having no mm, would never be chosen for that.
401          *
402          * But if the mm is in a limited mem_cgroup, then the fault may fail
403          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
404          * even ksmd can fail in this way - though it's usually breaking ksm
405          * just to undo a merge it made a moment before, so unlikely to oom.
406          *
407          * That's a pity: we might therefore have more kernel pages allocated
408          * than we're counting as nodes in the stable tree; but ksm_do_scan
409          * will retry to break_cow on each pass, so should recover the page
410          * in due course.  The important thing is to not let VM_MERGEABLE
411          * be cleared while any such pages might remain in the area.
412          */
413         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
414 }
415
416 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
417                 unsigned long addr)
418 {
419         struct vm_area_struct *vma;
420         if (ksm_test_exit(mm))
421                 return NULL;
422         vma = find_vma(mm, addr);
423         if (!vma || vma->vm_start > addr)
424                 return NULL;
425         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
426                 return NULL;
427         return vma;
428 }
429
430 static void break_cow(struct rmap_item *rmap_item)
431 {
432         struct mm_struct *mm = rmap_item->mm;
433         unsigned long addr = rmap_item->address;
434         struct vm_area_struct *vma;
435
436         /*
437          * It is not an accident that whenever we want to break COW
438          * to undo, we also need to drop a reference to the anon_vma.
439          */
440         put_anon_vma(rmap_item->anon_vma);
441
442         down_read(&mm->mmap_sem);
443         vma = find_mergeable_vma(mm, addr);
444         if (vma)
445                 break_ksm(vma, addr);
446         up_read(&mm->mmap_sem);
447 }
448
449 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
450 {
451         struct mm_struct *mm = rmap_item->mm;
452         unsigned long addr = rmap_item->address;
453         struct vm_area_struct *vma;
454         struct page *page;
455
456         down_read(&mm->mmap_sem);
457         vma = find_mergeable_vma(mm, addr);
458         if (!vma)
459                 goto out;
460
461         page = follow_page(vma, addr, FOLL_GET);
462         if (IS_ERR_OR_NULL(page))
463                 goto out;
464         if (PageAnon(page)) {
465                 flush_anon_page(vma, page, addr);
466                 flush_dcache_page(page);
467         } else {
468                 put_page(page);
469 out:
470                 page = NULL;
471         }
472         up_read(&mm->mmap_sem);
473         return page;
474 }
475
476 /*
477  * This helper is used for getting right index into array of tree roots.
478  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
479  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
480  * every node has its own stable and unstable tree.
481  */
482 static inline int get_kpfn_nid(unsigned long kpfn)
483 {
484         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
485 }
486
487 static void remove_node_from_stable_tree(struct stable_node *stable_node)
488 {
489         struct rmap_item *rmap_item;
490
491         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
492                 if (rmap_item->hlist.next)
493                         ksm_pages_sharing--;
494                 else
495                         ksm_pages_shared--;
496                 put_anon_vma(rmap_item->anon_vma);
497                 rmap_item->address &= PAGE_MASK;
498                 cond_resched();
499         }
500
501         if (stable_node->head == &migrate_nodes)
502                 list_del(&stable_node->list);
503         else
504                 rb_erase(&stable_node->node,
505                          root_stable_tree + NUMA(stable_node->nid));
506         free_stable_node(stable_node);
507 }
508
509 /*
510  * get_ksm_page: checks if the page indicated by the stable node
511  * is still its ksm page, despite having held no reference to it.
512  * In which case we can trust the content of the page, and it
513  * returns the gotten page; but if the page has now been zapped,
514  * remove the stale node from the stable tree and return NULL.
515  * But beware, the stable node's page might be being migrated.
516  *
517  * You would expect the stable_node to hold a reference to the ksm page.
518  * But if it increments the page's count, swapping out has to wait for
519  * ksmd to come around again before it can free the page, which may take
520  * seconds or even minutes: much too unresponsive.  So instead we use a
521  * "keyhole reference": access to the ksm page from the stable node peeps
522  * out through its keyhole to see if that page still holds the right key,
523  * pointing back to this stable node.  This relies on freeing a PageAnon
524  * page to reset its page->mapping to NULL, and relies on no other use of
525  * a page to put something that might look like our key in page->mapping.
526  * is on its way to being freed; but it is an anomaly to bear in mind.
527  */
528 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
529 {
530         struct page *page;
531         void *expected_mapping;
532         unsigned long kpfn;
533
534         expected_mapping = (void *)((unsigned long)stable_node |
535                                         PAGE_MAPPING_KSM);
536 again:
537         kpfn = READ_ONCE(stable_node->kpfn);
538         page = pfn_to_page(kpfn);
539
540         /*
541          * page is computed from kpfn, so on most architectures reading
542          * page->mapping is naturally ordered after reading node->kpfn,
543          * but on Alpha we need to be more careful.
544          */
545         smp_read_barrier_depends();
546         if (READ_ONCE(page->mapping) != expected_mapping)
547                 goto stale;
548
549         /*
550          * We cannot do anything with the page while its refcount is 0.
551          * Usually 0 means free, or tail of a higher-order page: in which
552          * case this node is no longer referenced, and should be freed;
553          * however, it might mean that the page is under page_freeze_refs().
554          * The __remove_mapping() case is easy, again the node is now stale;
555          * but if page is swapcache in migrate_page_move_mapping(), it might
556          * still be our page, in which case it's essential to keep the node.
557          */
558         while (!get_page_unless_zero(page)) {
559                 /*
560                  * Another check for page->mapping != expected_mapping would
561                  * work here too.  We have chosen the !PageSwapCache test to
562                  * optimize the common case, when the page is or is about to
563                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
564                  * in the freeze_refs section of __remove_mapping(); but Anon
565                  * page->mapping reset to NULL later, in free_pages_prepare().
566                  */
567                 if (!PageSwapCache(page))
568                         goto stale;
569                 cpu_relax();
570         }
571
572         if (READ_ONCE(page->mapping) != expected_mapping) {
573                 put_page(page);
574                 goto stale;
575         }
576
577         if (lock_it) {
578                 lock_page(page);
579                 if (READ_ONCE(page->mapping) != expected_mapping) {
580                         unlock_page(page);
581                         put_page(page);
582                         goto stale;
583                 }
584         }
585         return page;
586
587 stale:
588         /*
589          * We come here from above when page->mapping or !PageSwapCache
590          * suggests that the node is stale; but it might be under migration.
591          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
592          * before checking whether node->kpfn has been changed.
593          */
594         smp_rmb();
595         if (READ_ONCE(stable_node->kpfn) != kpfn)
596                 goto again;
597         remove_node_from_stable_tree(stable_node);
598         return NULL;
599 }
600
601 /*
602  * Removing rmap_item from stable or unstable tree.
603  * This function will clean the information from the stable/unstable tree.
604  */
605 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
606 {
607         if (rmap_item->address & STABLE_FLAG) {
608                 struct stable_node *stable_node;
609                 struct page *page;
610
611                 stable_node = rmap_item->head;
612                 page = get_ksm_page(stable_node, true);
613                 if (!page)
614                         goto out;
615
616                 hlist_del(&rmap_item->hlist);
617                 unlock_page(page);
618                 put_page(page);
619
620                 if (!hlist_empty(&stable_node->hlist))
621                         ksm_pages_sharing--;
622                 else
623                         ksm_pages_shared--;
624
625                 put_anon_vma(rmap_item->anon_vma);
626                 rmap_item->address &= PAGE_MASK;
627
628         } else if (rmap_item->address & UNSTABLE_FLAG) {
629                 unsigned char age;
630                 /*
631                  * Usually ksmd can and must skip the rb_erase, because
632                  * root_unstable_tree was already reset to RB_ROOT.
633                  * But be careful when an mm is exiting: do the rb_erase
634                  * if this rmap_item was inserted by this scan, rather
635                  * than left over from before.
636                  */
637                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
638                 BUG_ON(age > 1);
639                 if (!age)
640                         rb_erase(&rmap_item->node,
641                                  root_unstable_tree + NUMA(rmap_item->nid));
642                 ksm_pages_unshared--;
643                 rmap_item->address &= PAGE_MASK;
644         }
645 out:
646         cond_resched();         /* we're called from many long loops */
647 }
648
649 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
650                                        struct rmap_item **rmap_list)
651 {
652         while (*rmap_list) {
653                 struct rmap_item *rmap_item = *rmap_list;
654                 *rmap_list = rmap_item->rmap_list;
655                 remove_rmap_item_from_tree(rmap_item);
656                 free_rmap_item(rmap_item);
657         }
658 }
659
660 /*
661  * Though it's very tempting to unmerge rmap_items from stable tree rather
662  * than check every pte of a given vma, the locking doesn't quite work for
663  * that - an rmap_item is assigned to the stable tree after inserting ksm
664  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
665  * rmap_items from parent to child at fork time (so as not to waste time
666  * if exit comes before the next scan reaches it).
667  *
668  * Similarly, although we'd like to remove rmap_items (so updating counts
669  * and freeing memory) when unmerging an area, it's easier to leave that
670  * to the next pass of ksmd - consider, for example, how ksmd might be
671  * in cmp_and_merge_page on one of the rmap_items we would be removing.
672  */
673 static int unmerge_ksm_pages(struct vm_area_struct *vma,
674                              unsigned long start, unsigned long end)
675 {
676         unsigned long addr;
677         int err = 0;
678
679         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
680                 if (ksm_test_exit(vma->vm_mm))
681                         break;
682                 if (signal_pending(current))
683                         err = -ERESTARTSYS;
684                 else
685                         err = break_ksm(vma, addr);
686         }
687         return err;
688 }
689
690 #ifdef CONFIG_SYSFS
691 /*
692  * Only called through the sysfs control interface:
693  */
694 static int remove_stable_node(struct stable_node *stable_node)
695 {
696         struct page *page;
697         int err;
698
699         page = get_ksm_page(stable_node, true);
700         if (!page) {
701                 /*
702                  * get_ksm_page did remove_node_from_stable_tree itself.
703                  */
704                 return 0;
705         }
706
707         if (WARN_ON_ONCE(page_mapped(page))) {
708                 /*
709                  * This should not happen: but if it does, just refuse to let
710                  * merge_across_nodes be switched - there is no need to panic.
711                  */
712                 err = -EBUSY;
713         } else {
714                 /*
715                  * The stable node did not yet appear stale to get_ksm_page(),
716                  * since that allows for an unmapped ksm page to be recognized
717                  * right up until it is freed; but the node is safe to remove.
718                  * This page might be in a pagevec waiting to be freed,
719                  * or it might be PageSwapCache (perhaps under writeback),
720                  * or it might have been removed from swapcache a moment ago.
721                  */
722                 set_page_stable_node(page, NULL);
723                 remove_node_from_stable_tree(stable_node);
724                 err = 0;
725         }
726
727         unlock_page(page);
728         put_page(page);
729         return err;
730 }
731
732 static int remove_all_stable_nodes(void)
733 {
734         struct stable_node *stable_node, *next;
735         int nid;
736         int err = 0;
737
738         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
739                 while (root_stable_tree[nid].rb_node) {
740                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
741                                                 struct stable_node, node);
742                         if (remove_stable_node(stable_node)) {
743                                 err = -EBUSY;
744                                 break;  /* proceed to next nid */
745                         }
746                         cond_resched();
747                 }
748         }
749         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
750                 if (remove_stable_node(stable_node))
751                         err = -EBUSY;
752                 cond_resched();
753         }
754         return err;
755 }
756
757 static int unmerge_and_remove_all_rmap_items(void)
758 {
759         struct mm_slot *mm_slot;
760         struct mm_struct *mm;
761         struct vm_area_struct *vma;
762         int err = 0;
763
764         spin_lock(&ksm_mmlist_lock);
765         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
766                                                 struct mm_slot, mm_list);
767         spin_unlock(&ksm_mmlist_lock);
768
769         for (mm_slot = ksm_scan.mm_slot;
770                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
771                 mm = mm_slot->mm;
772                 down_read(&mm->mmap_sem);
773                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
774                         if (ksm_test_exit(mm))
775                                 break;
776                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
777                                 continue;
778                         err = unmerge_ksm_pages(vma,
779                                                 vma->vm_start, vma->vm_end);
780                         if (err)
781                                 goto error;
782                 }
783
784                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
785                 up_read(&mm->mmap_sem);
786
787                 spin_lock(&ksm_mmlist_lock);
788                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
789                                                 struct mm_slot, mm_list);
790                 if (ksm_test_exit(mm)) {
791                         hash_del(&mm_slot->link);
792                         list_del(&mm_slot->mm_list);
793                         spin_unlock(&ksm_mmlist_lock);
794
795                         free_mm_slot(mm_slot);
796                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
797                         mmdrop(mm);
798                 } else
799                         spin_unlock(&ksm_mmlist_lock);
800         }
801
802         /* Clean up stable nodes, but don't worry if some are still busy */
803         remove_all_stable_nodes();
804         ksm_scan.seqnr = 0;
805         return 0;
806
807 error:
808         up_read(&mm->mmap_sem);
809         spin_lock(&ksm_mmlist_lock);
810         ksm_scan.mm_slot = &ksm_mm_head;
811         spin_unlock(&ksm_mmlist_lock);
812         return err;
813 }
814 #endif /* CONFIG_SYSFS */
815
816 static u32 calc_checksum(struct page *page)
817 {
818         u32 checksum;
819         void *addr = kmap_atomic(page);
820         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
821         kunmap_atomic(addr);
822         return checksum;
823 }
824
825 static int memcmp_pages(struct page *page1, struct page *page2)
826 {
827         char *addr1, *addr2;
828         int ret;
829
830         addr1 = kmap_atomic(page1);
831         addr2 = kmap_atomic(page2);
832         ret = memcmp(addr1, addr2, PAGE_SIZE);
833         kunmap_atomic(addr2);
834         kunmap_atomic(addr1);
835         return ret;
836 }
837
838 static inline int pages_identical(struct page *page1, struct page *page2)
839 {
840         return !memcmp_pages(page1, page2);
841 }
842
843 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
844                               pte_t *orig_pte)
845 {
846         struct mm_struct *mm = vma->vm_mm;
847         unsigned long addr;
848         pte_t *ptep;
849         spinlock_t *ptl;
850         int swapped;
851         int err = -EFAULT;
852         unsigned long mmun_start;       /* For mmu_notifiers */
853         unsigned long mmun_end;         /* For mmu_notifiers */
854
855         addr = page_address_in_vma(page, vma);
856         if (addr == -EFAULT)
857                 goto out;
858
859         BUG_ON(PageTransCompound(page));
860
861         mmun_start = addr;
862         mmun_end   = addr + PAGE_SIZE;
863         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
864
865         ptep = page_check_address(page, mm, addr, &ptl, 0);
866         if (!ptep)
867                 goto out_mn;
868
869         if (pte_write(*ptep) || pte_dirty(*ptep)) {
870                 pte_t entry;
871
872                 swapped = PageSwapCache(page);
873                 flush_cache_page(vma, addr, page_to_pfn(page));
874                 /*
875                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
876                  * take any lock, therefore the check that we are going to make
877                  * with the pagecount against the mapcount is racey and
878                  * O_DIRECT can happen right after the check.
879                  * So we clear the pte and flush the tlb before the check
880                  * this assure us that no O_DIRECT can happen after the check
881                  * or in the middle of the check.
882                  */
883                 entry = ptep_clear_flush_notify(vma, addr, ptep);
884                 /*
885                  * Check that no O_DIRECT or similar I/O is in progress on the
886                  * page
887                  */
888                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
889                         set_pte_at(mm, addr, ptep, entry);
890                         goto out_unlock;
891                 }
892                 if (pte_dirty(entry))
893                         set_page_dirty(page);
894                 entry = pte_mkclean(pte_wrprotect(entry));
895                 set_pte_at_notify(mm, addr, ptep, entry);
896         }
897         *orig_pte = *ptep;
898         err = 0;
899
900 out_unlock:
901         pte_unmap_unlock(ptep, ptl);
902 out_mn:
903         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
904 out:
905         return err;
906 }
907
908 /**
909  * replace_page - replace page in vma by new ksm page
910  * @vma:      vma that holds the pte pointing to page
911  * @page:     the page we are replacing by kpage
912  * @kpage:    the ksm page we replace page by
913  * @orig_pte: the original value of the pte
914  *
915  * Returns 0 on success, -EFAULT on failure.
916  */
917 static int replace_page(struct vm_area_struct *vma, struct page *page,
918                         struct page *kpage, pte_t orig_pte)
919 {
920         struct mm_struct *mm = vma->vm_mm;
921         pmd_t *pmd;
922         pte_t *ptep;
923         spinlock_t *ptl;
924         unsigned long addr;
925         int err = -EFAULT;
926         unsigned long mmun_start;       /* For mmu_notifiers */
927         unsigned long mmun_end;         /* For mmu_notifiers */
928
929         addr = page_address_in_vma(page, vma);
930         if (addr == -EFAULT)
931                 goto out;
932
933         pmd = mm_find_pmd(mm, addr);
934         if (!pmd)
935                 goto out;
936
937         mmun_start = addr;
938         mmun_end   = addr + PAGE_SIZE;
939         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
940
941         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
942         if (!pte_same(*ptep, orig_pte)) {
943                 pte_unmap_unlock(ptep, ptl);
944                 goto out_mn;
945         }
946
947         get_page(kpage);
948         page_add_anon_rmap(kpage, vma, addr, false);
949
950         flush_cache_page(vma, addr, pte_pfn(*ptep));
951         ptep_clear_flush_notify(vma, addr, ptep);
952         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
953
954         page_remove_rmap(page, false);
955         if (!page_mapped(page))
956                 try_to_free_swap(page);
957         put_page(page);
958
959         pte_unmap_unlock(ptep, ptl);
960         err = 0;
961 out_mn:
962         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
963 out:
964         return err;
965 }
966
967 /*
968  * try_to_merge_one_page - take two pages and merge them into one
969  * @vma: the vma that holds the pte pointing to page
970  * @page: the PageAnon page that we want to replace with kpage
971  * @kpage: the PageKsm page that we want to map instead of page,
972  *         or NULL the first time when we want to use page as kpage.
973  *
974  * This function returns 0 if the pages were merged, -EFAULT otherwise.
975  */
976 static int try_to_merge_one_page(struct vm_area_struct *vma,
977                                  struct page *page, struct page *kpage)
978 {
979         pte_t orig_pte = __pte(0);
980         int err = -EFAULT;
981
982         if (page == kpage)                      /* ksm page forked */
983                 return 0;
984
985         if (!PageAnon(page))
986                 goto out;
987
988         /*
989          * We need the page lock to read a stable PageSwapCache in
990          * write_protect_page().  We use trylock_page() instead of
991          * lock_page() because we don't want to wait here - we
992          * prefer to continue scanning and merging different pages,
993          * then come back to this page when it is unlocked.
994          */
995         if (!trylock_page(page))
996                 goto out;
997
998         if (PageTransCompound(page)) {
999                 err = split_huge_page(page);
1000                 if (err)
1001                         goto out_unlock;
1002         }
1003
1004         /*
1005          * If this anonymous page is mapped only here, its pte may need
1006          * to be write-protected.  If it's mapped elsewhere, all of its
1007          * ptes are necessarily already write-protected.  But in either
1008          * case, we need to lock and check page_count is not raised.
1009          */
1010         if (write_protect_page(vma, page, &orig_pte) == 0) {
1011                 if (!kpage) {
1012                         /*
1013                          * While we hold page lock, upgrade page from
1014                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1015                          * stable_tree_insert() will update stable_node.
1016                          */
1017                         set_page_stable_node(page, NULL);
1018                         mark_page_accessed(page);
1019                         /*
1020                          * Page reclaim just frees a clean page with no dirty
1021                          * ptes: make sure that the ksm page would be swapped.
1022                          */
1023                         if (!PageDirty(page))
1024                                 SetPageDirty(page);
1025                         err = 0;
1026                 } else if (pages_identical(page, kpage))
1027                         err = replace_page(vma, page, kpage, orig_pte);
1028         }
1029
1030         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1031                 munlock_vma_page(page);
1032                 if (!PageMlocked(kpage)) {
1033                         unlock_page(page);
1034                         lock_page(kpage);
1035                         mlock_vma_page(kpage);
1036                         page = kpage;           /* for final unlock */
1037                 }
1038         }
1039
1040 out_unlock:
1041         unlock_page(page);
1042 out:
1043         return err;
1044 }
1045
1046 /*
1047  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1048  * but no new kernel page is allocated: kpage must already be a ksm page.
1049  *
1050  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1051  */
1052 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1053                                       struct page *page, struct page *kpage)
1054 {
1055         struct mm_struct *mm = rmap_item->mm;
1056         struct vm_area_struct *vma;
1057         int err = -EFAULT;
1058
1059         down_read(&mm->mmap_sem);
1060         vma = find_mergeable_vma(mm, rmap_item->address);
1061         if (!vma)
1062                 goto out;
1063
1064         err = try_to_merge_one_page(vma, page, kpage);
1065         if (err)
1066                 goto out;
1067
1068         /* Unstable nid is in union with stable anon_vma: remove first */
1069         remove_rmap_item_from_tree(rmap_item);
1070
1071         /* Must get reference to anon_vma while still holding mmap_sem */
1072         rmap_item->anon_vma = vma->anon_vma;
1073         get_anon_vma(vma->anon_vma);
1074 out:
1075         up_read(&mm->mmap_sem);
1076         return err;
1077 }
1078
1079 /*
1080  * try_to_merge_two_pages - take two identical pages and prepare them
1081  * to be merged into one page.
1082  *
1083  * This function returns the kpage if we successfully merged two identical
1084  * pages into one ksm page, NULL otherwise.
1085  *
1086  * Note that this function upgrades page to ksm page: if one of the pages
1087  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1088  */
1089 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1090                                            struct page *page,
1091                                            struct rmap_item *tree_rmap_item,
1092                                            struct page *tree_page)
1093 {
1094         int err;
1095
1096         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1097         if (!err) {
1098                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1099                                                         tree_page, page);
1100                 /*
1101                  * If that fails, we have a ksm page with only one pte
1102                  * pointing to it: so break it.
1103                  */
1104                 if (err)
1105                         break_cow(rmap_item);
1106         }
1107         return err ? NULL : page;
1108 }
1109
1110 /*
1111  * stable_tree_search - search for page inside the stable tree
1112  *
1113  * This function checks if there is a page inside the stable tree
1114  * with identical content to the page that we are scanning right now.
1115  *
1116  * This function returns the stable tree node of identical content if found,
1117  * NULL otherwise.
1118  */
1119 static struct page *stable_tree_search(struct page *page)
1120 {
1121         int nid;
1122         struct rb_root *root;
1123         struct rb_node **new;
1124         struct rb_node *parent;
1125         struct stable_node *stable_node;
1126         struct stable_node *page_node;
1127
1128         page_node = page_stable_node(page);
1129         if (page_node && page_node->head != &migrate_nodes) {
1130                 /* ksm page forked */
1131                 get_page(page);
1132                 return page;
1133         }
1134
1135         nid = get_kpfn_nid(page_to_pfn(page));
1136         root = root_stable_tree + nid;
1137 again:
1138         new = &root->rb_node;
1139         parent = NULL;
1140
1141         while (*new) {
1142                 struct page *tree_page;
1143                 int ret;
1144
1145                 cond_resched();
1146                 stable_node = rb_entry(*new, struct stable_node, node);
1147                 tree_page = get_ksm_page(stable_node, false);
1148                 if (!tree_page) {
1149                         /*
1150                          * If we walked over a stale stable_node,
1151                          * get_ksm_page() will call rb_erase() and it
1152                          * may rebalance the tree from under us. So
1153                          * restart the search from scratch. Returning
1154                          * NULL would be safe too, but we'd generate
1155                          * false negative insertions just because some
1156                          * stable_node was stale.
1157                          */
1158                         goto again;
1159                 }
1160
1161                 ret = memcmp_pages(page, tree_page);
1162                 put_page(tree_page);
1163
1164                 parent = *new;
1165                 if (ret < 0)
1166                         new = &parent->rb_left;
1167                 else if (ret > 0)
1168                         new = &parent->rb_right;
1169                 else {
1170                         /*
1171                          * Lock and unlock the stable_node's page (which
1172                          * might already have been migrated) so that page
1173                          * migration is sure to notice its raised count.
1174                          * It would be more elegant to return stable_node
1175                          * than kpage, but that involves more changes.
1176                          */
1177                         tree_page = get_ksm_page(stable_node, true);
1178                         if (tree_page) {
1179                                 unlock_page(tree_page);
1180                                 if (get_kpfn_nid(stable_node->kpfn) !=
1181                                                 NUMA(stable_node->nid)) {
1182                                         put_page(tree_page);
1183                                         goto replace;
1184                                 }
1185                                 return tree_page;
1186                         }
1187                         /*
1188                          * There is now a place for page_node, but the tree may
1189                          * have been rebalanced, so re-evaluate parent and new.
1190                          */
1191                         if (page_node)
1192                                 goto again;
1193                         return NULL;
1194                 }
1195         }
1196
1197         if (!page_node)
1198                 return NULL;
1199
1200         list_del(&page_node->list);
1201         DO_NUMA(page_node->nid = nid);
1202         rb_link_node(&page_node->node, parent, new);
1203         rb_insert_color(&page_node->node, root);
1204         get_page(page);
1205         return page;
1206
1207 replace:
1208         if (page_node) {
1209                 list_del(&page_node->list);
1210                 DO_NUMA(page_node->nid = nid);
1211                 rb_replace_node(&stable_node->node, &page_node->node, root);
1212                 get_page(page);
1213         } else {
1214                 rb_erase(&stable_node->node, root);
1215                 page = NULL;
1216         }
1217         stable_node->head = &migrate_nodes;
1218         list_add(&stable_node->list, stable_node->head);
1219         return page;
1220 }
1221
1222 /*
1223  * stable_tree_insert - insert stable tree node pointing to new ksm page
1224  * into the stable tree.
1225  *
1226  * This function returns the stable tree node just allocated on success,
1227  * NULL otherwise.
1228  */
1229 static struct stable_node *stable_tree_insert(struct page *kpage)
1230 {
1231         int nid;
1232         unsigned long kpfn;
1233         struct rb_root *root;
1234         struct rb_node **new;
1235         struct rb_node *parent;
1236         struct stable_node *stable_node;
1237
1238         kpfn = page_to_pfn(kpage);
1239         nid = get_kpfn_nid(kpfn);
1240         root = root_stable_tree + nid;
1241 again:
1242         parent = NULL;
1243         new = &root->rb_node;
1244
1245         while (*new) {
1246                 struct page *tree_page;
1247                 int ret;
1248
1249                 cond_resched();
1250                 stable_node = rb_entry(*new, struct stable_node, node);
1251                 tree_page = get_ksm_page(stable_node, false);
1252                 if (!tree_page) {
1253                         /*
1254                          * If we walked over a stale stable_node,
1255                          * get_ksm_page() will call rb_erase() and it
1256                          * may rebalance the tree from under us. So
1257                          * restart the search from scratch. Returning
1258                          * NULL would be safe too, but we'd generate
1259                          * false negative insertions just because some
1260                          * stable_node was stale.
1261                          */
1262                         goto again;
1263                 }
1264
1265                 ret = memcmp_pages(kpage, tree_page);
1266                 put_page(tree_page);
1267
1268                 parent = *new;
1269                 if (ret < 0)
1270                         new = &parent->rb_left;
1271                 else if (ret > 0)
1272                         new = &parent->rb_right;
1273                 else {
1274                         /*
1275                          * It is not a bug that stable_tree_search() didn't
1276                          * find this node: because at that time our page was
1277                          * not yet write-protected, so may have changed since.
1278                          */
1279                         return NULL;
1280                 }
1281         }
1282
1283         stable_node = alloc_stable_node();
1284         if (!stable_node)
1285                 return NULL;
1286
1287         INIT_HLIST_HEAD(&stable_node->hlist);
1288         stable_node->kpfn = kpfn;
1289         set_page_stable_node(kpage, stable_node);
1290         DO_NUMA(stable_node->nid = nid);
1291         rb_link_node(&stable_node->node, parent, new);
1292         rb_insert_color(&stable_node->node, root);
1293
1294         return stable_node;
1295 }
1296
1297 /*
1298  * unstable_tree_search_insert - search for identical page,
1299  * else insert rmap_item into the unstable tree.
1300  *
1301  * This function searches for a page in the unstable tree identical to the
1302  * page currently being scanned; and if no identical page is found in the
1303  * tree, we insert rmap_item as a new object into the unstable tree.
1304  *
1305  * This function returns pointer to rmap_item found to be identical
1306  * to the currently scanned page, NULL otherwise.
1307  *
1308  * This function does both searching and inserting, because they share
1309  * the same walking algorithm in an rbtree.
1310  */
1311 static
1312 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1313                                               struct page *page,
1314                                               struct page **tree_pagep)
1315 {
1316         struct rb_node **new;
1317         struct rb_root *root;
1318         struct rb_node *parent = NULL;
1319         int nid;
1320
1321         nid = get_kpfn_nid(page_to_pfn(page));
1322         root = root_unstable_tree + nid;
1323         new = &root->rb_node;
1324
1325         while (*new) {
1326                 struct rmap_item *tree_rmap_item;
1327                 struct page *tree_page;
1328                 int ret;
1329
1330                 cond_resched();
1331                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1332                 tree_page = get_mergeable_page(tree_rmap_item);
1333                 if (!tree_page)
1334                         return NULL;
1335
1336                 /*
1337                  * Don't substitute a ksm page for a forked page.
1338                  */
1339                 if (page == tree_page) {
1340                         put_page(tree_page);
1341                         return NULL;
1342                 }
1343
1344                 ret = memcmp_pages(page, tree_page);
1345
1346                 parent = *new;
1347                 if (ret < 0) {
1348                         put_page(tree_page);
1349                         new = &parent->rb_left;
1350                 } else if (ret > 0) {
1351                         put_page(tree_page);
1352                         new = &parent->rb_right;
1353                 } else if (!ksm_merge_across_nodes &&
1354                            page_to_nid(tree_page) != nid) {
1355                         /*
1356                          * If tree_page has been migrated to another NUMA node,
1357                          * it will be flushed out and put in the right unstable
1358                          * tree next time: only merge with it when across_nodes.
1359                          */
1360                         put_page(tree_page);
1361                         return NULL;
1362                 } else {
1363                         *tree_pagep = tree_page;
1364                         return tree_rmap_item;
1365                 }
1366         }
1367
1368         rmap_item->address |= UNSTABLE_FLAG;
1369         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1370         DO_NUMA(rmap_item->nid = nid);
1371         rb_link_node(&rmap_item->node, parent, new);
1372         rb_insert_color(&rmap_item->node, root);
1373
1374         ksm_pages_unshared++;
1375         return NULL;
1376 }
1377
1378 /*
1379  * stable_tree_append - add another rmap_item to the linked list of
1380  * rmap_items hanging off a given node of the stable tree, all sharing
1381  * the same ksm page.
1382  */
1383 static void stable_tree_append(struct rmap_item *rmap_item,
1384                                struct stable_node *stable_node)
1385 {
1386         rmap_item->head = stable_node;
1387         rmap_item->address |= STABLE_FLAG;
1388         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1389
1390         if (rmap_item->hlist.next)
1391                 ksm_pages_sharing++;
1392         else
1393                 ksm_pages_shared++;
1394 }
1395
1396 /*
1397  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1398  * if not, compare checksum to previous and if it's the same, see if page can
1399  * be inserted into the unstable tree, or merged with a page already there and
1400  * both transferred to the stable tree.
1401  *
1402  * @page: the page that we are searching identical page to.
1403  * @rmap_item: the reverse mapping into the virtual address of this page
1404  */
1405 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1406 {
1407         struct rmap_item *tree_rmap_item;
1408         struct page *tree_page = NULL;
1409         struct stable_node *stable_node;
1410         struct page *kpage;
1411         unsigned int checksum;
1412         int err;
1413
1414         stable_node = page_stable_node(page);
1415         if (stable_node) {
1416                 if (stable_node->head != &migrate_nodes &&
1417                     get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1418                         rb_erase(&stable_node->node,
1419                                  root_stable_tree + NUMA(stable_node->nid));
1420                         stable_node->head = &migrate_nodes;
1421                         list_add(&stable_node->list, stable_node->head);
1422                 }
1423                 if (stable_node->head != &migrate_nodes &&
1424                     rmap_item->head == stable_node)
1425                         return;
1426         }
1427
1428         /* We first start with searching the page inside the stable tree */
1429         kpage = stable_tree_search(page);
1430         if (kpage == page && rmap_item->head == stable_node) {
1431                 put_page(kpage);
1432                 return;
1433         }
1434
1435         remove_rmap_item_from_tree(rmap_item);
1436
1437         if (kpage) {
1438                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1439                 if (!err) {
1440                         /*
1441                          * The page was successfully merged:
1442                          * add its rmap_item to the stable tree.
1443                          */
1444                         lock_page(kpage);
1445                         stable_tree_append(rmap_item, page_stable_node(kpage));
1446                         unlock_page(kpage);
1447                 }
1448                 put_page(kpage);
1449                 return;
1450         }
1451
1452         /*
1453          * If the hash value of the page has changed from the last time
1454          * we calculated it, this page is changing frequently: therefore we
1455          * don't want to insert it in the unstable tree, and we don't want
1456          * to waste our time searching for something identical to it there.
1457          */
1458         checksum = calc_checksum(page);
1459         if (rmap_item->oldchecksum != checksum) {
1460                 rmap_item->oldchecksum = checksum;
1461                 return;
1462         }
1463
1464         tree_rmap_item =
1465                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1466         if (tree_rmap_item) {
1467                 kpage = try_to_merge_two_pages(rmap_item, page,
1468                                                 tree_rmap_item, tree_page);
1469                 put_page(tree_page);
1470                 if (kpage) {
1471                         /*
1472                          * The pages were successfully merged: insert new
1473                          * node in the stable tree and add both rmap_items.
1474                          */
1475                         lock_page(kpage);
1476                         stable_node = stable_tree_insert(kpage);
1477                         if (stable_node) {
1478                                 stable_tree_append(tree_rmap_item, stable_node);
1479                                 stable_tree_append(rmap_item, stable_node);
1480                         }
1481                         unlock_page(kpage);
1482
1483                         /*
1484                          * If we fail to insert the page into the stable tree,
1485                          * we will have 2 virtual addresses that are pointing
1486                          * to a ksm page left outside the stable tree,
1487                          * in which case we need to break_cow on both.
1488                          */
1489                         if (!stable_node) {
1490                                 break_cow(tree_rmap_item);
1491                                 break_cow(rmap_item);
1492                         }
1493                 }
1494         }
1495 }
1496
1497 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1498                                             struct rmap_item **rmap_list,
1499                                             unsigned long addr)
1500 {
1501         struct rmap_item *rmap_item;
1502
1503         while (*rmap_list) {
1504                 rmap_item = *rmap_list;
1505                 if ((rmap_item->address & PAGE_MASK) == addr)
1506                         return rmap_item;
1507                 if (rmap_item->address > addr)
1508                         break;
1509                 *rmap_list = rmap_item->rmap_list;
1510                 remove_rmap_item_from_tree(rmap_item);
1511                 free_rmap_item(rmap_item);
1512         }
1513
1514         rmap_item = alloc_rmap_item();
1515         if (rmap_item) {
1516                 /* It has already been zeroed */
1517                 rmap_item->mm = mm_slot->mm;
1518                 rmap_item->address = addr;
1519                 rmap_item->rmap_list = *rmap_list;
1520                 *rmap_list = rmap_item;
1521         }
1522         return rmap_item;
1523 }
1524
1525 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1526 {
1527         struct mm_struct *mm;
1528         struct mm_slot *slot;
1529         struct vm_area_struct *vma;
1530         struct rmap_item *rmap_item;
1531         int nid;
1532
1533         if (list_empty(&ksm_mm_head.mm_list))
1534                 return NULL;
1535
1536         slot = ksm_scan.mm_slot;
1537         if (slot == &ksm_mm_head) {
1538                 /*
1539                  * A number of pages can hang around indefinitely on per-cpu
1540                  * pagevecs, raised page count preventing write_protect_page
1541                  * from merging them.  Though it doesn't really matter much,
1542                  * it is puzzling to see some stuck in pages_volatile until
1543                  * other activity jostles them out, and they also prevented
1544                  * LTP's KSM test from succeeding deterministically; so drain
1545                  * them here (here rather than on entry to ksm_do_scan(),
1546                  * so we don't IPI too often when pages_to_scan is set low).
1547                  */
1548                 lru_add_drain_all();
1549
1550                 /*
1551                  * Whereas stale stable_nodes on the stable_tree itself
1552                  * get pruned in the regular course of stable_tree_search(),
1553                  * those moved out to the migrate_nodes list can accumulate:
1554                  * so prune them once before each full scan.
1555                  */
1556                 if (!ksm_merge_across_nodes) {
1557                         struct stable_node *stable_node, *next;
1558                         struct page *page;
1559
1560                         list_for_each_entry_safe(stable_node, next,
1561                                                  &migrate_nodes, list) {
1562                                 page = get_ksm_page(stable_node, false);
1563                                 if (page)
1564                                         put_page(page);
1565                                 cond_resched();
1566                         }
1567                 }
1568
1569                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1570                         root_unstable_tree[nid] = RB_ROOT;
1571
1572                 spin_lock(&ksm_mmlist_lock);
1573                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1574                 ksm_scan.mm_slot = slot;
1575                 spin_unlock(&ksm_mmlist_lock);
1576                 /*
1577                  * Although we tested list_empty() above, a racing __ksm_exit
1578                  * of the last mm on the list may have removed it since then.
1579                  */
1580                 if (slot == &ksm_mm_head)
1581                         return NULL;
1582 next_mm:
1583                 ksm_scan.address = 0;
1584                 ksm_scan.rmap_list = &slot->rmap_list;
1585         }
1586
1587         mm = slot->mm;
1588         down_read(&mm->mmap_sem);
1589         if (ksm_test_exit(mm))
1590                 vma = NULL;
1591         else
1592                 vma = find_vma(mm, ksm_scan.address);
1593
1594         for (; vma; vma = vma->vm_next) {
1595                 if (!(vma->vm_flags & VM_MERGEABLE))
1596                         continue;
1597                 if (ksm_scan.address < vma->vm_start)
1598                         ksm_scan.address = vma->vm_start;
1599                 if (!vma->anon_vma)
1600                         ksm_scan.address = vma->vm_end;
1601
1602                 while (ksm_scan.address < vma->vm_end) {
1603                         if (ksm_test_exit(mm))
1604                                 break;
1605                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1606                         if (IS_ERR_OR_NULL(*page)) {
1607                                 ksm_scan.address += PAGE_SIZE;
1608                                 cond_resched();
1609                                 continue;
1610                         }
1611                         if (PageAnon(*page)) {
1612                                 flush_anon_page(vma, *page, ksm_scan.address);
1613                                 flush_dcache_page(*page);
1614                                 rmap_item = get_next_rmap_item(slot,
1615                                         ksm_scan.rmap_list, ksm_scan.address);
1616                                 if (rmap_item) {
1617                                         ksm_scan.rmap_list =
1618                                                         &rmap_item->rmap_list;
1619                                         ksm_scan.address += PAGE_SIZE;
1620                                 } else
1621                                         put_page(*page);
1622                                 up_read(&mm->mmap_sem);
1623                                 return rmap_item;
1624                         }
1625                         put_page(*page);
1626                         ksm_scan.address += PAGE_SIZE;
1627                         cond_resched();
1628                 }
1629         }
1630
1631         if (ksm_test_exit(mm)) {
1632                 ksm_scan.address = 0;
1633                 ksm_scan.rmap_list = &slot->rmap_list;
1634         }
1635         /*
1636          * Nuke all the rmap_items that are above this current rmap:
1637          * because there were no VM_MERGEABLE vmas with such addresses.
1638          */
1639         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1640
1641         spin_lock(&ksm_mmlist_lock);
1642         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1643                                                 struct mm_slot, mm_list);
1644         if (ksm_scan.address == 0) {
1645                 /*
1646                  * We've completed a full scan of all vmas, holding mmap_sem
1647                  * throughout, and found no VM_MERGEABLE: so do the same as
1648                  * __ksm_exit does to remove this mm from all our lists now.
1649                  * This applies either when cleaning up after __ksm_exit
1650                  * (but beware: we can reach here even before __ksm_exit),
1651                  * or when all VM_MERGEABLE areas have been unmapped (and
1652                  * mmap_sem then protects against race with MADV_MERGEABLE).
1653                  */
1654                 hash_del(&slot->link);
1655                 list_del(&slot->mm_list);
1656                 spin_unlock(&ksm_mmlist_lock);
1657
1658                 free_mm_slot(slot);
1659                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1660                 up_read(&mm->mmap_sem);
1661                 mmdrop(mm);
1662         } else {
1663                 up_read(&mm->mmap_sem);
1664                 /*
1665                  * up_read(&mm->mmap_sem) first because after
1666                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
1667                  * already have been freed under us by __ksm_exit()
1668                  * because the "mm_slot" is still hashed and
1669                  * ksm_scan.mm_slot doesn't point to it anymore.
1670                  */
1671                 spin_unlock(&ksm_mmlist_lock);
1672         }
1673
1674         /* Repeat until we've completed scanning the whole list */
1675         slot = ksm_scan.mm_slot;
1676         if (slot != &ksm_mm_head)
1677                 goto next_mm;
1678
1679         ksm_scan.seqnr++;
1680         return NULL;
1681 }
1682
1683 /**
1684  * ksm_do_scan  - the ksm scanner main worker function.
1685  * @scan_npages - number of pages we want to scan before we return.
1686  */
1687 static void ksm_do_scan(unsigned int scan_npages)
1688 {
1689         struct rmap_item *rmap_item;
1690         struct page *uninitialized_var(page);
1691
1692         while (scan_npages-- && likely(!freezing(current))) {
1693                 cond_resched();
1694                 rmap_item = scan_get_next_rmap_item(&page);
1695                 if (!rmap_item)
1696                         return;
1697                 cmp_and_merge_page(page, rmap_item);
1698                 put_page(page);
1699         }
1700 }
1701
1702 static int ksmd_should_run(void)
1703 {
1704         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1705 }
1706
1707 static int ksm_scan_thread(void *nothing)
1708 {
1709         set_freezable();
1710         set_user_nice(current, 5);
1711
1712         while (!kthread_should_stop()) {
1713                 mutex_lock(&ksm_thread_mutex);
1714                 wait_while_offlining();
1715                 if (ksmd_should_run())
1716                         ksm_do_scan(ksm_thread_pages_to_scan);
1717                 mutex_unlock(&ksm_thread_mutex);
1718
1719                 try_to_freeze();
1720
1721                 if (ksmd_should_run()) {
1722                         schedule_timeout_interruptible(
1723                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1724                 } else {
1725                         wait_event_freezable(ksm_thread_wait,
1726                                 ksmd_should_run() || kthread_should_stop());
1727                 }
1728         }
1729         return 0;
1730 }
1731
1732 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1733                 unsigned long end, int advice, unsigned long *vm_flags)
1734 {
1735         struct mm_struct *mm = vma->vm_mm;
1736         int err;
1737
1738         switch (advice) {
1739         case MADV_MERGEABLE:
1740                 /*
1741                  * Be somewhat over-protective for now!
1742                  */
1743                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1744                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1745                                  VM_HUGETLB | VM_MIXEDMAP))
1746                         return 0;               /* just ignore the advice */
1747
1748 #ifdef VM_SAO
1749                 if (*vm_flags & VM_SAO)
1750                         return 0;
1751 #endif
1752
1753                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1754                         err = __ksm_enter(mm);
1755                         if (err)
1756                                 return err;
1757                 }
1758
1759                 *vm_flags |= VM_MERGEABLE;
1760                 break;
1761
1762         case MADV_UNMERGEABLE:
1763                 if (!(*vm_flags & VM_MERGEABLE))
1764                         return 0;               /* just ignore the advice */
1765
1766                 if (vma->anon_vma) {
1767                         err = unmerge_ksm_pages(vma, start, end);
1768                         if (err)
1769                                 return err;
1770                 }
1771
1772                 *vm_flags &= ~VM_MERGEABLE;
1773                 break;
1774         }
1775
1776         return 0;
1777 }
1778
1779 int __ksm_enter(struct mm_struct *mm)
1780 {
1781         struct mm_slot *mm_slot;
1782         int needs_wakeup;
1783
1784         mm_slot = alloc_mm_slot();
1785         if (!mm_slot)
1786                 return -ENOMEM;
1787
1788         /* Check ksm_run too?  Would need tighter locking */
1789         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1790
1791         spin_lock(&ksm_mmlist_lock);
1792         insert_to_mm_slots_hash(mm, mm_slot);
1793         /*
1794          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1795          * insert just behind the scanning cursor, to let the area settle
1796          * down a little; when fork is followed by immediate exec, we don't
1797          * want ksmd to waste time setting up and tearing down an rmap_list.
1798          *
1799          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1800          * scanning cursor, otherwise KSM pages in newly forked mms will be
1801          * missed: then we might as well insert at the end of the list.
1802          */
1803         if (ksm_run & KSM_RUN_UNMERGE)
1804                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1805         else
1806                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1807         spin_unlock(&ksm_mmlist_lock);
1808
1809         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1810         atomic_inc(&mm->mm_count);
1811
1812         if (needs_wakeup)
1813                 wake_up_interruptible(&ksm_thread_wait);
1814
1815         return 0;
1816 }
1817
1818 void __ksm_exit(struct mm_struct *mm)
1819 {
1820         struct mm_slot *mm_slot;
1821         int easy_to_free = 0;
1822
1823         /*
1824          * This process is exiting: if it's straightforward (as is the
1825          * case when ksmd was never running), free mm_slot immediately.
1826          * But if it's at the cursor or has rmap_items linked to it, use
1827          * mmap_sem to synchronize with any break_cows before pagetables
1828          * are freed, and leave the mm_slot on the list for ksmd to free.
1829          * Beware: ksm may already have noticed it exiting and freed the slot.
1830          */
1831
1832         spin_lock(&ksm_mmlist_lock);
1833         mm_slot = get_mm_slot(mm);
1834         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1835                 if (!mm_slot->rmap_list) {
1836                         hash_del(&mm_slot->link);
1837                         list_del(&mm_slot->mm_list);
1838                         easy_to_free = 1;
1839                 } else {
1840                         list_move(&mm_slot->mm_list,
1841                                   &ksm_scan.mm_slot->mm_list);
1842                 }
1843         }
1844         spin_unlock(&ksm_mmlist_lock);
1845
1846         if (easy_to_free) {
1847                 free_mm_slot(mm_slot);
1848                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1849                 mmdrop(mm);
1850         } else if (mm_slot) {
1851                 down_write(&mm->mmap_sem);
1852                 up_write(&mm->mmap_sem);
1853         }
1854 }
1855
1856 struct page *ksm_might_need_to_copy(struct page *page,
1857                         struct vm_area_struct *vma, unsigned long address)
1858 {
1859         struct anon_vma *anon_vma = page_anon_vma(page);
1860         struct page *new_page;
1861
1862         if (PageKsm(page)) {
1863                 if (page_stable_node(page) &&
1864                     !(ksm_run & KSM_RUN_UNMERGE))
1865                         return page;    /* no need to copy it */
1866         } else if (!anon_vma) {
1867                 return page;            /* no need to copy it */
1868         } else if (anon_vma->root == vma->anon_vma->root &&
1869                  page->index == linear_page_index(vma, address)) {
1870                 return page;            /* still no need to copy it */
1871         }
1872         if (!PageUptodate(page))
1873                 return page;            /* let do_swap_page report the error */
1874
1875         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1876         if (new_page) {
1877                 copy_user_highpage(new_page, page, address, vma);
1878
1879                 SetPageDirty(new_page);
1880                 __SetPageUptodate(new_page);
1881                 __SetPageLocked(new_page);
1882         }
1883
1884         return new_page;
1885 }
1886
1887 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1888 {
1889         struct stable_node *stable_node;
1890         struct rmap_item *rmap_item;
1891         int ret = SWAP_AGAIN;
1892         int search_new_forks = 0;
1893
1894         VM_BUG_ON_PAGE(!PageKsm(page), page);
1895
1896         /*
1897          * Rely on the page lock to protect against concurrent modifications
1898          * to that page's node of the stable tree.
1899          */
1900         VM_BUG_ON_PAGE(!PageLocked(page), page);
1901
1902         stable_node = page_stable_node(page);
1903         if (!stable_node)
1904                 return ret;
1905 again:
1906         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1907                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1908                 struct anon_vma_chain *vmac;
1909                 struct vm_area_struct *vma;
1910
1911                 cond_resched();
1912                 anon_vma_lock_read(anon_vma);
1913                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1914                                                0, ULONG_MAX) {
1915                         cond_resched();
1916                         vma = vmac->vma;
1917                         if (rmap_item->address < vma->vm_start ||
1918                             rmap_item->address >= vma->vm_end)
1919                                 continue;
1920                         /*
1921                          * Initially we examine only the vma which covers this
1922                          * rmap_item; but later, if there is still work to do,
1923                          * we examine covering vmas in other mms: in case they
1924                          * were forked from the original since ksmd passed.
1925                          */
1926                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1927                                 continue;
1928
1929                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1930                                 continue;
1931
1932                         ret = rwc->rmap_one(page, vma,
1933                                         rmap_item->address, rwc->arg);
1934                         if (ret != SWAP_AGAIN) {
1935                                 anon_vma_unlock_read(anon_vma);
1936                                 goto out;
1937                         }
1938                         if (rwc->done && rwc->done(page)) {
1939                                 anon_vma_unlock_read(anon_vma);
1940                                 goto out;
1941                         }
1942                 }
1943                 anon_vma_unlock_read(anon_vma);
1944         }
1945         if (!search_new_forks++)
1946                 goto again;
1947 out:
1948         return ret;
1949 }
1950
1951 #ifdef CONFIG_MIGRATION
1952 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1953 {
1954         struct stable_node *stable_node;
1955
1956         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1957         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1958         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
1959
1960         stable_node = page_stable_node(newpage);
1961         if (stable_node) {
1962                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
1963                 stable_node->kpfn = page_to_pfn(newpage);
1964                 /*
1965                  * newpage->mapping was set in advance; now we need smp_wmb()
1966                  * to make sure that the new stable_node->kpfn is visible
1967                  * to get_ksm_page() before it can see that oldpage->mapping
1968                  * has gone stale (or that PageSwapCache has been cleared).
1969                  */
1970                 smp_wmb();
1971                 set_page_stable_node(oldpage, NULL);
1972         }
1973 }
1974 #endif /* CONFIG_MIGRATION */
1975
1976 #ifdef CONFIG_MEMORY_HOTREMOVE
1977 static void wait_while_offlining(void)
1978 {
1979         while (ksm_run & KSM_RUN_OFFLINE) {
1980                 mutex_unlock(&ksm_thread_mutex);
1981                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
1982                             TASK_UNINTERRUPTIBLE);
1983                 mutex_lock(&ksm_thread_mutex);
1984         }
1985 }
1986
1987 static void ksm_check_stable_tree(unsigned long start_pfn,
1988                                   unsigned long end_pfn)
1989 {
1990         struct stable_node *stable_node, *next;
1991         struct rb_node *node;
1992         int nid;
1993
1994         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1995                 node = rb_first(root_stable_tree + nid);
1996                 while (node) {
1997                         stable_node = rb_entry(node, struct stable_node, node);
1998                         if (stable_node->kpfn >= start_pfn &&
1999                             stable_node->kpfn < end_pfn) {
2000                                 /*
2001                                  * Don't get_ksm_page, page has already gone:
2002                                  * which is why we keep kpfn instead of page*
2003                                  */
2004                                 remove_node_from_stable_tree(stable_node);
2005                                 node = rb_first(root_stable_tree + nid);
2006                         } else
2007                                 node = rb_next(node);
2008                         cond_resched();
2009                 }
2010         }
2011         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2012                 if (stable_node->kpfn >= start_pfn &&
2013                     stable_node->kpfn < end_pfn)
2014                         remove_node_from_stable_tree(stable_node);
2015                 cond_resched();
2016         }
2017 }
2018
2019 static int ksm_memory_callback(struct notifier_block *self,
2020                                unsigned long action, void *arg)
2021 {
2022         struct memory_notify *mn = arg;
2023
2024         switch (action) {
2025         case MEM_GOING_OFFLINE:
2026                 /*
2027                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2028                  * and remove_all_stable_nodes() while memory is going offline:
2029                  * it is unsafe for them to touch the stable tree at this time.
2030                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2031                  * which do not need the ksm_thread_mutex are all safe.
2032                  */
2033                 mutex_lock(&ksm_thread_mutex);
2034                 ksm_run |= KSM_RUN_OFFLINE;
2035                 mutex_unlock(&ksm_thread_mutex);
2036                 break;
2037
2038         case MEM_OFFLINE:
2039                 /*
2040                  * Most of the work is done by page migration; but there might
2041                  * be a few stable_nodes left over, still pointing to struct
2042                  * pages which have been offlined: prune those from the tree,
2043                  * otherwise get_ksm_page() might later try to access a
2044                  * non-existent struct page.
2045                  */
2046                 ksm_check_stable_tree(mn->start_pfn,
2047                                       mn->start_pfn + mn->nr_pages);
2048                 /* fallthrough */
2049
2050         case MEM_CANCEL_OFFLINE:
2051                 mutex_lock(&ksm_thread_mutex);
2052                 ksm_run &= ~KSM_RUN_OFFLINE;
2053                 mutex_unlock(&ksm_thread_mutex);
2054
2055                 smp_mb();       /* wake_up_bit advises this */
2056                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2057                 break;
2058         }
2059         return NOTIFY_OK;
2060 }
2061 #else
2062 static void wait_while_offlining(void)
2063 {
2064 }
2065 #endif /* CONFIG_MEMORY_HOTREMOVE */
2066
2067 #ifdef CONFIG_SYSFS
2068 /*
2069  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2070  */
2071
2072 #define KSM_ATTR_RO(_name) \
2073         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2074 #define KSM_ATTR(_name) \
2075         static struct kobj_attribute _name##_attr = \
2076                 __ATTR(_name, 0644, _name##_show, _name##_store)
2077
2078 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2079                                     struct kobj_attribute *attr, char *buf)
2080 {
2081         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2082 }
2083
2084 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2085                                      struct kobj_attribute *attr,
2086                                      const char *buf, size_t count)
2087 {
2088         unsigned long msecs;
2089         int err;
2090
2091         err = kstrtoul(buf, 10, &msecs);
2092         if (err || msecs > UINT_MAX)
2093                 return -EINVAL;
2094
2095         ksm_thread_sleep_millisecs = msecs;
2096
2097         return count;
2098 }
2099 KSM_ATTR(sleep_millisecs);
2100
2101 static ssize_t pages_to_scan_show(struct kobject *kobj,
2102                                   struct kobj_attribute *attr, char *buf)
2103 {
2104         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2105 }
2106
2107 static ssize_t pages_to_scan_store(struct kobject *kobj,
2108                                    struct kobj_attribute *attr,
2109                                    const char *buf, size_t count)
2110 {
2111         int err;
2112         unsigned long nr_pages;
2113
2114         err = kstrtoul(buf, 10, &nr_pages);
2115         if (err || nr_pages > UINT_MAX)
2116                 return -EINVAL;
2117
2118         ksm_thread_pages_to_scan = nr_pages;
2119
2120         return count;
2121 }
2122 KSM_ATTR(pages_to_scan);
2123
2124 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2125                         char *buf)
2126 {
2127         return sprintf(buf, "%lu\n", ksm_run);
2128 }
2129
2130 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2131                          const char *buf, size_t count)
2132 {
2133         int err;
2134         unsigned long flags;
2135
2136         err = kstrtoul(buf, 10, &flags);
2137         if (err || flags > UINT_MAX)
2138                 return -EINVAL;
2139         if (flags > KSM_RUN_UNMERGE)
2140                 return -EINVAL;
2141
2142         /*
2143          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2144          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2145          * breaking COW to free the pages_shared (but leaves mm_slots
2146          * on the list for when ksmd may be set running again).
2147          */
2148
2149         mutex_lock(&ksm_thread_mutex);
2150         wait_while_offlining();
2151         if (ksm_run != flags) {
2152                 ksm_run = flags;
2153                 if (flags & KSM_RUN_UNMERGE) {
2154                         set_current_oom_origin();
2155                         err = unmerge_and_remove_all_rmap_items();
2156                         clear_current_oom_origin();
2157                         if (err) {
2158                                 ksm_run = KSM_RUN_STOP;
2159                                 count = err;
2160                         }
2161                 }
2162         }
2163         mutex_unlock(&ksm_thread_mutex);
2164
2165         if (flags & KSM_RUN_MERGE)
2166                 wake_up_interruptible(&ksm_thread_wait);
2167
2168         return count;
2169 }
2170 KSM_ATTR(run);
2171
2172 #ifdef CONFIG_NUMA
2173 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2174                                 struct kobj_attribute *attr, char *buf)
2175 {
2176         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2177 }
2178
2179 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2180                                    struct kobj_attribute *attr,
2181                                    const char *buf, size_t count)
2182 {
2183         int err;
2184         unsigned long knob;
2185
2186         err = kstrtoul(buf, 10, &knob);
2187         if (err)
2188                 return err;
2189         if (knob > 1)
2190                 return -EINVAL;
2191
2192         mutex_lock(&ksm_thread_mutex);
2193         wait_while_offlining();
2194         if (ksm_merge_across_nodes != knob) {
2195                 if (ksm_pages_shared || remove_all_stable_nodes())
2196                         err = -EBUSY;
2197                 else if (root_stable_tree == one_stable_tree) {
2198                         struct rb_root *buf;
2199                         /*
2200                          * This is the first time that we switch away from the
2201                          * default of merging across nodes: must now allocate
2202                          * a buffer to hold as many roots as may be needed.
2203                          * Allocate stable and unstable together:
2204                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2205                          */
2206                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2207                                       GFP_KERNEL);
2208                         /* Let us assume that RB_ROOT is NULL is zero */
2209                         if (!buf)
2210                                 err = -ENOMEM;
2211                         else {
2212                                 root_stable_tree = buf;
2213                                 root_unstable_tree = buf + nr_node_ids;
2214                                 /* Stable tree is empty but not the unstable */
2215                                 root_unstable_tree[0] = one_unstable_tree[0];
2216                         }
2217                 }
2218                 if (!err) {
2219                         ksm_merge_across_nodes = knob;
2220                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2221                 }
2222         }
2223         mutex_unlock(&ksm_thread_mutex);
2224
2225         return err ? err : count;
2226 }
2227 KSM_ATTR(merge_across_nodes);
2228 #endif
2229
2230 static ssize_t pages_shared_show(struct kobject *kobj,
2231                                  struct kobj_attribute *attr, char *buf)
2232 {
2233         return sprintf(buf, "%lu\n", ksm_pages_shared);
2234 }
2235 KSM_ATTR_RO(pages_shared);
2236
2237 static ssize_t pages_sharing_show(struct kobject *kobj,
2238                                   struct kobj_attribute *attr, char *buf)
2239 {
2240         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2241 }
2242 KSM_ATTR_RO(pages_sharing);
2243
2244 static ssize_t pages_unshared_show(struct kobject *kobj,
2245                                    struct kobj_attribute *attr, char *buf)
2246 {
2247         return sprintf(buf, "%lu\n", ksm_pages_unshared);
2248 }
2249 KSM_ATTR_RO(pages_unshared);
2250
2251 static ssize_t pages_volatile_show(struct kobject *kobj,
2252                                    struct kobj_attribute *attr, char *buf)
2253 {
2254         long ksm_pages_volatile;
2255
2256         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2257                                 - ksm_pages_sharing - ksm_pages_unshared;
2258         /*
2259          * It was not worth any locking to calculate that statistic,
2260          * but it might therefore sometimes be negative: conceal that.
2261          */
2262         if (ksm_pages_volatile < 0)
2263                 ksm_pages_volatile = 0;
2264         return sprintf(buf, "%ld\n", ksm_pages_volatile);
2265 }
2266 KSM_ATTR_RO(pages_volatile);
2267
2268 static ssize_t full_scans_show(struct kobject *kobj,
2269                                struct kobj_attribute *attr, char *buf)
2270 {
2271         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2272 }
2273 KSM_ATTR_RO(full_scans);
2274
2275 static struct attribute *ksm_attrs[] = {
2276         &sleep_millisecs_attr.attr,
2277         &pages_to_scan_attr.attr,
2278         &run_attr.attr,
2279         &pages_shared_attr.attr,
2280         &pages_sharing_attr.attr,
2281         &pages_unshared_attr.attr,
2282         &pages_volatile_attr.attr,
2283         &full_scans_attr.attr,
2284 #ifdef CONFIG_NUMA
2285         &merge_across_nodes_attr.attr,
2286 #endif
2287         NULL,
2288 };
2289
2290 static struct attribute_group ksm_attr_group = {
2291         .attrs = ksm_attrs,
2292         .name = "ksm",
2293 };
2294 #endif /* CONFIG_SYSFS */
2295
2296 static int __init ksm_init(void)
2297 {
2298         struct task_struct *ksm_thread;
2299         int err;
2300
2301         err = ksm_slab_init();
2302         if (err)
2303                 goto out;
2304
2305         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2306         if (IS_ERR(ksm_thread)) {
2307                 pr_err("ksm: creating kthread failed\n");
2308                 err = PTR_ERR(ksm_thread);
2309                 goto out_free;
2310         }
2311
2312 #ifdef CONFIG_SYSFS
2313         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2314         if (err) {
2315                 pr_err("ksm: register sysfs failed\n");
2316                 kthread_stop(ksm_thread);
2317                 goto out_free;
2318         }
2319 #else
2320         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2321
2322 #endif /* CONFIG_SYSFS */
2323
2324 #ifdef CONFIG_MEMORY_HOTREMOVE
2325         /* There is no significance to this priority 100 */
2326         hotplug_memory_notifier(ksm_memory_callback, 100);
2327 #endif
2328         return 0;
2329
2330 out_free:
2331         ksm_slab_free();
2332 out:
2333         return err;
2334 }
2335 subsys_initcall(ksm_init);