mm/vmalloc.c: fix align value calculation error
[cascardo/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES      5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account         0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98         return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102         "cache",
103         "rss",
104         "rss_huge",
105         "mapped_file",
106         "dirty",
107         "writeback",
108         "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112         "pgpgin",
113         "pgpgout",
114         "pgfault",
115         "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119         "inactive_anon",
120         "active_anon",
121         "inactive_file",
122         "active_file",
123         "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET  1024
129
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134
135 struct mem_cgroup_tree_per_node {
136         struct rb_root rb_root;
137         spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree {
141         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142 };
143
144 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145
146 /* for OOM */
147 struct mem_cgroup_eventfd_list {
148         struct list_head list;
149         struct eventfd_ctx *eventfd;
150 };
151
152 /*
153  * cgroup_event represents events which userspace want to receive.
154  */
155 struct mem_cgroup_event {
156         /*
157          * memcg which the event belongs to.
158          */
159         struct mem_cgroup *memcg;
160         /*
161          * eventfd to signal userspace about the event.
162          */
163         struct eventfd_ctx *eventfd;
164         /*
165          * Each of these stored in a list by the cgroup.
166          */
167         struct list_head list;
168         /*
169          * register_event() callback will be used to add new userspace
170          * waiter for changes related to this event.  Use eventfd_signal()
171          * on eventfd to send notification to userspace.
172          */
173         int (*register_event)(struct mem_cgroup *memcg,
174                               struct eventfd_ctx *eventfd, const char *args);
175         /*
176          * unregister_event() callback will be called when userspace closes
177          * the eventfd or on cgroup removing.  This callback must be set,
178          * if you want provide notification functionality.
179          */
180         void (*unregister_event)(struct mem_cgroup *memcg,
181                                  struct eventfd_ctx *eventfd);
182         /*
183          * All fields below needed to unregister event when
184          * userspace closes eventfd.
185          */
186         poll_table pt;
187         wait_queue_head_t *wqh;
188         wait_queue_t wait;
189         struct work_struct remove;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
194
195 /* Stuffs for move charges at task migration. */
196 /*
197  * Types of charges to be moved.
198  */
199 #define MOVE_ANON       0x1U
200 #define MOVE_FILE       0x2U
201 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
202
203 /* "mc" and its members are protected by cgroup_mutex */
204 static struct move_charge_struct {
205         spinlock_t        lock; /* for from, to */
206         struct mm_struct  *mm;
207         struct mem_cgroup *from;
208         struct mem_cgroup *to;
209         unsigned long flags;
210         unsigned long precharge;
211         unsigned long moved_charge;
212         unsigned long moved_swap;
213         struct task_struct *moving_task;        /* a task moving charges */
214         wait_queue_head_t waitq;                /* a waitq for other context */
215 } mc = {
216         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
217         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218 };
219
220 /*
221  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222  * limit reclaim to prevent infinite loops, if they ever occur.
223  */
224 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
225 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
226
227 enum charge_type {
228         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
229         MEM_CGROUP_CHARGE_TYPE_ANON,
230         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
231         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
232         NR_CHARGE_TYPE,
233 };
234
235 /* for encoding cft->private value on file */
236 enum res_type {
237         _MEM,
238         _MEMSWAP,
239         _OOM_TYPE,
240         _KMEM,
241         _TCP,
242 };
243
244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL             (0)
249
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253         if (!memcg)
254                 memcg = root_mem_cgroup;
255         return &memcg->vmpressure;
256 }
257
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260         return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262
263 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264 {
265         return (memcg == root_mem_cgroup);
266 }
267
268 #ifndef CONFIG_SLOB
269 /*
270  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271  * The main reason for not using cgroup id for this:
272  *  this works better in sparse environments, where we have a lot of memcgs,
273  *  but only a few kmem-limited. Or also, if we have, for instance, 200
274  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
275  *  200 entry array for that.
276  *
277  * The current size of the caches array is stored in memcg_nr_cache_ids. It
278  * will double each time we have to increase it.
279  */
280 static DEFINE_IDA(memcg_cache_ida);
281 int memcg_nr_cache_ids;
282
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286 void memcg_get_cache_ids(void)
287 {
288         down_read(&memcg_cache_ids_sem);
289 }
290
291 void memcg_put_cache_ids(void)
292 {
293         up_read(&memcg_cache_ids_sem);
294 }
295
296 /*
297  * MIN_SIZE is different than 1, because we would like to avoid going through
298  * the alloc/free process all the time. In a small machine, 4 kmem-limited
299  * cgroups is a reasonable guess. In the future, it could be a parameter or
300  * tunable, but that is strictly not necessary.
301  *
302  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303  * this constant directly from cgroup, but it is understandable that this is
304  * better kept as an internal representation in cgroup.c. In any case, the
305  * cgrp_id space is not getting any smaller, and we don't have to necessarily
306  * increase ours as well if it increases.
307  */
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310
311 /*
312  * A lot of the calls to the cache allocation functions are expected to be
313  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314  * conditional to this static branch, we'll have to allow modules that does
315  * kmem_cache_alloc and the such to see this symbol as well
316  */
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key);
319
320 #endif /* !CONFIG_SLOB */
321
322 /**
323  * mem_cgroup_css_from_page - css of the memcg associated with a page
324  * @page: page of interest
325  *
326  * If memcg is bound to the default hierarchy, css of the memcg associated
327  * with @page is returned.  The returned css remains associated with @page
328  * until it is released.
329  *
330  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331  * is returned.
332  */
333 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334 {
335         struct mem_cgroup *memcg;
336
337         memcg = page->mem_cgroup;
338
339         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
340                 memcg = root_mem_cgroup;
341
342         return &memcg->css;
343 }
344
345 /**
346  * page_cgroup_ino - return inode number of the memcg a page is charged to
347  * @page: the page
348  *
349  * Look up the closest online ancestor of the memory cgroup @page is charged to
350  * and return its inode number or 0 if @page is not charged to any cgroup. It
351  * is safe to call this function without holding a reference to @page.
352  *
353  * Note, this function is inherently racy, because there is nothing to prevent
354  * the cgroup inode from getting torn down and potentially reallocated a moment
355  * after page_cgroup_ino() returns, so it only should be used by callers that
356  * do not care (such as procfs interfaces).
357  */
358 ino_t page_cgroup_ino(struct page *page)
359 {
360         struct mem_cgroup *memcg;
361         unsigned long ino = 0;
362
363         rcu_read_lock();
364         memcg = READ_ONCE(page->mem_cgroup);
365         while (memcg && !(memcg->css.flags & CSS_ONLINE))
366                 memcg = parent_mem_cgroup(memcg);
367         if (memcg)
368                 ino = cgroup_ino(memcg->css.cgroup);
369         rcu_read_unlock();
370         return ino;
371 }
372
373 static struct mem_cgroup_per_node *
374 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
375 {
376         int nid = page_to_nid(page);
377
378         return memcg->nodeinfo[nid];
379 }
380
381 static struct mem_cgroup_tree_per_node *
382 soft_limit_tree_node(int nid)
383 {
384         return soft_limit_tree.rb_tree_per_node[nid];
385 }
386
387 static struct mem_cgroup_tree_per_node *
388 soft_limit_tree_from_page(struct page *page)
389 {
390         int nid = page_to_nid(page);
391
392         return soft_limit_tree.rb_tree_per_node[nid];
393 }
394
395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396                                          struct mem_cgroup_tree_per_node *mctz,
397                                          unsigned long new_usage_in_excess)
398 {
399         struct rb_node **p = &mctz->rb_root.rb_node;
400         struct rb_node *parent = NULL;
401         struct mem_cgroup_per_node *mz_node;
402
403         if (mz->on_tree)
404                 return;
405
406         mz->usage_in_excess = new_usage_in_excess;
407         if (!mz->usage_in_excess)
408                 return;
409         while (*p) {
410                 parent = *p;
411                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
412                                         tree_node);
413                 if (mz->usage_in_excess < mz_node->usage_in_excess)
414                         p = &(*p)->rb_left;
415                 /*
416                  * We can't avoid mem cgroups that are over their soft
417                  * limit by the same amount
418                  */
419                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420                         p = &(*p)->rb_right;
421         }
422         rb_link_node(&mz->tree_node, parent, p);
423         rb_insert_color(&mz->tree_node, &mctz->rb_root);
424         mz->on_tree = true;
425 }
426
427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428                                          struct mem_cgroup_tree_per_node *mctz)
429 {
430         if (!mz->on_tree)
431                 return;
432         rb_erase(&mz->tree_node, &mctz->rb_root);
433         mz->on_tree = false;
434 }
435
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437                                        struct mem_cgroup_tree_per_node *mctz)
438 {
439         unsigned long flags;
440
441         spin_lock_irqsave(&mctz->lock, flags);
442         __mem_cgroup_remove_exceeded(mz, mctz);
443         spin_unlock_irqrestore(&mctz->lock, flags);
444 }
445
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447 {
448         unsigned long nr_pages = page_counter_read(&memcg->memory);
449         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450         unsigned long excess = 0;
451
452         if (nr_pages > soft_limit)
453                 excess = nr_pages - soft_limit;
454
455         return excess;
456 }
457
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459 {
460         unsigned long excess;
461         struct mem_cgroup_per_node *mz;
462         struct mem_cgroup_tree_per_node *mctz;
463
464         mctz = soft_limit_tree_from_page(page);
465         /*
466          * Necessary to update all ancestors when hierarchy is used.
467          * because their event counter is not touched.
468          */
469         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
470                 mz = mem_cgroup_page_nodeinfo(memcg, page);
471                 excess = soft_limit_excess(memcg);
472                 /*
473                  * We have to update the tree if mz is on RB-tree or
474                  * mem is over its softlimit.
475                  */
476                 if (excess || mz->on_tree) {
477                         unsigned long flags;
478
479                         spin_lock_irqsave(&mctz->lock, flags);
480                         /* if on-tree, remove it */
481                         if (mz->on_tree)
482                                 __mem_cgroup_remove_exceeded(mz, mctz);
483                         /*
484                          * Insert again. mz->usage_in_excess will be updated.
485                          * If excess is 0, no tree ops.
486                          */
487                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
488                         spin_unlock_irqrestore(&mctz->lock, flags);
489                 }
490         }
491 }
492
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
494 {
495         struct mem_cgroup_tree_per_node *mctz;
496         struct mem_cgroup_per_node *mz;
497         int nid;
498
499         for_each_node(nid) {
500                 mz = mem_cgroup_nodeinfo(memcg, nid);
501                 mctz = soft_limit_tree_node(nid);
502                 mem_cgroup_remove_exceeded(mz, mctz);
503         }
504 }
505
506 static struct mem_cgroup_per_node *
507 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
508 {
509         struct rb_node *rightmost = NULL;
510         struct mem_cgroup_per_node *mz;
511
512 retry:
513         mz = NULL;
514         rightmost = rb_last(&mctz->rb_root);
515         if (!rightmost)
516                 goto done;              /* Nothing to reclaim from */
517
518         mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
519         /*
520          * Remove the node now but someone else can add it back,
521          * we will to add it back at the end of reclaim to its correct
522          * position in the tree.
523          */
524         __mem_cgroup_remove_exceeded(mz, mctz);
525         if (!soft_limit_excess(mz->memcg) ||
526             !css_tryget_online(&mz->memcg->css))
527                 goto retry;
528 done:
529         return mz;
530 }
531
532 static struct mem_cgroup_per_node *
533 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534 {
535         struct mem_cgroup_per_node *mz;
536
537         spin_lock_irq(&mctz->lock);
538         mz = __mem_cgroup_largest_soft_limit_node(mctz);
539         spin_unlock_irq(&mctz->lock);
540         return mz;
541 }
542
543 /*
544  * Return page count for single (non recursive) @memcg.
545  *
546  * Implementation Note: reading percpu statistics for memcg.
547  *
548  * Both of vmstat[] and percpu_counter has threshold and do periodic
549  * synchronization to implement "quick" read. There are trade-off between
550  * reading cost and precision of value. Then, we may have a chance to implement
551  * a periodic synchronization of counter in memcg's counter.
552  *
553  * But this _read() function is used for user interface now. The user accounts
554  * memory usage by memory cgroup and he _always_ requires exact value because
555  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556  * have to visit all online cpus and make sum. So, for now, unnecessary
557  * synchronization is not implemented. (just implemented for cpu hotplug)
558  *
559  * If there are kernel internal actions which can make use of some not-exact
560  * value, and reading all cpu value can be performance bottleneck in some
561  * common workload, threshold and synchronization as vmstat[] should be
562  * implemented.
563  */
564 static unsigned long
565 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
566 {
567         long val = 0;
568         int cpu;
569
570         /* Per-cpu values can be negative, use a signed accumulator */
571         for_each_possible_cpu(cpu)
572                 val += per_cpu(memcg->stat->count[idx], cpu);
573         /*
574          * Summing races with updates, so val may be negative.  Avoid exposing
575          * transient negative values.
576          */
577         if (val < 0)
578                 val = 0;
579         return val;
580 }
581
582 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
583                                             enum mem_cgroup_events_index idx)
584 {
585         unsigned long val = 0;
586         int cpu;
587
588         for_each_possible_cpu(cpu)
589                 val += per_cpu(memcg->stat->events[idx], cpu);
590         return val;
591 }
592
593 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
594                                          struct page *page,
595                                          bool compound, int nr_pages)
596 {
597         /*
598          * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599          * counted as CACHE even if it's on ANON LRU.
600          */
601         if (PageAnon(page))
602                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
603                                 nr_pages);
604         else
605                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
606                                 nr_pages);
607
608         if (compound) {
609                 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
610                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
611                                 nr_pages);
612         }
613
614         /* pagein of a big page is an event. So, ignore page size */
615         if (nr_pages > 0)
616                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
617         else {
618                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619                 nr_pages = -nr_pages; /* for event */
620         }
621
622         __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
623 }
624
625 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626                                            int nid, unsigned int lru_mask)
627 {
628         unsigned long nr = 0;
629         struct mem_cgroup_per_node *mz;
630         enum lru_list lru;
631
632         VM_BUG_ON((unsigned)nid >= nr_node_ids);
633
634         for_each_lru(lru) {
635                 if (!(BIT(lru) & lru_mask))
636                         continue;
637                 mz = mem_cgroup_nodeinfo(memcg, nid);
638                 nr += mz->lru_size[lru];
639         }
640         return nr;
641 }
642
643 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
644                         unsigned int lru_mask)
645 {
646         unsigned long nr = 0;
647         int nid;
648
649         for_each_node_state(nid, N_MEMORY)
650                 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
651         return nr;
652 }
653
654 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
655                                        enum mem_cgroup_events_target target)
656 {
657         unsigned long val, next;
658
659         val = __this_cpu_read(memcg->stat->nr_page_events);
660         next = __this_cpu_read(memcg->stat->targets[target]);
661         /* from time_after() in jiffies.h */
662         if ((long)next - (long)val < 0) {
663                 switch (target) {
664                 case MEM_CGROUP_TARGET_THRESH:
665                         next = val + THRESHOLDS_EVENTS_TARGET;
666                         break;
667                 case MEM_CGROUP_TARGET_SOFTLIMIT:
668                         next = val + SOFTLIMIT_EVENTS_TARGET;
669                         break;
670                 case MEM_CGROUP_TARGET_NUMAINFO:
671                         next = val + NUMAINFO_EVENTS_TARGET;
672                         break;
673                 default:
674                         break;
675                 }
676                 __this_cpu_write(memcg->stat->targets[target], next);
677                 return true;
678         }
679         return false;
680 }
681
682 /*
683  * Check events in order.
684  *
685  */
686 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
687 {
688         /* threshold event is triggered in finer grain than soft limit */
689         if (unlikely(mem_cgroup_event_ratelimit(memcg,
690                                                 MEM_CGROUP_TARGET_THRESH))) {
691                 bool do_softlimit;
692                 bool do_numainfo __maybe_unused;
693
694                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
695                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
696 #if MAX_NUMNODES > 1
697                 do_numainfo = mem_cgroup_event_ratelimit(memcg,
698                                                 MEM_CGROUP_TARGET_NUMAINFO);
699 #endif
700                 mem_cgroup_threshold(memcg);
701                 if (unlikely(do_softlimit))
702                         mem_cgroup_update_tree(memcg, page);
703 #if MAX_NUMNODES > 1
704                 if (unlikely(do_numainfo))
705                         atomic_inc(&memcg->numainfo_events);
706 #endif
707         }
708 }
709
710 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
711 {
712         /*
713          * mm_update_next_owner() may clear mm->owner to NULL
714          * if it races with swapoff, page migration, etc.
715          * So this can be called with p == NULL.
716          */
717         if (unlikely(!p))
718                 return NULL;
719
720         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
721 }
722 EXPORT_SYMBOL(mem_cgroup_from_task);
723
724 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
725 {
726         struct mem_cgroup *memcg = NULL;
727
728         rcu_read_lock();
729         do {
730                 /*
731                  * Page cache insertions can happen withou an
732                  * actual mm context, e.g. during disk probing
733                  * on boot, loopback IO, acct() writes etc.
734                  */
735                 if (unlikely(!mm))
736                         memcg = root_mem_cgroup;
737                 else {
738                         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
739                         if (unlikely(!memcg))
740                                 memcg = root_mem_cgroup;
741                 }
742         } while (!css_tryget_online(&memcg->css));
743         rcu_read_unlock();
744         return memcg;
745 }
746
747 /**
748  * mem_cgroup_iter - iterate over memory cgroup hierarchy
749  * @root: hierarchy root
750  * @prev: previously returned memcg, NULL on first invocation
751  * @reclaim: cookie for shared reclaim walks, NULL for full walks
752  *
753  * Returns references to children of the hierarchy below @root, or
754  * @root itself, or %NULL after a full round-trip.
755  *
756  * Caller must pass the return value in @prev on subsequent
757  * invocations for reference counting, or use mem_cgroup_iter_break()
758  * to cancel a hierarchy walk before the round-trip is complete.
759  *
760  * Reclaimers can specify a zone and a priority level in @reclaim to
761  * divide up the memcgs in the hierarchy among all concurrent
762  * reclaimers operating on the same zone and priority.
763  */
764 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
765                                    struct mem_cgroup *prev,
766                                    struct mem_cgroup_reclaim_cookie *reclaim)
767 {
768         struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
769         struct cgroup_subsys_state *css = NULL;
770         struct mem_cgroup *memcg = NULL;
771         struct mem_cgroup *pos = NULL;
772
773         if (mem_cgroup_disabled())
774                 return NULL;
775
776         if (!root)
777                 root = root_mem_cgroup;
778
779         if (prev && !reclaim)
780                 pos = prev;
781
782         if (!root->use_hierarchy && root != root_mem_cgroup) {
783                 if (prev)
784                         goto out;
785                 return root;
786         }
787
788         rcu_read_lock();
789
790         if (reclaim) {
791                 struct mem_cgroup_per_node *mz;
792
793                 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
794                 iter = &mz->iter[reclaim->priority];
795
796                 if (prev && reclaim->generation != iter->generation)
797                         goto out_unlock;
798
799                 while (1) {
800                         pos = READ_ONCE(iter->position);
801                         if (!pos || css_tryget(&pos->css))
802                                 break;
803                         /*
804                          * css reference reached zero, so iter->position will
805                          * be cleared by ->css_released. However, we should not
806                          * rely on this happening soon, because ->css_released
807                          * is called from a work queue, and by busy-waiting we
808                          * might block it. So we clear iter->position right
809                          * away.
810                          */
811                         (void)cmpxchg(&iter->position, pos, NULL);
812                 }
813         }
814
815         if (pos)
816                 css = &pos->css;
817
818         for (;;) {
819                 css = css_next_descendant_pre(css, &root->css);
820                 if (!css) {
821                         /*
822                          * Reclaimers share the hierarchy walk, and a
823                          * new one might jump in right at the end of
824                          * the hierarchy - make sure they see at least
825                          * one group and restart from the beginning.
826                          */
827                         if (!prev)
828                                 continue;
829                         break;
830                 }
831
832                 /*
833                  * Verify the css and acquire a reference.  The root
834                  * is provided by the caller, so we know it's alive
835                  * and kicking, and don't take an extra reference.
836                  */
837                 memcg = mem_cgroup_from_css(css);
838
839                 if (css == &root->css)
840                         break;
841
842                 if (css_tryget(css))
843                         break;
844
845                 memcg = NULL;
846         }
847
848         if (reclaim) {
849                 /*
850                  * The position could have already been updated by a competing
851                  * thread, so check that the value hasn't changed since we read
852                  * it to avoid reclaiming from the same cgroup twice.
853                  */
854                 (void)cmpxchg(&iter->position, pos, memcg);
855
856                 if (pos)
857                         css_put(&pos->css);
858
859                 if (!memcg)
860                         iter->generation++;
861                 else if (!prev)
862                         reclaim->generation = iter->generation;
863         }
864
865 out_unlock:
866         rcu_read_unlock();
867 out:
868         if (prev && prev != root)
869                 css_put(&prev->css);
870
871         return memcg;
872 }
873
874 /**
875  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
876  * @root: hierarchy root
877  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
878  */
879 void mem_cgroup_iter_break(struct mem_cgroup *root,
880                            struct mem_cgroup *prev)
881 {
882         if (!root)
883                 root = root_mem_cgroup;
884         if (prev && prev != root)
885                 css_put(&prev->css);
886 }
887
888 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
889 {
890         struct mem_cgroup *memcg = dead_memcg;
891         struct mem_cgroup_reclaim_iter *iter;
892         struct mem_cgroup_per_node *mz;
893         int nid;
894         int i;
895
896         while ((memcg = parent_mem_cgroup(memcg))) {
897                 for_each_node(nid) {
898                         mz = mem_cgroup_nodeinfo(memcg, nid);
899                         for (i = 0; i <= DEF_PRIORITY; i++) {
900                                 iter = &mz->iter[i];
901                                 cmpxchg(&iter->position,
902                                         dead_memcg, NULL);
903                         }
904                 }
905         }
906 }
907
908 /*
909  * Iteration constructs for visiting all cgroups (under a tree).  If
910  * loops are exited prematurely (break), mem_cgroup_iter_break() must
911  * be used for reference counting.
912  */
913 #define for_each_mem_cgroup_tree(iter, root)            \
914         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
915              iter != NULL;                              \
916              iter = mem_cgroup_iter(root, iter, NULL))
917
918 #define for_each_mem_cgroup(iter)                       \
919         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
920              iter != NULL;                              \
921              iter = mem_cgroup_iter(NULL, iter, NULL))
922
923 /**
924  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
925  * @memcg: hierarchy root
926  * @fn: function to call for each task
927  * @arg: argument passed to @fn
928  *
929  * This function iterates over tasks attached to @memcg or to any of its
930  * descendants and calls @fn for each task. If @fn returns a non-zero
931  * value, the function breaks the iteration loop and returns the value.
932  * Otherwise, it will iterate over all tasks and return 0.
933  *
934  * This function must not be called for the root memory cgroup.
935  */
936 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
937                           int (*fn)(struct task_struct *, void *), void *arg)
938 {
939         struct mem_cgroup *iter;
940         int ret = 0;
941
942         BUG_ON(memcg == root_mem_cgroup);
943
944         for_each_mem_cgroup_tree(iter, memcg) {
945                 struct css_task_iter it;
946                 struct task_struct *task;
947
948                 css_task_iter_start(&iter->css, &it);
949                 while (!ret && (task = css_task_iter_next(&it)))
950                         ret = fn(task, arg);
951                 css_task_iter_end(&it);
952                 if (ret) {
953                         mem_cgroup_iter_break(memcg, iter);
954                         break;
955                 }
956         }
957         return ret;
958 }
959
960 /**
961  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
962  * @page: the page
963  * @zone: zone of the page
964  *
965  * This function is only safe when following the LRU page isolation
966  * and putback protocol: the LRU lock must be held, and the page must
967  * either be PageLRU() or the caller must have isolated/allocated it.
968  */
969 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
970 {
971         struct mem_cgroup_per_node *mz;
972         struct mem_cgroup *memcg;
973         struct lruvec *lruvec;
974
975         if (mem_cgroup_disabled()) {
976                 lruvec = &pgdat->lruvec;
977                 goto out;
978         }
979
980         memcg = page->mem_cgroup;
981         /*
982          * Swapcache readahead pages are added to the LRU - and
983          * possibly migrated - before they are charged.
984          */
985         if (!memcg)
986                 memcg = root_mem_cgroup;
987
988         mz = mem_cgroup_page_nodeinfo(memcg, page);
989         lruvec = &mz->lruvec;
990 out:
991         /*
992          * Since a node can be onlined after the mem_cgroup was created,
993          * we have to be prepared to initialize lruvec->zone here;
994          * and if offlined then reonlined, we need to reinitialize it.
995          */
996         if (unlikely(lruvec->pgdat != pgdat))
997                 lruvec->pgdat = pgdat;
998         return lruvec;
999 }
1000
1001 /**
1002  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1003  * @lruvec: mem_cgroup per zone lru vector
1004  * @lru: index of lru list the page is sitting on
1005  * @nr_pages: positive when adding or negative when removing
1006  *
1007  * This function must be called under lru_lock, just before a page is added
1008  * to or just after a page is removed from an lru list (that ordering being
1009  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1010  */
1011 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1012                                 int nr_pages)
1013 {
1014         struct mem_cgroup_per_node *mz;
1015         unsigned long *lru_size;
1016         long size;
1017         bool empty;
1018
1019         if (mem_cgroup_disabled())
1020                 return;
1021
1022         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1023         lru_size = mz->lru_size + lru;
1024         empty = list_empty(lruvec->lists + lru);
1025
1026         if (nr_pages < 0)
1027                 *lru_size += nr_pages;
1028
1029         size = *lru_size;
1030         if (WARN_ONCE(size < 0 || empty != !size,
1031                 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1032                 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1033                 VM_BUG_ON(1);
1034                 *lru_size = 0;
1035         }
1036
1037         if (nr_pages > 0)
1038                 *lru_size += nr_pages;
1039 }
1040
1041 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1042 {
1043         struct mem_cgroup *task_memcg;
1044         struct task_struct *p;
1045         bool ret;
1046
1047         p = find_lock_task_mm(task);
1048         if (p) {
1049                 task_memcg = get_mem_cgroup_from_mm(p->mm);
1050                 task_unlock(p);
1051         } else {
1052                 /*
1053                  * All threads may have already detached their mm's, but the oom
1054                  * killer still needs to detect if they have already been oom
1055                  * killed to prevent needlessly killing additional tasks.
1056                  */
1057                 rcu_read_lock();
1058                 task_memcg = mem_cgroup_from_task(task);
1059                 css_get(&task_memcg->css);
1060                 rcu_read_unlock();
1061         }
1062         ret = mem_cgroup_is_descendant(task_memcg, memcg);
1063         css_put(&task_memcg->css);
1064         return ret;
1065 }
1066
1067 /**
1068  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1069  * @memcg: the memory cgroup
1070  *
1071  * Returns the maximum amount of memory @mem can be charged with, in
1072  * pages.
1073  */
1074 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1075 {
1076         unsigned long margin = 0;
1077         unsigned long count;
1078         unsigned long limit;
1079
1080         count = page_counter_read(&memcg->memory);
1081         limit = READ_ONCE(memcg->memory.limit);
1082         if (count < limit)
1083                 margin = limit - count;
1084
1085         if (do_memsw_account()) {
1086                 count = page_counter_read(&memcg->memsw);
1087                 limit = READ_ONCE(memcg->memsw.limit);
1088                 if (count <= limit)
1089                         margin = min(margin, limit - count);
1090                 else
1091                         margin = 0;
1092         }
1093
1094         return margin;
1095 }
1096
1097 /*
1098  * A routine for checking "mem" is under move_account() or not.
1099  *
1100  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1101  * moving cgroups. This is for waiting at high-memory pressure
1102  * caused by "move".
1103  */
1104 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1105 {
1106         struct mem_cgroup *from;
1107         struct mem_cgroup *to;
1108         bool ret = false;
1109         /*
1110          * Unlike task_move routines, we access mc.to, mc.from not under
1111          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1112          */
1113         spin_lock(&mc.lock);
1114         from = mc.from;
1115         to = mc.to;
1116         if (!from)
1117                 goto unlock;
1118
1119         ret = mem_cgroup_is_descendant(from, memcg) ||
1120                 mem_cgroup_is_descendant(to, memcg);
1121 unlock:
1122         spin_unlock(&mc.lock);
1123         return ret;
1124 }
1125
1126 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1127 {
1128         if (mc.moving_task && current != mc.moving_task) {
1129                 if (mem_cgroup_under_move(memcg)) {
1130                         DEFINE_WAIT(wait);
1131                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1132                         /* moving charge context might have finished. */
1133                         if (mc.moving_task)
1134                                 schedule();
1135                         finish_wait(&mc.waitq, &wait);
1136                         return true;
1137                 }
1138         }
1139         return false;
1140 }
1141
1142 #define K(x) ((x) << (PAGE_SHIFT-10))
1143 /**
1144  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1145  * @memcg: The memory cgroup that went over limit
1146  * @p: Task that is going to be killed
1147  *
1148  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1149  * enabled
1150  */
1151 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1152 {
1153         struct mem_cgroup *iter;
1154         unsigned int i;
1155
1156         rcu_read_lock();
1157
1158         if (p) {
1159                 pr_info("Task in ");
1160                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1161                 pr_cont(" killed as a result of limit of ");
1162         } else {
1163                 pr_info("Memory limit reached of cgroup ");
1164         }
1165
1166         pr_cont_cgroup_path(memcg->css.cgroup);
1167         pr_cont("\n");
1168
1169         rcu_read_unlock();
1170
1171         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1172                 K((u64)page_counter_read(&memcg->memory)),
1173                 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1174         pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1175                 K((u64)page_counter_read(&memcg->memsw)),
1176                 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1177         pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1178                 K((u64)page_counter_read(&memcg->kmem)),
1179                 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1180
1181         for_each_mem_cgroup_tree(iter, memcg) {
1182                 pr_info("Memory cgroup stats for ");
1183                 pr_cont_cgroup_path(iter->css.cgroup);
1184                 pr_cont(":");
1185
1186                 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1187                         if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1188                                 continue;
1189                         pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1190                                 K(mem_cgroup_read_stat(iter, i)));
1191                 }
1192
1193                 for (i = 0; i < NR_LRU_LISTS; i++)
1194                         pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1195                                 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1196
1197                 pr_cont("\n");
1198         }
1199 }
1200
1201 /*
1202  * This function returns the number of memcg under hierarchy tree. Returns
1203  * 1(self count) if no children.
1204  */
1205 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1206 {
1207         int num = 0;
1208         struct mem_cgroup *iter;
1209
1210         for_each_mem_cgroup_tree(iter, memcg)
1211                 num++;
1212         return num;
1213 }
1214
1215 /*
1216  * Return the memory (and swap, if configured) limit for a memcg.
1217  */
1218 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1219 {
1220         unsigned long limit;
1221
1222         limit = memcg->memory.limit;
1223         if (mem_cgroup_swappiness(memcg)) {
1224                 unsigned long memsw_limit;
1225                 unsigned long swap_limit;
1226
1227                 memsw_limit = memcg->memsw.limit;
1228                 swap_limit = memcg->swap.limit;
1229                 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1230                 limit = min(limit + swap_limit, memsw_limit);
1231         }
1232         return limit;
1233 }
1234
1235 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1236                                      int order)
1237 {
1238         struct oom_control oc = {
1239                 .zonelist = NULL,
1240                 .nodemask = NULL,
1241                 .memcg = memcg,
1242                 .gfp_mask = gfp_mask,
1243                 .order = order,
1244         };
1245         bool ret;
1246
1247         mutex_lock(&oom_lock);
1248         ret = out_of_memory(&oc);
1249         mutex_unlock(&oom_lock);
1250         return ret;
1251 }
1252
1253 #if MAX_NUMNODES > 1
1254
1255 /**
1256  * test_mem_cgroup_node_reclaimable
1257  * @memcg: the target memcg
1258  * @nid: the node ID to be checked.
1259  * @noswap : specify true here if the user wants flle only information.
1260  *
1261  * This function returns whether the specified memcg contains any
1262  * reclaimable pages on a node. Returns true if there are any reclaimable
1263  * pages in the node.
1264  */
1265 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1266                 int nid, bool noswap)
1267 {
1268         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1269                 return true;
1270         if (noswap || !total_swap_pages)
1271                 return false;
1272         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1273                 return true;
1274         return false;
1275
1276 }
1277
1278 /*
1279  * Always updating the nodemask is not very good - even if we have an empty
1280  * list or the wrong list here, we can start from some node and traverse all
1281  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1282  *
1283  */
1284 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1285 {
1286         int nid;
1287         /*
1288          * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1289          * pagein/pageout changes since the last update.
1290          */
1291         if (!atomic_read(&memcg->numainfo_events))
1292                 return;
1293         if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1294                 return;
1295
1296         /* make a nodemask where this memcg uses memory from */
1297         memcg->scan_nodes = node_states[N_MEMORY];
1298
1299         for_each_node_mask(nid, node_states[N_MEMORY]) {
1300
1301                 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1302                         node_clear(nid, memcg->scan_nodes);
1303         }
1304
1305         atomic_set(&memcg->numainfo_events, 0);
1306         atomic_set(&memcg->numainfo_updating, 0);
1307 }
1308
1309 /*
1310  * Selecting a node where we start reclaim from. Because what we need is just
1311  * reducing usage counter, start from anywhere is O,K. Considering
1312  * memory reclaim from current node, there are pros. and cons.
1313  *
1314  * Freeing memory from current node means freeing memory from a node which
1315  * we'll use or we've used. So, it may make LRU bad. And if several threads
1316  * hit limits, it will see a contention on a node. But freeing from remote
1317  * node means more costs for memory reclaim because of memory latency.
1318  *
1319  * Now, we use round-robin. Better algorithm is welcomed.
1320  */
1321 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1322 {
1323         int node;
1324
1325         mem_cgroup_may_update_nodemask(memcg);
1326         node = memcg->last_scanned_node;
1327
1328         node = next_node_in(node, memcg->scan_nodes);
1329         /*
1330          * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1331          * last time it really checked all the LRUs due to rate limiting.
1332          * Fallback to the current node in that case for simplicity.
1333          */
1334         if (unlikely(node == MAX_NUMNODES))
1335                 node = numa_node_id();
1336
1337         memcg->last_scanned_node = node;
1338         return node;
1339 }
1340 #else
1341 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1342 {
1343         return 0;
1344 }
1345 #endif
1346
1347 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1348                                    pg_data_t *pgdat,
1349                                    gfp_t gfp_mask,
1350                                    unsigned long *total_scanned)
1351 {
1352         struct mem_cgroup *victim = NULL;
1353         int total = 0;
1354         int loop = 0;
1355         unsigned long excess;
1356         unsigned long nr_scanned;
1357         struct mem_cgroup_reclaim_cookie reclaim = {
1358                 .pgdat = pgdat,
1359                 .priority = 0,
1360         };
1361
1362         excess = soft_limit_excess(root_memcg);
1363
1364         while (1) {
1365                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1366                 if (!victim) {
1367                         loop++;
1368                         if (loop >= 2) {
1369                                 /*
1370                                  * If we have not been able to reclaim
1371                                  * anything, it might because there are
1372                                  * no reclaimable pages under this hierarchy
1373                                  */
1374                                 if (!total)
1375                                         break;
1376                                 /*
1377                                  * We want to do more targeted reclaim.
1378                                  * excess >> 2 is not to excessive so as to
1379                                  * reclaim too much, nor too less that we keep
1380                                  * coming back to reclaim from this cgroup
1381                                  */
1382                                 if (total >= (excess >> 2) ||
1383                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1384                                         break;
1385                         }
1386                         continue;
1387                 }
1388                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1389                                         pgdat, &nr_scanned);
1390                 *total_scanned += nr_scanned;
1391                 if (!soft_limit_excess(root_memcg))
1392                         break;
1393         }
1394         mem_cgroup_iter_break(root_memcg, victim);
1395         return total;
1396 }
1397
1398 #ifdef CONFIG_LOCKDEP
1399 static struct lockdep_map memcg_oom_lock_dep_map = {
1400         .name = "memcg_oom_lock",
1401 };
1402 #endif
1403
1404 static DEFINE_SPINLOCK(memcg_oom_lock);
1405
1406 /*
1407  * Check OOM-Killer is already running under our hierarchy.
1408  * If someone is running, return false.
1409  */
1410 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1411 {
1412         struct mem_cgroup *iter, *failed = NULL;
1413
1414         spin_lock(&memcg_oom_lock);
1415
1416         for_each_mem_cgroup_tree(iter, memcg) {
1417                 if (iter->oom_lock) {
1418                         /*
1419                          * this subtree of our hierarchy is already locked
1420                          * so we cannot give a lock.
1421                          */
1422                         failed = iter;
1423                         mem_cgroup_iter_break(memcg, iter);
1424                         break;
1425                 } else
1426                         iter->oom_lock = true;
1427         }
1428
1429         if (failed) {
1430                 /*
1431                  * OK, we failed to lock the whole subtree so we have
1432                  * to clean up what we set up to the failing subtree
1433                  */
1434                 for_each_mem_cgroup_tree(iter, memcg) {
1435                         if (iter == failed) {
1436                                 mem_cgroup_iter_break(memcg, iter);
1437                                 break;
1438                         }
1439                         iter->oom_lock = false;
1440                 }
1441         } else
1442                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1443
1444         spin_unlock(&memcg_oom_lock);
1445
1446         return !failed;
1447 }
1448
1449 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1450 {
1451         struct mem_cgroup *iter;
1452
1453         spin_lock(&memcg_oom_lock);
1454         mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1455         for_each_mem_cgroup_tree(iter, memcg)
1456                 iter->oom_lock = false;
1457         spin_unlock(&memcg_oom_lock);
1458 }
1459
1460 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1461 {
1462         struct mem_cgroup *iter;
1463
1464         spin_lock(&memcg_oom_lock);
1465         for_each_mem_cgroup_tree(iter, memcg)
1466                 iter->under_oom++;
1467         spin_unlock(&memcg_oom_lock);
1468 }
1469
1470 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1471 {
1472         struct mem_cgroup *iter;
1473
1474         /*
1475          * When a new child is created while the hierarchy is under oom,
1476          * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1477          */
1478         spin_lock(&memcg_oom_lock);
1479         for_each_mem_cgroup_tree(iter, memcg)
1480                 if (iter->under_oom > 0)
1481                         iter->under_oom--;
1482         spin_unlock(&memcg_oom_lock);
1483 }
1484
1485 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1486
1487 struct oom_wait_info {
1488         struct mem_cgroup *memcg;
1489         wait_queue_t    wait;
1490 };
1491
1492 static int memcg_oom_wake_function(wait_queue_t *wait,
1493         unsigned mode, int sync, void *arg)
1494 {
1495         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1496         struct mem_cgroup *oom_wait_memcg;
1497         struct oom_wait_info *oom_wait_info;
1498
1499         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1500         oom_wait_memcg = oom_wait_info->memcg;
1501
1502         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1503             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1504                 return 0;
1505         return autoremove_wake_function(wait, mode, sync, arg);
1506 }
1507
1508 static void memcg_oom_recover(struct mem_cgroup *memcg)
1509 {
1510         /*
1511          * For the following lockless ->under_oom test, the only required
1512          * guarantee is that it must see the state asserted by an OOM when
1513          * this function is called as a result of userland actions
1514          * triggered by the notification of the OOM.  This is trivially
1515          * achieved by invoking mem_cgroup_mark_under_oom() before
1516          * triggering notification.
1517          */
1518         if (memcg && memcg->under_oom)
1519                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1520 }
1521
1522 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1523 {
1524         if (!current->memcg_may_oom)
1525                 return;
1526         /*
1527          * We are in the middle of the charge context here, so we
1528          * don't want to block when potentially sitting on a callstack
1529          * that holds all kinds of filesystem and mm locks.
1530          *
1531          * Also, the caller may handle a failed allocation gracefully
1532          * (like optional page cache readahead) and so an OOM killer
1533          * invocation might not even be necessary.
1534          *
1535          * That's why we don't do anything here except remember the
1536          * OOM context and then deal with it at the end of the page
1537          * fault when the stack is unwound, the locks are released,
1538          * and when we know whether the fault was overall successful.
1539          */
1540         css_get(&memcg->css);
1541         current->memcg_in_oom = memcg;
1542         current->memcg_oom_gfp_mask = mask;
1543         current->memcg_oom_order = order;
1544 }
1545
1546 /**
1547  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1548  * @handle: actually kill/wait or just clean up the OOM state
1549  *
1550  * This has to be called at the end of a page fault if the memcg OOM
1551  * handler was enabled.
1552  *
1553  * Memcg supports userspace OOM handling where failed allocations must
1554  * sleep on a waitqueue until the userspace task resolves the
1555  * situation.  Sleeping directly in the charge context with all kinds
1556  * of locks held is not a good idea, instead we remember an OOM state
1557  * in the task and mem_cgroup_oom_synchronize() has to be called at
1558  * the end of the page fault to complete the OOM handling.
1559  *
1560  * Returns %true if an ongoing memcg OOM situation was detected and
1561  * completed, %false otherwise.
1562  */
1563 bool mem_cgroup_oom_synchronize(bool handle)
1564 {
1565         struct mem_cgroup *memcg = current->memcg_in_oom;
1566         struct oom_wait_info owait;
1567         bool locked;
1568
1569         /* OOM is global, do not handle */
1570         if (!memcg)
1571                 return false;
1572
1573         if (!handle)
1574                 goto cleanup;
1575
1576         owait.memcg = memcg;
1577         owait.wait.flags = 0;
1578         owait.wait.func = memcg_oom_wake_function;
1579         owait.wait.private = current;
1580         INIT_LIST_HEAD(&owait.wait.task_list);
1581
1582         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1583         mem_cgroup_mark_under_oom(memcg);
1584
1585         locked = mem_cgroup_oom_trylock(memcg);
1586
1587         if (locked)
1588                 mem_cgroup_oom_notify(memcg);
1589
1590         if (locked && !memcg->oom_kill_disable) {
1591                 mem_cgroup_unmark_under_oom(memcg);
1592                 finish_wait(&memcg_oom_waitq, &owait.wait);
1593                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1594                                          current->memcg_oom_order);
1595         } else {
1596                 schedule();
1597                 mem_cgroup_unmark_under_oom(memcg);
1598                 finish_wait(&memcg_oom_waitq, &owait.wait);
1599         }
1600
1601         if (locked) {
1602                 mem_cgroup_oom_unlock(memcg);
1603                 /*
1604                  * There is no guarantee that an OOM-lock contender
1605                  * sees the wakeups triggered by the OOM kill
1606                  * uncharges.  Wake any sleepers explicitely.
1607                  */
1608                 memcg_oom_recover(memcg);
1609         }
1610 cleanup:
1611         current->memcg_in_oom = NULL;
1612         css_put(&memcg->css);
1613         return true;
1614 }
1615
1616 /**
1617  * lock_page_memcg - lock a page->mem_cgroup binding
1618  * @page: the page
1619  *
1620  * This function protects unlocked LRU pages from being moved to
1621  * another cgroup and stabilizes their page->mem_cgroup binding.
1622  */
1623 void lock_page_memcg(struct page *page)
1624 {
1625         struct mem_cgroup *memcg;
1626         unsigned long flags;
1627
1628         /*
1629          * The RCU lock is held throughout the transaction.  The fast
1630          * path can get away without acquiring the memcg->move_lock
1631          * because page moving starts with an RCU grace period.
1632          */
1633         rcu_read_lock();
1634
1635         if (mem_cgroup_disabled())
1636                 return;
1637 again:
1638         memcg = page->mem_cgroup;
1639         if (unlikely(!memcg))
1640                 return;
1641
1642         if (atomic_read(&memcg->moving_account) <= 0)
1643                 return;
1644
1645         spin_lock_irqsave(&memcg->move_lock, flags);
1646         if (memcg != page->mem_cgroup) {
1647                 spin_unlock_irqrestore(&memcg->move_lock, flags);
1648                 goto again;
1649         }
1650
1651         /*
1652          * When charge migration first begins, we can have locked and
1653          * unlocked page stat updates happening concurrently.  Track
1654          * the task who has the lock for unlock_page_memcg().
1655          */
1656         memcg->move_lock_task = current;
1657         memcg->move_lock_flags = flags;
1658
1659         return;
1660 }
1661 EXPORT_SYMBOL(lock_page_memcg);
1662
1663 /**
1664  * unlock_page_memcg - unlock a page->mem_cgroup binding
1665  * @page: the page
1666  */
1667 void unlock_page_memcg(struct page *page)
1668 {
1669         struct mem_cgroup *memcg = page->mem_cgroup;
1670
1671         if (memcg && memcg->move_lock_task == current) {
1672                 unsigned long flags = memcg->move_lock_flags;
1673
1674                 memcg->move_lock_task = NULL;
1675                 memcg->move_lock_flags = 0;
1676
1677                 spin_unlock_irqrestore(&memcg->move_lock, flags);
1678         }
1679
1680         rcu_read_unlock();
1681 }
1682 EXPORT_SYMBOL(unlock_page_memcg);
1683
1684 /*
1685  * size of first charge trial. "32" comes from vmscan.c's magic value.
1686  * TODO: maybe necessary to use big numbers in big irons.
1687  */
1688 #define CHARGE_BATCH    32U
1689 struct memcg_stock_pcp {
1690         struct mem_cgroup *cached; /* this never be root cgroup */
1691         unsigned int nr_pages;
1692         struct work_struct work;
1693         unsigned long flags;
1694 #define FLUSHING_CACHED_CHARGE  0
1695 };
1696 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1697 static DEFINE_MUTEX(percpu_charge_mutex);
1698
1699 /**
1700  * consume_stock: Try to consume stocked charge on this cpu.
1701  * @memcg: memcg to consume from.
1702  * @nr_pages: how many pages to charge.
1703  *
1704  * The charges will only happen if @memcg matches the current cpu's memcg
1705  * stock, and at least @nr_pages are available in that stock.  Failure to
1706  * service an allocation will refill the stock.
1707  *
1708  * returns true if successful, false otherwise.
1709  */
1710 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1711 {
1712         struct memcg_stock_pcp *stock;
1713         unsigned long flags;
1714         bool ret = false;
1715
1716         if (nr_pages > CHARGE_BATCH)
1717                 return ret;
1718
1719         local_irq_save(flags);
1720
1721         stock = this_cpu_ptr(&memcg_stock);
1722         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1723                 stock->nr_pages -= nr_pages;
1724                 ret = true;
1725         }
1726
1727         local_irq_restore(flags);
1728
1729         return ret;
1730 }
1731
1732 /*
1733  * Returns stocks cached in percpu and reset cached information.
1734  */
1735 static void drain_stock(struct memcg_stock_pcp *stock)
1736 {
1737         struct mem_cgroup *old = stock->cached;
1738
1739         if (stock->nr_pages) {
1740                 page_counter_uncharge(&old->memory, stock->nr_pages);
1741                 if (do_memsw_account())
1742                         page_counter_uncharge(&old->memsw, stock->nr_pages);
1743                 css_put_many(&old->css, stock->nr_pages);
1744                 stock->nr_pages = 0;
1745         }
1746         stock->cached = NULL;
1747 }
1748
1749 static void drain_local_stock(struct work_struct *dummy)
1750 {
1751         struct memcg_stock_pcp *stock;
1752         unsigned long flags;
1753
1754         local_irq_save(flags);
1755
1756         stock = this_cpu_ptr(&memcg_stock);
1757         drain_stock(stock);
1758         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1759
1760         local_irq_restore(flags);
1761 }
1762
1763 /*
1764  * Cache charges(val) to local per_cpu area.
1765  * This will be consumed by consume_stock() function, later.
1766  */
1767 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1768 {
1769         struct memcg_stock_pcp *stock;
1770         unsigned long flags;
1771
1772         local_irq_save(flags);
1773
1774         stock = this_cpu_ptr(&memcg_stock);
1775         if (stock->cached != memcg) { /* reset if necessary */
1776                 drain_stock(stock);
1777                 stock->cached = memcg;
1778         }
1779         stock->nr_pages += nr_pages;
1780
1781         local_irq_restore(flags);
1782 }
1783
1784 /*
1785  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1786  * of the hierarchy under it.
1787  */
1788 static void drain_all_stock(struct mem_cgroup *root_memcg)
1789 {
1790         int cpu, curcpu;
1791
1792         /* If someone's already draining, avoid adding running more workers. */
1793         if (!mutex_trylock(&percpu_charge_mutex))
1794                 return;
1795         /* Notify other cpus that system-wide "drain" is running */
1796         get_online_cpus();
1797         curcpu = get_cpu();
1798         for_each_online_cpu(cpu) {
1799                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1800                 struct mem_cgroup *memcg;
1801
1802                 memcg = stock->cached;
1803                 if (!memcg || !stock->nr_pages)
1804                         continue;
1805                 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1806                         continue;
1807                 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1808                         if (cpu == curcpu)
1809                                 drain_local_stock(&stock->work);
1810                         else
1811                                 schedule_work_on(cpu, &stock->work);
1812                 }
1813         }
1814         put_cpu();
1815         put_online_cpus();
1816         mutex_unlock(&percpu_charge_mutex);
1817 }
1818
1819 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1820                                         unsigned long action,
1821                                         void *hcpu)
1822 {
1823         int cpu = (unsigned long)hcpu;
1824         struct memcg_stock_pcp *stock;
1825
1826         if (action == CPU_ONLINE)
1827                 return NOTIFY_OK;
1828
1829         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1830                 return NOTIFY_OK;
1831
1832         stock = &per_cpu(memcg_stock, cpu);
1833         drain_stock(stock);
1834         return NOTIFY_OK;
1835 }
1836
1837 static void reclaim_high(struct mem_cgroup *memcg,
1838                          unsigned int nr_pages,
1839                          gfp_t gfp_mask)
1840 {
1841         do {
1842                 if (page_counter_read(&memcg->memory) <= memcg->high)
1843                         continue;
1844                 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1845                 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1846         } while ((memcg = parent_mem_cgroup(memcg)));
1847 }
1848
1849 static void high_work_func(struct work_struct *work)
1850 {
1851         struct mem_cgroup *memcg;
1852
1853         memcg = container_of(work, struct mem_cgroup, high_work);
1854         reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1855 }
1856
1857 /*
1858  * Scheduled by try_charge() to be executed from the userland return path
1859  * and reclaims memory over the high limit.
1860  */
1861 void mem_cgroup_handle_over_high(void)
1862 {
1863         unsigned int nr_pages = current->memcg_nr_pages_over_high;
1864         struct mem_cgroup *memcg;
1865
1866         if (likely(!nr_pages))
1867                 return;
1868
1869         memcg = get_mem_cgroup_from_mm(current->mm);
1870         reclaim_high(memcg, nr_pages, GFP_KERNEL);
1871         css_put(&memcg->css);
1872         current->memcg_nr_pages_over_high = 0;
1873 }
1874
1875 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1876                       unsigned int nr_pages)
1877 {
1878         unsigned int batch = max(CHARGE_BATCH, nr_pages);
1879         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1880         struct mem_cgroup *mem_over_limit;
1881         struct page_counter *counter;
1882         unsigned long nr_reclaimed;
1883         bool may_swap = true;
1884         bool drained = false;
1885
1886         if (mem_cgroup_is_root(memcg))
1887                 return 0;
1888 retry:
1889         if (consume_stock(memcg, nr_pages))
1890                 return 0;
1891
1892         if (!do_memsw_account() ||
1893             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1894                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1895                         goto done_restock;
1896                 if (do_memsw_account())
1897                         page_counter_uncharge(&memcg->memsw, batch);
1898                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1899         } else {
1900                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1901                 may_swap = false;
1902         }
1903
1904         if (batch > nr_pages) {
1905                 batch = nr_pages;
1906                 goto retry;
1907         }
1908
1909         /*
1910          * Unlike in global OOM situations, memcg is not in a physical
1911          * memory shortage.  Allow dying and OOM-killed tasks to
1912          * bypass the last charges so that they can exit quickly and
1913          * free their memory.
1914          */
1915         if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1916                      fatal_signal_pending(current) ||
1917                      current->flags & PF_EXITING))
1918                 goto force;
1919
1920         if (unlikely(task_in_memcg_oom(current)))
1921                 goto nomem;
1922
1923         if (!gfpflags_allow_blocking(gfp_mask))
1924                 goto nomem;
1925
1926         mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1927
1928         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1929                                                     gfp_mask, may_swap);
1930
1931         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1932                 goto retry;
1933
1934         if (!drained) {
1935                 drain_all_stock(mem_over_limit);
1936                 drained = true;
1937                 goto retry;
1938         }
1939
1940         if (gfp_mask & __GFP_NORETRY)
1941                 goto nomem;
1942         /*
1943          * Even though the limit is exceeded at this point, reclaim
1944          * may have been able to free some pages.  Retry the charge
1945          * before killing the task.
1946          *
1947          * Only for regular pages, though: huge pages are rather
1948          * unlikely to succeed so close to the limit, and we fall back
1949          * to regular pages anyway in case of failure.
1950          */
1951         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1952                 goto retry;
1953         /*
1954          * At task move, charge accounts can be doubly counted. So, it's
1955          * better to wait until the end of task_move if something is going on.
1956          */
1957         if (mem_cgroup_wait_acct_move(mem_over_limit))
1958                 goto retry;
1959
1960         if (nr_retries--)
1961                 goto retry;
1962
1963         if (gfp_mask & __GFP_NOFAIL)
1964                 goto force;
1965
1966         if (fatal_signal_pending(current))
1967                 goto force;
1968
1969         mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1970
1971         mem_cgroup_oom(mem_over_limit, gfp_mask,
1972                        get_order(nr_pages * PAGE_SIZE));
1973 nomem:
1974         if (!(gfp_mask & __GFP_NOFAIL))
1975                 return -ENOMEM;
1976 force:
1977         /*
1978          * The allocation either can't fail or will lead to more memory
1979          * being freed very soon.  Allow memory usage go over the limit
1980          * temporarily by force charging it.
1981          */
1982         page_counter_charge(&memcg->memory, nr_pages);
1983         if (do_memsw_account())
1984                 page_counter_charge(&memcg->memsw, nr_pages);
1985         css_get_many(&memcg->css, nr_pages);
1986
1987         return 0;
1988
1989 done_restock:
1990         css_get_many(&memcg->css, batch);
1991         if (batch > nr_pages)
1992                 refill_stock(memcg, batch - nr_pages);
1993
1994         /*
1995          * If the hierarchy is above the normal consumption range, schedule
1996          * reclaim on returning to userland.  We can perform reclaim here
1997          * if __GFP_RECLAIM but let's always punt for simplicity and so that
1998          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
1999          * not recorded as it most likely matches current's and won't
2000          * change in the meantime.  As high limit is checked again before
2001          * reclaim, the cost of mismatch is negligible.
2002          */
2003         do {
2004                 if (page_counter_read(&memcg->memory) > memcg->high) {
2005                         /* Don't bother a random interrupted task */
2006                         if (in_interrupt()) {
2007                                 schedule_work(&memcg->high_work);
2008                                 break;
2009                         }
2010                         current->memcg_nr_pages_over_high += batch;
2011                         set_notify_resume(current);
2012                         break;
2013                 }
2014         } while ((memcg = parent_mem_cgroup(memcg)));
2015
2016         return 0;
2017 }
2018
2019 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2020 {
2021         if (mem_cgroup_is_root(memcg))
2022                 return;
2023
2024         page_counter_uncharge(&memcg->memory, nr_pages);
2025         if (do_memsw_account())
2026                 page_counter_uncharge(&memcg->memsw, nr_pages);
2027
2028         css_put_many(&memcg->css, nr_pages);
2029 }
2030
2031 static void lock_page_lru(struct page *page, int *isolated)
2032 {
2033         struct zone *zone = page_zone(page);
2034
2035         spin_lock_irq(zone_lru_lock(zone));
2036         if (PageLRU(page)) {
2037                 struct lruvec *lruvec;
2038
2039                 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2040                 ClearPageLRU(page);
2041                 del_page_from_lru_list(page, lruvec, page_lru(page));
2042                 *isolated = 1;
2043         } else
2044                 *isolated = 0;
2045 }
2046
2047 static void unlock_page_lru(struct page *page, int isolated)
2048 {
2049         struct zone *zone = page_zone(page);
2050
2051         if (isolated) {
2052                 struct lruvec *lruvec;
2053
2054                 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2055                 VM_BUG_ON_PAGE(PageLRU(page), page);
2056                 SetPageLRU(page);
2057                 add_page_to_lru_list(page, lruvec, page_lru(page));
2058         }
2059         spin_unlock_irq(zone_lru_lock(zone));
2060 }
2061
2062 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2063                           bool lrucare)
2064 {
2065         int isolated;
2066
2067         VM_BUG_ON_PAGE(page->mem_cgroup, page);
2068
2069         /*
2070          * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2071          * may already be on some other mem_cgroup's LRU.  Take care of it.
2072          */
2073         if (lrucare)
2074                 lock_page_lru(page, &isolated);
2075
2076         /*
2077          * Nobody should be changing or seriously looking at
2078          * page->mem_cgroup at this point:
2079          *
2080          * - the page is uncharged
2081          *
2082          * - the page is off-LRU
2083          *
2084          * - an anonymous fault has exclusive page access, except for
2085          *   a locked page table
2086          *
2087          * - a page cache insertion, a swapin fault, or a migration
2088          *   have the page locked
2089          */
2090         page->mem_cgroup = memcg;
2091
2092         if (lrucare)
2093                 unlock_page_lru(page, isolated);
2094 }
2095
2096 #ifndef CONFIG_SLOB
2097 static int memcg_alloc_cache_id(void)
2098 {
2099         int id, size;
2100         int err;
2101
2102         id = ida_simple_get(&memcg_cache_ida,
2103                             0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2104         if (id < 0)
2105                 return id;
2106
2107         if (id < memcg_nr_cache_ids)
2108                 return id;
2109
2110         /*
2111          * There's no space for the new id in memcg_caches arrays,
2112          * so we have to grow them.
2113          */
2114         down_write(&memcg_cache_ids_sem);
2115
2116         size = 2 * (id + 1);
2117         if (size < MEMCG_CACHES_MIN_SIZE)
2118                 size = MEMCG_CACHES_MIN_SIZE;
2119         else if (size > MEMCG_CACHES_MAX_SIZE)
2120                 size = MEMCG_CACHES_MAX_SIZE;
2121
2122         err = memcg_update_all_caches(size);
2123         if (!err)
2124                 err = memcg_update_all_list_lrus(size);
2125         if (!err)
2126                 memcg_nr_cache_ids = size;
2127
2128         up_write(&memcg_cache_ids_sem);
2129
2130         if (err) {
2131                 ida_simple_remove(&memcg_cache_ida, id);
2132                 return err;
2133         }
2134         return id;
2135 }
2136
2137 static void memcg_free_cache_id(int id)
2138 {
2139         ida_simple_remove(&memcg_cache_ida, id);
2140 }
2141
2142 struct memcg_kmem_cache_create_work {
2143         struct mem_cgroup *memcg;
2144         struct kmem_cache *cachep;
2145         struct work_struct work;
2146 };
2147
2148 static void memcg_kmem_cache_create_func(struct work_struct *w)
2149 {
2150         struct memcg_kmem_cache_create_work *cw =
2151                 container_of(w, struct memcg_kmem_cache_create_work, work);
2152         struct mem_cgroup *memcg = cw->memcg;
2153         struct kmem_cache *cachep = cw->cachep;
2154
2155         memcg_create_kmem_cache(memcg, cachep);
2156
2157         css_put(&memcg->css);
2158         kfree(cw);
2159 }
2160
2161 /*
2162  * Enqueue the creation of a per-memcg kmem_cache.
2163  */
2164 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2165                                                struct kmem_cache *cachep)
2166 {
2167         struct memcg_kmem_cache_create_work *cw;
2168
2169         cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2170         if (!cw)
2171                 return;
2172
2173         css_get(&memcg->css);
2174
2175         cw->memcg = memcg;
2176         cw->cachep = cachep;
2177         INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2178
2179         schedule_work(&cw->work);
2180 }
2181
2182 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2183                                              struct kmem_cache *cachep)
2184 {
2185         /*
2186          * We need to stop accounting when we kmalloc, because if the
2187          * corresponding kmalloc cache is not yet created, the first allocation
2188          * in __memcg_schedule_kmem_cache_create will recurse.
2189          *
2190          * However, it is better to enclose the whole function. Depending on
2191          * the debugging options enabled, INIT_WORK(), for instance, can
2192          * trigger an allocation. This too, will make us recurse. Because at
2193          * this point we can't allow ourselves back into memcg_kmem_get_cache,
2194          * the safest choice is to do it like this, wrapping the whole function.
2195          */
2196         current->memcg_kmem_skip_account = 1;
2197         __memcg_schedule_kmem_cache_create(memcg, cachep);
2198         current->memcg_kmem_skip_account = 0;
2199 }
2200
2201 static inline bool memcg_kmem_bypass(void)
2202 {
2203         if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2204                 return true;
2205         return false;
2206 }
2207
2208 /**
2209  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2210  * @cachep: the original global kmem cache
2211  *
2212  * Return the kmem_cache we're supposed to use for a slab allocation.
2213  * We try to use the current memcg's version of the cache.
2214  *
2215  * If the cache does not exist yet, if we are the first user of it, we
2216  * create it asynchronously in a workqueue and let the current allocation
2217  * go through with the original cache.
2218  *
2219  * This function takes a reference to the cache it returns to assure it
2220  * won't get destroyed while we are working with it. Once the caller is
2221  * done with it, memcg_kmem_put_cache() must be called to release the
2222  * reference.
2223  */
2224 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2225 {
2226         struct mem_cgroup *memcg;
2227         struct kmem_cache *memcg_cachep;
2228         int kmemcg_id;
2229
2230         VM_BUG_ON(!is_root_cache(cachep));
2231
2232         if (memcg_kmem_bypass())
2233                 return cachep;
2234
2235         if (current->memcg_kmem_skip_account)
2236                 return cachep;
2237
2238         memcg = get_mem_cgroup_from_mm(current->mm);
2239         kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2240         if (kmemcg_id < 0)
2241                 goto out;
2242
2243         memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2244         if (likely(memcg_cachep))
2245                 return memcg_cachep;
2246
2247         /*
2248          * If we are in a safe context (can wait, and not in interrupt
2249          * context), we could be be predictable and return right away.
2250          * This would guarantee that the allocation being performed
2251          * already belongs in the new cache.
2252          *
2253          * However, there are some clashes that can arrive from locking.
2254          * For instance, because we acquire the slab_mutex while doing
2255          * memcg_create_kmem_cache, this means no further allocation
2256          * could happen with the slab_mutex held. So it's better to
2257          * defer everything.
2258          */
2259         memcg_schedule_kmem_cache_create(memcg, cachep);
2260 out:
2261         css_put(&memcg->css);
2262         return cachep;
2263 }
2264
2265 /**
2266  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2267  * @cachep: the cache returned by memcg_kmem_get_cache
2268  */
2269 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2270 {
2271         if (!is_root_cache(cachep))
2272                 css_put(&cachep->memcg_params.memcg->css);
2273 }
2274
2275 /**
2276  * memcg_kmem_charge: charge a kmem page
2277  * @page: page to charge
2278  * @gfp: reclaim mode
2279  * @order: allocation order
2280  * @memcg: memory cgroup to charge
2281  *
2282  * Returns 0 on success, an error code on failure.
2283  */
2284 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2285                             struct mem_cgroup *memcg)
2286 {
2287         unsigned int nr_pages = 1 << order;
2288         struct page_counter *counter;
2289         int ret;
2290
2291         ret = try_charge(memcg, gfp, nr_pages);
2292         if (ret)
2293                 return ret;
2294
2295         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2296             !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2297                 cancel_charge(memcg, nr_pages);
2298                 return -ENOMEM;
2299         }
2300
2301         page->mem_cgroup = memcg;
2302
2303         return 0;
2304 }
2305
2306 /**
2307  * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2308  * @page: page to charge
2309  * @gfp: reclaim mode
2310  * @order: allocation order
2311  *
2312  * Returns 0 on success, an error code on failure.
2313  */
2314 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2315 {
2316         struct mem_cgroup *memcg;
2317         int ret = 0;
2318
2319         if (memcg_kmem_bypass())
2320                 return 0;
2321
2322         memcg = get_mem_cgroup_from_mm(current->mm);
2323         if (!mem_cgroup_is_root(memcg)) {
2324                 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2325                 if (!ret)
2326                         __SetPageKmemcg(page);
2327         }
2328         css_put(&memcg->css);
2329         return ret;
2330 }
2331 /**
2332  * memcg_kmem_uncharge: uncharge a kmem page
2333  * @page: page to uncharge
2334  * @order: allocation order
2335  */
2336 void memcg_kmem_uncharge(struct page *page, int order)
2337 {
2338         struct mem_cgroup *memcg = page->mem_cgroup;
2339         unsigned int nr_pages = 1 << order;
2340
2341         if (!memcg)
2342                 return;
2343
2344         VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2345
2346         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2347                 page_counter_uncharge(&memcg->kmem, nr_pages);
2348
2349         page_counter_uncharge(&memcg->memory, nr_pages);
2350         if (do_memsw_account())
2351                 page_counter_uncharge(&memcg->memsw, nr_pages);
2352
2353         page->mem_cgroup = NULL;
2354
2355         /* slab pages do not have PageKmemcg flag set */
2356         if (PageKmemcg(page))
2357                 __ClearPageKmemcg(page);
2358
2359         css_put_many(&memcg->css, nr_pages);
2360 }
2361 #endif /* !CONFIG_SLOB */
2362
2363 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2364
2365 /*
2366  * Because tail pages are not marked as "used", set it. We're under
2367  * zone_lru_lock and migration entries setup in all page mappings.
2368  */
2369 void mem_cgroup_split_huge_fixup(struct page *head)
2370 {
2371         int i;
2372
2373         if (mem_cgroup_disabled())
2374                 return;
2375
2376         for (i = 1; i < HPAGE_PMD_NR; i++)
2377                 head[i].mem_cgroup = head->mem_cgroup;
2378
2379         __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2380                        HPAGE_PMD_NR);
2381 }
2382 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2383
2384 #ifdef CONFIG_MEMCG_SWAP
2385 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2386                                          bool charge)
2387 {
2388         int val = (charge) ? 1 : -1;
2389         this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2390 }
2391
2392 /**
2393  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2394  * @entry: swap entry to be moved
2395  * @from:  mem_cgroup which the entry is moved from
2396  * @to:  mem_cgroup which the entry is moved to
2397  *
2398  * It succeeds only when the swap_cgroup's record for this entry is the same
2399  * as the mem_cgroup's id of @from.
2400  *
2401  * Returns 0 on success, -EINVAL on failure.
2402  *
2403  * The caller must have charged to @to, IOW, called page_counter_charge() about
2404  * both res and memsw, and called css_get().
2405  */
2406 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2407                                 struct mem_cgroup *from, struct mem_cgroup *to)
2408 {
2409         unsigned short old_id, new_id;
2410
2411         old_id = mem_cgroup_id(from);
2412         new_id = mem_cgroup_id(to);
2413
2414         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2415                 mem_cgroup_swap_statistics(from, false);
2416                 mem_cgroup_swap_statistics(to, true);
2417                 return 0;
2418         }
2419         return -EINVAL;
2420 }
2421 #else
2422 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2423                                 struct mem_cgroup *from, struct mem_cgroup *to)
2424 {
2425         return -EINVAL;
2426 }
2427 #endif
2428
2429 static DEFINE_MUTEX(memcg_limit_mutex);
2430
2431 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2432                                    unsigned long limit)
2433 {
2434         unsigned long curusage;
2435         unsigned long oldusage;
2436         bool enlarge = false;
2437         int retry_count;
2438         int ret;
2439
2440         /*
2441          * For keeping hierarchical_reclaim simple, how long we should retry
2442          * is depends on callers. We set our retry-count to be function
2443          * of # of children which we should visit in this loop.
2444          */
2445         retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2446                       mem_cgroup_count_children(memcg);
2447
2448         oldusage = page_counter_read(&memcg->memory);
2449
2450         do {
2451                 if (signal_pending(current)) {
2452                         ret = -EINTR;
2453                         break;
2454                 }
2455
2456                 mutex_lock(&memcg_limit_mutex);
2457                 if (limit > memcg->memsw.limit) {
2458                         mutex_unlock(&memcg_limit_mutex);
2459                         ret = -EINVAL;
2460                         break;
2461                 }
2462                 if (limit > memcg->memory.limit)
2463                         enlarge = true;
2464                 ret = page_counter_limit(&memcg->memory, limit);
2465                 mutex_unlock(&memcg_limit_mutex);
2466
2467                 if (!ret)
2468                         break;
2469
2470                 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2471
2472                 curusage = page_counter_read(&memcg->memory);
2473                 /* Usage is reduced ? */
2474                 if (curusage >= oldusage)
2475                         retry_count--;
2476                 else
2477                         oldusage = curusage;
2478         } while (retry_count);
2479
2480         if (!ret && enlarge)
2481                 memcg_oom_recover(memcg);
2482
2483         return ret;
2484 }
2485
2486 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2487                                          unsigned long limit)
2488 {
2489         unsigned long curusage;
2490         unsigned long oldusage;
2491         bool enlarge = false;
2492         int retry_count;
2493         int ret;
2494
2495         /* see mem_cgroup_resize_res_limit */
2496         retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2497                       mem_cgroup_count_children(memcg);
2498
2499         oldusage = page_counter_read(&memcg->memsw);
2500
2501         do {
2502                 if (signal_pending(current)) {
2503                         ret = -EINTR;
2504                         break;
2505                 }
2506
2507                 mutex_lock(&memcg_limit_mutex);
2508                 if (limit < memcg->memory.limit) {
2509                         mutex_unlock(&memcg_limit_mutex);
2510                         ret = -EINVAL;
2511                         break;
2512                 }
2513                 if (limit > memcg->memsw.limit)
2514                         enlarge = true;
2515                 ret = page_counter_limit(&memcg->memsw, limit);
2516                 mutex_unlock(&memcg_limit_mutex);
2517
2518                 if (!ret)
2519                         break;
2520
2521                 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2522
2523                 curusage = page_counter_read(&memcg->memsw);
2524                 /* Usage is reduced ? */
2525                 if (curusage >= oldusage)
2526                         retry_count--;
2527                 else
2528                         oldusage = curusage;
2529         } while (retry_count);
2530
2531         if (!ret && enlarge)
2532                 memcg_oom_recover(memcg);
2533
2534         return ret;
2535 }
2536
2537 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2538                                             gfp_t gfp_mask,
2539                                             unsigned long *total_scanned)
2540 {
2541         unsigned long nr_reclaimed = 0;
2542         struct mem_cgroup_per_node *mz, *next_mz = NULL;
2543         unsigned long reclaimed;
2544         int loop = 0;
2545         struct mem_cgroup_tree_per_node *mctz;
2546         unsigned long excess;
2547         unsigned long nr_scanned;
2548
2549         if (order > 0)
2550                 return 0;
2551
2552         mctz = soft_limit_tree_node(pgdat->node_id);
2553
2554         /*
2555          * Do not even bother to check the largest node if the root
2556          * is empty. Do it lockless to prevent lock bouncing. Races
2557          * are acceptable as soft limit is best effort anyway.
2558          */
2559         if (RB_EMPTY_ROOT(&mctz->rb_root))
2560                 return 0;
2561
2562         /*
2563          * This loop can run a while, specially if mem_cgroup's continuously
2564          * keep exceeding their soft limit and putting the system under
2565          * pressure
2566          */
2567         do {
2568                 if (next_mz)
2569                         mz = next_mz;
2570                 else
2571                         mz = mem_cgroup_largest_soft_limit_node(mctz);
2572                 if (!mz)
2573                         break;
2574
2575                 nr_scanned = 0;
2576                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2577                                                     gfp_mask, &nr_scanned);
2578                 nr_reclaimed += reclaimed;
2579                 *total_scanned += nr_scanned;
2580                 spin_lock_irq(&mctz->lock);
2581                 __mem_cgroup_remove_exceeded(mz, mctz);
2582
2583                 /*
2584                  * If we failed to reclaim anything from this memory cgroup
2585                  * it is time to move on to the next cgroup
2586                  */
2587                 next_mz = NULL;
2588                 if (!reclaimed)
2589                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2590
2591                 excess = soft_limit_excess(mz->memcg);
2592                 /*
2593                  * One school of thought says that we should not add
2594                  * back the node to the tree if reclaim returns 0.
2595                  * But our reclaim could return 0, simply because due
2596                  * to priority we are exposing a smaller subset of
2597                  * memory to reclaim from. Consider this as a longer
2598                  * term TODO.
2599                  */
2600                 /* If excess == 0, no tree ops */
2601                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2602                 spin_unlock_irq(&mctz->lock);
2603                 css_put(&mz->memcg->css);
2604                 loop++;
2605                 /*
2606                  * Could not reclaim anything and there are no more
2607                  * mem cgroups to try or we seem to be looping without
2608                  * reclaiming anything.
2609                  */
2610                 if (!nr_reclaimed &&
2611                         (next_mz == NULL ||
2612                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2613                         break;
2614         } while (!nr_reclaimed);
2615         if (next_mz)
2616                 css_put(&next_mz->memcg->css);
2617         return nr_reclaimed;
2618 }
2619
2620 /*
2621  * Test whether @memcg has children, dead or alive.  Note that this
2622  * function doesn't care whether @memcg has use_hierarchy enabled and
2623  * returns %true if there are child csses according to the cgroup
2624  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2625  */
2626 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2627 {
2628         bool ret;
2629
2630         rcu_read_lock();
2631         ret = css_next_child(NULL, &memcg->css);
2632         rcu_read_unlock();
2633         return ret;
2634 }
2635
2636 /*
2637  * Reclaims as many pages from the given memcg as possible.
2638  *
2639  * Caller is responsible for holding css reference for memcg.
2640  */
2641 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2642 {
2643         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2644
2645         /* we call try-to-free pages for make this cgroup empty */
2646         lru_add_drain_all();
2647         /* try to free all pages in this cgroup */
2648         while (nr_retries && page_counter_read(&memcg->memory)) {
2649                 int progress;
2650
2651                 if (signal_pending(current))
2652                         return -EINTR;
2653
2654                 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2655                                                         GFP_KERNEL, true);
2656                 if (!progress) {
2657                         nr_retries--;
2658                         /* maybe some writeback is necessary */
2659                         congestion_wait(BLK_RW_ASYNC, HZ/10);
2660                 }
2661
2662         }
2663
2664         return 0;
2665 }
2666
2667 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2668                                             char *buf, size_t nbytes,
2669                                             loff_t off)
2670 {
2671         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2672
2673         if (mem_cgroup_is_root(memcg))
2674                 return -EINVAL;
2675         return mem_cgroup_force_empty(memcg) ?: nbytes;
2676 }
2677
2678 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2679                                      struct cftype *cft)
2680 {
2681         return mem_cgroup_from_css(css)->use_hierarchy;
2682 }
2683
2684 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2685                                       struct cftype *cft, u64 val)
2686 {
2687         int retval = 0;
2688         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2689         struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2690
2691         if (memcg->use_hierarchy == val)
2692                 return 0;
2693
2694         /*
2695          * If parent's use_hierarchy is set, we can't make any modifications
2696          * in the child subtrees. If it is unset, then the change can
2697          * occur, provided the current cgroup has no children.
2698          *
2699          * For the root cgroup, parent_mem is NULL, we allow value to be
2700          * set if there are no children.
2701          */
2702         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2703                                 (val == 1 || val == 0)) {
2704                 if (!memcg_has_children(memcg))
2705                         memcg->use_hierarchy = val;
2706                 else
2707                         retval = -EBUSY;
2708         } else
2709                 retval = -EINVAL;
2710
2711         return retval;
2712 }
2713
2714 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2715 {
2716         struct mem_cgroup *iter;
2717         int i;
2718
2719         memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2720
2721         for_each_mem_cgroup_tree(iter, memcg) {
2722                 for (i = 0; i < MEMCG_NR_STAT; i++)
2723                         stat[i] += mem_cgroup_read_stat(iter, i);
2724         }
2725 }
2726
2727 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2728 {
2729         struct mem_cgroup *iter;
2730         int i;
2731
2732         memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2733
2734         for_each_mem_cgroup_tree(iter, memcg) {
2735                 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2736                         events[i] += mem_cgroup_read_events(iter, i);
2737         }
2738 }
2739
2740 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2741 {
2742         unsigned long val = 0;
2743
2744         if (mem_cgroup_is_root(memcg)) {
2745                 struct mem_cgroup *iter;
2746
2747                 for_each_mem_cgroup_tree(iter, memcg) {
2748                         val += mem_cgroup_read_stat(iter,
2749                                         MEM_CGROUP_STAT_CACHE);
2750                         val += mem_cgroup_read_stat(iter,
2751                                         MEM_CGROUP_STAT_RSS);
2752                         if (swap)
2753                                 val += mem_cgroup_read_stat(iter,
2754                                                 MEM_CGROUP_STAT_SWAP);
2755                 }
2756         } else {
2757                 if (!swap)
2758                         val = page_counter_read(&memcg->memory);
2759                 else
2760                         val = page_counter_read(&memcg->memsw);
2761         }
2762         return val;
2763 }
2764
2765 enum {
2766         RES_USAGE,
2767         RES_LIMIT,
2768         RES_MAX_USAGE,
2769         RES_FAILCNT,
2770         RES_SOFT_LIMIT,
2771 };
2772
2773 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2774                                struct cftype *cft)
2775 {
2776         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2777         struct page_counter *counter;
2778
2779         switch (MEMFILE_TYPE(cft->private)) {
2780         case _MEM:
2781                 counter = &memcg->memory;
2782                 break;
2783         case _MEMSWAP:
2784                 counter = &memcg->memsw;
2785                 break;
2786         case _KMEM:
2787                 counter = &memcg->kmem;
2788                 break;
2789         case _TCP:
2790                 counter = &memcg->tcpmem;
2791                 break;
2792         default:
2793                 BUG();
2794         }
2795
2796         switch (MEMFILE_ATTR(cft->private)) {
2797         case RES_USAGE:
2798                 if (counter == &memcg->memory)
2799                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2800                 if (counter == &memcg->memsw)
2801                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2802                 return (u64)page_counter_read(counter) * PAGE_SIZE;
2803         case RES_LIMIT:
2804                 return (u64)counter->limit * PAGE_SIZE;
2805         case RES_MAX_USAGE:
2806                 return (u64)counter->watermark * PAGE_SIZE;
2807         case RES_FAILCNT:
2808                 return counter->failcnt;
2809         case RES_SOFT_LIMIT:
2810                 return (u64)memcg->soft_limit * PAGE_SIZE;
2811         default:
2812                 BUG();
2813         }
2814 }
2815
2816 #ifndef CONFIG_SLOB
2817 static int memcg_online_kmem(struct mem_cgroup *memcg)
2818 {
2819         int memcg_id;
2820
2821         if (cgroup_memory_nokmem)
2822                 return 0;
2823
2824         BUG_ON(memcg->kmemcg_id >= 0);
2825         BUG_ON(memcg->kmem_state);
2826
2827         memcg_id = memcg_alloc_cache_id();
2828         if (memcg_id < 0)
2829                 return memcg_id;
2830
2831         static_branch_inc(&memcg_kmem_enabled_key);
2832         /*
2833          * A memory cgroup is considered kmem-online as soon as it gets
2834          * kmemcg_id. Setting the id after enabling static branching will
2835          * guarantee no one starts accounting before all call sites are
2836          * patched.
2837          */
2838         memcg->kmemcg_id = memcg_id;
2839         memcg->kmem_state = KMEM_ONLINE;
2840
2841         return 0;
2842 }
2843
2844 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2845 {
2846         struct cgroup_subsys_state *css;
2847         struct mem_cgroup *parent, *child;
2848         int kmemcg_id;
2849
2850         if (memcg->kmem_state != KMEM_ONLINE)
2851                 return;
2852         /*
2853          * Clear the online state before clearing memcg_caches array
2854          * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2855          * guarantees that no cache will be created for this cgroup
2856          * after we are done (see memcg_create_kmem_cache()).
2857          */
2858         memcg->kmem_state = KMEM_ALLOCATED;
2859
2860         memcg_deactivate_kmem_caches(memcg);
2861
2862         kmemcg_id = memcg->kmemcg_id;
2863         BUG_ON(kmemcg_id < 0);
2864
2865         parent = parent_mem_cgroup(memcg);
2866         if (!parent)
2867                 parent = root_mem_cgroup;
2868
2869         /*
2870          * Change kmemcg_id of this cgroup and all its descendants to the
2871          * parent's id, and then move all entries from this cgroup's list_lrus
2872          * to ones of the parent. After we have finished, all list_lrus
2873          * corresponding to this cgroup are guaranteed to remain empty. The
2874          * ordering is imposed by list_lru_node->lock taken by
2875          * memcg_drain_all_list_lrus().
2876          */
2877         rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2878         css_for_each_descendant_pre(css, &memcg->css) {
2879                 child = mem_cgroup_from_css(css);
2880                 BUG_ON(child->kmemcg_id != kmemcg_id);
2881                 child->kmemcg_id = parent->kmemcg_id;
2882                 if (!memcg->use_hierarchy)
2883                         break;
2884         }
2885         rcu_read_unlock();
2886
2887         memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2888
2889         memcg_free_cache_id(kmemcg_id);
2890 }
2891
2892 static void memcg_free_kmem(struct mem_cgroup *memcg)
2893 {
2894         /* css_alloc() failed, offlining didn't happen */
2895         if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2896                 memcg_offline_kmem(memcg);
2897
2898         if (memcg->kmem_state == KMEM_ALLOCATED) {
2899                 memcg_destroy_kmem_caches(memcg);
2900                 static_branch_dec(&memcg_kmem_enabled_key);
2901                 WARN_ON(page_counter_read(&memcg->kmem));
2902         }
2903 }
2904 #else
2905 static int memcg_online_kmem(struct mem_cgroup *memcg)
2906 {
2907         return 0;
2908 }
2909 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2910 {
2911 }
2912 static void memcg_free_kmem(struct mem_cgroup *memcg)
2913 {
2914 }
2915 #endif /* !CONFIG_SLOB */
2916
2917 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2918                                    unsigned long limit)
2919 {
2920         int ret;
2921
2922         mutex_lock(&memcg_limit_mutex);
2923         ret = page_counter_limit(&memcg->kmem, limit);
2924         mutex_unlock(&memcg_limit_mutex);
2925         return ret;
2926 }
2927
2928 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2929 {
2930         int ret;
2931
2932         mutex_lock(&memcg_limit_mutex);
2933
2934         ret = page_counter_limit(&memcg->tcpmem, limit);
2935         if (ret)
2936                 goto out;
2937
2938         if (!memcg->tcpmem_active) {
2939                 /*
2940                  * The active flag needs to be written after the static_key
2941                  * update. This is what guarantees that the socket activation
2942                  * function is the last one to run. See sock_update_memcg() for
2943                  * details, and note that we don't mark any socket as belonging
2944                  * to this memcg until that flag is up.
2945                  *
2946                  * We need to do this, because static_keys will span multiple
2947                  * sites, but we can't control their order. If we mark a socket
2948                  * as accounted, but the accounting functions are not patched in
2949                  * yet, we'll lose accounting.
2950                  *
2951                  * We never race with the readers in sock_update_memcg(),
2952                  * because when this value change, the code to process it is not
2953                  * patched in yet.
2954                  */
2955                 static_branch_inc(&memcg_sockets_enabled_key);
2956                 memcg->tcpmem_active = true;
2957         }
2958 out:
2959         mutex_unlock(&memcg_limit_mutex);
2960         return ret;
2961 }
2962
2963 /*
2964  * The user of this function is...
2965  * RES_LIMIT.
2966  */
2967 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2968                                 char *buf, size_t nbytes, loff_t off)
2969 {
2970         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2971         unsigned long nr_pages;
2972         int ret;
2973
2974         buf = strstrip(buf);
2975         ret = page_counter_memparse(buf, "-1", &nr_pages);
2976         if (ret)
2977                 return ret;
2978
2979         switch (MEMFILE_ATTR(of_cft(of)->private)) {
2980         case RES_LIMIT:
2981                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2982                         ret = -EINVAL;
2983                         break;
2984                 }
2985                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2986                 case _MEM:
2987                         ret = mem_cgroup_resize_limit(memcg, nr_pages);
2988                         break;
2989                 case _MEMSWAP:
2990                         ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2991                         break;
2992                 case _KMEM:
2993                         ret = memcg_update_kmem_limit(memcg, nr_pages);
2994                         break;
2995                 case _TCP:
2996                         ret = memcg_update_tcp_limit(memcg, nr_pages);
2997                         break;
2998                 }
2999                 break;
3000         case RES_SOFT_LIMIT:
3001                 memcg->soft_limit = nr_pages;
3002                 ret = 0;
3003                 break;
3004         }
3005         return ret ?: nbytes;
3006 }
3007
3008 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3009                                 size_t nbytes, loff_t off)
3010 {
3011         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3012         struct page_counter *counter;
3013
3014         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015         case _MEM:
3016                 counter = &memcg->memory;
3017                 break;
3018         case _MEMSWAP:
3019                 counter = &memcg->memsw;
3020                 break;
3021         case _KMEM:
3022                 counter = &memcg->kmem;
3023                 break;
3024         case _TCP:
3025                 counter = &memcg->tcpmem;
3026                 break;
3027         default:
3028                 BUG();
3029         }
3030
3031         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3032         case RES_MAX_USAGE:
3033                 page_counter_reset_watermark(counter);
3034                 break;
3035         case RES_FAILCNT:
3036                 counter->failcnt = 0;
3037                 break;
3038         default:
3039                 BUG();
3040         }
3041
3042         return nbytes;
3043 }
3044
3045 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3046                                         struct cftype *cft)
3047 {
3048         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3049 }
3050
3051 #ifdef CONFIG_MMU
3052 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3053                                         struct cftype *cft, u64 val)
3054 {
3055         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3056
3057         if (val & ~MOVE_MASK)
3058                 return -EINVAL;
3059
3060         /*
3061          * No kind of locking is needed in here, because ->can_attach() will
3062          * check this value once in the beginning of the process, and then carry
3063          * on with stale data. This means that changes to this value will only
3064          * affect task migrations starting after the change.
3065          */
3066         memcg->move_charge_at_immigrate = val;
3067         return 0;
3068 }
3069 #else
3070 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3071                                         struct cftype *cft, u64 val)
3072 {
3073         return -ENOSYS;
3074 }
3075 #endif
3076
3077 #ifdef CONFIG_NUMA
3078 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3079 {
3080         struct numa_stat {
3081                 const char *name;
3082                 unsigned int lru_mask;
3083         };
3084
3085         static const struct numa_stat stats[] = {
3086                 { "total", LRU_ALL },
3087                 { "file", LRU_ALL_FILE },
3088                 { "anon", LRU_ALL_ANON },
3089                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3090         };
3091         const struct numa_stat *stat;
3092         int nid;
3093         unsigned long nr;
3094         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3095
3096         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3097                 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3098                 seq_printf(m, "%s=%lu", stat->name, nr);
3099                 for_each_node_state(nid, N_MEMORY) {
3100                         nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3101                                                           stat->lru_mask);
3102                         seq_printf(m, " N%d=%lu", nid, nr);
3103                 }
3104                 seq_putc(m, '\n');
3105         }
3106
3107         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3108                 struct mem_cgroup *iter;
3109
3110                 nr = 0;
3111                 for_each_mem_cgroup_tree(iter, memcg)
3112                         nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3113                 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3114                 for_each_node_state(nid, N_MEMORY) {
3115                         nr = 0;
3116                         for_each_mem_cgroup_tree(iter, memcg)
3117                                 nr += mem_cgroup_node_nr_lru_pages(
3118                                         iter, nid, stat->lru_mask);
3119                         seq_printf(m, " N%d=%lu", nid, nr);
3120                 }
3121                 seq_putc(m, '\n');
3122         }
3123
3124         return 0;
3125 }
3126 #endif /* CONFIG_NUMA */
3127
3128 static int memcg_stat_show(struct seq_file *m, void *v)
3129 {
3130         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3131         unsigned long memory, memsw;
3132         struct mem_cgroup *mi;
3133         unsigned int i;
3134
3135         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3136                      MEM_CGROUP_STAT_NSTATS);
3137         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3138                      MEM_CGROUP_EVENTS_NSTATS);
3139         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3140
3141         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3142                 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3143                         continue;
3144                 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3145                            mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3146         }
3147
3148         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3149                 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3150                            mem_cgroup_read_events(memcg, i));
3151
3152         for (i = 0; i < NR_LRU_LISTS; i++)
3153                 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3154                            mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3155
3156         /* Hierarchical information */
3157         memory = memsw = PAGE_COUNTER_MAX;
3158         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3159                 memory = min(memory, mi->memory.limit);
3160                 memsw = min(memsw, mi->memsw.limit);
3161         }
3162         seq_printf(m, "hierarchical_memory_limit %llu\n",
3163                    (u64)memory * PAGE_SIZE);
3164         if (do_memsw_account())
3165                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3166                            (u64)memsw * PAGE_SIZE);
3167
3168         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3169                 unsigned long long val = 0;
3170
3171                 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3172                         continue;
3173                 for_each_mem_cgroup_tree(mi, memcg)
3174                         val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3175                 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3176         }
3177
3178         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3179                 unsigned long long val = 0;
3180
3181                 for_each_mem_cgroup_tree(mi, memcg)
3182                         val += mem_cgroup_read_events(mi, i);
3183                 seq_printf(m, "total_%s %llu\n",
3184                            mem_cgroup_events_names[i], val);
3185         }
3186
3187         for (i = 0; i < NR_LRU_LISTS; i++) {
3188                 unsigned long long val = 0;
3189
3190                 for_each_mem_cgroup_tree(mi, memcg)
3191                         val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3192                 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3193         }
3194
3195 #ifdef CONFIG_DEBUG_VM
3196         {
3197                 pg_data_t *pgdat;
3198                 struct mem_cgroup_per_node *mz;
3199                 struct zone_reclaim_stat *rstat;
3200                 unsigned long recent_rotated[2] = {0, 0};
3201                 unsigned long recent_scanned[2] = {0, 0};
3202
3203                 for_each_online_pgdat(pgdat) {
3204                         mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3205                         rstat = &mz->lruvec.reclaim_stat;
3206
3207                         recent_rotated[0] += rstat->recent_rotated[0];
3208                         recent_rotated[1] += rstat->recent_rotated[1];
3209                         recent_scanned[0] += rstat->recent_scanned[0];
3210                         recent_scanned[1] += rstat->recent_scanned[1];
3211                 }
3212                 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3213                 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3214                 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3215                 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3216         }
3217 #endif
3218
3219         return 0;
3220 }
3221
3222 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3223                                       struct cftype *cft)
3224 {
3225         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3226
3227         return mem_cgroup_swappiness(memcg);
3228 }
3229
3230 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3231                                        struct cftype *cft, u64 val)
3232 {
3233         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3234
3235         if (val > 100)
3236                 return -EINVAL;
3237
3238         if (css->parent)
3239                 memcg->swappiness = val;
3240         else
3241                 vm_swappiness = val;
3242
3243         return 0;
3244 }
3245
3246 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3247 {
3248         struct mem_cgroup_threshold_ary *t;
3249         unsigned long usage;
3250         int i;
3251
3252         rcu_read_lock();
3253         if (!swap)
3254                 t = rcu_dereference(memcg->thresholds.primary);
3255         else
3256                 t = rcu_dereference(memcg->memsw_thresholds.primary);
3257
3258         if (!t)
3259                 goto unlock;
3260
3261         usage = mem_cgroup_usage(memcg, swap);
3262
3263         /*
3264          * current_threshold points to threshold just below or equal to usage.
3265          * If it's not true, a threshold was crossed after last
3266          * call of __mem_cgroup_threshold().
3267          */
3268         i = t->current_threshold;
3269
3270         /*
3271          * Iterate backward over array of thresholds starting from
3272          * current_threshold and check if a threshold is crossed.
3273          * If none of thresholds below usage is crossed, we read
3274          * only one element of the array here.
3275          */
3276         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3277                 eventfd_signal(t->entries[i].eventfd, 1);
3278
3279         /* i = current_threshold + 1 */
3280         i++;
3281
3282         /*
3283          * Iterate forward over array of thresholds starting from
3284          * current_threshold+1 and check if a threshold is crossed.
3285          * If none of thresholds above usage is crossed, we read
3286          * only one element of the array here.
3287          */
3288         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3289                 eventfd_signal(t->entries[i].eventfd, 1);
3290
3291         /* Update current_threshold */
3292         t->current_threshold = i - 1;
3293 unlock:
3294         rcu_read_unlock();
3295 }
3296
3297 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3298 {
3299         while (memcg) {
3300                 __mem_cgroup_threshold(memcg, false);
3301                 if (do_memsw_account())
3302                         __mem_cgroup_threshold(memcg, true);
3303
3304                 memcg = parent_mem_cgroup(memcg);
3305         }
3306 }
3307
3308 static int compare_thresholds(const void *a, const void *b)
3309 {
3310         const struct mem_cgroup_threshold *_a = a;
3311         const struct mem_cgroup_threshold *_b = b;
3312
3313         if (_a->threshold > _b->threshold)
3314                 return 1;
3315
3316         if (_a->threshold < _b->threshold)
3317                 return -1;
3318
3319         return 0;
3320 }
3321
3322 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3323 {
3324         struct mem_cgroup_eventfd_list *ev;
3325
3326         spin_lock(&memcg_oom_lock);
3327
3328         list_for_each_entry(ev, &memcg->oom_notify, list)
3329                 eventfd_signal(ev->eventfd, 1);
3330
3331         spin_unlock(&memcg_oom_lock);
3332         return 0;
3333 }
3334
3335 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3336 {
3337         struct mem_cgroup *iter;
3338
3339         for_each_mem_cgroup_tree(iter, memcg)
3340                 mem_cgroup_oom_notify_cb(iter);
3341 }
3342
3343 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3344         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3345 {
3346         struct mem_cgroup_thresholds *thresholds;
3347         struct mem_cgroup_threshold_ary *new;
3348         unsigned long threshold;
3349         unsigned long usage;
3350         int i, size, ret;
3351
3352         ret = page_counter_memparse(args, "-1", &threshold);
3353         if (ret)
3354                 return ret;
3355
3356         mutex_lock(&memcg->thresholds_lock);
3357
3358         if (type == _MEM) {
3359                 thresholds = &memcg->thresholds;
3360                 usage = mem_cgroup_usage(memcg, false);
3361         } else if (type == _MEMSWAP) {
3362                 thresholds = &memcg->memsw_thresholds;
3363                 usage = mem_cgroup_usage(memcg, true);
3364         } else
3365                 BUG();
3366
3367         /* Check if a threshold crossed before adding a new one */
3368         if (thresholds->primary)
3369                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3370
3371         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3372
3373         /* Allocate memory for new array of thresholds */
3374         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3375                         GFP_KERNEL);
3376         if (!new) {
3377                 ret = -ENOMEM;
3378                 goto unlock;
3379         }
3380         new->size = size;
3381
3382         /* Copy thresholds (if any) to new array */
3383         if (thresholds->primary) {
3384                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3385                                 sizeof(struct mem_cgroup_threshold));
3386         }
3387
3388         /* Add new threshold */
3389         new->entries[size - 1].eventfd = eventfd;
3390         new->entries[size - 1].threshold = threshold;
3391
3392         /* Sort thresholds. Registering of new threshold isn't time-critical */
3393         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3394                         compare_thresholds, NULL);
3395
3396         /* Find current threshold */
3397         new->current_threshold = -1;
3398         for (i = 0; i < size; i++) {
3399                 if (new->entries[i].threshold <= usage) {
3400                         /*
3401                          * new->current_threshold will not be used until
3402                          * rcu_assign_pointer(), so it's safe to increment
3403                          * it here.
3404                          */
3405                         ++new->current_threshold;
3406                 } else
3407                         break;
3408         }
3409
3410         /* Free old spare buffer and save old primary buffer as spare */
3411         kfree(thresholds->spare);
3412         thresholds->spare = thresholds->primary;
3413
3414         rcu_assign_pointer(thresholds->primary, new);
3415
3416         /* To be sure that nobody uses thresholds */
3417         synchronize_rcu();
3418
3419 unlock:
3420         mutex_unlock(&memcg->thresholds_lock);
3421
3422         return ret;
3423 }
3424
3425 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3426         struct eventfd_ctx *eventfd, const char *args)
3427 {
3428         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3429 }
3430
3431 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3432         struct eventfd_ctx *eventfd, const char *args)
3433 {
3434         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3435 }
3436
3437 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3438         struct eventfd_ctx *eventfd, enum res_type type)
3439 {
3440         struct mem_cgroup_thresholds *thresholds;
3441         struct mem_cgroup_threshold_ary *new;
3442         unsigned long usage;
3443         int i, j, size;
3444
3445         mutex_lock(&memcg->thresholds_lock);
3446
3447         if (type == _MEM) {
3448                 thresholds = &memcg->thresholds;
3449                 usage = mem_cgroup_usage(memcg, false);
3450         } else if (type == _MEMSWAP) {
3451                 thresholds = &memcg->memsw_thresholds;
3452                 usage = mem_cgroup_usage(memcg, true);
3453         } else
3454                 BUG();
3455
3456         if (!thresholds->primary)
3457                 goto unlock;
3458
3459         /* Check if a threshold crossed before removing */
3460         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3461
3462         /* Calculate new number of threshold */
3463         size = 0;
3464         for (i = 0; i < thresholds->primary->size; i++) {
3465                 if (thresholds->primary->entries[i].eventfd != eventfd)
3466                         size++;
3467         }
3468
3469         new = thresholds->spare;
3470
3471         /* Set thresholds array to NULL if we don't have thresholds */
3472         if (!size) {
3473                 kfree(new);
3474                 new = NULL;
3475                 goto swap_buffers;
3476         }
3477
3478         new->size = size;
3479
3480         /* Copy thresholds and find current threshold */
3481         new->current_threshold = -1;
3482         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3483                 if (thresholds->primary->entries[i].eventfd == eventfd)
3484                         continue;
3485
3486                 new->entries[j] = thresholds->primary->entries[i];
3487                 if (new->entries[j].threshold <= usage) {
3488                         /*
3489                          * new->current_threshold will not be used
3490                          * until rcu_assign_pointer(), so it's safe to increment
3491                          * it here.
3492                          */
3493                         ++new->current_threshold;
3494                 }
3495                 j++;
3496         }
3497
3498 swap_buffers:
3499         /* Swap primary and spare array */
3500         thresholds->spare = thresholds->primary;
3501
3502         rcu_assign_pointer(thresholds->primary, new);
3503
3504         /* To be sure that nobody uses thresholds */
3505         synchronize_rcu();
3506
3507         /* If all events are unregistered, free the spare array */
3508         if (!new) {
3509                 kfree(thresholds->spare);
3510                 thresholds->spare = NULL;
3511         }
3512 unlock:
3513         mutex_unlock(&memcg->thresholds_lock);
3514 }
3515
3516 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3517         struct eventfd_ctx *eventfd)
3518 {
3519         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3520 }
3521
3522 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3523         struct eventfd_ctx *eventfd)
3524 {
3525         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3526 }
3527
3528 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3529         struct eventfd_ctx *eventfd, const char *args)
3530 {
3531         struct mem_cgroup_eventfd_list *event;
3532
3533         event = kmalloc(sizeof(*event), GFP_KERNEL);
3534         if (!event)
3535                 return -ENOMEM;
3536
3537         spin_lock(&memcg_oom_lock);
3538
3539         event->eventfd = eventfd;
3540         list_add(&event->list, &memcg->oom_notify);
3541
3542         /* already in OOM ? */
3543         if (memcg->under_oom)
3544                 eventfd_signal(eventfd, 1);
3545         spin_unlock(&memcg_oom_lock);
3546
3547         return 0;
3548 }
3549
3550 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3551         struct eventfd_ctx *eventfd)
3552 {
3553         struct mem_cgroup_eventfd_list *ev, *tmp;
3554
3555         spin_lock(&memcg_oom_lock);
3556
3557         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3558                 if (ev->eventfd == eventfd) {
3559                         list_del(&ev->list);
3560                         kfree(ev);
3561                 }
3562         }
3563
3564         spin_unlock(&memcg_oom_lock);
3565 }
3566
3567 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3568 {
3569         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3570
3571         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3572         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3573         return 0;
3574 }
3575
3576 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3577         struct cftype *cft, u64 val)
3578 {
3579         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3580
3581         /* cannot set to root cgroup and only 0 and 1 are allowed */
3582         if (!css->parent || !((val == 0) || (val == 1)))
3583                 return -EINVAL;
3584
3585         memcg->oom_kill_disable = val;
3586         if (!val)
3587                 memcg_oom_recover(memcg);
3588
3589         return 0;
3590 }
3591
3592 #ifdef CONFIG_CGROUP_WRITEBACK
3593
3594 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3595 {
3596         return &memcg->cgwb_list;
3597 }
3598
3599 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3600 {
3601         return wb_domain_init(&memcg->cgwb_domain, gfp);
3602 }
3603
3604 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3605 {
3606         wb_domain_exit(&memcg->cgwb_domain);
3607 }
3608
3609 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3610 {
3611         wb_domain_size_changed(&memcg->cgwb_domain);
3612 }
3613
3614 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3615 {
3616         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3617
3618         if (!memcg->css.parent)
3619                 return NULL;
3620
3621         return &memcg->cgwb_domain;
3622 }
3623
3624 /**
3625  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3626  * @wb: bdi_writeback in question
3627  * @pfilepages: out parameter for number of file pages
3628  * @pheadroom: out parameter for number of allocatable pages according to memcg
3629  * @pdirty: out parameter for number of dirty pages
3630  * @pwriteback: out parameter for number of pages under writeback
3631  *
3632  * Determine the numbers of file, headroom, dirty, and writeback pages in
3633  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3634  * is a bit more involved.
3635  *
3636  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3637  * headroom is calculated as the lowest headroom of itself and the
3638  * ancestors.  Note that this doesn't consider the actual amount of
3639  * available memory in the system.  The caller should further cap
3640  * *@pheadroom accordingly.
3641  */
3642 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3643                          unsigned long *pheadroom, unsigned long *pdirty,
3644                          unsigned long *pwriteback)
3645 {
3646         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3647         struct mem_cgroup *parent;
3648
3649         *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3650
3651         /* this should eventually include NR_UNSTABLE_NFS */
3652         *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3653         *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3654                                                      (1 << LRU_ACTIVE_FILE));
3655         *pheadroom = PAGE_COUNTER_MAX;
3656
3657         while ((parent = parent_mem_cgroup(memcg))) {
3658                 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3659                 unsigned long used = page_counter_read(&memcg->memory);
3660
3661                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3662                 memcg = parent;
3663         }
3664 }
3665
3666 #else   /* CONFIG_CGROUP_WRITEBACK */
3667
3668 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3669 {
3670         return 0;
3671 }
3672
3673 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3674 {
3675 }
3676
3677 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3678 {
3679 }
3680
3681 #endif  /* CONFIG_CGROUP_WRITEBACK */
3682
3683 /*
3684  * DO NOT USE IN NEW FILES.
3685  *
3686  * "cgroup.event_control" implementation.
3687  *
3688  * This is way over-engineered.  It tries to support fully configurable
3689  * events for each user.  Such level of flexibility is completely
3690  * unnecessary especially in the light of the planned unified hierarchy.
3691  *
3692  * Please deprecate this and replace with something simpler if at all
3693  * possible.
3694  */
3695
3696 /*
3697  * Unregister event and free resources.
3698  *
3699  * Gets called from workqueue.
3700  */
3701 static void memcg_event_remove(struct work_struct *work)
3702 {
3703         struct mem_cgroup_event *event =
3704                 container_of(work, struct mem_cgroup_event, remove);
3705         struct mem_cgroup *memcg = event->memcg;
3706
3707         remove_wait_queue(event->wqh, &event->wait);
3708
3709         event->unregister_event(memcg, event->eventfd);
3710
3711         /* Notify userspace the event is going away. */
3712         eventfd_signal(event->eventfd, 1);
3713
3714         eventfd_ctx_put(event->eventfd);
3715         kfree(event);
3716         css_put(&memcg->css);
3717 }
3718
3719 /*
3720  * Gets called on POLLHUP on eventfd when user closes it.
3721  *
3722  * Called with wqh->lock held and interrupts disabled.
3723  */
3724 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3725                             int sync, void *key)
3726 {
3727         struct mem_cgroup_event *event =
3728                 container_of(wait, struct mem_cgroup_event, wait);
3729         struct mem_cgroup *memcg = event->memcg;
3730         unsigned long flags = (unsigned long)key;
3731
3732         if (flags & POLLHUP) {
3733                 /*
3734                  * If the event has been detached at cgroup removal, we
3735                  * can simply return knowing the other side will cleanup
3736                  * for us.
3737                  *
3738                  * We can't race against event freeing since the other
3739                  * side will require wqh->lock via remove_wait_queue(),
3740                  * which we hold.
3741                  */
3742                 spin_lock(&memcg->event_list_lock);
3743                 if (!list_empty(&event->list)) {
3744                         list_del_init(&event->list);
3745                         /*
3746                          * We are in atomic context, but cgroup_event_remove()
3747                          * may sleep, so we have to call it in workqueue.
3748                          */
3749                         schedule_work(&event->remove);
3750                 }
3751                 spin_unlock(&memcg->event_list_lock);
3752         }
3753
3754         return 0;
3755 }
3756
3757 static void memcg_event_ptable_queue_proc(struct file *file,
3758                 wait_queue_head_t *wqh, poll_table *pt)
3759 {
3760         struct mem_cgroup_event *event =
3761                 container_of(pt, struct mem_cgroup_event, pt);
3762
3763         event->wqh = wqh;
3764         add_wait_queue(wqh, &event->wait);
3765 }
3766
3767 /*
3768  * DO NOT USE IN NEW FILES.
3769  *
3770  * Parse input and register new cgroup event handler.
3771  *
3772  * Input must be in format '<event_fd> <control_fd> <args>'.
3773  * Interpretation of args is defined by control file implementation.
3774  */
3775 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3776                                          char *buf, size_t nbytes, loff_t off)
3777 {
3778         struct cgroup_subsys_state *css = of_css(of);
3779         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3780         struct mem_cgroup_event *event;
3781         struct cgroup_subsys_state *cfile_css;
3782         unsigned int efd, cfd;
3783         struct fd efile;
3784         struct fd cfile;
3785         const char *name;
3786         char *endp;
3787         int ret;
3788
3789         buf = strstrip(buf);
3790
3791         efd = simple_strtoul(buf, &endp, 10);
3792         if (*endp != ' ')
3793                 return -EINVAL;
3794         buf = endp + 1;
3795
3796         cfd = simple_strtoul(buf, &endp, 10);
3797         if ((*endp != ' ') && (*endp != '\0'))
3798                 return -EINVAL;
3799         buf = endp + 1;
3800
3801         event = kzalloc(sizeof(*event), GFP_KERNEL);
3802         if (!event)
3803                 return -ENOMEM;
3804
3805         event->memcg = memcg;
3806         INIT_LIST_HEAD(&event->list);
3807         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3808         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3809         INIT_WORK(&event->remove, memcg_event_remove);
3810
3811         efile = fdget(efd);
3812         if (!efile.file) {
3813                 ret = -EBADF;
3814                 goto out_kfree;
3815         }
3816
3817         event->eventfd = eventfd_ctx_fileget(efile.file);
3818         if (IS_ERR(event->eventfd)) {
3819                 ret = PTR_ERR(event->eventfd);
3820                 goto out_put_efile;
3821         }
3822
3823         cfile = fdget(cfd);
3824         if (!cfile.file) {
3825                 ret = -EBADF;
3826                 goto out_put_eventfd;
3827         }
3828
3829         /* the process need read permission on control file */
3830         /* AV: shouldn't we check that it's been opened for read instead? */
3831         ret = inode_permission(file_inode(cfile.file), MAY_READ);
3832         if (ret < 0)
3833                 goto out_put_cfile;
3834
3835         /*
3836          * Determine the event callbacks and set them in @event.  This used
3837          * to be done via struct cftype but cgroup core no longer knows
3838          * about these events.  The following is crude but the whole thing
3839          * is for compatibility anyway.
3840          *
3841          * DO NOT ADD NEW FILES.
3842          */
3843         name = cfile.file->f_path.dentry->d_name.name;
3844
3845         if (!strcmp(name, "memory.usage_in_bytes")) {
3846                 event->register_event = mem_cgroup_usage_register_event;
3847                 event->unregister_event = mem_cgroup_usage_unregister_event;
3848         } else if (!strcmp(name, "memory.oom_control")) {
3849                 event->register_event = mem_cgroup_oom_register_event;
3850                 event->unregister_event = mem_cgroup_oom_unregister_event;
3851         } else if (!strcmp(name, "memory.pressure_level")) {
3852                 event->register_event = vmpressure_register_event;
3853                 event->unregister_event = vmpressure_unregister_event;
3854         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3855                 event->register_event = memsw_cgroup_usage_register_event;
3856                 event->unregister_event = memsw_cgroup_usage_unregister_event;
3857         } else {
3858                 ret = -EINVAL;
3859                 goto out_put_cfile;
3860         }
3861
3862         /*
3863          * Verify @cfile should belong to @css.  Also, remaining events are
3864          * automatically removed on cgroup destruction but the removal is
3865          * asynchronous, so take an extra ref on @css.
3866          */
3867         cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3868                                                &memory_cgrp_subsys);
3869         ret = -EINVAL;
3870         if (IS_ERR(cfile_css))
3871                 goto out_put_cfile;
3872         if (cfile_css != css) {
3873                 css_put(cfile_css);
3874                 goto out_put_cfile;
3875         }
3876
3877         ret = event->register_event(memcg, event->eventfd, buf);
3878         if (ret)
3879                 goto out_put_css;
3880
3881         efile.file->f_op->poll(efile.file, &event->pt);
3882
3883         spin_lock(&memcg->event_list_lock);
3884         list_add(&event->list, &memcg->event_list);
3885         spin_unlock(&memcg->event_list_lock);
3886
3887         fdput(cfile);
3888         fdput(efile);
3889
3890         return nbytes;
3891
3892 out_put_css:
3893         css_put(css);
3894 out_put_cfile:
3895         fdput(cfile);
3896 out_put_eventfd:
3897         eventfd_ctx_put(event->eventfd);
3898 out_put_efile:
3899         fdput(efile);
3900 out_kfree:
3901         kfree(event);
3902
3903         return ret;
3904 }
3905
3906 static struct cftype mem_cgroup_legacy_files[] = {
3907         {
3908                 .name = "usage_in_bytes",
3909                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3910                 .read_u64 = mem_cgroup_read_u64,
3911         },
3912         {
3913                 .name = "max_usage_in_bytes",
3914                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3915                 .write = mem_cgroup_reset,
3916                 .read_u64 = mem_cgroup_read_u64,
3917         },
3918         {
3919                 .name = "limit_in_bytes",
3920                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3921                 .write = mem_cgroup_write,
3922                 .read_u64 = mem_cgroup_read_u64,
3923         },
3924         {
3925                 .name = "soft_limit_in_bytes",
3926                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3927                 .write = mem_cgroup_write,
3928                 .read_u64 = mem_cgroup_read_u64,
3929         },
3930         {
3931                 .name = "failcnt",
3932                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3933                 .write = mem_cgroup_reset,
3934                 .read_u64 = mem_cgroup_read_u64,
3935         },
3936         {
3937                 .name = "stat",
3938                 .seq_show = memcg_stat_show,
3939         },
3940         {
3941                 .name = "force_empty",
3942                 .write = mem_cgroup_force_empty_write,
3943         },
3944         {
3945                 .name = "use_hierarchy",
3946                 .write_u64 = mem_cgroup_hierarchy_write,
3947                 .read_u64 = mem_cgroup_hierarchy_read,
3948         },
3949         {
3950                 .name = "cgroup.event_control",         /* XXX: for compat */
3951                 .write = memcg_write_event_control,
3952                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3953         },
3954         {
3955                 .name = "swappiness",
3956                 .read_u64 = mem_cgroup_swappiness_read,
3957                 .write_u64 = mem_cgroup_swappiness_write,
3958         },
3959         {
3960                 .name = "move_charge_at_immigrate",
3961                 .read_u64 = mem_cgroup_move_charge_read,
3962                 .write_u64 = mem_cgroup_move_charge_write,
3963         },
3964         {
3965                 .name = "oom_control",
3966                 .seq_show = mem_cgroup_oom_control_read,
3967                 .write_u64 = mem_cgroup_oom_control_write,
3968                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3969         },
3970         {
3971                 .name = "pressure_level",
3972         },
3973 #ifdef CONFIG_NUMA
3974         {
3975                 .name = "numa_stat",
3976                 .seq_show = memcg_numa_stat_show,
3977         },
3978 #endif
3979         {
3980                 .name = "kmem.limit_in_bytes",
3981                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3982                 .write = mem_cgroup_write,
3983                 .read_u64 = mem_cgroup_read_u64,
3984         },
3985         {
3986                 .name = "kmem.usage_in_bytes",
3987                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3988                 .read_u64 = mem_cgroup_read_u64,
3989         },
3990         {
3991                 .name = "kmem.failcnt",
3992                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3993                 .write = mem_cgroup_reset,
3994                 .read_u64 = mem_cgroup_read_u64,
3995         },
3996         {
3997                 .name = "kmem.max_usage_in_bytes",
3998                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3999                 .write = mem_cgroup_reset,
4000                 .read_u64 = mem_cgroup_read_u64,
4001         },
4002 #ifdef CONFIG_SLABINFO
4003         {
4004                 .name = "kmem.slabinfo",
4005                 .seq_start = slab_start,
4006                 .seq_next = slab_next,
4007                 .seq_stop = slab_stop,
4008                 .seq_show = memcg_slab_show,
4009         },
4010 #endif
4011         {
4012                 .name = "kmem.tcp.limit_in_bytes",
4013                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4014                 .write = mem_cgroup_write,
4015                 .read_u64 = mem_cgroup_read_u64,
4016         },
4017         {
4018                 .name = "kmem.tcp.usage_in_bytes",
4019                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4020                 .read_u64 = mem_cgroup_read_u64,
4021         },
4022         {
4023                 .name = "kmem.tcp.failcnt",
4024                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4025                 .write = mem_cgroup_reset,
4026                 .read_u64 = mem_cgroup_read_u64,
4027         },
4028         {
4029                 .name = "kmem.tcp.max_usage_in_bytes",
4030                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4031                 .write = mem_cgroup_reset,
4032                 .read_u64 = mem_cgroup_read_u64,
4033         },
4034         { },    /* terminate */
4035 };
4036
4037 /*
4038  * Private memory cgroup IDR
4039  *
4040  * Swap-out records and page cache shadow entries need to store memcg
4041  * references in constrained space, so we maintain an ID space that is
4042  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4043  * memory-controlled cgroups to 64k.
4044  *
4045  * However, there usually are many references to the oflline CSS after
4046  * the cgroup has been destroyed, such as page cache or reclaimable
4047  * slab objects, that don't need to hang on to the ID. We want to keep
4048  * those dead CSS from occupying IDs, or we might quickly exhaust the
4049  * relatively small ID space and prevent the creation of new cgroups
4050  * even when there are much fewer than 64k cgroups - possibly none.
4051  *
4052  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4053  * be freed and recycled when it's no longer needed, which is usually
4054  * when the CSS is offlined.
4055  *
4056  * The only exception to that are records of swapped out tmpfs/shmem
4057  * pages that need to be attributed to live ancestors on swapin. But
4058  * those references are manageable from userspace.
4059  */
4060
4061 static DEFINE_IDR(mem_cgroup_idr);
4062
4063 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4064 {
4065         atomic_add(n, &memcg->id.ref);
4066 }
4067
4068 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4069 {
4070         if (atomic_sub_and_test(n, &memcg->id.ref)) {
4071                 idr_remove(&mem_cgroup_idr, memcg->id.id);
4072                 memcg->id.id = 0;
4073
4074                 /* Memcg ID pins CSS */
4075                 css_put(&memcg->css);
4076         }
4077 }
4078
4079 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4080 {
4081         mem_cgroup_id_get_many(memcg, 1);
4082 }
4083
4084 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4085 {
4086         mem_cgroup_id_put_many(memcg, 1);
4087 }
4088
4089 /**
4090  * mem_cgroup_from_id - look up a memcg from a memcg id
4091  * @id: the memcg id to look up
4092  *
4093  * Caller must hold rcu_read_lock().
4094  */
4095 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4096 {
4097         WARN_ON_ONCE(!rcu_read_lock_held());
4098         return idr_find(&mem_cgroup_idr, id);
4099 }
4100
4101 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4102 {
4103         struct mem_cgroup_per_node *pn;
4104         int tmp = node;
4105         /*
4106          * This routine is called against possible nodes.
4107          * But it's BUG to call kmalloc() against offline node.
4108          *
4109          * TODO: this routine can waste much memory for nodes which will
4110          *       never be onlined. It's better to use memory hotplug callback
4111          *       function.
4112          */
4113         if (!node_state(node, N_NORMAL_MEMORY))
4114                 tmp = -1;
4115         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4116         if (!pn)
4117                 return 1;
4118
4119         lruvec_init(&pn->lruvec);
4120         pn->usage_in_excess = 0;
4121         pn->on_tree = false;
4122         pn->memcg = memcg;
4123
4124         memcg->nodeinfo[node] = pn;
4125         return 0;
4126 }
4127
4128 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4129 {
4130         kfree(memcg->nodeinfo[node]);
4131 }
4132
4133 static void mem_cgroup_free(struct mem_cgroup *memcg)
4134 {
4135         int node;
4136
4137         memcg_wb_domain_exit(memcg);
4138         for_each_node(node)
4139                 free_mem_cgroup_per_node_info(memcg, node);
4140         free_percpu(memcg->stat);
4141         kfree(memcg);
4142 }
4143
4144 static struct mem_cgroup *mem_cgroup_alloc(void)
4145 {
4146         struct mem_cgroup *memcg;
4147         size_t size;
4148         int node;
4149
4150         size = sizeof(struct mem_cgroup);
4151         size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4152
4153         memcg = kzalloc(size, GFP_KERNEL);
4154         if (!memcg)
4155                 return NULL;
4156
4157         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4158                                  1, MEM_CGROUP_ID_MAX,
4159                                  GFP_KERNEL);
4160         if (memcg->id.id < 0)
4161                 goto fail;
4162
4163         memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4164         if (!memcg->stat)
4165                 goto fail;
4166
4167         for_each_node(node)
4168                 if (alloc_mem_cgroup_per_node_info(memcg, node))
4169                         goto fail;
4170
4171         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4172                 goto fail;
4173
4174         INIT_WORK(&memcg->high_work, high_work_func);
4175         memcg->last_scanned_node = MAX_NUMNODES;
4176         INIT_LIST_HEAD(&memcg->oom_notify);
4177         mutex_init(&memcg->thresholds_lock);
4178         spin_lock_init(&memcg->move_lock);
4179         vmpressure_init(&memcg->vmpressure);
4180         INIT_LIST_HEAD(&memcg->event_list);
4181         spin_lock_init(&memcg->event_list_lock);
4182         memcg->socket_pressure = jiffies;
4183 #ifndef CONFIG_SLOB
4184         memcg->kmemcg_id = -1;
4185 #endif
4186 #ifdef CONFIG_CGROUP_WRITEBACK
4187         INIT_LIST_HEAD(&memcg->cgwb_list);
4188 #endif
4189         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4190         return memcg;
4191 fail:
4192         if (memcg->id.id > 0)
4193                 idr_remove(&mem_cgroup_idr, memcg->id.id);
4194         mem_cgroup_free(memcg);
4195         return NULL;
4196 }
4197
4198 static struct cgroup_subsys_state * __ref
4199 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4200 {
4201         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4202         struct mem_cgroup *memcg;
4203         long error = -ENOMEM;
4204
4205         memcg = mem_cgroup_alloc();
4206         if (!memcg)
4207                 return ERR_PTR(error);
4208
4209         memcg->high = PAGE_COUNTER_MAX;
4210         memcg->soft_limit = PAGE_COUNTER_MAX;
4211         if (parent) {
4212                 memcg->swappiness = mem_cgroup_swappiness(parent);
4213                 memcg->oom_kill_disable = parent->oom_kill_disable;
4214         }
4215         if (parent && parent->use_hierarchy) {
4216                 memcg->use_hierarchy = true;
4217                 page_counter_init(&memcg->memory, &parent->memory);
4218                 page_counter_init(&memcg->swap, &parent->swap);
4219                 page_counter_init(&memcg->memsw, &parent->memsw);
4220                 page_counter_init(&memcg->kmem, &parent->kmem);
4221                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4222         } else {
4223                 page_counter_init(&memcg->memory, NULL);
4224                 page_counter_init(&memcg->swap, NULL);
4225                 page_counter_init(&memcg->memsw, NULL);
4226                 page_counter_init(&memcg->kmem, NULL);
4227                 page_counter_init(&memcg->tcpmem, NULL);
4228                 /*
4229                  * Deeper hierachy with use_hierarchy == false doesn't make
4230                  * much sense so let cgroup subsystem know about this
4231                  * unfortunate state in our controller.
4232                  */
4233                 if (parent != root_mem_cgroup)
4234                         memory_cgrp_subsys.broken_hierarchy = true;
4235         }
4236
4237         /* The following stuff does not apply to the root */
4238         if (!parent) {
4239                 root_mem_cgroup = memcg;
4240                 return &memcg->css;
4241         }
4242
4243         error = memcg_online_kmem(memcg);
4244         if (error)
4245                 goto fail;
4246
4247         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4248                 static_branch_inc(&memcg_sockets_enabled_key);
4249
4250         return &memcg->css;
4251 fail:
4252         mem_cgroup_free(memcg);
4253         return ERR_PTR(-ENOMEM);
4254 }
4255
4256 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4257 {
4258         /* Online state pins memcg ID, memcg ID pins CSS */
4259         mem_cgroup_id_get(mem_cgroup_from_css(css));
4260         css_get(css);
4261         return 0;
4262 }
4263
4264 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4265 {
4266         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4267         struct mem_cgroup_event *event, *tmp;
4268
4269         /*
4270          * Unregister events and notify userspace.
4271          * Notify userspace about cgroup removing only after rmdir of cgroup
4272          * directory to avoid race between userspace and kernelspace.
4273          */
4274         spin_lock(&memcg->event_list_lock);
4275         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4276                 list_del_init(&event->list);
4277                 schedule_work(&event->remove);
4278         }
4279         spin_unlock(&memcg->event_list_lock);
4280
4281         memcg_offline_kmem(memcg);
4282         wb_memcg_offline(memcg);
4283
4284         mem_cgroup_id_put(memcg);
4285 }
4286
4287 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4288 {
4289         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4290
4291         invalidate_reclaim_iterators(memcg);
4292 }
4293
4294 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4295 {
4296         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4297
4298         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4299                 static_branch_dec(&memcg_sockets_enabled_key);
4300
4301         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4302                 static_branch_dec(&memcg_sockets_enabled_key);
4303
4304         vmpressure_cleanup(&memcg->vmpressure);
4305         cancel_work_sync(&memcg->high_work);
4306         mem_cgroup_remove_from_trees(memcg);
4307         memcg_free_kmem(memcg);
4308         mem_cgroup_free(memcg);
4309 }
4310
4311 /**
4312  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4313  * @css: the target css
4314  *
4315  * Reset the states of the mem_cgroup associated with @css.  This is
4316  * invoked when the userland requests disabling on the default hierarchy
4317  * but the memcg is pinned through dependency.  The memcg should stop
4318  * applying policies and should revert to the vanilla state as it may be
4319  * made visible again.
4320  *
4321  * The current implementation only resets the essential configurations.
4322  * This needs to be expanded to cover all the visible parts.
4323  */
4324 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4325 {
4326         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4327
4328         page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4329         page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4330         page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4331         page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4332         page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4333         memcg->low = 0;
4334         memcg->high = PAGE_COUNTER_MAX;
4335         memcg->soft_limit = PAGE_COUNTER_MAX;
4336         memcg_wb_domain_size_changed(memcg);
4337 }
4338
4339 #ifdef CONFIG_MMU
4340 /* Handlers for move charge at task migration. */
4341 static int mem_cgroup_do_precharge(unsigned long count)
4342 {
4343         int ret;
4344
4345         /* Try a single bulk charge without reclaim first, kswapd may wake */
4346         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4347         if (!ret) {
4348                 mc.precharge += count;
4349                 return ret;
4350         }
4351
4352         /* Try charges one by one with reclaim */
4353         while (count--) {
4354                 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4355                 if (ret)
4356                         return ret;
4357                 mc.precharge++;
4358                 cond_resched();
4359         }
4360         return 0;
4361 }
4362
4363 union mc_target {
4364         struct page     *page;
4365         swp_entry_t     ent;
4366 };
4367
4368 enum mc_target_type {
4369         MC_TARGET_NONE = 0,
4370         MC_TARGET_PAGE,
4371         MC_TARGET_SWAP,
4372 };
4373
4374 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4375                                                 unsigned long addr, pte_t ptent)
4376 {
4377         struct page *page = vm_normal_page(vma, addr, ptent);
4378
4379         if (!page || !page_mapped(page))
4380                 return NULL;
4381         if (PageAnon(page)) {
4382                 if (!(mc.flags & MOVE_ANON))
4383                         return NULL;
4384         } else {
4385                 if (!(mc.flags & MOVE_FILE))
4386                         return NULL;
4387         }
4388         if (!get_page_unless_zero(page))
4389                 return NULL;
4390
4391         return page;
4392 }
4393
4394 #ifdef CONFIG_SWAP
4395 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4396                         pte_t ptent, swp_entry_t *entry)
4397 {
4398         struct page *page = NULL;
4399         swp_entry_t ent = pte_to_swp_entry(ptent);
4400
4401         if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4402                 return NULL;
4403         /*
4404          * Because lookup_swap_cache() updates some statistics counter,
4405          * we call find_get_page() with swapper_space directly.
4406          */
4407         page = find_get_page(swap_address_space(ent), ent.val);
4408         if (do_memsw_account())
4409                 entry->val = ent.val;
4410
4411         return page;
4412 }
4413 #else
4414 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4415                         pte_t ptent, swp_entry_t *entry)
4416 {
4417         return NULL;
4418 }
4419 #endif
4420
4421 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4422                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4423 {
4424         struct page *page = NULL;
4425         struct address_space *mapping;
4426         pgoff_t pgoff;
4427
4428         if (!vma->vm_file) /* anonymous vma */
4429                 return NULL;
4430         if (!(mc.flags & MOVE_FILE))
4431                 return NULL;
4432
4433         mapping = vma->vm_file->f_mapping;
4434         pgoff = linear_page_index(vma, addr);
4435
4436         /* page is moved even if it's not RSS of this task(page-faulted). */
4437 #ifdef CONFIG_SWAP
4438         /* shmem/tmpfs may report page out on swap: account for that too. */
4439         if (shmem_mapping(mapping)) {
4440                 page = find_get_entry(mapping, pgoff);
4441                 if (radix_tree_exceptional_entry(page)) {
4442                         swp_entry_t swp = radix_to_swp_entry(page);
4443                         if (do_memsw_account())
4444                                 *entry = swp;
4445                         page = find_get_page(swap_address_space(swp), swp.val);
4446                 }
4447         } else
4448                 page = find_get_page(mapping, pgoff);
4449 #else
4450         page = find_get_page(mapping, pgoff);
4451 #endif
4452         return page;
4453 }
4454
4455 /**
4456  * mem_cgroup_move_account - move account of the page
4457  * @page: the page
4458  * @compound: charge the page as compound or small page
4459  * @from: mem_cgroup which the page is moved from.
4460  * @to: mem_cgroup which the page is moved to. @from != @to.
4461  *
4462  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4463  *
4464  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4465  * from old cgroup.
4466  */
4467 static int mem_cgroup_move_account(struct page *page,
4468                                    bool compound,
4469                                    struct mem_cgroup *from,
4470                                    struct mem_cgroup *to)
4471 {
4472         unsigned long flags;
4473         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4474         int ret;
4475         bool anon;
4476
4477         VM_BUG_ON(from == to);
4478         VM_BUG_ON_PAGE(PageLRU(page), page);
4479         VM_BUG_ON(compound && !PageTransHuge(page));
4480
4481         /*
4482          * Prevent mem_cgroup_migrate() from looking at
4483          * page->mem_cgroup of its source page while we change it.
4484          */
4485         ret = -EBUSY;
4486         if (!trylock_page(page))
4487                 goto out;
4488
4489         ret = -EINVAL;
4490         if (page->mem_cgroup != from)
4491                 goto out_unlock;
4492
4493         anon = PageAnon(page);
4494
4495         spin_lock_irqsave(&from->move_lock, flags);
4496
4497         if (!anon && page_mapped(page)) {
4498                 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4499                                nr_pages);
4500                 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4501                                nr_pages);
4502         }
4503
4504         /*
4505          * move_lock grabbed above and caller set from->moving_account, so
4506          * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4507          * So mapping should be stable for dirty pages.
4508          */
4509         if (!anon && PageDirty(page)) {
4510                 struct address_space *mapping = page_mapping(page);
4511
4512                 if (mapping_cap_account_dirty(mapping)) {
4513                         __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4514                                        nr_pages);
4515                         __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4516                                        nr_pages);
4517                 }
4518         }
4519
4520         if (PageWriteback(page)) {
4521                 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4522                                nr_pages);
4523                 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4524                                nr_pages);
4525         }
4526
4527         /*
4528          * It is safe to change page->mem_cgroup here because the page
4529          * is referenced, charged, and isolated - we can't race with
4530          * uncharging, charging, migration, or LRU putback.
4531          */
4532
4533         /* caller should have done css_get */
4534         page->mem_cgroup = to;
4535         spin_unlock_irqrestore(&from->move_lock, flags);
4536
4537         ret = 0;
4538
4539         local_irq_disable();
4540         mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4541         memcg_check_events(to, page);
4542         mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4543         memcg_check_events(from, page);
4544         local_irq_enable();
4545 out_unlock:
4546         unlock_page(page);
4547 out:
4548         return ret;
4549 }
4550
4551 /**
4552  * get_mctgt_type - get target type of moving charge
4553  * @vma: the vma the pte to be checked belongs
4554  * @addr: the address corresponding to the pte to be checked
4555  * @ptent: the pte to be checked
4556  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4557  *
4558  * Returns
4559  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4560  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4561  *     move charge. if @target is not NULL, the page is stored in target->page
4562  *     with extra refcnt got(Callers should handle it).
4563  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4564  *     target for charge migration. if @target is not NULL, the entry is stored
4565  *     in target->ent.
4566  *
4567  * Called with pte lock held.
4568  */
4569
4570 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4571                 unsigned long addr, pte_t ptent, union mc_target *target)
4572 {
4573         struct page *page = NULL;
4574         enum mc_target_type ret = MC_TARGET_NONE;
4575         swp_entry_t ent = { .val = 0 };
4576
4577         if (pte_present(ptent))
4578                 page = mc_handle_present_pte(vma, addr, ptent);
4579         else if (is_swap_pte(ptent))
4580                 page = mc_handle_swap_pte(vma, ptent, &ent);
4581         else if (pte_none(ptent))
4582                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4583
4584         if (!page && !ent.val)
4585                 return ret;
4586         if (page) {
4587                 /*
4588                  * Do only loose check w/o serialization.
4589                  * mem_cgroup_move_account() checks the page is valid or
4590                  * not under LRU exclusion.
4591                  */
4592                 if (page->mem_cgroup == mc.from) {
4593                         ret = MC_TARGET_PAGE;
4594                         if (target)
4595                                 target->page = page;
4596                 }
4597                 if (!ret || !target)
4598                         put_page(page);
4599         }
4600         /* There is a swap entry and a page doesn't exist or isn't charged */
4601         if (ent.val && !ret &&
4602             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4603                 ret = MC_TARGET_SWAP;
4604                 if (target)
4605                         target->ent = ent;
4606         }
4607         return ret;
4608 }
4609
4610 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4611 /*
4612  * We don't consider swapping or file mapped pages because THP does not
4613  * support them for now.
4614  * Caller should make sure that pmd_trans_huge(pmd) is true.
4615  */
4616 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4617                 unsigned long addr, pmd_t pmd, union mc_target *target)
4618 {
4619         struct page *page = NULL;
4620         enum mc_target_type ret = MC_TARGET_NONE;
4621
4622         page = pmd_page(pmd);
4623         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4624         if (!(mc.flags & MOVE_ANON))
4625                 return ret;
4626         if (page->mem_cgroup == mc.from) {
4627                 ret = MC_TARGET_PAGE;
4628                 if (target) {
4629                         get_page(page);
4630                         target->page = page;
4631                 }
4632         }
4633         return ret;
4634 }
4635 #else
4636 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4637                 unsigned long addr, pmd_t pmd, union mc_target *target)
4638 {
4639         return MC_TARGET_NONE;
4640 }
4641 #endif
4642
4643 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4644                                         unsigned long addr, unsigned long end,
4645                                         struct mm_walk *walk)
4646 {
4647         struct vm_area_struct *vma = walk->vma;
4648         pte_t *pte;
4649         spinlock_t *ptl;
4650
4651         ptl = pmd_trans_huge_lock(pmd, vma);
4652         if (ptl) {
4653                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4654                         mc.precharge += HPAGE_PMD_NR;
4655                 spin_unlock(ptl);
4656                 return 0;
4657         }
4658
4659         if (pmd_trans_unstable(pmd))
4660                 return 0;
4661         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4662         for (; addr != end; pte++, addr += PAGE_SIZE)
4663                 if (get_mctgt_type(vma, addr, *pte, NULL))
4664                         mc.precharge++; /* increment precharge temporarily */
4665         pte_unmap_unlock(pte - 1, ptl);
4666         cond_resched();
4667
4668         return 0;
4669 }
4670
4671 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4672 {
4673         unsigned long precharge;
4674
4675         struct mm_walk mem_cgroup_count_precharge_walk = {
4676                 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4677                 .mm = mm,
4678         };
4679         down_read(&mm->mmap_sem);
4680         walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4681         up_read(&mm->mmap_sem);
4682
4683         precharge = mc.precharge;
4684         mc.precharge = 0;
4685
4686         return precharge;
4687 }
4688
4689 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4690 {
4691         unsigned long precharge = mem_cgroup_count_precharge(mm);
4692
4693         VM_BUG_ON(mc.moving_task);
4694         mc.moving_task = current;
4695         return mem_cgroup_do_precharge(precharge);
4696 }
4697
4698 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4699 static void __mem_cgroup_clear_mc(void)
4700 {
4701         struct mem_cgroup *from = mc.from;
4702         struct mem_cgroup *to = mc.to;
4703
4704         /* we must uncharge all the leftover precharges from mc.to */
4705         if (mc.precharge) {
4706                 cancel_charge(mc.to, mc.precharge);
4707                 mc.precharge = 0;
4708         }
4709         /*
4710          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4711          * we must uncharge here.
4712          */
4713         if (mc.moved_charge) {
4714                 cancel_charge(mc.from, mc.moved_charge);
4715                 mc.moved_charge = 0;
4716         }
4717         /* we must fixup refcnts and charges */
4718         if (mc.moved_swap) {
4719                 /* uncharge swap account from the old cgroup */
4720                 if (!mem_cgroup_is_root(mc.from))
4721                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4722
4723                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4724
4725                 /*
4726                  * we charged both to->memory and to->memsw, so we
4727                  * should uncharge to->memory.
4728                  */
4729                 if (!mem_cgroup_is_root(mc.to))
4730                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4731
4732                 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4733                 css_put_many(&mc.to->css, mc.moved_swap);
4734
4735                 mc.moved_swap = 0;
4736         }
4737         memcg_oom_recover(from);
4738         memcg_oom_recover(to);
4739         wake_up_all(&mc.waitq);
4740 }
4741
4742 static void mem_cgroup_clear_mc(void)
4743 {
4744         struct mm_struct *mm = mc.mm;
4745
4746         /*
4747          * we must clear moving_task before waking up waiters at the end of
4748          * task migration.
4749          */
4750         mc.moving_task = NULL;
4751         __mem_cgroup_clear_mc();
4752         spin_lock(&mc.lock);
4753         mc.from = NULL;
4754         mc.to = NULL;
4755         mc.mm = NULL;
4756         spin_unlock(&mc.lock);
4757
4758         mmput(mm);
4759 }
4760
4761 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4762 {
4763         struct cgroup_subsys_state *css;
4764         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4765         struct mem_cgroup *from;
4766         struct task_struct *leader, *p;
4767         struct mm_struct *mm;
4768         unsigned long move_flags;
4769         int ret = 0;
4770
4771         /* charge immigration isn't supported on the default hierarchy */
4772         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4773                 return 0;
4774
4775         /*
4776          * Multi-process migrations only happen on the default hierarchy
4777          * where charge immigration is not used.  Perform charge
4778          * immigration if @tset contains a leader and whine if there are
4779          * multiple.
4780          */
4781         p = NULL;
4782         cgroup_taskset_for_each_leader(leader, css, tset) {
4783                 WARN_ON_ONCE(p);
4784                 p = leader;
4785                 memcg = mem_cgroup_from_css(css);
4786         }
4787         if (!p)
4788                 return 0;
4789
4790         /*
4791          * We are now commited to this value whatever it is. Changes in this
4792          * tunable will only affect upcoming migrations, not the current one.
4793          * So we need to save it, and keep it going.
4794          */
4795         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4796         if (!move_flags)
4797                 return 0;
4798
4799         from = mem_cgroup_from_task(p);
4800
4801         VM_BUG_ON(from == memcg);
4802
4803         mm = get_task_mm(p);
4804         if (!mm)
4805                 return 0;
4806         /* We move charges only when we move a owner of the mm */
4807         if (mm->owner == p) {
4808                 VM_BUG_ON(mc.from);
4809                 VM_BUG_ON(mc.to);
4810                 VM_BUG_ON(mc.precharge);
4811                 VM_BUG_ON(mc.moved_charge);
4812                 VM_BUG_ON(mc.moved_swap);
4813
4814                 spin_lock(&mc.lock);
4815                 mc.mm = mm;
4816                 mc.from = from;
4817                 mc.to = memcg;
4818                 mc.flags = move_flags;
4819                 spin_unlock(&mc.lock);
4820                 /* We set mc.moving_task later */
4821
4822                 ret = mem_cgroup_precharge_mc(mm);
4823                 if (ret)
4824                         mem_cgroup_clear_mc();
4825         } else {
4826                 mmput(mm);
4827         }
4828         return ret;
4829 }
4830
4831 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4832 {
4833         if (mc.to)
4834                 mem_cgroup_clear_mc();
4835 }
4836
4837 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4838                                 unsigned long addr, unsigned long end,
4839                                 struct mm_walk *walk)
4840 {
4841         int ret = 0;
4842         struct vm_area_struct *vma = walk->vma;
4843         pte_t *pte;
4844         spinlock_t *ptl;
4845         enum mc_target_type target_type;
4846         union mc_target target;
4847         struct page *page;
4848
4849         ptl = pmd_trans_huge_lock(pmd, vma);
4850         if (ptl) {
4851                 if (mc.precharge < HPAGE_PMD_NR) {
4852                         spin_unlock(ptl);
4853                         return 0;
4854                 }
4855                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4856                 if (target_type == MC_TARGET_PAGE) {
4857                         page = target.page;
4858                         if (!isolate_lru_page(page)) {
4859                                 if (!mem_cgroup_move_account(page, true,
4860                                                              mc.from, mc.to)) {
4861                                         mc.precharge -= HPAGE_PMD_NR;
4862                                         mc.moved_charge += HPAGE_PMD_NR;
4863                                 }
4864                                 putback_lru_page(page);
4865                         }
4866                         put_page(page);
4867                 }
4868                 spin_unlock(ptl);
4869                 return 0;
4870         }
4871
4872         if (pmd_trans_unstable(pmd))
4873                 return 0;
4874 retry:
4875         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4876         for (; addr != end; addr += PAGE_SIZE) {
4877                 pte_t ptent = *(pte++);
4878                 swp_entry_t ent;
4879
4880                 if (!mc.precharge)
4881                         break;
4882
4883                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4884                 case MC_TARGET_PAGE:
4885                         page = target.page;
4886                         /*
4887                          * We can have a part of the split pmd here. Moving it
4888                          * can be done but it would be too convoluted so simply
4889                          * ignore such a partial THP and keep it in original
4890                          * memcg. There should be somebody mapping the head.
4891                          */
4892                         if (PageTransCompound(page))
4893                                 goto put;
4894                         if (isolate_lru_page(page))
4895                                 goto put;
4896                         if (!mem_cgroup_move_account(page, false,
4897                                                 mc.from, mc.to)) {
4898                                 mc.precharge--;
4899                                 /* we uncharge from mc.from later. */
4900                                 mc.moved_charge++;
4901                         }
4902                         putback_lru_page(page);
4903 put:                    /* get_mctgt_type() gets the page */
4904                         put_page(page);
4905                         break;
4906                 case MC_TARGET_SWAP:
4907                         ent = target.ent;
4908                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4909                                 mc.precharge--;
4910                                 /* we fixup refcnts and charges later. */
4911                                 mc.moved_swap++;
4912                         }
4913                         break;
4914                 default:
4915                         break;
4916                 }
4917         }
4918         pte_unmap_unlock(pte - 1, ptl);
4919         cond_resched();
4920
4921         if (addr != end) {
4922                 /*
4923                  * We have consumed all precharges we got in can_attach().
4924                  * We try charge one by one, but don't do any additional
4925                  * charges to mc.to if we have failed in charge once in attach()
4926                  * phase.
4927                  */
4928                 ret = mem_cgroup_do_precharge(1);
4929                 if (!ret)
4930                         goto retry;
4931         }
4932
4933         return ret;
4934 }
4935
4936 static void mem_cgroup_move_charge(void)
4937 {
4938         struct mm_walk mem_cgroup_move_charge_walk = {
4939                 .pmd_entry = mem_cgroup_move_charge_pte_range,
4940                 .mm = mc.mm,
4941         };
4942
4943         lru_add_drain_all();
4944         /*
4945          * Signal lock_page_memcg() to take the memcg's move_lock
4946          * while we're moving its pages to another memcg. Then wait
4947          * for already started RCU-only updates to finish.
4948          */
4949         atomic_inc(&mc.from->moving_account);
4950         synchronize_rcu();
4951 retry:
4952         if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4953                 /*
4954                  * Someone who are holding the mmap_sem might be waiting in
4955                  * waitq. So we cancel all extra charges, wake up all waiters,
4956                  * and retry. Because we cancel precharges, we might not be able
4957                  * to move enough charges, but moving charge is a best-effort
4958                  * feature anyway, so it wouldn't be a big problem.
4959                  */
4960                 __mem_cgroup_clear_mc();
4961                 cond_resched();
4962                 goto retry;
4963         }
4964         /*
4965          * When we have consumed all precharges and failed in doing
4966          * additional charge, the page walk just aborts.
4967          */
4968         walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4969         up_read(&mc.mm->mmap_sem);
4970         atomic_dec(&mc.from->moving_account);
4971 }
4972
4973 static void mem_cgroup_move_task(void)
4974 {
4975         if (mc.to) {
4976                 mem_cgroup_move_charge();
4977                 mem_cgroup_clear_mc();
4978         }
4979 }
4980 #else   /* !CONFIG_MMU */
4981 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4982 {
4983         return 0;
4984 }
4985 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4986 {
4987 }
4988 static void mem_cgroup_move_task(void)
4989 {
4990 }
4991 #endif
4992
4993 /*
4994  * Cgroup retains root cgroups across [un]mount cycles making it necessary
4995  * to verify whether we're attached to the default hierarchy on each mount
4996  * attempt.
4997  */
4998 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4999 {
5000         /*
5001          * use_hierarchy is forced on the default hierarchy.  cgroup core
5002          * guarantees that @root doesn't have any children, so turning it
5003          * on for the root memcg is enough.
5004          */
5005         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5006                 root_mem_cgroup->use_hierarchy = true;
5007         else
5008                 root_mem_cgroup->use_hierarchy = false;
5009 }
5010
5011 static u64 memory_current_read(struct cgroup_subsys_state *css,
5012                                struct cftype *cft)
5013 {
5014         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5015
5016         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5017 }
5018
5019 static int memory_low_show(struct seq_file *m, void *v)
5020 {
5021         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5022         unsigned long low = READ_ONCE(memcg->low);
5023
5024         if (low == PAGE_COUNTER_MAX)
5025                 seq_puts(m, "max\n");
5026         else
5027                 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5028
5029         return 0;
5030 }
5031
5032 static ssize_t memory_low_write(struct kernfs_open_file *of,
5033                                 char *buf, size_t nbytes, loff_t off)
5034 {
5035         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5036         unsigned long low;
5037         int err;
5038
5039         buf = strstrip(buf);
5040         err = page_counter_memparse(buf, "max", &low);
5041         if (err)
5042                 return err;
5043
5044         memcg->low = low;
5045
5046         return nbytes;
5047 }
5048
5049 static int memory_high_show(struct seq_file *m, void *v)
5050 {
5051         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5052         unsigned long high = READ_ONCE(memcg->high);
5053
5054         if (high == PAGE_COUNTER_MAX)
5055                 seq_puts(m, "max\n");
5056         else
5057                 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5058
5059         return 0;
5060 }
5061
5062 static ssize_t memory_high_write(struct kernfs_open_file *of,
5063                                  char *buf, size_t nbytes, loff_t off)
5064 {
5065         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5066         unsigned long nr_pages;
5067         unsigned long high;
5068         int err;
5069
5070         buf = strstrip(buf);
5071         err = page_counter_memparse(buf, "max", &high);
5072         if (err)
5073                 return err;
5074
5075         memcg->high = high;
5076
5077         nr_pages = page_counter_read(&memcg->memory);
5078         if (nr_pages > high)
5079                 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5080                                              GFP_KERNEL, true);
5081
5082         memcg_wb_domain_size_changed(memcg);
5083         return nbytes;
5084 }
5085
5086 static int memory_max_show(struct seq_file *m, void *v)
5087 {
5088         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5089         unsigned long max = READ_ONCE(memcg->memory.limit);
5090
5091         if (max == PAGE_COUNTER_MAX)
5092                 seq_puts(m, "max\n");
5093         else
5094                 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5095
5096         return 0;
5097 }
5098
5099 static ssize_t memory_max_write(struct kernfs_open_file *of,
5100                                 char *buf, size_t nbytes, loff_t off)
5101 {
5102         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5103         unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5104         bool drained = false;
5105         unsigned long max;
5106         int err;
5107
5108         buf = strstrip(buf);
5109         err = page_counter_memparse(buf, "max", &max);
5110         if (err)
5111                 return err;
5112
5113         xchg(&memcg->memory.limit, max);
5114
5115         for (;;) {
5116                 unsigned long nr_pages = page_counter_read(&memcg->memory);
5117
5118                 if (nr_pages <= max)
5119                         break;
5120
5121                 if (signal_pending(current)) {
5122                         err = -EINTR;
5123                         break;
5124                 }
5125
5126                 if (!drained) {
5127                         drain_all_stock(memcg);
5128                         drained = true;
5129                         continue;
5130                 }
5131
5132                 if (nr_reclaims) {
5133                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5134                                                           GFP_KERNEL, true))
5135                                 nr_reclaims--;
5136                         continue;
5137                 }
5138
5139                 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5140                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5141                         break;
5142         }
5143
5144         memcg_wb_domain_size_changed(memcg);
5145         return nbytes;
5146 }
5147
5148 static int memory_events_show(struct seq_file *m, void *v)
5149 {
5150         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5151
5152         seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5153         seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5154         seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5155         seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5156
5157         return 0;
5158 }
5159
5160 static int memory_stat_show(struct seq_file *m, void *v)
5161 {
5162         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5163         unsigned long stat[MEMCG_NR_STAT];
5164         unsigned long events[MEMCG_NR_EVENTS];
5165         int i;
5166
5167         /*
5168          * Provide statistics on the state of the memory subsystem as
5169          * well as cumulative event counters that show past behavior.
5170          *
5171          * This list is ordered following a combination of these gradients:
5172          * 1) generic big picture -> specifics and details
5173          * 2) reflecting userspace activity -> reflecting kernel heuristics
5174          *
5175          * Current memory state:
5176          */
5177
5178         tree_stat(memcg, stat);
5179         tree_events(memcg, events);
5180
5181         seq_printf(m, "anon %llu\n",
5182                    (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5183         seq_printf(m, "file %llu\n",
5184                    (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5185         seq_printf(m, "kernel_stack %llu\n",
5186                    (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5187         seq_printf(m, "slab %llu\n",
5188                    (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5189                          stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5190         seq_printf(m, "sock %llu\n",
5191                    (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5192
5193         seq_printf(m, "file_mapped %llu\n",
5194                    (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5195         seq_printf(m, "file_dirty %llu\n",
5196                    (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5197         seq_printf(m, "file_writeback %llu\n",
5198                    (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5199
5200         for (i = 0; i < NR_LRU_LISTS; i++) {
5201                 struct mem_cgroup *mi;
5202                 unsigned long val = 0;
5203
5204                 for_each_mem_cgroup_tree(mi, memcg)
5205                         val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5206                 seq_printf(m, "%s %llu\n",
5207                            mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5208         }
5209
5210         seq_printf(m, "slab_reclaimable %llu\n",
5211                    (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5212         seq_printf(m, "slab_unreclaimable %llu\n",
5213                    (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5214
5215         /* Accumulated memory events */
5216
5217         seq_printf(m, "pgfault %lu\n",
5218                    events[MEM_CGROUP_EVENTS_PGFAULT]);
5219         seq_printf(m, "pgmajfault %lu\n",
5220                    events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5221
5222         return 0;
5223 }
5224
5225 static struct cftype memory_files[] = {
5226         {
5227                 .name = "current",
5228                 .flags = CFTYPE_NOT_ON_ROOT,
5229                 .read_u64 = memory_current_read,
5230         },
5231         {
5232                 .name = "low",
5233                 .flags = CFTYPE_NOT_ON_ROOT,
5234                 .seq_show = memory_low_show,
5235                 .write = memory_low_write,
5236         },
5237         {
5238                 .name = "high",
5239                 .flags = CFTYPE_NOT_ON_ROOT,
5240                 .seq_show = memory_high_show,
5241                 .write = memory_high_write,
5242         },
5243         {
5244                 .name = "max",
5245                 .flags = CFTYPE_NOT_ON_ROOT,
5246                 .seq_show = memory_max_show,
5247                 .write = memory_max_write,
5248         },
5249         {
5250                 .name = "events",
5251                 .flags = CFTYPE_NOT_ON_ROOT,
5252                 .file_offset = offsetof(struct mem_cgroup, events_file),
5253                 .seq_show = memory_events_show,
5254         },
5255         {
5256                 .name = "stat",
5257                 .flags = CFTYPE_NOT_ON_ROOT,
5258                 .seq_show = memory_stat_show,
5259         },
5260         { }     /* terminate */
5261 };
5262
5263 struct cgroup_subsys memory_cgrp_subsys = {
5264         .css_alloc = mem_cgroup_css_alloc,
5265         .css_online = mem_cgroup_css_online,
5266         .css_offline = mem_cgroup_css_offline,
5267         .css_released = mem_cgroup_css_released,
5268         .css_free = mem_cgroup_css_free,
5269         .css_reset = mem_cgroup_css_reset,
5270         .can_attach = mem_cgroup_can_attach,
5271         .cancel_attach = mem_cgroup_cancel_attach,
5272         .post_attach = mem_cgroup_move_task,
5273         .bind = mem_cgroup_bind,
5274         .dfl_cftypes = memory_files,
5275         .legacy_cftypes = mem_cgroup_legacy_files,
5276         .early_init = 0,
5277 };
5278
5279 /**
5280  * mem_cgroup_low - check if memory consumption is below the normal range
5281  * @root: the highest ancestor to consider
5282  * @memcg: the memory cgroup to check
5283  *
5284  * Returns %true if memory consumption of @memcg, and that of all
5285  * configurable ancestors up to @root, is below the normal range.
5286  */
5287 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5288 {
5289         if (mem_cgroup_disabled())
5290                 return false;
5291
5292         /*
5293          * The toplevel group doesn't have a configurable range, so
5294          * it's never low when looked at directly, and it is not
5295          * considered an ancestor when assessing the hierarchy.
5296          */
5297
5298         if (memcg == root_mem_cgroup)
5299                 return false;
5300
5301         if (page_counter_read(&memcg->memory) >= memcg->low)
5302                 return false;
5303
5304         while (memcg != root) {
5305                 memcg = parent_mem_cgroup(memcg);
5306
5307                 if (memcg == root_mem_cgroup)
5308                         break;
5309
5310                 if (page_counter_read(&memcg->memory) >= memcg->low)
5311                         return false;
5312         }
5313         return true;
5314 }
5315
5316 /**
5317  * mem_cgroup_try_charge - try charging a page
5318  * @page: page to charge
5319  * @mm: mm context of the victim
5320  * @gfp_mask: reclaim mode
5321  * @memcgp: charged memcg return
5322  * @compound: charge the page as compound or small page
5323  *
5324  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5325  * pages according to @gfp_mask if necessary.
5326  *
5327  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5328  * Otherwise, an error code is returned.
5329  *
5330  * After page->mapping has been set up, the caller must finalize the
5331  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5332  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5333  */
5334 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5335                           gfp_t gfp_mask, struct mem_cgroup **memcgp,
5336                           bool compound)
5337 {
5338         struct mem_cgroup *memcg = NULL;
5339         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5340         int ret = 0;
5341
5342         if (mem_cgroup_disabled())
5343                 goto out;
5344
5345         if (PageSwapCache(page)) {
5346                 /*
5347                  * Every swap fault against a single page tries to charge the
5348                  * page, bail as early as possible.  shmem_unuse() encounters
5349                  * already charged pages, too.  The USED bit is protected by
5350                  * the page lock, which serializes swap cache removal, which
5351                  * in turn serializes uncharging.
5352                  */
5353                 VM_BUG_ON_PAGE(!PageLocked(page), page);
5354                 if (page->mem_cgroup)
5355                         goto out;
5356
5357                 if (do_swap_account) {
5358                         swp_entry_t ent = { .val = page_private(page), };
5359                         unsigned short id = lookup_swap_cgroup_id(ent);
5360
5361                         rcu_read_lock();
5362                         memcg = mem_cgroup_from_id(id);
5363                         if (memcg && !css_tryget_online(&memcg->css))
5364                                 memcg = NULL;
5365                         rcu_read_unlock();
5366                 }
5367         }
5368
5369         if (!memcg)
5370                 memcg = get_mem_cgroup_from_mm(mm);
5371
5372         ret = try_charge(memcg, gfp_mask, nr_pages);
5373
5374         css_put(&memcg->css);
5375 out:
5376         *memcgp = memcg;
5377         return ret;
5378 }
5379
5380 /**
5381  * mem_cgroup_commit_charge - commit a page charge
5382  * @page: page to charge
5383  * @memcg: memcg to charge the page to
5384  * @lrucare: page might be on LRU already
5385  * @compound: charge the page as compound or small page
5386  *
5387  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5388  * after page->mapping has been set up.  This must happen atomically
5389  * as part of the page instantiation, i.e. under the page table lock
5390  * for anonymous pages, under the page lock for page and swap cache.
5391  *
5392  * In addition, the page must not be on the LRU during the commit, to
5393  * prevent racing with task migration.  If it might be, use @lrucare.
5394  *
5395  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5396  */
5397 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5398                               bool lrucare, bool compound)
5399 {
5400         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5401
5402         VM_BUG_ON_PAGE(!page->mapping, page);
5403         VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5404
5405         if (mem_cgroup_disabled())
5406                 return;
5407         /*
5408          * Swap faults will attempt to charge the same page multiple
5409          * times.  But reuse_swap_page() might have removed the page
5410          * from swapcache already, so we can't check PageSwapCache().
5411          */
5412         if (!memcg)
5413                 return;
5414
5415         commit_charge(page, memcg, lrucare);
5416
5417         local_irq_disable();
5418         mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5419         memcg_check_events(memcg, page);
5420         local_irq_enable();
5421
5422         if (do_memsw_account() && PageSwapCache(page)) {
5423                 swp_entry_t entry = { .val = page_private(page) };
5424                 /*
5425                  * The swap entry might not get freed for a long time,
5426                  * let's not wait for it.  The page already received a
5427                  * memory+swap charge, drop the swap entry duplicate.
5428                  */
5429                 mem_cgroup_uncharge_swap(entry);
5430         }
5431 }
5432
5433 /**
5434  * mem_cgroup_cancel_charge - cancel a page charge
5435  * @page: page to charge
5436  * @memcg: memcg to charge the page to
5437  * @compound: charge the page as compound or small page
5438  *
5439  * Cancel a charge transaction started by mem_cgroup_try_charge().
5440  */
5441 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5442                 bool compound)
5443 {
5444         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5445
5446         if (mem_cgroup_disabled())
5447                 return;
5448         /*
5449          * Swap faults will attempt to charge the same page multiple
5450          * times.  But reuse_swap_page() might have removed the page
5451          * from swapcache already, so we can't check PageSwapCache().
5452          */
5453         if (!memcg)
5454                 return;
5455
5456         cancel_charge(memcg, nr_pages);
5457 }
5458
5459 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5460                            unsigned long nr_anon, unsigned long nr_file,
5461                            unsigned long nr_huge, unsigned long nr_kmem,
5462                            struct page *dummy_page)
5463 {
5464         unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5465         unsigned long flags;
5466
5467         if (!mem_cgroup_is_root(memcg)) {
5468                 page_counter_uncharge(&memcg->memory, nr_pages);
5469                 if (do_memsw_account())
5470                         page_counter_uncharge(&memcg->memsw, nr_pages);
5471                 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5472                         page_counter_uncharge(&memcg->kmem, nr_kmem);
5473                 memcg_oom_recover(memcg);
5474         }
5475
5476         local_irq_save(flags);
5477         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5478         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5479         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5480         __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5481         __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5482         memcg_check_events(memcg, dummy_page);
5483         local_irq_restore(flags);
5484
5485         if (!mem_cgroup_is_root(memcg))
5486                 css_put_many(&memcg->css, nr_pages);
5487 }
5488
5489 static void uncharge_list(struct list_head *page_list)
5490 {
5491         struct mem_cgroup *memcg = NULL;
5492         unsigned long nr_anon = 0;
5493         unsigned long nr_file = 0;
5494         unsigned long nr_huge = 0;
5495         unsigned long nr_kmem = 0;
5496         unsigned long pgpgout = 0;
5497         struct list_head *next;
5498         struct page *page;
5499
5500         /*
5501          * Note that the list can be a single page->lru; hence the
5502          * do-while loop instead of a simple list_for_each_entry().
5503          */
5504         next = page_list->next;
5505         do {
5506                 page = list_entry(next, struct page, lru);
5507                 next = page->lru.next;
5508
5509                 VM_BUG_ON_PAGE(PageLRU(page), page);
5510                 VM_BUG_ON_PAGE(page_count(page), page);
5511
5512                 if (!page->mem_cgroup)
5513                         continue;
5514
5515                 /*
5516                  * Nobody should be changing or seriously looking at
5517                  * page->mem_cgroup at this point, we have fully
5518                  * exclusive access to the page.
5519                  */
5520
5521                 if (memcg != page->mem_cgroup) {
5522                         if (memcg) {
5523                                 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5524                                                nr_huge, nr_kmem, page);
5525                                 pgpgout = nr_anon = nr_file =
5526                                         nr_huge = nr_kmem = 0;
5527                         }
5528                         memcg = page->mem_cgroup;
5529                 }
5530
5531                 if (!PageKmemcg(page)) {
5532                         unsigned int nr_pages = 1;
5533
5534                         if (PageTransHuge(page)) {
5535                                 nr_pages <<= compound_order(page);
5536                                 nr_huge += nr_pages;
5537                         }
5538                         if (PageAnon(page))
5539                                 nr_anon += nr_pages;
5540                         else
5541                                 nr_file += nr_pages;
5542                         pgpgout++;
5543                 } else {
5544                         nr_kmem += 1 << compound_order(page);
5545                         __ClearPageKmemcg(page);
5546                 }
5547
5548                 page->mem_cgroup = NULL;
5549         } while (next != page_list);
5550
5551         if (memcg)
5552                 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5553                                nr_huge, nr_kmem, page);
5554 }
5555
5556 /**
5557  * mem_cgroup_uncharge - uncharge a page
5558  * @page: page to uncharge
5559  *
5560  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5561  * mem_cgroup_commit_charge().
5562  */
5563 void mem_cgroup_uncharge(struct page *page)
5564 {
5565         if (mem_cgroup_disabled())
5566                 return;
5567
5568         /* Don't touch page->lru of any random page, pre-check: */
5569         if (!page->mem_cgroup)
5570                 return;
5571
5572         INIT_LIST_HEAD(&page->lru);
5573         uncharge_list(&page->lru);
5574 }
5575
5576 /**
5577  * mem_cgroup_uncharge_list - uncharge a list of page
5578  * @page_list: list of pages to uncharge
5579  *
5580  * Uncharge a list of pages previously charged with
5581  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5582  */
5583 void mem_cgroup_uncharge_list(struct list_head *page_list)
5584 {
5585         if (mem_cgroup_disabled())
5586                 return;
5587
5588         if (!list_empty(page_list))
5589                 uncharge_list(page_list);
5590 }
5591
5592 /**
5593  * mem_cgroup_migrate - charge a page's replacement
5594  * @oldpage: currently circulating page
5595  * @newpage: replacement page
5596  *
5597  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5598  * be uncharged upon free.
5599  *
5600  * Both pages must be locked, @newpage->mapping must be set up.
5601  */
5602 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5603 {
5604         struct mem_cgroup *memcg;
5605         unsigned int nr_pages;
5606         bool compound;
5607         unsigned long flags;
5608
5609         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5610         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5611         VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5612         VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5613                        newpage);
5614
5615         if (mem_cgroup_disabled())
5616                 return;
5617
5618         /* Page cache replacement: new page already charged? */
5619         if (newpage->mem_cgroup)
5620                 return;
5621
5622         /* Swapcache readahead pages can get replaced before being charged */
5623         memcg = oldpage->mem_cgroup;
5624         if (!memcg)
5625                 return;
5626
5627         /* Force-charge the new page. The old one will be freed soon */
5628         compound = PageTransHuge(newpage);
5629         nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5630
5631         page_counter_charge(&memcg->memory, nr_pages);
5632         if (do_memsw_account())
5633                 page_counter_charge(&memcg->memsw, nr_pages);
5634         css_get_many(&memcg->css, nr_pages);
5635
5636         commit_charge(newpage, memcg, false);
5637
5638         local_irq_save(flags);
5639         mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5640         memcg_check_events(memcg, newpage);
5641         local_irq_restore(flags);
5642 }
5643
5644 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5645 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5646
5647 void sock_update_memcg(struct sock *sk)
5648 {
5649         struct mem_cgroup *memcg;
5650
5651         /* Socket cloning can throw us here with sk_cgrp already
5652          * filled. It won't however, necessarily happen from
5653          * process context. So the test for root memcg given
5654          * the current task's memcg won't help us in this case.
5655          *
5656          * Respecting the original socket's memcg is a better
5657          * decision in this case.
5658          */
5659         if (sk->sk_memcg) {
5660                 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5661                 css_get(&sk->sk_memcg->css);
5662                 return;
5663         }
5664
5665         rcu_read_lock();
5666         memcg = mem_cgroup_from_task(current);
5667         if (memcg == root_mem_cgroup)
5668                 goto out;
5669         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5670                 goto out;
5671         if (css_tryget_online(&memcg->css))
5672                 sk->sk_memcg = memcg;
5673 out:
5674         rcu_read_unlock();
5675 }
5676 EXPORT_SYMBOL(sock_update_memcg);
5677
5678 void sock_release_memcg(struct sock *sk)
5679 {
5680         WARN_ON(!sk->sk_memcg);
5681         css_put(&sk->sk_memcg->css);
5682 }
5683
5684 /**
5685  * mem_cgroup_charge_skmem - charge socket memory
5686  * @memcg: memcg to charge
5687  * @nr_pages: number of pages to charge
5688  *
5689  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5690  * @memcg's configured limit, %false if the charge had to be forced.
5691  */
5692 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5693 {
5694         gfp_t gfp_mask = GFP_KERNEL;
5695
5696         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5697                 struct page_counter *fail;
5698
5699                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5700                         memcg->tcpmem_pressure = 0;
5701                         return true;
5702                 }
5703                 page_counter_charge(&memcg->tcpmem, nr_pages);
5704                 memcg->tcpmem_pressure = 1;
5705                 return false;
5706         }
5707
5708         /* Don't block in the packet receive path */
5709         if (in_softirq())
5710                 gfp_mask = GFP_NOWAIT;
5711
5712         this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5713
5714         if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5715                 return true;
5716
5717         try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5718         return false;
5719 }
5720
5721 /**
5722  * mem_cgroup_uncharge_skmem - uncharge socket memory
5723  * @memcg - memcg to uncharge
5724  * @nr_pages - number of pages to uncharge
5725  */
5726 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5727 {
5728         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5729                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5730                 return;
5731         }
5732
5733         this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5734
5735         page_counter_uncharge(&memcg->memory, nr_pages);
5736         css_put_many(&memcg->css, nr_pages);
5737 }
5738
5739 static int __init cgroup_memory(char *s)
5740 {
5741         char *token;
5742
5743         while ((token = strsep(&s, ",")) != NULL) {
5744                 if (!*token)
5745                         continue;
5746                 if (!strcmp(token, "nosocket"))
5747                         cgroup_memory_nosocket = true;
5748                 if (!strcmp(token, "nokmem"))
5749                         cgroup_memory_nokmem = true;
5750         }
5751         return 0;
5752 }
5753 __setup("cgroup.memory=", cgroup_memory);
5754
5755 /*
5756  * subsys_initcall() for memory controller.
5757  *
5758  * Some parts like hotcpu_notifier() have to be initialized from this context
5759  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5760  * everything that doesn't depend on a specific mem_cgroup structure should
5761  * be initialized from here.
5762  */
5763 static int __init mem_cgroup_init(void)
5764 {
5765         int cpu, node;
5766
5767         hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5768
5769         for_each_possible_cpu(cpu)
5770                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5771                           drain_local_stock);
5772
5773         for_each_node(node) {
5774                 struct mem_cgroup_tree_per_node *rtpn;
5775
5776                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5777                                     node_online(node) ? node : NUMA_NO_NODE);
5778
5779                 rtpn->rb_root = RB_ROOT;
5780                 spin_lock_init(&rtpn->lock);
5781                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5782         }
5783
5784         return 0;
5785 }
5786 subsys_initcall(mem_cgroup_init);
5787
5788 #ifdef CONFIG_MEMCG_SWAP
5789 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5790 {
5791         while (!atomic_inc_not_zero(&memcg->id.ref)) {
5792                 /*
5793                  * The root cgroup cannot be destroyed, so it's refcount must
5794                  * always be >= 1.
5795                  */
5796                 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5797                         VM_BUG_ON(1);
5798                         break;
5799                 }
5800                 memcg = parent_mem_cgroup(memcg);
5801                 if (!memcg)
5802                         memcg = root_mem_cgroup;
5803         }
5804         return memcg;
5805 }
5806
5807 /**
5808  * mem_cgroup_swapout - transfer a memsw charge to swap
5809  * @page: page whose memsw charge to transfer
5810  * @entry: swap entry to move the charge to
5811  *
5812  * Transfer the memsw charge of @page to @entry.
5813  */
5814 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5815 {
5816         struct mem_cgroup *memcg, *swap_memcg;
5817         unsigned short oldid;
5818
5819         VM_BUG_ON_PAGE(PageLRU(page), page);
5820         VM_BUG_ON_PAGE(page_count(page), page);
5821
5822         if (!do_memsw_account())
5823                 return;
5824
5825         memcg = page->mem_cgroup;
5826
5827         /* Readahead page, never charged */
5828         if (!memcg)
5829                 return;
5830
5831         /*
5832          * In case the memcg owning these pages has been offlined and doesn't
5833          * have an ID allocated to it anymore, charge the closest online
5834          * ancestor for the swap instead and transfer the memory+swap charge.
5835          */
5836         swap_memcg = mem_cgroup_id_get_online(memcg);
5837         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5838         VM_BUG_ON_PAGE(oldid, page);
5839         mem_cgroup_swap_statistics(swap_memcg, true);
5840
5841         page->mem_cgroup = NULL;
5842
5843         if (!mem_cgroup_is_root(memcg))
5844                 page_counter_uncharge(&memcg->memory, 1);
5845
5846         if (memcg != swap_memcg) {
5847                 if (!mem_cgroup_is_root(swap_memcg))
5848                         page_counter_charge(&swap_memcg->memsw, 1);
5849                 page_counter_uncharge(&memcg->memsw, 1);
5850         }
5851
5852         /*
5853          * Interrupts should be disabled here because the caller holds the
5854          * mapping->tree_lock lock which is taken with interrupts-off. It is
5855          * important here to have the interrupts disabled because it is the
5856          * only synchronisation we have for udpating the per-CPU variables.
5857          */
5858         VM_BUG_ON(!irqs_disabled());
5859         mem_cgroup_charge_statistics(memcg, page, false, -1);
5860         memcg_check_events(memcg, page);
5861
5862         if (!mem_cgroup_is_root(memcg))
5863                 css_put(&memcg->css);
5864 }
5865
5866 /*
5867  * mem_cgroup_try_charge_swap - try charging a swap entry
5868  * @page: page being added to swap
5869  * @entry: swap entry to charge
5870  *
5871  * Try to charge @entry to the memcg that @page belongs to.
5872  *
5873  * Returns 0 on success, -ENOMEM on failure.
5874  */
5875 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5876 {
5877         struct mem_cgroup *memcg;
5878         struct page_counter *counter;
5879         unsigned short oldid;
5880
5881         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5882                 return 0;
5883
5884         memcg = page->mem_cgroup;
5885
5886         /* Readahead page, never charged */
5887         if (!memcg)
5888                 return 0;
5889
5890         memcg = mem_cgroup_id_get_online(memcg);
5891
5892         if (!mem_cgroup_is_root(memcg) &&
5893             !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5894                 mem_cgroup_id_put(memcg);
5895                 return -ENOMEM;
5896         }
5897
5898         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5899         VM_BUG_ON_PAGE(oldid, page);
5900         mem_cgroup_swap_statistics(memcg, true);
5901
5902         return 0;
5903 }
5904
5905 /**
5906  * mem_cgroup_uncharge_swap - uncharge a swap entry
5907  * @entry: swap entry to uncharge
5908  *
5909  * Drop the swap charge associated with @entry.
5910  */
5911 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5912 {
5913         struct mem_cgroup *memcg;
5914         unsigned short id;
5915
5916         if (!do_swap_account)
5917                 return;
5918
5919         id = swap_cgroup_record(entry, 0);
5920         rcu_read_lock();
5921         memcg = mem_cgroup_from_id(id);
5922         if (memcg) {
5923                 if (!mem_cgroup_is_root(memcg)) {
5924                         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5925                                 page_counter_uncharge(&memcg->swap, 1);
5926                         else
5927                                 page_counter_uncharge(&memcg->memsw, 1);
5928                 }
5929                 mem_cgroup_swap_statistics(memcg, false);
5930                 mem_cgroup_id_put(memcg);
5931         }
5932         rcu_read_unlock();
5933 }
5934
5935 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5936 {
5937         long nr_swap_pages = get_nr_swap_pages();
5938
5939         if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5940                 return nr_swap_pages;
5941         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5942                 nr_swap_pages = min_t(long, nr_swap_pages,
5943                                       READ_ONCE(memcg->swap.limit) -
5944                                       page_counter_read(&memcg->swap));
5945         return nr_swap_pages;
5946 }
5947
5948 bool mem_cgroup_swap_full(struct page *page)
5949 {
5950         struct mem_cgroup *memcg;
5951
5952         VM_BUG_ON_PAGE(!PageLocked(page), page);
5953
5954         if (vm_swap_full())
5955                 return true;
5956         if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5957                 return false;
5958
5959         memcg = page->mem_cgroup;
5960         if (!memcg)
5961                 return false;
5962
5963         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5964                 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5965                         return true;
5966
5967         return false;
5968 }
5969
5970 /* for remember boot option*/
5971 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5972 static int really_do_swap_account __initdata = 1;
5973 #else
5974 static int really_do_swap_account __initdata;
5975 #endif
5976
5977 static int __init enable_swap_account(char *s)
5978 {
5979         if (!strcmp(s, "1"))
5980                 really_do_swap_account = 1;
5981         else if (!strcmp(s, "0"))
5982                 really_do_swap_account = 0;
5983         return 1;
5984 }
5985 __setup("swapaccount=", enable_swap_account);
5986
5987 static u64 swap_current_read(struct cgroup_subsys_state *css,
5988                              struct cftype *cft)
5989 {
5990         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5991
5992         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5993 }
5994
5995 static int swap_max_show(struct seq_file *m, void *v)
5996 {
5997         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5998         unsigned long max = READ_ONCE(memcg->swap.limit);
5999
6000         if (max == PAGE_COUNTER_MAX)
6001                 seq_puts(m, "max\n");
6002         else
6003                 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6004
6005         return 0;
6006 }
6007
6008 static ssize_t swap_max_write(struct kernfs_open_file *of,
6009                               char *buf, size_t nbytes, loff_t off)
6010 {
6011         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6012         unsigned long max;
6013         int err;
6014
6015         buf = strstrip(buf);
6016         err = page_counter_memparse(buf, "max", &max);
6017         if (err)
6018                 return err;
6019
6020         mutex_lock(&memcg_limit_mutex);
6021         err = page_counter_limit(&memcg->swap, max);
6022         mutex_unlock(&memcg_limit_mutex);
6023         if (err)
6024                 return err;
6025
6026         return nbytes;
6027 }
6028
6029 static struct cftype swap_files[] = {
6030         {
6031                 .name = "swap.current",
6032                 .flags = CFTYPE_NOT_ON_ROOT,
6033                 .read_u64 = swap_current_read,
6034         },
6035         {
6036                 .name = "swap.max",
6037                 .flags = CFTYPE_NOT_ON_ROOT,
6038                 .seq_show = swap_max_show,
6039                 .write = swap_max_write,
6040         },
6041         { }     /* terminate */
6042 };
6043
6044 static struct cftype memsw_cgroup_files[] = {
6045         {
6046                 .name = "memsw.usage_in_bytes",
6047                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6048                 .read_u64 = mem_cgroup_read_u64,
6049         },
6050         {
6051                 .name = "memsw.max_usage_in_bytes",
6052                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6053                 .write = mem_cgroup_reset,
6054                 .read_u64 = mem_cgroup_read_u64,
6055         },
6056         {
6057                 .name = "memsw.limit_in_bytes",
6058                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6059                 .write = mem_cgroup_write,
6060                 .read_u64 = mem_cgroup_read_u64,
6061         },
6062         {
6063                 .name = "memsw.failcnt",
6064                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6065                 .write = mem_cgroup_reset,
6066                 .read_u64 = mem_cgroup_read_u64,
6067         },
6068         { },    /* terminate */
6069 };
6070
6071 static int __init mem_cgroup_swap_init(void)
6072 {
6073         if (!mem_cgroup_disabled() && really_do_swap_account) {
6074                 do_swap_account = 1;
6075                 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6076                                                swap_files));
6077                 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6078                                                   memsw_cgroup_files));
6079         }
6080         return 0;
6081 }
6082 subsys_initcall(mem_cgroup_swap_init);
6083
6084 #endif /* CONFIG_MEMCG_SWAP */