mm/core: Do not enforce PKEY permissions on remote mm access
[cascardo/linux.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)         (x)
46 #define DO_NUMA(x)      do { (x); } while (0)
47 #else
48 #define NUMA(x)         (0)
49 #define DO_NUMA(x)      do { } while (0)
50 #endif
51
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  *
91  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92  * stable trees and multiple unstable trees: one of each for each NUMA node.
93  */
94
95 /**
96  * struct mm_slot - ksm information per mm that is being scanned
97  * @link: link to the mm_slots hash list
98  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100  * @mm: the mm that this information is valid for
101  */
102 struct mm_slot {
103         struct hlist_node link;
104         struct list_head mm_list;
105         struct rmap_item *rmap_list;
106         struct mm_struct *mm;
107 };
108
109 /**
110  * struct ksm_scan - cursor for scanning
111  * @mm_slot: the current mm_slot we are scanning
112  * @address: the next address inside that to be scanned
113  * @rmap_list: link to the next rmap to be scanned in the rmap_list
114  * @seqnr: count of completed full scans (needed when removing unstable node)
115  *
116  * There is only the one ksm_scan instance of this cursor structure.
117  */
118 struct ksm_scan {
119         struct mm_slot *mm_slot;
120         unsigned long address;
121         struct rmap_item **rmap_list;
122         unsigned long seqnr;
123 };
124
125 /**
126  * struct stable_node - node of the stable rbtree
127  * @node: rb node of this ksm page in the stable tree
128  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129  * @list: linked into migrate_nodes, pending placement in the proper node tree
130  * @hlist: hlist head of rmap_items using this ksm page
131  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133  */
134 struct stable_node {
135         union {
136                 struct rb_node node;    /* when node of stable tree */
137                 struct {                /* when listed for migration */
138                         struct list_head *head;
139                         struct list_head list;
140                 };
141         };
142         struct hlist_head hlist;
143         unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145         int nid;
146 #endif
147 };
148
149 /**
150  * struct rmap_item - reverse mapping item for virtual addresses
151  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153  * @nid: NUMA node id of unstable tree in which linked (may not match page)
154  * @mm: the memory structure this rmap_item is pointing into
155  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156  * @oldchecksum: previous checksum of the page at that virtual address
157  * @node: rb node of this rmap_item in the unstable tree
158  * @head: pointer to stable_node heading this list in the stable tree
159  * @hlist: link into hlist of rmap_items hanging off that stable_node
160  */
161 struct rmap_item {
162         struct rmap_item *rmap_list;
163         union {
164                 struct anon_vma *anon_vma;      /* when stable */
165 #ifdef CONFIG_NUMA
166                 int nid;                /* when node of unstable tree */
167 #endif
168         };
169         struct mm_struct *mm;
170         unsigned long address;          /* + low bits used for flags below */
171         unsigned int oldchecksum;       /* when unstable */
172         union {
173                 struct rb_node node;    /* when node of unstable tree */
174                 struct {                /* when listed from stable tree */
175                         struct stable_node *head;
176                         struct hlist_node hlist;
177                 };
178         };
179 };
180
181 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
183 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
184
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196
197 static struct mm_slot ksm_mm_head = {
198         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201         .mm_slot = &ksm_mm_head,
202 };
203
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes  1U
232 #define ksm_nr_node_ids         1
233 #endif
234
235 #define KSM_RUN_STOP    0
236 #define KSM_RUN_MERGE   1
237 #define KSM_RUN_UNMERGE 2
238 #define KSM_RUN_OFFLINE 4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
241
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
245
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247                 sizeof(struct __struct), __alignof__(struct __struct),\
248                 (__flags), NULL)
249
250 static int __init ksm_slab_init(void)
251 {
252         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253         if (!rmap_item_cache)
254                 goto out;
255
256         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257         if (!stable_node_cache)
258                 goto out_free1;
259
260         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261         if (!mm_slot_cache)
262                 goto out_free2;
263
264         return 0;
265
266 out_free2:
267         kmem_cache_destroy(stable_node_cache);
268 out_free1:
269         kmem_cache_destroy(rmap_item_cache);
270 out:
271         return -ENOMEM;
272 }
273
274 static void __init ksm_slab_free(void)
275 {
276         kmem_cache_destroy(mm_slot_cache);
277         kmem_cache_destroy(stable_node_cache);
278         kmem_cache_destroy(rmap_item_cache);
279         mm_slot_cache = NULL;
280 }
281
282 static inline struct rmap_item *alloc_rmap_item(void)
283 {
284         struct rmap_item *rmap_item;
285
286         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
287         if (rmap_item)
288                 ksm_rmap_items++;
289         return rmap_item;
290 }
291
292 static inline void free_rmap_item(struct rmap_item *rmap_item)
293 {
294         ksm_rmap_items--;
295         rmap_item->mm = NULL;   /* debug safety */
296         kmem_cache_free(rmap_item_cache, rmap_item);
297 }
298
299 static inline struct stable_node *alloc_stable_node(void)
300 {
301         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
302 }
303
304 static inline void free_stable_node(struct stable_node *stable_node)
305 {
306         kmem_cache_free(stable_node_cache, stable_node);
307 }
308
309 static inline struct mm_slot *alloc_mm_slot(void)
310 {
311         if (!mm_slot_cache)     /* initialization failed */
312                 return NULL;
313         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
314 }
315
316 static inline void free_mm_slot(struct mm_slot *mm_slot)
317 {
318         kmem_cache_free(mm_slot_cache, mm_slot);
319 }
320
321 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
322 {
323         struct mm_slot *slot;
324
325         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
326                 if (slot->mm == mm)
327                         return slot;
328
329         return NULL;
330 }
331
332 static void insert_to_mm_slots_hash(struct mm_struct *mm,
333                                     struct mm_slot *mm_slot)
334 {
335         mm_slot->mm = mm;
336         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
337 }
338
339 /*
340  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
341  * page tables after it has passed through ksm_exit() - which, if necessary,
342  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
343  * a special flag: they can just back out as soon as mm_users goes to zero.
344  * ksm_test_exit() is used throughout to make this test for exit: in some
345  * places for correctness, in some places just to avoid unnecessary work.
346  */
347 static inline bool ksm_test_exit(struct mm_struct *mm)
348 {
349         return atomic_read(&mm->mm_users) == 0;
350 }
351
352 /*
353  * We use break_ksm to break COW on a ksm page: it's a stripped down
354  *
355  *      if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
356  *              put_page(page);
357  *
358  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
359  * in case the application has unmapped and remapped mm,addr meanwhile.
360  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
361  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
362  *
363  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
364  * of the process that owns 'vma'.  We also do not want to enforce
365  * protection keys here anyway.
366  */
367 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
368 {
369         struct page *page;
370         int ret = 0;
371
372         do {
373                 cond_resched();
374                 page = follow_page(vma, addr,
375                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
376                 if (IS_ERR_OR_NULL(page))
377                         break;
378                 if (PageKsm(page))
379                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
380                                                         FAULT_FLAG_WRITE |
381                                                         FAULT_FLAG_REMOTE);
382                 else
383                         ret = VM_FAULT_WRITE;
384                 put_page(page);
385         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
386         /*
387          * We must loop because handle_mm_fault() may back out if there's
388          * any difficulty e.g. if pte accessed bit gets updated concurrently.
389          *
390          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
391          * COW has been broken, even if the vma does not permit VM_WRITE;
392          * but note that a concurrent fault might break PageKsm for us.
393          *
394          * VM_FAULT_SIGBUS could occur if we race with truncation of the
395          * backing file, which also invalidates anonymous pages: that's
396          * okay, that truncation will have unmapped the PageKsm for us.
397          *
398          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
399          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
400          * current task has TIF_MEMDIE set, and will be OOM killed on return
401          * to user; and ksmd, having no mm, would never be chosen for that.
402          *
403          * But if the mm is in a limited mem_cgroup, then the fault may fail
404          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
405          * even ksmd can fail in this way - though it's usually breaking ksm
406          * just to undo a merge it made a moment before, so unlikely to oom.
407          *
408          * That's a pity: we might therefore have more kernel pages allocated
409          * than we're counting as nodes in the stable tree; but ksm_do_scan
410          * will retry to break_cow on each pass, so should recover the page
411          * in due course.  The important thing is to not let VM_MERGEABLE
412          * be cleared while any such pages might remain in the area.
413          */
414         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
415 }
416
417 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
418                 unsigned long addr)
419 {
420         struct vm_area_struct *vma;
421         if (ksm_test_exit(mm))
422                 return NULL;
423         vma = find_vma(mm, addr);
424         if (!vma || vma->vm_start > addr)
425                 return NULL;
426         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
427                 return NULL;
428         return vma;
429 }
430
431 static void break_cow(struct rmap_item *rmap_item)
432 {
433         struct mm_struct *mm = rmap_item->mm;
434         unsigned long addr = rmap_item->address;
435         struct vm_area_struct *vma;
436
437         /*
438          * It is not an accident that whenever we want to break COW
439          * to undo, we also need to drop a reference to the anon_vma.
440          */
441         put_anon_vma(rmap_item->anon_vma);
442
443         down_read(&mm->mmap_sem);
444         vma = find_mergeable_vma(mm, addr);
445         if (vma)
446                 break_ksm(vma, addr);
447         up_read(&mm->mmap_sem);
448 }
449
450 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
451 {
452         struct mm_struct *mm = rmap_item->mm;
453         unsigned long addr = rmap_item->address;
454         struct vm_area_struct *vma;
455         struct page *page;
456
457         down_read(&mm->mmap_sem);
458         vma = find_mergeable_vma(mm, addr);
459         if (!vma)
460                 goto out;
461
462         page = follow_page(vma, addr, FOLL_GET);
463         if (IS_ERR_OR_NULL(page))
464                 goto out;
465         if (PageAnon(page)) {
466                 flush_anon_page(vma, page, addr);
467                 flush_dcache_page(page);
468         } else {
469                 put_page(page);
470 out:
471                 page = NULL;
472         }
473         up_read(&mm->mmap_sem);
474         return page;
475 }
476
477 /*
478  * This helper is used for getting right index into array of tree roots.
479  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
480  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
481  * every node has its own stable and unstable tree.
482  */
483 static inline int get_kpfn_nid(unsigned long kpfn)
484 {
485         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
486 }
487
488 static void remove_node_from_stable_tree(struct stable_node *stable_node)
489 {
490         struct rmap_item *rmap_item;
491
492         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
493                 if (rmap_item->hlist.next)
494                         ksm_pages_sharing--;
495                 else
496                         ksm_pages_shared--;
497                 put_anon_vma(rmap_item->anon_vma);
498                 rmap_item->address &= PAGE_MASK;
499                 cond_resched();
500         }
501
502         if (stable_node->head == &migrate_nodes)
503                 list_del(&stable_node->list);
504         else
505                 rb_erase(&stable_node->node,
506                          root_stable_tree + NUMA(stable_node->nid));
507         free_stable_node(stable_node);
508 }
509
510 /*
511  * get_ksm_page: checks if the page indicated by the stable node
512  * is still its ksm page, despite having held no reference to it.
513  * In which case we can trust the content of the page, and it
514  * returns the gotten page; but if the page has now been zapped,
515  * remove the stale node from the stable tree and return NULL.
516  * But beware, the stable node's page might be being migrated.
517  *
518  * You would expect the stable_node to hold a reference to the ksm page.
519  * But if it increments the page's count, swapping out has to wait for
520  * ksmd to come around again before it can free the page, which may take
521  * seconds or even minutes: much too unresponsive.  So instead we use a
522  * "keyhole reference": access to the ksm page from the stable node peeps
523  * out through its keyhole to see if that page still holds the right key,
524  * pointing back to this stable node.  This relies on freeing a PageAnon
525  * page to reset its page->mapping to NULL, and relies on no other use of
526  * a page to put something that might look like our key in page->mapping.
527  * is on its way to being freed; but it is an anomaly to bear in mind.
528  */
529 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
530 {
531         struct page *page;
532         void *expected_mapping;
533         unsigned long kpfn;
534
535         expected_mapping = (void *)stable_node +
536                                 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
537 again:
538         kpfn = READ_ONCE(stable_node->kpfn);
539         page = pfn_to_page(kpfn);
540
541         /*
542          * page is computed from kpfn, so on most architectures reading
543          * page->mapping is naturally ordered after reading node->kpfn,
544          * but on Alpha we need to be more careful.
545          */
546         smp_read_barrier_depends();
547         if (READ_ONCE(page->mapping) != expected_mapping)
548                 goto stale;
549
550         /*
551          * We cannot do anything with the page while its refcount is 0.
552          * Usually 0 means free, or tail of a higher-order page: in which
553          * case this node is no longer referenced, and should be freed;
554          * however, it might mean that the page is under page_freeze_refs().
555          * The __remove_mapping() case is easy, again the node is now stale;
556          * but if page is swapcache in migrate_page_move_mapping(), it might
557          * still be our page, in which case it's essential to keep the node.
558          */
559         while (!get_page_unless_zero(page)) {
560                 /*
561                  * Another check for page->mapping != expected_mapping would
562                  * work here too.  We have chosen the !PageSwapCache test to
563                  * optimize the common case, when the page is or is about to
564                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
565                  * in the freeze_refs section of __remove_mapping(); but Anon
566                  * page->mapping reset to NULL later, in free_pages_prepare().
567                  */
568                 if (!PageSwapCache(page))
569                         goto stale;
570                 cpu_relax();
571         }
572
573         if (READ_ONCE(page->mapping) != expected_mapping) {
574                 put_page(page);
575                 goto stale;
576         }
577
578         if (lock_it) {
579                 lock_page(page);
580                 if (READ_ONCE(page->mapping) != expected_mapping) {
581                         unlock_page(page);
582                         put_page(page);
583                         goto stale;
584                 }
585         }
586         return page;
587
588 stale:
589         /*
590          * We come here from above when page->mapping or !PageSwapCache
591          * suggests that the node is stale; but it might be under migration.
592          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
593          * before checking whether node->kpfn has been changed.
594          */
595         smp_rmb();
596         if (READ_ONCE(stable_node->kpfn) != kpfn)
597                 goto again;
598         remove_node_from_stable_tree(stable_node);
599         return NULL;
600 }
601
602 /*
603  * Removing rmap_item from stable or unstable tree.
604  * This function will clean the information from the stable/unstable tree.
605  */
606 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
607 {
608         if (rmap_item->address & STABLE_FLAG) {
609                 struct stable_node *stable_node;
610                 struct page *page;
611
612                 stable_node = rmap_item->head;
613                 page = get_ksm_page(stable_node, true);
614                 if (!page)
615                         goto out;
616
617                 hlist_del(&rmap_item->hlist);
618                 unlock_page(page);
619                 put_page(page);
620
621                 if (!hlist_empty(&stable_node->hlist))
622                         ksm_pages_sharing--;
623                 else
624                         ksm_pages_shared--;
625
626                 put_anon_vma(rmap_item->anon_vma);
627                 rmap_item->address &= PAGE_MASK;
628
629         } else if (rmap_item->address & UNSTABLE_FLAG) {
630                 unsigned char age;
631                 /*
632                  * Usually ksmd can and must skip the rb_erase, because
633                  * root_unstable_tree was already reset to RB_ROOT.
634                  * But be careful when an mm is exiting: do the rb_erase
635                  * if this rmap_item was inserted by this scan, rather
636                  * than left over from before.
637                  */
638                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
639                 BUG_ON(age > 1);
640                 if (!age)
641                         rb_erase(&rmap_item->node,
642                                  root_unstable_tree + NUMA(rmap_item->nid));
643                 ksm_pages_unshared--;
644                 rmap_item->address &= PAGE_MASK;
645         }
646 out:
647         cond_resched();         /* we're called from many long loops */
648 }
649
650 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
651                                        struct rmap_item **rmap_list)
652 {
653         while (*rmap_list) {
654                 struct rmap_item *rmap_item = *rmap_list;
655                 *rmap_list = rmap_item->rmap_list;
656                 remove_rmap_item_from_tree(rmap_item);
657                 free_rmap_item(rmap_item);
658         }
659 }
660
661 /*
662  * Though it's very tempting to unmerge rmap_items from stable tree rather
663  * than check every pte of a given vma, the locking doesn't quite work for
664  * that - an rmap_item is assigned to the stable tree after inserting ksm
665  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
666  * rmap_items from parent to child at fork time (so as not to waste time
667  * if exit comes before the next scan reaches it).
668  *
669  * Similarly, although we'd like to remove rmap_items (so updating counts
670  * and freeing memory) when unmerging an area, it's easier to leave that
671  * to the next pass of ksmd - consider, for example, how ksmd might be
672  * in cmp_and_merge_page on one of the rmap_items we would be removing.
673  */
674 static int unmerge_ksm_pages(struct vm_area_struct *vma,
675                              unsigned long start, unsigned long end)
676 {
677         unsigned long addr;
678         int err = 0;
679
680         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
681                 if (ksm_test_exit(vma->vm_mm))
682                         break;
683                 if (signal_pending(current))
684                         err = -ERESTARTSYS;
685                 else
686                         err = break_ksm(vma, addr);
687         }
688         return err;
689 }
690
691 #ifdef CONFIG_SYSFS
692 /*
693  * Only called through the sysfs control interface:
694  */
695 static int remove_stable_node(struct stable_node *stable_node)
696 {
697         struct page *page;
698         int err;
699
700         page = get_ksm_page(stable_node, true);
701         if (!page) {
702                 /*
703                  * get_ksm_page did remove_node_from_stable_tree itself.
704                  */
705                 return 0;
706         }
707
708         if (WARN_ON_ONCE(page_mapped(page))) {
709                 /*
710                  * This should not happen: but if it does, just refuse to let
711                  * merge_across_nodes be switched - there is no need to panic.
712                  */
713                 err = -EBUSY;
714         } else {
715                 /*
716                  * The stable node did not yet appear stale to get_ksm_page(),
717                  * since that allows for an unmapped ksm page to be recognized
718                  * right up until it is freed; but the node is safe to remove.
719                  * This page might be in a pagevec waiting to be freed,
720                  * or it might be PageSwapCache (perhaps under writeback),
721                  * or it might have been removed from swapcache a moment ago.
722                  */
723                 set_page_stable_node(page, NULL);
724                 remove_node_from_stable_tree(stable_node);
725                 err = 0;
726         }
727
728         unlock_page(page);
729         put_page(page);
730         return err;
731 }
732
733 static int remove_all_stable_nodes(void)
734 {
735         struct stable_node *stable_node, *next;
736         int nid;
737         int err = 0;
738
739         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
740                 while (root_stable_tree[nid].rb_node) {
741                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
742                                                 struct stable_node, node);
743                         if (remove_stable_node(stable_node)) {
744                                 err = -EBUSY;
745                                 break;  /* proceed to next nid */
746                         }
747                         cond_resched();
748                 }
749         }
750         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
751                 if (remove_stable_node(stable_node))
752                         err = -EBUSY;
753                 cond_resched();
754         }
755         return err;
756 }
757
758 static int unmerge_and_remove_all_rmap_items(void)
759 {
760         struct mm_slot *mm_slot;
761         struct mm_struct *mm;
762         struct vm_area_struct *vma;
763         int err = 0;
764
765         spin_lock(&ksm_mmlist_lock);
766         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
767                                                 struct mm_slot, mm_list);
768         spin_unlock(&ksm_mmlist_lock);
769
770         for (mm_slot = ksm_scan.mm_slot;
771                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
772                 mm = mm_slot->mm;
773                 down_read(&mm->mmap_sem);
774                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
775                         if (ksm_test_exit(mm))
776                                 break;
777                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
778                                 continue;
779                         err = unmerge_ksm_pages(vma,
780                                                 vma->vm_start, vma->vm_end);
781                         if (err)
782                                 goto error;
783                 }
784
785                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
786
787                 spin_lock(&ksm_mmlist_lock);
788                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
789                                                 struct mm_slot, mm_list);
790                 if (ksm_test_exit(mm)) {
791                         hash_del(&mm_slot->link);
792                         list_del(&mm_slot->mm_list);
793                         spin_unlock(&ksm_mmlist_lock);
794
795                         free_mm_slot(mm_slot);
796                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
797                         up_read(&mm->mmap_sem);
798                         mmdrop(mm);
799                 } else {
800                         spin_unlock(&ksm_mmlist_lock);
801                         up_read(&mm->mmap_sem);
802                 }
803         }
804
805         /* Clean up stable nodes, but don't worry if some are still busy */
806         remove_all_stable_nodes();
807         ksm_scan.seqnr = 0;
808         return 0;
809
810 error:
811         up_read(&mm->mmap_sem);
812         spin_lock(&ksm_mmlist_lock);
813         ksm_scan.mm_slot = &ksm_mm_head;
814         spin_unlock(&ksm_mmlist_lock);
815         return err;
816 }
817 #endif /* CONFIG_SYSFS */
818
819 static u32 calc_checksum(struct page *page)
820 {
821         u32 checksum;
822         void *addr = kmap_atomic(page);
823         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
824         kunmap_atomic(addr);
825         return checksum;
826 }
827
828 static int memcmp_pages(struct page *page1, struct page *page2)
829 {
830         char *addr1, *addr2;
831         int ret;
832
833         addr1 = kmap_atomic(page1);
834         addr2 = kmap_atomic(page2);
835         ret = memcmp(addr1, addr2, PAGE_SIZE);
836         kunmap_atomic(addr2);
837         kunmap_atomic(addr1);
838         return ret;
839 }
840
841 static inline int pages_identical(struct page *page1, struct page *page2)
842 {
843         return !memcmp_pages(page1, page2);
844 }
845
846 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
847                               pte_t *orig_pte)
848 {
849         struct mm_struct *mm = vma->vm_mm;
850         unsigned long addr;
851         pte_t *ptep;
852         spinlock_t *ptl;
853         int swapped;
854         int err = -EFAULT;
855         unsigned long mmun_start;       /* For mmu_notifiers */
856         unsigned long mmun_end;         /* For mmu_notifiers */
857
858         addr = page_address_in_vma(page, vma);
859         if (addr == -EFAULT)
860                 goto out;
861
862         BUG_ON(PageTransCompound(page));
863
864         mmun_start = addr;
865         mmun_end   = addr + PAGE_SIZE;
866         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
867
868         ptep = page_check_address(page, mm, addr, &ptl, 0);
869         if (!ptep)
870                 goto out_mn;
871
872         if (pte_write(*ptep) || pte_dirty(*ptep)) {
873                 pte_t entry;
874
875                 swapped = PageSwapCache(page);
876                 flush_cache_page(vma, addr, page_to_pfn(page));
877                 /*
878                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
879                  * take any lock, therefore the check that we are going to make
880                  * with the pagecount against the mapcount is racey and
881                  * O_DIRECT can happen right after the check.
882                  * So we clear the pte and flush the tlb before the check
883                  * this assure us that no O_DIRECT can happen after the check
884                  * or in the middle of the check.
885                  */
886                 entry = ptep_clear_flush_notify(vma, addr, ptep);
887                 /*
888                  * Check that no O_DIRECT or similar I/O is in progress on the
889                  * page
890                  */
891                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
892                         set_pte_at(mm, addr, ptep, entry);
893                         goto out_unlock;
894                 }
895                 if (pte_dirty(entry))
896                         set_page_dirty(page);
897                 entry = pte_mkclean(pte_wrprotect(entry));
898                 set_pte_at_notify(mm, addr, ptep, entry);
899         }
900         *orig_pte = *ptep;
901         err = 0;
902
903 out_unlock:
904         pte_unmap_unlock(ptep, ptl);
905 out_mn:
906         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
907 out:
908         return err;
909 }
910
911 /**
912  * replace_page - replace page in vma by new ksm page
913  * @vma:      vma that holds the pte pointing to page
914  * @page:     the page we are replacing by kpage
915  * @kpage:    the ksm page we replace page by
916  * @orig_pte: the original value of the pte
917  *
918  * Returns 0 on success, -EFAULT on failure.
919  */
920 static int replace_page(struct vm_area_struct *vma, struct page *page,
921                         struct page *kpage, pte_t orig_pte)
922 {
923         struct mm_struct *mm = vma->vm_mm;
924         pmd_t *pmd;
925         pte_t *ptep;
926         spinlock_t *ptl;
927         unsigned long addr;
928         int err = -EFAULT;
929         unsigned long mmun_start;       /* For mmu_notifiers */
930         unsigned long mmun_end;         /* For mmu_notifiers */
931
932         addr = page_address_in_vma(page, vma);
933         if (addr == -EFAULT)
934                 goto out;
935
936         pmd = mm_find_pmd(mm, addr);
937         if (!pmd)
938                 goto out;
939
940         mmun_start = addr;
941         mmun_end   = addr + PAGE_SIZE;
942         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
943
944         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
945         if (!pte_same(*ptep, orig_pte)) {
946                 pte_unmap_unlock(ptep, ptl);
947                 goto out_mn;
948         }
949
950         get_page(kpage);
951         page_add_anon_rmap(kpage, vma, addr, false);
952
953         flush_cache_page(vma, addr, pte_pfn(*ptep));
954         ptep_clear_flush_notify(vma, addr, ptep);
955         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
956
957         page_remove_rmap(page, false);
958         if (!page_mapped(page))
959                 try_to_free_swap(page);
960         put_page(page);
961
962         pte_unmap_unlock(ptep, ptl);
963         err = 0;
964 out_mn:
965         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
966 out:
967         return err;
968 }
969
970 /*
971  * try_to_merge_one_page - take two pages and merge them into one
972  * @vma: the vma that holds the pte pointing to page
973  * @page: the PageAnon page that we want to replace with kpage
974  * @kpage: the PageKsm page that we want to map instead of page,
975  *         or NULL the first time when we want to use page as kpage.
976  *
977  * This function returns 0 if the pages were merged, -EFAULT otherwise.
978  */
979 static int try_to_merge_one_page(struct vm_area_struct *vma,
980                                  struct page *page, struct page *kpage)
981 {
982         pte_t orig_pte = __pte(0);
983         int err = -EFAULT;
984
985         if (page == kpage)                      /* ksm page forked */
986                 return 0;
987
988         if (!PageAnon(page))
989                 goto out;
990
991         /*
992          * We need the page lock to read a stable PageSwapCache in
993          * write_protect_page().  We use trylock_page() instead of
994          * lock_page() because we don't want to wait here - we
995          * prefer to continue scanning and merging different pages,
996          * then come back to this page when it is unlocked.
997          */
998         if (!trylock_page(page))
999                 goto out;
1000
1001         if (PageTransCompound(page)) {
1002                 err = split_huge_page(page);
1003                 if (err)
1004                         goto out_unlock;
1005         }
1006
1007         /*
1008          * If this anonymous page is mapped only here, its pte may need
1009          * to be write-protected.  If it's mapped elsewhere, all of its
1010          * ptes are necessarily already write-protected.  But in either
1011          * case, we need to lock and check page_count is not raised.
1012          */
1013         if (write_protect_page(vma, page, &orig_pte) == 0) {
1014                 if (!kpage) {
1015                         /*
1016                          * While we hold page lock, upgrade page from
1017                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1018                          * stable_tree_insert() will update stable_node.
1019                          */
1020                         set_page_stable_node(page, NULL);
1021                         mark_page_accessed(page);
1022                         /*
1023                          * Page reclaim just frees a clean page with no dirty
1024                          * ptes: make sure that the ksm page would be swapped.
1025                          */
1026                         if (!PageDirty(page))
1027                                 SetPageDirty(page);
1028                         err = 0;
1029                 } else if (pages_identical(page, kpage))
1030                         err = replace_page(vma, page, kpage, orig_pte);
1031         }
1032
1033         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1034                 munlock_vma_page(page);
1035                 if (!PageMlocked(kpage)) {
1036                         unlock_page(page);
1037                         lock_page(kpage);
1038                         mlock_vma_page(kpage);
1039                         page = kpage;           /* for final unlock */
1040                 }
1041         }
1042
1043 out_unlock:
1044         unlock_page(page);
1045 out:
1046         return err;
1047 }
1048
1049 /*
1050  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1051  * but no new kernel page is allocated: kpage must already be a ksm page.
1052  *
1053  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1054  */
1055 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1056                                       struct page *page, struct page *kpage)
1057 {
1058         struct mm_struct *mm = rmap_item->mm;
1059         struct vm_area_struct *vma;
1060         int err = -EFAULT;
1061
1062         down_read(&mm->mmap_sem);
1063         vma = find_mergeable_vma(mm, rmap_item->address);
1064         if (!vma)
1065                 goto out;
1066
1067         err = try_to_merge_one_page(vma, page, kpage);
1068         if (err)
1069                 goto out;
1070
1071         /* Unstable nid is in union with stable anon_vma: remove first */
1072         remove_rmap_item_from_tree(rmap_item);
1073
1074         /* Must get reference to anon_vma while still holding mmap_sem */
1075         rmap_item->anon_vma = vma->anon_vma;
1076         get_anon_vma(vma->anon_vma);
1077 out:
1078         up_read(&mm->mmap_sem);
1079         return err;
1080 }
1081
1082 /*
1083  * try_to_merge_two_pages - take two identical pages and prepare them
1084  * to be merged into one page.
1085  *
1086  * This function returns the kpage if we successfully merged two identical
1087  * pages into one ksm page, NULL otherwise.
1088  *
1089  * Note that this function upgrades page to ksm page: if one of the pages
1090  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1091  */
1092 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1093                                            struct page *page,
1094                                            struct rmap_item *tree_rmap_item,
1095                                            struct page *tree_page)
1096 {
1097         int err;
1098
1099         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1100         if (!err) {
1101                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1102                                                         tree_page, page);
1103                 /*
1104                  * If that fails, we have a ksm page with only one pte
1105                  * pointing to it: so break it.
1106                  */
1107                 if (err)
1108                         break_cow(rmap_item);
1109         }
1110         return err ? NULL : page;
1111 }
1112
1113 /*
1114  * stable_tree_search - search for page inside the stable tree
1115  *
1116  * This function checks if there is a page inside the stable tree
1117  * with identical content to the page that we are scanning right now.
1118  *
1119  * This function returns the stable tree node of identical content if found,
1120  * NULL otherwise.
1121  */
1122 static struct page *stable_tree_search(struct page *page)
1123 {
1124         int nid;
1125         struct rb_root *root;
1126         struct rb_node **new;
1127         struct rb_node *parent;
1128         struct stable_node *stable_node;
1129         struct stable_node *page_node;
1130
1131         page_node = page_stable_node(page);
1132         if (page_node && page_node->head != &migrate_nodes) {
1133                 /* ksm page forked */
1134                 get_page(page);
1135                 return page;
1136         }
1137
1138         nid = get_kpfn_nid(page_to_pfn(page));
1139         root = root_stable_tree + nid;
1140 again:
1141         new = &root->rb_node;
1142         parent = NULL;
1143
1144         while (*new) {
1145                 struct page *tree_page;
1146                 int ret;
1147
1148                 cond_resched();
1149                 stable_node = rb_entry(*new, struct stable_node, node);
1150                 tree_page = get_ksm_page(stable_node, false);
1151                 if (!tree_page) {
1152                         /*
1153                          * If we walked over a stale stable_node,
1154                          * get_ksm_page() will call rb_erase() and it
1155                          * may rebalance the tree from under us. So
1156                          * restart the search from scratch. Returning
1157                          * NULL would be safe too, but we'd generate
1158                          * false negative insertions just because some
1159                          * stable_node was stale.
1160                          */
1161                         goto again;
1162                 }
1163
1164                 ret = memcmp_pages(page, tree_page);
1165                 put_page(tree_page);
1166
1167                 parent = *new;
1168                 if (ret < 0)
1169                         new = &parent->rb_left;
1170                 else if (ret > 0)
1171                         new = &parent->rb_right;
1172                 else {
1173                         /*
1174                          * Lock and unlock the stable_node's page (which
1175                          * might already have been migrated) so that page
1176                          * migration is sure to notice its raised count.
1177                          * It would be more elegant to return stable_node
1178                          * than kpage, but that involves more changes.
1179                          */
1180                         tree_page = get_ksm_page(stable_node, true);
1181                         if (tree_page) {
1182                                 unlock_page(tree_page);
1183                                 if (get_kpfn_nid(stable_node->kpfn) !=
1184                                                 NUMA(stable_node->nid)) {
1185                                         put_page(tree_page);
1186                                         goto replace;
1187                                 }
1188                                 return tree_page;
1189                         }
1190                         /*
1191                          * There is now a place for page_node, but the tree may
1192                          * have been rebalanced, so re-evaluate parent and new.
1193                          */
1194                         if (page_node)
1195                                 goto again;
1196                         return NULL;
1197                 }
1198         }
1199
1200         if (!page_node)
1201                 return NULL;
1202
1203         list_del(&page_node->list);
1204         DO_NUMA(page_node->nid = nid);
1205         rb_link_node(&page_node->node, parent, new);
1206         rb_insert_color(&page_node->node, root);
1207         get_page(page);
1208         return page;
1209
1210 replace:
1211         if (page_node) {
1212                 list_del(&page_node->list);
1213                 DO_NUMA(page_node->nid = nid);
1214                 rb_replace_node(&stable_node->node, &page_node->node, root);
1215                 get_page(page);
1216         } else {
1217                 rb_erase(&stable_node->node, root);
1218                 page = NULL;
1219         }
1220         stable_node->head = &migrate_nodes;
1221         list_add(&stable_node->list, stable_node->head);
1222         return page;
1223 }
1224
1225 /*
1226  * stable_tree_insert - insert stable tree node pointing to new ksm page
1227  * into the stable tree.
1228  *
1229  * This function returns the stable tree node just allocated on success,
1230  * NULL otherwise.
1231  */
1232 static struct stable_node *stable_tree_insert(struct page *kpage)
1233 {
1234         int nid;
1235         unsigned long kpfn;
1236         struct rb_root *root;
1237         struct rb_node **new;
1238         struct rb_node *parent;
1239         struct stable_node *stable_node;
1240
1241         kpfn = page_to_pfn(kpage);
1242         nid = get_kpfn_nid(kpfn);
1243         root = root_stable_tree + nid;
1244 again:
1245         parent = NULL;
1246         new = &root->rb_node;
1247
1248         while (*new) {
1249                 struct page *tree_page;
1250                 int ret;
1251
1252                 cond_resched();
1253                 stable_node = rb_entry(*new, struct stable_node, node);
1254                 tree_page = get_ksm_page(stable_node, false);
1255                 if (!tree_page) {
1256                         /*
1257                          * If we walked over a stale stable_node,
1258                          * get_ksm_page() will call rb_erase() and it
1259                          * may rebalance the tree from under us. So
1260                          * restart the search from scratch. Returning
1261                          * NULL would be safe too, but we'd generate
1262                          * false negative insertions just because some
1263                          * stable_node was stale.
1264                          */
1265                         goto again;
1266                 }
1267
1268                 ret = memcmp_pages(kpage, tree_page);
1269                 put_page(tree_page);
1270
1271                 parent = *new;
1272                 if (ret < 0)
1273                         new = &parent->rb_left;
1274                 else if (ret > 0)
1275                         new = &parent->rb_right;
1276                 else {
1277                         /*
1278                          * It is not a bug that stable_tree_search() didn't
1279                          * find this node: because at that time our page was
1280                          * not yet write-protected, so may have changed since.
1281                          */
1282                         return NULL;
1283                 }
1284         }
1285
1286         stable_node = alloc_stable_node();
1287         if (!stable_node)
1288                 return NULL;
1289
1290         INIT_HLIST_HEAD(&stable_node->hlist);
1291         stable_node->kpfn = kpfn;
1292         set_page_stable_node(kpage, stable_node);
1293         DO_NUMA(stable_node->nid = nid);
1294         rb_link_node(&stable_node->node, parent, new);
1295         rb_insert_color(&stable_node->node, root);
1296
1297         return stable_node;
1298 }
1299
1300 /*
1301  * unstable_tree_search_insert - search for identical page,
1302  * else insert rmap_item into the unstable tree.
1303  *
1304  * This function searches for a page in the unstable tree identical to the
1305  * page currently being scanned; and if no identical page is found in the
1306  * tree, we insert rmap_item as a new object into the unstable tree.
1307  *
1308  * This function returns pointer to rmap_item found to be identical
1309  * to the currently scanned page, NULL otherwise.
1310  *
1311  * This function does both searching and inserting, because they share
1312  * the same walking algorithm in an rbtree.
1313  */
1314 static
1315 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1316                                               struct page *page,
1317                                               struct page **tree_pagep)
1318 {
1319         struct rb_node **new;
1320         struct rb_root *root;
1321         struct rb_node *parent = NULL;
1322         int nid;
1323
1324         nid = get_kpfn_nid(page_to_pfn(page));
1325         root = root_unstable_tree + nid;
1326         new = &root->rb_node;
1327
1328         while (*new) {
1329                 struct rmap_item *tree_rmap_item;
1330                 struct page *tree_page;
1331                 int ret;
1332
1333                 cond_resched();
1334                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1335                 tree_page = get_mergeable_page(tree_rmap_item);
1336                 if (!tree_page)
1337                         return NULL;
1338
1339                 /*
1340                  * Don't substitute a ksm page for a forked page.
1341                  */
1342                 if (page == tree_page) {
1343                         put_page(tree_page);
1344                         return NULL;
1345                 }
1346
1347                 ret = memcmp_pages(page, tree_page);
1348
1349                 parent = *new;
1350                 if (ret < 0) {
1351                         put_page(tree_page);
1352                         new = &parent->rb_left;
1353                 } else if (ret > 0) {
1354                         put_page(tree_page);
1355                         new = &parent->rb_right;
1356                 } else if (!ksm_merge_across_nodes &&
1357                            page_to_nid(tree_page) != nid) {
1358                         /*
1359                          * If tree_page has been migrated to another NUMA node,
1360                          * it will be flushed out and put in the right unstable
1361                          * tree next time: only merge with it when across_nodes.
1362                          */
1363                         put_page(tree_page);
1364                         return NULL;
1365                 } else {
1366                         *tree_pagep = tree_page;
1367                         return tree_rmap_item;
1368                 }
1369         }
1370
1371         rmap_item->address |= UNSTABLE_FLAG;
1372         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1373         DO_NUMA(rmap_item->nid = nid);
1374         rb_link_node(&rmap_item->node, parent, new);
1375         rb_insert_color(&rmap_item->node, root);
1376
1377         ksm_pages_unshared++;
1378         return NULL;
1379 }
1380
1381 /*
1382  * stable_tree_append - add another rmap_item to the linked list of
1383  * rmap_items hanging off a given node of the stable tree, all sharing
1384  * the same ksm page.
1385  */
1386 static void stable_tree_append(struct rmap_item *rmap_item,
1387                                struct stable_node *stable_node)
1388 {
1389         rmap_item->head = stable_node;
1390         rmap_item->address |= STABLE_FLAG;
1391         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1392
1393         if (rmap_item->hlist.next)
1394                 ksm_pages_sharing++;
1395         else
1396                 ksm_pages_shared++;
1397 }
1398
1399 /*
1400  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1401  * if not, compare checksum to previous and if it's the same, see if page can
1402  * be inserted into the unstable tree, or merged with a page already there and
1403  * both transferred to the stable tree.
1404  *
1405  * @page: the page that we are searching identical page to.
1406  * @rmap_item: the reverse mapping into the virtual address of this page
1407  */
1408 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1409 {
1410         struct rmap_item *tree_rmap_item;
1411         struct page *tree_page = NULL;
1412         struct stable_node *stable_node;
1413         struct page *kpage;
1414         unsigned int checksum;
1415         int err;
1416
1417         stable_node = page_stable_node(page);
1418         if (stable_node) {
1419                 if (stable_node->head != &migrate_nodes &&
1420                     get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1421                         rb_erase(&stable_node->node,
1422                                  root_stable_tree + NUMA(stable_node->nid));
1423                         stable_node->head = &migrate_nodes;
1424                         list_add(&stable_node->list, stable_node->head);
1425                 }
1426                 if (stable_node->head != &migrate_nodes &&
1427                     rmap_item->head == stable_node)
1428                         return;
1429         }
1430
1431         /* We first start with searching the page inside the stable tree */
1432         kpage = stable_tree_search(page);
1433         if (kpage == page && rmap_item->head == stable_node) {
1434                 put_page(kpage);
1435                 return;
1436         }
1437
1438         remove_rmap_item_from_tree(rmap_item);
1439
1440         if (kpage) {
1441                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1442                 if (!err) {
1443                         /*
1444                          * The page was successfully merged:
1445                          * add its rmap_item to the stable tree.
1446                          */
1447                         lock_page(kpage);
1448                         stable_tree_append(rmap_item, page_stable_node(kpage));
1449                         unlock_page(kpage);
1450                 }
1451                 put_page(kpage);
1452                 return;
1453         }
1454
1455         /*
1456          * If the hash value of the page has changed from the last time
1457          * we calculated it, this page is changing frequently: therefore we
1458          * don't want to insert it in the unstable tree, and we don't want
1459          * to waste our time searching for something identical to it there.
1460          */
1461         checksum = calc_checksum(page);
1462         if (rmap_item->oldchecksum != checksum) {
1463                 rmap_item->oldchecksum = checksum;
1464                 return;
1465         }
1466
1467         tree_rmap_item =
1468                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1469         if (tree_rmap_item) {
1470                 kpage = try_to_merge_two_pages(rmap_item, page,
1471                                                 tree_rmap_item, tree_page);
1472                 put_page(tree_page);
1473                 if (kpage) {
1474                         /*
1475                          * The pages were successfully merged: insert new
1476                          * node in the stable tree and add both rmap_items.
1477                          */
1478                         lock_page(kpage);
1479                         stable_node = stable_tree_insert(kpage);
1480                         if (stable_node) {
1481                                 stable_tree_append(tree_rmap_item, stable_node);
1482                                 stable_tree_append(rmap_item, stable_node);
1483                         }
1484                         unlock_page(kpage);
1485
1486                         /*
1487                          * If we fail to insert the page into the stable tree,
1488                          * we will have 2 virtual addresses that are pointing
1489                          * to a ksm page left outside the stable tree,
1490                          * in which case we need to break_cow on both.
1491                          */
1492                         if (!stable_node) {
1493                                 break_cow(tree_rmap_item);
1494                                 break_cow(rmap_item);
1495                         }
1496                 }
1497         }
1498 }
1499
1500 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1501                                             struct rmap_item **rmap_list,
1502                                             unsigned long addr)
1503 {
1504         struct rmap_item *rmap_item;
1505
1506         while (*rmap_list) {
1507                 rmap_item = *rmap_list;
1508                 if ((rmap_item->address & PAGE_MASK) == addr)
1509                         return rmap_item;
1510                 if (rmap_item->address > addr)
1511                         break;
1512                 *rmap_list = rmap_item->rmap_list;
1513                 remove_rmap_item_from_tree(rmap_item);
1514                 free_rmap_item(rmap_item);
1515         }
1516
1517         rmap_item = alloc_rmap_item();
1518         if (rmap_item) {
1519                 /* It has already been zeroed */
1520                 rmap_item->mm = mm_slot->mm;
1521                 rmap_item->address = addr;
1522                 rmap_item->rmap_list = *rmap_list;
1523                 *rmap_list = rmap_item;
1524         }
1525         return rmap_item;
1526 }
1527
1528 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1529 {
1530         struct mm_struct *mm;
1531         struct mm_slot *slot;
1532         struct vm_area_struct *vma;
1533         struct rmap_item *rmap_item;
1534         int nid;
1535
1536         if (list_empty(&ksm_mm_head.mm_list))
1537                 return NULL;
1538
1539         slot = ksm_scan.mm_slot;
1540         if (slot == &ksm_mm_head) {
1541                 /*
1542                  * A number of pages can hang around indefinitely on per-cpu
1543                  * pagevecs, raised page count preventing write_protect_page
1544                  * from merging them.  Though it doesn't really matter much,
1545                  * it is puzzling to see some stuck in pages_volatile until
1546                  * other activity jostles them out, and they also prevented
1547                  * LTP's KSM test from succeeding deterministically; so drain
1548                  * them here (here rather than on entry to ksm_do_scan(),
1549                  * so we don't IPI too often when pages_to_scan is set low).
1550                  */
1551                 lru_add_drain_all();
1552
1553                 /*
1554                  * Whereas stale stable_nodes on the stable_tree itself
1555                  * get pruned in the regular course of stable_tree_search(),
1556                  * those moved out to the migrate_nodes list can accumulate:
1557                  * so prune them once before each full scan.
1558                  */
1559                 if (!ksm_merge_across_nodes) {
1560                         struct stable_node *stable_node, *next;
1561                         struct page *page;
1562
1563                         list_for_each_entry_safe(stable_node, next,
1564                                                  &migrate_nodes, list) {
1565                                 page = get_ksm_page(stable_node, false);
1566                                 if (page)
1567                                         put_page(page);
1568                                 cond_resched();
1569                         }
1570                 }
1571
1572                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1573                         root_unstable_tree[nid] = RB_ROOT;
1574
1575                 spin_lock(&ksm_mmlist_lock);
1576                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1577                 ksm_scan.mm_slot = slot;
1578                 spin_unlock(&ksm_mmlist_lock);
1579                 /*
1580                  * Although we tested list_empty() above, a racing __ksm_exit
1581                  * of the last mm on the list may have removed it since then.
1582                  */
1583                 if (slot == &ksm_mm_head)
1584                         return NULL;
1585 next_mm:
1586                 ksm_scan.address = 0;
1587                 ksm_scan.rmap_list = &slot->rmap_list;
1588         }
1589
1590         mm = slot->mm;
1591         down_read(&mm->mmap_sem);
1592         if (ksm_test_exit(mm))
1593                 vma = NULL;
1594         else
1595                 vma = find_vma(mm, ksm_scan.address);
1596
1597         for (; vma; vma = vma->vm_next) {
1598                 if (!(vma->vm_flags & VM_MERGEABLE))
1599                         continue;
1600                 if (ksm_scan.address < vma->vm_start)
1601                         ksm_scan.address = vma->vm_start;
1602                 if (!vma->anon_vma)
1603                         ksm_scan.address = vma->vm_end;
1604
1605                 while (ksm_scan.address < vma->vm_end) {
1606                         if (ksm_test_exit(mm))
1607                                 break;
1608                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1609                         if (IS_ERR_OR_NULL(*page)) {
1610                                 ksm_scan.address += PAGE_SIZE;
1611                                 cond_resched();
1612                                 continue;
1613                         }
1614                         if (PageAnon(*page)) {
1615                                 flush_anon_page(vma, *page, ksm_scan.address);
1616                                 flush_dcache_page(*page);
1617                                 rmap_item = get_next_rmap_item(slot,
1618                                         ksm_scan.rmap_list, ksm_scan.address);
1619                                 if (rmap_item) {
1620                                         ksm_scan.rmap_list =
1621                                                         &rmap_item->rmap_list;
1622                                         ksm_scan.address += PAGE_SIZE;
1623                                 } else
1624                                         put_page(*page);
1625                                 up_read(&mm->mmap_sem);
1626                                 return rmap_item;
1627                         }
1628                         put_page(*page);
1629                         ksm_scan.address += PAGE_SIZE;
1630                         cond_resched();
1631                 }
1632         }
1633
1634         if (ksm_test_exit(mm)) {
1635                 ksm_scan.address = 0;
1636                 ksm_scan.rmap_list = &slot->rmap_list;
1637         }
1638         /*
1639          * Nuke all the rmap_items that are above this current rmap:
1640          * because there were no VM_MERGEABLE vmas with such addresses.
1641          */
1642         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1643
1644         spin_lock(&ksm_mmlist_lock);
1645         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1646                                                 struct mm_slot, mm_list);
1647         if (ksm_scan.address == 0) {
1648                 /*
1649                  * We've completed a full scan of all vmas, holding mmap_sem
1650                  * throughout, and found no VM_MERGEABLE: so do the same as
1651                  * __ksm_exit does to remove this mm from all our lists now.
1652                  * This applies either when cleaning up after __ksm_exit
1653                  * (but beware: we can reach here even before __ksm_exit),
1654                  * or when all VM_MERGEABLE areas have been unmapped (and
1655                  * mmap_sem then protects against race with MADV_MERGEABLE).
1656                  */
1657                 hash_del(&slot->link);
1658                 list_del(&slot->mm_list);
1659                 spin_unlock(&ksm_mmlist_lock);
1660
1661                 free_mm_slot(slot);
1662                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1663                 up_read(&mm->mmap_sem);
1664                 mmdrop(mm);
1665         } else {
1666                 spin_unlock(&ksm_mmlist_lock);
1667                 up_read(&mm->mmap_sem);
1668         }
1669
1670         /* Repeat until we've completed scanning the whole list */
1671         slot = ksm_scan.mm_slot;
1672         if (slot != &ksm_mm_head)
1673                 goto next_mm;
1674
1675         ksm_scan.seqnr++;
1676         return NULL;
1677 }
1678
1679 /**
1680  * ksm_do_scan  - the ksm scanner main worker function.
1681  * @scan_npages - number of pages we want to scan before we return.
1682  */
1683 static void ksm_do_scan(unsigned int scan_npages)
1684 {
1685         struct rmap_item *rmap_item;
1686         struct page *uninitialized_var(page);
1687
1688         while (scan_npages-- && likely(!freezing(current))) {
1689                 cond_resched();
1690                 rmap_item = scan_get_next_rmap_item(&page);
1691                 if (!rmap_item)
1692                         return;
1693                 cmp_and_merge_page(page, rmap_item);
1694                 put_page(page);
1695         }
1696 }
1697
1698 static int ksmd_should_run(void)
1699 {
1700         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1701 }
1702
1703 static int ksm_scan_thread(void *nothing)
1704 {
1705         set_freezable();
1706         set_user_nice(current, 5);
1707
1708         while (!kthread_should_stop()) {
1709                 mutex_lock(&ksm_thread_mutex);
1710                 wait_while_offlining();
1711                 if (ksmd_should_run())
1712                         ksm_do_scan(ksm_thread_pages_to_scan);
1713                 mutex_unlock(&ksm_thread_mutex);
1714
1715                 try_to_freeze();
1716
1717                 if (ksmd_should_run()) {
1718                         schedule_timeout_interruptible(
1719                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1720                 } else {
1721                         wait_event_freezable(ksm_thread_wait,
1722                                 ksmd_should_run() || kthread_should_stop());
1723                 }
1724         }
1725         return 0;
1726 }
1727
1728 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1729                 unsigned long end, int advice, unsigned long *vm_flags)
1730 {
1731         struct mm_struct *mm = vma->vm_mm;
1732         int err;
1733
1734         switch (advice) {
1735         case MADV_MERGEABLE:
1736                 /*
1737                  * Be somewhat over-protective for now!
1738                  */
1739                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1740                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1741                                  VM_HUGETLB | VM_MIXEDMAP))
1742                         return 0;               /* just ignore the advice */
1743
1744 #ifdef VM_SAO
1745                 if (*vm_flags & VM_SAO)
1746                         return 0;
1747 #endif
1748
1749                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1750                         err = __ksm_enter(mm);
1751                         if (err)
1752                                 return err;
1753                 }
1754
1755                 *vm_flags |= VM_MERGEABLE;
1756                 break;
1757
1758         case MADV_UNMERGEABLE:
1759                 if (!(*vm_flags & VM_MERGEABLE))
1760                         return 0;               /* just ignore the advice */
1761
1762                 if (vma->anon_vma) {
1763                         err = unmerge_ksm_pages(vma, start, end);
1764                         if (err)
1765                                 return err;
1766                 }
1767
1768                 *vm_flags &= ~VM_MERGEABLE;
1769                 break;
1770         }
1771
1772         return 0;
1773 }
1774
1775 int __ksm_enter(struct mm_struct *mm)
1776 {
1777         struct mm_slot *mm_slot;
1778         int needs_wakeup;
1779
1780         mm_slot = alloc_mm_slot();
1781         if (!mm_slot)
1782                 return -ENOMEM;
1783
1784         /* Check ksm_run too?  Would need tighter locking */
1785         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1786
1787         spin_lock(&ksm_mmlist_lock);
1788         insert_to_mm_slots_hash(mm, mm_slot);
1789         /*
1790          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1791          * insert just behind the scanning cursor, to let the area settle
1792          * down a little; when fork is followed by immediate exec, we don't
1793          * want ksmd to waste time setting up and tearing down an rmap_list.
1794          *
1795          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1796          * scanning cursor, otherwise KSM pages in newly forked mms will be
1797          * missed: then we might as well insert at the end of the list.
1798          */
1799         if (ksm_run & KSM_RUN_UNMERGE)
1800                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1801         else
1802                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1803         spin_unlock(&ksm_mmlist_lock);
1804
1805         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1806         atomic_inc(&mm->mm_count);
1807
1808         if (needs_wakeup)
1809                 wake_up_interruptible(&ksm_thread_wait);
1810
1811         return 0;
1812 }
1813
1814 void __ksm_exit(struct mm_struct *mm)
1815 {
1816         struct mm_slot *mm_slot;
1817         int easy_to_free = 0;
1818
1819         /*
1820          * This process is exiting: if it's straightforward (as is the
1821          * case when ksmd was never running), free mm_slot immediately.
1822          * But if it's at the cursor or has rmap_items linked to it, use
1823          * mmap_sem to synchronize with any break_cows before pagetables
1824          * are freed, and leave the mm_slot on the list for ksmd to free.
1825          * Beware: ksm may already have noticed it exiting and freed the slot.
1826          */
1827
1828         spin_lock(&ksm_mmlist_lock);
1829         mm_slot = get_mm_slot(mm);
1830         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1831                 if (!mm_slot->rmap_list) {
1832                         hash_del(&mm_slot->link);
1833                         list_del(&mm_slot->mm_list);
1834                         easy_to_free = 1;
1835                 } else {
1836                         list_move(&mm_slot->mm_list,
1837                                   &ksm_scan.mm_slot->mm_list);
1838                 }
1839         }
1840         spin_unlock(&ksm_mmlist_lock);
1841
1842         if (easy_to_free) {
1843                 free_mm_slot(mm_slot);
1844                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1845                 mmdrop(mm);
1846         } else if (mm_slot) {
1847                 down_write(&mm->mmap_sem);
1848                 up_write(&mm->mmap_sem);
1849         }
1850 }
1851
1852 struct page *ksm_might_need_to_copy(struct page *page,
1853                         struct vm_area_struct *vma, unsigned long address)
1854 {
1855         struct anon_vma *anon_vma = page_anon_vma(page);
1856         struct page *new_page;
1857
1858         if (PageKsm(page)) {
1859                 if (page_stable_node(page) &&
1860                     !(ksm_run & KSM_RUN_UNMERGE))
1861                         return page;    /* no need to copy it */
1862         } else if (!anon_vma) {
1863                 return page;            /* no need to copy it */
1864         } else if (anon_vma->root == vma->anon_vma->root &&
1865                  page->index == linear_page_index(vma, address)) {
1866                 return page;            /* still no need to copy it */
1867         }
1868         if (!PageUptodate(page))
1869                 return page;            /* let do_swap_page report the error */
1870
1871         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1872         if (new_page) {
1873                 copy_user_highpage(new_page, page, address, vma);
1874
1875                 SetPageDirty(new_page);
1876                 __SetPageUptodate(new_page);
1877                 __SetPageLocked(new_page);
1878         }
1879
1880         return new_page;
1881 }
1882
1883 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1884 {
1885         struct stable_node *stable_node;
1886         struct rmap_item *rmap_item;
1887         int ret = SWAP_AGAIN;
1888         int search_new_forks = 0;
1889
1890         VM_BUG_ON_PAGE(!PageKsm(page), page);
1891
1892         /*
1893          * Rely on the page lock to protect against concurrent modifications
1894          * to that page's node of the stable tree.
1895          */
1896         VM_BUG_ON_PAGE(!PageLocked(page), page);
1897
1898         stable_node = page_stable_node(page);
1899         if (!stable_node)
1900                 return ret;
1901 again:
1902         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1903                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1904                 struct anon_vma_chain *vmac;
1905                 struct vm_area_struct *vma;
1906
1907                 cond_resched();
1908                 anon_vma_lock_read(anon_vma);
1909                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1910                                                0, ULONG_MAX) {
1911                         cond_resched();
1912                         vma = vmac->vma;
1913                         if (rmap_item->address < vma->vm_start ||
1914                             rmap_item->address >= vma->vm_end)
1915                                 continue;
1916                         /*
1917                          * Initially we examine only the vma which covers this
1918                          * rmap_item; but later, if there is still work to do,
1919                          * we examine covering vmas in other mms: in case they
1920                          * were forked from the original since ksmd passed.
1921                          */
1922                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1923                                 continue;
1924
1925                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1926                                 continue;
1927
1928                         ret = rwc->rmap_one(page, vma,
1929                                         rmap_item->address, rwc->arg);
1930                         if (ret != SWAP_AGAIN) {
1931                                 anon_vma_unlock_read(anon_vma);
1932                                 goto out;
1933                         }
1934                         if (rwc->done && rwc->done(page)) {
1935                                 anon_vma_unlock_read(anon_vma);
1936                                 goto out;
1937                         }
1938                 }
1939                 anon_vma_unlock_read(anon_vma);
1940         }
1941         if (!search_new_forks++)
1942                 goto again;
1943 out:
1944         return ret;
1945 }
1946
1947 #ifdef CONFIG_MIGRATION
1948 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1949 {
1950         struct stable_node *stable_node;
1951
1952         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1953         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1954         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
1955
1956         stable_node = page_stable_node(newpage);
1957         if (stable_node) {
1958                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
1959                 stable_node->kpfn = page_to_pfn(newpage);
1960                 /*
1961                  * newpage->mapping was set in advance; now we need smp_wmb()
1962                  * to make sure that the new stable_node->kpfn is visible
1963                  * to get_ksm_page() before it can see that oldpage->mapping
1964                  * has gone stale (or that PageSwapCache has been cleared).
1965                  */
1966                 smp_wmb();
1967                 set_page_stable_node(oldpage, NULL);
1968         }
1969 }
1970 #endif /* CONFIG_MIGRATION */
1971
1972 #ifdef CONFIG_MEMORY_HOTREMOVE
1973 static void wait_while_offlining(void)
1974 {
1975         while (ksm_run & KSM_RUN_OFFLINE) {
1976                 mutex_unlock(&ksm_thread_mutex);
1977                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
1978                             TASK_UNINTERRUPTIBLE);
1979                 mutex_lock(&ksm_thread_mutex);
1980         }
1981 }
1982
1983 static void ksm_check_stable_tree(unsigned long start_pfn,
1984                                   unsigned long end_pfn)
1985 {
1986         struct stable_node *stable_node, *next;
1987         struct rb_node *node;
1988         int nid;
1989
1990         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1991                 node = rb_first(root_stable_tree + nid);
1992                 while (node) {
1993                         stable_node = rb_entry(node, struct stable_node, node);
1994                         if (stable_node->kpfn >= start_pfn &&
1995                             stable_node->kpfn < end_pfn) {
1996                                 /*
1997                                  * Don't get_ksm_page, page has already gone:
1998                                  * which is why we keep kpfn instead of page*
1999                                  */
2000                                 remove_node_from_stable_tree(stable_node);
2001                                 node = rb_first(root_stable_tree + nid);
2002                         } else
2003                                 node = rb_next(node);
2004                         cond_resched();
2005                 }
2006         }
2007         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2008                 if (stable_node->kpfn >= start_pfn &&
2009                     stable_node->kpfn < end_pfn)
2010                         remove_node_from_stable_tree(stable_node);
2011                 cond_resched();
2012         }
2013 }
2014
2015 static int ksm_memory_callback(struct notifier_block *self,
2016                                unsigned long action, void *arg)
2017 {
2018         struct memory_notify *mn = arg;
2019
2020         switch (action) {
2021         case MEM_GOING_OFFLINE:
2022                 /*
2023                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2024                  * and remove_all_stable_nodes() while memory is going offline:
2025                  * it is unsafe for them to touch the stable tree at this time.
2026                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2027                  * which do not need the ksm_thread_mutex are all safe.
2028                  */
2029                 mutex_lock(&ksm_thread_mutex);
2030                 ksm_run |= KSM_RUN_OFFLINE;
2031                 mutex_unlock(&ksm_thread_mutex);
2032                 break;
2033
2034         case MEM_OFFLINE:
2035                 /*
2036                  * Most of the work is done by page migration; but there might
2037                  * be a few stable_nodes left over, still pointing to struct
2038                  * pages which have been offlined: prune those from the tree,
2039                  * otherwise get_ksm_page() might later try to access a
2040                  * non-existent struct page.
2041                  */
2042                 ksm_check_stable_tree(mn->start_pfn,
2043                                       mn->start_pfn + mn->nr_pages);
2044                 /* fallthrough */
2045
2046         case MEM_CANCEL_OFFLINE:
2047                 mutex_lock(&ksm_thread_mutex);
2048                 ksm_run &= ~KSM_RUN_OFFLINE;
2049                 mutex_unlock(&ksm_thread_mutex);
2050
2051                 smp_mb();       /* wake_up_bit advises this */
2052                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2053                 break;
2054         }
2055         return NOTIFY_OK;
2056 }
2057 #else
2058 static void wait_while_offlining(void)
2059 {
2060 }
2061 #endif /* CONFIG_MEMORY_HOTREMOVE */
2062
2063 #ifdef CONFIG_SYSFS
2064 /*
2065  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2066  */
2067
2068 #define KSM_ATTR_RO(_name) \
2069         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2070 #define KSM_ATTR(_name) \
2071         static struct kobj_attribute _name##_attr = \
2072                 __ATTR(_name, 0644, _name##_show, _name##_store)
2073
2074 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2075                                     struct kobj_attribute *attr, char *buf)
2076 {
2077         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2078 }
2079
2080 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2081                                      struct kobj_attribute *attr,
2082                                      const char *buf, size_t count)
2083 {
2084         unsigned long msecs;
2085         int err;
2086
2087         err = kstrtoul(buf, 10, &msecs);
2088         if (err || msecs > UINT_MAX)
2089                 return -EINVAL;
2090
2091         ksm_thread_sleep_millisecs = msecs;
2092
2093         return count;
2094 }
2095 KSM_ATTR(sleep_millisecs);
2096
2097 static ssize_t pages_to_scan_show(struct kobject *kobj,
2098                                   struct kobj_attribute *attr, char *buf)
2099 {
2100         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2101 }
2102
2103 static ssize_t pages_to_scan_store(struct kobject *kobj,
2104                                    struct kobj_attribute *attr,
2105                                    const char *buf, size_t count)
2106 {
2107         int err;
2108         unsigned long nr_pages;
2109
2110         err = kstrtoul(buf, 10, &nr_pages);
2111         if (err || nr_pages > UINT_MAX)
2112                 return -EINVAL;
2113
2114         ksm_thread_pages_to_scan = nr_pages;
2115
2116         return count;
2117 }
2118 KSM_ATTR(pages_to_scan);
2119
2120 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2121                         char *buf)
2122 {
2123         return sprintf(buf, "%lu\n", ksm_run);
2124 }
2125
2126 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2127                          const char *buf, size_t count)
2128 {
2129         int err;
2130         unsigned long flags;
2131
2132         err = kstrtoul(buf, 10, &flags);
2133         if (err || flags > UINT_MAX)
2134                 return -EINVAL;
2135         if (flags > KSM_RUN_UNMERGE)
2136                 return -EINVAL;
2137
2138         /*
2139          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2140          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2141          * breaking COW to free the pages_shared (but leaves mm_slots
2142          * on the list for when ksmd may be set running again).
2143          */
2144
2145         mutex_lock(&ksm_thread_mutex);
2146         wait_while_offlining();
2147         if (ksm_run != flags) {
2148                 ksm_run = flags;
2149                 if (flags & KSM_RUN_UNMERGE) {
2150                         set_current_oom_origin();
2151                         err = unmerge_and_remove_all_rmap_items();
2152                         clear_current_oom_origin();
2153                         if (err) {
2154                                 ksm_run = KSM_RUN_STOP;
2155                                 count = err;
2156                         }
2157                 }
2158         }
2159         mutex_unlock(&ksm_thread_mutex);
2160
2161         if (flags & KSM_RUN_MERGE)
2162                 wake_up_interruptible(&ksm_thread_wait);
2163
2164         return count;
2165 }
2166 KSM_ATTR(run);
2167
2168 #ifdef CONFIG_NUMA
2169 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2170                                 struct kobj_attribute *attr, char *buf)
2171 {
2172         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2173 }
2174
2175 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2176                                    struct kobj_attribute *attr,
2177                                    const char *buf, size_t count)
2178 {
2179         int err;
2180         unsigned long knob;
2181
2182         err = kstrtoul(buf, 10, &knob);
2183         if (err)
2184                 return err;
2185         if (knob > 1)
2186                 return -EINVAL;
2187
2188         mutex_lock(&ksm_thread_mutex);
2189         wait_while_offlining();
2190         if (ksm_merge_across_nodes != knob) {
2191                 if (ksm_pages_shared || remove_all_stable_nodes())
2192                         err = -EBUSY;
2193                 else if (root_stable_tree == one_stable_tree) {
2194                         struct rb_root *buf;
2195                         /*
2196                          * This is the first time that we switch away from the
2197                          * default of merging across nodes: must now allocate
2198                          * a buffer to hold as many roots as may be needed.
2199                          * Allocate stable and unstable together:
2200                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2201                          */
2202                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2203                                       GFP_KERNEL);
2204                         /* Let us assume that RB_ROOT is NULL is zero */
2205                         if (!buf)
2206                                 err = -ENOMEM;
2207                         else {
2208                                 root_stable_tree = buf;
2209                                 root_unstable_tree = buf + nr_node_ids;
2210                                 /* Stable tree is empty but not the unstable */
2211                                 root_unstable_tree[0] = one_unstable_tree[0];
2212                         }
2213                 }
2214                 if (!err) {
2215                         ksm_merge_across_nodes = knob;
2216                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2217                 }
2218         }
2219         mutex_unlock(&ksm_thread_mutex);
2220
2221         return err ? err : count;
2222 }
2223 KSM_ATTR(merge_across_nodes);
2224 #endif
2225
2226 static ssize_t pages_shared_show(struct kobject *kobj,
2227                                  struct kobj_attribute *attr, char *buf)
2228 {
2229         return sprintf(buf, "%lu\n", ksm_pages_shared);
2230 }
2231 KSM_ATTR_RO(pages_shared);
2232
2233 static ssize_t pages_sharing_show(struct kobject *kobj,
2234                                   struct kobj_attribute *attr, char *buf)
2235 {
2236         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2237 }
2238 KSM_ATTR_RO(pages_sharing);
2239
2240 static ssize_t pages_unshared_show(struct kobject *kobj,
2241                                    struct kobj_attribute *attr, char *buf)
2242 {
2243         return sprintf(buf, "%lu\n", ksm_pages_unshared);
2244 }
2245 KSM_ATTR_RO(pages_unshared);
2246
2247 static ssize_t pages_volatile_show(struct kobject *kobj,
2248                                    struct kobj_attribute *attr, char *buf)
2249 {
2250         long ksm_pages_volatile;
2251
2252         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2253                                 - ksm_pages_sharing - ksm_pages_unshared;
2254         /*
2255          * It was not worth any locking to calculate that statistic,
2256          * but it might therefore sometimes be negative: conceal that.
2257          */
2258         if (ksm_pages_volatile < 0)
2259                 ksm_pages_volatile = 0;
2260         return sprintf(buf, "%ld\n", ksm_pages_volatile);
2261 }
2262 KSM_ATTR_RO(pages_volatile);
2263
2264 static ssize_t full_scans_show(struct kobject *kobj,
2265                                struct kobj_attribute *attr, char *buf)
2266 {
2267         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2268 }
2269 KSM_ATTR_RO(full_scans);
2270
2271 static struct attribute *ksm_attrs[] = {
2272         &sleep_millisecs_attr.attr,
2273         &pages_to_scan_attr.attr,
2274         &run_attr.attr,
2275         &pages_shared_attr.attr,
2276         &pages_sharing_attr.attr,
2277         &pages_unshared_attr.attr,
2278         &pages_volatile_attr.attr,
2279         &full_scans_attr.attr,
2280 #ifdef CONFIG_NUMA
2281         &merge_across_nodes_attr.attr,
2282 #endif
2283         NULL,
2284 };
2285
2286 static struct attribute_group ksm_attr_group = {
2287         .attrs = ksm_attrs,
2288         .name = "ksm",
2289 };
2290 #endif /* CONFIG_SYSFS */
2291
2292 static int __init ksm_init(void)
2293 {
2294         struct task_struct *ksm_thread;
2295         int err;
2296
2297         err = ksm_slab_init();
2298         if (err)
2299                 goto out;
2300
2301         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2302         if (IS_ERR(ksm_thread)) {
2303                 pr_err("ksm: creating kthread failed\n");
2304                 err = PTR_ERR(ksm_thread);
2305                 goto out_free;
2306         }
2307
2308 #ifdef CONFIG_SYSFS
2309         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2310         if (err) {
2311                 pr_err("ksm: register sysfs failed\n");
2312                 kthread_stop(ksm_thread);
2313                 goto out_free;
2314         }
2315 #else
2316         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2317
2318 #endif /* CONFIG_SYSFS */
2319
2320 #ifdef CONFIG_MEMORY_HOTREMOVE
2321         /* There is no significance to this priority 100 */
2322         hotplug_memory_notifier(ksm_memory_callback, 100);
2323 #endif
2324         return 0;
2325
2326 out_free:
2327         ksm_slab_free();
2328 out:
2329         return err;
2330 }
2331 subsys_initcall(ksm_init);