c2013f638d113d073d0ca2814420619472c63915
[cascardo/linux.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)         (x)
46 #define DO_NUMA(x)      do { (x); } while (0)
47 #else
48 #define NUMA(x)         (0)
49 #define DO_NUMA(x)      do { } while (0)
50 #endif
51
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  *
91  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92  * stable trees and multiple unstable trees: one of each for each NUMA node.
93  */
94
95 /**
96  * struct mm_slot - ksm information per mm that is being scanned
97  * @link: link to the mm_slots hash list
98  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100  * @mm: the mm that this information is valid for
101  */
102 struct mm_slot {
103         struct hlist_node link;
104         struct list_head mm_list;
105         struct rmap_item *rmap_list;
106         struct mm_struct *mm;
107 };
108
109 /**
110  * struct ksm_scan - cursor for scanning
111  * @mm_slot: the current mm_slot we are scanning
112  * @address: the next address inside that to be scanned
113  * @rmap_list: link to the next rmap to be scanned in the rmap_list
114  * @seqnr: count of completed full scans (needed when removing unstable node)
115  *
116  * There is only the one ksm_scan instance of this cursor structure.
117  */
118 struct ksm_scan {
119         struct mm_slot *mm_slot;
120         unsigned long address;
121         struct rmap_item **rmap_list;
122         unsigned long seqnr;
123 };
124
125 /**
126  * struct stable_node - node of the stable rbtree
127  * @node: rb node of this ksm page in the stable tree
128  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129  * @list: linked into migrate_nodes, pending placement in the proper node tree
130  * @hlist: hlist head of rmap_items using this ksm page
131  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133  */
134 struct stable_node {
135         union {
136                 struct rb_node node;    /* when node of stable tree */
137                 struct {                /* when listed for migration */
138                         struct list_head *head;
139                         struct list_head list;
140                 };
141         };
142         struct hlist_head hlist;
143         unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145         int nid;
146 #endif
147 };
148
149 /**
150  * struct rmap_item - reverse mapping item for virtual addresses
151  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153  * @nid: NUMA node id of unstable tree in which linked (may not match page)
154  * @mm: the memory structure this rmap_item is pointing into
155  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156  * @oldchecksum: previous checksum of the page at that virtual address
157  * @node: rb node of this rmap_item in the unstable tree
158  * @head: pointer to stable_node heading this list in the stable tree
159  * @hlist: link into hlist of rmap_items hanging off that stable_node
160  */
161 struct rmap_item {
162         struct rmap_item *rmap_list;
163         union {
164                 struct anon_vma *anon_vma;      /* when stable */
165 #ifdef CONFIG_NUMA
166                 int nid;                /* when node of unstable tree */
167 #endif
168         };
169         struct mm_struct *mm;
170         unsigned long address;          /* + low bits used for flags below */
171         unsigned int oldchecksum;       /* when unstable */
172         union {
173                 struct rb_node node;    /* when node of unstable tree */
174                 struct {                /* when listed from stable tree */
175                         struct stable_node *head;
176                         struct hlist_node hlist;
177                 };
178         };
179 };
180
181 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
183 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
184
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196
197 static struct mm_slot ksm_mm_head = {
198         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201         .mm_slot = &ksm_mm_head,
202 };
203
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes  1U
232 #define ksm_nr_node_ids         1
233 #endif
234
235 #define KSM_RUN_STOP    0
236 #define KSM_RUN_MERGE   1
237 #define KSM_RUN_UNMERGE 2
238 #define KSM_RUN_OFFLINE 4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
241
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
245
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247                 sizeof(struct __struct), __alignof__(struct __struct),\
248                 (__flags), NULL)
249
250 static int __init ksm_slab_init(void)
251 {
252         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253         if (!rmap_item_cache)
254                 goto out;
255
256         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257         if (!stable_node_cache)
258                 goto out_free1;
259
260         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261         if (!mm_slot_cache)
262                 goto out_free2;
263
264         return 0;
265
266 out_free2:
267         kmem_cache_destroy(stable_node_cache);
268 out_free1:
269         kmem_cache_destroy(rmap_item_cache);
270 out:
271         return -ENOMEM;
272 }
273
274 static void __init ksm_slab_free(void)
275 {
276         kmem_cache_destroy(mm_slot_cache);
277         kmem_cache_destroy(stable_node_cache);
278         kmem_cache_destroy(rmap_item_cache);
279         mm_slot_cache = NULL;
280 }
281
282 static inline struct rmap_item *alloc_rmap_item(void)
283 {
284         struct rmap_item *rmap_item;
285
286         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
287         if (rmap_item)
288                 ksm_rmap_items++;
289         return rmap_item;
290 }
291
292 static inline void free_rmap_item(struct rmap_item *rmap_item)
293 {
294         ksm_rmap_items--;
295         rmap_item->mm = NULL;   /* debug safety */
296         kmem_cache_free(rmap_item_cache, rmap_item);
297 }
298
299 static inline struct stable_node *alloc_stable_node(void)
300 {
301         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
302 }
303
304 static inline void free_stable_node(struct stable_node *stable_node)
305 {
306         kmem_cache_free(stable_node_cache, stable_node);
307 }
308
309 static inline struct mm_slot *alloc_mm_slot(void)
310 {
311         if (!mm_slot_cache)     /* initialization failed */
312                 return NULL;
313         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
314 }
315
316 static inline void free_mm_slot(struct mm_slot *mm_slot)
317 {
318         kmem_cache_free(mm_slot_cache, mm_slot);
319 }
320
321 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
322 {
323         struct mm_slot *slot;
324
325         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
326                 if (slot->mm == mm)
327                         return slot;
328
329         return NULL;
330 }
331
332 static void insert_to_mm_slots_hash(struct mm_struct *mm,
333                                     struct mm_slot *mm_slot)
334 {
335         mm_slot->mm = mm;
336         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
337 }
338
339 /*
340  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
341  * page tables after it has passed through ksm_exit() - which, if necessary,
342  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
343  * a special flag: they can just back out as soon as mm_users goes to zero.
344  * ksm_test_exit() is used throughout to make this test for exit: in some
345  * places for correctness, in some places just to avoid unnecessary work.
346  */
347 static inline bool ksm_test_exit(struct mm_struct *mm)
348 {
349         return atomic_read(&mm->mm_users) == 0;
350 }
351
352 /*
353  * We use break_ksm to break COW on a ksm page: it's a stripped down
354  *
355  *      if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
356  *              put_page(page);
357  *
358  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
359  * in case the application has unmapped and remapped mm,addr meanwhile.
360  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
361  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
362  */
363 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
364 {
365         struct page *page;
366         int ret = 0;
367
368         do {
369                 cond_resched();
370                 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
371                 if (IS_ERR_OR_NULL(page))
372                         break;
373                 if (PageKsm(page))
374                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
375                                                         FAULT_FLAG_WRITE);
376                 else
377                         ret = VM_FAULT_WRITE;
378                 put_page(page);
379         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
380         /*
381          * We must loop because handle_mm_fault() may back out if there's
382          * any difficulty e.g. if pte accessed bit gets updated concurrently.
383          *
384          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
385          * COW has been broken, even if the vma does not permit VM_WRITE;
386          * but note that a concurrent fault might break PageKsm for us.
387          *
388          * VM_FAULT_SIGBUS could occur if we race with truncation of the
389          * backing file, which also invalidates anonymous pages: that's
390          * okay, that truncation will have unmapped the PageKsm for us.
391          *
392          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
393          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
394          * current task has TIF_MEMDIE set, and will be OOM killed on return
395          * to user; and ksmd, having no mm, would never be chosen for that.
396          *
397          * But if the mm is in a limited mem_cgroup, then the fault may fail
398          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
399          * even ksmd can fail in this way - though it's usually breaking ksm
400          * just to undo a merge it made a moment before, so unlikely to oom.
401          *
402          * That's a pity: we might therefore have more kernel pages allocated
403          * than we're counting as nodes in the stable tree; but ksm_do_scan
404          * will retry to break_cow on each pass, so should recover the page
405          * in due course.  The important thing is to not let VM_MERGEABLE
406          * be cleared while any such pages might remain in the area.
407          */
408         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
409 }
410
411 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
412                 unsigned long addr)
413 {
414         struct vm_area_struct *vma;
415         if (ksm_test_exit(mm))
416                 return NULL;
417         vma = find_vma(mm, addr);
418         if (!vma || vma->vm_start > addr)
419                 return NULL;
420         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
421                 return NULL;
422         return vma;
423 }
424
425 static void break_cow(struct rmap_item *rmap_item)
426 {
427         struct mm_struct *mm = rmap_item->mm;
428         unsigned long addr = rmap_item->address;
429         struct vm_area_struct *vma;
430
431         /*
432          * It is not an accident that whenever we want to break COW
433          * to undo, we also need to drop a reference to the anon_vma.
434          */
435         put_anon_vma(rmap_item->anon_vma);
436
437         down_read(&mm->mmap_sem);
438         vma = find_mergeable_vma(mm, addr);
439         if (vma)
440                 break_ksm(vma, addr);
441         up_read(&mm->mmap_sem);
442 }
443
444 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
445 {
446         struct mm_struct *mm = rmap_item->mm;
447         unsigned long addr = rmap_item->address;
448         struct vm_area_struct *vma;
449         struct page *page;
450
451         down_read(&mm->mmap_sem);
452         vma = find_mergeable_vma(mm, addr);
453         if (!vma)
454                 goto out;
455
456         page = follow_page(vma, addr, FOLL_GET);
457         if (IS_ERR_OR_NULL(page))
458                 goto out;
459         if (PageAnon(page)) {
460                 flush_anon_page(vma, page, addr);
461                 flush_dcache_page(page);
462         } else {
463                 put_page(page);
464 out:
465                 page = NULL;
466         }
467         up_read(&mm->mmap_sem);
468         return page;
469 }
470
471 /*
472  * This helper is used for getting right index into array of tree roots.
473  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
474  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
475  * every node has its own stable and unstable tree.
476  */
477 static inline int get_kpfn_nid(unsigned long kpfn)
478 {
479         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
480 }
481
482 static void remove_node_from_stable_tree(struct stable_node *stable_node)
483 {
484         struct rmap_item *rmap_item;
485
486         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
487                 if (rmap_item->hlist.next)
488                         ksm_pages_sharing--;
489                 else
490                         ksm_pages_shared--;
491                 put_anon_vma(rmap_item->anon_vma);
492                 rmap_item->address &= PAGE_MASK;
493                 cond_resched();
494         }
495
496         if (stable_node->head == &migrate_nodes)
497                 list_del(&stable_node->list);
498         else
499                 rb_erase(&stable_node->node,
500                          root_stable_tree + NUMA(stable_node->nid));
501         free_stable_node(stable_node);
502 }
503
504 /*
505  * get_ksm_page: checks if the page indicated by the stable node
506  * is still its ksm page, despite having held no reference to it.
507  * In which case we can trust the content of the page, and it
508  * returns the gotten page; but if the page has now been zapped,
509  * remove the stale node from the stable tree and return NULL.
510  * But beware, the stable node's page might be being migrated.
511  *
512  * You would expect the stable_node to hold a reference to the ksm page.
513  * But if it increments the page's count, swapping out has to wait for
514  * ksmd to come around again before it can free the page, which may take
515  * seconds or even minutes: much too unresponsive.  So instead we use a
516  * "keyhole reference": access to the ksm page from the stable node peeps
517  * out through its keyhole to see if that page still holds the right key,
518  * pointing back to this stable node.  This relies on freeing a PageAnon
519  * page to reset its page->mapping to NULL, and relies on no other use of
520  * a page to put something that might look like our key in page->mapping.
521  * is on its way to being freed; but it is an anomaly to bear in mind.
522  */
523 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
524 {
525         struct page *page;
526         void *expected_mapping;
527         unsigned long kpfn;
528
529         expected_mapping = (void *)stable_node +
530                                 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
531 again:
532         kpfn = READ_ONCE(stable_node->kpfn);
533         page = pfn_to_page(kpfn);
534
535         /*
536          * page is computed from kpfn, so on most architectures reading
537          * page->mapping is naturally ordered after reading node->kpfn,
538          * but on Alpha we need to be more careful.
539          */
540         smp_read_barrier_depends();
541         if (READ_ONCE(page->mapping) != expected_mapping)
542                 goto stale;
543
544         /*
545          * We cannot do anything with the page while its refcount is 0.
546          * Usually 0 means free, or tail of a higher-order page: in which
547          * case this node is no longer referenced, and should be freed;
548          * however, it might mean that the page is under page_freeze_refs().
549          * The __remove_mapping() case is easy, again the node is now stale;
550          * but if page is swapcache in migrate_page_move_mapping(), it might
551          * still be our page, in which case it's essential to keep the node.
552          */
553         while (!get_page_unless_zero(page)) {
554                 /*
555                  * Another check for page->mapping != expected_mapping would
556                  * work here too.  We have chosen the !PageSwapCache test to
557                  * optimize the common case, when the page is or is about to
558                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
559                  * in the freeze_refs section of __remove_mapping(); but Anon
560                  * page->mapping reset to NULL later, in free_pages_prepare().
561                  */
562                 if (!PageSwapCache(page))
563                         goto stale;
564                 cpu_relax();
565         }
566
567         if (READ_ONCE(page->mapping) != expected_mapping) {
568                 put_page(page);
569                 goto stale;
570         }
571
572         if (lock_it) {
573                 lock_page(page);
574                 if (READ_ONCE(page->mapping) != expected_mapping) {
575                         unlock_page(page);
576                         put_page(page);
577                         goto stale;
578                 }
579         }
580         return page;
581
582 stale:
583         /*
584          * We come here from above when page->mapping or !PageSwapCache
585          * suggests that the node is stale; but it might be under migration.
586          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
587          * before checking whether node->kpfn has been changed.
588          */
589         smp_rmb();
590         if (READ_ONCE(stable_node->kpfn) != kpfn)
591                 goto again;
592         remove_node_from_stable_tree(stable_node);
593         return NULL;
594 }
595
596 /*
597  * Removing rmap_item from stable or unstable tree.
598  * This function will clean the information from the stable/unstable tree.
599  */
600 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
601 {
602         if (rmap_item->address & STABLE_FLAG) {
603                 struct stable_node *stable_node;
604                 struct page *page;
605
606                 stable_node = rmap_item->head;
607                 page = get_ksm_page(stable_node, true);
608                 if (!page)
609                         goto out;
610
611                 hlist_del(&rmap_item->hlist);
612                 unlock_page(page);
613                 put_page(page);
614
615                 if (!hlist_empty(&stable_node->hlist))
616                         ksm_pages_sharing--;
617                 else
618                         ksm_pages_shared--;
619
620                 put_anon_vma(rmap_item->anon_vma);
621                 rmap_item->address &= PAGE_MASK;
622
623         } else if (rmap_item->address & UNSTABLE_FLAG) {
624                 unsigned char age;
625                 /*
626                  * Usually ksmd can and must skip the rb_erase, because
627                  * root_unstable_tree was already reset to RB_ROOT.
628                  * But be careful when an mm is exiting: do the rb_erase
629                  * if this rmap_item was inserted by this scan, rather
630                  * than left over from before.
631                  */
632                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
633                 BUG_ON(age > 1);
634                 if (!age)
635                         rb_erase(&rmap_item->node,
636                                  root_unstable_tree + NUMA(rmap_item->nid));
637                 ksm_pages_unshared--;
638                 rmap_item->address &= PAGE_MASK;
639         }
640 out:
641         cond_resched();         /* we're called from many long loops */
642 }
643
644 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
645                                        struct rmap_item **rmap_list)
646 {
647         while (*rmap_list) {
648                 struct rmap_item *rmap_item = *rmap_list;
649                 *rmap_list = rmap_item->rmap_list;
650                 remove_rmap_item_from_tree(rmap_item);
651                 free_rmap_item(rmap_item);
652         }
653 }
654
655 /*
656  * Though it's very tempting to unmerge rmap_items from stable tree rather
657  * than check every pte of a given vma, the locking doesn't quite work for
658  * that - an rmap_item is assigned to the stable tree after inserting ksm
659  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
660  * rmap_items from parent to child at fork time (so as not to waste time
661  * if exit comes before the next scan reaches it).
662  *
663  * Similarly, although we'd like to remove rmap_items (so updating counts
664  * and freeing memory) when unmerging an area, it's easier to leave that
665  * to the next pass of ksmd - consider, for example, how ksmd might be
666  * in cmp_and_merge_page on one of the rmap_items we would be removing.
667  */
668 static int unmerge_ksm_pages(struct vm_area_struct *vma,
669                              unsigned long start, unsigned long end)
670 {
671         unsigned long addr;
672         int err = 0;
673
674         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
675                 if (ksm_test_exit(vma->vm_mm))
676                         break;
677                 if (signal_pending(current))
678                         err = -ERESTARTSYS;
679                 else
680                         err = break_ksm(vma, addr);
681         }
682         return err;
683 }
684
685 #ifdef CONFIG_SYSFS
686 /*
687  * Only called through the sysfs control interface:
688  */
689 static int remove_stable_node(struct stable_node *stable_node)
690 {
691         struct page *page;
692         int err;
693
694         page = get_ksm_page(stable_node, true);
695         if (!page) {
696                 /*
697                  * get_ksm_page did remove_node_from_stable_tree itself.
698                  */
699                 return 0;
700         }
701
702         if (WARN_ON_ONCE(page_mapped(page))) {
703                 /*
704                  * This should not happen: but if it does, just refuse to let
705                  * merge_across_nodes be switched - there is no need to panic.
706                  */
707                 err = -EBUSY;
708         } else {
709                 /*
710                  * The stable node did not yet appear stale to get_ksm_page(),
711                  * since that allows for an unmapped ksm page to be recognized
712                  * right up until it is freed; but the node is safe to remove.
713                  * This page might be in a pagevec waiting to be freed,
714                  * or it might be PageSwapCache (perhaps under writeback),
715                  * or it might have been removed from swapcache a moment ago.
716                  */
717                 set_page_stable_node(page, NULL);
718                 remove_node_from_stable_tree(stable_node);
719                 err = 0;
720         }
721
722         unlock_page(page);
723         put_page(page);
724         return err;
725 }
726
727 static int remove_all_stable_nodes(void)
728 {
729         struct stable_node *stable_node, *next;
730         int nid;
731         int err = 0;
732
733         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
734                 while (root_stable_tree[nid].rb_node) {
735                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
736                                                 struct stable_node, node);
737                         if (remove_stable_node(stable_node)) {
738                                 err = -EBUSY;
739                                 break;  /* proceed to next nid */
740                         }
741                         cond_resched();
742                 }
743         }
744         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
745                 if (remove_stable_node(stable_node))
746                         err = -EBUSY;
747                 cond_resched();
748         }
749         return err;
750 }
751
752 static int unmerge_and_remove_all_rmap_items(void)
753 {
754         struct mm_slot *mm_slot;
755         struct mm_struct *mm;
756         struct vm_area_struct *vma;
757         int err = 0;
758
759         spin_lock(&ksm_mmlist_lock);
760         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
761                                                 struct mm_slot, mm_list);
762         spin_unlock(&ksm_mmlist_lock);
763
764         for (mm_slot = ksm_scan.mm_slot;
765                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
766                 mm = mm_slot->mm;
767                 down_read(&mm->mmap_sem);
768                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
769                         if (ksm_test_exit(mm))
770                                 break;
771                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
772                                 continue;
773                         err = unmerge_ksm_pages(vma,
774                                                 vma->vm_start, vma->vm_end);
775                         if (err)
776                                 goto error;
777                 }
778
779                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
780
781                 spin_lock(&ksm_mmlist_lock);
782                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
783                                                 struct mm_slot, mm_list);
784                 if (ksm_test_exit(mm)) {
785                         hash_del(&mm_slot->link);
786                         list_del(&mm_slot->mm_list);
787                         spin_unlock(&ksm_mmlist_lock);
788
789                         free_mm_slot(mm_slot);
790                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
791                         up_read(&mm->mmap_sem);
792                         mmdrop(mm);
793                 } else {
794                         spin_unlock(&ksm_mmlist_lock);
795                         up_read(&mm->mmap_sem);
796                 }
797         }
798
799         /* Clean up stable nodes, but don't worry if some are still busy */
800         remove_all_stable_nodes();
801         ksm_scan.seqnr = 0;
802         return 0;
803
804 error:
805         up_read(&mm->mmap_sem);
806         spin_lock(&ksm_mmlist_lock);
807         ksm_scan.mm_slot = &ksm_mm_head;
808         spin_unlock(&ksm_mmlist_lock);
809         return err;
810 }
811 #endif /* CONFIG_SYSFS */
812
813 static u32 calc_checksum(struct page *page)
814 {
815         u32 checksum;
816         void *addr = kmap_atomic(page);
817         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
818         kunmap_atomic(addr);
819         return checksum;
820 }
821
822 static int memcmp_pages(struct page *page1, struct page *page2)
823 {
824         char *addr1, *addr2;
825         int ret;
826
827         addr1 = kmap_atomic(page1);
828         addr2 = kmap_atomic(page2);
829         ret = memcmp(addr1, addr2, PAGE_SIZE);
830         kunmap_atomic(addr2);
831         kunmap_atomic(addr1);
832         return ret;
833 }
834
835 static inline int pages_identical(struct page *page1, struct page *page2)
836 {
837         return !memcmp_pages(page1, page2);
838 }
839
840 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
841                               pte_t *orig_pte)
842 {
843         struct mm_struct *mm = vma->vm_mm;
844         unsigned long addr;
845         pte_t *ptep;
846         spinlock_t *ptl;
847         int swapped;
848         int err = -EFAULT;
849         unsigned long mmun_start;       /* For mmu_notifiers */
850         unsigned long mmun_end;         /* For mmu_notifiers */
851
852         addr = page_address_in_vma(page, vma);
853         if (addr == -EFAULT)
854                 goto out;
855
856         BUG_ON(PageTransCompound(page));
857
858         mmun_start = addr;
859         mmun_end   = addr + PAGE_SIZE;
860         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
861
862         ptep = page_check_address(page, mm, addr, &ptl, 0);
863         if (!ptep)
864                 goto out_mn;
865
866         if (pte_write(*ptep) || pte_dirty(*ptep)) {
867                 pte_t entry;
868
869                 swapped = PageSwapCache(page);
870                 flush_cache_page(vma, addr, page_to_pfn(page));
871                 /*
872                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
873                  * take any lock, therefore the check that we are going to make
874                  * with the pagecount against the mapcount is racey and
875                  * O_DIRECT can happen right after the check.
876                  * So we clear the pte and flush the tlb before the check
877                  * this assure us that no O_DIRECT can happen after the check
878                  * or in the middle of the check.
879                  */
880                 entry = ptep_clear_flush_notify(vma, addr, ptep);
881                 /*
882                  * Check that no O_DIRECT or similar I/O is in progress on the
883                  * page
884                  */
885                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
886                         set_pte_at(mm, addr, ptep, entry);
887                         goto out_unlock;
888                 }
889                 if (pte_dirty(entry))
890                         set_page_dirty(page);
891                 entry = pte_mkclean(pte_wrprotect(entry));
892                 set_pte_at_notify(mm, addr, ptep, entry);
893         }
894         *orig_pte = *ptep;
895         err = 0;
896
897 out_unlock:
898         pte_unmap_unlock(ptep, ptl);
899 out_mn:
900         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
901 out:
902         return err;
903 }
904
905 /**
906  * replace_page - replace page in vma by new ksm page
907  * @vma:      vma that holds the pte pointing to page
908  * @page:     the page we are replacing by kpage
909  * @kpage:    the ksm page we replace page by
910  * @orig_pte: the original value of the pte
911  *
912  * Returns 0 on success, -EFAULT on failure.
913  */
914 static int replace_page(struct vm_area_struct *vma, struct page *page,
915                         struct page *kpage, pte_t orig_pte)
916 {
917         struct mm_struct *mm = vma->vm_mm;
918         pmd_t *pmd;
919         pte_t *ptep;
920         spinlock_t *ptl;
921         unsigned long addr;
922         int err = -EFAULT;
923         unsigned long mmun_start;       /* For mmu_notifiers */
924         unsigned long mmun_end;         /* For mmu_notifiers */
925
926         addr = page_address_in_vma(page, vma);
927         if (addr == -EFAULT)
928                 goto out;
929
930         pmd = mm_find_pmd(mm, addr);
931         if (!pmd)
932                 goto out;
933
934         mmun_start = addr;
935         mmun_end   = addr + PAGE_SIZE;
936         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
937
938         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
939         if (!pte_same(*ptep, orig_pte)) {
940                 pte_unmap_unlock(ptep, ptl);
941                 goto out_mn;
942         }
943
944         get_page(kpage);
945         page_add_anon_rmap(kpage, vma, addr, false);
946
947         flush_cache_page(vma, addr, pte_pfn(*ptep));
948         ptep_clear_flush_notify(vma, addr, ptep);
949         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
950
951         page_remove_rmap(page, false);
952         if (!page_mapped(page))
953                 try_to_free_swap(page);
954         put_page(page);
955
956         pte_unmap_unlock(ptep, ptl);
957         err = 0;
958 out_mn:
959         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
960 out:
961         return err;
962 }
963
964 /*
965  * try_to_merge_one_page - take two pages and merge them into one
966  * @vma: the vma that holds the pte pointing to page
967  * @page: the PageAnon page that we want to replace with kpage
968  * @kpage: the PageKsm page that we want to map instead of page,
969  *         or NULL the first time when we want to use page as kpage.
970  *
971  * This function returns 0 if the pages were merged, -EFAULT otherwise.
972  */
973 static int try_to_merge_one_page(struct vm_area_struct *vma,
974                                  struct page *page, struct page *kpage)
975 {
976         pte_t orig_pte = __pte(0);
977         int err = -EFAULT;
978
979         if (page == kpage)                      /* ksm page forked */
980                 return 0;
981
982         if (!PageAnon(page))
983                 goto out;
984
985         /*
986          * We need the page lock to read a stable PageSwapCache in
987          * write_protect_page().  We use trylock_page() instead of
988          * lock_page() because we don't want to wait here - we
989          * prefer to continue scanning and merging different pages,
990          * then come back to this page when it is unlocked.
991          */
992         if (!trylock_page(page))
993                 goto out;
994
995         if (PageTransCompound(page)) {
996                 err = split_huge_page(page);
997                 if (err)
998                         goto out_unlock;
999         }
1000
1001         /*
1002          * If this anonymous page is mapped only here, its pte may need
1003          * to be write-protected.  If it's mapped elsewhere, all of its
1004          * ptes are necessarily already write-protected.  But in either
1005          * case, we need to lock and check page_count is not raised.
1006          */
1007         if (write_protect_page(vma, page, &orig_pte) == 0) {
1008                 if (!kpage) {
1009                         /*
1010                          * While we hold page lock, upgrade page from
1011                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1012                          * stable_tree_insert() will update stable_node.
1013                          */
1014                         set_page_stable_node(page, NULL);
1015                         mark_page_accessed(page);
1016                         /*
1017                          * Page reclaim just frees a clean page with no dirty
1018                          * ptes: make sure that the ksm page would be swapped.
1019                          */
1020                         if (!PageDirty(page))
1021                                 SetPageDirty(page);
1022                         err = 0;
1023                 } else if (pages_identical(page, kpage))
1024                         err = replace_page(vma, page, kpage, orig_pte);
1025         }
1026
1027         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1028                 munlock_vma_page(page);
1029                 if (!PageMlocked(kpage)) {
1030                         unlock_page(page);
1031                         lock_page(kpage);
1032                         mlock_vma_page(kpage);
1033                         page = kpage;           /* for final unlock */
1034                 }
1035         }
1036
1037 out_unlock:
1038         unlock_page(page);
1039 out:
1040         return err;
1041 }
1042
1043 /*
1044  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1045  * but no new kernel page is allocated: kpage must already be a ksm page.
1046  *
1047  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1048  */
1049 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1050                                       struct page *page, struct page *kpage)
1051 {
1052         struct mm_struct *mm = rmap_item->mm;
1053         struct vm_area_struct *vma;
1054         int err = -EFAULT;
1055
1056         down_read(&mm->mmap_sem);
1057         vma = find_mergeable_vma(mm, rmap_item->address);
1058         if (!vma)
1059                 goto out;
1060
1061         err = try_to_merge_one_page(vma, page, kpage);
1062         if (err)
1063                 goto out;
1064
1065         /* Unstable nid is in union with stable anon_vma: remove first */
1066         remove_rmap_item_from_tree(rmap_item);
1067
1068         /* Must get reference to anon_vma while still holding mmap_sem */
1069         rmap_item->anon_vma = vma->anon_vma;
1070         get_anon_vma(vma->anon_vma);
1071 out:
1072         up_read(&mm->mmap_sem);
1073         return err;
1074 }
1075
1076 /*
1077  * try_to_merge_two_pages - take two identical pages and prepare them
1078  * to be merged into one page.
1079  *
1080  * This function returns the kpage if we successfully merged two identical
1081  * pages into one ksm page, NULL otherwise.
1082  *
1083  * Note that this function upgrades page to ksm page: if one of the pages
1084  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1085  */
1086 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1087                                            struct page *page,
1088                                            struct rmap_item *tree_rmap_item,
1089                                            struct page *tree_page)
1090 {
1091         int err;
1092
1093         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1094         if (!err) {
1095                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1096                                                         tree_page, page);
1097                 /*
1098                  * If that fails, we have a ksm page with only one pte
1099                  * pointing to it: so break it.
1100                  */
1101                 if (err)
1102                         break_cow(rmap_item);
1103         }
1104         return err ? NULL : page;
1105 }
1106
1107 /*
1108  * stable_tree_search - search for page inside the stable tree
1109  *
1110  * This function checks if there is a page inside the stable tree
1111  * with identical content to the page that we are scanning right now.
1112  *
1113  * This function returns the stable tree node of identical content if found,
1114  * NULL otherwise.
1115  */
1116 static struct page *stable_tree_search(struct page *page)
1117 {
1118         int nid;
1119         struct rb_root *root;
1120         struct rb_node **new;
1121         struct rb_node *parent;
1122         struct stable_node *stable_node;
1123         struct stable_node *page_node;
1124
1125         page_node = page_stable_node(page);
1126         if (page_node && page_node->head != &migrate_nodes) {
1127                 /* ksm page forked */
1128                 get_page(page);
1129                 return page;
1130         }
1131
1132         nid = get_kpfn_nid(page_to_pfn(page));
1133         root = root_stable_tree + nid;
1134 again:
1135         new = &root->rb_node;
1136         parent = NULL;
1137
1138         while (*new) {
1139                 struct page *tree_page;
1140                 int ret;
1141
1142                 cond_resched();
1143                 stable_node = rb_entry(*new, struct stable_node, node);
1144                 tree_page = get_ksm_page(stable_node, false);
1145                 if (!tree_page) {
1146                         /*
1147                          * If we walked over a stale stable_node,
1148                          * get_ksm_page() will call rb_erase() and it
1149                          * may rebalance the tree from under us. So
1150                          * restart the search from scratch. Returning
1151                          * NULL would be safe too, but we'd generate
1152                          * false negative insertions just because some
1153                          * stable_node was stale.
1154                          */
1155                         goto again;
1156                 }
1157
1158                 ret = memcmp_pages(page, tree_page);
1159                 put_page(tree_page);
1160
1161                 parent = *new;
1162                 if (ret < 0)
1163                         new = &parent->rb_left;
1164                 else if (ret > 0)
1165                         new = &parent->rb_right;
1166                 else {
1167                         /*
1168                          * Lock and unlock the stable_node's page (which
1169                          * might already have been migrated) so that page
1170                          * migration is sure to notice its raised count.
1171                          * It would be more elegant to return stable_node
1172                          * than kpage, but that involves more changes.
1173                          */
1174                         tree_page = get_ksm_page(stable_node, true);
1175                         if (tree_page) {
1176                                 unlock_page(tree_page);
1177                                 if (get_kpfn_nid(stable_node->kpfn) !=
1178                                                 NUMA(stable_node->nid)) {
1179                                         put_page(tree_page);
1180                                         goto replace;
1181                                 }
1182                                 return tree_page;
1183                         }
1184                         /*
1185                          * There is now a place for page_node, but the tree may
1186                          * have been rebalanced, so re-evaluate parent and new.
1187                          */
1188                         if (page_node)
1189                                 goto again;
1190                         return NULL;
1191                 }
1192         }
1193
1194         if (!page_node)
1195                 return NULL;
1196
1197         list_del(&page_node->list);
1198         DO_NUMA(page_node->nid = nid);
1199         rb_link_node(&page_node->node, parent, new);
1200         rb_insert_color(&page_node->node, root);
1201         get_page(page);
1202         return page;
1203
1204 replace:
1205         if (page_node) {
1206                 list_del(&page_node->list);
1207                 DO_NUMA(page_node->nid = nid);
1208                 rb_replace_node(&stable_node->node, &page_node->node, root);
1209                 get_page(page);
1210         } else {
1211                 rb_erase(&stable_node->node, root);
1212                 page = NULL;
1213         }
1214         stable_node->head = &migrate_nodes;
1215         list_add(&stable_node->list, stable_node->head);
1216         return page;
1217 }
1218
1219 /*
1220  * stable_tree_insert - insert stable tree node pointing to new ksm page
1221  * into the stable tree.
1222  *
1223  * This function returns the stable tree node just allocated on success,
1224  * NULL otherwise.
1225  */
1226 static struct stable_node *stable_tree_insert(struct page *kpage)
1227 {
1228         int nid;
1229         unsigned long kpfn;
1230         struct rb_root *root;
1231         struct rb_node **new;
1232         struct rb_node *parent;
1233         struct stable_node *stable_node;
1234
1235         kpfn = page_to_pfn(kpage);
1236         nid = get_kpfn_nid(kpfn);
1237         root = root_stable_tree + nid;
1238 again:
1239         parent = NULL;
1240         new = &root->rb_node;
1241
1242         while (*new) {
1243                 struct page *tree_page;
1244                 int ret;
1245
1246                 cond_resched();
1247                 stable_node = rb_entry(*new, struct stable_node, node);
1248                 tree_page = get_ksm_page(stable_node, false);
1249                 if (!tree_page) {
1250                         /*
1251                          * If we walked over a stale stable_node,
1252                          * get_ksm_page() will call rb_erase() and it
1253                          * may rebalance the tree from under us. So
1254                          * restart the search from scratch. Returning
1255                          * NULL would be safe too, but we'd generate
1256                          * false negative insertions just because some
1257                          * stable_node was stale.
1258                          */
1259                         goto again;
1260                 }
1261
1262                 ret = memcmp_pages(kpage, tree_page);
1263                 put_page(tree_page);
1264
1265                 parent = *new;
1266                 if (ret < 0)
1267                         new = &parent->rb_left;
1268                 else if (ret > 0)
1269                         new = &parent->rb_right;
1270                 else {
1271                         /*
1272                          * It is not a bug that stable_tree_search() didn't
1273                          * find this node: because at that time our page was
1274                          * not yet write-protected, so may have changed since.
1275                          */
1276                         return NULL;
1277                 }
1278         }
1279
1280         stable_node = alloc_stable_node();
1281         if (!stable_node)
1282                 return NULL;
1283
1284         INIT_HLIST_HEAD(&stable_node->hlist);
1285         stable_node->kpfn = kpfn;
1286         set_page_stable_node(kpage, stable_node);
1287         DO_NUMA(stable_node->nid = nid);
1288         rb_link_node(&stable_node->node, parent, new);
1289         rb_insert_color(&stable_node->node, root);
1290
1291         return stable_node;
1292 }
1293
1294 /*
1295  * unstable_tree_search_insert - search for identical page,
1296  * else insert rmap_item into the unstable tree.
1297  *
1298  * This function searches for a page in the unstable tree identical to the
1299  * page currently being scanned; and if no identical page is found in the
1300  * tree, we insert rmap_item as a new object into the unstable tree.
1301  *
1302  * This function returns pointer to rmap_item found to be identical
1303  * to the currently scanned page, NULL otherwise.
1304  *
1305  * This function does both searching and inserting, because they share
1306  * the same walking algorithm in an rbtree.
1307  */
1308 static
1309 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1310                                               struct page *page,
1311                                               struct page **tree_pagep)
1312 {
1313         struct rb_node **new;
1314         struct rb_root *root;
1315         struct rb_node *parent = NULL;
1316         int nid;
1317
1318         nid = get_kpfn_nid(page_to_pfn(page));
1319         root = root_unstable_tree + nid;
1320         new = &root->rb_node;
1321
1322         while (*new) {
1323                 struct rmap_item *tree_rmap_item;
1324                 struct page *tree_page;
1325                 int ret;
1326
1327                 cond_resched();
1328                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1329                 tree_page = get_mergeable_page(tree_rmap_item);
1330                 if (!tree_page)
1331                         return NULL;
1332
1333                 /*
1334                  * Don't substitute a ksm page for a forked page.
1335                  */
1336                 if (page == tree_page) {
1337                         put_page(tree_page);
1338                         return NULL;
1339                 }
1340
1341                 ret = memcmp_pages(page, tree_page);
1342
1343                 parent = *new;
1344                 if (ret < 0) {
1345                         put_page(tree_page);
1346                         new = &parent->rb_left;
1347                 } else if (ret > 0) {
1348                         put_page(tree_page);
1349                         new = &parent->rb_right;
1350                 } else if (!ksm_merge_across_nodes &&
1351                            page_to_nid(tree_page) != nid) {
1352                         /*
1353                          * If tree_page has been migrated to another NUMA node,
1354                          * it will be flushed out and put in the right unstable
1355                          * tree next time: only merge with it when across_nodes.
1356                          */
1357                         put_page(tree_page);
1358                         return NULL;
1359                 } else {
1360                         *tree_pagep = tree_page;
1361                         return tree_rmap_item;
1362                 }
1363         }
1364
1365         rmap_item->address |= UNSTABLE_FLAG;
1366         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1367         DO_NUMA(rmap_item->nid = nid);
1368         rb_link_node(&rmap_item->node, parent, new);
1369         rb_insert_color(&rmap_item->node, root);
1370
1371         ksm_pages_unshared++;
1372         return NULL;
1373 }
1374
1375 /*
1376  * stable_tree_append - add another rmap_item to the linked list of
1377  * rmap_items hanging off a given node of the stable tree, all sharing
1378  * the same ksm page.
1379  */
1380 static void stable_tree_append(struct rmap_item *rmap_item,
1381                                struct stable_node *stable_node)
1382 {
1383         rmap_item->head = stable_node;
1384         rmap_item->address |= STABLE_FLAG;
1385         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1386
1387         if (rmap_item->hlist.next)
1388                 ksm_pages_sharing++;
1389         else
1390                 ksm_pages_shared++;
1391 }
1392
1393 /*
1394  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1395  * if not, compare checksum to previous and if it's the same, see if page can
1396  * be inserted into the unstable tree, or merged with a page already there and
1397  * both transferred to the stable tree.
1398  *
1399  * @page: the page that we are searching identical page to.
1400  * @rmap_item: the reverse mapping into the virtual address of this page
1401  */
1402 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1403 {
1404         struct rmap_item *tree_rmap_item;
1405         struct page *tree_page = NULL;
1406         struct stable_node *stable_node;
1407         struct page *kpage;
1408         unsigned int checksum;
1409         int err;
1410
1411         stable_node = page_stable_node(page);
1412         if (stable_node) {
1413                 if (stable_node->head != &migrate_nodes &&
1414                     get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1415                         rb_erase(&stable_node->node,
1416                                  root_stable_tree + NUMA(stable_node->nid));
1417                         stable_node->head = &migrate_nodes;
1418                         list_add(&stable_node->list, stable_node->head);
1419                 }
1420                 if (stable_node->head != &migrate_nodes &&
1421                     rmap_item->head == stable_node)
1422                         return;
1423         }
1424
1425         /* We first start with searching the page inside the stable tree */
1426         kpage = stable_tree_search(page);
1427         if (kpage == page && rmap_item->head == stable_node) {
1428                 put_page(kpage);
1429                 return;
1430         }
1431
1432         remove_rmap_item_from_tree(rmap_item);
1433
1434         if (kpage) {
1435                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1436                 if (!err) {
1437                         /*
1438                          * The page was successfully merged:
1439                          * add its rmap_item to the stable tree.
1440                          */
1441                         lock_page(kpage);
1442                         stable_tree_append(rmap_item, page_stable_node(kpage));
1443                         unlock_page(kpage);
1444                 }
1445                 put_page(kpage);
1446                 return;
1447         }
1448
1449         /*
1450          * If the hash value of the page has changed from the last time
1451          * we calculated it, this page is changing frequently: therefore we
1452          * don't want to insert it in the unstable tree, and we don't want
1453          * to waste our time searching for something identical to it there.
1454          */
1455         checksum = calc_checksum(page);
1456         if (rmap_item->oldchecksum != checksum) {
1457                 rmap_item->oldchecksum = checksum;
1458                 return;
1459         }
1460
1461         tree_rmap_item =
1462                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1463         if (tree_rmap_item) {
1464                 kpage = try_to_merge_two_pages(rmap_item, page,
1465                                                 tree_rmap_item, tree_page);
1466                 put_page(tree_page);
1467                 if (kpage) {
1468                         /*
1469                          * The pages were successfully merged: insert new
1470                          * node in the stable tree and add both rmap_items.
1471                          */
1472                         lock_page(kpage);
1473                         stable_node = stable_tree_insert(kpage);
1474                         if (stable_node) {
1475                                 stable_tree_append(tree_rmap_item, stable_node);
1476                                 stable_tree_append(rmap_item, stable_node);
1477                         }
1478                         unlock_page(kpage);
1479
1480                         /*
1481                          * If we fail to insert the page into the stable tree,
1482                          * we will have 2 virtual addresses that are pointing
1483                          * to a ksm page left outside the stable tree,
1484                          * in which case we need to break_cow on both.
1485                          */
1486                         if (!stable_node) {
1487                                 break_cow(tree_rmap_item);
1488                                 break_cow(rmap_item);
1489                         }
1490                 }
1491         }
1492 }
1493
1494 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1495                                             struct rmap_item **rmap_list,
1496                                             unsigned long addr)
1497 {
1498         struct rmap_item *rmap_item;
1499
1500         while (*rmap_list) {
1501                 rmap_item = *rmap_list;
1502                 if ((rmap_item->address & PAGE_MASK) == addr)
1503                         return rmap_item;
1504                 if (rmap_item->address > addr)
1505                         break;
1506                 *rmap_list = rmap_item->rmap_list;
1507                 remove_rmap_item_from_tree(rmap_item);
1508                 free_rmap_item(rmap_item);
1509         }
1510
1511         rmap_item = alloc_rmap_item();
1512         if (rmap_item) {
1513                 /* It has already been zeroed */
1514                 rmap_item->mm = mm_slot->mm;
1515                 rmap_item->address = addr;
1516                 rmap_item->rmap_list = *rmap_list;
1517                 *rmap_list = rmap_item;
1518         }
1519         return rmap_item;
1520 }
1521
1522 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1523 {
1524         struct mm_struct *mm;
1525         struct mm_slot *slot;
1526         struct vm_area_struct *vma;
1527         struct rmap_item *rmap_item;
1528         int nid;
1529
1530         if (list_empty(&ksm_mm_head.mm_list))
1531                 return NULL;
1532
1533         slot = ksm_scan.mm_slot;
1534         if (slot == &ksm_mm_head) {
1535                 /*
1536                  * A number of pages can hang around indefinitely on per-cpu
1537                  * pagevecs, raised page count preventing write_protect_page
1538                  * from merging them.  Though it doesn't really matter much,
1539                  * it is puzzling to see some stuck in pages_volatile until
1540                  * other activity jostles them out, and they also prevented
1541                  * LTP's KSM test from succeeding deterministically; so drain
1542                  * them here (here rather than on entry to ksm_do_scan(),
1543                  * so we don't IPI too often when pages_to_scan is set low).
1544                  */
1545                 lru_add_drain_all();
1546
1547                 /*
1548                  * Whereas stale stable_nodes on the stable_tree itself
1549                  * get pruned in the regular course of stable_tree_search(),
1550                  * those moved out to the migrate_nodes list can accumulate:
1551                  * so prune them once before each full scan.
1552                  */
1553                 if (!ksm_merge_across_nodes) {
1554                         struct stable_node *stable_node, *next;
1555                         struct page *page;
1556
1557                         list_for_each_entry_safe(stable_node, next,
1558                                                  &migrate_nodes, list) {
1559                                 page = get_ksm_page(stable_node, false);
1560                                 if (page)
1561                                         put_page(page);
1562                                 cond_resched();
1563                         }
1564                 }
1565
1566                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1567                         root_unstable_tree[nid] = RB_ROOT;
1568
1569                 spin_lock(&ksm_mmlist_lock);
1570                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1571                 ksm_scan.mm_slot = slot;
1572                 spin_unlock(&ksm_mmlist_lock);
1573                 /*
1574                  * Although we tested list_empty() above, a racing __ksm_exit
1575                  * of the last mm on the list may have removed it since then.
1576                  */
1577                 if (slot == &ksm_mm_head)
1578                         return NULL;
1579 next_mm:
1580                 ksm_scan.address = 0;
1581                 ksm_scan.rmap_list = &slot->rmap_list;
1582         }
1583
1584         mm = slot->mm;
1585         down_read(&mm->mmap_sem);
1586         if (ksm_test_exit(mm))
1587                 vma = NULL;
1588         else
1589                 vma = find_vma(mm, ksm_scan.address);
1590
1591         for (; vma; vma = vma->vm_next) {
1592                 if (!(vma->vm_flags & VM_MERGEABLE))
1593                         continue;
1594                 if (ksm_scan.address < vma->vm_start)
1595                         ksm_scan.address = vma->vm_start;
1596                 if (!vma->anon_vma)
1597                         ksm_scan.address = vma->vm_end;
1598
1599                 while (ksm_scan.address < vma->vm_end) {
1600                         if (ksm_test_exit(mm))
1601                                 break;
1602                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1603                         if (IS_ERR_OR_NULL(*page)) {
1604                                 ksm_scan.address += PAGE_SIZE;
1605                                 cond_resched();
1606                                 continue;
1607                         }
1608                         if (PageAnon(*page)) {
1609                                 flush_anon_page(vma, *page, ksm_scan.address);
1610                                 flush_dcache_page(*page);
1611                                 rmap_item = get_next_rmap_item(slot,
1612                                         ksm_scan.rmap_list, ksm_scan.address);
1613                                 if (rmap_item) {
1614                                         ksm_scan.rmap_list =
1615                                                         &rmap_item->rmap_list;
1616                                         ksm_scan.address += PAGE_SIZE;
1617                                 } else
1618                                         put_page(*page);
1619                                 up_read(&mm->mmap_sem);
1620                                 return rmap_item;
1621                         }
1622                         put_page(*page);
1623                         ksm_scan.address += PAGE_SIZE;
1624                         cond_resched();
1625                 }
1626         }
1627
1628         if (ksm_test_exit(mm)) {
1629                 ksm_scan.address = 0;
1630                 ksm_scan.rmap_list = &slot->rmap_list;
1631         }
1632         /*
1633          * Nuke all the rmap_items that are above this current rmap:
1634          * because there were no VM_MERGEABLE vmas with such addresses.
1635          */
1636         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1637
1638         spin_lock(&ksm_mmlist_lock);
1639         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1640                                                 struct mm_slot, mm_list);
1641         if (ksm_scan.address == 0) {
1642                 /*
1643                  * We've completed a full scan of all vmas, holding mmap_sem
1644                  * throughout, and found no VM_MERGEABLE: so do the same as
1645                  * __ksm_exit does to remove this mm from all our lists now.
1646                  * This applies either when cleaning up after __ksm_exit
1647                  * (but beware: we can reach here even before __ksm_exit),
1648                  * or when all VM_MERGEABLE areas have been unmapped (and
1649                  * mmap_sem then protects against race with MADV_MERGEABLE).
1650                  */
1651                 hash_del(&slot->link);
1652                 list_del(&slot->mm_list);
1653                 spin_unlock(&ksm_mmlist_lock);
1654
1655                 free_mm_slot(slot);
1656                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1657                 up_read(&mm->mmap_sem);
1658                 mmdrop(mm);
1659         } else {
1660                 spin_unlock(&ksm_mmlist_lock);
1661                 up_read(&mm->mmap_sem);
1662         }
1663
1664         /* Repeat until we've completed scanning the whole list */
1665         slot = ksm_scan.mm_slot;
1666         if (slot != &ksm_mm_head)
1667                 goto next_mm;
1668
1669         ksm_scan.seqnr++;
1670         return NULL;
1671 }
1672
1673 /**
1674  * ksm_do_scan  - the ksm scanner main worker function.
1675  * @scan_npages - number of pages we want to scan before we return.
1676  */
1677 static void ksm_do_scan(unsigned int scan_npages)
1678 {
1679         struct rmap_item *rmap_item;
1680         struct page *uninitialized_var(page);
1681
1682         while (scan_npages-- && likely(!freezing(current))) {
1683                 cond_resched();
1684                 rmap_item = scan_get_next_rmap_item(&page);
1685                 if (!rmap_item)
1686                         return;
1687                 cmp_and_merge_page(page, rmap_item);
1688                 put_page(page);
1689         }
1690 }
1691
1692 static int ksmd_should_run(void)
1693 {
1694         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1695 }
1696
1697 static int ksm_scan_thread(void *nothing)
1698 {
1699         set_freezable();
1700         set_user_nice(current, 5);
1701
1702         while (!kthread_should_stop()) {
1703                 mutex_lock(&ksm_thread_mutex);
1704                 wait_while_offlining();
1705                 if (ksmd_should_run())
1706                         ksm_do_scan(ksm_thread_pages_to_scan);
1707                 mutex_unlock(&ksm_thread_mutex);
1708
1709                 try_to_freeze();
1710
1711                 if (ksmd_should_run()) {
1712                         schedule_timeout_interruptible(
1713                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1714                 } else {
1715                         wait_event_freezable(ksm_thread_wait,
1716                                 ksmd_should_run() || kthread_should_stop());
1717                 }
1718         }
1719         return 0;
1720 }
1721
1722 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1723                 unsigned long end, int advice, unsigned long *vm_flags)
1724 {
1725         struct mm_struct *mm = vma->vm_mm;
1726         int err;
1727
1728         switch (advice) {
1729         case MADV_MERGEABLE:
1730                 /*
1731                  * Be somewhat over-protective for now!
1732                  */
1733                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1734                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1735                                  VM_HUGETLB | VM_MIXEDMAP))
1736                         return 0;               /* just ignore the advice */
1737
1738 #ifdef VM_SAO
1739                 if (*vm_flags & VM_SAO)
1740                         return 0;
1741 #endif
1742
1743                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1744                         err = __ksm_enter(mm);
1745                         if (err)
1746                                 return err;
1747                 }
1748
1749                 *vm_flags |= VM_MERGEABLE;
1750                 break;
1751
1752         case MADV_UNMERGEABLE:
1753                 if (!(*vm_flags & VM_MERGEABLE))
1754                         return 0;               /* just ignore the advice */
1755
1756                 if (vma->anon_vma) {
1757                         err = unmerge_ksm_pages(vma, start, end);
1758                         if (err)
1759                                 return err;
1760                 }
1761
1762                 *vm_flags &= ~VM_MERGEABLE;
1763                 break;
1764         }
1765
1766         return 0;
1767 }
1768
1769 int __ksm_enter(struct mm_struct *mm)
1770 {
1771         struct mm_slot *mm_slot;
1772         int needs_wakeup;
1773
1774         mm_slot = alloc_mm_slot();
1775         if (!mm_slot)
1776                 return -ENOMEM;
1777
1778         /* Check ksm_run too?  Would need tighter locking */
1779         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1780
1781         spin_lock(&ksm_mmlist_lock);
1782         insert_to_mm_slots_hash(mm, mm_slot);
1783         /*
1784          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1785          * insert just behind the scanning cursor, to let the area settle
1786          * down a little; when fork is followed by immediate exec, we don't
1787          * want ksmd to waste time setting up and tearing down an rmap_list.
1788          *
1789          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1790          * scanning cursor, otherwise KSM pages in newly forked mms will be
1791          * missed: then we might as well insert at the end of the list.
1792          */
1793         if (ksm_run & KSM_RUN_UNMERGE)
1794                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1795         else
1796                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1797         spin_unlock(&ksm_mmlist_lock);
1798
1799         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1800         atomic_inc(&mm->mm_count);
1801
1802         if (needs_wakeup)
1803                 wake_up_interruptible(&ksm_thread_wait);
1804
1805         return 0;
1806 }
1807
1808 void __ksm_exit(struct mm_struct *mm)
1809 {
1810         struct mm_slot *mm_slot;
1811         int easy_to_free = 0;
1812
1813         /*
1814          * This process is exiting: if it's straightforward (as is the
1815          * case when ksmd was never running), free mm_slot immediately.
1816          * But if it's at the cursor or has rmap_items linked to it, use
1817          * mmap_sem to synchronize with any break_cows before pagetables
1818          * are freed, and leave the mm_slot on the list for ksmd to free.
1819          * Beware: ksm may already have noticed it exiting and freed the slot.
1820          */
1821
1822         spin_lock(&ksm_mmlist_lock);
1823         mm_slot = get_mm_slot(mm);
1824         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1825                 if (!mm_slot->rmap_list) {
1826                         hash_del(&mm_slot->link);
1827                         list_del(&mm_slot->mm_list);
1828                         easy_to_free = 1;
1829                 } else {
1830                         list_move(&mm_slot->mm_list,
1831                                   &ksm_scan.mm_slot->mm_list);
1832                 }
1833         }
1834         spin_unlock(&ksm_mmlist_lock);
1835
1836         if (easy_to_free) {
1837                 free_mm_slot(mm_slot);
1838                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1839                 mmdrop(mm);
1840         } else if (mm_slot) {
1841                 down_write(&mm->mmap_sem);
1842                 up_write(&mm->mmap_sem);
1843         }
1844 }
1845
1846 struct page *ksm_might_need_to_copy(struct page *page,
1847                         struct vm_area_struct *vma, unsigned long address)
1848 {
1849         struct anon_vma *anon_vma = page_anon_vma(page);
1850         struct page *new_page;
1851
1852         if (PageKsm(page)) {
1853                 if (page_stable_node(page) &&
1854                     !(ksm_run & KSM_RUN_UNMERGE))
1855                         return page;    /* no need to copy it */
1856         } else if (!anon_vma) {
1857                 return page;            /* no need to copy it */
1858         } else if (anon_vma->root == vma->anon_vma->root &&
1859                  page->index == linear_page_index(vma, address)) {
1860                 return page;            /* still no need to copy it */
1861         }
1862         if (!PageUptodate(page))
1863                 return page;            /* let do_swap_page report the error */
1864
1865         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1866         if (new_page) {
1867                 copy_user_highpage(new_page, page, address, vma);
1868
1869                 SetPageDirty(new_page);
1870                 __SetPageUptodate(new_page);
1871                 __SetPageLocked(new_page);
1872         }
1873
1874         return new_page;
1875 }
1876
1877 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1878 {
1879         struct stable_node *stable_node;
1880         struct rmap_item *rmap_item;
1881         int ret = SWAP_AGAIN;
1882         int search_new_forks = 0;
1883
1884         VM_BUG_ON_PAGE(!PageKsm(page), page);
1885
1886         /*
1887          * Rely on the page lock to protect against concurrent modifications
1888          * to that page's node of the stable tree.
1889          */
1890         VM_BUG_ON_PAGE(!PageLocked(page), page);
1891
1892         stable_node = page_stable_node(page);
1893         if (!stable_node)
1894                 return ret;
1895 again:
1896         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1897                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1898                 struct anon_vma_chain *vmac;
1899                 struct vm_area_struct *vma;
1900
1901                 cond_resched();
1902                 anon_vma_lock_read(anon_vma);
1903                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1904                                                0, ULONG_MAX) {
1905                         cond_resched();
1906                         vma = vmac->vma;
1907                         if (rmap_item->address < vma->vm_start ||
1908                             rmap_item->address >= vma->vm_end)
1909                                 continue;
1910                         /*
1911                          * Initially we examine only the vma which covers this
1912                          * rmap_item; but later, if there is still work to do,
1913                          * we examine covering vmas in other mms: in case they
1914                          * were forked from the original since ksmd passed.
1915                          */
1916                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1917                                 continue;
1918
1919                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1920                                 continue;
1921
1922                         ret = rwc->rmap_one(page, vma,
1923                                         rmap_item->address, rwc->arg);
1924                         if (ret != SWAP_AGAIN) {
1925                                 anon_vma_unlock_read(anon_vma);
1926                                 goto out;
1927                         }
1928                         if (rwc->done && rwc->done(page)) {
1929                                 anon_vma_unlock_read(anon_vma);
1930                                 goto out;
1931                         }
1932                 }
1933                 anon_vma_unlock_read(anon_vma);
1934         }
1935         if (!search_new_forks++)
1936                 goto again;
1937 out:
1938         return ret;
1939 }
1940
1941 #ifdef CONFIG_MIGRATION
1942 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1943 {
1944         struct stable_node *stable_node;
1945
1946         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1947         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1948         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
1949
1950         stable_node = page_stable_node(newpage);
1951         if (stable_node) {
1952                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
1953                 stable_node->kpfn = page_to_pfn(newpage);
1954                 /*
1955                  * newpage->mapping was set in advance; now we need smp_wmb()
1956                  * to make sure that the new stable_node->kpfn is visible
1957                  * to get_ksm_page() before it can see that oldpage->mapping
1958                  * has gone stale (or that PageSwapCache has been cleared).
1959                  */
1960                 smp_wmb();
1961                 set_page_stable_node(oldpage, NULL);
1962         }
1963 }
1964 #endif /* CONFIG_MIGRATION */
1965
1966 #ifdef CONFIG_MEMORY_HOTREMOVE
1967 static void wait_while_offlining(void)
1968 {
1969         while (ksm_run & KSM_RUN_OFFLINE) {
1970                 mutex_unlock(&ksm_thread_mutex);
1971                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
1972                             TASK_UNINTERRUPTIBLE);
1973                 mutex_lock(&ksm_thread_mutex);
1974         }
1975 }
1976
1977 static void ksm_check_stable_tree(unsigned long start_pfn,
1978                                   unsigned long end_pfn)
1979 {
1980         struct stable_node *stable_node, *next;
1981         struct rb_node *node;
1982         int nid;
1983
1984         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1985                 node = rb_first(root_stable_tree + nid);
1986                 while (node) {
1987                         stable_node = rb_entry(node, struct stable_node, node);
1988                         if (stable_node->kpfn >= start_pfn &&
1989                             stable_node->kpfn < end_pfn) {
1990                                 /*
1991                                  * Don't get_ksm_page, page has already gone:
1992                                  * which is why we keep kpfn instead of page*
1993                                  */
1994                                 remove_node_from_stable_tree(stable_node);
1995                                 node = rb_first(root_stable_tree + nid);
1996                         } else
1997                                 node = rb_next(node);
1998                         cond_resched();
1999                 }
2000         }
2001         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2002                 if (stable_node->kpfn >= start_pfn &&
2003                     stable_node->kpfn < end_pfn)
2004                         remove_node_from_stable_tree(stable_node);
2005                 cond_resched();
2006         }
2007 }
2008
2009 static int ksm_memory_callback(struct notifier_block *self,
2010                                unsigned long action, void *arg)
2011 {
2012         struct memory_notify *mn = arg;
2013
2014         switch (action) {
2015         case MEM_GOING_OFFLINE:
2016                 /*
2017                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2018                  * and remove_all_stable_nodes() while memory is going offline:
2019                  * it is unsafe for them to touch the stable tree at this time.
2020                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2021                  * which do not need the ksm_thread_mutex are all safe.
2022                  */
2023                 mutex_lock(&ksm_thread_mutex);
2024                 ksm_run |= KSM_RUN_OFFLINE;
2025                 mutex_unlock(&ksm_thread_mutex);
2026                 break;
2027
2028         case MEM_OFFLINE:
2029                 /*
2030                  * Most of the work is done by page migration; but there might
2031                  * be a few stable_nodes left over, still pointing to struct
2032                  * pages which have been offlined: prune those from the tree,
2033                  * otherwise get_ksm_page() might later try to access a
2034                  * non-existent struct page.
2035                  */
2036                 ksm_check_stable_tree(mn->start_pfn,
2037                                       mn->start_pfn + mn->nr_pages);
2038                 /* fallthrough */
2039
2040         case MEM_CANCEL_OFFLINE:
2041                 mutex_lock(&ksm_thread_mutex);
2042                 ksm_run &= ~KSM_RUN_OFFLINE;
2043                 mutex_unlock(&ksm_thread_mutex);
2044
2045                 smp_mb();       /* wake_up_bit advises this */
2046                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2047                 break;
2048         }
2049         return NOTIFY_OK;
2050 }
2051 #else
2052 static void wait_while_offlining(void)
2053 {
2054 }
2055 #endif /* CONFIG_MEMORY_HOTREMOVE */
2056
2057 #ifdef CONFIG_SYSFS
2058 /*
2059  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2060  */
2061
2062 #define KSM_ATTR_RO(_name) \
2063         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2064 #define KSM_ATTR(_name) \
2065         static struct kobj_attribute _name##_attr = \
2066                 __ATTR(_name, 0644, _name##_show, _name##_store)
2067
2068 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2069                                     struct kobj_attribute *attr, char *buf)
2070 {
2071         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2072 }
2073
2074 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2075                                      struct kobj_attribute *attr,
2076                                      const char *buf, size_t count)
2077 {
2078         unsigned long msecs;
2079         int err;
2080
2081         err = kstrtoul(buf, 10, &msecs);
2082         if (err || msecs > UINT_MAX)
2083                 return -EINVAL;
2084
2085         ksm_thread_sleep_millisecs = msecs;
2086
2087         return count;
2088 }
2089 KSM_ATTR(sleep_millisecs);
2090
2091 static ssize_t pages_to_scan_show(struct kobject *kobj,
2092                                   struct kobj_attribute *attr, char *buf)
2093 {
2094         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2095 }
2096
2097 static ssize_t pages_to_scan_store(struct kobject *kobj,
2098                                    struct kobj_attribute *attr,
2099                                    const char *buf, size_t count)
2100 {
2101         int err;
2102         unsigned long nr_pages;
2103
2104         err = kstrtoul(buf, 10, &nr_pages);
2105         if (err || nr_pages > UINT_MAX)
2106                 return -EINVAL;
2107
2108         ksm_thread_pages_to_scan = nr_pages;
2109
2110         return count;
2111 }
2112 KSM_ATTR(pages_to_scan);
2113
2114 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2115                         char *buf)
2116 {
2117         return sprintf(buf, "%lu\n", ksm_run);
2118 }
2119
2120 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2121                          const char *buf, size_t count)
2122 {
2123         int err;
2124         unsigned long flags;
2125
2126         err = kstrtoul(buf, 10, &flags);
2127         if (err || flags > UINT_MAX)
2128                 return -EINVAL;
2129         if (flags > KSM_RUN_UNMERGE)
2130                 return -EINVAL;
2131
2132         /*
2133          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2134          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2135          * breaking COW to free the pages_shared (but leaves mm_slots
2136          * on the list for when ksmd may be set running again).
2137          */
2138
2139         mutex_lock(&ksm_thread_mutex);
2140         wait_while_offlining();
2141         if (ksm_run != flags) {
2142                 ksm_run = flags;
2143                 if (flags & KSM_RUN_UNMERGE) {
2144                         set_current_oom_origin();
2145                         err = unmerge_and_remove_all_rmap_items();
2146                         clear_current_oom_origin();
2147                         if (err) {
2148                                 ksm_run = KSM_RUN_STOP;
2149                                 count = err;
2150                         }
2151                 }
2152         }
2153         mutex_unlock(&ksm_thread_mutex);
2154
2155         if (flags & KSM_RUN_MERGE)
2156                 wake_up_interruptible(&ksm_thread_wait);
2157
2158         return count;
2159 }
2160 KSM_ATTR(run);
2161
2162 #ifdef CONFIG_NUMA
2163 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2164                                 struct kobj_attribute *attr, char *buf)
2165 {
2166         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2167 }
2168
2169 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2170                                    struct kobj_attribute *attr,
2171                                    const char *buf, size_t count)
2172 {
2173         int err;
2174         unsigned long knob;
2175
2176         err = kstrtoul(buf, 10, &knob);
2177         if (err)
2178                 return err;
2179         if (knob > 1)
2180                 return -EINVAL;
2181
2182         mutex_lock(&ksm_thread_mutex);
2183         wait_while_offlining();
2184         if (ksm_merge_across_nodes != knob) {
2185                 if (ksm_pages_shared || remove_all_stable_nodes())
2186                         err = -EBUSY;
2187                 else if (root_stable_tree == one_stable_tree) {
2188                         struct rb_root *buf;
2189                         /*
2190                          * This is the first time that we switch away from the
2191                          * default of merging across nodes: must now allocate
2192                          * a buffer to hold as many roots as may be needed.
2193                          * Allocate stable and unstable together:
2194                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2195                          */
2196                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2197                                       GFP_KERNEL);
2198                         /* Let us assume that RB_ROOT is NULL is zero */
2199                         if (!buf)
2200                                 err = -ENOMEM;
2201                         else {
2202                                 root_stable_tree = buf;
2203                                 root_unstable_tree = buf + nr_node_ids;
2204                                 /* Stable tree is empty but not the unstable */
2205                                 root_unstable_tree[0] = one_unstable_tree[0];
2206                         }
2207                 }
2208                 if (!err) {
2209                         ksm_merge_across_nodes = knob;
2210                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2211                 }
2212         }
2213         mutex_unlock(&ksm_thread_mutex);
2214
2215         return err ? err : count;
2216 }
2217 KSM_ATTR(merge_across_nodes);
2218 #endif
2219
2220 static ssize_t pages_shared_show(struct kobject *kobj,
2221                                  struct kobj_attribute *attr, char *buf)
2222 {
2223         return sprintf(buf, "%lu\n", ksm_pages_shared);
2224 }
2225 KSM_ATTR_RO(pages_shared);
2226
2227 static ssize_t pages_sharing_show(struct kobject *kobj,
2228                                   struct kobj_attribute *attr, char *buf)
2229 {
2230         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2231 }
2232 KSM_ATTR_RO(pages_sharing);
2233
2234 static ssize_t pages_unshared_show(struct kobject *kobj,
2235                                    struct kobj_attribute *attr, char *buf)
2236 {
2237         return sprintf(buf, "%lu\n", ksm_pages_unshared);
2238 }
2239 KSM_ATTR_RO(pages_unshared);
2240
2241 static ssize_t pages_volatile_show(struct kobject *kobj,
2242                                    struct kobj_attribute *attr, char *buf)
2243 {
2244         long ksm_pages_volatile;
2245
2246         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2247                                 - ksm_pages_sharing - ksm_pages_unshared;
2248         /*
2249          * It was not worth any locking to calculate that statistic,
2250          * but it might therefore sometimes be negative: conceal that.
2251          */
2252         if (ksm_pages_volatile < 0)
2253                 ksm_pages_volatile = 0;
2254         return sprintf(buf, "%ld\n", ksm_pages_volatile);
2255 }
2256 KSM_ATTR_RO(pages_volatile);
2257
2258 static ssize_t full_scans_show(struct kobject *kobj,
2259                                struct kobj_attribute *attr, char *buf)
2260 {
2261         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2262 }
2263 KSM_ATTR_RO(full_scans);
2264
2265 static struct attribute *ksm_attrs[] = {
2266         &sleep_millisecs_attr.attr,
2267         &pages_to_scan_attr.attr,
2268         &run_attr.attr,
2269         &pages_shared_attr.attr,
2270         &pages_sharing_attr.attr,
2271         &pages_unshared_attr.attr,
2272         &pages_volatile_attr.attr,
2273         &full_scans_attr.attr,
2274 #ifdef CONFIG_NUMA
2275         &merge_across_nodes_attr.attr,
2276 #endif
2277         NULL,
2278 };
2279
2280 static struct attribute_group ksm_attr_group = {
2281         .attrs = ksm_attrs,
2282         .name = "ksm",
2283 };
2284 #endif /* CONFIG_SYSFS */
2285
2286 static int __init ksm_init(void)
2287 {
2288         struct task_struct *ksm_thread;
2289         int err;
2290
2291         err = ksm_slab_init();
2292         if (err)
2293                 goto out;
2294
2295         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2296         if (IS_ERR(ksm_thread)) {
2297                 pr_err("ksm: creating kthread failed\n");
2298                 err = PTR_ERR(ksm_thread);
2299                 goto out_free;
2300         }
2301
2302 #ifdef CONFIG_SYSFS
2303         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2304         if (err) {
2305                 pr_err("ksm: register sysfs failed\n");
2306                 kthread_stop(ksm_thread);
2307                 goto out_free;
2308         }
2309 #else
2310         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2311
2312 #endif /* CONFIG_SYSFS */
2313
2314 #ifdef CONFIG_MEMORY_HOTREMOVE
2315         /* There is no significance to this priority 100 */
2316         hotplug_memory_notifier(ksm_memory_callback, 100);
2317 #endif
2318         return 0;
2319
2320 out_free:
2321         ksm_slab_free();
2322 out:
2323         return err;
2324 }
2325 subsys_initcall(ksm_init);