arm64: dts: ls2080a: update the DTS for QSPI and DSPI support
[cascardo/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES      5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account         0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98         return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102         "cache",
103         "rss",
104         "rss_huge",
105         "mapped_file",
106         "dirty",
107         "writeback",
108         "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112         "pgpgin",
113         "pgpgout",
114         "pgfault",
115         "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119         "inactive_anon",
120         "active_anon",
121         "inactive_file",
122         "active_file",
123         "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET  1024
129
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134
135 struct mem_cgroup_tree_per_zone {
136         struct rb_root rb_root;
137         spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152         struct list_head list;
153         struct eventfd_ctx *eventfd;
154 };
155
156 /*
157  * cgroup_event represents events which userspace want to receive.
158  */
159 struct mem_cgroup_event {
160         /*
161          * memcg which the event belongs to.
162          */
163         struct mem_cgroup *memcg;
164         /*
165          * eventfd to signal userspace about the event.
166          */
167         struct eventfd_ctx *eventfd;
168         /*
169          * Each of these stored in a list by the cgroup.
170          */
171         struct list_head list;
172         /*
173          * register_event() callback will be used to add new userspace
174          * waiter for changes related to this event.  Use eventfd_signal()
175          * on eventfd to send notification to userspace.
176          */
177         int (*register_event)(struct mem_cgroup *memcg,
178                               struct eventfd_ctx *eventfd, const char *args);
179         /*
180          * unregister_event() callback will be called when userspace closes
181          * the eventfd or on cgroup removing.  This callback must be set,
182          * if you want provide notification functionality.
183          */
184         void (*unregister_event)(struct mem_cgroup *memcg,
185                                  struct eventfd_ctx *eventfd);
186         /*
187          * All fields below needed to unregister event when
188          * userspace closes eventfd.
189          */
190         poll_table pt;
191         wait_queue_head_t *wqh;
192         wait_queue_t wait;
193         struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201  * Types of charges to be moved.
202  */
203 #define MOVE_ANON       0x1U
204 #define MOVE_FILE       0x2U
205 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209         spinlock_t        lock; /* for from, to */
210         struct mem_cgroup *from;
211         struct mem_cgroup *to;
212         unsigned long flags;
213         unsigned long precharge;
214         unsigned long moved_charge;
215         unsigned long moved_swap;
216         struct task_struct *moving_task;        /* a task moving charges */
217         wait_queue_head_t waitq;                /* a waitq for other context */
218 } mc = {
219         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
220         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
221 };
222
223 /*
224  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225  * limit reclaim to prevent infinite loops, if they ever occur.
226  */
227 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
228 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
229
230 enum charge_type {
231         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
232         MEM_CGROUP_CHARGE_TYPE_ANON,
233         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
234         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
235         NR_CHARGE_TYPE,
236 };
237
238 /* for encoding cft->private value on file */
239 enum res_type {
240         _MEM,
241         _MEMSWAP,
242         _OOM_TYPE,
243         _KMEM,
244         _TCP,
245 };
246
247 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
248 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
249 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
250 /* Used for OOM nofiier */
251 #define OOM_CONTROL             (0)
252
253 /* Some nice accessors for the vmpressure. */
254 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
255 {
256         if (!memcg)
257                 memcg = root_mem_cgroup;
258         return &memcg->vmpressure;
259 }
260
261 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
262 {
263         return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264 }
265
266 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
267 {
268         return (memcg == root_mem_cgroup);
269 }
270
271 #ifndef CONFIG_SLOB
272 /*
273  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
274  * The main reason for not using cgroup id for this:
275  *  this works better in sparse environments, where we have a lot of memcgs,
276  *  but only a few kmem-limited. Or also, if we have, for instance, 200
277  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
278  *  200 entry array for that.
279  *
280  * The current size of the caches array is stored in memcg_nr_cache_ids. It
281  * will double each time we have to increase it.
282  */
283 static DEFINE_IDA(memcg_cache_ida);
284 int memcg_nr_cache_ids;
285
286 /* Protects memcg_nr_cache_ids */
287 static DECLARE_RWSEM(memcg_cache_ids_sem);
288
289 void memcg_get_cache_ids(void)
290 {
291         down_read(&memcg_cache_ids_sem);
292 }
293
294 void memcg_put_cache_ids(void)
295 {
296         up_read(&memcg_cache_ids_sem);
297 }
298
299 /*
300  * MIN_SIZE is different than 1, because we would like to avoid going through
301  * the alloc/free process all the time. In a small machine, 4 kmem-limited
302  * cgroups is a reasonable guess. In the future, it could be a parameter or
303  * tunable, but that is strictly not necessary.
304  *
305  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
306  * this constant directly from cgroup, but it is understandable that this is
307  * better kept as an internal representation in cgroup.c. In any case, the
308  * cgrp_id space is not getting any smaller, and we don't have to necessarily
309  * increase ours as well if it increases.
310  */
311 #define MEMCG_CACHES_MIN_SIZE 4
312 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
313
314 /*
315  * A lot of the calls to the cache allocation functions are expected to be
316  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
317  * conditional to this static branch, we'll have to allow modules that does
318  * kmem_cache_alloc and the such to see this symbol as well
319  */
320 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
321 EXPORT_SYMBOL(memcg_kmem_enabled_key);
322
323 #endif /* !CONFIG_SLOB */
324
325 static struct mem_cgroup_per_zone *
326 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
327 {
328         int nid = zone_to_nid(zone);
329         int zid = zone_idx(zone);
330
331         return &memcg->nodeinfo[nid]->zoneinfo[zid];
332 }
333
334 /**
335  * mem_cgroup_css_from_page - css of the memcg associated with a page
336  * @page: page of interest
337  *
338  * If memcg is bound to the default hierarchy, css of the memcg associated
339  * with @page is returned.  The returned css remains associated with @page
340  * until it is released.
341  *
342  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
343  * is returned.
344  */
345 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
346 {
347         struct mem_cgroup *memcg;
348
349         memcg = page->mem_cgroup;
350
351         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
352                 memcg = root_mem_cgroup;
353
354         return &memcg->css;
355 }
356
357 /**
358  * page_cgroup_ino - return inode number of the memcg a page is charged to
359  * @page: the page
360  *
361  * Look up the closest online ancestor of the memory cgroup @page is charged to
362  * and return its inode number or 0 if @page is not charged to any cgroup. It
363  * is safe to call this function without holding a reference to @page.
364  *
365  * Note, this function is inherently racy, because there is nothing to prevent
366  * the cgroup inode from getting torn down and potentially reallocated a moment
367  * after page_cgroup_ino() returns, so it only should be used by callers that
368  * do not care (such as procfs interfaces).
369  */
370 ino_t page_cgroup_ino(struct page *page)
371 {
372         struct mem_cgroup *memcg;
373         unsigned long ino = 0;
374
375         rcu_read_lock();
376         memcg = READ_ONCE(page->mem_cgroup);
377         while (memcg && !(memcg->css.flags & CSS_ONLINE))
378                 memcg = parent_mem_cgroup(memcg);
379         if (memcg)
380                 ino = cgroup_ino(memcg->css.cgroup);
381         rcu_read_unlock();
382         return ino;
383 }
384
385 static struct mem_cgroup_per_zone *
386 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
387 {
388         int nid = page_to_nid(page);
389         int zid = page_zonenum(page);
390
391         return &memcg->nodeinfo[nid]->zoneinfo[zid];
392 }
393
394 static struct mem_cgroup_tree_per_zone *
395 soft_limit_tree_node_zone(int nid, int zid)
396 {
397         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
398 }
399
400 static struct mem_cgroup_tree_per_zone *
401 soft_limit_tree_from_page(struct page *page)
402 {
403         int nid = page_to_nid(page);
404         int zid = page_zonenum(page);
405
406         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
407 }
408
409 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
410                                          struct mem_cgroup_tree_per_zone *mctz,
411                                          unsigned long new_usage_in_excess)
412 {
413         struct rb_node **p = &mctz->rb_root.rb_node;
414         struct rb_node *parent = NULL;
415         struct mem_cgroup_per_zone *mz_node;
416
417         if (mz->on_tree)
418                 return;
419
420         mz->usage_in_excess = new_usage_in_excess;
421         if (!mz->usage_in_excess)
422                 return;
423         while (*p) {
424                 parent = *p;
425                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
426                                         tree_node);
427                 if (mz->usage_in_excess < mz_node->usage_in_excess)
428                         p = &(*p)->rb_left;
429                 /*
430                  * We can't avoid mem cgroups that are over their soft
431                  * limit by the same amount
432                  */
433                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
434                         p = &(*p)->rb_right;
435         }
436         rb_link_node(&mz->tree_node, parent, p);
437         rb_insert_color(&mz->tree_node, &mctz->rb_root);
438         mz->on_tree = true;
439 }
440
441 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
442                                          struct mem_cgroup_tree_per_zone *mctz)
443 {
444         if (!mz->on_tree)
445                 return;
446         rb_erase(&mz->tree_node, &mctz->rb_root);
447         mz->on_tree = false;
448 }
449
450 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
451                                        struct mem_cgroup_tree_per_zone *mctz)
452 {
453         unsigned long flags;
454
455         spin_lock_irqsave(&mctz->lock, flags);
456         __mem_cgroup_remove_exceeded(mz, mctz);
457         spin_unlock_irqrestore(&mctz->lock, flags);
458 }
459
460 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
461 {
462         unsigned long nr_pages = page_counter_read(&memcg->memory);
463         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
464         unsigned long excess = 0;
465
466         if (nr_pages > soft_limit)
467                 excess = nr_pages - soft_limit;
468
469         return excess;
470 }
471
472 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
473 {
474         unsigned long excess;
475         struct mem_cgroup_per_zone *mz;
476         struct mem_cgroup_tree_per_zone *mctz;
477
478         mctz = soft_limit_tree_from_page(page);
479         /*
480          * Necessary to update all ancestors when hierarchy is used.
481          * because their event counter is not touched.
482          */
483         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
484                 mz = mem_cgroup_page_zoneinfo(memcg, page);
485                 excess = soft_limit_excess(memcg);
486                 /*
487                  * We have to update the tree if mz is on RB-tree or
488                  * mem is over its softlimit.
489                  */
490                 if (excess || mz->on_tree) {
491                         unsigned long flags;
492
493                         spin_lock_irqsave(&mctz->lock, flags);
494                         /* if on-tree, remove it */
495                         if (mz->on_tree)
496                                 __mem_cgroup_remove_exceeded(mz, mctz);
497                         /*
498                          * Insert again. mz->usage_in_excess will be updated.
499                          * If excess is 0, no tree ops.
500                          */
501                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
502                         spin_unlock_irqrestore(&mctz->lock, flags);
503                 }
504         }
505 }
506
507 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
508 {
509         struct mem_cgroup_tree_per_zone *mctz;
510         struct mem_cgroup_per_zone *mz;
511         int nid, zid;
512
513         for_each_node(nid) {
514                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
515                         mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
516                         mctz = soft_limit_tree_node_zone(nid, zid);
517                         mem_cgroup_remove_exceeded(mz, mctz);
518                 }
519         }
520 }
521
522 static struct mem_cgroup_per_zone *
523 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
524 {
525         struct rb_node *rightmost = NULL;
526         struct mem_cgroup_per_zone *mz;
527
528 retry:
529         mz = NULL;
530         rightmost = rb_last(&mctz->rb_root);
531         if (!rightmost)
532                 goto done;              /* Nothing to reclaim from */
533
534         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
535         /*
536          * Remove the node now but someone else can add it back,
537          * we will to add it back at the end of reclaim to its correct
538          * position in the tree.
539          */
540         __mem_cgroup_remove_exceeded(mz, mctz);
541         if (!soft_limit_excess(mz->memcg) ||
542             !css_tryget_online(&mz->memcg->css))
543                 goto retry;
544 done:
545         return mz;
546 }
547
548 static struct mem_cgroup_per_zone *
549 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
550 {
551         struct mem_cgroup_per_zone *mz;
552
553         spin_lock_irq(&mctz->lock);
554         mz = __mem_cgroup_largest_soft_limit_node(mctz);
555         spin_unlock_irq(&mctz->lock);
556         return mz;
557 }
558
559 /*
560  * Return page count for single (non recursive) @memcg.
561  *
562  * Implementation Note: reading percpu statistics for memcg.
563  *
564  * Both of vmstat[] and percpu_counter has threshold and do periodic
565  * synchronization to implement "quick" read. There are trade-off between
566  * reading cost and precision of value. Then, we may have a chance to implement
567  * a periodic synchronization of counter in memcg's counter.
568  *
569  * But this _read() function is used for user interface now. The user accounts
570  * memory usage by memory cgroup and he _always_ requires exact value because
571  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
572  * have to visit all online cpus and make sum. So, for now, unnecessary
573  * synchronization is not implemented. (just implemented for cpu hotplug)
574  *
575  * If there are kernel internal actions which can make use of some not-exact
576  * value, and reading all cpu value can be performance bottleneck in some
577  * common workload, threshold and synchronization as vmstat[] should be
578  * implemented.
579  */
580 static unsigned long
581 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
582 {
583         long val = 0;
584         int cpu;
585
586         /* Per-cpu values can be negative, use a signed accumulator */
587         for_each_possible_cpu(cpu)
588                 val += per_cpu(memcg->stat->count[idx], cpu);
589         /*
590          * Summing races with updates, so val may be negative.  Avoid exposing
591          * transient negative values.
592          */
593         if (val < 0)
594                 val = 0;
595         return val;
596 }
597
598 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
599                                             enum mem_cgroup_events_index idx)
600 {
601         unsigned long val = 0;
602         int cpu;
603
604         for_each_possible_cpu(cpu)
605                 val += per_cpu(memcg->stat->events[idx], cpu);
606         return val;
607 }
608
609 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
610                                          struct page *page,
611                                          bool compound, int nr_pages)
612 {
613         /*
614          * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
615          * counted as CACHE even if it's on ANON LRU.
616          */
617         if (PageAnon(page))
618                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
619                                 nr_pages);
620         else
621                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
622                                 nr_pages);
623
624         if (compound) {
625                 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
626                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
627                                 nr_pages);
628         }
629
630         /* pagein of a big page is an event. So, ignore page size */
631         if (nr_pages > 0)
632                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
633         else {
634                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
635                 nr_pages = -nr_pages; /* for event */
636         }
637
638         __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
639 }
640
641 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
642                                            int nid, unsigned int lru_mask)
643 {
644         unsigned long nr = 0;
645         int zid;
646
647         VM_BUG_ON((unsigned)nid >= nr_node_ids);
648
649         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
650                 struct mem_cgroup_per_zone *mz;
651                 enum lru_list lru;
652
653                 for_each_lru(lru) {
654                         if (!(BIT(lru) & lru_mask))
655                                 continue;
656                         mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
657                         nr += mz->lru_size[lru];
658                 }
659         }
660         return nr;
661 }
662
663 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
664                         unsigned int lru_mask)
665 {
666         unsigned long nr = 0;
667         int nid;
668
669         for_each_node_state(nid, N_MEMORY)
670                 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
671         return nr;
672 }
673
674 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
675                                        enum mem_cgroup_events_target target)
676 {
677         unsigned long val, next;
678
679         val = __this_cpu_read(memcg->stat->nr_page_events);
680         next = __this_cpu_read(memcg->stat->targets[target]);
681         /* from time_after() in jiffies.h */
682         if ((long)next - (long)val < 0) {
683                 switch (target) {
684                 case MEM_CGROUP_TARGET_THRESH:
685                         next = val + THRESHOLDS_EVENTS_TARGET;
686                         break;
687                 case MEM_CGROUP_TARGET_SOFTLIMIT:
688                         next = val + SOFTLIMIT_EVENTS_TARGET;
689                         break;
690                 case MEM_CGROUP_TARGET_NUMAINFO:
691                         next = val + NUMAINFO_EVENTS_TARGET;
692                         break;
693                 default:
694                         break;
695                 }
696                 __this_cpu_write(memcg->stat->targets[target], next);
697                 return true;
698         }
699         return false;
700 }
701
702 /*
703  * Check events in order.
704  *
705  */
706 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
707 {
708         /* threshold event is triggered in finer grain than soft limit */
709         if (unlikely(mem_cgroup_event_ratelimit(memcg,
710                                                 MEM_CGROUP_TARGET_THRESH))) {
711                 bool do_softlimit;
712                 bool do_numainfo __maybe_unused;
713
714                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
715                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
716 #if MAX_NUMNODES > 1
717                 do_numainfo = mem_cgroup_event_ratelimit(memcg,
718                                                 MEM_CGROUP_TARGET_NUMAINFO);
719 #endif
720                 mem_cgroup_threshold(memcg);
721                 if (unlikely(do_softlimit))
722                         mem_cgroup_update_tree(memcg, page);
723 #if MAX_NUMNODES > 1
724                 if (unlikely(do_numainfo))
725                         atomic_inc(&memcg->numainfo_events);
726 #endif
727         }
728 }
729
730 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
731 {
732         /*
733          * mm_update_next_owner() may clear mm->owner to NULL
734          * if it races with swapoff, page migration, etc.
735          * So this can be called with p == NULL.
736          */
737         if (unlikely(!p))
738                 return NULL;
739
740         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
741 }
742 EXPORT_SYMBOL(mem_cgroup_from_task);
743
744 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
745 {
746         struct mem_cgroup *memcg = NULL;
747
748         rcu_read_lock();
749         do {
750                 /*
751                  * Page cache insertions can happen withou an
752                  * actual mm context, e.g. during disk probing
753                  * on boot, loopback IO, acct() writes etc.
754                  */
755                 if (unlikely(!mm))
756                         memcg = root_mem_cgroup;
757                 else {
758                         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
759                         if (unlikely(!memcg))
760                                 memcg = root_mem_cgroup;
761                 }
762         } while (!css_tryget_online(&memcg->css));
763         rcu_read_unlock();
764         return memcg;
765 }
766
767 /**
768  * mem_cgroup_iter - iterate over memory cgroup hierarchy
769  * @root: hierarchy root
770  * @prev: previously returned memcg, NULL on first invocation
771  * @reclaim: cookie for shared reclaim walks, NULL for full walks
772  *
773  * Returns references to children of the hierarchy below @root, or
774  * @root itself, or %NULL after a full round-trip.
775  *
776  * Caller must pass the return value in @prev on subsequent
777  * invocations for reference counting, or use mem_cgroup_iter_break()
778  * to cancel a hierarchy walk before the round-trip is complete.
779  *
780  * Reclaimers can specify a zone and a priority level in @reclaim to
781  * divide up the memcgs in the hierarchy among all concurrent
782  * reclaimers operating on the same zone and priority.
783  */
784 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
785                                    struct mem_cgroup *prev,
786                                    struct mem_cgroup_reclaim_cookie *reclaim)
787 {
788         struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
789         struct cgroup_subsys_state *css = NULL;
790         struct mem_cgroup *memcg = NULL;
791         struct mem_cgroup *pos = NULL;
792
793         if (mem_cgroup_disabled())
794                 return NULL;
795
796         if (!root)
797                 root = root_mem_cgroup;
798
799         if (prev && !reclaim)
800                 pos = prev;
801
802         if (!root->use_hierarchy && root != root_mem_cgroup) {
803                 if (prev)
804                         goto out;
805                 return root;
806         }
807
808         rcu_read_lock();
809
810         if (reclaim) {
811                 struct mem_cgroup_per_zone *mz;
812
813                 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
814                 iter = &mz->iter[reclaim->priority];
815
816                 if (prev && reclaim->generation != iter->generation)
817                         goto out_unlock;
818
819                 while (1) {
820                         pos = READ_ONCE(iter->position);
821                         if (!pos || css_tryget(&pos->css))
822                                 break;
823                         /*
824                          * css reference reached zero, so iter->position will
825                          * be cleared by ->css_released. However, we should not
826                          * rely on this happening soon, because ->css_released
827                          * is called from a work queue, and by busy-waiting we
828                          * might block it. So we clear iter->position right
829                          * away.
830                          */
831                         (void)cmpxchg(&iter->position, pos, NULL);
832                 }
833         }
834
835         if (pos)
836                 css = &pos->css;
837
838         for (;;) {
839                 css = css_next_descendant_pre(css, &root->css);
840                 if (!css) {
841                         /*
842                          * Reclaimers share the hierarchy walk, and a
843                          * new one might jump in right at the end of
844                          * the hierarchy - make sure they see at least
845                          * one group and restart from the beginning.
846                          */
847                         if (!prev)
848                                 continue;
849                         break;
850                 }
851
852                 /*
853                  * Verify the css and acquire a reference.  The root
854                  * is provided by the caller, so we know it's alive
855                  * and kicking, and don't take an extra reference.
856                  */
857                 memcg = mem_cgroup_from_css(css);
858
859                 if (css == &root->css)
860                         break;
861
862                 if (css_tryget(css))
863                         break;
864
865                 memcg = NULL;
866         }
867
868         if (reclaim) {
869                 /*
870                  * The position could have already been updated by a competing
871                  * thread, so check that the value hasn't changed since we read
872                  * it to avoid reclaiming from the same cgroup twice.
873                  */
874                 (void)cmpxchg(&iter->position, pos, memcg);
875
876                 if (pos)
877                         css_put(&pos->css);
878
879                 if (!memcg)
880                         iter->generation++;
881                 else if (!prev)
882                         reclaim->generation = iter->generation;
883         }
884
885 out_unlock:
886         rcu_read_unlock();
887 out:
888         if (prev && prev != root)
889                 css_put(&prev->css);
890
891         return memcg;
892 }
893
894 /**
895  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
896  * @root: hierarchy root
897  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
898  */
899 void mem_cgroup_iter_break(struct mem_cgroup *root,
900                            struct mem_cgroup *prev)
901 {
902         if (!root)
903                 root = root_mem_cgroup;
904         if (prev && prev != root)
905                 css_put(&prev->css);
906 }
907
908 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
909 {
910         struct mem_cgroup *memcg = dead_memcg;
911         struct mem_cgroup_reclaim_iter *iter;
912         struct mem_cgroup_per_zone *mz;
913         int nid, zid;
914         int i;
915
916         while ((memcg = parent_mem_cgroup(memcg))) {
917                 for_each_node(nid) {
918                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
919                                 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
920                                 for (i = 0; i <= DEF_PRIORITY; i++) {
921                                         iter = &mz->iter[i];
922                                         cmpxchg(&iter->position,
923                                                 dead_memcg, NULL);
924                                 }
925                         }
926                 }
927         }
928 }
929
930 /*
931  * Iteration constructs for visiting all cgroups (under a tree).  If
932  * loops are exited prematurely (break), mem_cgroup_iter_break() must
933  * be used for reference counting.
934  */
935 #define for_each_mem_cgroup_tree(iter, root)            \
936         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
937              iter != NULL;                              \
938              iter = mem_cgroup_iter(root, iter, NULL))
939
940 #define for_each_mem_cgroup(iter)                       \
941         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
942              iter != NULL;                              \
943              iter = mem_cgroup_iter(NULL, iter, NULL))
944
945 /**
946  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
947  * @zone: zone of the wanted lruvec
948  * @memcg: memcg of the wanted lruvec
949  *
950  * Returns the lru list vector holding pages for the given @zone and
951  * @mem.  This can be the global zone lruvec, if the memory controller
952  * is disabled.
953  */
954 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
955                                       struct mem_cgroup *memcg)
956 {
957         struct mem_cgroup_per_zone *mz;
958         struct lruvec *lruvec;
959
960         if (mem_cgroup_disabled()) {
961                 lruvec = &zone->lruvec;
962                 goto out;
963         }
964
965         mz = mem_cgroup_zone_zoneinfo(memcg, zone);
966         lruvec = &mz->lruvec;
967 out:
968         /*
969          * Since a node can be onlined after the mem_cgroup was created,
970          * we have to be prepared to initialize lruvec->zone here;
971          * and if offlined then reonlined, we need to reinitialize it.
972          */
973         if (unlikely(lruvec->zone != zone))
974                 lruvec->zone = zone;
975         return lruvec;
976 }
977
978 /**
979  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
980  * @page: the page
981  * @zone: zone of the page
982  *
983  * This function is only safe when following the LRU page isolation
984  * and putback protocol: the LRU lock must be held, and the page must
985  * either be PageLRU() or the caller must have isolated/allocated it.
986  */
987 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
988 {
989         struct mem_cgroup_per_zone *mz;
990         struct mem_cgroup *memcg;
991         struct lruvec *lruvec;
992
993         if (mem_cgroup_disabled()) {
994                 lruvec = &zone->lruvec;
995                 goto out;
996         }
997
998         memcg = page->mem_cgroup;
999         /*
1000          * Swapcache readahead pages are added to the LRU - and
1001          * possibly migrated - before they are charged.
1002          */
1003         if (!memcg)
1004                 memcg = root_mem_cgroup;
1005
1006         mz = mem_cgroup_page_zoneinfo(memcg, page);
1007         lruvec = &mz->lruvec;
1008 out:
1009         /*
1010          * Since a node can be onlined after the mem_cgroup was created,
1011          * we have to be prepared to initialize lruvec->zone here;
1012          * and if offlined then reonlined, we need to reinitialize it.
1013          */
1014         if (unlikely(lruvec->zone != zone))
1015                 lruvec->zone = zone;
1016         return lruvec;
1017 }
1018
1019 /**
1020  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1021  * @lruvec: mem_cgroup per zone lru vector
1022  * @lru: index of lru list the page is sitting on
1023  * @nr_pages: positive when adding or negative when removing
1024  *
1025  * This function must be called when a page is added to or removed from an
1026  * lru list.
1027  */
1028 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1029                                 int nr_pages)
1030 {
1031         struct mem_cgroup_per_zone *mz;
1032         unsigned long *lru_size;
1033
1034         if (mem_cgroup_disabled())
1035                 return;
1036
1037         mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1038         lru_size = mz->lru_size + lru;
1039         *lru_size += nr_pages;
1040         VM_BUG_ON((long)(*lru_size) < 0);
1041 }
1042
1043 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1044 {
1045         struct mem_cgroup *task_memcg;
1046         struct task_struct *p;
1047         bool ret;
1048
1049         p = find_lock_task_mm(task);
1050         if (p) {
1051                 task_memcg = get_mem_cgroup_from_mm(p->mm);
1052                 task_unlock(p);
1053         } else {
1054                 /*
1055                  * All threads may have already detached their mm's, but the oom
1056                  * killer still needs to detect if they have already been oom
1057                  * killed to prevent needlessly killing additional tasks.
1058                  */
1059                 rcu_read_lock();
1060                 task_memcg = mem_cgroup_from_task(task);
1061                 css_get(&task_memcg->css);
1062                 rcu_read_unlock();
1063         }
1064         ret = mem_cgroup_is_descendant(task_memcg, memcg);
1065         css_put(&task_memcg->css);
1066         return ret;
1067 }
1068
1069 /**
1070  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1071  * @memcg: the memory cgroup
1072  *
1073  * Returns the maximum amount of memory @mem can be charged with, in
1074  * pages.
1075  */
1076 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1077 {
1078         unsigned long margin = 0;
1079         unsigned long count;
1080         unsigned long limit;
1081
1082         count = page_counter_read(&memcg->memory);
1083         limit = READ_ONCE(memcg->memory.limit);
1084         if (count < limit)
1085                 margin = limit - count;
1086
1087         if (do_memsw_account()) {
1088                 count = page_counter_read(&memcg->memsw);
1089                 limit = READ_ONCE(memcg->memsw.limit);
1090                 if (count <= limit)
1091                         margin = min(margin, limit - count);
1092         }
1093
1094         return margin;
1095 }
1096
1097 /*
1098  * A routine for checking "mem" is under move_account() or not.
1099  *
1100  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1101  * moving cgroups. This is for waiting at high-memory pressure
1102  * caused by "move".
1103  */
1104 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1105 {
1106         struct mem_cgroup *from;
1107         struct mem_cgroup *to;
1108         bool ret = false;
1109         /*
1110          * Unlike task_move routines, we access mc.to, mc.from not under
1111          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1112          */
1113         spin_lock(&mc.lock);
1114         from = mc.from;
1115         to = mc.to;
1116         if (!from)
1117                 goto unlock;
1118
1119         ret = mem_cgroup_is_descendant(from, memcg) ||
1120                 mem_cgroup_is_descendant(to, memcg);
1121 unlock:
1122         spin_unlock(&mc.lock);
1123         return ret;
1124 }
1125
1126 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1127 {
1128         if (mc.moving_task && current != mc.moving_task) {
1129                 if (mem_cgroup_under_move(memcg)) {
1130                         DEFINE_WAIT(wait);
1131                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1132                         /* moving charge context might have finished. */
1133                         if (mc.moving_task)
1134                                 schedule();
1135                         finish_wait(&mc.waitq, &wait);
1136                         return true;
1137                 }
1138         }
1139         return false;
1140 }
1141
1142 #define K(x) ((x) << (PAGE_SHIFT-10))
1143 /**
1144  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1145  * @memcg: The memory cgroup that went over limit
1146  * @p: Task that is going to be killed
1147  *
1148  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1149  * enabled
1150  */
1151 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1152 {
1153         struct mem_cgroup *iter;
1154         unsigned int i;
1155
1156         rcu_read_lock();
1157
1158         if (p) {
1159                 pr_info("Task in ");
1160                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1161                 pr_cont(" killed as a result of limit of ");
1162         } else {
1163                 pr_info("Memory limit reached of cgroup ");
1164         }
1165
1166         pr_cont_cgroup_path(memcg->css.cgroup);
1167         pr_cont("\n");
1168
1169         rcu_read_unlock();
1170
1171         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1172                 K((u64)page_counter_read(&memcg->memory)),
1173                 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1174         pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1175                 K((u64)page_counter_read(&memcg->memsw)),
1176                 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1177         pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1178                 K((u64)page_counter_read(&memcg->kmem)),
1179                 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1180
1181         for_each_mem_cgroup_tree(iter, memcg) {
1182                 pr_info("Memory cgroup stats for ");
1183                 pr_cont_cgroup_path(iter->css.cgroup);
1184                 pr_cont(":");
1185
1186                 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1187                         if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1188                                 continue;
1189                         pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1190                                 K(mem_cgroup_read_stat(iter, i)));
1191                 }
1192
1193                 for (i = 0; i < NR_LRU_LISTS; i++)
1194                         pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1195                                 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1196
1197                 pr_cont("\n");
1198         }
1199 }
1200
1201 /*
1202  * This function returns the number of memcg under hierarchy tree. Returns
1203  * 1(self count) if no children.
1204  */
1205 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1206 {
1207         int num = 0;
1208         struct mem_cgroup *iter;
1209
1210         for_each_mem_cgroup_tree(iter, memcg)
1211                 num++;
1212         return num;
1213 }
1214
1215 /*
1216  * Return the memory (and swap, if configured) limit for a memcg.
1217  */
1218 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1219 {
1220         unsigned long limit;
1221
1222         limit = memcg->memory.limit;
1223         if (mem_cgroup_swappiness(memcg)) {
1224                 unsigned long memsw_limit;
1225                 unsigned long swap_limit;
1226
1227                 memsw_limit = memcg->memsw.limit;
1228                 swap_limit = memcg->swap.limit;
1229                 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1230                 limit = min(limit + swap_limit, memsw_limit);
1231         }
1232         return limit;
1233 }
1234
1235 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1236                                      int order)
1237 {
1238         struct oom_control oc = {
1239                 .zonelist = NULL,
1240                 .nodemask = NULL,
1241                 .gfp_mask = gfp_mask,
1242                 .order = order,
1243         };
1244         struct mem_cgroup *iter;
1245         unsigned long chosen_points = 0;
1246         unsigned long totalpages;
1247         unsigned int points = 0;
1248         struct task_struct *chosen = NULL;
1249
1250         mutex_lock(&oom_lock);
1251
1252         /*
1253          * If current has a pending SIGKILL or is exiting, then automatically
1254          * select it.  The goal is to allow it to allocate so that it may
1255          * quickly exit and free its memory.
1256          */
1257         if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1258                 mark_oom_victim(current);
1259                 goto unlock;
1260         }
1261
1262         check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1263         totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1264         for_each_mem_cgroup_tree(iter, memcg) {
1265                 struct css_task_iter it;
1266                 struct task_struct *task;
1267
1268                 css_task_iter_start(&iter->css, &it);
1269                 while ((task = css_task_iter_next(&it))) {
1270                         switch (oom_scan_process_thread(&oc, task, totalpages)) {
1271                         case OOM_SCAN_SELECT:
1272                                 if (chosen)
1273                                         put_task_struct(chosen);
1274                                 chosen = task;
1275                                 chosen_points = ULONG_MAX;
1276                                 get_task_struct(chosen);
1277                                 /* fall through */
1278                         case OOM_SCAN_CONTINUE:
1279                                 continue;
1280                         case OOM_SCAN_ABORT:
1281                                 css_task_iter_end(&it);
1282                                 mem_cgroup_iter_break(memcg, iter);
1283                                 if (chosen)
1284                                         put_task_struct(chosen);
1285                                 goto unlock;
1286                         case OOM_SCAN_OK:
1287                                 break;
1288                         };
1289                         points = oom_badness(task, memcg, NULL, totalpages);
1290                         if (!points || points < chosen_points)
1291                                 continue;
1292                         /* Prefer thread group leaders for display purposes */
1293                         if (points == chosen_points &&
1294                             thread_group_leader(chosen))
1295                                 continue;
1296
1297                         if (chosen)
1298                                 put_task_struct(chosen);
1299                         chosen = task;
1300                         chosen_points = points;
1301                         get_task_struct(chosen);
1302                 }
1303                 css_task_iter_end(&it);
1304         }
1305
1306         if (chosen) {
1307                 points = chosen_points * 1000 / totalpages;
1308                 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1309                                  "Memory cgroup out of memory");
1310         }
1311 unlock:
1312         mutex_unlock(&oom_lock);
1313         return chosen;
1314 }
1315
1316 #if MAX_NUMNODES > 1
1317
1318 /**
1319  * test_mem_cgroup_node_reclaimable
1320  * @memcg: the target memcg
1321  * @nid: the node ID to be checked.
1322  * @noswap : specify true here if the user wants flle only information.
1323  *
1324  * This function returns whether the specified memcg contains any
1325  * reclaimable pages on a node. Returns true if there are any reclaimable
1326  * pages in the node.
1327  */
1328 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1329                 int nid, bool noswap)
1330 {
1331         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1332                 return true;
1333         if (noswap || !total_swap_pages)
1334                 return false;
1335         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1336                 return true;
1337         return false;
1338
1339 }
1340
1341 /*
1342  * Always updating the nodemask is not very good - even if we have an empty
1343  * list or the wrong list here, we can start from some node and traverse all
1344  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1345  *
1346  */
1347 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1348 {
1349         int nid;
1350         /*
1351          * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1352          * pagein/pageout changes since the last update.
1353          */
1354         if (!atomic_read(&memcg->numainfo_events))
1355                 return;
1356         if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1357                 return;
1358
1359         /* make a nodemask where this memcg uses memory from */
1360         memcg->scan_nodes = node_states[N_MEMORY];
1361
1362         for_each_node_mask(nid, node_states[N_MEMORY]) {
1363
1364                 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1365                         node_clear(nid, memcg->scan_nodes);
1366         }
1367
1368         atomic_set(&memcg->numainfo_events, 0);
1369         atomic_set(&memcg->numainfo_updating, 0);
1370 }
1371
1372 /*
1373  * Selecting a node where we start reclaim from. Because what we need is just
1374  * reducing usage counter, start from anywhere is O,K. Considering
1375  * memory reclaim from current node, there are pros. and cons.
1376  *
1377  * Freeing memory from current node means freeing memory from a node which
1378  * we'll use or we've used. So, it may make LRU bad. And if several threads
1379  * hit limits, it will see a contention on a node. But freeing from remote
1380  * node means more costs for memory reclaim because of memory latency.
1381  *
1382  * Now, we use round-robin. Better algorithm is welcomed.
1383  */
1384 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1385 {
1386         int node;
1387
1388         mem_cgroup_may_update_nodemask(memcg);
1389         node = memcg->last_scanned_node;
1390
1391         node = next_node(node, memcg->scan_nodes);
1392         if (node == MAX_NUMNODES)
1393                 node = first_node(memcg->scan_nodes);
1394         /*
1395          * We call this when we hit limit, not when pages are added to LRU.
1396          * No LRU may hold pages because all pages are UNEVICTABLE or
1397          * memcg is too small and all pages are not on LRU. In that case,
1398          * we use curret node.
1399          */
1400         if (unlikely(node == MAX_NUMNODES))
1401                 node = numa_node_id();
1402
1403         memcg->last_scanned_node = node;
1404         return node;
1405 }
1406 #else
1407 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1408 {
1409         return 0;
1410 }
1411 #endif
1412
1413 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1414                                    struct zone *zone,
1415                                    gfp_t gfp_mask,
1416                                    unsigned long *total_scanned)
1417 {
1418         struct mem_cgroup *victim = NULL;
1419         int total = 0;
1420         int loop = 0;
1421         unsigned long excess;
1422         unsigned long nr_scanned;
1423         struct mem_cgroup_reclaim_cookie reclaim = {
1424                 .zone = zone,
1425                 .priority = 0,
1426         };
1427
1428         excess = soft_limit_excess(root_memcg);
1429
1430         while (1) {
1431                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1432                 if (!victim) {
1433                         loop++;
1434                         if (loop >= 2) {
1435                                 /*
1436                                  * If we have not been able to reclaim
1437                                  * anything, it might because there are
1438                                  * no reclaimable pages under this hierarchy
1439                                  */
1440                                 if (!total)
1441                                         break;
1442                                 /*
1443                                  * We want to do more targeted reclaim.
1444                                  * excess >> 2 is not to excessive so as to
1445                                  * reclaim too much, nor too less that we keep
1446                                  * coming back to reclaim from this cgroup
1447                                  */
1448                                 if (total >= (excess >> 2) ||
1449                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1450                                         break;
1451                         }
1452                         continue;
1453                 }
1454                 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1455                                                      zone, &nr_scanned);
1456                 *total_scanned += nr_scanned;
1457                 if (!soft_limit_excess(root_memcg))
1458                         break;
1459         }
1460         mem_cgroup_iter_break(root_memcg, victim);
1461         return total;
1462 }
1463
1464 #ifdef CONFIG_LOCKDEP
1465 static struct lockdep_map memcg_oom_lock_dep_map = {
1466         .name = "memcg_oom_lock",
1467 };
1468 #endif
1469
1470 static DEFINE_SPINLOCK(memcg_oom_lock);
1471
1472 /*
1473  * Check OOM-Killer is already running under our hierarchy.
1474  * If someone is running, return false.
1475  */
1476 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1477 {
1478         struct mem_cgroup *iter, *failed = NULL;
1479
1480         spin_lock(&memcg_oom_lock);
1481
1482         for_each_mem_cgroup_tree(iter, memcg) {
1483                 if (iter->oom_lock) {
1484                         /*
1485                          * this subtree of our hierarchy is already locked
1486                          * so we cannot give a lock.
1487                          */
1488                         failed = iter;
1489                         mem_cgroup_iter_break(memcg, iter);
1490                         break;
1491                 } else
1492                         iter->oom_lock = true;
1493         }
1494
1495         if (failed) {
1496                 /*
1497                  * OK, we failed to lock the whole subtree so we have
1498                  * to clean up what we set up to the failing subtree
1499                  */
1500                 for_each_mem_cgroup_tree(iter, memcg) {
1501                         if (iter == failed) {
1502                                 mem_cgroup_iter_break(memcg, iter);
1503                                 break;
1504                         }
1505                         iter->oom_lock = false;
1506                 }
1507         } else
1508                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1509
1510         spin_unlock(&memcg_oom_lock);
1511
1512         return !failed;
1513 }
1514
1515 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1516 {
1517         struct mem_cgroup *iter;
1518
1519         spin_lock(&memcg_oom_lock);
1520         mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1521         for_each_mem_cgroup_tree(iter, memcg)
1522                 iter->oom_lock = false;
1523         spin_unlock(&memcg_oom_lock);
1524 }
1525
1526 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1527 {
1528         struct mem_cgroup *iter;
1529
1530         spin_lock(&memcg_oom_lock);
1531         for_each_mem_cgroup_tree(iter, memcg)
1532                 iter->under_oom++;
1533         spin_unlock(&memcg_oom_lock);
1534 }
1535
1536 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1537 {
1538         struct mem_cgroup *iter;
1539
1540         /*
1541          * When a new child is created while the hierarchy is under oom,
1542          * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1543          */
1544         spin_lock(&memcg_oom_lock);
1545         for_each_mem_cgroup_tree(iter, memcg)
1546                 if (iter->under_oom > 0)
1547                         iter->under_oom--;
1548         spin_unlock(&memcg_oom_lock);
1549 }
1550
1551 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1552
1553 struct oom_wait_info {
1554         struct mem_cgroup *memcg;
1555         wait_queue_t    wait;
1556 };
1557
1558 static int memcg_oom_wake_function(wait_queue_t *wait,
1559         unsigned mode, int sync, void *arg)
1560 {
1561         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1562         struct mem_cgroup *oom_wait_memcg;
1563         struct oom_wait_info *oom_wait_info;
1564
1565         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1566         oom_wait_memcg = oom_wait_info->memcg;
1567
1568         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1569             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1570                 return 0;
1571         return autoremove_wake_function(wait, mode, sync, arg);
1572 }
1573
1574 static void memcg_oom_recover(struct mem_cgroup *memcg)
1575 {
1576         /*
1577          * For the following lockless ->under_oom test, the only required
1578          * guarantee is that it must see the state asserted by an OOM when
1579          * this function is called as a result of userland actions
1580          * triggered by the notification of the OOM.  This is trivially
1581          * achieved by invoking mem_cgroup_mark_under_oom() before
1582          * triggering notification.
1583          */
1584         if (memcg && memcg->under_oom)
1585                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1586 }
1587
1588 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1589 {
1590         if (!current->memcg_may_oom)
1591                 return;
1592         /*
1593          * We are in the middle of the charge context here, so we
1594          * don't want to block when potentially sitting on a callstack
1595          * that holds all kinds of filesystem and mm locks.
1596          *
1597          * Also, the caller may handle a failed allocation gracefully
1598          * (like optional page cache readahead) and so an OOM killer
1599          * invocation might not even be necessary.
1600          *
1601          * That's why we don't do anything here except remember the
1602          * OOM context and then deal with it at the end of the page
1603          * fault when the stack is unwound, the locks are released,
1604          * and when we know whether the fault was overall successful.
1605          */
1606         css_get(&memcg->css);
1607         current->memcg_in_oom = memcg;
1608         current->memcg_oom_gfp_mask = mask;
1609         current->memcg_oom_order = order;
1610 }
1611
1612 /**
1613  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1614  * @handle: actually kill/wait or just clean up the OOM state
1615  *
1616  * This has to be called at the end of a page fault if the memcg OOM
1617  * handler was enabled.
1618  *
1619  * Memcg supports userspace OOM handling where failed allocations must
1620  * sleep on a waitqueue until the userspace task resolves the
1621  * situation.  Sleeping directly in the charge context with all kinds
1622  * of locks held is not a good idea, instead we remember an OOM state
1623  * in the task and mem_cgroup_oom_synchronize() has to be called at
1624  * the end of the page fault to complete the OOM handling.
1625  *
1626  * Returns %true if an ongoing memcg OOM situation was detected and
1627  * completed, %false otherwise.
1628  */
1629 bool mem_cgroup_oom_synchronize(bool handle)
1630 {
1631         struct mem_cgroup *memcg = current->memcg_in_oom;
1632         struct oom_wait_info owait;
1633         bool locked;
1634
1635         /* OOM is global, do not handle */
1636         if (!memcg)
1637                 return false;
1638
1639         if (!handle || oom_killer_disabled)
1640                 goto cleanup;
1641
1642         owait.memcg = memcg;
1643         owait.wait.flags = 0;
1644         owait.wait.func = memcg_oom_wake_function;
1645         owait.wait.private = current;
1646         INIT_LIST_HEAD(&owait.wait.task_list);
1647
1648         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1649         mem_cgroup_mark_under_oom(memcg);
1650
1651         locked = mem_cgroup_oom_trylock(memcg);
1652
1653         if (locked)
1654                 mem_cgroup_oom_notify(memcg);
1655
1656         if (locked && !memcg->oom_kill_disable) {
1657                 mem_cgroup_unmark_under_oom(memcg);
1658                 finish_wait(&memcg_oom_waitq, &owait.wait);
1659                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1660                                          current->memcg_oom_order);
1661         } else {
1662                 schedule();
1663                 mem_cgroup_unmark_under_oom(memcg);
1664                 finish_wait(&memcg_oom_waitq, &owait.wait);
1665         }
1666
1667         if (locked) {
1668                 mem_cgroup_oom_unlock(memcg);
1669                 /*
1670                  * There is no guarantee that an OOM-lock contender
1671                  * sees the wakeups triggered by the OOM kill
1672                  * uncharges.  Wake any sleepers explicitely.
1673                  */
1674                 memcg_oom_recover(memcg);
1675         }
1676 cleanup:
1677         current->memcg_in_oom = NULL;
1678         css_put(&memcg->css);
1679         return true;
1680 }
1681
1682 /**
1683  * lock_page_memcg - lock a page->mem_cgroup binding
1684  * @page: the page
1685  *
1686  * This function protects unlocked LRU pages from being moved to
1687  * another cgroup and stabilizes their page->mem_cgroup binding.
1688  */
1689 void lock_page_memcg(struct page *page)
1690 {
1691         struct mem_cgroup *memcg;
1692         unsigned long flags;
1693
1694         /*
1695          * The RCU lock is held throughout the transaction.  The fast
1696          * path can get away without acquiring the memcg->move_lock
1697          * because page moving starts with an RCU grace period.
1698          */
1699         rcu_read_lock();
1700
1701         if (mem_cgroup_disabled())
1702                 return;
1703 again:
1704         memcg = page->mem_cgroup;
1705         if (unlikely(!memcg))
1706                 return;
1707
1708         if (atomic_read(&memcg->moving_account) <= 0)
1709                 return;
1710
1711         spin_lock_irqsave(&memcg->move_lock, flags);
1712         if (memcg != page->mem_cgroup) {
1713                 spin_unlock_irqrestore(&memcg->move_lock, flags);
1714                 goto again;
1715         }
1716
1717         /*
1718          * When charge migration first begins, we can have locked and
1719          * unlocked page stat updates happening concurrently.  Track
1720          * the task who has the lock for unlock_page_memcg().
1721          */
1722         memcg->move_lock_task = current;
1723         memcg->move_lock_flags = flags;
1724
1725         return;
1726 }
1727 EXPORT_SYMBOL(lock_page_memcg);
1728
1729 /**
1730  * unlock_page_memcg - unlock a page->mem_cgroup binding
1731  * @page: the page
1732  */
1733 void unlock_page_memcg(struct page *page)
1734 {
1735         struct mem_cgroup *memcg = page->mem_cgroup;
1736
1737         if (memcg && memcg->move_lock_task == current) {
1738                 unsigned long flags = memcg->move_lock_flags;
1739
1740                 memcg->move_lock_task = NULL;
1741                 memcg->move_lock_flags = 0;
1742
1743                 spin_unlock_irqrestore(&memcg->move_lock, flags);
1744         }
1745
1746         rcu_read_unlock();
1747 }
1748 EXPORT_SYMBOL(unlock_page_memcg);
1749
1750 /*
1751  * size of first charge trial. "32" comes from vmscan.c's magic value.
1752  * TODO: maybe necessary to use big numbers in big irons.
1753  */
1754 #define CHARGE_BATCH    32U
1755 struct memcg_stock_pcp {
1756         struct mem_cgroup *cached; /* this never be root cgroup */
1757         unsigned int nr_pages;
1758         struct work_struct work;
1759         unsigned long flags;
1760 #define FLUSHING_CACHED_CHARGE  0
1761 };
1762 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1763 static DEFINE_MUTEX(percpu_charge_mutex);
1764
1765 /**
1766  * consume_stock: Try to consume stocked charge on this cpu.
1767  * @memcg: memcg to consume from.
1768  * @nr_pages: how many pages to charge.
1769  *
1770  * The charges will only happen if @memcg matches the current cpu's memcg
1771  * stock, and at least @nr_pages are available in that stock.  Failure to
1772  * service an allocation will refill the stock.
1773  *
1774  * returns true if successful, false otherwise.
1775  */
1776 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1777 {
1778         struct memcg_stock_pcp *stock;
1779         bool ret = false;
1780
1781         if (nr_pages > CHARGE_BATCH)
1782                 return ret;
1783
1784         stock = &get_cpu_var(memcg_stock);
1785         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1786                 stock->nr_pages -= nr_pages;
1787                 ret = true;
1788         }
1789         put_cpu_var(memcg_stock);
1790         return ret;
1791 }
1792
1793 /*
1794  * Returns stocks cached in percpu and reset cached information.
1795  */
1796 static void drain_stock(struct memcg_stock_pcp *stock)
1797 {
1798         struct mem_cgroup *old = stock->cached;
1799
1800         if (stock->nr_pages) {
1801                 page_counter_uncharge(&old->memory, stock->nr_pages);
1802                 if (do_memsw_account())
1803                         page_counter_uncharge(&old->memsw, stock->nr_pages);
1804                 css_put_many(&old->css, stock->nr_pages);
1805                 stock->nr_pages = 0;
1806         }
1807         stock->cached = NULL;
1808 }
1809
1810 /*
1811  * This must be called under preempt disabled or must be called by
1812  * a thread which is pinned to local cpu.
1813  */
1814 static void drain_local_stock(struct work_struct *dummy)
1815 {
1816         struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1817         drain_stock(stock);
1818         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1819 }
1820
1821 /*
1822  * Cache charges(val) to local per_cpu area.
1823  * This will be consumed by consume_stock() function, later.
1824  */
1825 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1826 {
1827         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1828
1829         if (stock->cached != memcg) { /* reset if necessary */
1830                 drain_stock(stock);
1831                 stock->cached = memcg;
1832         }
1833         stock->nr_pages += nr_pages;
1834         put_cpu_var(memcg_stock);
1835 }
1836
1837 /*
1838  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1839  * of the hierarchy under it.
1840  */
1841 static void drain_all_stock(struct mem_cgroup *root_memcg)
1842 {
1843         int cpu, curcpu;
1844
1845         /* If someone's already draining, avoid adding running more workers. */
1846         if (!mutex_trylock(&percpu_charge_mutex))
1847                 return;
1848         /* Notify other cpus that system-wide "drain" is running */
1849         get_online_cpus();
1850         curcpu = get_cpu();
1851         for_each_online_cpu(cpu) {
1852                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1853                 struct mem_cgroup *memcg;
1854
1855                 memcg = stock->cached;
1856                 if (!memcg || !stock->nr_pages)
1857                         continue;
1858                 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1859                         continue;
1860                 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1861                         if (cpu == curcpu)
1862                                 drain_local_stock(&stock->work);
1863                         else
1864                                 schedule_work_on(cpu, &stock->work);
1865                 }
1866         }
1867         put_cpu();
1868         put_online_cpus();
1869         mutex_unlock(&percpu_charge_mutex);
1870 }
1871
1872 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1873                                         unsigned long action,
1874                                         void *hcpu)
1875 {
1876         int cpu = (unsigned long)hcpu;
1877         struct memcg_stock_pcp *stock;
1878
1879         if (action == CPU_ONLINE)
1880                 return NOTIFY_OK;
1881
1882         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1883                 return NOTIFY_OK;
1884
1885         stock = &per_cpu(memcg_stock, cpu);
1886         drain_stock(stock);
1887         return NOTIFY_OK;
1888 }
1889
1890 static void reclaim_high(struct mem_cgroup *memcg,
1891                          unsigned int nr_pages,
1892                          gfp_t gfp_mask)
1893 {
1894         do {
1895                 if (page_counter_read(&memcg->memory) <= memcg->high)
1896                         continue;
1897                 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1898                 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1899         } while ((memcg = parent_mem_cgroup(memcg)));
1900 }
1901
1902 static void high_work_func(struct work_struct *work)
1903 {
1904         struct mem_cgroup *memcg;
1905
1906         memcg = container_of(work, struct mem_cgroup, high_work);
1907         reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1908 }
1909
1910 /*
1911  * Scheduled by try_charge() to be executed from the userland return path
1912  * and reclaims memory over the high limit.
1913  */
1914 void mem_cgroup_handle_over_high(void)
1915 {
1916         unsigned int nr_pages = current->memcg_nr_pages_over_high;
1917         struct mem_cgroup *memcg;
1918
1919         if (likely(!nr_pages))
1920                 return;
1921
1922         memcg = get_mem_cgroup_from_mm(current->mm);
1923         reclaim_high(memcg, nr_pages, GFP_KERNEL);
1924         css_put(&memcg->css);
1925         current->memcg_nr_pages_over_high = 0;
1926 }
1927
1928 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1929                       unsigned int nr_pages)
1930 {
1931         unsigned int batch = max(CHARGE_BATCH, nr_pages);
1932         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1933         struct mem_cgroup *mem_over_limit;
1934         struct page_counter *counter;
1935         unsigned long nr_reclaimed;
1936         bool may_swap = true;
1937         bool drained = false;
1938
1939         if (mem_cgroup_is_root(memcg))
1940                 return 0;
1941 retry:
1942         if (consume_stock(memcg, nr_pages))
1943                 return 0;
1944
1945         if (!do_memsw_account() ||
1946             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1947                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1948                         goto done_restock;
1949                 if (do_memsw_account())
1950                         page_counter_uncharge(&memcg->memsw, batch);
1951                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1952         } else {
1953                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1954                 may_swap = false;
1955         }
1956
1957         if (batch > nr_pages) {
1958                 batch = nr_pages;
1959                 goto retry;
1960         }
1961
1962         /*
1963          * Unlike in global OOM situations, memcg is not in a physical
1964          * memory shortage.  Allow dying and OOM-killed tasks to
1965          * bypass the last charges so that they can exit quickly and
1966          * free their memory.
1967          */
1968         if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1969                      fatal_signal_pending(current) ||
1970                      current->flags & PF_EXITING))
1971                 goto force;
1972
1973         if (unlikely(task_in_memcg_oom(current)))
1974                 goto nomem;
1975
1976         if (!gfpflags_allow_blocking(gfp_mask))
1977                 goto nomem;
1978
1979         mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1980
1981         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1982                                                     gfp_mask, may_swap);
1983
1984         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1985                 goto retry;
1986
1987         if (!drained) {
1988                 drain_all_stock(mem_over_limit);
1989                 drained = true;
1990                 goto retry;
1991         }
1992
1993         if (gfp_mask & __GFP_NORETRY)
1994                 goto nomem;
1995         /*
1996          * Even though the limit is exceeded at this point, reclaim
1997          * may have been able to free some pages.  Retry the charge
1998          * before killing the task.
1999          *
2000          * Only for regular pages, though: huge pages are rather
2001          * unlikely to succeed so close to the limit, and we fall back
2002          * to regular pages anyway in case of failure.
2003          */
2004         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2005                 goto retry;
2006         /*
2007          * At task move, charge accounts can be doubly counted. So, it's
2008          * better to wait until the end of task_move if something is going on.
2009          */
2010         if (mem_cgroup_wait_acct_move(mem_over_limit))
2011                 goto retry;
2012
2013         if (nr_retries--)
2014                 goto retry;
2015
2016         if (gfp_mask & __GFP_NOFAIL)
2017                 goto force;
2018
2019         if (fatal_signal_pending(current))
2020                 goto force;
2021
2022         mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2023
2024         mem_cgroup_oom(mem_over_limit, gfp_mask,
2025                        get_order(nr_pages * PAGE_SIZE));
2026 nomem:
2027         if (!(gfp_mask & __GFP_NOFAIL))
2028                 return -ENOMEM;
2029 force:
2030         /*
2031          * The allocation either can't fail or will lead to more memory
2032          * being freed very soon.  Allow memory usage go over the limit
2033          * temporarily by force charging it.
2034          */
2035         page_counter_charge(&memcg->memory, nr_pages);
2036         if (do_memsw_account())
2037                 page_counter_charge(&memcg->memsw, nr_pages);
2038         css_get_many(&memcg->css, nr_pages);
2039
2040         return 0;
2041
2042 done_restock:
2043         css_get_many(&memcg->css, batch);
2044         if (batch > nr_pages)
2045                 refill_stock(memcg, batch - nr_pages);
2046
2047         /*
2048          * If the hierarchy is above the normal consumption range, schedule
2049          * reclaim on returning to userland.  We can perform reclaim here
2050          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2051          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2052          * not recorded as it most likely matches current's and won't
2053          * change in the meantime.  As high limit is checked again before
2054          * reclaim, the cost of mismatch is negligible.
2055          */
2056         do {
2057                 if (page_counter_read(&memcg->memory) > memcg->high) {
2058                         /* Don't bother a random interrupted task */
2059                         if (in_interrupt()) {
2060                                 schedule_work(&memcg->high_work);
2061                                 break;
2062                         }
2063                         current->memcg_nr_pages_over_high += batch;
2064                         set_notify_resume(current);
2065                         break;
2066                 }
2067         } while ((memcg = parent_mem_cgroup(memcg)));
2068
2069         return 0;
2070 }
2071
2072 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2073 {
2074         if (mem_cgroup_is_root(memcg))
2075                 return;
2076
2077         page_counter_uncharge(&memcg->memory, nr_pages);
2078         if (do_memsw_account())
2079                 page_counter_uncharge(&memcg->memsw, nr_pages);
2080
2081         css_put_many(&memcg->css, nr_pages);
2082 }
2083
2084 static void lock_page_lru(struct page *page, int *isolated)
2085 {
2086         struct zone *zone = page_zone(page);
2087
2088         spin_lock_irq(&zone->lru_lock);
2089         if (PageLRU(page)) {
2090                 struct lruvec *lruvec;
2091
2092                 lruvec = mem_cgroup_page_lruvec(page, zone);
2093                 ClearPageLRU(page);
2094                 del_page_from_lru_list(page, lruvec, page_lru(page));
2095                 *isolated = 1;
2096         } else
2097                 *isolated = 0;
2098 }
2099
2100 static void unlock_page_lru(struct page *page, int isolated)
2101 {
2102         struct zone *zone = page_zone(page);
2103
2104         if (isolated) {
2105                 struct lruvec *lruvec;
2106
2107                 lruvec = mem_cgroup_page_lruvec(page, zone);
2108                 VM_BUG_ON_PAGE(PageLRU(page), page);
2109                 SetPageLRU(page);
2110                 add_page_to_lru_list(page, lruvec, page_lru(page));
2111         }
2112         spin_unlock_irq(&zone->lru_lock);
2113 }
2114
2115 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2116                           bool lrucare)
2117 {
2118         int isolated;
2119
2120         VM_BUG_ON_PAGE(page->mem_cgroup, page);
2121
2122         /*
2123          * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2124          * may already be on some other mem_cgroup's LRU.  Take care of it.
2125          */
2126         if (lrucare)
2127                 lock_page_lru(page, &isolated);
2128
2129         /*
2130          * Nobody should be changing or seriously looking at
2131          * page->mem_cgroup at this point:
2132          *
2133          * - the page is uncharged
2134          *
2135          * - the page is off-LRU
2136          *
2137          * - an anonymous fault has exclusive page access, except for
2138          *   a locked page table
2139          *
2140          * - a page cache insertion, a swapin fault, or a migration
2141          *   have the page locked
2142          */
2143         page->mem_cgroup = memcg;
2144
2145         if (lrucare)
2146                 unlock_page_lru(page, isolated);
2147 }
2148
2149 #ifndef CONFIG_SLOB
2150 static int memcg_alloc_cache_id(void)
2151 {
2152         int id, size;
2153         int err;
2154
2155         id = ida_simple_get(&memcg_cache_ida,
2156                             0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2157         if (id < 0)
2158                 return id;
2159
2160         if (id < memcg_nr_cache_ids)
2161                 return id;
2162
2163         /*
2164          * There's no space for the new id in memcg_caches arrays,
2165          * so we have to grow them.
2166          */
2167         down_write(&memcg_cache_ids_sem);
2168
2169         size = 2 * (id + 1);
2170         if (size < MEMCG_CACHES_MIN_SIZE)
2171                 size = MEMCG_CACHES_MIN_SIZE;
2172         else if (size > MEMCG_CACHES_MAX_SIZE)
2173                 size = MEMCG_CACHES_MAX_SIZE;
2174
2175         err = memcg_update_all_caches(size);
2176         if (!err)
2177                 err = memcg_update_all_list_lrus(size);
2178         if (!err)
2179                 memcg_nr_cache_ids = size;
2180
2181         up_write(&memcg_cache_ids_sem);
2182
2183         if (err) {
2184                 ida_simple_remove(&memcg_cache_ida, id);
2185                 return err;
2186         }
2187         return id;
2188 }
2189
2190 static void memcg_free_cache_id(int id)
2191 {
2192         ida_simple_remove(&memcg_cache_ida, id);
2193 }
2194
2195 struct memcg_kmem_cache_create_work {
2196         struct mem_cgroup *memcg;
2197         struct kmem_cache *cachep;
2198         struct work_struct work;
2199 };
2200
2201 static void memcg_kmem_cache_create_func(struct work_struct *w)
2202 {
2203         struct memcg_kmem_cache_create_work *cw =
2204                 container_of(w, struct memcg_kmem_cache_create_work, work);
2205         struct mem_cgroup *memcg = cw->memcg;
2206         struct kmem_cache *cachep = cw->cachep;
2207
2208         memcg_create_kmem_cache(memcg, cachep);
2209
2210         css_put(&memcg->css);
2211         kfree(cw);
2212 }
2213
2214 /*
2215  * Enqueue the creation of a per-memcg kmem_cache.
2216  */
2217 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2218                                                struct kmem_cache *cachep)
2219 {
2220         struct memcg_kmem_cache_create_work *cw;
2221
2222         cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2223         if (!cw)
2224                 return;
2225
2226         css_get(&memcg->css);
2227
2228         cw->memcg = memcg;
2229         cw->cachep = cachep;
2230         INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2231
2232         schedule_work(&cw->work);
2233 }
2234
2235 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2236                                              struct kmem_cache *cachep)
2237 {
2238         /*
2239          * We need to stop accounting when we kmalloc, because if the
2240          * corresponding kmalloc cache is not yet created, the first allocation
2241          * in __memcg_schedule_kmem_cache_create will recurse.
2242          *
2243          * However, it is better to enclose the whole function. Depending on
2244          * the debugging options enabled, INIT_WORK(), for instance, can
2245          * trigger an allocation. This too, will make us recurse. Because at
2246          * this point we can't allow ourselves back into memcg_kmem_get_cache,
2247          * the safest choice is to do it like this, wrapping the whole function.
2248          */
2249         current->memcg_kmem_skip_account = 1;
2250         __memcg_schedule_kmem_cache_create(memcg, cachep);
2251         current->memcg_kmem_skip_account = 0;
2252 }
2253
2254 /*
2255  * Return the kmem_cache we're supposed to use for a slab allocation.
2256  * We try to use the current memcg's version of the cache.
2257  *
2258  * If the cache does not exist yet, if we are the first user of it,
2259  * we either create it immediately, if possible, or create it asynchronously
2260  * in a workqueue.
2261  * In the latter case, we will let the current allocation go through with
2262  * the original cache.
2263  *
2264  * Can't be called in interrupt context or from kernel threads.
2265  * This function needs to be called with rcu_read_lock() held.
2266  */
2267 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2268 {
2269         struct mem_cgroup *memcg;
2270         struct kmem_cache *memcg_cachep;
2271         int kmemcg_id;
2272
2273         VM_BUG_ON(!is_root_cache(cachep));
2274
2275         if (cachep->flags & SLAB_ACCOUNT)
2276                 gfp |= __GFP_ACCOUNT;
2277
2278         if (!(gfp & __GFP_ACCOUNT))
2279                 return cachep;
2280
2281         if (current->memcg_kmem_skip_account)
2282                 return cachep;
2283
2284         memcg = get_mem_cgroup_from_mm(current->mm);
2285         kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2286         if (kmemcg_id < 0)
2287                 goto out;
2288
2289         memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2290         if (likely(memcg_cachep))
2291                 return memcg_cachep;
2292
2293         /*
2294          * If we are in a safe context (can wait, and not in interrupt
2295          * context), we could be be predictable and return right away.
2296          * This would guarantee that the allocation being performed
2297          * already belongs in the new cache.
2298          *
2299          * However, there are some clashes that can arrive from locking.
2300          * For instance, because we acquire the slab_mutex while doing
2301          * memcg_create_kmem_cache, this means no further allocation
2302          * could happen with the slab_mutex held. So it's better to
2303          * defer everything.
2304          */
2305         memcg_schedule_kmem_cache_create(memcg, cachep);
2306 out:
2307         css_put(&memcg->css);
2308         return cachep;
2309 }
2310
2311 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2312 {
2313         if (!is_root_cache(cachep))
2314                 css_put(&cachep->memcg_params.memcg->css);
2315 }
2316
2317 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2318                               struct mem_cgroup *memcg)
2319 {
2320         unsigned int nr_pages = 1 << order;
2321         struct page_counter *counter;
2322         int ret;
2323
2324         ret = try_charge(memcg, gfp, nr_pages);
2325         if (ret)
2326                 return ret;
2327
2328         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2329             !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2330                 cancel_charge(memcg, nr_pages);
2331                 return -ENOMEM;
2332         }
2333
2334         page->mem_cgroup = memcg;
2335
2336         return 0;
2337 }
2338
2339 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2340 {
2341         struct mem_cgroup *memcg;
2342         int ret = 0;
2343
2344         memcg = get_mem_cgroup_from_mm(current->mm);
2345         if (!mem_cgroup_is_root(memcg))
2346                 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2347         css_put(&memcg->css);
2348         return ret;
2349 }
2350
2351 void __memcg_kmem_uncharge(struct page *page, int order)
2352 {
2353         struct mem_cgroup *memcg = page->mem_cgroup;
2354         unsigned int nr_pages = 1 << order;
2355
2356         if (!memcg)
2357                 return;
2358
2359         VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2360
2361         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2362                 page_counter_uncharge(&memcg->kmem, nr_pages);
2363
2364         page_counter_uncharge(&memcg->memory, nr_pages);
2365         if (do_memsw_account())
2366                 page_counter_uncharge(&memcg->memsw, nr_pages);
2367
2368         page->mem_cgroup = NULL;
2369         css_put_many(&memcg->css, nr_pages);
2370 }
2371 #endif /* !CONFIG_SLOB */
2372
2373 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2374
2375 /*
2376  * Because tail pages are not marked as "used", set it. We're under
2377  * zone->lru_lock and migration entries setup in all page mappings.
2378  */
2379 void mem_cgroup_split_huge_fixup(struct page *head)
2380 {
2381         int i;
2382
2383         if (mem_cgroup_disabled())
2384                 return;
2385
2386         for (i = 1; i < HPAGE_PMD_NR; i++)
2387                 head[i].mem_cgroup = head->mem_cgroup;
2388
2389         __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2390                        HPAGE_PMD_NR);
2391 }
2392 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2393
2394 #ifdef CONFIG_MEMCG_SWAP
2395 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2396                                          bool charge)
2397 {
2398         int val = (charge) ? 1 : -1;
2399         this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2400 }
2401
2402 /**
2403  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2404  * @entry: swap entry to be moved
2405  * @from:  mem_cgroup which the entry is moved from
2406  * @to:  mem_cgroup which the entry is moved to
2407  *
2408  * It succeeds only when the swap_cgroup's record for this entry is the same
2409  * as the mem_cgroup's id of @from.
2410  *
2411  * Returns 0 on success, -EINVAL on failure.
2412  *
2413  * The caller must have charged to @to, IOW, called page_counter_charge() about
2414  * both res and memsw, and called css_get().
2415  */
2416 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2417                                 struct mem_cgroup *from, struct mem_cgroup *to)
2418 {
2419         unsigned short old_id, new_id;
2420
2421         old_id = mem_cgroup_id(from);
2422         new_id = mem_cgroup_id(to);
2423
2424         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2425                 mem_cgroup_swap_statistics(from, false);
2426                 mem_cgroup_swap_statistics(to, true);
2427                 return 0;
2428         }
2429         return -EINVAL;
2430 }
2431 #else
2432 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2433                                 struct mem_cgroup *from, struct mem_cgroup *to)
2434 {
2435         return -EINVAL;
2436 }
2437 #endif
2438
2439 static DEFINE_MUTEX(memcg_limit_mutex);
2440
2441 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2442                                    unsigned long limit)
2443 {
2444         unsigned long curusage;
2445         unsigned long oldusage;
2446         bool enlarge = false;
2447         int retry_count;
2448         int ret;
2449
2450         /*
2451          * For keeping hierarchical_reclaim simple, how long we should retry
2452          * is depends on callers. We set our retry-count to be function
2453          * of # of children which we should visit in this loop.
2454          */
2455         retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2456                       mem_cgroup_count_children(memcg);
2457
2458         oldusage = page_counter_read(&memcg->memory);
2459
2460         do {
2461                 if (signal_pending(current)) {
2462                         ret = -EINTR;
2463                         break;
2464                 }
2465
2466                 mutex_lock(&memcg_limit_mutex);
2467                 if (limit > memcg->memsw.limit) {
2468                         mutex_unlock(&memcg_limit_mutex);
2469                         ret = -EINVAL;
2470                         break;
2471                 }
2472                 if (limit > memcg->memory.limit)
2473                         enlarge = true;
2474                 ret = page_counter_limit(&memcg->memory, limit);
2475                 mutex_unlock(&memcg_limit_mutex);
2476
2477                 if (!ret)
2478                         break;
2479
2480                 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2481
2482                 curusage = page_counter_read(&memcg->memory);
2483                 /* Usage is reduced ? */
2484                 if (curusage >= oldusage)
2485                         retry_count--;
2486                 else
2487                         oldusage = curusage;
2488         } while (retry_count);
2489
2490         if (!ret && enlarge)
2491                 memcg_oom_recover(memcg);
2492
2493         return ret;
2494 }
2495
2496 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2497                                          unsigned long limit)
2498 {
2499         unsigned long curusage;
2500         unsigned long oldusage;
2501         bool enlarge = false;
2502         int retry_count;
2503         int ret;
2504
2505         /* see mem_cgroup_resize_res_limit */
2506         retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2507                       mem_cgroup_count_children(memcg);
2508
2509         oldusage = page_counter_read(&memcg->memsw);
2510
2511         do {
2512                 if (signal_pending(current)) {
2513                         ret = -EINTR;
2514                         break;
2515                 }
2516
2517                 mutex_lock(&memcg_limit_mutex);
2518                 if (limit < memcg->memory.limit) {
2519                         mutex_unlock(&memcg_limit_mutex);
2520                         ret = -EINVAL;
2521                         break;
2522                 }
2523                 if (limit > memcg->memsw.limit)
2524                         enlarge = true;
2525                 ret = page_counter_limit(&memcg->memsw, limit);
2526                 mutex_unlock(&memcg_limit_mutex);
2527
2528                 if (!ret)
2529                         break;
2530
2531                 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2532
2533                 curusage = page_counter_read(&memcg->memsw);
2534                 /* Usage is reduced ? */
2535                 if (curusage >= oldusage)
2536                         retry_count--;
2537                 else
2538                         oldusage = curusage;
2539         } while (retry_count);
2540
2541         if (!ret && enlarge)
2542                 memcg_oom_recover(memcg);
2543
2544         return ret;
2545 }
2546
2547 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2548                                             gfp_t gfp_mask,
2549                                             unsigned long *total_scanned)
2550 {
2551         unsigned long nr_reclaimed = 0;
2552         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2553         unsigned long reclaimed;
2554         int loop = 0;
2555         struct mem_cgroup_tree_per_zone *mctz;
2556         unsigned long excess;
2557         unsigned long nr_scanned;
2558
2559         if (order > 0)
2560                 return 0;
2561
2562         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2563         /*
2564          * This loop can run a while, specially if mem_cgroup's continuously
2565          * keep exceeding their soft limit and putting the system under
2566          * pressure
2567          */
2568         do {
2569                 if (next_mz)
2570                         mz = next_mz;
2571                 else
2572                         mz = mem_cgroup_largest_soft_limit_node(mctz);
2573                 if (!mz)
2574                         break;
2575
2576                 nr_scanned = 0;
2577                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2578                                                     gfp_mask, &nr_scanned);
2579                 nr_reclaimed += reclaimed;
2580                 *total_scanned += nr_scanned;
2581                 spin_lock_irq(&mctz->lock);
2582                 __mem_cgroup_remove_exceeded(mz, mctz);
2583
2584                 /*
2585                  * If we failed to reclaim anything from this memory cgroup
2586                  * it is time to move on to the next cgroup
2587                  */
2588                 next_mz = NULL;
2589                 if (!reclaimed)
2590                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2591
2592                 excess = soft_limit_excess(mz->memcg);
2593                 /*
2594                  * One school of thought says that we should not add
2595                  * back the node to the tree if reclaim returns 0.
2596                  * But our reclaim could return 0, simply because due
2597                  * to priority we are exposing a smaller subset of
2598                  * memory to reclaim from. Consider this as a longer
2599                  * term TODO.
2600                  */
2601                 /* If excess == 0, no tree ops */
2602                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2603                 spin_unlock_irq(&mctz->lock);
2604                 css_put(&mz->memcg->css);
2605                 loop++;
2606                 /*
2607                  * Could not reclaim anything and there are no more
2608                  * mem cgroups to try or we seem to be looping without
2609                  * reclaiming anything.
2610                  */
2611                 if (!nr_reclaimed &&
2612                         (next_mz == NULL ||
2613                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2614                         break;
2615         } while (!nr_reclaimed);
2616         if (next_mz)
2617                 css_put(&next_mz->memcg->css);
2618         return nr_reclaimed;
2619 }
2620
2621 /*
2622  * Test whether @memcg has children, dead or alive.  Note that this
2623  * function doesn't care whether @memcg has use_hierarchy enabled and
2624  * returns %true if there are child csses according to the cgroup
2625  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2626  */
2627 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2628 {
2629         bool ret;
2630
2631         rcu_read_lock();
2632         ret = css_next_child(NULL, &memcg->css);
2633         rcu_read_unlock();
2634         return ret;
2635 }
2636
2637 /*
2638  * Reclaims as many pages from the given memcg as possible and moves
2639  * the rest to the parent.
2640  *
2641  * Caller is responsible for holding css reference for memcg.
2642  */
2643 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2644 {
2645         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2646
2647         /* we call try-to-free pages for make this cgroup empty */
2648         lru_add_drain_all();
2649         /* try to free all pages in this cgroup */
2650         while (nr_retries && page_counter_read(&memcg->memory)) {
2651                 int progress;
2652
2653                 if (signal_pending(current))
2654                         return -EINTR;
2655
2656                 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2657                                                         GFP_KERNEL, true);
2658                 if (!progress) {
2659                         nr_retries--;
2660                         /* maybe some writeback is necessary */
2661                         congestion_wait(BLK_RW_ASYNC, HZ/10);
2662                 }
2663
2664         }
2665
2666         return 0;
2667 }
2668
2669 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2670                                             char *buf, size_t nbytes,
2671                                             loff_t off)
2672 {
2673         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2674
2675         if (mem_cgroup_is_root(memcg))
2676                 return -EINVAL;
2677         return mem_cgroup_force_empty(memcg) ?: nbytes;
2678 }
2679
2680 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2681                                      struct cftype *cft)
2682 {
2683         return mem_cgroup_from_css(css)->use_hierarchy;
2684 }
2685
2686 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2687                                       struct cftype *cft, u64 val)
2688 {
2689         int retval = 0;
2690         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2691         struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2692
2693         if (memcg->use_hierarchy == val)
2694                 return 0;
2695
2696         /*
2697          * If parent's use_hierarchy is set, we can't make any modifications
2698          * in the child subtrees. If it is unset, then the change can
2699          * occur, provided the current cgroup has no children.
2700          *
2701          * For the root cgroup, parent_mem is NULL, we allow value to be
2702          * set if there are no children.
2703          */
2704         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2705                                 (val == 1 || val == 0)) {
2706                 if (!memcg_has_children(memcg))
2707                         memcg->use_hierarchy = val;
2708                 else
2709                         retval = -EBUSY;
2710         } else
2711                 retval = -EINVAL;
2712
2713         return retval;
2714 }
2715
2716 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2717 {
2718         struct mem_cgroup *iter;
2719         int i;
2720
2721         memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2722
2723         for_each_mem_cgroup_tree(iter, memcg) {
2724                 for (i = 0; i < MEMCG_NR_STAT; i++)
2725                         stat[i] += mem_cgroup_read_stat(iter, i);
2726         }
2727 }
2728
2729 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2730 {
2731         struct mem_cgroup *iter;
2732         int i;
2733
2734         memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2735
2736         for_each_mem_cgroup_tree(iter, memcg) {
2737                 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2738                         events[i] += mem_cgroup_read_events(iter, i);
2739         }
2740 }
2741
2742 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2743 {
2744         unsigned long val = 0;
2745
2746         if (mem_cgroup_is_root(memcg)) {
2747                 struct mem_cgroup *iter;
2748
2749                 for_each_mem_cgroup_tree(iter, memcg) {
2750                         val += mem_cgroup_read_stat(iter,
2751                                         MEM_CGROUP_STAT_CACHE);
2752                         val += mem_cgroup_read_stat(iter,
2753                                         MEM_CGROUP_STAT_RSS);
2754                         if (swap)
2755                                 val += mem_cgroup_read_stat(iter,
2756                                                 MEM_CGROUP_STAT_SWAP);
2757                 }
2758         } else {
2759                 if (!swap)
2760                         val = page_counter_read(&memcg->memory);
2761                 else
2762                         val = page_counter_read(&memcg->memsw);
2763         }
2764         return val;
2765 }
2766
2767 enum {
2768         RES_USAGE,
2769         RES_LIMIT,
2770         RES_MAX_USAGE,
2771         RES_FAILCNT,
2772         RES_SOFT_LIMIT,
2773 };
2774
2775 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2776                                struct cftype *cft)
2777 {
2778         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2779         struct page_counter *counter;
2780
2781         switch (MEMFILE_TYPE(cft->private)) {
2782         case _MEM:
2783                 counter = &memcg->memory;
2784                 break;
2785         case _MEMSWAP:
2786                 counter = &memcg->memsw;
2787                 break;
2788         case _KMEM:
2789                 counter = &memcg->kmem;
2790                 break;
2791         case _TCP:
2792                 counter = &memcg->tcpmem;
2793                 break;
2794         default:
2795                 BUG();
2796         }
2797
2798         switch (MEMFILE_ATTR(cft->private)) {
2799         case RES_USAGE:
2800                 if (counter == &memcg->memory)
2801                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2802                 if (counter == &memcg->memsw)
2803                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2804                 return (u64)page_counter_read(counter) * PAGE_SIZE;
2805         case RES_LIMIT:
2806                 return (u64)counter->limit * PAGE_SIZE;
2807         case RES_MAX_USAGE:
2808                 return (u64)counter->watermark * PAGE_SIZE;
2809         case RES_FAILCNT:
2810                 return counter->failcnt;
2811         case RES_SOFT_LIMIT:
2812                 return (u64)memcg->soft_limit * PAGE_SIZE;
2813         default:
2814                 BUG();
2815         }
2816 }
2817
2818 #ifndef CONFIG_SLOB
2819 static int memcg_online_kmem(struct mem_cgroup *memcg)
2820 {
2821         int memcg_id;
2822
2823         if (cgroup_memory_nokmem)
2824                 return 0;
2825
2826         BUG_ON(memcg->kmemcg_id >= 0);
2827         BUG_ON(memcg->kmem_state);
2828
2829         memcg_id = memcg_alloc_cache_id();
2830         if (memcg_id < 0)
2831                 return memcg_id;
2832
2833         static_branch_inc(&memcg_kmem_enabled_key);
2834         /*
2835          * A memory cgroup is considered kmem-online as soon as it gets
2836          * kmemcg_id. Setting the id after enabling static branching will
2837          * guarantee no one starts accounting before all call sites are
2838          * patched.
2839          */
2840         memcg->kmemcg_id = memcg_id;
2841         memcg->kmem_state = KMEM_ONLINE;
2842
2843         return 0;
2844 }
2845
2846 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2847 {
2848         struct cgroup_subsys_state *css;
2849         struct mem_cgroup *parent, *child;
2850         int kmemcg_id;
2851
2852         if (memcg->kmem_state != KMEM_ONLINE)
2853                 return;
2854         /*
2855          * Clear the online state before clearing memcg_caches array
2856          * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2857          * guarantees that no cache will be created for this cgroup
2858          * after we are done (see memcg_create_kmem_cache()).
2859          */
2860         memcg->kmem_state = KMEM_ALLOCATED;
2861
2862         memcg_deactivate_kmem_caches(memcg);
2863
2864         kmemcg_id = memcg->kmemcg_id;
2865         BUG_ON(kmemcg_id < 0);
2866
2867         parent = parent_mem_cgroup(memcg);
2868         if (!parent)
2869                 parent = root_mem_cgroup;
2870
2871         /*
2872          * Change kmemcg_id of this cgroup and all its descendants to the
2873          * parent's id, and then move all entries from this cgroup's list_lrus
2874          * to ones of the parent. After we have finished, all list_lrus
2875          * corresponding to this cgroup are guaranteed to remain empty. The
2876          * ordering is imposed by list_lru_node->lock taken by
2877          * memcg_drain_all_list_lrus().
2878          */
2879         css_for_each_descendant_pre(css, &memcg->css) {
2880                 child = mem_cgroup_from_css(css);
2881                 BUG_ON(child->kmemcg_id != kmemcg_id);
2882                 child->kmemcg_id = parent->kmemcg_id;
2883                 if (!memcg->use_hierarchy)
2884                         break;
2885         }
2886         memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2887
2888         memcg_free_cache_id(kmemcg_id);
2889 }
2890
2891 static void memcg_free_kmem(struct mem_cgroup *memcg)
2892 {
2893         /* css_alloc() failed, offlining didn't happen */
2894         if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2895                 memcg_offline_kmem(memcg);
2896
2897         if (memcg->kmem_state == KMEM_ALLOCATED) {
2898                 memcg_destroy_kmem_caches(memcg);
2899                 static_branch_dec(&memcg_kmem_enabled_key);
2900                 WARN_ON(page_counter_read(&memcg->kmem));
2901         }
2902 }
2903 #else
2904 static int memcg_online_kmem(struct mem_cgroup *memcg)
2905 {
2906         return 0;
2907 }
2908 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2909 {
2910 }
2911 static void memcg_free_kmem(struct mem_cgroup *memcg)
2912 {
2913 }
2914 #endif /* !CONFIG_SLOB */
2915
2916 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2917                                    unsigned long limit)
2918 {
2919         int ret;
2920
2921         mutex_lock(&memcg_limit_mutex);
2922         ret = page_counter_limit(&memcg->kmem, limit);
2923         mutex_unlock(&memcg_limit_mutex);
2924         return ret;
2925 }
2926
2927 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2928 {
2929         int ret;
2930
2931         mutex_lock(&memcg_limit_mutex);
2932
2933         ret = page_counter_limit(&memcg->tcpmem, limit);
2934         if (ret)
2935                 goto out;
2936
2937         if (!memcg->tcpmem_active) {
2938                 /*
2939                  * The active flag needs to be written after the static_key
2940                  * update. This is what guarantees that the socket activation
2941                  * function is the last one to run. See sock_update_memcg() for
2942                  * details, and note that we don't mark any socket as belonging
2943                  * to this memcg until that flag is up.
2944                  *
2945                  * We need to do this, because static_keys will span multiple
2946                  * sites, but we can't control their order. If we mark a socket
2947                  * as accounted, but the accounting functions are not patched in
2948                  * yet, we'll lose accounting.
2949                  *
2950                  * We never race with the readers in sock_update_memcg(),
2951                  * because when this value change, the code to process it is not
2952                  * patched in yet.
2953                  */
2954                 static_branch_inc(&memcg_sockets_enabled_key);
2955                 memcg->tcpmem_active = true;
2956         }
2957 out:
2958         mutex_unlock(&memcg_limit_mutex);
2959         return ret;
2960 }
2961
2962 /*
2963  * The user of this function is...
2964  * RES_LIMIT.
2965  */
2966 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2967                                 char *buf, size_t nbytes, loff_t off)
2968 {
2969         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2970         unsigned long nr_pages;
2971         int ret;
2972
2973         buf = strstrip(buf);
2974         ret = page_counter_memparse(buf, "-1", &nr_pages);
2975         if (ret)
2976                 return ret;
2977
2978         switch (MEMFILE_ATTR(of_cft(of)->private)) {
2979         case RES_LIMIT:
2980                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2981                         ret = -EINVAL;
2982                         break;
2983                 }
2984                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2985                 case _MEM:
2986                         ret = mem_cgroup_resize_limit(memcg, nr_pages);
2987                         break;
2988                 case _MEMSWAP:
2989                         ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2990                         break;
2991                 case _KMEM:
2992                         ret = memcg_update_kmem_limit(memcg, nr_pages);
2993                         break;
2994                 case _TCP:
2995                         ret = memcg_update_tcp_limit(memcg, nr_pages);
2996                         break;
2997                 }
2998                 break;
2999         case RES_SOFT_LIMIT:
3000                 memcg->soft_limit = nr_pages;
3001                 ret = 0;
3002                 break;
3003         }
3004         return ret ?: nbytes;
3005 }
3006
3007 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3008                                 size_t nbytes, loff_t off)
3009 {
3010         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3011         struct page_counter *counter;
3012
3013         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3014         case _MEM:
3015                 counter = &memcg->memory;
3016                 break;
3017         case _MEMSWAP:
3018                 counter = &memcg->memsw;
3019                 break;
3020         case _KMEM:
3021                 counter = &memcg->kmem;
3022                 break;
3023         case _TCP:
3024                 counter = &memcg->tcpmem;
3025                 break;
3026         default:
3027                 BUG();
3028         }
3029
3030         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3031         case RES_MAX_USAGE:
3032                 page_counter_reset_watermark(counter);
3033                 break;
3034         case RES_FAILCNT:
3035                 counter->failcnt = 0;
3036                 break;
3037         default:
3038                 BUG();
3039         }
3040
3041         return nbytes;
3042 }
3043
3044 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3045                                         struct cftype *cft)
3046 {
3047         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3048 }
3049
3050 #ifdef CONFIG_MMU
3051 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3052                                         struct cftype *cft, u64 val)
3053 {
3054         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3055
3056         if (val & ~MOVE_MASK)
3057                 return -EINVAL;
3058
3059         /*
3060          * No kind of locking is needed in here, because ->can_attach() will
3061          * check this value once in the beginning of the process, and then carry
3062          * on with stale data. This means that changes to this value will only
3063          * affect task migrations starting after the change.
3064          */
3065         memcg->move_charge_at_immigrate = val;
3066         return 0;
3067 }
3068 #else
3069 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3070                                         struct cftype *cft, u64 val)
3071 {
3072         return -ENOSYS;
3073 }
3074 #endif
3075
3076 #ifdef CONFIG_NUMA
3077 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3078 {
3079         struct numa_stat {
3080                 const char *name;
3081                 unsigned int lru_mask;
3082         };
3083
3084         static const struct numa_stat stats[] = {
3085                 { "total", LRU_ALL },
3086                 { "file", LRU_ALL_FILE },
3087                 { "anon", LRU_ALL_ANON },
3088                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3089         };
3090         const struct numa_stat *stat;
3091         int nid;
3092         unsigned long nr;
3093         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3094
3095         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3096                 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3097                 seq_printf(m, "%s=%lu", stat->name, nr);
3098                 for_each_node_state(nid, N_MEMORY) {
3099                         nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3100                                                           stat->lru_mask);
3101                         seq_printf(m, " N%d=%lu", nid, nr);
3102                 }
3103                 seq_putc(m, '\n');
3104         }
3105
3106         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3107                 struct mem_cgroup *iter;
3108
3109                 nr = 0;
3110                 for_each_mem_cgroup_tree(iter, memcg)
3111                         nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3112                 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3113                 for_each_node_state(nid, N_MEMORY) {
3114                         nr = 0;
3115                         for_each_mem_cgroup_tree(iter, memcg)
3116                                 nr += mem_cgroup_node_nr_lru_pages(
3117                                         iter, nid, stat->lru_mask);
3118                         seq_printf(m, " N%d=%lu", nid, nr);
3119                 }
3120                 seq_putc(m, '\n');
3121         }
3122
3123         return 0;
3124 }
3125 #endif /* CONFIG_NUMA */
3126
3127 static int memcg_stat_show(struct seq_file *m, void *v)
3128 {
3129         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3130         unsigned long memory, memsw;
3131         struct mem_cgroup *mi;
3132         unsigned int i;
3133
3134         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3135                      MEM_CGROUP_STAT_NSTATS);
3136         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3137                      MEM_CGROUP_EVENTS_NSTATS);
3138         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3139
3140         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3141                 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3142                         continue;
3143                 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3144                            mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3145         }
3146
3147         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3148                 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3149                            mem_cgroup_read_events(memcg, i));
3150
3151         for (i = 0; i < NR_LRU_LISTS; i++)
3152                 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3153                            mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3154
3155         /* Hierarchical information */
3156         memory = memsw = PAGE_COUNTER_MAX;
3157         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3158                 memory = min(memory, mi->memory.limit);
3159                 memsw = min(memsw, mi->memsw.limit);
3160         }
3161         seq_printf(m, "hierarchical_memory_limit %llu\n",
3162                    (u64)memory * PAGE_SIZE);
3163         if (do_memsw_account())
3164                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3165                            (u64)memsw * PAGE_SIZE);
3166
3167         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3168                 unsigned long long val = 0;
3169
3170                 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3171                         continue;
3172                 for_each_mem_cgroup_tree(mi, memcg)
3173                         val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3174                 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3175         }
3176
3177         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3178                 unsigned long long val = 0;
3179
3180                 for_each_mem_cgroup_tree(mi, memcg)
3181                         val += mem_cgroup_read_events(mi, i);
3182                 seq_printf(m, "total_%s %llu\n",
3183                            mem_cgroup_events_names[i], val);
3184         }
3185
3186         for (i = 0; i < NR_LRU_LISTS; i++) {
3187                 unsigned long long val = 0;
3188
3189                 for_each_mem_cgroup_tree(mi, memcg)
3190                         val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3191                 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3192         }
3193
3194 #ifdef CONFIG_DEBUG_VM
3195         {
3196                 int nid, zid;
3197                 struct mem_cgroup_per_zone *mz;
3198                 struct zone_reclaim_stat *rstat;
3199                 unsigned long recent_rotated[2] = {0, 0};
3200                 unsigned long recent_scanned[2] = {0, 0};
3201
3202                 for_each_online_node(nid)
3203                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3204                                 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3205                                 rstat = &mz->lruvec.reclaim_stat;
3206
3207                                 recent_rotated[0] += rstat->recent_rotated[0];
3208                                 recent_rotated[1] += rstat->recent_rotated[1];
3209                                 recent_scanned[0] += rstat->recent_scanned[0];
3210                                 recent_scanned[1] += rstat->recent_scanned[1];
3211                         }
3212                 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3213                 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3214                 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3215                 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3216         }
3217 #endif
3218
3219         return 0;
3220 }
3221
3222 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3223                                       struct cftype *cft)
3224 {
3225         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3226
3227         return mem_cgroup_swappiness(memcg);
3228 }
3229
3230 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3231                                        struct cftype *cft, u64 val)
3232 {
3233         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3234
3235         if (val > 100)
3236                 return -EINVAL;
3237
3238         if (css->parent)
3239                 memcg->swappiness = val;
3240         else
3241                 vm_swappiness = val;
3242
3243         return 0;
3244 }
3245
3246 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3247 {
3248         struct mem_cgroup_threshold_ary *t;
3249         unsigned long usage;
3250         int i;
3251
3252         rcu_read_lock();
3253         if (!swap)
3254                 t = rcu_dereference(memcg->thresholds.primary);
3255         else
3256                 t = rcu_dereference(memcg->memsw_thresholds.primary);
3257
3258         if (!t)
3259                 goto unlock;
3260
3261         usage = mem_cgroup_usage(memcg, swap);
3262
3263         /*
3264          * current_threshold points to threshold just below or equal to usage.
3265          * If it's not true, a threshold was crossed after last
3266          * call of __mem_cgroup_threshold().
3267          */
3268         i = t->current_threshold;
3269
3270         /*
3271          * Iterate backward over array of thresholds starting from
3272          * current_threshold and check if a threshold is crossed.
3273          * If none of thresholds below usage is crossed, we read
3274          * only one element of the array here.
3275          */
3276         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3277                 eventfd_signal(t->entries[i].eventfd, 1);
3278
3279         /* i = current_threshold + 1 */
3280         i++;
3281
3282         /*
3283          * Iterate forward over array of thresholds starting from
3284          * current_threshold+1 and check if a threshold is crossed.
3285          * If none of thresholds above usage is crossed, we read
3286          * only one element of the array here.
3287          */
3288         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3289                 eventfd_signal(t->entries[i].eventfd, 1);
3290
3291         /* Update current_threshold */
3292         t->current_threshold = i - 1;
3293 unlock:
3294         rcu_read_unlock();
3295 }
3296
3297 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3298 {
3299         while (memcg) {
3300                 __mem_cgroup_threshold(memcg, false);
3301                 if (do_memsw_account())
3302                         __mem_cgroup_threshold(memcg, true);
3303
3304                 memcg = parent_mem_cgroup(memcg);
3305         }
3306 }
3307
3308 static int compare_thresholds(const void *a, const void *b)
3309 {
3310         const struct mem_cgroup_threshold *_a = a;
3311         const struct mem_cgroup_threshold *_b = b;
3312
3313         if (_a->threshold > _b->threshold)
3314                 return 1;
3315
3316         if (_a->threshold < _b->threshold)
3317                 return -1;
3318
3319         return 0;
3320 }
3321
3322 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3323 {
3324         struct mem_cgroup_eventfd_list *ev;
3325
3326         spin_lock(&memcg_oom_lock);
3327
3328         list_for_each_entry(ev, &memcg->oom_notify, list)
3329                 eventfd_signal(ev->eventfd, 1);
3330
3331         spin_unlock(&memcg_oom_lock);
3332         return 0;
3333 }
3334
3335 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3336 {
3337         struct mem_cgroup *iter;
3338
3339         for_each_mem_cgroup_tree(iter, memcg)
3340                 mem_cgroup_oom_notify_cb(iter);
3341 }
3342
3343 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3344         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3345 {
3346         struct mem_cgroup_thresholds *thresholds;
3347         struct mem_cgroup_threshold_ary *new;
3348         unsigned long threshold;
3349         unsigned long usage;
3350         int i, size, ret;
3351
3352         ret = page_counter_memparse(args, "-1", &threshold);
3353         if (ret)
3354                 return ret;
3355
3356         mutex_lock(&memcg->thresholds_lock);
3357
3358         if (type == _MEM) {
3359                 thresholds = &memcg->thresholds;
3360                 usage = mem_cgroup_usage(memcg, false);
3361         } else if (type == _MEMSWAP) {
3362                 thresholds = &memcg->memsw_thresholds;
3363                 usage = mem_cgroup_usage(memcg, true);
3364         } else
3365                 BUG();
3366
3367         /* Check if a threshold crossed before adding a new one */
3368         if (thresholds->primary)
3369                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3370
3371         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3372
3373         /* Allocate memory for new array of thresholds */
3374         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3375                         GFP_KERNEL);
3376         if (!new) {
3377                 ret = -ENOMEM;
3378                 goto unlock;
3379         }
3380         new->size = size;
3381
3382         /* Copy thresholds (if any) to new array */
3383         if (thresholds->primary) {
3384                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3385                                 sizeof(struct mem_cgroup_threshold));
3386         }
3387
3388         /* Add new threshold */
3389         new->entries[size - 1].eventfd = eventfd;
3390         new->entries[size - 1].threshold = threshold;
3391
3392         /* Sort thresholds. Registering of new threshold isn't time-critical */
3393         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3394                         compare_thresholds, NULL);
3395
3396         /* Find current threshold */
3397         new->current_threshold = -1;
3398         for (i = 0; i < size; i++) {
3399                 if (new->entries[i].threshold <= usage) {
3400                         /*
3401                          * new->current_threshold will not be used until
3402                          * rcu_assign_pointer(), so it's safe to increment
3403                          * it here.
3404                          */
3405                         ++new->current_threshold;
3406                 } else
3407                         break;
3408         }
3409
3410         /* Free old spare buffer and save old primary buffer as spare */
3411         kfree(thresholds->spare);
3412         thresholds->spare = thresholds->primary;
3413
3414         rcu_assign_pointer(thresholds->primary, new);
3415
3416         /* To be sure that nobody uses thresholds */
3417         synchronize_rcu();
3418
3419 unlock:
3420         mutex_unlock(&memcg->thresholds_lock);
3421
3422         return ret;
3423 }
3424
3425 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3426         struct eventfd_ctx *eventfd, const char *args)
3427 {
3428         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3429 }
3430
3431 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3432         struct eventfd_ctx *eventfd, const char *args)
3433 {
3434         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3435 }
3436
3437 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3438         struct eventfd_ctx *eventfd, enum res_type type)
3439 {
3440         struct mem_cgroup_thresholds *thresholds;
3441         struct mem_cgroup_threshold_ary *new;
3442         unsigned long usage;
3443         int i, j, size;
3444
3445         mutex_lock(&memcg->thresholds_lock);
3446
3447         if (type == _MEM) {
3448                 thresholds = &memcg->thresholds;
3449                 usage = mem_cgroup_usage(memcg, false);
3450         } else if (type == _MEMSWAP) {
3451                 thresholds = &memcg->memsw_thresholds;
3452                 usage = mem_cgroup_usage(memcg, true);
3453         } else
3454                 BUG();
3455
3456         if (!thresholds->primary)
3457                 goto unlock;
3458
3459         /* Check if a threshold crossed before removing */
3460         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3461
3462         /* Calculate new number of threshold */
3463         size = 0;
3464         for (i = 0; i < thresholds->primary->size; i++) {
3465                 if (thresholds->primary->entries[i].eventfd != eventfd)
3466                         size++;
3467         }
3468
3469         new = thresholds->spare;
3470
3471         /* Set thresholds array to NULL if we don't have thresholds */
3472         if (!size) {
3473                 kfree(new);
3474                 new = NULL;
3475                 goto swap_buffers;
3476         }
3477
3478         new->size = size;
3479
3480         /* Copy thresholds and find current threshold */
3481         new->current_threshold = -1;
3482         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3483                 if (thresholds->primary->entries[i].eventfd == eventfd)
3484                         continue;
3485
3486                 new->entries[j] = thresholds->primary->entries[i];
3487                 if (new->entries[j].threshold <= usage) {
3488                         /*
3489                          * new->current_threshold will not be used
3490                          * until rcu_assign_pointer(), so it's safe to increment
3491                          * it here.
3492                          */
3493                         ++new->current_threshold;
3494                 }
3495                 j++;
3496         }
3497
3498 swap_buffers:
3499         /* Swap primary and spare array */
3500         thresholds->spare = thresholds->primary;
3501
3502         rcu_assign_pointer(thresholds->primary, new);
3503
3504         /* To be sure that nobody uses thresholds */
3505         synchronize_rcu();
3506
3507         /* If all events are unregistered, free the spare array */
3508         if (!new) {
3509                 kfree(thresholds->spare);
3510                 thresholds->spare = NULL;
3511         }
3512 unlock:
3513         mutex_unlock(&memcg->thresholds_lock);
3514 }
3515
3516 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3517         struct eventfd_ctx *eventfd)
3518 {
3519         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3520 }
3521
3522 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3523         struct eventfd_ctx *eventfd)
3524 {
3525         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3526 }
3527
3528 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3529         struct eventfd_ctx *eventfd, const char *args)
3530 {
3531         struct mem_cgroup_eventfd_list *event;
3532
3533         event = kmalloc(sizeof(*event), GFP_KERNEL);
3534         if (!event)
3535                 return -ENOMEM;
3536
3537         spin_lock(&memcg_oom_lock);
3538
3539         event->eventfd = eventfd;
3540         list_add(&event->list, &memcg->oom_notify);
3541
3542         /* already in OOM ? */
3543         if (memcg->under_oom)
3544                 eventfd_signal(eventfd, 1);
3545         spin_unlock(&memcg_oom_lock);
3546
3547         return 0;
3548 }
3549
3550 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3551         struct eventfd_ctx *eventfd)
3552 {
3553         struct mem_cgroup_eventfd_list *ev, *tmp;
3554
3555         spin_lock(&memcg_oom_lock);
3556
3557         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3558                 if (ev->eventfd == eventfd) {
3559                         list_del(&ev->list);
3560                         kfree(ev);
3561                 }
3562         }
3563
3564         spin_unlock(&memcg_oom_lock);
3565 }
3566
3567 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3568 {
3569         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3570
3571         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3572         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3573         return 0;
3574 }
3575
3576 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3577         struct cftype *cft, u64 val)
3578 {
3579         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3580
3581         /* cannot set to root cgroup and only 0 and 1 are allowed */
3582         if (!css->parent || !((val == 0) || (val == 1)))
3583                 return -EINVAL;
3584
3585         memcg->oom_kill_disable = val;
3586         if (!val)
3587                 memcg_oom_recover(memcg);
3588
3589         return 0;
3590 }
3591
3592 #ifdef CONFIG_CGROUP_WRITEBACK
3593
3594 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3595 {
3596         return &memcg->cgwb_list;
3597 }
3598
3599 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3600 {
3601         return wb_domain_init(&memcg->cgwb_domain, gfp);
3602 }
3603
3604 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3605 {
3606         wb_domain_exit(&memcg->cgwb_domain);
3607 }
3608
3609 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3610 {
3611         wb_domain_size_changed(&memcg->cgwb_domain);
3612 }
3613
3614 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3615 {
3616         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3617
3618         if (!memcg->css.parent)
3619                 return NULL;
3620
3621         return &memcg->cgwb_domain;
3622 }
3623
3624 /**
3625  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3626  * @wb: bdi_writeback in question
3627  * @pfilepages: out parameter for number of file pages
3628  * @pheadroom: out parameter for number of allocatable pages according to memcg
3629  * @pdirty: out parameter for number of dirty pages
3630  * @pwriteback: out parameter for number of pages under writeback
3631  *
3632  * Determine the numbers of file, headroom, dirty, and writeback pages in
3633  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3634  * is a bit more involved.
3635  *
3636  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3637  * headroom is calculated as the lowest headroom of itself and the
3638  * ancestors.  Note that this doesn't consider the actual amount of
3639  * available memory in the system.  The caller should further cap
3640  * *@pheadroom accordingly.
3641  */
3642 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3643                          unsigned long *pheadroom, unsigned long *pdirty,
3644                          unsigned long *pwriteback)
3645 {
3646         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3647         struct mem_cgroup *parent;
3648
3649         *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3650
3651         /* this should eventually include NR_UNSTABLE_NFS */
3652         *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3653         *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3654                                                      (1 << LRU_ACTIVE_FILE));
3655         *pheadroom = PAGE_COUNTER_MAX;
3656
3657         while ((parent = parent_mem_cgroup(memcg))) {
3658                 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3659                 unsigned long used = page_counter_read(&memcg->memory);
3660
3661                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3662                 memcg = parent;
3663         }
3664 }
3665
3666 #else   /* CONFIG_CGROUP_WRITEBACK */
3667
3668 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3669 {
3670         return 0;
3671 }
3672
3673 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3674 {
3675 }
3676
3677 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3678 {
3679 }
3680
3681 #endif  /* CONFIG_CGROUP_WRITEBACK */
3682
3683 /*
3684  * DO NOT USE IN NEW FILES.
3685  *
3686  * "cgroup.event_control" implementation.
3687  *
3688  * This is way over-engineered.  It tries to support fully configurable
3689  * events for each user.  Such level of flexibility is completely
3690  * unnecessary especially in the light of the planned unified hierarchy.
3691  *
3692  * Please deprecate this and replace with something simpler if at all
3693  * possible.
3694  */
3695
3696 /*
3697  * Unregister event and free resources.
3698  *
3699  * Gets called from workqueue.
3700  */
3701 static void memcg_event_remove(struct work_struct *work)
3702 {
3703         struct mem_cgroup_event *event =
3704                 container_of(work, struct mem_cgroup_event, remove);
3705         struct mem_cgroup *memcg = event->memcg;
3706
3707         remove_wait_queue(event->wqh, &event->wait);
3708
3709         event->unregister_event(memcg, event->eventfd);
3710
3711         /* Notify userspace the event is going away. */
3712         eventfd_signal(event->eventfd, 1);
3713
3714         eventfd_ctx_put(event->eventfd);
3715         kfree(event);
3716         css_put(&memcg->css);
3717 }
3718
3719 /*
3720  * Gets called on POLLHUP on eventfd when user closes it.
3721  *
3722  * Called with wqh->lock held and interrupts disabled.
3723  */
3724 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3725                             int sync, void *key)
3726 {
3727         struct mem_cgroup_event *event =
3728                 container_of(wait, struct mem_cgroup_event, wait);
3729         struct mem_cgroup *memcg = event->memcg;
3730         unsigned long flags = (unsigned long)key;
3731
3732         if (flags & POLLHUP) {
3733                 /*
3734                  * If the event has been detached at cgroup removal, we
3735                  * can simply return knowing the other side will cleanup
3736                  * for us.
3737                  *
3738                  * We can't race against event freeing since the other
3739                  * side will require wqh->lock via remove_wait_queue(),
3740                  * which we hold.
3741                  */
3742                 spin_lock(&memcg->event_list_lock);
3743                 if (!list_empty(&event->list)) {
3744                         list_del_init(&event->list);
3745                         /*
3746                          * We are in atomic context, but cgroup_event_remove()
3747                          * may sleep, so we have to call it in workqueue.
3748                          */
3749                         schedule_work(&event->remove);
3750                 }
3751                 spin_unlock(&memcg->event_list_lock);
3752         }
3753
3754         return 0;
3755 }
3756
3757 static void memcg_event_ptable_queue_proc(struct file *file,
3758                 wait_queue_head_t *wqh, poll_table *pt)
3759 {
3760         struct mem_cgroup_event *event =
3761                 container_of(pt, struct mem_cgroup_event, pt);
3762
3763         event->wqh = wqh;
3764         add_wait_queue(wqh, &event->wait);
3765 }
3766
3767 /*
3768  * DO NOT USE IN NEW FILES.
3769  *
3770  * Parse input and register new cgroup event handler.
3771  *
3772  * Input must be in format '<event_fd> <control_fd> <args>'.
3773  * Interpretation of args is defined by control file implementation.
3774  */
3775 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3776                                          char *buf, size_t nbytes, loff_t off)
3777 {
3778         struct cgroup_subsys_state *css = of_css(of);
3779         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3780         struct mem_cgroup_event *event;
3781         struct cgroup_subsys_state *cfile_css;
3782         unsigned int efd, cfd;
3783         struct fd efile;
3784         struct fd cfile;
3785         const char *name;
3786         char *endp;
3787         int ret;
3788
3789         buf = strstrip(buf);
3790
3791         efd = simple_strtoul(buf, &endp, 10);
3792         if (*endp != ' ')
3793                 return -EINVAL;
3794         buf = endp + 1;
3795
3796         cfd = simple_strtoul(buf, &endp, 10);
3797         if ((*endp != ' ') && (*endp != '\0'))
3798                 return -EINVAL;
3799         buf = endp + 1;
3800
3801         event = kzalloc(sizeof(*event), GFP_KERNEL);
3802         if (!event)
3803                 return -ENOMEM;
3804
3805         event->memcg = memcg;
3806         INIT_LIST_HEAD(&event->list);
3807         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3808         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3809         INIT_WORK(&event->remove, memcg_event_remove);
3810
3811         efile = fdget(efd);
3812         if (!efile.file) {
3813                 ret = -EBADF;
3814                 goto out_kfree;
3815         }
3816
3817         event->eventfd = eventfd_ctx_fileget(efile.file);
3818         if (IS_ERR(event->eventfd)) {
3819                 ret = PTR_ERR(event->eventfd);
3820                 goto out_put_efile;
3821         }
3822
3823         cfile = fdget(cfd);
3824         if (!cfile.file) {
3825                 ret = -EBADF;
3826                 goto out_put_eventfd;
3827         }
3828
3829         /* the process need read permission on control file */
3830         /* AV: shouldn't we check that it's been opened for read instead? */
3831         ret = inode_permission(file_inode(cfile.file), MAY_READ);
3832         if (ret < 0)
3833                 goto out_put_cfile;
3834
3835         /*
3836          * Determine the event callbacks and set them in @event.  This used
3837          * to be done via struct cftype but cgroup core no longer knows
3838          * about these events.  The following is crude but the whole thing
3839          * is for compatibility anyway.
3840          *
3841          * DO NOT ADD NEW FILES.
3842          */
3843         name = cfile.file->f_path.dentry->d_name.name;
3844
3845         if (!strcmp(name, "memory.usage_in_bytes")) {
3846                 event->register_event = mem_cgroup_usage_register_event;
3847                 event->unregister_event = mem_cgroup_usage_unregister_event;
3848         } else if (!strcmp(name, "memory.oom_control")) {
3849                 event->register_event = mem_cgroup_oom_register_event;
3850                 event->unregister_event = mem_cgroup_oom_unregister_event;
3851         } else if (!strcmp(name, "memory.pressure_level")) {
3852                 event->register_event = vmpressure_register_event;
3853                 event->unregister_event = vmpressure_unregister_event;
3854         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3855                 event->register_event = memsw_cgroup_usage_register_event;
3856                 event->unregister_event = memsw_cgroup_usage_unregister_event;
3857         } else {
3858                 ret = -EINVAL;
3859                 goto out_put_cfile;
3860         }
3861
3862         /*
3863          * Verify @cfile should belong to @css.  Also, remaining events are
3864          * automatically removed on cgroup destruction but the removal is
3865          * asynchronous, so take an extra ref on @css.
3866          */
3867         cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3868                                                &memory_cgrp_subsys);
3869         ret = -EINVAL;
3870         if (IS_ERR(cfile_css))
3871                 goto out_put_cfile;
3872         if (cfile_css != css) {
3873                 css_put(cfile_css);
3874                 goto out_put_cfile;
3875         }
3876
3877         ret = event->register_event(memcg, event->eventfd, buf);
3878         if (ret)
3879                 goto out_put_css;
3880
3881         efile.file->f_op->poll(efile.file, &event->pt);
3882
3883         spin_lock(&memcg->event_list_lock);
3884         list_add(&event->list, &memcg->event_list);
3885         spin_unlock(&memcg->event_list_lock);
3886
3887         fdput(cfile);
3888         fdput(efile);
3889
3890         return nbytes;
3891
3892 out_put_css:
3893         css_put(css);
3894 out_put_cfile:
3895         fdput(cfile);
3896 out_put_eventfd:
3897         eventfd_ctx_put(event->eventfd);
3898 out_put_efile:
3899         fdput(efile);
3900 out_kfree:
3901         kfree(event);
3902
3903         return ret;
3904 }
3905
3906 static struct cftype mem_cgroup_legacy_files[] = {
3907         {
3908                 .name = "usage_in_bytes",
3909                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3910                 .read_u64 = mem_cgroup_read_u64,
3911         },
3912         {
3913                 .name = "max_usage_in_bytes",
3914                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3915                 .write = mem_cgroup_reset,
3916                 .read_u64 = mem_cgroup_read_u64,
3917         },
3918         {
3919                 .name = "limit_in_bytes",
3920                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3921                 .write = mem_cgroup_write,
3922                 .read_u64 = mem_cgroup_read_u64,
3923         },
3924         {
3925                 .name = "soft_limit_in_bytes",
3926                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3927                 .write = mem_cgroup_write,
3928                 .read_u64 = mem_cgroup_read_u64,
3929         },
3930         {
3931                 .name = "failcnt",
3932                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3933                 .write = mem_cgroup_reset,
3934                 .read_u64 = mem_cgroup_read_u64,
3935         },
3936         {
3937                 .name = "stat",
3938                 .seq_show = memcg_stat_show,
3939         },
3940         {
3941                 .name = "force_empty",
3942                 .write = mem_cgroup_force_empty_write,
3943         },
3944         {
3945                 .name = "use_hierarchy",
3946                 .write_u64 = mem_cgroup_hierarchy_write,
3947                 .read_u64 = mem_cgroup_hierarchy_read,
3948         },
3949         {
3950                 .name = "cgroup.event_control",         /* XXX: for compat */
3951                 .write = memcg_write_event_control,
3952                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3953         },
3954         {
3955                 .name = "swappiness",
3956                 .read_u64 = mem_cgroup_swappiness_read,
3957                 .write_u64 = mem_cgroup_swappiness_write,
3958         },
3959         {
3960                 .name = "move_charge_at_immigrate",
3961                 .read_u64 = mem_cgroup_move_charge_read,
3962                 .write_u64 = mem_cgroup_move_charge_write,
3963         },
3964         {
3965                 .name = "oom_control",
3966                 .seq_show = mem_cgroup_oom_control_read,
3967                 .write_u64 = mem_cgroup_oom_control_write,
3968                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3969         },
3970         {
3971                 .name = "pressure_level",
3972         },
3973 #ifdef CONFIG_NUMA
3974         {
3975                 .name = "numa_stat",
3976                 .seq_show = memcg_numa_stat_show,
3977         },
3978 #endif
3979         {
3980                 .name = "kmem.limit_in_bytes",
3981                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3982                 .write = mem_cgroup_write,
3983                 .read_u64 = mem_cgroup_read_u64,
3984         },
3985         {
3986                 .name = "kmem.usage_in_bytes",
3987                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3988                 .read_u64 = mem_cgroup_read_u64,
3989         },
3990         {
3991                 .name = "kmem.failcnt",
3992                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3993                 .write = mem_cgroup_reset,
3994                 .read_u64 = mem_cgroup_read_u64,
3995         },
3996         {
3997                 .name = "kmem.max_usage_in_bytes",
3998                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3999                 .write = mem_cgroup_reset,
4000                 .read_u64 = mem_cgroup_read_u64,
4001         },
4002 #ifdef CONFIG_SLABINFO
4003         {
4004                 .name = "kmem.slabinfo",
4005                 .seq_start = slab_start,
4006                 .seq_next = slab_next,
4007                 .seq_stop = slab_stop,
4008                 .seq_show = memcg_slab_show,
4009         },
4010 #endif
4011         {
4012                 .name = "kmem.tcp.limit_in_bytes",
4013                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4014                 .write = mem_cgroup_write,
4015                 .read_u64 = mem_cgroup_read_u64,
4016         },
4017         {
4018                 .name = "kmem.tcp.usage_in_bytes",
4019                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4020                 .read_u64 = mem_cgroup_read_u64,
4021         },
4022         {
4023                 .name = "kmem.tcp.failcnt",
4024                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4025                 .write = mem_cgroup_reset,
4026                 .read_u64 = mem_cgroup_read_u64,
4027         },
4028         {
4029                 .name = "kmem.tcp.max_usage_in_bytes",
4030                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4031                 .write = mem_cgroup_reset,
4032                 .read_u64 = mem_cgroup_read_u64,
4033         },
4034         { },    /* terminate */
4035 };
4036
4037 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4038 {
4039         struct mem_cgroup_per_node *pn;
4040         struct mem_cgroup_per_zone *mz;
4041         int zone, tmp = node;
4042         /*
4043          * This routine is called against possible nodes.
4044          * But it's BUG to call kmalloc() against offline node.
4045          *
4046          * TODO: this routine can waste much memory for nodes which will
4047          *       never be onlined. It's better to use memory hotplug callback
4048          *       function.
4049          */
4050         if (!node_state(node, N_NORMAL_MEMORY))
4051                 tmp = -1;
4052         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4053         if (!pn)
4054                 return 1;
4055
4056         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4057                 mz = &pn->zoneinfo[zone];
4058                 lruvec_init(&mz->lruvec);
4059                 mz->usage_in_excess = 0;
4060                 mz->on_tree = false;
4061                 mz->memcg = memcg;
4062         }
4063         memcg->nodeinfo[node] = pn;
4064         return 0;
4065 }
4066
4067 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4068 {
4069         kfree(memcg->nodeinfo[node]);
4070 }
4071
4072 static void mem_cgroup_free(struct mem_cgroup *memcg)
4073 {
4074         int node;
4075
4076         memcg_wb_domain_exit(memcg);
4077         for_each_node(node)
4078                 free_mem_cgroup_per_zone_info(memcg, node);
4079         free_percpu(memcg->stat);
4080         kfree(memcg);
4081 }
4082
4083 static struct mem_cgroup *mem_cgroup_alloc(void)
4084 {
4085         struct mem_cgroup *memcg;
4086         size_t size;
4087         int node;
4088
4089         size = sizeof(struct mem_cgroup);
4090         size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4091
4092         memcg = kzalloc(size, GFP_KERNEL);
4093         if (!memcg)
4094                 return NULL;
4095
4096         memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4097         if (!memcg->stat)
4098                 goto fail;
4099
4100         for_each_node(node)
4101                 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4102                         goto fail;
4103
4104         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4105                 goto fail;
4106
4107         INIT_WORK(&memcg->high_work, high_work_func);
4108         memcg->last_scanned_node = MAX_NUMNODES;
4109         INIT_LIST_HEAD(&memcg->oom_notify);
4110         mutex_init(&memcg->thresholds_lock);
4111         spin_lock_init(&memcg->move_lock);
4112         vmpressure_init(&memcg->vmpressure);
4113         INIT_LIST_HEAD(&memcg->event_list);
4114         spin_lock_init(&memcg->event_list_lock);
4115         memcg->socket_pressure = jiffies;
4116 #ifndef CONFIG_SLOB
4117         memcg->kmemcg_id = -1;
4118 #endif
4119 #ifdef CONFIG_CGROUP_WRITEBACK
4120         INIT_LIST_HEAD(&memcg->cgwb_list);
4121 #endif
4122         return memcg;
4123 fail:
4124         mem_cgroup_free(memcg);
4125         return NULL;
4126 }
4127
4128 static struct cgroup_subsys_state * __ref
4129 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4130 {
4131         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4132         struct mem_cgroup *memcg;
4133         long error = -ENOMEM;
4134
4135         memcg = mem_cgroup_alloc();
4136         if (!memcg)
4137                 return ERR_PTR(error);
4138
4139         memcg->high = PAGE_COUNTER_MAX;
4140         memcg->soft_limit = PAGE_COUNTER_MAX;
4141         if (parent) {
4142                 memcg->swappiness = mem_cgroup_swappiness(parent);
4143                 memcg->oom_kill_disable = parent->oom_kill_disable;
4144         }
4145         if (parent && parent->use_hierarchy) {
4146                 memcg->use_hierarchy = true;
4147                 page_counter_init(&memcg->memory, &parent->memory);
4148                 page_counter_init(&memcg->swap, &parent->swap);
4149                 page_counter_init(&memcg->memsw, &parent->memsw);
4150                 page_counter_init(&memcg->kmem, &parent->kmem);
4151                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4152         } else {
4153                 page_counter_init(&memcg->memory, NULL);
4154                 page_counter_init(&memcg->swap, NULL);
4155                 page_counter_init(&memcg->memsw, NULL);
4156                 page_counter_init(&memcg->kmem, NULL);
4157                 page_counter_init(&memcg->tcpmem, NULL);
4158                 /*
4159                  * Deeper hierachy with use_hierarchy == false doesn't make
4160                  * much sense so let cgroup subsystem know about this
4161                  * unfortunate state in our controller.
4162                  */
4163                 if (parent != root_mem_cgroup)
4164                         memory_cgrp_subsys.broken_hierarchy = true;
4165         }
4166
4167         /* The following stuff does not apply to the root */
4168         if (!parent) {
4169                 root_mem_cgroup = memcg;
4170                 return &memcg->css;
4171         }
4172
4173         error = memcg_online_kmem(memcg);
4174         if (error)
4175                 goto fail;
4176
4177         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4178                 static_branch_inc(&memcg_sockets_enabled_key);
4179
4180         return &memcg->css;
4181 fail:
4182         mem_cgroup_free(memcg);
4183         return NULL;
4184 }
4185
4186 static int
4187 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4188 {
4189         if (css->id > MEM_CGROUP_ID_MAX)
4190                 return -ENOSPC;
4191
4192         return 0;
4193 }
4194
4195 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4196 {
4197         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4198         struct mem_cgroup_event *event, *tmp;
4199
4200         /*
4201          * Unregister events and notify userspace.
4202          * Notify userspace about cgroup removing only after rmdir of cgroup
4203          * directory to avoid race between userspace and kernelspace.
4204          */
4205         spin_lock(&memcg->event_list_lock);
4206         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4207                 list_del_init(&event->list);
4208                 schedule_work(&event->remove);
4209         }
4210         spin_unlock(&memcg->event_list_lock);
4211
4212         memcg_offline_kmem(memcg);
4213         wb_memcg_offline(memcg);
4214 }
4215
4216 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4217 {
4218         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4219
4220         invalidate_reclaim_iterators(memcg);
4221 }
4222
4223 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4224 {
4225         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4226
4227         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4228                 static_branch_dec(&memcg_sockets_enabled_key);
4229
4230         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4231                 static_branch_dec(&memcg_sockets_enabled_key);
4232
4233         vmpressure_cleanup(&memcg->vmpressure);
4234         cancel_work_sync(&memcg->high_work);
4235         mem_cgroup_remove_from_trees(memcg);
4236         memcg_free_kmem(memcg);
4237         mem_cgroup_free(memcg);
4238 }
4239
4240 /**
4241  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4242  * @css: the target css
4243  *
4244  * Reset the states of the mem_cgroup associated with @css.  This is
4245  * invoked when the userland requests disabling on the default hierarchy
4246  * but the memcg is pinned through dependency.  The memcg should stop
4247  * applying policies and should revert to the vanilla state as it may be
4248  * made visible again.
4249  *
4250  * The current implementation only resets the essential configurations.
4251  * This needs to be expanded to cover all the visible parts.
4252  */
4253 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4254 {
4255         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4256
4257         page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4258         page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4259         page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4260         page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4261         page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4262         memcg->low = 0;
4263         memcg->high = PAGE_COUNTER_MAX;
4264         memcg->soft_limit = PAGE_COUNTER_MAX;
4265         memcg_wb_domain_size_changed(memcg);
4266 }
4267
4268 #ifdef CONFIG_MMU
4269 /* Handlers for move charge at task migration. */
4270 static int mem_cgroup_do_precharge(unsigned long count)
4271 {
4272         int ret;
4273
4274         /* Try a single bulk charge without reclaim first, kswapd may wake */
4275         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4276         if (!ret) {
4277                 mc.precharge += count;
4278                 return ret;
4279         }
4280
4281         /* Try charges one by one with reclaim */
4282         while (count--) {
4283                 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4284                 if (ret)
4285                         return ret;
4286                 mc.precharge++;
4287                 cond_resched();
4288         }
4289         return 0;
4290 }
4291
4292 /**
4293  * get_mctgt_type - get target type of moving charge
4294  * @vma: the vma the pte to be checked belongs
4295  * @addr: the address corresponding to the pte to be checked
4296  * @ptent: the pte to be checked
4297  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4298  *
4299  * Returns
4300  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4301  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4302  *     move charge. if @target is not NULL, the page is stored in target->page
4303  *     with extra refcnt got(Callers should handle it).
4304  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4305  *     target for charge migration. if @target is not NULL, the entry is stored
4306  *     in target->ent.
4307  *
4308  * Called with pte lock held.
4309  */
4310 union mc_target {
4311         struct page     *page;
4312         swp_entry_t     ent;
4313 };
4314
4315 enum mc_target_type {
4316         MC_TARGET_NONE = 0,
4317         MC_TARGET_PAGE,
4318         MC_TARGET_SWAP,
4319 };
4320
4321 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4322                                                 unsigned long addr, pte_t ptent)
4323 {
4324         struct page *page = vm_normal_page(vma, addr, ptent);
4325
4326         if (!page || !page_mapped(page))
4327                 return NULL;
4328         if (PageAnon(page)) {
4329                 if (!(mc.flags & MOVE_ANON))
4330                         return NULL;
4331         } else {
4332                 if (!(mc.flags & MOVE_FILE))
4333                         return NULL;
4334         }
4335         if (!get_page_unless_zero(page))
4336                 return NULL;
4337
4338         return page;
4339 }
4340
4341 #ifdef CONFIG_SWAP
4342 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4343                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4344 {
4345         struct page *page = NULL;
4346         swp_entry_t ent = pte_to_swp_entry(ptent);
4347
4348         if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4349                 return NULL;
4350         /*
4351          * Because lookup_swap_cache() updates some statistics counter,
4352          * we call find_get_page() with swapper_space directly.
4353          */
4354         page = find_get_page(swap_address_space(ent), ent.val);
4355         if (do_memsw_account())
4356                 entry->val = ent.val;
4357
4358         return page;
4359 }
4360 #else
4361 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4362                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4363 {
4364         return NULL;
4365 }
4366 #endif
4367
4368 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4369                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4370 {
4371         struct page *page = NULL;
4372         struct address_space *mapping;
4373         pgoff_t pgoff;
4374
4375         if (!vma->vm_file) /* anonymous vma */
4376                 return NULL;
4377         if (!(mc.flags & MOVE_FILE))
4378                 return NULL;
4379
4380         mapping = vma->vm_file->f_mapping;
4381         pgoff = linear_page_index(vma, addr);
4382
4383         /* page is moved even if it's not RSS of this task(page-faulted). */
4384 #ifdef CONFIG_SWAP
4385         /* shmem/tmpfs may report page out on swap: account for that too. */
4386         if (shmem_mapping(mapping)) {
4387                 page = find_get_entry(mapping, pgoff);
4388                 if (radix_tree_exceptional_entry(page)) {
4389                         swp_entry_t swp = radix_to_swp_entry(page);
4390                         if (do_memsw_account())
4391                                 *entry = swp;
4392                         page = find_get_page(swap_address_space(swp), swp.val);
4393                 }
4394         } else
4395                 page = find_get_page(mapping, pgoff);
4396 #else
4397         page = find_get_page(mapping, pgoff);
4398 #endif
4399         return page;
4400 }
4401
4402 /**
4403  * mem_cgroup_move_account - move account of the page
4404  * @page: the page
4405  * @nr_pages: number of regular pages (>1 for huge pages)
4406  * @from: mem_cgroup which the page is moved from.
4407  * @to: mem_cgroup which the page is moved to. @from != @to.
4408  *
4409  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4410  *
4411  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4412  * from old cgroup.
4413  */
4414 static int mem_cgroup_move_account(struct page *page,
4415                                    bool compound,
4416                                    struct mem_cgroup *from,
4417                                    struct mem_cgroup *to)
4418 {
4419         unsigned long flags;
4420         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4421         int ret;
4422         bool anon;
4423
4424         VM_BUG_ON(from == to);
4425         VM_BUG_ON_PAGE(PageLRU(page), page);
4426         VM_BUG_ON(compound && !PageTransHuge(page));
4427
4428         /*
4429          * Prevent mem_cgroup_migrate() from looking at
4430          * page->mem_cgroup of its source page while we change it.
4431          */
4432         ret = -EBUSY;
4433         if (!trylock_page(page))
4434                 goto out;
4435
4436         ret = -EINVAL;
4437         if (page->mem_cgroup != from)
4438                 goto out_unlock;
4439
4440         anon = PageAnon(page);
4441
4442         spin_lock_irqsave(&from->move_lock, flags);
4443
4444         if (!anon && page_mapped(page)) {
4445                 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4446                                nr_pages);
4447                 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4448                                nr_pages);
4449         }
4450
4451         /*
4452          * move_lock grabbed above and caller set from->moving_account, so
4453          * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4454          * So mapping should be stable for dirty pages.
4455          */
4456         if (!anon && PageDirty(page)) {
4457                 struct address_space *mapping = page_mapping(page);
4458
4459                 if (mapping_cap_account_dirty(mapping)) {
4460                         __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4461                                        nr_pages);
4462                         __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4463                                        nr_pages);
4464                 }
4465         }
4466
4467         if (PageWriteback(page)) {
4468                 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4469                                nr_pages);
4470                 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4471                                nr_pages);
4472         }
4473
4474         /*
4475          * It is safe to change page->mem_cgroup here because the page
4476          * is referenced, charged, and isolated - we can't race with
4477          * uncharging, charging, migration, or LRU putback.
4478          */
4479
4480         /* caller should have done css_get */
4481         page->mem_cgroup = to;
4482         spin_unlock_irqrestore(&from->move_lock, flags);
4483
4484         ret = 0;
4485
4486         local_irq_disable();
4487         mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4488         memcg_check_events(to, page);
4489         mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4490         memcg_check_events(from, page);
4491         local_irq_enable();
4492 out_unlock:
4493         unlock_page(page);
4494 out:
4495         return ret;
4496 }
4497
4498 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4499                 unsigned long addr, pte_t ptent, union mc_target *target)
4500 {
4501         struct page *page = NULL;
4502         enum mc_target_type ret = MC_TARGET_NONE;
4503         swp_entry_t ent = { .val = 0 };
4504
4505         if (pte_present(ptent))
4506                 page = mc_handle_present_pte(vma, addr, ptent);
4507         else if (is_swap_pte(ptent))
4508                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4509         else if (pte_none(ptent))
4510                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4511
4512         if (!page && !ent.val)
4513                 return ret;
4514         if (page) {
4515                 /*
4516                  * Do only loose check w/o serialization.
4517                  * mem_cgroup_move_account() checks the page is valid or
4518                  * not under LRU exclusion.
4519                  */
4520                 if (page->mem_cgroup == mc.from) {
4521                         ret = MC_TARGET_PAGE;
4522                         if (target)
4523                                 target->page = page;
4524                 }
4525                 if (!ret || !target)
4526                         put_page(page);
4527         }
4528         /* There is a swap entry and a page doesn't exist or isn't charged */
4529         if (ent.val && !ret &&
4530             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4531                 ret = MC_TARGET_SWAP;
4532                 if (target)
4533                         target->ent = ent;
4534         }
4535         return ret;
4536 }
4537
4538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4539 /*
4540  * We don't consider swapping or file mapped pages because THP does not
4541  * support them for now.
4542  * Caller should make sure that pmd_trans_huge(pmd) is true.
4543  */
4544 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4545                 unsigned long addr, pmd_t pmd, union mc_target *target)
4546 {
4547         struct page *page = NULL;
4548         enum mc_target_type ret = MC_TARGET_NONE;
4549
4550         page = pmd_page(pmd);
4551         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4552         if (!(mc.flags & MOVE_ANON))
4553                 return ret;
4554         if (page->mem_cgroup == mc.from) {
4555                 ret = MC_TARGET_PAGE;
4556                 if (target) {
4557                         get_page(page);
4558                         target->page = page;
4559                 }
4560         }
4561         return ret;
4562 }
4563 #else
4564 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4565                 unsigned long addr, pmd_t pmd, union mc_target *target)
4566 {
4567         return MC_TARGET_NONE;
4568 }
4569 #endif
4570
4571 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4572                                         unsigned long addr, unsigned long end,
4573                                         struct mm_walk *walk)
4574 {
4575         struct vm_area_struct *vma = walk->vma;
4576         pte_t *pte;
4577         spinlock_t *ptl;
4578
4579         ptl = pmd_trans_huge_lock(pmd, vma);
4580         if (ptl) {
4581                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4582                         mc.precharge += HPAGE_PMD_NR;
4583                 spin_unlock(ptl);
4584                 return 0;
4585         }
4586
4587         if (pmd_trans_unstable(pmd))
4588                 return 0;
4589         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4590         for (; addr != end; pte++, addr += PAGE_SIZE)
4591                 if (get_mctgt_type(vma, addr, *pte, NULL))
4592                         mc.precharge++; /* increment precharge temporarily */
4593         pte_unmap_unlock(pte - 1, ptl);
4594         cond_resched();
4595
4596         return 0;
4597 }
4598
4599 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4600 {
4601         unsigned long precharge;
4602
4603         struct mm_walk mem_cgroup_count_precharge_walk = {
4604                 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4605                 .mm = mm,
4606         };
4607         down_read(&mm->mmap_sem);
4608         walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4609         up_read(&mm->mmap_sem);
4610
4611         precharge = mc.precharge;
4612         mc.precharge = 0;
4613
4614         return precharge;
4615 }
4616
4617 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4618 {
4619         unsigned long precharge = mem_cgroup_count_precharge(mm);
4620
4621         VM_BUG_ON(mc.moving_task);
4622         mc.moving_task = current;
4623         return mem_cgroup_do_precharge(precharge);
4624 }
4625
4626 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4627 static void __mem_cgroup_clear_mc(void)
4628 {
4629         struct mem_cgroup *from = mc.from;
4630         struct mem_cgroup *to = mc.to;
4631
4632         /* we must uncharge all the leftover precharges from mc.to */
4633         if (mc.precharge) {
4634                 cancel_charge(mc.to, mc.precharge);
4635                 mc.precharge = 0;
4636         }
4637         /*
4638          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4639          * we must uncharge here.
4640          */
4641         if (mc.moved_charge) {
4642                 cancel_charge(mc.from, mc.moved_charge);
4643                 mc.moved_charge = 0;
4644         }
4645         /* we must fixup refcnts and charges */
4646         if (mc.moved_swap) {
4647                 /* uncharge swap account from the old cgroup */
4648                 if (!mem_cgroup_is_root(mc.from))
4649                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4650
4651                 /*
4652                  * we charged both to->memory and to->memsw, so we
4653                  * should uncharge to->memory.
4654                  */
4655                 if (!mem_cgroup_is_root(mc.to))
4656                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4657
4658                 css_put_many(&mc.from->css, mc.moved_swap);
4659
4660                 /* we've already done css_get(mc.to) */
4661                 mc.moved_swap = 0;
4662         }
4663         memcg_oom_recover(from);
4664         memcg_oom_recover(to);
4665         wake_up_all(&mc.waitq);
4666 }
4667
4668 static void mem_cgroup_clear_mc(void)
4669 {
4670         /*
4671          * we must clear moving_task before waking up waiters at the end of
4672          * task migration.
4673          */
4674         mc.moving_task = NULL;
4675         __mem_cgroup_clear_mc();
4676         spin_lock(&mc.lock);
4677         mc.from = NULL;
4678         mc.to = NULL;
4679         spin_unlock(&mc.lock);
4680 }
4681
4682 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4683 {
4684         struct cgroup_subsys_state *css;
4685         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4686         struct mem_cgroup *from;
4687         struct task_struct *leader, *p;
4688         struct mm_struct *mm;
4689         unsigned long move_flags;
4690         int ret = 0;
4691
4692         /* charge immigration isn't supported on the default hierarchy */
4693         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4694                 return 0;
4695
4696         /*
4697          * Multi-process migrations only happen on the default hierarchy
4698          * where charge immigration is not used.  Perform charge
4699          * immigration if @tset contains a leader and whine if there are
4700          * multiple.
4701          */
4702         p = NULL;
4703         cgroup_taskset_for_each_leader(leader, css, tset) {
4704                 WARN_ON_ONCE(p);
4705                 p = leader;
4706                 memcg = mem_cgroup_from_css(css);
4707         }
4708         if (!p)
4709                 return 0;
4710
4711         /*
4712          * We are now commited to this value whatever it is. Changes in this
4713          * tunable will only affect upcoming migrations, not the current one.
4714          * So we need to save it, and keep it going.
4715          */
4716         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4717         if (!move_flags)
4718                 return 0;
4719
4720         from = mem_cgroup_from_task(p);
4721
4722         VM_BUG_ON(from == memcg);
4723
4724         mm = get_task_mm(p);
4725         if (!mm)
4726                 return 0;
4727         /* We move charges only when we move a owner of the mm */
4728         if (mm->owner == p) {
4729                 VM_BUG_ON(mc.from);
4730                 VM_BUG_ON(mc.to);
4731                 VM_BUG_ON(mc.precharge);
4732                 VM_BUG_ON(mc.moved_charge);
4733                 VM_BUG_ON(mc.moved_swap);
4734
4735                 spin_lock(&mc.lock);
4736                 mc.from = from;
4737                 mc.to = memcg;
4738                 mc.flags = move_flags;
4739                 spin_unlock(&mc.lock);
4740                 /* We set mc.moving_task later */
4741
4742                 ret = mem_cgroup_precharge_mc(mm);
4743                 if (ret)
4744                         mem_cgroup_clear_mc();
4745         }
4746         mmput(mm);
4747         return ret;
4748 }
4749
4750 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4751 {
4752         if (mc.to)
4753                 mem_cgroup_clear_mc();
4754 }
4755
4756 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4757                                 unsigned long addr, unsigned long end,
4758                                 struct mm_walk *walk)
4759 {
4760         int ret = 0;
4761         struct vm_area_struct *vma = walk->vma;
4762         pte_t *pte;
4763         spinlock_t *ptl;
4764         enum mc_target_type target_type;
4765         union mc_target target;
4766         struct page *page;
4767
4768         ptl = pmd_trans_huge_lock(pmd, vma);
4769         if (ptl) {
4770                 if (mc.precharge < HPAGE_PMD_NR) {
4771                         spin_unlock(ptl);
4772                         return 0;
4773                 }
4774                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4775                 if (target_type == MC_TARGET_PAGE) {
4776                         page = target.page;
4777                         if (!isolate_lru_page(page)) {
4778                                 if (!mem_cgroup_move_account(page, true,
4779                                                              mc.from, mc.to)) {
4780                                         mc.precharge -= HPAGE_PMD_NR;
4781                                         mc.moved_charge += HPAGE_PMD_NR;
4782                                 }
4783                                 putback_lru_page(page);
4784                         }
4785                         put_page(page);
4786                 }
4787                 spin_unlock(ptl);
4788                 return 0;
4789         }
4790
4791         if (pmd_trans_unstable(pmd))
4792                 return 0;
4793 retry:
4794         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4795         for (; addr != end; addr += PAGE_SIZE) {
4796                 pte_t ptent = *(pte++);
4797                 swp_entry_t ent;
4798
4799                 if (!mc.precharge)
4800                         break;
4801
4802                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4803                 case MC_TARGET_PAGE:
4804                         page = target.page;
4805                         /*
4806                          * We can have a part of the split pmd here. Moving it
4807                          * can be done but it would be too convoluted so simply
4808                          * ignore such a partial THP and keep it in original
4809                          * memcg. There should be somebody mapping the head.
4810                          */
4811                         if (PageTransCompound(page))
4812                                 goto put;
4813                         if (isolate_lru_page(page))
4814                                 goto put;
4815                         if (!mem_cgroup_move_account(page, false,
4816                                                 mc.from, mc.to)) {
4817                                 mc.precharge--;
4818                                 /* we uncharge from mc.from later. */
4819                                 mc.moved_charge++;
4820                         }
4821                         putback_lru_page(page);
4822 put:                    /* get_mctgt_type() gets the page */
4823                         put_page(page);
4824                         break;
4825                 case MC_TARGET_SWAP:
4826                         ent = target.ent;
4827                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4828                                 mc.precharge--;
4829                                 /* we fixup refcnts and charges later. */
4830                                 mc.moved_swap++;
4831                         }
4832                         break;
4833                 default:
4834                         break;
4835                 }
4836         }
4837         pte_unmap_unlock(pte - 1, ptl);
4838         cond_resched();
4839
4840         if (addr != end) {
4841                 /*
4842                  * We have consumed all precharges we got in can_attach().
4843                  * We try charge one by one, but don't do any additional
4844                  * charges to mc.to if we have failed in charge once in attach()
4845                  * phase.
4846                  */
4847                 ret = mem_cgroup_do_precharge(1);
4848                 if (!ret)
4849                         goto retry;
4850         }
4851
4852         return ret;
4853 }
4854
4855 static void mem_cgroup_move_charge(struct mm_struct *mm)
4856 {
4857         struct mm_walk mem_cgroup_move_charge_walk = {
4858                 .pmd_entry = mem_cgroup_move_charge_pte_range,
4859                 .mm = mm,
4860         };
4861
4862         lru_add_drain_all();
4863         /*
4864          * Signal lock_page_memcg() to take the memcg's move_lock
4865          * while we're moving its pages to another memcg. Then wait
4866          * for already started RCU-only updates to finish.
4867          */
4868         atomic_inc(&mc.from->moving_account);
4869         synchronize_rcu();
4870 retry:
4871         if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4872                 /*
4873                  * Someone who are holding the mmap_sem might be waiting in
4874                  * waitq. So we cancel all extra charges, wake up all waiters,
4875                  * and retry. Because we cancel precharges, we might not be able
4876                  * to move enough charges, but moving charge is a best-effort
4877                  * feature anyway, so it wouldn't be a big problem.
4878                  */
4879                 __mem_cgroup_clear_mc();
4880                 cond_resched();
4881                 goto retry;
4882         }
4883         /*
4884          * When we have consumed all precharges and failed in doing
4885          * additional charge, the page walk just aborts.
4886          */
4887         walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4888         up_read(&mm->mmap_sem);
4889         atomic_dec(&mc.from->moving_account);
4890 }
4891
4892 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4893 {
4894         struct cgroup_subsys_state *css;
4895         struct task_struct *p = cgroup_taskset_first(tset, &css);
4896         struct mm_struct *mm = get_task_mm(p);
4897
4898         if (mm) {
4899                 if (mc.to)
4900                         mem_cgroup_move_charge(mm);
4901                 mmput(mm);
4902         }
4903         if (mc.to)
4904                 mem_cgroup_clear_mc();
4905 }
4906 #else   /* !CONFIG_MMU */
4907 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4908 {
4909         return 0;
4910 }
4911 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4912 {
4913 }
4914 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4915 {
4916 }
4917 #endif
4918
4919 /*
4920  * Cgroup retains root cgroups across [un]mount cycles making it necessary
4921  * to verify whether we're attached to the default hierarchy on each mount
4922  * attempt.
4923  */
4924 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4925 {
4926         /*
4927          * use_hierarchy is forced on the default hierarchy.  cgroup core
4928          * guarantees that @root doesn't have any children, so turning it
4929          * on for the root memcg is enough.
4930          */
4931         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4932                 root_mem_cgroup->use_hierarchy = true;
4933         else
4934                 root_mem_cgroup->use_hierarchy = false;
4935 }
4936
4937 static u64 memory_current_read(struct cgroup_subsys_state *css,
4938                                struct cftype *cft)
4939 {
4940         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4941
4942         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4943 }
4944
4945 static int memory_low_show(struct seq_file *m, void *v)
4946 {
4947         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4948         unsigned long low = READ_ONCE(memcg->low);
4949
4950         if (low == PAGE_COUNTER_MAX)
4951                 seq_puts(m, "max\n");
4952         else
4953                 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4954
4955         return 0;
4956 }
4957
4958 static ssize_t memory_low_write(struct kernfs_open_file *of,
4959                                 char *buf, size_t nbytes, loff_t off)
4960 {
4961         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4962         unsigned long low;
4963         int err;
4964
4965         buf = strstrip(buf);
4966         err = page_counter_memparse(buf, "max", &low);
4967         if (err)
4968                 return err;
4969
4970         memcg->low = low;
4971
4972         return nbytes;
4973 }
4974
4975 static int memory_high_show(struct seq_file *m, void *v)
4976 {
4977         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4978         unsigned long high = READ_ONCE(memcg->high);
4979
4980         if (high == PAGE_COUNTER_MAX)
4981                 seq_puts(m, "max\n");
4982         else
4983                 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4984
4985         return 0;
4986 }
4987
4988 static ssize_t memory_high_write(struct kernfs_open_file *of,
4989                                  char *buf, size_t nbytes, loff_t off)
4990 {
4991         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4992         unsigned long nr_pages;
4993         unsigned long high;
4994         int err;
4995
4996         buf = strstrip(buf);
4997         err = page_counter_memparse(buf, "max", &high);
4998         if (err)
4999                 return err;
5000
5001         memcg->high = high;
5002
5003         nr_pages = page_counter_read(&memcg->memory);
5004         if (nr_pages > high)
5005                 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5006                                              GFP_KERNEL, true);
5007
5008         memcg_wb_domain_size_changed(memcg);
5009         return nbytes;
5010 }
5011
5012 static int memory_max_show(struct seq_file *m, void *v)
5013 {
5014         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5015         unsigned long max = READ_ONCE(memcg->memory.limit);
5016
5017         if (max == PAGE_COUNTER_MAX)
5018                 seq_puts(m, "max\n");
5019         else
5020                 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5021
5022         return 0;
5023 }
5024
5025 static ssize_t memory_max_write(struct kernfs_open_file *of,
5026                                 char *buf, size_t nbytes, loff_t off)
5027 {
5028         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5029         unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5030         bool drained = false;
5031         unsigned long max;
5032         int err;
5033
5034         buf = strstrip(buf);
5035         err = page_counter_memparse(buf, "max", &max);
5036         if (err)
5037                 return err;
5038
5039         xchg(&memcg->memory.limit, max);
5040
5041         for (;;) {
5042                 unsigned long nr_pages = page_counter_read(&memcg->memory);
5043
5044                 if (nr_pages <= max)
5045                         break;
5046
5047                 if (signal_pending(current)) {
5048                         err = -EINTR;
5049                         break;
5050                 }
5051
5052                 if (!drained) {
5053                         drain_all_stock(memcg);
5054                         drained = true;
5055                         continue;
5056                 }
5057
5058                 if (nr_reclaims) {
5059                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5060                                                           GFP_KERNEL, true))
5061                                 nr_reclaims--;
5062                         continue;
5063                 }
5064
5065                 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5066                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5067                         break;
5068         }
5069
5070         memcg_wb_domain_size_changed(memcg);
5071         return nbytes;
5072 }
5073
5074 static int memory_events_show(struct seq_file *m, void *v)
5075 {
5076         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5077
5078         seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5079         seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5080         seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5081         seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5082
5083         return 0;
5084 }
5085
5086 static int memory_stat_show(struct seq_file *m, void *v)
5087 {
5088         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5089         unsigned long stat[MEMCG_NR_STAT];
5090         unsigned long events[MEMCG_NR_EVENTS];
5091         int i;
5092
5093         /*
5094          * Provide statistics on the state of the memory subsystem as
5095          * well as cumulative event counters that show past behavior.
5096          *
5097          * This list is ordered following a combination of these gradients:
5098          * 1) generic big picture -> specifics and details
5099          * 2) reflecting userspace activity -> reflecting kernel heuristics
5100          *
5101          * Current memory state:
5102          */
5103
5104         tree_stat(memcg, stat);
5105         tree_events(memcg, events);
5106
5107         seq_printf(m, "anon %llu\n",
5108                    (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5109         seq_printf(m, "file %llu\n",
5110                    (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5111         seq_printf(m, "kernel_stack %llu\n",
5112                    (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5113         seq_printf(m, "slab %llu\n",
5114                    (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5115                          stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5116         seq_printf(m, "sock %llu\n",
5117                    (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5118
5119         seq_printf(m, "file_mapped %llu\n",
5120                    (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5121         seq_printf(m, "file_dirty %llu\n",
5122                    (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5123         seq_printf(m, "file_writeback %llu\n",
5124                    (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5125
5126         for (i = 0; i < NR_LRU_LISTS; i++) {
5127                 struct mem_cgroup *mi;
5128                 unsigned long val = 0;
5129
5130                 for_each_mem_cgroup_tree(mi, memcg)
5131                         val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5132                 seq_printf(m, "%s %llu\n",
5133                            mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5134         }
5135
5136         seq_printf(m, "slab_reclaimable %llu\n",
5137                    (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5138         seq_printf(m, "slab_unreclaimable %llu\n",
5139                    (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5140
5141         /* Accumulated memory events */
5142
5143         seq_printf(m, "pgfault %lu\n",
5144                    events[MEM_CGROUP_EVENTS_PGFAULT]);
5145         seq_printf(m, "pgmajfault %lu\n",
5146                    events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5147
5148         return 0;
5149 }
5150
5151 static struct cftype memory_files[] = {
5152         {
5153                 .name = "current",
5154                 .flags = CFTYPE_NOT_ON_ROOT,
5155                 .read_u64 = memory_current_read,
5156         },
5157         {
5158                 .name = "low",
5159                 .flags = CFTYPE_NOT_ON_ROOT,
5160                 .seq_show = memory_low_show,
5161                 .write = memory_low_write,
5162         },
5163         {
5164                 .name = "high",
5165                 .flags = CFTYPE_NOT_ON_ROOT,
5166                 .seq_show = memory_high_show,
5167                 .write = memory_high_write,
5168         },
5169         {
5170                 .name = "max",
5171                 .flags = CFTYPE_NOT_ON_ROOT,
5172                 .seq_show = memory_max_show,
5173                 .write = memory_max_write,
5174         },
5175         {
5176                 .name = "events",
5177                 .flags = CFTYPE_NOT_ON_ROOT,
5178                 .file_offset = offsetof(struct mem_cgroup, events_file),
5179                 .seq_show = memory_events_show,
5180         },
5181         {
5182                 .name = "stat",
5183                 .flags = CFTYPE_NOT_ON_ROOT,
5184                 .seq_show = memory_stat_show,
5185         },
5186         { }     /* terminate */
5187 };
5188
5189 struct cgroup_subsys memory_cgrp_subsys = {
5190         .css_alloc = mem_cgroup_css_alloc,
5191         .css_online = mem_cgroup_css_online,
5192         .css_offline = mem_cgroup_css_offline,
5193         .css_released = mem_cgroup_css_released,
5194         .css_free = mem_cgroup_css_free,
5195         .css_reset = mem_cgroup_css_reset,
5196         .can_attach = mem_cgroup_can_attach,
5197         .cancel_attach = mem_cgroup_cancel_attach,
5198         .attach = mem_cgroup_move_task,
5199         .bind = mem_cgroup_bind,
5200         .dfl_cftypes = memory_files,
5201         .legacy_cftypes = mem_cgroup_legacy_files,
5202         .early_init = 0,
5203 };
5204
5205 /**
5206  * mem_cgroup_low - check if memory consumption is below the normal range
5207  * @root: the highest ancestor to consider
5208  * @memcg: the memory cgroup to check
5209  *
5210  * Returns %true if memory consumption of @memcg, and that of all
5211  * configurable ancestors up to @root, is below the normal range.
5212  */
5213 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5214 {
5215         if (mem_cgroup_disabled())
5216                 return false;
5217
5218         /*
5219          * The toplevel group doesn't have a configurable range, so
5220          * it's never low when looked at directly, and it is not
5221          * considered an ancestor when assessing the hierarchy.
5222          */
5223
5224         if (memcg == root_mem_cgroup)
5225                 return false;
5226
5227         if (page_counter_read(&memcg->memory) >= memcg->low)
5228                 return false;
5229
5230         while (memcg != root) {
5231                 memcg = parent_mem_cgroup(memcg);
5232
5233                 if (memcg == root_mem_cgroup)
5234                         break;
5235
5236                 if (page_counter_read(&memcg->memory) >= memcg->low)
5237                         return false;
5238         }
5239         return true;
5240 }
5241
5242 /**
5243  * mem_cgroup_try_charge - try charging a page
5244  * @page: page to charge
5245  * @mm: mm context of the victim
5246  * @gfp_mask: reclaim mode
5247  * @memcgp: charged memcg return
5248  *
5249  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5250  * pages according to @gfp_mask if necessary.
5251  *
5252  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5253  * Otherwise, an error code is returned.
5254  *
5255  * After page->mapping has been set up, the caller must finalize the
5256  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5257  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5258  */
5259 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5260                           gfp_t gfp_mask, struct mem_cgroup **memcgp,
5261                           bool compound)
5262 {
5263         struct mem_cgroup *memcg = NULL;
5264         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5265         int ret = 0;
5266
5267         if (mem_cgroup_disabled())
5268                 goto out;
5269
5270         if (PageSwapCache(page)) {
5271                 /*
5272                  * Every swap fault against a single page tries to charge the
5273                  * page, bail as early as possible.  shmem_unuse() encounters
5274                  * already charged pages, too.  The USED bit is protected by
5275                  * the page lock, which serializes swap cache removal, which
5276                  * in turn serializes uncharging.
5277                  */
5278                 VM_BUG_ON_PAGE(!PageLocked(page), page);
5279                 if (page->mem_cgroup)
5280                         goto out;
5281
5282                 if (do_swap_account) {
5283                         swp_entry_t ent = { .val = page_private(page), };
5284                         unsigned short id = lookup_swap_cgroup_id(ent);
5285
5286                         rcu_read_lock();
5287                         memcg = mem_cgroup_from_id(id);
5288                         if (memcg && !css_tryget_online(&memcg->css))
5289                                 memcg = NULL;
5290                         rcu_read_unlock();
5291                 }
5292         }
5293
5294         if (!memcg)
5295                 memcg = get_mem_cgroup_from_mm(mm);
5296
5297         ret = try_charge(memcg, gfp_mask, nr_pages);
5298
5299         css_put(&memcg->css);
5300 out:
5301         *memcgp = memcg;
5302         return ret;
5303 }
5304
5305 /**
5306  * mem_cgroup_commit_charge - commit a page charge
5307  * @page: page to charge
5308  * @memcg: memcg to charge the page to
5309  * @lrucare: page might be on LRU already
5310  *
5311  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5312  * after page->mapping has been set up.  This must happen atomically
5313  * as part of the page instantiation, i.e. under the page table lock
5314  * for anonymous pages, under the page lock for page and swap cache.
5315  *
5316  * In addition, the page must not be on the LRU during the commit, to
5317  * prevent racing with task migration.  If it might be, use @lrucare.
5318  *
5319  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5320  */
5321 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5322                               bool lrucare, bool compound)
5323 {
5324         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5325
5326         VM_BUG_ON_PAGE(!page->mapping, page);
5327         VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5328
5329         if (mem_cgroup_disabled())
5330                 return;
5331         /*
5332          * Swap faults will attempt to charge the same page multiple
5333          * times.  But reuse_swap_page() might have removed the page
5334          * from swapcache already, so we can't check PageSwapCache().
5335          */
5336         if (!memcg)
5337                 return;
5338
5339         commit_charge(page, memcg, lrucare);
5340
5341         local_irq_disable();
5342         mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5343         memcg_check_events(memcg, page);
5344         local_irq_enable();
5345
5346         if (do_memsw_account() && PageSwapCache(page)) {
5347                 swp_entry_t entry = { .val = page_private(page) };
5348                 /*
5349                  * The swap entry might not get freed for a long time,
5350                  * let's not wait for it.  The page already received a
5351                  * memory+swap charge, drop the swap entry duplicate.
5352                  */
5353                 mem_cgroup_uncharge_swap(entry);
5354         }
5355 }
5356
5357 /**
5358  * mem_cgroup_cancel_charge - cancel a page charge
5359  * @page: page to charge
5360  * @memcg: memcg to charge the page to
5361  *
5362  * Cancel a charge transaction started by mem_cgroup_try_charge().
5363  */
5364 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5365                 bool compound)
5366 {
5367         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5368
5369         if (mem_cgroup_disabled())
5370                 return;
5371         /*
5372          * Swap faults will attempt to charge the same page multiple
5373          * times.  But reuse_swap_page() might have removed the page
5374          * from swapcache already, so we can't check PageSwapCache().
5375          */
5376         if (!memcg)
5377                 return;
5378
5379         cancel_charge(memcg, nr_pages);
5380 }
5381
5382 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5383                            unsigned long nr_anon, unsigned long nr_file,
5384                            unsigned long nr_huge, struct page *dummy_page)
5385 {
5386         unsigned long nr_pages = nr_anon + nr_file;
5387         unsigned long flags;
5388
5389         if (!mem_cgroup_is_root(memcg)) {
5390                 page_counter_uncharge(&memcg->memory, nr_pages);
5391                 if (do_memsw_account())
5392                         page_counter_uncharge(&memcg->memsw, nr_pages);
5393                 memcg_oom_recover(memcg);
5394         }
5395
5396         local_irq_save(flags);
5397         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5398         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5399         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5400         __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5401         __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5402         memcg_check_events(memcg, dummy_page);
5403         local_irq_restore(flags);
5404
5405         if (!mem_cgroup_is_root(memcg))
5406                 css_put_many(&memcg->css, nr_pages);
5407 }
5408
5409 static void uncharge_list(struct list_head *page_list)
5410 {
5411         struct mem_cgroup *memcg = NULL;
5412         unsigned long nr_anon = 0;
5413         unsigned long nr_file = 0;
5414         unsigned long nr_huge = 0;
5415         unsigned long pgpgout = 0;
5416         struct list_head *next;
5417         struct page *page;
5418
5419         /*
5420          * Note that the list can be a single page->lru; hence the
5421          * do-while loop instead of a simple list_for_each_entry().
5422          */
5423         next = page_list->next;
5424         do {
5425                 unsigned int nr_pages = 1;
5426
5427                 page = list_entry(next, struct page, lru);
5428                 next = page->lru.next;
5429
5430                 VM_BUG_ON_PAGE(PageLRU(page), page);
5431                 VM_BUG_ON_PAGE(page_count(page), page);
5432
5433                 if (!page->mem_cgroup)
5434                         continue;
5435
5436                 /*
5437                  * Nobody should be changing or seriously looking at
5438                  * page->mem_cgroup at this point, we have fully
5439                  * exclusive access to the page.
5440                  */
5441
5442                 if (memcg != page->mem_cgroup) {
5443                         if (memcg) {
5444                                 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5445                                                nr_huge, page);
5446                                 pgpgout = nr_anon = nr_file = nr_huge = 0;
5447                         }
5448                         memcg = page->mem_cgroup;
5449                 }
5450
5451                 if (PageTransHuge(page)) {
5452                         nr_pages <<= compound_order(page);
5453                         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5454                         nr_huge += nr_pages;
5455                 }
5456
5457                 if (PageAnon(page))
5458                         nr_anon += nr_pages;
5459                 else
5460                         nr_file += nr_pages;
5461
5462                 page->mem_cgroup = NULL;
5463
5464                 pgpgout++;
5465         } while (next != page_list);
5466
5467         if (memcg)
5468                 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5469                                nr_huge, page);
5470 }
5471
5472 /**
5473  * mem_cgroup_uncharge - uncharge a page
5474  * @page: page to uncharge
5475  *
5476  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5477  * mem_cgroup_commit_charge().
5478  */
5479 void mem_cgroup_uncharge(struct page *page)
5480 {
5481         if (mem_cgroup_disabled())
5482                 return;
5483
5484         /* Don't touch page->lru of any random page, pre-check: */
5485         if (!page->mem_cgroup)
5486                 return;
5487
5488         INIT_LIST_HEAD(&page->lru);
5489         uncharge_list(&page->lru);
5490 }
5491
5492 /**
5493  * mem_cgroup_uncharge_list - uncharge a list of page
5494  * @page_list: list of pages to uncharge
5495  *
5496  * Uncharge a list of pages previously charged with
5497  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5498  */
5499 void mem_cgroup_uncharge_list(struct list_head *page_list)
5500 {
5501         if (mem_cgroup_disabled())
5502                 return;
5503
5504         if (!list_empty(page_list))
5505                 uncharge_list(page_list);
5506 }
5507
5508 /**
5509  * mem_cgroup_migrate - charge a page's replacement
5510  * @oldpage: currently circulating page
5511  * @newpage: replacement page
5512  *
5513  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5514  * be uncharged upon free.
5515  *
5516  * Both pages must be locked, @newpage->mapping must be set up.
5517  */
5518 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5519 {
5520         struct mem_cgroup *memcg;
5521         unsigned int nr_pages;
5522         bool compound;
5523
5524         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5525         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5526         VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5527         VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5528                        newpage);
5529
5530         if (mem_cgroup_disabled())
5531                 return;
5532
5533         /* Page cache replacement: new page already charged? */
5534         if (newpage->mem_cgroup)
5535                 return;
5536
5537         /* Swapcache readahead pages can get replaced before being charged */
5538         memcg = oldpage->mem_cgroup;
5539         if (!memcg)
5540                 return;
5541
5542         /* Force-charge the new page. The old one will be freed soon */
5543         compound = PageTransHuge(newpage);
5544         nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5545
5546         page_counter_charge(&memcg->memory, nr_pages);
5547         if (do_memsw_account())
5548                 page_counter_charge(&memcg->memsw, nr_pages);
5549         css_get_many(&memcg->css, nr_pages);
5550
5551         commit_charge(newpage, memcg, false);
5552
5553         local_irq_disable();
5554         mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5555         memcg_check_events(memcg, newpage);
5556         local_irq_enable();
5557 }
5558
5559 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5560 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5561
5562 void sock_update_memcg(struct sock *sk)
5563 {
5564         struct mem_cgroup *memcg;
5565
5566         /* Socket cloning can throw us here with sk_cgrp already
5567          * filled. It won't however, necessarily happen from
5568          * process context. So the test for root memcg given
5569          * the current task's memcg won't help us in this case.
5570          *
5571          * Respecting the original socket's memcg is a better
5572          * decision in this case.
5573          */
5574         if (sk->sk_memcg) {
5575                 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5576                 css_get(&sk->sk_memcg->css);
5577                 return;
5578         }
5579
5580         rcu_read_lock();
5581         memcg = mem_cgroup_from_task(current);
5582         if (memcg == root_mem_cgroup)
5583                 goto out;
5584         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5585                 goto out;
5586         if (css_tryget_online(&memcg->css))
5587                 sk->sk_memcg = memcg;
5588 out:
5589         rcu_read_unlock();
5590 }
5591 EXPORT_SYMBOL(sock_update_memcg);
5592
5593 void sock_release_memcg(struct sock *sk)
5594 {
5595         WARN_ON(!sk->sk_memcg);
5596         css_put(&sk->sk_memcg->css);
5597 }
5598
5599 /**
5600  * mem_cgroup_charge_skmem - charge socket memory
5601  * @memcg: memcg to charge
5602  * @nr_pages: number of pages to charge
5603  *
5604  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5605  * @memcg's configured limit, %false if the charge had to be forced.
5606  */
5607 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5608 {
5609         gfp_t gfp_mask = GFP_KERNEL;
5610
5611         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5612                 struct page_counter *fail;
5613
5614                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5615                         memcg->tcpmem_pressure = 0;
5616                         return true;
5617                 }
5618                 page_counter_charge(&memcg->tcpmem, nr_pages);
5619                 memcg->tcpmem_pressure = 1;
5620                 return false;
5621         }
5622
5623         /* Don't block in the packet receive path */
5624         if (in_softirq())
5625                 gfp_mask = GFP_NOWAIT;
5626
5627         this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5628
5629         if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5630                 return true;
5631
5632         try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5633         return false;
5634 }
5635
5636 /**
5637  * mem_cgroup_uncharge_skmem - uncharge socket memory
5638  * @memcg - memcg to uncharge
5639  * @nr_pages - number of pages to uncharge
5640  */
5641 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5642 {
5643         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5644                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5645                 return;
5646         }
5647
5648         this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5649
5650         page_counter_uncharge(&memcg->memory, nr_pages);
5651         css_put_many(&memcg->css, nr_pages);
5652 }
5653
5654 static int __init cgroup_memory(char *s)
5655 {
5656         char *token;
5657
5658         while ((token = strsep(&s, ",")) != NULL) {
5659                 if (!*token)
5660                         continue;
5661                 if (!strcmp(token, "nosocket"))
5662                         cgroup_memory_nosocket = true;
5663                 if (!strcmp(token, "nokmem"))
5664                         cgroup_memory_nokmem = true;
5665         }
5666         return 0;
5667 }
5668 __setup("cgroup.memory=", cgroup_memory);
5669
5670 /*
5671  * subsys_initcall() for memory controller.
5672  *
5673  * Some parts like hotcpu_notifier() have to be initialized from this context
5674  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5675  * everything that doesn't depend on a specific mem_cgroup structure should
5676  * be initialized from here.
5677  */
5678 static int __init mem_cgroup_init(void)
5679 {
5680         int cpu, node;
5681
5682         hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5683
5684         for_each_possible_cpu(cpu)
5685                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5686                           drain_local_stock);
5687
5688         for_each_node(node) {
5689                 struct mem_cgroup_tree_per_node *rtpn;
5690                 int zone;
5691
5692                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5693                                     node_online(node) ? node : NUMA_NO_NODE);
5694
5695                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5696                         struct mem_cgroup_tree_per_zone *rtpz;
5697
5698                         rtpz = &rtpn->rb_tree_per_zone[zone];
5699                         rtpz->rb_root = RB_ROOT;
5700                         spin_lock_init(&rtpz->lock);
5701                 }
5702                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5703         }
5704
5705         return 0;
5706 }
5707 subsys_initcall(mem_cgroup_init);
5708
5709 #ifdef CONFIG_MEMCG_SWAP
5710 /**
5711  * mem_cgroup_swapout - transfer a memsw charge to swap
5712  * @page: page whose memsw charge to transfer
5713  * @entry: swap entry to move the charge to
5714  *
5715  * Transfer the memsw charge of @page to @entry.
5716  */
5717 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5718 {
5719         struct mem_cgroup *memcg;
5720         unsigned short oldid;
5721
5722         VM_BUG_ON_PAGE(PageLRU(page), page);
5723         VM_BUG_ON_PAGE(page_count(page), page);
5724
5725         if (!do_memsw_account())
5726                 return;
5727
5728         memcg = page->mem_cgroup;
5729
5730         /* Readahead page, never charged */
5731         if (!memcg)
5732                 return;
5733
5734         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5735         VM_BUG_ON_PAGE(oldid, page);
5736         mem_cgroup_swap_statistics(memcg, true);
5737
5738         page->mem_cgroup = NULL;
5739
5740         if (!mem_cgroup_is_root(memcg))
5741                 page_counter_uncharge(&memcg->memory, 1);
5742
5743         /*
5744          * Interrupts should be disabled here because the caller holds the
5745          * mapping->tree_lock lock which is taken with interrupts-off. It is
5746          * important here to have the interrupts disabled because it is the
5747          * only synchronisation we have for udpating the per-CPU variables.
5748          */
5749         VM_BUG_ON(!irqs_disabled());
5750         mem_cgroup_charge_statistics(memcg, page, false, -1);
5751         memcg_check_events(memcg, page);
5752 }
5753
5754 /*
5755  * mem_cgroup_try_charge_swap - try charging a swap entry
5756  * @page: page being added to swap
5757  * @entry: swap entry to charge
5758  *
5759  * Try to charge @entry to the memcg that @page belongs to.
5760  *
5761  * Returns 0 on success, -ENOMEM on failure.
5762  */
5763 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5764 {
5765         struct mem_cgroup *memcg;
5766         struct page_counter *counter;
5767         unsigned short oldid;
5768
5769         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5770                 return 0;
5771
5772         memcg = page->mem_cgroup;
5773
5774         /* Readahead page, never charged */
5775         if (!memcg)
5776                 return 0;
5777
5778         if (!mem_cgroup_is_root(memcg) &&
5779             !page_counter_try_charge(&memcg->swap, 1, &counter))
5780                 return -ENOMEM;
5781
5782         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5783         VM_BUG_ON_PAGE(oldid, page);
5784         mem_cgroup_swap_statistics(memcg, true);
5785
5786         css_get(&memcg->css);
5787         return 0;
5788 }
5789
5790 /**
5791  * mem_cgroup_uncharge_swap - uncharge a swap entry
5792  * @entry: swap entry to uncharge
5793  *
5794  * Drop the swap charge associated with @entry.
5795  */
5796 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5797 {
5798         struct mem_cgroup *memcg;
5799         unsigned short id;
5800
5801         if (!do_swap_account)
5802                 return;
5803
5804         id = swap_cgroup_record(entry, 0);
5805         rcu_read_lock();
5806         memcg = mem_cgroup_from_id(id);
5807         if (memcg) {
5808                 if (!mem_cgroup_is_root(memcg)) {
5809                         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5810                                 page_counter_uncharge(&memcg->swap, 1);
5811                         else
5812                                 page_counter_uncharge(&memcg->memsw, 1);
5813                 }
5814                 mem_cgroup_swap_statistics(memcg, false);
5815                 css_put(&memcg->css);
5816         }
5817         rcu_read_unlock();
5818 }
5819
5820 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5821 {
5822         long nr_swap_pages = get_nr_swap_pages();
5823
5824         if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5825                 return nr_swap_pages;
5826         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5827                 nr_swap_pages = min_t(long, nr_swap_pages,
5828                                       READ_ONCE(memcg->swap.limit) -
5829                                       page_counter_read(&memcg->swap));
5830         return nr_swap_pages;
5831 }
5832
5833 bool mem_cgroup_swap_full(struct page *page)
5834 {
5835         struct mem_cgroup *memcg;
5836
5837         VM_BUG_ON_PAGE(!PageLocked(page), page);
5838
5839         if (vm_swap_full())
5840                 return true;
5841         if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5842                 return false;
5843
5844         memcg = page->mem_cgroup;
5845         if (!memcg)
5846                 return false;
5847
5848         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5849                 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5850                         return true;
5851
5852         return false;
5853 }
5854
5855 /* for remember boot option*/
5856 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5857 static int really_do_swap_account __initdata = 1;
5858 #else
5859 static int really_do_swap_account __initdata;
5860 #endif
5861
5862 static int __init enable_swap_account(char *s)
5863 {
5864         if (!strcmp(s, "1"))
5865                 really_do_swap_account = 1;
5866         else if (!strcmp(s, "0"))
5867                 really_do_swap_account = 0;
5868         return 1;
5869 }
5870 __setup("swapaccount=", enable_swap_account);
5871
5872 static u64 swap_current_read(struct cgroup_subsys_state *css,
5873                              struct cftype *cft)
5874 {
5875         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5876
5877         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5878 }
5879
5880 static int swap_max_show(struct seq_file *m, void *v)
5881 {
5882         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5883         unsigned long max = READ_ONCE(memcg->swap.limit);
5884
5885         if (max == PAGE_COUNTER_MAX)
5886                 seq_puts(m, "max\n");
5887         else
5888                 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5889
5890         return 0;
5891 }
5892
5893 static ssize_t swap_max_write(struct kernfs_open_file *of,
5894                               char *buf, size_t nbytes, loff_t off)
5895 {
5896         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5897         unsigned long max;
5898         int err;
5899
5900         buf = strstrip(buf);
5901         err = page_counter_memparse(buf, "max", &max);
5902         if (err)
5903                 return err;
5904
5905         mutex_lock(&memcg_limit_mutex);
5906         err = page_counter_limit(&memcg->swap, max);
5907         mutex_unlock(&memcg_limit_mutex);
5908         if (err)
5909                 return err;
5910
5911         return nbytes;
5912 }
5913
5914 static struct cftype swap_files[] = {
5915         {
5916                 .name = "swap.current",
5917                 .flags = CFTYPE_NOT_ON_ROOT,
5918                 .read_u64 = swap_current_read,
5919         },
5920         {
5921                 .name = "swap.max",
5922                 .flags = CFTYPE_NOT_ON_ROOT,
5923                 .seq_show = swap_max_show,
5924                 .write = swap_max_write,
5925         },
5926         { }     /* terminate */
5927 };
5928
5929 static struct cftype memsw_cgroup_files[] = {
5930         {
5931                 .name = "memsw.usage_in_bytes",
5932                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5933                 .read_u64 = mem_cgroup_read_u64,
5934         },
5935         {
5936                 .name = "memsw.max_usage_in_bytes",
5937                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5938                 .write = mem_cgroup_reset,
5939                 .read_u64 = mem_cgroup_read_u64,
5940         },
5941         {
5942                 .name = "memsw.limit_in_bytes",
5943                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5944                 .write = mem_cgroup_write,
5945                 .read_u64 = mem_cgroup_read_u64,
5946         },
5947         {
5948                 .name = "memsw.failcnt",
5949                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5950                 .write = mem_cgroup_reset,
5951                 .read_u64 = mem_cgroup_read_u64,
5952         },
5953         { },    /* terminate */
5954 };
5955
5956 static int __init mem_cgroup_swap_init(void)
5957 {
5958         if (!mem_cgroup_disabled() && really_do_swap_account) {
5959                 do_swap_account = 1;
5960                 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5961                                                swap_files));
5962                 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5963                                                   memsw_cgroup_files));
5964         }
5965         return 0;
5966 }
5967 subsys_initcall(mem_cgroup_swap_init);
5968
5969 #endif /* CONFIG_MEMCG_SWAP */