Revert "crypto: user - no parsing of CRYPTO_MSG_GETALG"
[cascardo/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES      5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account         0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98         return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102         "cache",
103         "rss",
104         "rss_huge",
105         "mapped_file",
106         "dirty",
107         "writeback",
108         "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112         "pgpgin",
113         "pgpgout",
114         "pgfault",
115         "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119         "inactive_anon",
120         "active_anon",
121         "inactive_file",
122         "active_file",
123         "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET  1024
129
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134
135 struct mem_cgroup_tree_per_zone {
136         struct rb_root rb_root;
137         spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152         struct list_head list;
153         struct eventfd_ctx *eventfd;
154 };
155
156 /*
157  * cgroup_event represents events which userspace want to receive.
158  */
159 struct mem_cgroup_event {
160         /*
161          * memcg which the event belongs to.
162          */
163         struct mem_cgroup *memcg;
164         /*
165          * eventfd to signal userspace about the event.
166          */
167         struct eventfd_ctx *eventfd;
168         /*
169          * Each of these stored in a list by the cgroup.
170          */
171         struct list_head list;
172         /*
173          * register_event() callback will be used to add new userspace
174          * waiter for changes related to this event.  Use eventfd_signal()
175          * on eventfd to send notification to userspace.
176          */
177         int (*register_event)(struct mem_cgroup *memcg,
178                               struct eventfd_ctx *eventfd, const char *args);
179         /*
180          * unregister_event() callback will be called when userspace closes
181          * the eventfd or on cgroup removing.  This callback must be set,
182          * if you want provide notification functionality.
183          */
184         void (*unregister_event)(struct mem_cgroup *memcg,
185                                  struct eventfd_ctx *eventfd);
186         /*
187          * All fields below needed to unregister event when
188          * userspace closes eventfd.
189          */
190         poll_table pt;
191         wait_queue_head_t *wqh;
192         wait_queue_t wait;
193         struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201  * Types of charges to be moved.
202  */
203 #define MOVE_ANON       0x1U
204 #define MOVE_FILE       0x2U
205 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209         spinlock_t        lock; /* for from, to */
210         struct mm_struct  *mm;
211         struct mem_cgroup *from;
212         struct mem_cgroup *to;
213         unsigned long flags;
214         unsigned long precharge;
215         unsigned long moved_charge;
216         unsigned long moved_swap;
217         struct task_struct *moving_task;        /* a task moving charges */
218         wait_queue_head_t waitq;                /* a waitq for other context */
219 } mc = {
220         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222 };
223
224 /*
225  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226  * limit reclaim to prevent infinite loops, if they ever occur.
227  */
228 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
229 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
230
231 enum charge_type {
232         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233         MEM_CGROUP_CHARGE_TYPE_ANON,
234         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
235         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
236         NR_CHARGE_TYPE,
237 };
238
239 /* for encoding cft->private value on file */
240 enum res_type {
241         _MEM,
242         _MEMSWAP,
243         _OOM_TYPE,
244         _KMEM,
245         _TCP,
246 };
247
248 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
250 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
251 /* Used for OOM nofiier */
252 #define OOM_CONTROL             (0)
253
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256 {
257         if (!memcg)
258                 memcg = root_mem_cgroup;
259         return &memcg->vmpressure;
260 }
261
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263 {
264         return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265 }
266
267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268 {
269         return (memcg == root_mem_cgroup);
270 }
271
272 #ifndef CONFIG_SLOB
273 /*
274  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275  * The main reason for not using cgroup id for this:
276  *  this works better in sparse environments, where we have a lot of memcgs,
277  *  but only a few kmem-limited. Or also, if we have, for instance, 200
278  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
279  *  200 entry array for that.
280  *
281  * The current size of the caches array is stored in memcg_nr_cache_ids. It
282  * will double each time we have to increase it.
283  */
284 static DEFINE_IDA(memcg_cache_ida);
285 int memcg_nr_cache_ids;
286
287 /* Protects memcg_nr_cache_ids */
288 static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290 void memcg_get_cache_ids(void)
291 {
292         down_read(&memcg_cache_ids_sem);
293 }
294
295 void memcg_put_cache_ids(void)
296 {
297         up_read(&memcg_cache_ids_sem);
298 }
299
300 /*
301  * MIN_SIZE is different than 1, because we would like to avoid going through
302  * the alloc/free process all the time. In a small machine, 4 kmem-limited
303  * cgroups is a reasonable guess. In the future, it could be a parameter or
304  * tunable, but that is strictly not necessary.
305  *
306  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307  * this constant directly from cgroup, but it is understandable that this is
308  * better kept as an internal representation in cgroup.c. In any case, the
309  * cgrp_id space is not getting any smaller, and we don't have to necessarily
310  * increase ours as well if it increases.
311  */
312 #define MEMCG_CACHES_MIN_SIZE 4
313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314
315 /*
316  * A lot of the calls to the cache allocation functions are expected to be
317  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318  * conditional to this static branch, we'll have to allow modules that does
319  * kmem_cache_alloc and the such to see this symbol as well
320  */
321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322 EXPORT_SYMBOL(memcg_kmem_enabled_key);
323
324 #endif /* !CONFIG_SLOB */
325
326 static struct mem_cgroup_per_zone *
327 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328 {
329         int nid = zone_to_nid(zone);
330         int zid = zone_idx(zone);
331
332         return &memcg->nodeinfo[nid]->zoneinfo[zid];
333 }
334
335 /**
336  * mem_cgroup_css_from_page - css of the memcg associated with a page
337  * @page: page of interest
338  *
339  * If memcg is bound to the default hierarchy, css of the memcg associated
340  * with @page is returned.  The returned css remains associated with @page
341  * until it is released.
342  *
343  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344  * is returned.
345  */
346 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347 {
348         struct mem_cgroup *memcg;
349
350         memcg = page->mem_cgroup;
351
352         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353                 memcg = root_mem_cgroup;
354
355         return &memcg->css;
356 }
357
358 /**
359  * page_cgroup_ino - return inode number of the memcg a page is charged to
360  * @page: the page
361  *
362  * Look up the closest online ancestor of the memory cgroup @page is charged to
363  * and return its inode number or 0 if @page is not charged to any cgroup. It
364  * is safe to call this function without holding a reference to @page.
365  *
366  * Note, this function is inherently racy, because there is nothing to prevent
367  * the cgroup inode from getting torn down and potentially reallocated a moment
368  * after page_cgroup_ino() returns, so it only should be used by callers that
369  * do not care (such as procfs interfaces).
370  */
371 ino_t page_cgroup_ino(struct page *page)
372 {
373         struct mem_cgroup *memcg;
374         unsigned long ino = 0;
375
376         rcu_read_lock();
377         memcg = READ_ONCE(page->mem_cgroup);
378         while (memcg && !(memcg->css.flags & CSS_ONLINE))
379                 memcg = parent_mem_cgroup(memcg);
380         if (memcg)
381                 ino = cgroup_ino(memcg->css.cgroup);
382         rcu_read_unlock();
383         return ino;
384 }
385
386 static struct mem_cgroup_per_zone *
387 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388 {
389         int nid = page_to_nid(page);
390         int zid = page_zonenum(page);
391
392         return &memcg->nodeinfo[nid]->zoneinfo[zid];
393 }
394
395 static struct mem_cgroup_tree_per_zone *
396 soft_limit_tree_node_zone(int nid, int zid)
397 {
398         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400
401 static struct mem_cgroup_tree_per_zone *
402 soft_limit_tree_from_page(struct page *page)
403 {
404         int nid = page_to_nid(page);
405         int zid = page_zonenum(page);
406
407         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408 }
409
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411                                          struct mem_cgroup_tree_per_zone *mctz,
412                                          unsigned long new_usage_in_excess)
413 {
414         struct rb_node **p = &mctz->rb_root.rb_node;
415         struct rb_node *parent = NULL;
416         struct mem_cgroup_per_zone *mz_node;
417
418         if (mz->on_tree)
419                 return;
420
421         mz->usage_in_excess = new_usage_in_excess;
422         if (!mz->usage_in_excess)
423                 return;
424         while (*p) {
425                 parent = *p;
426                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427                                         tree_node);
428                 if (mz->usage_in_excess < mz_node->usage_in_excess)
429                         p = &(*p)->rb_left;
430                 /*
431                  * We can't avoid mem cgroups that are over their soft
432                  * limit by the same amount
433                  */
434                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435                         p = &(*p)->rb_right;
436         }
437         rb_link_node(&mz->tree_node, parent, p);
438         rb_insert_color(&mz->tree_node, &mctz->rb_root);
439         mz->on_tree = true;
440 }
441
442 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443                                          struct mem_cgroup_tree_per_zone *mctz)
444 {
445         if (!mz->on_tree)
446                 return;
447         rb_erase(&mz->tree_node, &mctz->rb_root);
448         mz->on_tree = false;
449 }
450
451 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452                                        struct mem_cgroup_tree_per_zone *mctz)
453 {
454         unsigned long flags;
455
456         spin_lock_irqsave(&mctz->lock, flags);
457         __mem_cgroup_remove_exceeded(mz, mctz);
458         spin_unlock_irqrestore(&mctz->lock, flags);
459 }
460
461 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462 {
463         unsigned long nr_pages = page_counter_read(&memcg->memory);
464         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465         unsigned long excess = 0;
466
467         if (nr_pages > soft_limit)
468                 excess = nr_pages - soft_limit;
469
470         return excess;
471 }
472
473 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474 {
475         unsigned long excess;
476         struct mem_cgroup_per_zone *mz;
477         struct mem_cgroup_tree_per_zone *mctz;
478
479         mctz = soft_limit_tree_from_page(page);
480         /*
481          * Necessary to update all ancestors when hierarchy is used.
482          * because their event counter is not touched.
483          */
484         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485                 mz = mem_cgroup_page_zoneinfo(memcg, page);
486                 excess = soft_limit_excess(memcg);
487                 /*
488                  * We have to update the tree if mz is on RB-tree or
489                  * mem is over its softlimit.
490                  */
491                 if (excess || mz->on_tree) {
492                         unsigned long flags;
493
494                         spin_lock_irqsave(&mctz->lock, flags);
495                         /* if on-tree, remove it */
496                         if (mz->on_tree)
497                                 __mem_cgroup_remove_exceeded(mz, mctz);
498                         /*
499                          * Insert again. mz->usage_in_excess will be updated.
500                          * If excess is 0, no tree ops.
501                          */
502                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
503                         spin_unlock_irqrestore(&mctz->lock, flags);
504                 }
505         }
506 }
507
508 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509 {
510         struct mem_cgroup_tree_per_zone *mctz;
511         struct mem_cgroup_per_zone *mz;
512         int nid, zid;
513
514         for_each_node(nid) {
515                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516                         mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517                         mctz = soft_limit_tree_node_zone(nid, zid);
518                         mem_cgroup_remove_exceeded(mz, mctz);
519                 }
520         }
521 }
522
523 static struct mem_cgroup_per_zone *
524 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525 {
526         struct rb_node *rightmost = NULL;
527         struct mem_cgroup_per_zone *mz;
528
529 retry:
530         mz = NULL;
531         rightmost = rb_last(&mctz->rb_root);
532         if (!rightmost)
533                 goto done;              /* Nothing to reclaim from */
534
535         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536         /*
537          * Remove the node now but someone else can add it back,
538          * we will to add it back at the end of reclaim to its correct
539          * position in the tree.
540          */
541         __mem_cgroup_remove_exceeded(mz, mctz);
542         if (!soft_limit_excess(mz->memcg) ||
543             !css_tryget_online(&mz->memcg->css))
544                 goto retry;
545 done:
546         return mz;
547 }
548
549 static struct mem_cgroup_per_zone *
550 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551 {
552         struct mem_cgroup_per_zone *mz;
553
554         spin_lock_irq(&mctz->lock);
555         mz = __mem_cgroup_largest_soft_limit_node(mctz);
556         spin_unlock_irq(&mctz->lock);
557         return mz;
558 }
559
560 /*
561  * Return page count for single (non recursive) @memcg.
562  *
563  * Implementation Note: reading percpu statistics for memcg.
564  *
565  * Both of vmstat[] and percpu_counter has threshold and do periodic
566  * synchronization to implement "quick" read. There are trade-off between
567  * reading cost and precision of value. Then, we may have a chance to implement
568  * a periodic synchronization of counter in memcg's counter.
569  *
570  * But this _read() function is used for user interface now. The user accounts
571  * memory usage by memory cgroup and he _always_ requires exact value because
572  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573  * have to visit all online cpus and make sum. So, for now, unnecessary
574  * synchronization is not implemented. (just implemented for cpu hotplug)
575  *
576  * If there are kernel internal actions which can make use of some not-exact
577  * value, and reading all cpu value can be performance bottleneck in some
578  * common workload, threshold and synchronization as vmstat[] should be
579  * implemented.
580  */
581 static unsigned long
582 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583 {
584         long val = 0;
585         int cpu;
586
587         /* Per-cpu values can be negative, use a signed accumulator */
588         for_each_possible_cpu(cpu)
589                 val += per_cpu(memcg->stat->count[idx], cpu);
590         /*
591          * Summing races with updates, so val may be negative.  Avoid exposing
592          * transient negative values.
593          */
594         if (val < 0)
595                 val = 0;
596         return val;
597 }
598
599 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600                                             enum mem_cgroup_events_index idx)
601 {
602         unsigned long val = 0;
603         int cpu;
604
605         for_each_possible_cpu(cpu)
606                 val += per_cpu(memcg->stat->events[idx], cpu);
607         return val;
608 }
609
610 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611                                          struct page *page,
612                                          bool compound, int nr_pages)
613 {
614         /*
615          * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616          * counted as CACHE even if it's on ANON LRU.
617          */
618         if (PageAnon(page))
619                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620                                 nr_pages);
621         else
622                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623                                 nr_pages);
624
625         if (compound) {
626                 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628                                 nr_pages);
629         }
630
631         /* pagein of a big page is an event. So, ignore page size */
632         if (nr_pages > 0)
633                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634         else {
635                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636                 nr_pages = -nr_pages; /* for event */
637         }
638
639         __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640 }
641
642 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643                                            int nid, unsigned int lru_mask)
644 {
645         unsigned long nr = 0;
646         int zid;
647
648         VM_BUG_ON((unsigned)nid >= nr_node_ids);
649
650         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651                 struct mem_cgroup_per_zone *mz;
652                 enum lru_list lru;
653
654                 for_each_lru(lru) {
655                         if (!(BIT(lru) & lru_mask))
656                                 continue;
657                         mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658                         nr += mz->lru_size[lru];
659                 }
660         }
661         return nr;
662 }
663
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665                         unsigned int lru_mask)
666 {
667         unsigned long nr = 0;
668         int nid;
669
670         for_each_node_state(nid, N_MEMORY)
671                 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672         return nr;
673 }
674
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676                                        enum mem_cgroup_events_target target)
677 {
678         unsigned long val, next;
679
680         val = __this_cpu_read(memcg->stat->nr_page_events);
681         next = __this_cpu_read(memcg->stat->targets[target]);
682         /* from time_after() in jiffies.h */
683         if ((long)next - (long)val < 0) {
684                 switch (target) {
685                 case MEM_CGROUP_TARGET_THRESH:
686                         next = val + THRESHOLDS_EVENTS_TARGET;
687                         break;
688                 case MEM_CGROUP_TARGET_SOFTLIMIT:
689                         next = val + SOFTLIMIT_EVENTS_TARGET;
690                         break;
691                 case MEM_CGROUP_TARGET_NUMAINFO:
692                         next = val + NUMAINFO_EVENTS_TARGET;
693                         break;
694                 default:
695                         break;
696                 }
697                 __this_cpu_write(memcg->stat->targets[target], next);
698                 return true;
699         }
700         return false;
701 }
702
703 /*
704  * Check events in order.
705  *
706  */
707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 {
709         /* threshold event is triggered in finer grain than soft limit */
710         if (unlikely(mem_cgroup_event_ratelimit(memcg,
711                                                 MEM_CGROUP_TARGET_THRESH))) {
712                 bool do_softlimit;
713                 bool do_numainfo __maybe_unused;
714
715                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
717 #if MAX_NUMNODES > 1
718                 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719                                                 MEM_CGROUP_TARGET_NUMAINFO);
720 #endif
721                 mem_cgroup_threshold(memcg);
722                 if (unlikely(do_softlimit))
723                         mem_cgroup_update_tree(memcg, page);
724 #if MAX_NUMNODES > 1
725                 if (unlikely(do_numainfo))
726                         atomic_inc(&memcg->numainfo_events);
727 #endif
728         }
729 }
730
731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732 {
733         /*
734          * mm_update_next_owner() may clear mm->owner to NULL
735          * if it races with swapoff, page migration, etc.
736          * So this can be called with p == NULL.
737          */
738         if (unlikely(!p))
739                 return NULL;
740
741         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742 }
743 EXPORT_SYMBOL(mem_cgroup_from_task);
744
745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746 {
747         struct mem_cgroup *memcg = NULL;
748
749         rcu_read_lock();
750         do {
751                 /*
752                  * Page cache insertions can happen withou an
753                  * actual mm context, e.g. during disk probing
754                  * on boot, loopback IO, acct() writes etc.
755                  */
756                 if (unlikely(!mm))
757                         memcg = root_mem_cgroup;
758                 else {
759                         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760                         if (unlikely(!memcg))
761                                 memcg = root_mem_cgroup;
762                 }
763         } while (!css_tryget_online(&memcg->css));
764         rcu_read_unlock();
765         return memcg;
766 }
767
768 /**
769  * mem_cgroup_iter - iterate over memory cgroup hierarchy
770  * @root: hierarchy root
771  * @prev: previously returned memcg, NULL on first invocation
772  * @reclaim: cookie for shared reclaim walks, NULL for full walks
773  *
774  * Returns references to children of the hierarchy below @root, or
775  * @root itself, or %NULL after a full round-trip.
776  *
777  * Caller must pass the return value in @prev on subsequent
778  * invocations for reference counting, or use mem_cgroup_iter_break()
779  * to cancel a hierarchy walk before the round-trip is complete.
780  *
781  * Reclaimers can specify a zone and a priority level in @reclaim to
782  * divide up the memcgs in the hierarchy among all concurrent
783  * reclaimers operating on the same zone and priority.
784  */
785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786                                    struct mem_cgroup *prev,
787                                    struct mem_cgroup_reclaim_cookie *reclaim)
788 {
789         struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790         struct cgroup_subsys_state *css = NULL;
791         struct mem_cgroup *memcg = NULL;
792         struct mem_cgroup *pos = NULL;
793
794         if (mem_cgroup_disabled())
795                 return NULL;
796
797         if (!root)
798                 root = root_mem_cgroup;
799
800         if (prev && !reclaim)
801                 pos = prev;
802
803         if (!root->use_hierarchy && root != root_mem_cgroup) {
804                 if (prev)
805                         goto out;
806                 return root;
807         }
808
809         rcu_read_lock();
810
811         if (reclaim) {
812                 struct mem_cgroup_per_zone *mz;
813
814                 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815                 iter = &mz->iter[reclaim->priority];
816
817                 if (prev && reclaim->generation != iter->generation)
818                         goto out_unlock;
819
820                 while (1) {
821                         pos = READ_ONCE(iter->position);
822                         if (!pos || css_tryget(&pos->css))
823                                 break;
824                         /*
825                          * css reference reached zero, so iter->position will
826                          * be cleared by ->css_released. However, we should not
827                          * rely on this happening soon, because ->css_released
828                          * is called from a work queue, and by busy-waiting we
829                          * might block it. So we clear iter->position right
830                          * away.
831                          */
832                         (void)cmpxchg(&iter->position, pos, NULL);
833                 }
834         }
835
836         if (pos)
837                 css = &pos->css;
838
839         for (;;) {
840                 css = css_next_descendant_pre(css, &root->css);
841                 if (!css) {
842                         /*
843                          * Reclaimers share the hierarchy walk, and a
844                          * new one might jump in right at the end of
845                          * the hierarchy - make sure they see at least
846                          * one group and restart from the beginning.
847                          */
848                         if (!prev)
849                                 continue;
850                         break;
851                 }
852
853                 /*
854                  * Verify the css and acquire a reference.  The root
855                  * is provided by the caller, so we know it's alive
856                  * and kicking, and don't take an extra reference.
857                  */
858                 memcg = mem_cgroup_from_css(css);
859
860                 if (css == &root->css)
861                         break;
862
863                 if (css_tryget(css))
864                         break;
865
866                 memcg = NULL;
867         }
868
869         if (reclaim) {
870                 /*
871                  * The position could have already been updated by a competing
872                  * thread, so check that the value hasn't changed since we read
873                  * it to avoid reclaiming from the same cgroup twice.
874                  */
875                 (void)cmpxchg(&iter->position, pos, memcg);
876
877                 if (pos)
878                         css_put(&pos->css);
879
880                 if (!memcg)
881                         iter->generation++;
882                 else if (!prev)
883                         reclaim->generation = iter->generation;
884         }
885
886 out_unlock:
887         rcu_read_unlock();
888 out:
889         if (prev && prev != root)
890                 css_put(&prev->css);
891
892         return memcg;
893 }
894
895 /**
896  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897  * @root: hierarchy root
898  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899  */
900 void mem_cgroup_iter_break(struct mem_cgroup *root,
901                            struct mem_cgroup *prev)
902 {
903         if (!root)
904                 root = root_mem_cgroup;
905         if (prev && prev != root)
906                 css_put(&prev->css);
907 }
908
909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910 {
911         struct mem_cgroup *memcg = dead_memcg;
912         struct mem_cgroup_reclaim_iter *iter;
913         struct mem_cgroup_per_zone *mz;
914         int nid, zid;
915         int i;
916
917         while ((memcg = parent_mem_cgroup(memcg))) {
918                 for_each_node(nid) {
919                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920                                 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921                                 for (i = 0; i <= DEF_PRIORITY; i++) {
922                                         iter = &mz->iter[i];
923                                         cmpxchg(&iter->position,
924                                                 dead_memcg, NULL);
925                                 }
926                         }
927                 }
928         }
929 }
930
931 /*
932  * Iteration constructs for visiting all cgroups (under a tree).  If
933  * loops are exited prematurely (break), mem_cgroup_iter_break() must
934  * be used for reference counting.
935  */
936 #define for_each_mem_cgroup_tree(iter, root)            \
937         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
938              iter != NULL;                              \
939              iter = mem_cgroup_iter(root, iter, NULL))
940
941 #define for_each_mem_cgroup(iter)                       \
942         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
943              iter != NULL;                              \
944              iter = mem_cgroup_iter(NULL, iter, NULL))
945
946 /**
947  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948  * @zone: zone of the wanted lruvec
949  * @memcg: memcg of the wanted lruvec
950  *
951  * Returns the lru list vector holding pages for the given @zone and
952  * @mem.  This can be the global zone lruvec, if the memory controller
953  * is disabled.
954  */
955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956                                       struct mem_cgroup *memcg)
957 {
958         struct mem_cgroup_per_zone *mz;
959         struct lruvec *lruvec;
960
961         if (mem_cgroup_disabled()) {
962                 lruvec = &zone->lruvec;
963                 goto out;
964         }
965
966         mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967         lruvec = &mz->lruvec;
968 out:
969         /*
970          * Since a node can be onlined after the mem_cgroup was created,
971          * we have to be prepared to initialize lruvec->zone here;
972          * and if offlined then reonlined, we need to reinitialize it.
973          */
974         if (unlikely(lruvec->zone != zone))
975                 lruvec->zone = zone;
976         return lruvec;
977 }
978
979 /**
980  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981  * @page: the page
982  * @zone: zone of the page
983  *
984  * This function is only safe when following the LRU page isolation
985  * and putback protocol: the LRU lock must be held, and the page must
986  * either be PageLRU() or the caller must have isolated/allocated it.
987  */
988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989 {
990         struct mem_cgroup_per_zone *mz;
991         struct mem_cgroup *memcg;
992         struct lruvec *lruvec;
993
994         if (mem_cgroup_disabled()) {
995                 lruvec = &zone->lruvec;
996                 goto out;
997         }
998
999         memcg = page->mem_cgroup;
1000         /*
1001          * Swapcache readahead pages are added to the LRU - and
1002          * possibly migrated - before they are charged.
1003          */
1004         if (!memcg)
1005                 memcg = root_mem_cgroup;
1006
1007         mz = mem_cgroup_page_zoneinfo(memcg, page);
1008         lruvec = &mz->lruvec;
1009 out:
1010         /*
1011          * Since a node can be onlined after the mem_cgroup was created,
1012          * we have to be prepared to initialize lruvec->zone here;
1013          * and if offlined then reonlined, we need to reinitialize it.
1014          */
1015         if (unlikely(lruvec->zone != zone))
1016                 lruvec->zone = zone;
1017         return lruvec;
1018 }
1019
1020 /**
1021  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022  * @lruvec: mem_cgroup per zone lru vector
1023  * @lru: index of lru list the page is sitting on
1024  * @nr_pages: positive when adding or negative when removing
1025  *
1026  * This function must be called under lru_lock, just before a page is added
1027  * to or just after a page is removed from an lru list (that ordering being
1028  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1029  */
1030 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1031                                 int nr_pages)
1032 {
1033         struct mem_cgroup_per_zone *mz;
1034         unsigned long *lru_size;
1035         long size;
1036         bool empty;
1037
1038         __update_lru_size(lruvec, lru, nr_pages);
1039
1040         if (mem_cgroup_disabled())
1041                 return;
1042
1043         mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1044         lru_size = mz->lru_size + lru;
1045         empty = list_empty(lruvec->lists + lru);
1046
1047         if (nr_pages < 0)
1048                 *lru_size += nr_pages;
1049
1050         size = *lru_size;
1051         if (WARN_ONCE(size < 0 || empty != !size,
1052                 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1053                 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1054                 VM_BUG_ON(1);
1055                 *lru_size = 0;
1056         }
1057
1058         if (nr_pages > 0)
1059                 *lru_size += nr_pages;
1060 }
1061
1062 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1063 {
1064         struct mem_cgroup *task_memcg;
1065         struct task_struct *p;
1066         bool ret;
1067
1068         p = find_lock_task_mm(task);
1069         if (p) {
1070                 task_memcg = get_mem_cgroup_from_mm(p->mm);
1071                 task_unlock(p);
1072         } else {
1073                 /*
1074                  * All threads may have already detached their mm's, but the oom
1075                  * killer still needs to detect if they have already been oom
1076                  * killed to prevent needlessly killing additional tasks.
1077                  */
1078                 rcu_read_lock();
1079                 task_memcg = mem_cgroup_from_task(task);
1080                 css_get(&task_memcg->css);
1081                 rcu_read_unlock();
1082         }
1083         ret = mem_cgroup_is_descendant(task_memcg, memcg);
1084         css_put(&task_memcg->css);
1085         return ret;
1086 }
1087
1088 /**
1089  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1090  * @memcg: the memory cgroup
1091  *
1092  * Returns the maximum amount of memory @mem can be charged with, in
1093  * pages.
1094  */
1095 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1096 {
1097         unsigned long margin = 0;
1098         unsigned long count;
1099         unsigned long limit;
1100
1101         count = page_counter_read(&memcg->memory);
1102         limit = READ_ONCE(memcg->memory.limit);
1103         if (count < limit)
1104                 margin = limit - count;
1105
1106         if (do_memsw_account()) {
1107                 count = page_counter_read(&memcg->memsw);
1108                 limit = READ_ONCE(memcg->memsw.limit);
1109                 if (count <= limit)
1110                         margin = min(margin, limit - count);
1111                 else
1112                         margin = 0;
1113         }
1114
1115         return margin;
1116 }
1117
1118 /*
1119  * A routine for checking "mem" is under move_account() or not.
1120  *
1121  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1122  * moving cgroups. This is for waiting at high-memory pressure
1123  * caused by "move".
1124  */
1125 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1126 {
1127         struct mem_cgroup *from;
1128         struct mem_cgroup *to;
1129         bool ret = false;
1130         /*
1131          * Unlike task_move routines, we access mc.to, mc.from not under
1132          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1133          */
1134         spin_lock(&mc.lock);
1135         from = mc.from;
1136         to = mc.to;
1137         if (!from)
1138                 goto unlock;
1139
1140         ret = mem_cgroup_is_descendant(from, memcg) ||
1141                 mem_cgroup_is_descendant(to, memcg);
1142 unlock:
1143         spin_unlock(&mc.lock);
1144         return ret;
1145 }
1146
1147 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1148 {
1149         if (mc.moving_task && current != mc.moving_task) {
1150                 if (mem_cgroup_under_move(memcg)) {
1151                         DEFINE_WAIT(wait);
1152                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1153                         /* moving charge context might have finished. */
1154                         if (mc.moving_task)
1155                                 schedule();
1156                         finish_wait(&mc.waitq, &wait);
1157                         return true;
1158                 }
1159         }
1160         return false;
1161 }
1162
1163 #define K(x) ((x) << (PAGE_SHIFT-10))
1164 /**
1165  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1166  * @memcg: The memory cgroup that went over limit
1167  * @p: Task that is going to be killed
1168  *
1169  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1170  * enabled
1171  */
1172 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1173 {
1174         struct mem_cgroup *iter;
1175         unsigned int i;
1176
1177         rcu_read_lock();
1178
1179         if (p) {
1180                 pr_info("Task in ");
1181                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1182                 pr_cont(" killed as a result of limit of ");
1183         } else {
1184                 pr_info("Memory limit reached of cgroup ");
1185         }
1186
1187         pr_cont_cgroup_path(memcg->css.cgroup);
1188         pr_cont("\n");
1189
1190         rcu_read_unlock();
1191
1192         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1193                 K((u64)page_counter_read(&memcg->memory)),
1194                 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1195         pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1196                 K((u64)page_counter_read(&memcg->memsw)),
1197                 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1198         pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1199                 K((u64)page_counter_read(&memcg->kmem)),
1200                 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1201
1202         for_each_mem_cgroup_tree(iter, memcg) {
1203                 pr_info("Memory cgroup stats for ");
1204                 pr_cont_cgroup_path(iter->css.cgroup);
1205                 pr_cont(":");
1206
1207                 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1208                         if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1209                                 continue;
1210                         pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1211                                 K(mem_cgroup_read_stat(iter, i)));
1212                 }
1213
1214                 for (i = 0; i < NR_LRU_LISTS; i++)
1215                         pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1216                                 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1217
1218                 pr_cont("\n");
1219         }
1220 }
1221
1222 /*
1223  * This function returns the number of memcg under hierarchy tree. Returns
1224  * 1(self count) if no children.
1225  */
1226 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1227 {
1228         int num = 0;
1229         struct mem_cgroup *iter;
1230
1231         for_each_mem_cgroup_tree(iter, memcg)
1232                 num++;
1233         return num;
1234 }
1235
1236 /*
1237  * Return the memory (and swap, if configured) limit for a memcg.
1238  */
1239 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1240 {
1241         unsigned long limit;
1242
1243         limit = memcg->memory.limit;
1244         if (mem_cgroup_swappiness(memcg)) {
1245                 unsigned long memsw_limit;
1246                 unsigned long swap_limit;
1247
1248                 memsw_limit = memcg->memsw.limit;
1249                 swap_limit = memcg->swap.limit;
1250                 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1251                 limit = min(limit + swap_limit, memsw_limit);
1252         }
1253         return limit;
1254 }
1255
1256 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1257                                      int order)
1258 {
1259         struct oom_control oc = {
1260                 .zonelist = NULL,
1261                 .nodemask = NULL,
1262                 .gfp_mask = gfp_mask,
1263                 .order = order,
1264         };
1265         struct mem_cgroup *iter;
1266         unsigned long chosen_points = 0;
1267         unsigned long totalpages;
1268         unsigned int points = 0;
1269         struct task_struct *chosen = NULL;
1270
1271         mutex_lock(&oom_lock);
1272
1273         /*
1274          * If current has a pending SIGKILL or is exiting, then automatically
1275          * select it.  The goal is to allow it to allocate so that it may
1276          * quickly exit and free its memory.
1277          */
1278         if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1279                 mark_oom_victim(current);
1280                 try_oom_reaper(current);
1281                 goto unlock;
1282         }
1283
1284         check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1285         totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1286         for_each_mem_cgroup_tree(iter, memcg) {
1287                 struct css_task_iter it;
1288                 struct task_struct *task;
1289
1290                 css_task_iter_start(&iter->css, &it);
1291                 while ((task = css_task_iter_next(&it))) {
1292                         switch (oom_scan_process_thread(&oc, task, totalpages)) {
1293                         case OOM_SCAN_SELECT:
1294                                 if (chosen)
1295                                         put_task_struct(chosen);
1296                                 chosen = task;
1297                                 chosen_points = ULONG_MAX;
1298                                 get_task_struct(chosen);
1299                                 /* fall through */
1300                         case OOM_SCAN_CONTINUE:
1301                                 continue;
1302                         case OOM_SCAN_ABORT:
1303                                 css_task_iter_end(&it);
1304                                 mem_cgroup_iter_break(memcg, iter);
1305                                 if (chosen)
1306                                         put_task_struct(chosen);
1307                                 /* Set a dummy value to return "true". */
1308                                 chosen = (void *) 1;
1309                                 goto unlock;
1310                         case OOM_SCAN_OK:
1311                                 break;
1312                         };
1313                         points = oom_badness(task, memcg, NULL, totalpages);
1314                         if (!points || points < chosen_points)
1315                                 continue;
1316                         /* Prefer thread group leaders for display purposes */
1317                         if (points == chosen_points &&
1318                             thread_group_leader(chosen))
1319                                 continue;
1320
1321                         if (chosen)
1322                                 put_task_struct(chosen);
1323                         chosen = task;
1324                         chosen_points = points;
1325                         get_task_struct(chosen);
1326                 }
1327                 css_task_iter_end(&it);
1328         }
1329
1330         if (chosen) {
1331                 points = chosen_points * 1000 / totalpages;
1332                 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1333                                  "Memory cgroup out of memory");
1334         }
1335 unlock:
1336         mutex_unlock(&oom_lock);
1337         return chosen;
1338 }
1339
1340 #if MAX_NUMNODES > 1
1341
1342 /**
1343  * test_mem_cgroup_node_reclaimable
1344  * @memcg: the target memcg
1345  * @nid: the node ID to be checked.
1346  * @noswap : specify true here if the user wants flle only information.
1347  *
1348  * This function returns whether the specified memcg contains any
1349  * reclaimable pages on a node. Returns true if there are any reclaimable
1350  * pages in the node.
1351  */
1352 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1353                 int nid, bool noswap)
1354 {
1355         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1356                 return true;
1357         if (noswap || !total_swap_pages)
1358                 return false;
1359         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1360                 return true;
1361         return false;
1362
1363 }
1364
1365 /*
1366  * Always updating the nodemask is not very good - even if we have an empty
1367  * list or the wrong list here, we can start from some node and traverse all
1368  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1369  *
1370  */
1371 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1372 {
1373         int nid;
1374         /*
1375          * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1376          * pagein/pageout changes since the last update.
1377          */
1378         if (!atomic_read(&memcg->numainfo_events))
1379                 return;
1380         if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1381                 return;
1382
1383         /* make a nodemask where this memcg uses memory from */
1384         memcg->scan_nodes = node_states[N_MEMORY];
1385
1386         for_each_node_mask(nid, node_states[N_MEMORY]) {
1387
1388                 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1389                         node_clear(nid, memcg->scan_nodes);
1390         }
1391
1392         atomic_set(&memcg->numainfo_events, 0);
1393         atomic_set(&memcg->numainfo_updating, 0);
1394 }
1395
1396 /*
1397  * Selecting a node where we start reclaim from. Because what we need is just
1398  * reducing usage counter, start from anywhere is O,K. Considering
1399  * memory reclaim from current node, there are pros. and cons.
1400  *
1401  * Freeing memory from current node means freeing memory from a node which
1402  * we'll use or we've used. So, it may make LRU bad. And if several threads
1403  * hit limits, it will see a contention on a node. But freeing from remote
1404  * node means more costs for memory reclaim because of memory latency.
1405  *
1406  * Now, we use round-robin. Better algorithm is welcomed.
1407  */
1408 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1409 {
1410         int node;
1411
1412         mem_cgroup_may_update_nodemask(memcg);
1413         node = memcg->last_scanned_node;
1414
1415         node = next_node_in(node, memcg->scan_nodes);
1416         /*
1417          * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1418          * last time it really checked all the LRUs due to rate limiting.
1419          * Fallback to the current node in that case for simplicity.
1420          */
1421         if (unlikely(node == MAX_NUMNODES))
1422                 node = numa_node_id();
1423
1424         memcg->last_scanned_node = node;
1425         return node;
1426 }
1427 #else
1428 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1429 {
1430         return 0;
1431 }
1432 #endif
1433
1434 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1435                                    struct zone *zone,
1436                                    gfp_t gfp_mask,
1437                                    unsigned long *total_scanned)
1438 {
1439         struct mem_cgroup *victim = NULL;
1440         int total = 0;
1441         int loop = 0;
1442         unsigned long excess;
1443         unsigned long nr_scanned;
1444         struct mem_cgroup_reclaim_cookie reclaim = {
1445                 .zone = zone,
1446                 .priority = 0,
1447         };
1448
1449         excess = soft_limit_excess(root_memcg);
1450
1451         while (1) {
1452                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1453                 if (!victim) {
1454                         loop++;
1455                         if (loop >= 2) {
1456                                 /*
1457                                  * If we have not been able to reclaim
1458                                  * anything, it might because there are
1459                                  * no reclaimable pages under this hierarchy
1460                                  */
1461                                 if (!total)
1462                                         break;
1463                                 /*
1464                                  * We want to do more targeted reclaim.
1465                                  * excess >> 2 is not to excessive so as to
1466                                  * reclaim too much, nor too less that we keep
1467                                  * coming back to reclaim from this cgroup
1468                                  */
1469                                 if (total >= (excess >> 2) ||
1470                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1471                                         break;
1472                         }
1473                         continue;
1474                 }
1475                 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1476                                                      zone, &nr_scanned);
1477                 *total_scanned += nr_scanned;
1478                 if (!soft_limit_excess(root_memcg))
1479                         break;
1480         }
1481         mem_cgroup_iter_break(root_memcg, victim);
1482         return total;
1483 }
1484
1485 #ifdef CONFIG_LOCKDEP
1486 static struct lockdep_map memcg_oom_lock_dep_map = {
1487         .name = "memcg_oom_lock",
1488 };
1489 #endif
1490
1491 static DEFINE_SPINLOCK(memcg_oom_lock);
1492
1493 /*
1494  * Check OOM-Killer is already running under our hierarchy.
1495  * If someone is running, return false.
1496  */
1497 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1498 {
1499         struct mem_cgroup *iter, *failed = NULL;
1500
1501         spin_lock(&memcg_oom_lock);
1502
1503         for_each_mem_cgroup_tree(iter, memcg) {
1504                 if (iter->oom_lock) {
1505                         /*
1506                          * this subtree of our hierarchy is already locked
1507                          * so we cannot give a lock.
1508                          */
1509                         failed = iter;
1510                         mem_cgroup_iter_break(memcg, iter);
1511                         break;
1512                 } else
1513                         iter->oom_lock = true;
1514         }
1515
1516         if (failed) {
1517                 /*
1518                  * OK, we failed to lock the whole subtree so we have
1519                  * to clean up what we set up to the failing subtree
1520                  */
1521                 for_each_mem_cgroup_tree(iter, memcg) {
1522                         if (iter == failed) {
1523                                 mem_cgroup_iter_break(memcg, iter);
1524                                 break;
1525                         }
1526                         iter->oom_lock = false;
1527                 }
1528         } else
1529                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1530
1531         spin_unlock(&memcg_oom_lock);
1532
1533         return !failed;
1534 }
1535
1536 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1537 {
1538         struct mem_cgroup *iter;
1539
1540         spin_lock(&memcg_oom_lock);
1541         mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1542         for_each_mem_cgroup_tree(iter, memcg)
1543                 iter->oom_lock = false;
1544         spin_unlock(&memcg_oom_lock);
1545 }
1546
1547 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1548 {
1549         struct mem_cgroup *iter;
1550
1551         spin_lock(&memcg_oom_lock);
1552         for_each_mem_cgroup_tree(iter, memcg)
1553                 iter->under_oom++;
1554         spin_unlock(&memcg_oom_lock);
1555 }
1556
1557 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1558 {
1559         struct mem_cgroup *iter;
1560
1561         /*
1562          * When a new child is created while the hierarchy is under oom,
1563          * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1564          */
1565         spin_lock(&memcg_oom_lock);
1566         for_each_mem_cgroup_tree(iter, memcg)
1567                 if (iter->under_oom > 0)
1568                         iter->under_oom--;
1569         spin_unlock(&memcg_oom_lock);
1570 }
1571
1572 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1573
1574 struct oom_wait_info {
1575         struct mem_cgroup *memcg;
1576         wait_queue_t    wait;
1577 };
1578
1579 static int memcg_oom_wake_function(wait_queue_t *wait,
1580         unsigned mode, int sync, void *arg)
1581 {
1582         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1583         struct mem_cgroup *oom_wait_memcg;
1584         struct oom_wait_info *oom_wait_info;
1585
1586         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1587         oom_wait_memcg = oom_wait_info->memcg;
1588
1589         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1590             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1591                 return 0;
1592         return autoremove_wake_function(wait, mode, sync, arg);
1593 }
1594
1595 static void memcg_oom_recover(struct mem_cgroup *memcg)
1596 {
1597         /*
1598          * For the following lockless ->under_oom test, the only required
1599          * guarantee is that it must see the state asserted by an OOM when
1600          * this function is called as a result of userland actions
1601          * triggered by the notification of the OOM.  This is trivially
1602          * achieved by invoking mem_cgroup_mark_under_oom() before
1603          * triggering notification.
1604          */
1605         if (memcg && memcg->under_oom)
1606                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1607 }
1608
1609 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1610 {
1611         if (!current->memcg_may_oom || current->memcg_in_oom)
1612                 return;
1613         /*
1614          * We are in the middle of the charge context here, so we
1615          * don't want to block when potentially sitting on a callstack
1616          * that holds all kinds of filesystem and mm locks.
1617          *
1618          * Also, the caller may handle a failed allocation gracefully
1619          * (like optional page cache readahead) and so an OOM killer
1620          * invocation might not even be necessary.
1621          *
1622          * That's why we don't do anything here except remember the
1623          * OOM context and then deal with it at the end of the page
1624          * fault when the stack is unwound, the locks are released,
1625          * and when we know whether the fault was overall successful.
1626          */
1627         css_get(&memcg->css);
1628         current->memcg_in_oom = memcg;
1629         current->memcg_oom_gfp_mask = mask;
1630         current->memcg_oom_order = order;
1631 }
1632
1633 /**
1634  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1635  * @handle: actually kill/wait or just clean up the OOM state
1636  *
1637  * This has to be called at the end of a page fault if the memcg OOM
1638  * handler was enabled.
1639  *
1640  * Memcg supports userspace OOM handling where failed allocations must
1641  * sleep on a waitqueue until the userspace task resolves the
1642  * situation.  Sleeping directly in the charge context with all kinds
1643  * of locks held is not a good idea, instead we remember an OOM state
1644  * in the task and mem_cgroup_oom_synchronize() has to be called at
1645  * the end of the page fault to complete the OOM handling.
1646  *
1647  * Returns %true if an ongoing memcg OOM situation was detected and
1648  * completed, %false otherwise.
1649  */
1650 bool mem_cgroup_oom_synchronize(bool handle)
1651 {
1652         struct mem_cgroup *memcg = current->memcg_in_oom;
1653         struct oom_wait_info owait;
1654         bool locked;
1655
1656         /* OOM is global, do not handle */
1657         if (!memcg)
1658                 return false;
1659
1660         if (!handle || oom_killer_disabled)
1661                 goto cleanup;
1662
1663         owait.memcg = memcg;
1664         owait.wait.flags = 0;
1665         owait.wait.func = memcg_oom_wake_function;
1666         owait.wait.private = current;
1667         INIT_LIST_HEAD(&owait.wait.task_list);
1668
1669         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1670         mem_cgroup_mark_under_oom(memcg);
1671
1672         locked = mem_cgroup_oom_trylock(memcg);
1673
1674         if (locked)
1675                 mem_cgroup_oom_notify(memcg);
1676
1677         if (locked && !memcg->oom_kill_disable) {
1678                 mem_cgroup_unmark_under_oom(memcg);
1679                 finish_wait(&memcg_oom_waitq, &owait.wait);
1680                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1681                                          current->memcg_oom_order);
1682         } else {
1683                 schedule();
1684                 mem_cgroup_unmark_under_oom(memcg);
1685                 finish_wait(&memcg_oom_waitq, &owait.wait);
1686         }
1687
1688         if (locked) {
1689                 mem_cgroup_oom_unlock(memcg);
1690                 /*
1691                  * There is no guarantee that an OOM-lock contender
1692                  * sees the wakeups triggered by the OOM kill
1693                  * uncharges.  Wake any sleepers explicitely.
1694                  */
1695                 memcg_oom_recover(memcg);
1696         }
1697 cleanup:
1698         current->memcg_in_oom = NULL;
1699         css_put(&memcg->css);
1700         return true;
1701 }
1702
1703 /**
1704  * lock_page_memcg - lock a page->mem_cgroup binding
1705  * @page: the page
1706  *
1707  * This function protects unlocked LRU pages from being moved to
1708  * another cgroup and stabilizes their page->mem_cgroup binding.
1709  */
1710 void lock_page_memcg(struct page *page)
1711 {
1712         struct mem_cgroup *memcg;
1713         unsigned long flags;
1714
1715         /*
1716          * The RCU lock is held throughout the transaction.  The fast
1717          * path can get away without acquiring the memcg->move_lock
1718          * because page moving starts with an RCU grace period.
1719          */
1720         rcu_read_lock();
1721
1722         if (mem_cgroup_disabled())
1723                 return;
1724 again:
1725         memcg = page->mem_cgroup;
1726         if (unlikely(!memcg))
1727                 return;
1728
1729         if (atomic_read(&memcg->moving_account) <= 0)
1730                 return;
1731
1732         spin_lock_irqsave(&memcg->move_lock, flags);
1733         if (memcg != page->mem_cgroup) {
1734                 spin_unlock_irqrestore(&memcg->move_lock, flags);
1735                 goto again;
1736         }
1737
1738         /*
1739          * When charge migration first begins, we can have locked and
1740          * unlocked page stat updates happening concurrently.  Track
1741          * the task who has the lock for unlock_page_memcg().
1742          */
1743         memcg->move_lock_task = current;
1744         memcg->move_lock_flags = flags;
1745
1746         return;
1747 }
1748 EXPORT_SYMBOL(lock_page_memcg);
1749
1750 /**
1751  * unlock_page_memcg - unlock a page->mem_cgroup binding
1752  * @page: the page
1753  */
1754 void unlock_page_memcg(struct page *page)
1755 {
1756         struct mem_cgroup *memcg = page->mem_cgroup;
1757
1758         if (memcg && memcg->move_lock_task == current) {
1759                 unsigned long flags = memcg->move_lock_flags;
1760
1761                 memcg->move_lock_task = NULL;
1762                 memcg->move_lock_flags = 0;
1763
1764                 spin_unlock_irqrestore(&memcg->move_lock, flags);
1765         }
1766
1767         rcu_read_unlock();
1768 }
1769 EXPORT_SYMBOL(unlock_page_memcg);
1770
1771 /*
1772  * size of first charge trial. "32" comes from vmscan.c's magic value.
1773  * TODO: maybe necessary to use big numbers in big irons.
1774  */
1775 #define CHARGE_BATCH    32U
1776 struct memcg_stock_pcp {
1777         struct mem_cgroup *cached; /* this never be root cgroup */
1778         unsigned int nr_pages;
1779         struct work_struct work;
1780         unsigned long flags;
1781 #define FLUSHING_CACHED_CHARGE  0
1782 };
1783 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1784 static DEFINE_MUTEX(percpu_charge_mutex);
1785
1786 /**
1787  * consume_stock: Try to consume stocked charge on this cpu.
1788  * @memcg: memcg to consume from.
1789  * @nr_pages: how many pages to charge.
1790  *
1791  * The charges will only happen if @memcg matches the current cpu's memcg
1792  * stock, and at least @nr_pages are available in that stock.  Failure to
1793  * service an allocation will refill the stock.
1794  *
1795  * returns true if successful, false otherwise.
1796  */
1797 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1798 {
1799         struct memcg_stock_pcp *stock;
1800         bool ret = false;
1801
1802         if (nr_pages > CHARGE_BATCH)
1803                 return ret;
1804
1805         stock = &get_cpu_var(memcg_stock);
1806         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1807                 stock->nr_pages -= nr_pages;
1808                 ret = true;
1809         }
1810         put_cpu_var(memcg_stock);
1811         return ret;
1812 }
1813
1814 /*
1815  * Returns stocks cached in percpu and reset cached information.
1816  */
1817 static void drain_stock(struct memcg_stock_pcp *stock)
1818 {
1819         struct mem_cgroup *old = stock->cached;
1820
1821         if (stock->nr_pages) {
1822                 page_counter_uncharge(&old->memory, stock->nr_pages);
1823                 if (do_memsw_account())
1824                         page_counter_uncharge(&old->memsw, stock->nr_pages);
1825                 css_put_many(&old->css, stock->nr_pages);
1826                 stock->nr_pages = 0;
1827         }
1828         stock->cached = NULL;
1829 }
1830
1831 /*
1832  * This must be called under preempt disabled or must be called by
1833  * a thread which is pinned to local cpu.
1834  */
1835 static void drain_local_stock(struct work_struct *dummy)
1836 {
1837         struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1838         drain_stock(stock);
1839         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1840 }
1841
1842 /*
1843  * Cache charges(val) to local per_cpu area.
1844  * This will be consumed by consume_stock() function, later.
1845  */
1846 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1847 {
1848         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1849
1850         if (stock->cached != memcg) { /* reset if necessary */
1851                 drain_stock(stock);
1852                 stock->cached = memcg;
1853         }
1854         stock->nr_pages += nr_pages;
1855         put_cpu_var(memcg_stock);
1856 }
1857
1858 /*
1859  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1860  * of the hierarchy under it.
1861  */
1862 static void drain_all_stock(struct mem_cgroup *root_memcg)
1863 {
1864         int cpu, curcpu;
1865
1866         /* If someone's already draining, avoid adding running more workers. */
1867         if (!mutex_trylock(&percpu_charge_mutex))
1868                 return;
1869         /* Notify other cpus that system-wide "drain" is running */
1870         get_online_cpus();
1871         curcpu = get_cpu();
1872         for_each_online_cpu(cpu) {
1873                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1874                 struct mem_cgroup *memcg;
1875
1876                 memcg = stock->cached;
1877                 if (!memcg || !stock->nr_pages)
1878                         continue;
1879                 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1880                         continue;
1881                 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1882                         if (cpu == curcpu)
1883                                 drain_local_stock(&stock->work);
1884                         else
1885                                 schedule_work_on(cpu, &stock->work);
1886                 }
1887         }
1888         put_cpu();
1889         put_online_cpus();
1890         mutex_unlock(&percpu_charge_mutex);
1891 }
1892
1893 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1894                                         unsigned long action,
1895                                         void *hcpu)
1896 {
1897         int cpu = (unsigned long)hcpu;
1898         struct memcg_stock_pcp *stock;
1899
1900         if (action == CPU_ONLINE)
1901                 return NOTIFY_OK;
1902
1903         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1904                 return NOTIFY_OK;
1905
1906         stock = &per_cpu(memcg_stock, cpu);
1907         drain_stock(stock);
1908         return NOTIFY_OK;
1909 }
1910
1911 static void reclaim_high(struct mem_cgroup *memcg,
1912                          unsigned int nr_pages,
1913                          gfp_t gfp_mask)
1914 {
1915         do {
1916                 if (page_counter_read(&memcg->memory) <= memcg->high)
1917                         continue;
1918                 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1919                 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1920         } while ((memcg = parent_mem_cgroup(memcg)));
1921 }
1922
1923 static void high_work_func(struct work_struct *work)
1924 {
1925         struct mem_cgroup *memcg;
1926
1927         memcg = container_of(work, struct mem_cgroup, high_work);
1928         reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1929 }
1930
1931 /*
1932  * Scheduled by try_charge() to be executed from the userland return path
1933  * and reclaims memory over the high limit.
1934  */
1935 void mem_cgroup_handle_over_high(void)
1936 {
1937         unsigned int nr_pages = current->memcg_nr_pages_over_high;
1938         struct mem_cgroup *memcg;
1939
1940         if (likely(!nr_pages))
1941                 return;
1942
1943         memcg = get_mem_cgroup_from_mm(current->mm);
1944         reclaim_high(memcg, nr_pages, GFP_KERNEL);
1945         css_put(&memcg->css);
1946         current->memcg_nr_pages_over_high = 0;
1947 }
1948
1949 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1950                       unsigned int nr_pages)
1951 {
1952         unsigned int batch = max(CHARGE_BATCH, nr_pages);
1953         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1954         struct mem_cgroup *mem_over_limit;
1955         struct page_counter *counter;
1956         unsigned long nr_reclaimed;
1957         bool may_swap = true;
1958         bool drained = false;
1959
1960         if (mem_cgroup_is_root(memcg))
1961                 return 0;
1962 retry:
1963         if (consume_stock(memcg, nr_pages))
1964                 return 0;
1965
1966         if (!do_memsw_account() ||
1967             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1968                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1969                         goto done_restock;
1970                 if (do_memsw_account())
1971                         page_counter_uncharge(&memcg->memsw, batch);
1972                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1973         } else {
1974                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1975                 may_swap = false;
1976         }
1977
1978         if (batch > nr_pages) {
1979                 batch = nr_pages;
1980                 goto retry;
1981         }
1982
1983         /*
1984          * Unlike in global OOM situations, memcg is not in a physical
1985          * memory shortage.  Allow dying and OOM-killed tasks to
1986          * bypass the last charges so that they can exit quickly and
1987          * free their memory.
1988          */
1989         if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1990                      fatal_signal_pending(current) ||
1991                      current->flags & PF_EXITING))
1992                 goto force;
1993
1994         if (unlikely(task_in_memcg_oom(current)))
1995                 goto nomem;
1996
1997         if (!gfpflags_allow_blocking(gfp_mask))
1998                 goto nomem;
1999
2000         mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2001
2002         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2003                                                     gfp_mask, may_swap);
2004
2005         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2006                 goto retry;
2007
2008         if (!drained) {
2009                 drain_all_stock(mem_over_limit);
2010                 drained = true;
2011                 goto retry;
2012         }
2013
2014         if (gfp_mask & __GFP_NORETRY)
2015                 goto nomem;
2016         /*
2017          * Even though the limit is exceeded at this point, reclaim
2018          * may have been able to free some pages.  Retry the charge
2019          * before killing the task.
2020          *
2021          * Only for regular pages, though: huge pages are rather
2022          * unlikely to succeed so close to the limit, and we fall back
2023          * to regular pages anyway in case of failure.
2024          */
2025         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2026                 goto retry;
2027         /*
2028          * At task move, charge accounts can be doubly counted. So, it's
2029          * better to wait until the end of task_move if something is going on.
2030          */
2031         if (mem_cgroup_wait_acct_move(mem_over_limit))
2032                 goto retry;
2033
2034         if (nr_retries--)
2035                 goto retry;
2036
2037         if (gfp_mask & __GFP_NOFAIL)
2038                 goto force;
2039
2040         if (fatal_signal_pending(current))
2041                 goto force;
2042
2043         mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2044
2045         mem_cgroup_oom(mem_over_limit, gfp_mask,
2046                        get_order(nr_pages * PAGE_SIZE));
2047 nomem:
2048         if (!(gfp_mask & __GFP_NOFAIL))
2049                 return -ENOMEM;
2050 force:
2051         /*
2052          * The allocation either can't fail or will lead to more memory
2053          * being freed very soon.  Allow memory usage go over the limit
2054          * temporarily by force charging it.
2055          */
2056         page_counter_charge(&memcg->memory, nr_pages);
2057         if (do_memsw_account())
2058                 page_counter_charge(&memcg->memsw, nr_pages);
2059         css_get_many(&memcg->css, nr_pages);
2060
2061         return 0;
2062
2063 done_restock:
2064         css_get_many(&memcg->css, batch);
2065         if (batch > nr_pages)
2066                 refill_stock(memcg, batch - nr_pages);
2067
2068         /*
2069          * If the hierarchy is above the normal consumption range, schedule
2070          * reclaim on returning to userland.  We can perform reclaim here
2071          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2072          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2073          * not recorded as it most likely matches current's and won't
2074          * change in the meantime.  As high limit is checked again before
2075          * reclaim, the cost of mismatch is negligible.
2076          */
2077         do {
2078                 if (page_counter_read(&memcg->memory) > memcg->high) {
2079                         /* Don't bother a random interrupted task */
2080                         if (in_interrupt()) {
2081                                 schedule_work(&memcg->high_work);
2082                                 break;
2083                         }
2084                         current->memcg_nr_pages_over_high += batch;
2085                         set_notify_resume(current);
2086                         break;
2087                 }
2088         } while ((memcg = parent_mem_cgroup(memcg)));
2089
2090         return 0;
2091 }
2092
2093 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2094 {
2095         if (mem_cgroup_is_root(memcg))
2096                 return;
2097
2098         page_counter_uncharge(&memcg->memory, nr_pages);
2099         if (do_memsw_account())
2100                 page_counter_uncharge(&memcg->memsw, nr_pages);
2101
2102         css_put_many(&memcg->css, nr_pages);
2103 }
2104
2105 static void lock_page_lru(struct page *page, int *isolated)
2106 {
2107         struct zone *zone = page_zone(page);
2108
2109         spin_lock_irq(&zone->lru_lock);
2110         if (PageLRU(page)) {
2111                 struct lruvec *lruvec;
2112
2113                 lruvec = mem_cgroup_page_lruvec(page, zone);
2114                 ClearPageLRU(page);
2115                 del_page_from_lru_list(page, lruvec, page_lru(page));
2116                 *isolated = 1;
2117         } else
2118                 *isolated = 0;
2119 }
2120
2121 static void unlock_page_lru(struct page *page, int isolated)
2122 {
2123         struct zone *zone = page_zone(page);
2124
2125         if (isolated) {
2126                 struct lruvec *lruvec;
2127
2128                 lruvec = mem_cgroup_page_lruvec(page, zone);
2129                 VM_BUG_ON_PAGE(PageLRU(page), page);
2130                 SetPageLRU(page);
2131                 add_page_to_lru_list(page, lruvec, page_lru(page));
2132         }
2133         spin_unlock_irq(&zone->lru_lock);
2134 }
2135
2136 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2137                           bool lrucare)
2138 {
2139         int isolated;
2140
2141         VM_BUG_ON_PAGE(page->mem_cgroup, page);
2142
2143         /*
2144          * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2145          * may already be on some other mem_cgroup's LRU.  Take care of it.
2146          */
2147         if (lrucare)
2148                 lock_page_lru(page, &isolated);
2149
2150         /*
2151          * Nobody should be changing or seriously looking at
2152          * page->mem_cgroup at this point:
2153          *
2154          * - the page is uncharged
2155          *
2156          * - the page is off-LRU
2157          *
2158          * - an anonymous fault has exclusive page access, except for
2159          *   a locked page table
2160          *
2161          * - a page cache insertion, a swapin fault, or a migration
2162          *   have the page locked
2163          */
2164         page->mem_cgroup = memcg;
2165
2166         if (lrucare)
2167                 unlock_page_lru(page, isolated);
2168 }
2169
2170 #ifndef CONFIG_SLOB
2171 static int memcg_alloc_cache_id(void)
2172 {
2173         int id, size;
2174         int err;
2175
2176         id = ida_simple_get(&memcg_cache_ida,
2177                             0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2178         if (id < 0)
2179                 return id;
2180
2181         if (id < memcg_nr_cache_ids)
2182                 return id;
2183
2184         /*
2185          * There's no space for the new id in memcg_caches arrays,
2186          * so we have to grow them.
2187          */
2188         down_write(&memcg_cache_ids_sem);
2189
2190         size = 2 * (id + 1);
2191         if (size < MEMCG_CACHES_MIN_SIZE)
2192                 size = MEMCG_CACHES_MIN_SIZE;
2193         else if (size > MEMCG_CACHES_MAX_SIZE)
2194                 size = MEMCG_CACHES_MAX_SIZE;
2195
2196         err = memcg_update_all_caches(size);
2197         if (!err)
2198                 err = memcg_update_all_list_lrus(size);
2199         if (!err)
2200                 memcg_nr_cache_ids = size;
2201
2202         up_write(&memcg_cache_ids_sem);
2203
2204         if (err) {
2205                 ida_simple_remove(&memcg_cache_ida, id);
2206                 return err;
2207         }
2208         return id;
2209 }
2210
2211 static void memcg_free_cache_id(int id)
2212 {
2213         ida_simple_remove(&memcg_cache_ida, id);
2214 }
2215
2216 struct memcg_kmem_cache_create_work {
2217         struct mem_cgroup *memcg;
2218         struct kmem_cache *cachep;
2219         struct work_struct work;
2220 };
2221
2222 static void memcg_kmem_cache_create_func(struct work_struct *w)
2223 {
2224         struct memcg_kmem_cache_create_work *cw =
2225                 container_of(w, struct memcg_kmem_cache_create_work, work);
2226         struct mem_cgroup *memcg = cw->memcg;
2227         struct kmem_cache *cachep = cw->cachep;
2228
2229         memcg_create_kmem_cache(memcg, cachep);
2230
2231         css_put(&memcg->css);
2232         kfree(cw);
2233 }
2234
2235 /*
2236  * Enqueue the creation of a per-memcg kmem_cache.
2237  */
2238 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2239                                                struct kmem_cache *cachep)
2240 {
2241         struct memcg_kmem_cache_create_work *cw;
2242
2243         cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2244         if (!cw)
2245                 return;
2246
2247         css_get(&memcg->css);
2248
2249         cw->memcg = memcg;
2250         cw->cachep = cachep;
2251         INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2252
2253         schedule_work(&cw->work);
2254 }
2255
2256 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2257                                              struct kmem_cache *cachep)
2258 {
2259         /*
2260          * We need to stop accounting when we kmalloc, because if the
2261          * corresponding kmalloc cache is not yet created, the first allocation
2262          * in __memcg_schedule_kmem_cache_create will recurse.
2263          *
2264          * However, it is better to enclose the whole function. Depending on
2265          * the debugging options enabled, INIT_WORK(), for instance, can
2266          * trigger an allocation. This too, will make us recurse. Because at
2267          * this point we can't allow ourselves back into memcg_kmem_get_cache,
2268          * the safest choice is to do it like this, wrapping the whole function.
2269          */
2270         current->memcg_kmem_skip_account = 1;
2271         __memcg_schedule_kmem_cache_create(memcg, cachep);
2272         current->memcg_kmem_skip_account = 0;
2273 }
2274
2275 /*
2276  * Return the kmem_cache we're supposed to use for a slab allocation.
2277  * We try to use the current memcg's version of the cache.
2278  *
2279  * If the cache does not exist yet, if we are the first user of it,
2280  * we either create it immediately, if possible, or create it asynchronously
2281  * in a workqueue.
2282  * In the latter case, we will let the current allocation go through with
2283  * the original cache.
2284  *
2285  * Can't be called in interrupt context or from kernel threads.
2286  * This function needs to be called with rcu_read_lock() held.
2287  */
2288 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2289 {
2290         struct mem_cgroup *memcg;
2291         struct kmem_cache *memcg_cachep;
2292         int kmemcg_id;
2293
2294         VM_BUG_ON(!is_root_cache(cachep));
2295
2296         if (cachep->flags & SLAB_ACCOUNT)
2297                 gfp |= __GFP_ACCOUNT;
2298
2299         if (!(gfp & __GFP_ACCOUNT))
2300                 return cachep;
2301
2302         if (current->memcg_kmem_skip_account)
2303                 return cachep;
2304
2305         memcg = get_mem_cgroup_from_mm(current->mm);
2306         kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2307         if (kmemcg_id < 0)
2308                 goto out;
2309
2310         memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2311         if (likely(memcg_cachep))
2312                 return memcg_cachep;
2313
2314         /*
2315          * If we are in a safe context (can wait, and not in interrupt
2316          * context), we could be be predictable and return right away.
2317          * This would guarantee that the allocation being performed
2318          * already belongs in the new cache.
2319          *
2320          * However, there are some clashes that can arrive from locking.
2321          * For instance, because we acquire the slab_mutex while doing
2322          * memcg_create_kmem_cache, this means no further allocation
2323          * could happen with the slab_mutex held. So it's better to
2324          * defer everything.
2325          */
2326         memcg_schedule_kmem_cache_create(memcg, cachep);
2327 out:
2328         css_put(&memcg->css);
2329         return cachep;
2330 }
2331
2332 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2333 {
2334         if (!is_root_cache(cachep))
2335                 css_put(&cachep->memcg_params.memcg->css);
2336 }
2337
2338 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2339                               struct mem_cgroup *memcg)
2340 {
2341         unsigned int nr_pages = 1 << order;
2342         struct page_counter *counter;
2343         int ret;
2344
2345         ret = try_charge(memcg, gfp, nr_pages);
2346         if (ret)
2347                 return ret;
2348
2349         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2350             !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2351                 cancel_charge(memcg, nr_pages);
2352                 return -ENOMEM;
2353         }
2354
2355         page->mem_cgroup = memcg;
2356
2357         return 0;
2358 }
2359
2360 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2361 {
2362         struct mem_cgroup *memcg;
2363         int ret = 0;
2364
2365         memcg = get_mem_cgroup_from_mm(current->mm);
2366         if (!mem_cgroup_is_root(memcg))
2367                 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2368         css_put(&memcg->css);
2369         return ret;
2370 }
2371
2372 void __memcg_kmem_uncharge(struct page *page, int order)
2373 {
2374         struct mem_cgroup *memcg = page->mem_cgroup;
2375         unsigned int nr_pages = 1 << order;
2376
2377         if (!memcg)
2378                 return;
2379
2380         VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2381
2382         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2383                 page_counter_uncharge(&memcg->kmem, nr_pages);
2384
2385         page_counter_uncharge(&memcg->memory, nr_pages);
2386         if (do_memsw_account())
2387                 page_counter_uncharge(&memcg->memsw, nr_pages);
2388
2389         page->mem_cgroup = NULL;
2390         css_put_many(&memcg->css, nr_pages);
2391 }
2392 #endif /* !CONFIG_SLOB */
2393
2394 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2395
2396 /*
2397  * Because tail pages are not marked as "used", set it. We're under
2398  * zone->lru_lock and migration entries setup in all page mappings.
2399  */
2400 void mem_cgroup_split_huge_fixup(struct page *head)
2401 {
2402         int i;
2403
2404         if (mem_cgroup_disabled())
2405                 return;
2406
2407         for (i = 1; i < HPAGE_PMD_NR; i++)
2408                 head[i].mem_cgroup = head->mem_cgroup;
2409
2410         __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2411                        HPAGE_PMD_NR);
2412 }
2413 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2414
2415 #ifdef CONFIG_MEMCG_SWAP
2416 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2417                                          bool charge)
2418 {
2419         int val = (charge) ? 1 : -1;
2420         this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2421 }
2422
2423 /**
2424  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2425  * @entry: swap entry to be moved
2426  * @from:  mem_cgroup which the entry is moved from
2427  * @to:  mem_cgroup which the entry is moved to
2428  *
2429  * It succeeds only when the swap_cgroup's record for this entry is the same
2430  * as the mem_cgroup's id of @from.
2431  *
2432  * Returns 0 on success, -EINVAL on failure.
2433  *
2434  * The caller must have charged to @to, IOW, called page_counter_charge() about
2435  * both res and memsw, and called css_get().
2436  */
2437 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2438                                 struct mem_cgroup *from, struct mem_cgroup *to)
2439 {
2440         unsigned short old_id, new_id;
2441
2442         old_id = mem_cgroup_id(from);
2443         new_id = mem_cgroup_id(to);
2444
2445         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2446                 mem_cgroup_swap_statistics(from, false);
2447                 mem_cgroup_swap_statistics(to, true);
2448                 return 0;
2449         }
2450         return -EINVAL;
2451 }
2452 #else
2453 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2454                                 struct mem_cgroup *from, struct mem_cgroup *to)
2455 {
2456         return -EINVAL;
2457 }
2458 #endif
2459
2460 static DEFINE_MUTEX(memcg_limit_mutex);
2461
2462 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2463                                    unsigned long limit)
2464 {
2465         unsigned long curusage;
2466         unsigned long oldusage;
2467         bool enlarge = false;
2468         int retry_count;
2469         int ret;
2470
2471         /*
2472          * For keeping hierarchical_reclaim simple, how long we should retry
2473          * is depends on callers. We set our retry-count to be function
2474          * of # of children which we should visit in this loop.
2475          */
2476         retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2477                       mem_cgroup_count_children(memcg);
2478
2479         oldusage = page_counter_read(&memcg->memory);
2480
2481         do {
2482                 if (signal_pending(current)) {
2483                         ret = -EINTR;
2484                         break;
2485                 }
2486
2487                 mutex_lock(&memcg_limit_mutex);
2488                 if (limit > memcg->memsw.limit) {
2489                         mutex_unlock(&memcg_limit_mutex);
2490                         ret = -EINVAL;
2491                         break;
2492                 }
2493                 if (limit > memcg->memory.limit)
2494                         enlarge = true;
2495                 ret = page_counter_limit(&memcg->memory, limit);
2496                 mutex_unlock(&memcg_limit_mutex);
2497
2498                 if (!ret)
2499                         break;
2500
2501                 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2502
2503                 curusage = page_counter_read(&memcg->memory);
2504                 /* Usage is reduced ? */
2505                 if (curusage >= oldusage)
2506                         retry_count--;
2507                 else
2508                         oldusage = curusage;
2509         } while (retry_count);
2510
2511         if (!ret && enlarge)
2512                 memcg_oom_recover(memcg);
2513
2514         return ret;
2515 }
2516
2517 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2518                                          unsigned long limit)
2519 {
2520         unsigned long curusage;
2521         unsigned long oldusage;
2522         bool enlarge = false;
2523         int retry_count;
2524         int ret;
2525
2526         /* see mem_cgroup_resize_res_limit */
2527         retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2528                       mem_cgroup_count_children(memcg);
2529
2530         oldusage = page_counter_read(&memcg->memsw);
2531
2532         do {
2533                 if (signal_pending(current)) {
2534                         ret = -EINTR;
2535                         break;
2536                 }
2537
2538                 mutex_lock(&memcg_limit_mutex);
2539                 if (limit < memcg->memory.limit) {
2540                         mutex_unlock(&memcg_limit_mutex);
2541                         ret = -EINVAL;
2542                         break;
2543                 }
2544                 if (limit > memcg->memsw.limit)
2545                         enlarge = true;
2546                 ret = page_counter_limit(&memcg->memsw, limit);
2547                 mutex_unlock(&memcg_limit_mutex);
2548
2549                 if (!ret)
2550                         break;
2551
2552                 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2553
2554                 curusage = page_counter_read(&memcg->memsw);
2555                 /* Usage is reduced ? */
2556                 if (curusage >= oldusage)
2557                         retry_count--;
2558                 else
2559                         oldusage = curusage;
2560         } while (retry_count);
2561
2562         if (!ret && enlarge)
2563                 memcg_oom_recover(memcg);
2564
2565         return ret;
2566 }
2567
2568 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2569                                             gfp_t gfp_mask,
2570                                             unsigned long *total_scanned)
2571 {
2572         unsigned long nr_reclaimed = 0;
2573         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2574         unsigned long reclaimed;
2575         int loop = 0;
2576         struct mem_cgroup_tree_per_zone *mctz;
2577         unsigned long excess;
2578         unsigned long nr_scanned;
2579
2580         if (order > 0)
2581                 return 0;
2582
2583         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2584         /*
2585          * This loop can run a while, specially if mem_cgroup's continuously
2586          * keep exceeding their soft limit and putting the system under
2587          * pressure
2588          */
2589         do {
2590                 if (next_mz)
2591                         mz = next_mz;
2592                 else
2593                         mz = mem_cgroup_largest_soft_limit_node(mctz);
2594                 if (!mz)
2595                         break;
2596
2597                 nr_scanned = 0;
2598                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2599                                                     gfp_mask, &nr_scanned);
2600                 nr_reclaimed += reclaimed;
2601                 *total_scanned += nr_scanned;
2602                 spin_lock_irq(&mctz->lock);
2603                 __mem_cgroup_remove_exceeded(mz, mctz);
2604
2605                 /*
2606                  * If we failed to reclaim anything from this memory cgroup
2607                  * it is time to move on to the next cgroup
2608                  */
2609                 next_mz = NULL;
2610                 if (!reclaimed)
2611                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2612
2613                 excess = soft_limit_excess(mz->memcg);
2614                 /*
2615                  * One school of thought says that we should not add
2616                  * back the node to the tree if reclaim returns 0.
2617                  * But our reclaim could return 0, simply because due
2618                  * to priority we are exposing a smaller subset of
2619                  * memory to reclaim from. Consider this as a longer
2620                  * term TODO.
2621                  */
2622                 /* If excess == 0, no tree ops */
2623                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2624                 spin_unlock_irq(&mctz->lock);
2625                 css_put(&mz->memcg->css);
2626                 loop++;
2627                 /*
2628                  * Could not reclaim anything and there are no more
2629                  * mem cgroups to try or we seem to be looping without
2630                  * reclaiming anything.
2631                  */
2632                 if (!nr_reclaimed &&
2633                         (next_mz == NULL ||
2634                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2635                         break;
2636         } while (!nr_reclaimed);
2637         if (next_mz)
2638                 css_put(&next_mz->memcg->css);
2639         return nr_reclaimed;
2640 }
2641
2642 /*
2643  * Test whether @memcg has children, dead or alive.  Note that this
2644  * function doesn't care whether @memcg has use_hierarchy enabled and
2645  * returns %true if there are child csses according to the cgroup
2646  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2647  */
2648 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2649 {
2650         bool ret;
2651
2652         rcu_read_lock();
2653         ret = css_next_child(NULL, &memcg->css);
2654         rcu_read_unlock();
2655         return ret;
2656 }
2657
2658 /*
2659  * Reclaims as many pages from the given memcg as possible.
2660  *
2661  * Caller is responsible for holding css reference for memcg.
2662  */
2663 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2664 {
2665         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2666
2667         /* we call try-to-free pages for make this cgroup empty */
2668         lru_add_drain_all();
2669         /* try to free all pages in this cgroup */
2670         while (nr_retries && page_counter_read(&memcg->memory)) {
2671                 int progress;
2672
2673                 if (signal_pending(current))
2674                         return -EINTR;
2675
2676                 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2677                                                         GFP_KERNEL, true);
2678                 if (!progress) {
2679                         nr_retries--;
2680                         /* maybe some writeback is necessary */
2681                         congestion_wait(BLK_RW_ASYNC, HZ/10);
2682                 }
2683
2684         }
2685
2686         return 0;
2687 }
2688
2689 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2690                                             char *buf, size_t nbytes,
2691                                             loff_t off)
2692 {
2693         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2694
2695         if (mem_cgroup_is_root(memcg))
2696                 return -EINVAL;
2697         return mem_cgroup_force_empty(memcg) ?: nbytes;
2698 }
2699
2700 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2701                                      struct cftype *cft)
2702 {
2703         return mem_cgroup_from_css(css)->use_hierarchy;
2704 }
2705
2706 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2707                                       struct cftype *cft, u64 val)
2708 {
2709         int retval = 0;
2710         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2711         struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2712
2713         if (memcg->use_hierarchy == val)
2714                 return 0;
2715
2716         /*
2717          * If parent's use_hierarchy is set, we can't make any modifications
2718          * in the child subtrees. If it is unset, then the change can
2719          * occur, provided the current cgroup has no children.
2720          *
2721          * For the root cgroup, parent_mem is NULL, we allow value to be
2722          * set if there are no children.
2723          */
2724         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2725                                 (val == 1 || val == 0)) {
2726                 if (!memcg_has_children(memcg))
2727                         memcg->use_hierarchy = val;
2728                 else
2729                         retval = -EBUSY;
2730         } else
2731                 retval = -EINVAL;
2732
2733         return retval;
2734 }
2735
2736 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2737 {
2738         struct mem_cgroup *iter;
2739         int i;
2740
2741         memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2742
2743         for_each_mem_cgroup_tree(iter, memcg) {
2744                 for (i = 0; i < MEMCG_NR_STAT; i++)
2745                         stat[i] += mem_cgroup_read_stat(iter, i);
2746         }
2747 }
2748
2749 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2750 {
2751         struct mem_cgroup *iter;
2752         int i;
2753
2754         memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2755
2756         for_each_mem_cgroup_tree(iter, memcg) {
2757                 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2758                         events[i] += mem_cgroup_read_events(iter, i);
2759         }
2760 }
2761
2762 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2763 {
2764         unsigned long val = 0;
2765
2766         if (mem_cgroup_is_root(memcg)) {
2767                 struct mem_cgroup *iter;
2768
2769                 for_each_mem_cgroup_tree(iter, memcg) {
2770                         val += mem_cgroup_read_stat(iter,
2771                                         MEM_CGROUP_STAT_CACHE);
2772                         val += mem_cgroup_read_stat(iter,
2773                                         MEM_CGROUP_STAT_RSS);
2774                         if (swap)
2775                                 val += mem_cgroup_read_stat(iter,
2776                                                 MEM_CGROUP_STAT_SWAP);
2777                 }
2778         } else {
2779                 if (!swap)
2780                         val = page_counter_read(&memcg->memory);
2781                 else
2782                         val = page_counter_read(&memcg->memsw);
2783         }
2784         return val;
2785 }
2786
2787 enum {
2788         RES_USAGE,
2789         RES_LIMIT,
2790         RES_MAX_USAGE,
2791         RES_FAILCNT,
2792         RES_SOFT_LIMIT,
2793 };
2794
2795 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2796                                struct cftype *cft)
2797 {
2798         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2799         struct page_counter *counter;
2800
2801         switch (MEMFILE_TYPE(cft->private)) {
2802         case _MEM:
2803                 counter = &memcg->memory;
2804                 break;
2805         case _MEMSWAP:
2806                 counter = &memcg->memsw;
2807                 break;
2808         case _KMEM:
2809                 counter = &memcg->kmem;
2810                 break;
2811         case _TCP:
2812                 counter = &memcg->tcpmem;
2813                 break;
2814         default:
2815                 BUG();
2816         }
2817
2818         switch (MEMFILE_ATTR(cft->private)) {
2819         case RES_USAGE:
2820                 if (counter == &memcg->memory)
2821                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2822                 if (counter == &memcg->memsw)
2823                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2824                 return (u64)page_counter_read(counter) * PAGE_SIZE;
2825         case RES_LIMIT:
2826                 return (u64)counter->limit * PAGE_SIZE;
2827         case RES_MAX_USAGE:
2828                 return (u64)counter->watermark * PAGE_SIZE;
2829         case RES_FAILCNT:
2830                 return counter->failcnt;
2831         case RES_SOFT_LIMIT:
2832                 return (u64)memcg->soft_limit * PAGE_SIZE;
2833         default:
2834                 BUG();
2835         }
2836 }
2837
2838 #ifndef CONFIG_SLOB
2839 static int memcg_online_kmem(struct mem_cgroup *memcg)
2840 {
2841         int memcg_id;
2842
2843         if (cgroup_memory_nokmem)
2844                 return 0;
2845
2846         BUG_ON(memcg->kmemcg_id >= 0);
2847         BUG_ON(memcg->kmem_state);
2848
2849         memcg_id = memcg_alloc_cache_id();
2850         if (memcg_id < 0)
2851                 return memcg_id;
2852
2853         static_branch_inc(&memcg_kmem_enabled_key);
2854         /*
2855          * A memory cgroup is considered kmem-online as soon as it gets
2856          * kmemcg_id. Setting the id after enabling static branching will
2857          * guarantee no one starts accounting before all call sites are
2858          * patched.
2859          */
2860         memcg->kmemcg_id = memcg_id;
2861         memcg->kmem_state = KMEM_ONLINE;
2862
2863         return 0;
2864 }
2865
2866 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2867 {
2868         struct cgroup_subsys_state *css;
2869         struct mem_cgroup *parent, *child;
2870         int kmemcg_id;
2871
2872         if (memcg->kmem_state != KMEM_ONLINE)
2873                 return;
2874         /*
2875          * Clear the online state before clearing memcg_caches array
2876          * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2877          * guarantees that no cache will be created for this cgroup
2878          * after we are done (see memcg_create_kmem_cache()).
2879          */
2880         memcg->kmem_state = KMEM_ALLOCATED;
2881
2882         memcg_deactivate_kmem_caches(memcg);
2883
2884         kmemcg_id = memcg->kmemcg_id;
2885         BUG_ON(kmemcg_id < 0);
2886
2887         parent = parent_mem_cgroup(memcg);
2888         if (!parent)
2889                 parent = root_mem_cgroup;
2890
2891         /*
2892          * Change kmemcg_id of this cgroup and all its descendants to the
2893          * parent's id, and then move all entries from this cgroup's list_lrus
2894          * to ones of the parent. After we have finished, all list_lrus
2895          * corresponding to this cgroup are guaranteed to remain empty. The
2896          * ordering is imposed by list_lru_node->lock taken by
2897          * memcg_drain_all_list_lrus().
2898          */
2899         css_for_each_descendant_pre(css, &memcg->css) {
2900                 child = mem_cgroup_from_css(css);
2901                 BUG_ON(child->kmemcg_id != kmemcg_id);
2902                 child->kmemcg_id = parent->kmemcg_id;
2903                 if (!memcg->use_hierarchy)
2904                         break;
2905         }
2906         memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2907
2908         memcg_free_cache_id(kmemcg_id);
2909 }
2910
2911 static void memcg_free_kmem(struct mem_cgroup *memcg)
2912 {
2913         /* css_alloc() failed, offlining didn't happen */
2914         if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2915                 memcg_offline_kmem(memcg);
2916
2917         if (memcg->kmem_state == KMEM_ALLOCATED) {
2918                 memcg_destroy_kmem_caches(memcg);
2919                 static_branch_dec(&memcg_kmem_enabled_key);
2920                 WARN_ON(page_counter_read(&memcg->kmem));
2921         }
2922 }
2923 #else
2924 static int memcg_online_kmem(struct mem_cgroup *memcg)
2925 {
2926         return 0;
2927 }
2928 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2929 {
2930 }
2931 static void memcg_free_kmem(struct mem_cgroup *memcg)
2932 {
2933 }
2934 #endif /* !CONFIG_SLOB */
2935
2936 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2937                                    unsigned long limit)
2938 {
2939         int ret;
2940
2941         mutex_lock(&memcg_limit_mutex);
2942         ret = page_counter_limit(&memcg->kmem, limit);
2943         mutex_unlock(&memcg_limit_mutex);
2944         return ret;
2945 }
2946
2947 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2948 {
2949         int ret;
2950
2951         mutex_lock(&memcg_limit_mutex);
2952
2953         ret = page_counter_limit(&memcg->tcpmem, limit);
2954         if (ret)
2955                 goto out;
2956
2957         if (!memcg->tcpmem_active) {
2958                 /*
2959                  * The active flag needs to be written after the static_key
2960                  * update. This is what guarantees that the socket activation
2961                  * function is the last one to run. See sock_update_memcg() for
2962                  * details, and note that we don't mark any socket as belonging
2963                  * to this memcg until that flag is up.
2964                  *
2965                  * We need to do this, because static_keys will span multiple
2966                  * sites, but we can't control their order. If we mark a socket
2967                  * as accounted, but the accounting functions are not patched in
2968                  * yet, we'll lose accounting.
2969                  *
2970                  * We never race with the readers in sock_update_memcg(),
2971                  * because when this value change, the code to process it is not
2972                  * patched in yet.
2973                  */
2974                 static_branch_inc(&memcg_sockets_enabled_key);
2975                 memcg->tcpmem_active = true;
2976         }
2977 out:
2978         mutex_unlock(&memcg_limit_mutex);
2979         return ret;
2980 }
2981
2982 /*
2983  * The user of this function is...
2984  * RES_LIMIT.
2985  */
2986 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2987                                 char *buf, size_t nbytes, loff_t off)
2988 {
2989         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2990         unsigned long nr_pages;
2991         int ret;
2992
2993         buf = strstrip(buf);
2994         ret = page_counter_memparse(buf, "-1", &nr_pages);
2995         if (ret)
2996                 return ret;
2997
2998         switch (MEMFILE_ATTR(of_cft(of)->private)) {
2999         case RES_LIMIT:
3000                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3001                         ret = -EINVAL;
3002                         break;
3003                 }
3004                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3005                 case _MEM:
3006                         ret = mem_cgroup_resize_limit(memcg, nr_pages);
3007                         break;
3008                 case _MEMSWAP:
3009                         ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3010                         break;
3011                 case _KMEM:
3012                         ret = memcg_update_kmem_limit(memcg, nr_pages);
3013                         break;
3014                 case _TCP:
3015                         ret = memcg_update_tcp_limit(memcg, nr_pages);
3016                         break;
3017                 }
3018                 break;
3019         case RES_SOFT_LIMIT:
3020                 memcg->soft_limit = nr_pages;
3021                 ret = 0;
3022                 break;
3023         }
3024         return ret ?: nbytes;
3025 }
3026
3027 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3028                                 size_t nbytes, loff_t off)
3029 {
3030         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3031         struct page_counter *counter;
3032
3033         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3034         case _MEM:
3035                 counter = &memcg->memory;
3036                 break;
3037         case _MEMSWAP:
3038                 counter = &memcg->memsw;
3039                 break;
3040         case _KMEM:
3041                 counter = &memcg->kmem;
3042                 break;
3043         case _TCP:
3044                 counter = &memcg->tcpmem;
3045                 break;
3046         default:
3047                 BUG();
3048         }
3049
3050         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3051         case RES_MAX_USAGE:
3052                 page_counter_reset_watermark(counter);
3053                 break;
3054         case RES_FAILCNT:
3055                 counter->failcnt = 0;
3056                 break;
3057         default:
3058                 BUG();
3059         }
3060
3061         return nbytes;
3062 }
3063
3064 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3065                                         struct cftype *cft)
3066 {
3067         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3068 }
3069
3070 #ifdef CONFIG_MMU
3071 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3072                                         struct cftype *cft, u64 val)
3073 {
3074         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3075
3076         if (val & ~MOVE_MASK)
3077                 return -EINVAL;
3078
3079         /*
3080          * No kind of locking is needed in here, because ->can_attach() will
3081          * check this value once in the beginning of the process, and then carry
3082          * on with stale data. This means that changes to this value will only
3083          * affect task migrations starting after the change.
3084          */
3085         memcg->move_charge_at_immigrate = val;
3086         return 0;
3087 }
3088 #else
3089 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3090                                         struct cftype *cft, u64 val)
3091 {
3092         return -ENOSYS;
3093 }
3094 #endif
3095
3096 #ifdef CONFIG_NUMA
3097 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3098 {
3099         struct numa_stat {
3100                 const char *name;
3101                 unsigned int lru_mask;
3102         };
3103
3104         static const struct numa_stat stats[] = {
3105                 { "total", LRU_ALL },
3106                 { "file", LRU_ALL_FILE },
3107                 { "anon", LRU_ALL_ANON },
3108                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3109         };
3110         const struct numa_stat *stat;
3111         int nid;
3112         unsigned long nr;
3113         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3114
3115         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3116                 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3117                 seq_printf(m, "%s=%lu", stat->name, nr);
3118                 for_each_node_state(nid, N_MEMORY) {
3119                         nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3120                                                           stat->lru_mask);
3121                         seq_printf(m, " N%d=%lu", nid, nr);
3122                 }
3123                 seq_putc(m, '\n');
3124         }
3125
3126         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3127                 struct mem_cgroup *iter;
3128
3129                 nr = 0;
3130                 for_each_mem_cgroup_tree(iter, memcg)
3131                         nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3132                 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3133                 for_each_node_state(nid, N_MEMORY) {
3134                         nr = 0;
3135                         for_each_mem_cgroup_tree(iter, memcg)
3136                                 nr += mem_cgroup_node_nr_lru_pages(
3137                                         iter, nid, stat->lru_mask);
3138                         seq_printf(m, " N%d=%lu", nid, nr);
3139                 }
3140                 seq_putc(m, '\n');
3141         }
3142
3143         return 0;
3144 }
3145 #endif /* CONFIG_NUMA */
3146
3147 static int memcg_stat_show(struct seq_file *m, void *v)
3148 {
3149         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3150         unsigned long memory, memsw;
3151         struct mem_cgroup *mi;
3152         unsigned int i;
3153
3154         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3155                      MEM_CGROUP_STAT_NSTATS);
3156         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3157                      MEM_CGROUP_EVENTS_NSTATS);
3158         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3159
3160         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3161                 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3162                         continue;
3163                 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3164                            mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3165         }
3166
3167         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3168                 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3169                            mem_cgroup_read_events(memcg, i));
3170
3171         for (i = 0; i < NR_LRU_LISTS; i++)
3172                 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3173                            mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3174
3175         /* Hierarchical information */
3176         memory = memsw = PAGE_COUNTER_MAX;
3177         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3178                 memory = min(memory, mi->memory.limit);
3179                 memsw = min(memsw, mi->memsw.limit);
3180         }
3181         seq_printf(m, "hierarchical_memory_limit %llu\n",
3182                    (u64)memory * PAGE_SIZE);
3183         if (do_memsw_account())
3184                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3185                            (u64)memsw * PAGE_SIZE);
3186
3187         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3188                 unsigned long long val = 0;
3189
3190                 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3191                         continue;
3192                 for_each_mem_cgroup_tree(mi, memcg)
3193                         val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3194                 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3195         }
3196
3197         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3198                 unsigned long long val = 0;
3199
3200                 for_each_mem_cgroup_tree(mi, memcg)
3201                         val += mem_cgroup_read_events(mi, i);
3202                 seq_printf(m, "total_%s %llu\n",
3203                            mem_cgroup_events_names[i], val);
3204         }
3205
3206         for (i = 0; i < NR_LRU_LISTS; i++) {
3207                 unsigned long long val = 0;
3208
3209                 for_each_mem_cgroup_tree(mi, memcg)
3210                         val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3211                 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3212         }
3213
3214 #ifdef CONFIG_DEBUG_VM
3215         {
3216                 int nid, zid;
3217                 struct mem_cgroup_per_zone *mz;
3218                 struct zone_reclaim_stat *rstat;
3219                 unsigned long recent_rotated[2] = {0, 0};
3220                 unsigned long recent_scanned[2] = {0, 0};
3221
3222                 for_each_online_node(nid)
3223                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3224                                 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3225                                 rstat = &mz->lruvec.reclaim_stat;
3226
3227                                 recent_rotated[0] += rstat->recent_rotated[0];
3228                                 recent_rotated[1] += rstat->recent_rotated[1];
3229                                 recent_scanned[0] += rstat->recent_scanned[0];
3230                                 recent_scanned[1] += rstat->recent_scanned[1];
3231                         }
3232                 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3233                 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3234                 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3235                 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3236         }
3237 #endif
3238
3239         return 0;
3240 }
3241
3242 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3243                                       struct cftype *cft)
3244 {
3245         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3246
3247         return mem_cgroup_swappiness(memcg);
3248 }
3249
3250 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3251                                        struct cftype *cft, u64 val)
3252 {
3253         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3254
3255         if (val > 100)
3256                 return -EINVAL;
3257
3258         if (css->parent)
3259                 memcg->swappiness = val;
3260         else
3261                 vm_swappiness = val;
3262
3263         return 0;
3264 }
3265
3266 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3267 {
3268         struct mem_cgroup_threshold_ary *t;
3269         unsigned long usage;
3270         int i;
3271
3272         rcu_read_lock();
3273         if (!swap)
3274                 t = rcu_dereference(memcg->thresholds.primary);
3275         else
3276                 t = rcu_dereference(memcg->memsw_thresholds.primary);
3277
3278         if (!t)
3279                 goto unlock;
3280
3281         usage = mem_cgroup_usage(memcg, swap);
3282
3283         /*
3284          * current_threshold points to threshold just below or equal to usage.
3285          * If it's not true, a threshold was crossed after last
3286          * call of __mem_cgroup_threshold().
3287          */
3288         i = t->current_threshold;
3289
3290         /*
3291          * Iterate backward over array of thresholds starting from
3292          * current_threshold and check if a threshold is crossed.
3293          * If none of thresholds below usage is crossed, we read
3294          * only one element of the array here.
3295          */
3296         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3297                 eventfd_signal(t->entries[i].eventfd, 1);
3298
3299         /* i = current_threshold + 1 */
3300         i++;
3301
3302         /*
3303          * Iterate forward over array of thresholds starting from
3304          * current_threshold+1 and check if a threshold is crossed.
3305          * If none of thresholds above usage is crossed, we read
3306          * only one element of the array here.
3307          */
3308         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3309                 eventfd_signal(t->entries[i].eventfd, 1);
3310
3311         /* Update current_threshold */
3312         t->current_threshold = i - 1;
3313 unlock:
3314         rcu_read_unlock();
3315 }
3316
3317 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3318 {
3319         while (memcg) {
3320                 __mem_cgroup_threshold(memcg, false);
3321                 if (do_memsw_account())
3322                         __mem_cgroup_threshold(memcg, true);
3323
3324                 memcg = parent_mem_cgroup(memcg);
3325         }
3326 }
3327
3328 static int compare_thresholds(const void *a, const void *b)
3329 {
3330         const struct mem_cgroup_threshold *_a = a;
3331         const struct mem_cgroup_threshold *_b = b;
3332
3333         if (_a->threshold > _b->threshold)
3334                 return 1;
3335
3336         if (_a->threshold < _b->threshold)
3337                 return -1;
3338
3339         return 0;
3340 }
3341
3342 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3343 {
3344         struct mem_cgroup_eventfd_list *ev;
3345
3346         spin_lock(&memcg_oom_lock);
3347
3348         list_for_each_entry(ev, &memcg->oom_notify, list)
3349                 eventfd_signal(ev->eventfd, 1);
3350
3351         spin_unlock(&memcg_oom_lock);
3352         return 0;
3353 }
3354
3355 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3356 {
3357         struct mem_cgroup *iter;
3358
3359         for_each_mem_cgroup_tree(iter, memcg)
3360                 mem_cgroup_oom_notify_cb(iter);
3361 }
3362
3363 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3364         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3365 {
3366         struct mem_cgroup_thresholds *thresholds;
3367         struct mem_cgroup_threshold_ary *new;
3368         unsigned long threshold;
3369         unsigned long usage;
3370         int i, size, ret;
3371
3372         ret = page_counter_memparse(args, "-1", &threshold);
3373         if (ret)
3374                 return ret;
3375
3376         mutex_lock(&memcg->thresholds_lock);
3377
3378         if (type == _MEM) {
3379                 thresholds = &memcg->thresholds;
3380                 usage = mem_cgroup_usage(memcg, false);
3381         } else if (type == _MEMSWAP) {
3382                 thresholds = &memcg->memsw_thresholds;
3383                 usage = mem_cgroup_usage(memcg, true);
3384         } else
3385                 BUG();
3386
3387         /* Check if a threshold crossed before adding a new one */
3388         if (thresholds->primary)
3389                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3390
3391         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3392
3393         /* Allocate memory for new array of thresholds */
3394         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3395                         GFP_KERNEL);
3396         if (!new) {
3397                 ret = -ENOMEM;
3398                 goto unlock;
3399         }
3400         new->size = size;
3401
3402         /* Copy thresholds (if any) to new array */
3403         if (thresholds->primary) {
3404                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3405                                 sizeof(struct mem_cgroup_threshold));
3406         }
3407
3408         /* Add new threshold */
3409         new->entries[size - 1].eventfd = eventfd;
3410         new->entries[size - 1].threshold = threshold;
3411
3412         /* Sort thresholds. Registering of new threshold isn't time-critical */
3413         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3414                         compare_thresholds, NULL);
3415
3416         /* Find current threshold */
3417         new->current_threshold = -1;
3418         for (i = 0; i < size; i++) {
3419                 if (new->entries[i].threshold <= usage) {
3420                         /*
3421                          * new->current_threshold will not be used until
3422                          * rcu_assign_pointer(), so it's safe to increment
3423                          * it here.
3424                          */
3425                         ++new->current_threshold;
3426                 } else
3427                         break;
3428         }
3429
3430         /* Free old spare buffer and save old primary buffer as spare */
3431         kfree(thresholds->spare);
3432         thresholds->spare = thresholds->primary;
3433
3434         rcu_assign_pointer(thresholds->primary, new);
3435
3436         /* To be sure that nobody uses thresholds */
3437         synchronize_rcu();
3438
3439 unlock:
3440         mutex_unlock(&memcg->thresholds_lock);
3441
3442         return ret;
3443 }
3444
3445 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3446         struct eventfd_ctx *eventfd, const char *args)
3447 {
3448         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3449 }
3450
3451 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3452         struct eventfd_ctx *eventfd, const char *args)
3453 {
3454         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3455 }
3456
3457 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3458         struct eventfd_ctx *eventfd, enum res_type type)
3459 {
3460         struct mem_cgroup_thresholds *thresholds;
3461         struct mem_cgroup_threshold_ary *new;
3462         unsigned long usage;
3463         int i, j, size;
3464
3465         mutex_lock(&memcg->thresholds_lock);
3466
3467         if (type == _MEM) {
3468                 thresholds = &memcg->thresholds;
3469                 usage = mem_cgroup_usage(memcg, false);
3470         } else if (type == _MEMSWAP) {
3471                 thresholds = &memcg->memsw_thresholds;
3472                 usage = mem_cgroup_usage(memcg, true);
3473         } else
3474                 BUG();
3475
3476         if (!thresholds->primary)
3477                 goto unlock;
3478
3479         /* Check if a threshold crossed before removing */
3480         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3481
3482         /* Calculate new number of threshold */
3483         size = 0;
3484         for (i = 0; i < thresholds->primary->size; i++) {
3485                 if (thresholds->primary->entries[i].eventfd != eventfd)
3486                         size++;
3487         }
3488
3489         new = thresholds->spare;
3490
3491         /* Set thresholds array to NULL if we don't have thresholds */
3492         if (!size) {
3493                 kfree(new);
3494                 new = NULL;
3495                 goto swap_buffers;
3496         }
3497
3498         new->size = size;
3499
3500         /* Copy thresholds and find current threshold */
3501         new->current_threshold = -1;
3502         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3503                 if (thresholds->primary->entries[i].eventfd == eventfd)
3504                         continue;
3505
3506                 new->entries[j] = thresholds->primary->entries[i];
3507                 if (new->entries[j].threshold <= usage) {
3508                         /*
3509                          * new->current_threshold will not be used
3510                          * until rcu_assign_pointer(), so it's safe to increment
3511                          * it here.
3512                          */
3513                         ++new->current_threshold;
3514                 }
3515                 j++;
3516         }
3517
3518 swap_buffers:
3519         /* Swap primary and spare array */
3520         thresholds->spare = thresholds->primary;
3521
3522         rcu_assign_pointer(thresholds->primary, new);
3523
3524         /* To be sure that nobody uses thresholds */
3525         synchronize_rcu();
3526
3527         /* If all events are unregistered, free the spare array */
3528         if (!new) {
3529                 kfree(thresholds->spare);
3530                 thresholds->spare = NULL;
3531         }
3532 unlock:
3533         mutex_unlock(&memcg->thresholds_lock);
3534 }
3535
3536 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3537         struct eventfd_ctx *eventfd)
3538 {
3539         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3540 }
3541
3542 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3543         struct eventfd_ctx *eventfd)
3544 {
3545         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3546 }
3547
3548 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3549         struct eventfd_ctx *eventfd, const char *args)
3550 {
3551         struct mem_cgroup_eventfd_list *event;
3552
3553         event = kmalloc(sizeof(*event), GFP_KERNEL);
3554         if (!event)
3555                 return -ENOMEM;
3556
3557         spin_lock(&memcg_oom_lock);
3558
3559         event->eventfd = eventfd;
3560         list_add(&event->list, &memcg->oom_notify);
3561
3562         /* already in OOM ? */
3563         if (memcg->under_oom)
3564                 eventfd_signal(eventfd, 1);
3565         spin_unlock(&memcg_oom_lock);
3566
3567         return 0;
3568 }
3569
3570 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3571         struct eventfd_ctx *eventfd)
3572 {
3573         struct mem_cgroup_eventfd_list *ev, *tmp;
3574
3575         spin_lock(&memcg_oom_lock);
3576
3577         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3578                 if (ev->eventfd == eventfd) {
3579                         list_del(&ev->list);
3580                         kfree(ev);
3581                 }
3582         }
3583
3584         spin_unlock(&memcg_oom_lock);
3585 }
3586
3587 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3588 {
3589         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3590
3591         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3592         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3593         return 0;
3594 }
3595
3596 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3597         struct cftype *cft, u64 val)
3598 {
3599         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3600
3601         /* cannot set to root cgroup and only 0 and 1 are allowed */
3602         if (!css->parent || !((val == 0) || (val == 1)))
3603                 return -EINVAL;
3604
3605         memcg->oom_kill_disable = val;
3606         if (!val)
3607                 memcg_oom_recover(memcg);
3608
3609         return 0;
3610 }
3611
3612 #ifdef CONFIG_CGROUP_WRITEBACK
3613
3614 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3615 {
3616         return &memcg->cgwb_list;
3617 }
3618
3619 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3620 {
3621         return wb_domain_init(&memcg->cgwb_domain, gfp);
3622 }
3623
3624 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3625 {
3626         wb_domain_exit(&memcg->cgwb_domain);
3627 }
3628
3629 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3630 {
3631         wb_domain_size_changed(&memcg->cgwb_domain);
3632 }
3633
3634 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3635 {
3636         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3637
3638         if (!memcg->css.parent)
3639                 return NULL;
3640
3641         return &memcg->cgwb_domain;
3642 }
3643
3644 /**
3645  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3646  * @wb: bdi_writeback in question
3647  * @pfilepages: out parameter for number of file pages
3648  * @pheadroom: out parameter for number of allocatable pages according to memcg
3649  * @pdirty: out parameter for number of dirty pages
3650  * @pwriteback: out parameter for number of pages under writeback
3651  *
3652  * Determine the numbers of file, headroom, dirty, and writeback pages in
3653  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3654  * is a bit more involved.
3655  *
3656  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3657  * headroom is calculated as the lowest headroom of itself and the
3658  * ancestors.  Note that this doesn't consider the actual amount of
3659  * available memory in the system.  The caller should further cap
3660  * *@pheadroom accordingly.
3661  */
3662 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3663                          unsigned long *pheadroom, unsigned long *pdirty,
3664                          unsigned long *pwriteback)
3665 {
3666         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3667         struct mem_cgroup *parent;
3668
3669         *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3670
3671         /* this should eventually include NR_UNSTABLE_NFS */
3672         *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3673         *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3674                                                      (1 << LRU_ACTIVE_FILE));
3675         *pheadroom = PAGE_COUNTER_MAX;
3676
3677         while ((parent = parent_mem_cgroup(memcg))) {
3678                 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3679                 unsigned long used = page_counter_read(&memcg->memory);
3680
3681                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3682                 memcg = parent;
3683         }
3684 }
3685
3686 #else   /* CONFIG_CGROUP_WRITEBACK */
3687
3688 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3689 {
3690         return 0;
3691 }
3692
3693 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3694 {
3695 }
3696
3697 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3698 {
3699 }
3700
3701 #endif  /* CONFIG_CGROUP_WRITEBACK */
3702
3703 /*
3704  * DO NOT USE IN NEW FILES.
3705  *
3706  * "cgroup.event_control" implementation.
3707  *
3708  * This is way over-engineered.  It tries to support fully configurable
3709  * events for each user.  Such level of flexibility is completely
3710  * unnecessary especially in the light of the planned unified hierarchy.
3711  *
3712  * Please deprecate this and replace with something simpler if at all
3713  * possible.
3714  */
3715
3716 /*
3717  * Unregister event and free resources.
3718  *
3719  * Gets called from workqueue.
3720  */
3721 static void memcg_event_remove(struct work_struct *work)
3722 {
3723         struct mem_cgroup_event *event =
3724                 container_of(work, struct mem_cgroup_event, remove);
3725         struct mem_cgroup *memcg = event->memcg;
3726
3727         remove_wait_queue(event->wqh, &event->wait);
3728
3729         event->unregister_event(memcg, event->eventfd);
3730
3731         /* Notify userspace the event is going away. */
3732         eventfd_signal(event->eventfd, 1);
3733
3734         eventfd_ctx_put(event->eventfd);
3735         kfree(event);
3736         css_put(&memcg->css);
3737 }
3738
3739 /*
3740  * Gets called on POLLHUP on eventfd when user closes it.
3741  *
3742  * Called with wqh->lock held and interrupts disabled.
3743  */
3744 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3745                             int sync, void *key)
3746 {
3747         struct mem_cgroup_event *event =
3748                 container_of(wait, struct mem_cgroup_event, wait);
3749         struct mem_cgroup *memcg = event->memcg;
3750         unsigned long flags = (unsigned long)key;
3751
3752         if (flags & POLLHUP) {
3753                 /*
3754                  * If the event has been detached at cgroup removal, we
3755                  * can simply return knowing the other side will cleanup
3756                  * for us.
3757                  *
3758                  * We can't race against event freeing since the other
3759                  * side will require wqh->lock via remove_wait_queue(),
3760                  * which we hold.
3761                  */
3762                 spin_lock(&memcg->event_list_lock);
3763                 if (!list_empty(&event->list)) {
3764                         list_del_init(&event->list);
3765                         /*
3766                          * We are in atomic context, but cgroup_event_remove()
3767                          * may sleep, so we have to call it in workqueue.
3768                          */
3769                         schedule_work(&event->remove);
3770                 }
3771                 spin_unlock(&memcg->event_list_lock);
3772         }
3773
3774         return 0;
3775 }
3776
3777 static void memcg_event_ptable_queue_proc(struct file *file,
3778                 wait_queue_head_t *wqh, poll_table *pt)
3779 {
3780         struct mem_cgroup_event *event =
3781                 container_of(pt, struct mem_cgroup_event, pt);
3782
3783         event->wqh = wqh;
3784         add_wait_queue(wqh, &event->wait);
3785 }
3786
3787 /*
3788  * DO NOT USE IN NEW FILES.
3789  *
3790  * Parse input and register new cgroup event handler.
3791  *
3792  * Input must be in format '<event_fd> <control_fd> <args>'.
3793  * Interpretation of args is defined by control file implementation.
3794  */
3795 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3796                                          char *buf, size_t nbytes, loff_t off)
3797 {
3798         struct cgroup_subsys_state *css = of_css(of);
3799         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3800         struct mem_cgroup_event *event;
3801         struct cgroup_subsys_state *cfile_css;
3802         unsigned int efd, cfd;
3803         struct fd efile;
3804         struct fd cfile;
3805         const char *name;
3806         char *endp;
3807         int ret;
3808
3809         buf = strstrip(buf);
3810
3811         efd = simple_strtoul(buf, &endp, 10);
3812         if (*endp != ' ')
3813                 return -EINVAL;
3814         buf = endp + 1;
3815
3816         cfd = simple_strtoul(buf, &endp, 10);
3817         if ((*endp != ' ') && (*endp != '\0'))
3818                 return -EINVAL;
3819         buf = endp + 1;
3820
3821         event = kzalloc(sizeof(*event), GFP_KERNEL);
3822         if (!event)
3823                 return -ENOMEM;
3824
3825         event->memcg = memcg;
3826         INIT_LIST_HEAD(&event->list);
3827         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3828         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3829         INIT_WORK(&event->remove, memcg_event_remove);
3830
3831         efile = fdget(efd);
3832         if (!efile.file) {
3833                 ret = -EBADF;
3834                 goto out_kfree;
3835         }
3836
3837         event->eventfd = eventfd_ctx_fileget(efile.file);
3838         if (IS_ERR(event->eventfd)) {
3839                 ret = PTR_ERR(event->eventfd);
3840                 goto out_put_efile;
3841         }
3842
3843         cfile = fdget(cfd);
3844         if (!cfile.file) {
3845                 ret = -EBADF;
3846                 goto out_put_eventfd;
3847         }
3848
3849         /* the process need read permission on control file */
3850         /* AV: shouldn't we check that it's been opened for read instead? */
3851         ret = inode_permission(file_inode(cfile.file), MAY_READ);
3852         if (ret < 0)
3853                 goto out_put_cfile;
3854
3855         /*
3856          * Determine the event callbacks and set them in @event.  This used
3857          * to be done via struct cftype but cgroup core no longer knows
3858          * about these events.  The following is crude but the whole thing
3859          * is for compatibility anyway.
3860          *
3861          * DO NOT ADD NEW FILES.
3862          */
3863         name = cfile.file->f_path.dentry->d_name.name;
3864
3865         if (!strcmp(name, "memory.usage_in_bytes")) {
3866                 event->register_event = mem_cgroup_usage_register_event;
3867                 event->unregister_event = mem_cgroup_usage_unregister_event;
3868         } else if (!strcmp(name, "memory.oom_control")) {
3869                 event->register_event = mem_cgroup_oom_register_event;
3870                 event->unregister_event = mem_cgroup_oom_unregister_event;
3871         } else if (!strcmp(name, "memory.pressure_level")) {
3872                 event->register_event = vmpressure_register_event;
3873                 event->unregister_event = vmpressure_unregister_event;
3874         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3875                 event->register_event = memsw_cgroup_usage_register_event;
3876                 event->unregister_event = memsw_cgroup_usage_unregister_event;
3877         } else {
3878                 ret = -EINVAL;
3879                 goto out_put_cfile;
3880         }
3881
3882         /*
3883          * Verify @cfile should belong to @css.  Also, remaining events are
3884          * automatically removed on cgroup destruction but the removal is
3885          * asynchronous, so take an extra ref on @css.
3886          */
3887         cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3888                                                &memory_cgrp_subsys);
3889         ret = -EINVAL;
3890         if (IS_ERR(cfile_css))
3891                 goto out_put_cfile;
3892         if (cfile_css != css) {
3893                 css_put(cfile_css);
3894                 goto out_put_cfile;
3895         }
3896
3897         ret = event->register_event(memcg, event->eventfd, buf);
3898         if (ret)
3899                 goto out_put_css;
3900
3901         efile.file->f_op->poll(efile.file, &event->pt);
3902
3903         spin_lock(&memcg->event_list_lock);
3904         list_add(&event->list, &memcg->event_list);
3905         spin_unlock(&memcg->event_list_lock);
3906
3907         fdput(cfile);
3908         fdput(efile);
3909
3910         return nbytes;
3911
3912 out_put_css:
3913         css_put(css);
3914 out_put_cfile:
3915         fdput(cfile);
3916 out_put_eventfd:
3917         eventfd_ctx_put(event->eventfd);
3918 out_put_efile:
3919         fdput(efile);
3920 out_kfree:
3921         kfree(event);
3922
3923         return ret;
3924 }
3925
3926 static struct cftype mem_cgroup_legacy_files[] = {
3927         {
3928                 .name = "usage_in_bytes",
3929                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3930                 .read_u64 = mem_cgroup_read_u64,
3931         },
3932         {
3933                 .name = "max_usage_in_bytes",
3934                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3935                 .write = mem_cgroup_reset,
3936                 .read_u64 = mem_cgroup_read_u64,
3937         },
3938         {
3939                 .name = "limit_in_bytes",
3940                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3941                 .write = mem_cgroup_write,
3942                 .read_u64 = mem_cgroup_read_u64,
3943         },
3944         {
3945                 .name = "soft_limit_in_bytes",
3946                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3947                 .write = mem_cgroup_write,
3948                 .read_u64 = mem_cgroup_read_u64,
3949         },
3950         {
3951                 .name = "failcnt",
3952                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3953                 .write = mem_cgroup_reset,
3954                 .read_u64 = mem_cgroup_read_u64,
3955         },
3956         {
3957                 .name = "stat",
3958                 .seq_show = memcg_stat_show,
3959         },
3960         {
3961                 .name = "force_empty",
3962                 .write = mem_cgroup_force_empty_write,
3963         },
3964         {
3965                 .name = "use_hierarchy",
3966                 .write_u64 = mem_cgroup_hierarchy_write,
3967                 .read_u64 = mem_cgroup_hierarchy_read,
3968         },
3969         {
3970                 .name = "cgroup.event_control",         /* XXX: for compat */
3971                 .write = memcg_write_event_control,
3972                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3973         },
3974         {
3975                 .name = "swappiness",
3976                 .read_u64 = mem_cgroup_swappiness_read,
3977                 .write_u64 = mem_cgroup_swappiness_write,
3978         },
3979         {
3980                 .name = "move_charge_at_immigrate",
3981                 .read_u64 = mem_cgroup_move_charge_read,
3982                 .write_u64 = mem_cgroup_move_charge_write,
3983         },
3984         {
3985                 .name = "oom_control",
3986                 .seq_show = mem_cgroup_oom_control_read,
3987                 .write_u64 = mem_cgroup_oom_control_write,
3988                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3989         },
3990         {
3991                 .name = "pressure_level",
3992         },
3993 #ifdef CONFIG_NUMA
3994         {
3995                 .name = "numa_stat",
3996                 .seq_show = memcg_numa_stat_show,
3997         },
3998 #endif
3999         {
4000                 .name = "kmem.limit_in_bytes",
4001                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4002                 .write = mem_cgroup_write,
4003                 .read_u64 = mem_cgroup_read_u64,
4004         },
4005         {
4006                 .name = "kmem.usage_in_bytes",
4007                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4008                 .read_u64 = mem_cgroup_read_u64,
4009         },
4010         {
4011                 .name = "kmem.failcnt",
4012                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4013                 .write = mem_cgroup_reset,
4014                 .read_u64 = mem_cgroup_read_u64,
4015         },
4016         {
4017                 .name = "kmem.max_usage_in_bytes",
4018                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4019                 .write = mem_cgroup_reset,
4020                 .read_u64 = mem_cgroup_read_u64,
4021         },
4022 #ifdef CONFIG_SLABINFO
4023         {
4024                 .name = "kmem.slabinfo",
4025                 .seq_start = slab_start,
4026                 .seq_next = slab_next,
4027                 .seq_stop = slab_stop,
4028                 .seq_show = memcg_slab_show,
4029         },
4030 #endif
4031         {
4032                 .name = "kmem.tcp.limit_in_bytes",
4033                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4034                 .write = mem_cgroup_write,
4035                 .read_u64 = mem_cgroup_read_u64,
4036         },
4037         {
4038                 .name = "kmem.tcp.usage_in_bytes",
4039                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4040                 .read_u64 = mem_cgroup_read_u64,
4041         },
4042         {
4043                 .name = "kmem.tcp.failcnt",
4044                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4045                 .write = mem_cgroup_reset,
4046                 .read_u64 = mem_cgroup_read_u64,
4047         },
4048         {
4049                 .name = "kmem.tcp.max_usage_in_bytes",
4050                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4051                 .write = mem_cgroup_reset,
4052                 .read_u64 = mem_cgroup_read_u64,
4053         },
4054         { },    /* terminate */
4055 };
4056
4057 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4058 {
4059         struct mem_cgroup_per_node *pn;
4060         struct mem_cgroup_per_zone *mz;
4061         int zone, tmp = node;
4062         /*
4063          * This routine is called against possible nodes.
4064          * But it's BUG to call kmalloc() against offline node.
4065          *
4066          * TODO: this routine can waste much memory for nodes which will
4067          *       never be onlined. It's better to use memory hotplug callback
4068          *       function.
4069          */
4070         if (!node_state(node, N_NORMAL_MEMORY))
4071                 tmp = -1;
4072         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4073         if (!pn)
4074                 return 1;
4075
4076         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4077                 mz = &pn->zoneinfo[zone];
4078                 lruvec_init(&mz->lruvec);
4079                 mz->usage_in_excess = 0;
4080                 mz->on_tree = false;
4081                 mz->memcg = memcg;
4082         }
4083         memcg->nodeinfo[node] = pn;
4084         return 0;
4085 }
4086
4087 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4088 {
4089         kfree(memcg->nodeinfo[node]);
4090 }
4091
4092 static void mem_cgroup_free(struct mem_cgroup *memcg)
4093 {
4094         int node;
4095
4096         memcg_wb_domain_exit(memcg);
4097         for_each_node(node)
4098                 free_mem_cgroup_per_zone_info(memcg, node);
4099         free_percpu(memcg->stat);
4100         kfree(memcg);
4101 }
4102
4103 static struct mem_cgroup *mem_cgroup_alloc(void)
4104 {
4105         struct mem_cgroup *memcg;
4106         size_t size;
4107         int node;
4108
4109         size = sizeof(struct mem_cgroup);
4110         size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4111
4112         memcg = kzalloc(size, GFP_KERNEL);
4113         if (!memcg)
4114                 return NULL;
4115
4116         memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4117         if (!memcg->stat)
4118                 goto fail;
4119
4120         for_each_node(node)
4121                 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4122                         goto fail;
4123
4124         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4125                 goto fail;
4126
4127         INIT_WORK(&memcg->high_work, high_work_func);
4128         memcg->last_scanned_node = MAX_NUMNODES;
4129         INIT_LIST_HEAD(&memcg->oom_notify);
4130         mutex_init(&memcg->thresholds_lock);
4131         spin_lock_init(&memcg->move_lock);
4132         vmpressure_init(&memcg->vmpressure);
4133         INIT_LIST_HEAD(&memcg->event_list);
4134         spin_lock_init(&memcg->event_list_lock);
4135         memcg->socket_pressure = jiffies;
4136 #ifndef CONFIG_SLOB
4137         memcg->kmemcg_id = -1;
4138 #endif
4139 #ifdef CONFIG_CGROUP_WRITEBACK
4140         INIT_LIST_HEAD(&memcg->cgwb_list);
4141 #endif
4142         return memcg;
4143 fail:
4144         mem_cgroup_free(memcg);
4145         return NULL;
4146 }
4147
4148 static struct cgroup_subsys_state * __ref
4149 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4150 {
4151         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4152         struct mem_cgroup *memcg;
4153         long error = -ENOMEM;
4154
4155         memcg = mem_cgroup_alloc();
4156         if (!memcg)
4157                 return ERR_PTR(error);
4158
4159         memcg->high = PAGE_COUNTER_MAX;
4160         memcg->soft_limit = PAGE_COUNTER_MAX;
4161         if (parent) {
4162                 memcg->swappiness = mem_cgroup_swappiness(parent);
4163                 memcg->oom_kill_disable = parent->oom_kill_disable;
4164         }
4165         if (parent && parent->use_hierarchy) {
4166                 memcg->use_hierarchy = true;
4167                 page_counter_init(&memcg->memory, &parent->memory);
4168                 page_counter_init(&memcg->swap, &parent->swap);
4169                 page_counter_init(&memcg->memsw, &parent->memsw);
4170                 page_counter_init(&memcg->kmem, &parent->kmem);
4171                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4172         } else {
4173                 page_counter_init(&memcg->memory, NULL);
4174                 page_counter_init(&memcg->swap, NULL);
4175                 page_counter_init(&memcg->memsw, NULL);
4176                 page_counter_init(&memcg->kmem, NULL);
4177                 page_counter_init(&memcg->tcpmem, NULL);
4178                 /*
4179                  * Deeper hierachy with use_hierarchy == false doesn't make
4180                  * much sense so let cgroup subsystem know about this
4181                  * unfortunate state in our controller.
4182                  */
4183                 if (parent != root_mem_cgroup)
4184                         memory_cgrp_subsys.broken_hierarchy = true;
4185         }
4186
4187         /* The following stuff does not apply to the root */
4188         if (!parent) {
4189                 root_mem_cgroup = memcg;
4190                 return &memcg->css;
4191         }
4192
4193         error = memcg_online_kmem(memcg);
4194         if (error)
4195                 goto fail;
4196
4197         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4198                 static_branch_inc(&memcg_sockets_enabled_key);
4199
4200         return &memcg->css;
4201 fail:
4202         mem_cgroup_free(memcg);
4203         return NULL;
4204 }
4205
4206 static int
4207 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4208 {
4209         if (css->id > MEM_CGROUP_ID_MAX)
4210                 return -ENOSPC;
4211
4212         return 0;
4213 }
4214
4215 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4216 {
4217         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4218         struct mem_cgroup_event *event, *tmp;
4219
4220         /*
4221          * Unregister events and notify userspace.
4222          * Notify userspace about cgroup removing only after rmdir of cgroup
4223          * directory to avoid race between userspace and kernelspace.
4224          */
4225         spin_lock(&memcg->event_list_lock);
4226         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4227                 list_del_init(&event->list);
4228                 schedule_work(&event->remove);
4229         }
4230         spin_unlock(&memcg->event_list_lock);
4231
4232         memcg_offline_kmem(memcg);
4233         wb_memcg_offline(memcg);
4234 }
4235
4236 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4237 {
4238         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4239
4240         invalidate_reclaim_iterators(memcg);
4241 }
4242
4243 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4244 {
4245         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4246
4247         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4248                 static_branch_dec(&memcg_sockets_enabled_key);
4249
4250         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4251                 static_branch_dec(&memcg_sockets_enabled_key);
4252
4253         vmpressure_cleanup(&memcg->vmpressure);
4254         cancel_work_sync(&memcg->high_work);
4255         mem_cgroup_remove_from_trees(memcg);
4256         memcg_free_kmem(memcg);
4257         mem_cgroup_free(memcg);
4258 }
4259
4260 /**
4261  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4262  * @css: the target css
4263  *
4264  * Reset the states of the mem_cgroup associated with @css.  This is
4265  * invoked when the userland requests disabling on the default hierarchy
4266  * but the memcg is pinned through dependency.  The memcg should stop
4267  * applying policies and should revert to the vanilla state as it may be
4268  * made visible again.
4269  *
4270  * The current implementation only resets the essential configurations.
4271  * This needs to be expanded to cover all the visible parts.
4272  */
4273 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4274 {
4275         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4276
4277         page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4278         page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4279         page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4280         page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4281         page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4282         memcg->low = 0;
4283         memcg->high = PAGE_COUNTER_MAX;
4284         memcg->soft_limit = PAGE_COUNTER_MAX;
4285         memcg_wb_domain_size_changed(memcg);
4286 }
4287
4288 #ifdef CONFIG_MMU
4289 /* Handlers for move charge at task migration. */
4290 static int mem_cgroup_do_precharge(unsigned long count)
4291 {
4292         int ret;
4293
4294         /* Try a single bulk charge without reclaim first, kswapd may wake */
4295         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4296         if (!ret) {
4297                 mc.precharge += count;
4298                 return ret;
4299         }
4300
4301         /* Try charges one by one with reclaim */
4302         while (count--) {
4303                 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4304                 if (ret)
4305                         return ret;
4306                 mc.precharge++;
4307                 cond_resched();
4308         }
4309         return 0;
4310 }
4311
4312 union mc_target {
4313         struct page     *page;
4314         swp_entry_t     ent;
4315 };
4316
4317 enum mc_target_type {
4318         MC_TARGET_NONE = 0,
4319         MC_TARGET_PAGE,
4320         MC_TARGET_SWAP,
4321 };
4322
4323 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4324                                                 unsigned long addr, pte_t ptent)
4325 {
4326         struct page *page = vm_normal_page(vma, addr, ptent);
4327
4328         if (!page || !page_mapped(page))
4329                 return NULL;
4330         if (PageAnon(page)) {
4331                 if (!(mc.flags & MOVE_ANON))
4332                         return NULL;
4333         } else {
4334                 if (!(mc.flags & MOVE_FILE))
4335                         return NULL;
4336         }
4337         if (!get_page_unless_zero(page))
4338                 return NULL;
4339
4340         return page;
4341 }
4342
4343 #ifdef CONFIG_SWAP
4344 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4345                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4346 {
4347         struct page *page = NULL;
4348         swp_entry_t ent = pte_to_swp_entry(ptent);
4349
4350         if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4351                 return NULL;
4352         /*
4353          * Because lookup_swap_cache() updates some statistics counter,
4354          * we call find_get_page() with swapper_space directly.
4355          */
4356         page = find_get_page(swap_address_space(ent), ent.val);
4357         if (do_memsw_account())
4358                 entry->val = ent.val;
4359
4360         return page;
4361 }
4362 #else
4363 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4364                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4365 {
4366         return NULL;
4367 }
4368 #endif
4369
4370 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4371                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4372 {
4373         struct page *page = NULL;
4374         struct address_space *mapping;
4375         pgoff_t pgoff;
4376
4377         if (!vma->vm_file) /* anonymous vma */
4378                 return NULL;
4379         if (!(mc.flags & MOVE_FILE))
4380                 return NULL;
4381
4382         mapping = vma->vm_file->f_mapping;
4383         pgoff = linear_page_index(vma, addr);
4384
4385         /* page is moved even if it's not RSS of this task(page-faulted). */
4386 #ifdef CONFIG_SWAP
4387         /* shmem/tmpfs may report page out on swap: account for that too. */
4388         if (shmem_mapping(mapping)) {
4389                 page = find_get_entry(mapping, pgoff);
4390                 if (radix_tree_exceptional_entry(page)) {
4391                         swp_entry_t swp = radix_to_swp_entry(page);
4392                         if (do_memsw_account())
4393                                 *entry = swp;
4394                         page = find_get_page(swap_address_space(swp), swp.val);
4395                 }
4396         } else
4397                 page = find_get_page(mapping, pgoff);
4398 #else
4399         page = find_get_page(mapping, pgoff);
4400 #endif
4401         return page;
4402 }
4403
4404 /**
4405  * mem_cgroup_move_account - move account of the page
4406  * @page: the page
4407  * @nr_pages: number of regular pages (>1 for huge pages)
4408  * @from: mem_cgroup which the page is moved from.
4409  * @to: mem_cgroup which the page is moved to. @from != @to.
4410  *
4411  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4412  *
4413  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4414  * from old cgroup.
4415  */
4416 static int mem_cgroup_move_account(struct page *page,
4417                                    bool compound,
4418                                    struct mem_cgroup *from,
4419                                    struct mem_cgroup *to)
4420 {
4421         unsigned long flags;
4422         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4423         int ret;
4424         bool anon;
4425
4426         VM_BUG_ON(from == to);
4427         VM_BUG_ON_PAGE(PageLRU(page), page);
4428         VM_BUG_ON(compound && !PageTransHuge(page));
4429
4430         /*
4431          * Prevent mem_cgroup_migrate() from looking at
4432          * page->mem_cgroup of its source page while we change it.
4433          */
4434         ret = -EBUSY;
4435         if (!trylock_page(page))
4436                 goto out;
4437
4438         ret = -EINVAL;
4439         if (page->mem_cgroup != from)
4440                 goto out_unlock;
4441
4442         anon = PageAnon(page);
4443
4444         spin_lock_irqsave(&from->move_lock, flags);
4445
4446         if (!anon && page_mapped(page)) {
4447                 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4448                                nr_pages);
4449                 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4450                                nr_pages);
4451         }
4452
4453         /*
4454          * move_lock grabbed above and caller set from->moving_account, so
4455          * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4456          * So mapping should be stable for dirty pages.
4457          */
4458         if (!anon && PageDirty(page)) {
4459                 struct address_space *mapping = page_mapping(page);
4460
4461                 if (mapping_cap_account_dirty(mapping)) {
4462                         __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4463                                        nr_pages);
4464                         __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4465                                        nr_pages);
4466                 }
4467         }
4468
4469         if (PageWriteback(page)) {
4470                 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4471                                nr_pages);
4472                 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4473                                nr_pages);
4474         }
4475
4476         /*
4477          * It is safe to change page->mem_cgroup here because the page
4478          * is referenced, charged, and isolated - we can't race with
4479          * uncharging, charging, migration, or LRU putback.
4480          */
4481
4482         /* caller should have done css_get */
4483         page->mem_cgroup = to;
4484         spin_unlock_irqrestore(&from->move_lock, flags);
4485
4486         ret = 0;
4487
4488         local_irq_disable();
4489         mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4490         memcg_check_events(to, page);
4491         mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4492         memcg_check_events(from, page);
4493         local_irq_enable();
4494 out_unlock:
4495         unlock_page(page);
4496 out:
4497         return ret;
4498 }
4499
4500 /**
4501  * get_mctgt_type - get target type of moving charge
4502  * @vma: the vma the pte to be checked belongs
4503  * @addr: the address corresponding to the pte to be checked
4504  * @ptent: the pte to be checked
4505  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4506  *
4507  * Returns
4508  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4509  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4510  *     move charge. if @target is not NULL, the page is stored in target->page
4511  *     with extra refcnt got(Callers should handle it).
4512  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4513  *     target for charge migration. if @target is not NULL, the entry is stored
4514  *     in target->ent.
4515  *
4516  * Called with pte lock held.
4517  */
4518
4519 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4520                 unsigned long addr, pte_t ptent, union mc_target *target)
4521 {
4522         struct page *page = NULL;
4523         enum mc_target_type ret = MC_TARGET_NONE;
4524         swp_entry_t ent = { .val = 0 };
4525
4526         if (pte_present(ptent))
4527                 page = mc_handle_present_pte(vma, addr, ptent);
4528         else if (is_swap_pte(ptent))
4529                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4530         else if (pte_none(ptent))
4531                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4532
4533         if (!page && !ent.val)
4534                 return ret;
4535         if (page) {
4536                 /*
4537                  * Do only loose check w/o serialization.
4538                  * mem_cgroup_move_account() checks the page is valid or
4539                  * not under LRU exclusion.
4540                  */
4541                 if (page->mem_cgroup == mc.from) {
4542                         ret = MC_TARGET_PAGE;
4543                         if (target)
4544                                 target->page = page;
4545                 }
4546                 if (!ret || !target)
4547                         put_page(page);
4548         }
4549         /* There is a swap entry and a page doesn't exist or isn't charged */
4550         if (ent.val && !ret &&
4551             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4552                 ret = MC_TARGET_SWAP;
4553                 if (target)
4554                         target->ent = ent;
4555         }
4556         return ret;
4557 }
4558
4559 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4560 /*
4561  * We don't consider swapping or file mapped pages because THP does not
4562  * support them for now.
4563  * Caller should make sure that pmd_trans_huge(pmd) is true.
4564  */
4565 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4566                 unsigned long addr, pmd_t pmd, union mc_target *target)
4567 {
4568         struct page *page = NULL;
4569         enum mc_target_type ret = MC_TARGET_NONE;
4570
4571         page = pmd_page(pmd);
4572         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4573         if (!(mc.flags & MOVE_ANON))
4574                 return ret;
4575         if (page->mem_cgroup == mc.from) {
4576                 ret = MC_TARGET_PAGE;
4577                 if (target) {
4578                         get_page(page);
4579                         target->page = page;
4580                 }
4581         }
4582         return ret;
4583 }
4584 #else
4585 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4586                 unsigned long addr, pmd_t pmd, union mc_target *target)
4587 {
4588         return MC_TARGET_NONE;
4589 }
4590 #endif
4591
4592 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4593                                         unsigned long addr, unsigned long end,
4594                                         struct mm_walk *walk)
4595 {
4596         struct vm_area_struct *vma = walk->vma;
4597         pte_t *pte;
4598         spinlock_t *ptl;
4599
4600         ptl = pmd_trans_huge_lock(pmd, vma);
4601         if (ptl) {
4602                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4603                         mc.precharge += HPAGE_PMD_NR;
4604                 spin_unlock(ptl);
4605                 return 0;
4606         }
4607
4608         if (pmd_trans_unstable(pmd))
4609                 return 0;
4610         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4611         for (; addr != end; pte++, addr += PAGE_SIZE)
4612                 if (get_mctgt_type(vma, addr, *pte, NULL))
4613                         mc.precharge++; /* increment precharge temporarily */
4614         pte_unmap_unlock(pte - 1, ptl);
4615         cond_resched();
4616
4617         return 0;
4618 }
4619
4620 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4621 {
4622         unsigned long precharge;
4623
4624         struct mm_walk mem_cgroup_count_precharge_walk = {
4625                 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4626                 .mm = mm,
4627         };
4628         down_read(&mm->mmap_sem);
4629         walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4630         up_read(&mm->mmap_sem);
4631
4632         precharge = mc.precharge;
4633         mc.precharge = 0;
4634
4635         return precharge;
4636 }
4637
4638 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4639 {
4640         unsigned long precharge = mem_cgroup_count_precharge(mm);
4641
4642         VM_BUG_ON(mc.moving_task);
4643         mc.moving_task = current;
4644         return mem_cgroup_do_precharge(precharge);
4645 }
4646
4647 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4648 static void __mem_cgroup_clear_mc(void)
4649 {
4650         struct mem_cgroup *from = mc.from;
4651         struct mem_cgroup *to = mc.to;
4652
4653         /* we must uncharge all the leftover precharges from mc.to */
4654         if (mc.precharge) {
4655                 cancel_charge(mc.to, mc.precharge);
4656                 mc.precharge = 0;
4657         }
4658         /*
4659          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4660          * we must uncharge here.
4661          */
4662         if (mc.moved_charge) {
4663                 cancel_charge(mc.from, mc.moved_charge);
4664                 mc.moved_charge = 0;
4665         }
4666         /* we must fixup refcnts and charges */
4667         if (mc.moved_swap) {
4668                 /* uncharge swap account from the old cgroup */
4669                 if (!mem_cgroup_is_root(mc.from))
4670                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4671
4672                 /*
4673                  * we charged both to->memory and to->memsw, so we
4674                  * should uncharge to->memory.
4675                  */
4676                 if (!mem_cgroup_is_root(mc.to))
4677                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4678
4679                 css_put_many(&mc.from->css, mc.moved_swap);
4680
4681                 /* we've already done css_get(mc.to) */
4682                 mc.moved_swap = 0;
4683         }
4684         memcg_oom_recover(from);
4685         memcg_oom_recover(to);
4686         wake_up_all(&mc.waitq);
4687 }
4688
4689 static void mem_cgroup_clear_mc(void)
4690 {
4691         struct mm_struct *mm = mc.mm;
4692
4693         /*
4694          * we must clear moving_task before waking up waiters at the end of
4695          * task migration.
4696          */
4697         mc.moving_task = NULL;
4698         __mem_cgroup_clear_mc();
4699         spin_lock(&mc.lock);
4700         mc.from = NULL;
4701         mc.to = NULL;
4702         mc.mm = NULL;
4703         spin_unlock(&mc.lock);
4704
4705         mmput(mm);
4706 }
4707
4708 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4709 {
4710         struct cgroup_subsys_state *css;
4711         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4712         struct mem_cgroup *from;
4713         struct task_struct *leader, *p;
4714         struct mm_struct *mm;
4715         unsigned long move_flags;
4716         int ret = 0;
4717
4718         /* charge immigration isn't supported on the default hierarchy */
4719         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4720                 return 0;
4721
4722         /*
4723          * Multi-process migrations only happen on the default hierarchy
4724          * where charge immigration is not used.  Perform charge
4725          * immigration if @tset contains a leader and whine if there are
4726          * multiple.
4727          */
4728         p = NULL;
4729         cgroup_taskset_for_each_leader(leader, css, tset) {
4730                 WARN_ON_ONCE(p);
4731                 p = leader;
4732                 memcg = mem_cgroup_from_css(css);
4733         }
4734         if (!p)
4735                 return 0;
4736
4737         /*
4738          * We are now commited to this value whatever it is. Changes in this
4739          * tunable will only affect upcoming migrations, not the current one.
4740          * So we need to save it, and keep it going.
4741          */
4742         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4743         if (!move_flags)
4744                 return 0;
4745
4746         from = mem_cgroup_from_task(p);
4747
4748         VM_BUG_ON(from == memcg);
4749
4750         mm = get_task_mm(p);
4751         if (!mm)
4752                 return 0;
4753         /* We move charges only when we move a owner of the mm */
4754         if (mm->owner == p) {
4755                 VM_BUG_ON(mc.from);
4756                 VM_BUG_ON(mc.to);
4757                 VM_BUG_ON(mc.precharge);
4758                 VM_BUG_ON(mc.moved_charge);
4759                 VM_BUG_ON(mc.moved_swap);
4760
4761                 spin_lock(&mc.lock);
4762                 mc.mm = mm;
4763                 mc.from = from;
4764                 mc.to = memcg;
4765                 mc.flags = move_flags;
4766                 spin_unlock(&mc.lock);
4767                 /* We set mc.moving_task later */
4768
4769                 ret = mem_cgroup_precharge_mc(mm);
4770                 if (ret)
4771                         mem_cgroup_clear_mc();
4772         } else {
4773                 mmput(mm);
4774         }
4775         return ret;
4776 }
4777
4778 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4779 {
4780         if (mc.to)
4781                 mem_cgroup_clear_mc();
4782 }
4783
4784 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4785                                 unsigned long addr, unsigned long end,
4786                                 struct mm_walk *walk)
4787 {
4788         int ret = 0;
4789         struct vm_area_struct *vma = walk->vma;
4790         pte_t *pte;
4791         spinlock_t *ptl;
4792         enum mc_target_type target_type;
4793         union mc_target target;
4794         struct page *page;
4795
4796         ptl = pmd_trans_huge_lock(pmd, vma);
4797         if (ptl) {
4798                 if (mc.precharge < HPAGE_PMD_NR) {
4799                         spin_unlock(ptl);
4800                         return 0;
4801                 }
4802                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4803                 if (target_type == MC_TARGET_PAGE) {
4804                         page = target.page;
4805                         if (!isolate_lru_page(page)) {
4806                                 if (!mem_cgroup_move_account(page, true,
4807                                                              mc.from, mc.to)) {
4808                                         mc.precharge -= HPAGE_PMD_NR;
4809                                         mc.moved_charge += HPAGE_PMD_NR;
4810                                 }
4811                                 putback_lru_page(page);
4812                         }
4813                         put_page(page);
4814                 }
4815                 spin_unlock(ptl);
4816                 return 0;
4817         }
4818
4819         if (pmd_trans_unstable(pmd))
4820                 return 0;
4821 retry:
4822         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4823         for (; addr != end; addr += PAGE_SIZE) {
4824                 pte_t ptent = *(pte++);
4825                 swp_entry_t ent;
4826
4827                 if (!mc.precharge)
4828                         break;
4829
4830                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4831                 case MC_TARGET_PAGE:
4832                         page = target.page;
4833                         /*
4834                          * We can have a part of the split pmd here. Moving it
4835                          * can be done but it would be too convoluted so simply
4836                          * ignore such a partial THP and keep it in original
4837                          * memcg. There should be somebody mapping the head.
4838                          */
4839                         if (PageTransCompound(page))
4840                                 goto put;
4841                         if (isolate_lru_page(page))
4842                                 goto put;
4843                         if (!mem_cgroup_move_account(page, false,
4844                                                 mc.from, mc.to)) {
4845                                 mc.precharge--;
4846                                 /* we uncharge from mc.from later. */
4847                                 mc.moved_charge++;
4848                         }
4849                         putback_lru_page(page);
4850 put:                    /* get_mctgt_type() gets the page */
4851                         put_page(page);
4852                         break;
4853                 case MC_TARGET_SWAP:
4854                         ent = target.ent;
4855                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4856                                 mc.precharge--;
4857                                 /* we fixup refcnts and charges later. */
4858                                 mc.moved_swap++;
4859                         }
4860                         break;
4861                 default:
4862                         break;
4863                 }
4864         }
4865         pte_unmap_unlock(pte - 1, ptl);
4866         cond_resched();
4867
4868         if (addr != end) {
4869                 /*
4870                  * We have consumed all precharges we got in can_attach().
4871                  * We try charge one by one, but don't do any additional
4872                  * charges to mc.to if we have failed in charge once in attach()
4873                  * phase.
4874                  */
4875                 ret = mem_cgroup_do_precharge(1);
4876                 if (!ret)
4877                         goto retry;
4878         }
4879
4880         return ret;
4881 }
4882
4883 static void mem_cgroup_move_charge(void)
4884 {
4885         struct mm_walk mem_cgroup_move_charge_walk = {
4886                 .pmd_entry = mem_cgroup_move_charge_pte_range,
4887                 .mm = mc.mm,
4888         };
4889
4890         lru_add_drain_all();
4891         /*
4892          * Signal lock_page_memcg() to take the memcg's move_lock
4893          * while we're moving its pages to another memcg. Then wait
4894          * for already started RCU-only updates to finish.
4895          */
4896         atomic_inc(&mc.from->moving_account);
4897         synchronize_rcu();
4898 retry:
4899         if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4900                 /*
4901                  * Someone who are holding the mmap_sem might be waiting in
4902                  * waitq. So we cancel all extra charges, wake up all waiters,
4903                  * and retry. Because we cancel precharges, we might not be able
4904                  * to move enough charges, but moving charge is a best-effort
4905                  * feature anyway, so it wouldn't be a big problem.
4906                  */
4907                 __mem_cgroup_clear_mc();
4908                 cond_resched();
4909                 goto retry;
4910         }
4911         /*
4912          * When we have consumed all precharges and failed in doing
4913          * additional charge, the page walk just aborts.
4914          */
4915         walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4916         up_read(&mc.mm->mmap_sem);
4917         atomic_dec(&mc.from->moving_account);
4918 }
4919
4920 static void mem_cgroup_move_task(void)
4921 {
4922         if (mc.to) {
4923                 mem_cgroup_move_charge();
4924                 mem_cgroup_clear_mc();
4925         }
4926 }
4927 #else   /* !CONFIG_MMU */
4928 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4929 {
4930         return 0;
4931 }
4932 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4933 {
4934 }
4935 static void mem_cgroup_move_task(void)
4936 {
4937 }
4938 #endif
4939
4940 /*
4941  * Cgroup retains root cgroups across [un]mount cycles making it necessary
4942  * to verify whether we're attached to the default hierarchy on each mount
4943  * attempt.
4944  */
4945 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4946 {
4947         /*
4948          * use_hierarchy is forced on the default hierarchy.  cgroup core
4949          * guarantees that @root doesn't have any children, so turning it
4950          * on for the root memcg is enough.
4951          */
4952         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4953                 root_mem_cgroup->use_hierarchy = true;
4954         else
4955                 root_mem_cgroup->use_hierarchy = false;
4956 }
4957
4958 static u64 memory_current_read(struct cgroup_subsys_state *css,
4959                                struct cftype *cft)
4960 {
4961         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4962
4963         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4964 }
4965
4966 static int memory_low_show(struct seq_file *m, void *v)
4967 {
4968         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4969         unsigned long low = READ_ONCE(memcg->low);
4970
4971         if (low == PAGE_COUNTER_MAX)
4972                 seq_puts(m, "max\n");
4973         else
4974                 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4975
4976         return 0;
4977 }
4978
4979 static ssize_t memory_low_write(struct kernfs_open_file *of,
4980                                 char *buf, size_t nbytes, loff_t off)
4981 {
4982         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4983         unsigned long low;
4984         int err;
4985
4986         buf = strstrip(buf);
4987         err = page_counter_memparse(buf, "max", &low);
4988         if (err)
4989                 return err;
4990
4991         memcg->low = low;
4992
4993         return nbytes;
4994 }
4995
4996 static int memory_high_show(struct seq_file *m, void *v)
4997 {
4998         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4999         unsigned long high = READ_ONCE(memcg->high);
5000
5001         if (high == PAGE_COUNTER_MAX)
5002                 seq_puts(m, "max\n");
5003         else
5004                 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5005
5006         return 0;
5007 }
5008
5009 static ssize_t memory_high_write(struct kernfs_open_file *of,
5010                                  char *buf, size_t nbytes, loff_t off)
5011 {
5012         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5013         unsigned long nr_pages;
5014         unsigned long high;
5015         int err;
5016
5017         buf = strstrip(buf);
5018         err = page_counter_memparse(buf, "max", &high);
5019         if (err)
5020                 return err;
5021
5022         memcg->high = high;
5023
5024         nr_pages = page_counter_read(&memcg->memory);
5025         if (nr_pages > high)
5026                 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5027                                              GFP_KERNEL, true);
5028
5029         memcg_wb_domain_size_changed(memcg);
5030         return nbytes;
5031 }
5032
5033 static int memory_max_show(struct seq_file *m, void *v)
5034 {
5035         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5036         unsigned long max = READ_ONCE(memcg->memory.limit);
5037
5038         if (max == PAGE_COUNTER_MAX)
5039                 seq_puts(m, "max\n");
5040         else
5041                 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5042
5043         return 0;
5044 }
5045
5046 static ssize_t memory_max_write(struct kernfs_open_file *of,
5047                                 char *buf, size_t nbytes, loff_t off)
5048 {
5049         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5050         unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5051         bool drained = false;
5052         unsigned long max;
5053         int err;
5054
5055         buf = strstrip(buf);
5056         err = page_counter_memparse(buf, "max", &max);
5057         if (err)
5058                 return err;
5059
5060         xchg(&memcg->memory.limit, max);
5061
5062         for (;;) {
5063                 unsigned long nr_pages = page_counter_read(&memcg->memory);
5064
5065                 if (nr_pages <= max)
5066                         break;
5067
5068                 if (signal_pending(current)) {
5069                         err = -EINTR;
5070                         break;
5071                 }
5072
5073                 if (!drained) {
5074                         drain_all_stock(memcg);
5075                         drained = true;
5076                         continue;
5077                 }
5078
5079                 if (nr_reclaims) {
5080                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5081                                                           GFP_KERNEL, true))
5082                                 nr_reclaims--;
5083                         continue;
5084                 }
5085
5086                 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5087                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5088                         break;
5089         }
5090
5091         memcg_wb_domain_size_changed(memcg);
5092         return nbytes;
5093 }
5094
5095 static int memory_events_show(struct seq_file *m, void *v)
5096 {
5097         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5098
5099         seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5100         seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5101         seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5102         seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5103
5104         return 0;
5105 }
5106
5107 static int memory_stat_show(struct seq_file *m, void *v)
5108 {
5109         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5110         unsigned long stat[MEMCG_NR_STAT];
5111         unsigned long events[MEMCG_NR_EVENTS];
5112         int i;
5113
5114         /*
5115          * Provide statistics on the state of the memory subsystem as
5116          * well as cumulative event counters that show past behavior.
5117          *
5118          * This list is ordered following a combination of these gradients:
5119          * 1) generic big picture -> specifics and details
5120          * 2) reflecting userspace activity -> reflecting kernel heuristics
5121          *
5122          * Current memory state:
5123          */
5124
5125         tree_stat(memcg, stat);
5126         tree_events(memcg, events);
5127
5128         seq_printf(m, "anon %llu\n",
5129                    (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5130         seq_printf(m, "file %llu\n",
5131                    (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5132         seq_printf(m, "kernel_stack %llu\n",
5133                    (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5134         seq_printf(m, "slab %llu\n",
5135                    (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5136                          stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5137         seq_printf(m, "sock %llu\n",
5138                    (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5139
5140         seq_printf(m, "file_mapped %llu\n",
5141                    (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5142         seq_printf(m, "file_dirty %llu\n",
5143                    (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5144         seq_printf(m, "file_writeback %llu\n",
5145                    (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5146
5147         for (i = 0; i < NR_LRU_LISTS; i++) {
5148                 struct mem_cgroup *mi;
5149                 unsigned long val = 0;
5150
5151                 for_each_mem_cgroup_tree(mi, memcg)
5152                         val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5153                 seq_printf(m, "%s %llu\n",
5154                            mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5155         }
5156
5157         seq_printf(m, "slab_reclaimable %llu\n",
5158                    (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5159         seq_printf(m, "slab_unreclaimable %llu\n",
5160                    (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5161
5162         /* Accumulated memory events */
5163
5164         seq_printf(m, "pgfault %lu\n",
5165                    events[MEM_CGROUP_EVENTS_PGFAULT]);
5166         seq_printf(m, "pgmajfault %lu\n",
5167                    events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5168
5169         return 0;
5170 }
5171
5172 static struct cftype memory_files[] = {
5173         {
5174                 .name = "current",
5175                 .flags = CFTYPE_NOT_ON_ROOT,
5176                 .read_u64 = memory_current_read,
5177         },
5178         {
5179                 .name = "low",
5180                 .flags = CFTYPE_NOT_ON_ROOT,
5181                 .seq_show = memory_low_show,
5182                 .write = memory_low_write,
5183         },
5184         {
5185                 .name = "high",
5186                 .flags = CFTYPE_NOT_ON_ROOT,
5187                 .seq_show = memory_high_show,
5188                 .write = memory_high_write,
5189         },
5190         {
5191                 .name = "max",
5192                 .flags = CFTYPE_NOT_ON_ROOT,
5193                 .seq_show = memory_max_show,
5194                 .write = memory_max_write,
5195         },
5196         {
5197                 .name = "events",
5198                 .flags = CFTYPE_NOT_ON_ROOT,
5199                 .file_offset = offsetof(struct mem_cgroup, events_file),
5200                 .seq_show = memory_events_show,
5201         },
5202         {
5203                 .name = "stat",
5204                 .flags = CFTYPE_NOT_ON_ROOT,
5205                 .seq_show = memory_stat_show,
5206         },
5207         { }     /* terminate */
5208 };
5209
5210 struct cgroup_subsys memory_cgrp_subsys = {
5211         .css_alloc = mem_cgroup_css_alloc,
5212         .css_online = mem_cgroup_css_online,
5213         .css_offline = mem_cgroup_css_offline,
5214         .css_released = mem_cgroup_css_released,
5215         .css_free = mem_cgroup_css_free,
5216         .css_reset = mem_cgroup_css_reset,
5217         .can_attach = mem_cgroup_can_attach,
5218         .cancel_attach = mem_cgroup_cancel_attach,
5219         .post_attach = mem_cgroup_move_task,
5220         .bind = mem_cgroup_bind,
5221         .dfl_cftypes = memory_files,
5222         .legacy_cftypes = mem_cgroup_legacy_files,
5223         .early_init = 0,
5224 };
5225
5226 /**
5227  * mem_cgroup_low - check if memory consumption is below the normal range
5228  * @root: the highest ancestor to consider
5229  * @memcg: the memory cgroup to check
5230  *
5231  * Returns %true if memory consumption of @memcg, and that of all
5232  * configurable ancestors up to @root, is below the normal range.
5233  */
5234 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5235 {
5236         if (mem_cgroup_disabled())
5237                 return false;
5238
5239         /*
5240          * The toplevel group doesn't have a configurable range, so
5241          * it's never low when looked at directly, and it is not
5242          * considered an ancestor when assessing the hierarchy.
5243          */
5244
5245         if (memcg == root_mem_cgroup)
5246                 return false;
5247
5248         if (page_counter_read(&memcg->memory) >= memcg->low)
5249                 return false;
5250
5251         while (memcg != root) {
5252                 memcg = parent_mem_cgroup(memcg);
5253
5254                 if (memcg == root_mem_cgroup)
5255                         break;
5256
5257                 if (page_counter_read(&memcg->memory) >= memcg->low)
5258                         return false;
5259         }
5260         return true;
5261 }
5262
5263 /**
5264  * mem_cgroup_try_charge - try charging a page
5265  * @page: page to charge
5266  * @mm: mm context of the victim
5267  * @gfp_mask: reclaim mode
5268  * @memcgp: charged memcg return
5269  *
5270  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5271  * pages according to @gfp_mask if necessary.
5272  *
5273  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5274  * Otherwise, an error code is returned.
5275  *
5276  * After page->mapping has been set up, the caller must finalize the
5277  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5278  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5279  */
5280 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5281                           gfp_t gfp_mask, struct mem_cgroup **memcgp,
5282                           bool compound)
5283 {
5284         struct mem_cgroup *memcg = NULL;
5285         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5286         int ret = 0;
5287
5288         if (mem_cgroup_disabled())
5289                 goto out;
5290
5291         if (PageSwapCache(page)) {
5292                 /*
5293                  * Every swap fault against a single page tries to charge the
5294                  * page, bail as early as possible.  shmem_unuse() encounters
5295                  * already charged pages, too.  The USED bit is protected by
5296                  * the page lock, which serializes swap cache removal, which
5297                  * in turn serializes uncharging.
5298                  */
5299                 VM_BUG_ON_PAGE(!PageLocked(page), page);
5300                 if (page->mem_cgroup)
5301                         goto out;
5302
5303                 if (do_swap_account) {
5304                         swp_entry_t ent = { .val = page_private(page), };
5305                         unsigned short id = lookup_swap_cgroup_id(ent);
5306
5307                         rcu_read_lock();
5308                         memcg = mem_cgroup_from_id(id);
5309                         if (memcg && !css_tryget_online(&memcg->css))
5310                                 memcg = NULL;
5311                         rcu_read_unlock();
5312                 }
5313         }
5314
5315         if (!memcg)
5316                 memcg = get_mem_cgroup_from_mm(mm);
5317
5318         ret = try_charge(memcg, gfp_mask, nr_pages);
5319
5320         css_put(&memcg->css);
5321 out:
5322         *memcgp = memcg;
5323         return ret;
5324 }
5325
5326 /**
5327  * mem_cgroup_commit_charge - commit a page charge
5328  * @page: page to charge
5329  * @memcg: memcg to charge the page to
5330  * @lrucare: page might be on LRU already
5331  *
5332  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5333  * after page->mapping has been set up.  This must happen atomically
5334  * as part of the page instantiation, i.e. under the page table lock
5335  * for anonymous pages, under the page lock for page and swap cache.
5336  *
5337  * In addition, the page must not be on the LRU during the commit, to
5338  * prevent racing with task migration.  If it might be, use @lrucare.
5339  *
5340  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5341  */
5342 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5343                               bool lrucare, bool compound)
5344 {
5345         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5346
5347         VM_BUG_ON_PAGE(!page->mapping, page);
5348         VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5349
5350         if (mem_cgroup_disabled())
5351                 return;
5352         /*
5353          * Swap faults will attempt to charge the same page multiple
5354          * times.  But reuse_swap_page() might have removed the page
5355          * from swapcache already, so we can't check PageSwapCache().
5356          */
5357         if (!memcg)
5358                 return;
5359
5360         commit_charge(page, memcg, lrucare);
5361
5362         local_irq_disable();
5363         mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5364         memcg_check_events(memcg, page);
5365         local_irq_enable();
5366
5367         if (do_memsw_account() && PageSwapCache(page)) {
5368                 swp_entry_t entry = { .val = page_private(page) };
5369                 /*
5370                  * The swap entry might not get freed for a long time,
5371                  * let's not wait for it.  The page already received a
5372                  * memory+swap charge, drop the swap entry duplicate.
5373                  */
5374                 mem_cgroup_uncharge_swap(entry);
5375         }
5376 }
5377
5378 /**
5379  * mem_cgroup_cancel_charge - cancel a page charge
5380  * @page: page to charge
5381  * @memcg: memcg to charge the page to
5382  *
5383  * Cancel a charge transaction started by mem_cgroup_try_charge().
5384  */
5385 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5386                 bool compound)
5387 {
5388         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5389
5390         if (mem_cgroup_disabled())
5391                 return;
5392         /*
5393          * Swap faults will attempt to charge the same page multiple
5394          * times.  But reuse_swap_page() might have removed the page
5395          * from swapcache already, so we can't check PageSwapCache().
5396          */
5397         if (!memcg)
5398                 return;
5399
5400         cancel_charge(memcg, nr_pages);
5401 }
5402
5403 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5404                            unsigned long nr_anon, unsigned long nr_file,
5405                            unsigned long nr_huge, struct page *dummy_page)
5406 {
5407         unsigned long nr_pages = nr_anon + nr_file;
5408         unsigned long flags;
5409
5410         if (!mem_cgroup_is_root(memcg)) {
5411                 page_counter_uncharge(&memcg->memory, nr_pages);
5412                 if (do_memsw_account())
5413                         page_counter_uncharge(&memcg->memsw, nr_pages);
5414                 memcg_oom_recover(memcg);
5415         }
5416
5417         local_irq_save(flags);
5418         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5419         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5420         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5421         __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5422         __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5423         memcg_check_events(memcg, dummy_page);
5424         local_irq_restore(flags);
5425
5426         if (!mem_cgroup_is_root(memcg))
5427                 css_put_many(&memcg->css, nr_pages);
5428 }
5429
5430 static void uncharge_list(struct list_head *page_list)
5431 {
5432         struct mem_cgroup *memcg = NULL;
5433         unsigned long nr_anon = 0;
5434         unsigned long nr_file = 0;
5435         unsigned long nr_huge = 0;
5436         unsigned long pgpgout = 0;
5437         struct list_head *next;
5438         struct page *page;
5439
5440         /*
5441          * Note that the list can be a single page->lru; hence the
5442          * do-while loop instead of a simple list_for_each_entry().
5443          */
5444         next = page_list->next;
5445         do {
5446                 unsigned int nr_pages = 1;
5447
5448                 page = list_entry(next, struct page, lru);
5449                 next = page->lru.next;
5450
5451                 VM_BUG_ON_PAGE(PageLRU(page), page);
5452                 VM_BUG_ON_PAGE(page_count(page), page);
5453
5454                 if (!page->mem_cgroup)
5455                         continue;
5456
5457                 /*
5458                  * Nobody should be changing or seriously looking at
5459                  * page->mem_cgroup at this point, we have fully
5460                  * exclusive access to the page.
5461                  */
5462
5463                 if (memcg != page->mem_cgroup) {
5464                         if (memcg) {
5465                                 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5466                                                nr_huge, page);
5467                                 pgpgout = nr_anon = nr_file = nr_huge = 0;
5468                         }
5469                         memcg = page->mem_cgroup;
5470                 }
5471
5472                 if (PageTransHuge(page)) {
5473                         nr_pages <<= compound_order(page);
5474                         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5475                         nr_huge += nr_pages;
5476                 }
5477
5478                 if (PageAnon(page))
5479                         nr_anon += nr_pages;
5480                 else
5481                         nr_file += nr_pages;
5482
5483                 page->mem_cgroup = NULL;
5484
5485                 pgpgout++;
5486         } while (next != page_list);
5487
5488         if (memcg)
5489                 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5490                                nr_huge, page);
5491 }
5492
5493 /**
5494  * mem_cgroup_uncharge - uncharge a page
5495  * @page: page to uncharge
5496  *
5497  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5498  * mem_cgroup_commit_charge().
5499  */
5500 void mem_cgroup_uncharge(struct page *page)
5501 {
5502         if (mem_cgroup_disabled())
5503                 return;
5504
5505         /* Don't touch page->lru of any random page, pre-check: */
5506         if (!page->mem_cgroup)
5507                 return;
5508
5509         INIT_LIST_HEAD(&page->lru);
5510         uncharge_list(&page->lru);
5511 }
5512
5513 /**
5514  * mem_cgroup_uncharge_list - uncharge a list of page
5515  * @page_list: list of pages to uncharge
5516  *
5517  * Uncharge a list of pages previously charged with
5518  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5519  */
5520 void mem_cgroup_uncharge_list(struct list_head *page_list)
5521 {
5522         if (mem_cgroup_disabled())
5523                 return;
5524
5525         if (!list_empty(page_list))
5526                 uncharge_list(page_list);
5527 }
5528
5529 /**
5530  * mem_cgroup_migrate - charge a page's replacement
5531  * @oldpage: currently circulating page
5532  * @newpage: replacement page
5533  *
5534  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5535  * be uncharged upon free.
5536  *
5537  * Both pages must be locked, @newpage->mapping must be set up.
5538  */
5539 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5540 {
5541         struct mem_cgroup *memcg;
5542         unsigned int nr_pages;
5543         bool compound;
5544
5545         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5546         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5547         VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5548         VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5549                        newpage);
5550
5551         if (mem_cgroup_disabled())
5552                 return;
5553
5554         /* Page cache replacement: new page already charged? */
5555         if (newpage->mem_cgroup)
5556                 return;
5557
5558         /* Swapcache readahead pages can get replaced before being charged */
5559         memcg = oldpage->mem_cgroup;
5560         if (!memcg)
5561                 return;
5562
5563         /* Force-charge the new page. The old one will be freed soon */
5564         compound = PageTransHuge(newpage);
5565         nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5566
5567         page_counter_charge(&memcg->memory, nr_pages);
5568         if (do_memsw_account())
5569                 page_counter_charge(&memcg->memsw, nr_pages);
5570         css_get_many(&memcg->css, nr_pages);
5571
5572         commit_charge(newpage, memcg, false);
5573
5574         local_irq_disable();
5575         mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5576         memcg_check_events(memcg, newpage);
5577         local_irq_enable();
5578 }
5579
5580 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5581 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5582
5583 void sock_update_memcg(struct sock *sk)
5584 {
5585         struct mem_cgroup *memcg;
5586
5587         /* Socket cloning can throw us here with sk_cgrp already
5588          * filled. It won't however, necessarily happen from
5589          * process context. So the test for root memcg given
5590          * the current task's memcg won't help us in this case.
5591          *
5592          * Respecting the original socket's memcg is a better
5593          * decision in this case.
5594          */
5595         if (sk->sk_memcg) {
5596                 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5597                 css_get(&sk->sk_memcg->css);
5598                 return;
5599         }
5600
5601         rcu_read_lock();
5602         memcg = mem_cgroup_from_task(current);
5603         if (memcg == root_mem_cgroup)
5604                 goto out;
5605         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5606                 goto out;
5607         if (css_tryget_online(&memcg->css))
5608                 sk->sk_memcg = memcg;
5609 out:
5610         rcu_read_unlock();
5611 }
5612 EXPORT_SYMBOL(sock_update_memcg);
5613
5614 void sock_release_memcg(struct sock *sk)
5615 {
5616         WARN_ON(!sk->sk_memcg);
5617         css_put(&sk->sk_memcg->css);
5618 }
5619
5620 /**
5621  * mem_cgroup_charge_skmem - charge socket memory
5622  * @memcg: memcg to charge
5623  * @nr_pages: number of pages to charge
5624  *
5625  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5626  * @memcg's configured limit, %false if the charge had to be forced.
5627  */
5628 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5629 {
5630         gfp_t gfp_mask = GFP_KERNEL;
5631
5632         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5633                 struct page_counter *fail;
5634
5635                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5636                         memcg->tcpmem_pressure = 0;
5637                         return true;
5638                 }
5639                 page_counter_charge(&memcg->tcpmem, nr_pages);
5640                 memcg->tcpmem_pressure = 1;
5641                 return false;
5642         }
5643
5644         /* Don't block in the packet receive path */
5645         if (in_softirq())
5646                 gfp_mask = GFP_NOWAIT;
5647
5648         this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5649
5650         if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5651                 return true;
5652
5653         try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5654         return false;
5655 }
5656
5657 /**
5658  * mem_cgroup_uncharge_skmem - uncharge socket memory
5659  * @memcg - memcg to uncharge
5660  * @nr_pages - number of pages to uncharge
5661  */
5662 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5663 {
5664         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5665                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5666                 return;
5667         }
5668
5669         this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5670
5671         page_counter_uncharge(&memcg->memory, nr_pages);
5672         css_put_many(&memcg->css, nr_pages);
5673 }
5674
5675 static int __init cgroup_memory(char *s)
5676 {
5677         char *token;
5678
5679         while ((token = strsep(&s, ",")) != NULL) {
5680                 if (!*token)
5681                         continue;
5682                 if (!strcmp(token, "nosocket"))
5683                         cgroup_memory_nosocket = true;
5684                 if (!strcmp(token, "nokmem"))
5685                         cgroup_memory_nokmem = true;
5686         }
5687         return 0;
5688 }
5689 __setup("cgroup.memory=", cgroup_memory);
5690
5691 /*
5692  * subsys_initcall() for memory controller.
5693  *
5694  * Some parts like hotcpu_notifier() have to be initialized from this context
5695  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5696  * everything that doesn't depend on a specific mem_cgroup structure should
5697  * be initialized from here.
5698  */
5699 static int __init mem_cgroup_init(void)
5700 {
5701         int cpu, node;
5702
5703         hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5704
5705         for_each_possible_cpu(cpu)
5706                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5707                           drain_local_stock);
5708
5709         for_each_node(node) {
5710                 struct mem_cgroup_tree_per_node *rtpn;
5711                 int zone;
5712
5713                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5714                                     node_online(node) ? node : NUMA_NO_NODE);
5715
5716                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5717                         struct mem_cgroup_tree_per_zone *rtpz;
5718
5719                         rtpz = &rtpn->rb_tree_per_zone[zone];
5720                         rtpz->rb_root = RB_ROOT;
5721                         spin_lock_init(&rtpz->lock);
5722                 }
5723                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5724         }
5725
5726         return 0;
5727 }
5728 subsys_initcall(mem_cgroup_init);
5729
5730 #ifdef CONFIG_MEMCG_SWAP
5731 /**
5732  * mem_cgroup_swapout - transfer a memsw charge to swap
5733  * @page: page whose memsw charge to transfer
5734  * @entry: swap entry to move the charge to
5735  *
5736  * Transfer the memsw charge of @page to @entry.
5737  */
5738 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5739 {
5740         struct mem_cgroup *memcg;
5741         unsigned short oldid;
5742
5743         VM_BUG_ON_PAGE(PageLRU(page), page);
5744         VM_BUG_ON_PAGE(page_count(page), page);
5745
5746         if (!do_memsw_account())
5747                 return;
5748
5749         memcg = page->mem_cgroup;
5750
5751         /* Readahead page, never charged */
5752         if (!memcg)
5753                 return;
5754
5755         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5756         VM_BUG_ON_PAGE(oldid, page);
5757         mem_cgroup_swap_statistics(memcg, true);
5758
5759         page->mem_cgroup = NULL;
5760
5761         if (!mem_cgroup_is_root(memcg))
5762                 page_counter_uncharge(&memcg->memory, 1);
5763
5764         /*
5765          * Interrupts should be disabled here because the caller holds the
5766          * mapping->tree_lock lock which is taken with interrupts-off. It is
5767          * important here to have the interrupts disabled because it is the
5768          * only synchronisation we have for udpating the per-CPU variables.
5769          */
5770         VM_BUG_ON(!irqs_disabled());
5771         mem_cgroup_charge_statistics(memcg, page, false, -1);
5772         memcg_check_events(memcg, page);
5773 }
5774
5775 /*
5776  * mem_cgroup_try_charge_swap - try charging a swap entry
5777  * @page: page being added to swap
5778  * @entry: swap entry to charge
5779  *
5780  * Try to charge @entry to the memcg that @page belongs to.
5781  *
5782  * Returns 0 on success, -ENOMEM on failure.
5783  */
5784 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5785 {
5786         struct mem_cgroup *memcg;
5787         struct page_counter *counter;
5788         unsigned short oldid;
5789
5790         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5791                 return 0;
5792
5793         memcg = page->mem_cgroup;
5794
5795         /* Readahead page, never charged */
5796         if (!memcg)
5797                 return 0;
5798
5799         if (!mem_cgroup_is_root(memcg) &&
5800             !page_counter_try_charge(&memcg->swap, 1, &counter))
5801                 return -ENOMEM;
5802
5803         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5804         VM_BUG_ON_PAGE(oldid, page);
5805         mem_cgroup_swap_statistics(memcg, true);
5806
5807         css_get(&memcg->css);
5808         return 0;
5809 }
5810
5811 /**
5812  * mem_cgroup_uncharge_swap - uncharge a swap entry
5813  * @entry: swap entry to uncharge
5814  *
5815  * Drop the swap charge associated with @entry.
5816  */
5817 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5818 {
5819         struct mem_cgroup *memcg;
5820         unsigned short id;
5821
5822         if (!do_swap_account)
5823                 return;
5824
5825         id = swap_cgroup_record(entry, 0);
5826         rcu_read_lock();
5827         memcg = mem_cgroup_from_id(id);
5828         if (memcg) {
5829                 if (!mem_cgroup_is_root(memcg)) {
5830                         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5831                                 page_counter_uncharge(&memcg->swap, 1);
5832                         else
5833                                 page_counter_uncharge(&memcg->memsw, 1);
5834                 }
5835                 mem_cgroup_swap_statistics(memcg, false);
5836                 css_put(&memcg->css);
5837         }
5838         rcu_read_unlock();
5839 }
5840
5841 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5842 {
5843         long nr_swap_pages = get_nr_swap_pages();
5844
5845         if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5846                 return nr_swap_pages;
5847         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5848                 nr_swap_pages = min_t(long, nr_swap_pages,
5849                                       READ_ONCE(memcg->swap.limit) -
5850                                       page_counter_read(&memcg->swap));
5851         return nr_swap_pages;
5852 }
5853
5854 bool mem_cgroup_swap_full(struct page *page)
5855 {
5856         struct mem_cgroup *memcg;
5857
5858         VM_BUG_ON_PAGE(!PageLocked(page), page);
5859
5860         if (vm_swap_full())
5861                 return true;
5862         if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5863                 return false;
5864
5865         memcg = page->mem_cgroup;
5866         if (!memcg)
5867                 return false;
5868
5869         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5870                 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5871                         return true;
5872
5873         return false;
5874 }
5875
5876 /* for remember boot option*/
5877 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5878 static int really_do_swap_account __initdata = 1;
5879 #else
5880 static int really_do_swap_account __initdata;
5881 #endif
5882
5883 static int __init enable_swap_account(char *s)
5884 {
5885         if (!strcmp(s, "1"))
5886                 really_do_swap_account = 1;
5887         else if (!strcmp(s, "0"))
5888                 really_do_swap_account = 0;
5889         return 1;
5890 }
5891 __setup("swapaccount=", enable_swap_account);
5892
5893 static u64 swap_current_read(struct cgroup_subsys_state *css,
5894                              struct cftype *cft)
5895 {
5896         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5897
5898         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5899 }
5900
5901 static int swap_max_show(struct seq_file *m, void *v)
5902 {
5903         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5904         unsigned long max = READ_ONCE(memcg->swap.limit);
5905
5906         if (max == PAGE_COUNTER_MAX)
5907                 seq_puts(m, "max\n");
5908         else
5909                 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5910
5911         return 0;
5912 }
5913
5914 static ssize_t swap_max_write(struct kernfs_open_file *of,
5915                               char *buf, size_t nbytes, loff_t off)
5916 {
5917         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5918         unsigned long max;
5919         int err;
5920
5921         buf = strstrip(buf);
5922         err = page_counter_memparse(buf, "max", &max);
5923         if (err)
5924                 return err;
5925
5926         mutex_lock(&memcg_limit_mutex);
5927         err = page_counter_limit(&memcg->swap, max);
5928         mutex_unlock(&memcg_limit_mutex);
5929         if (err)
5930                 return err;
5931
5932         return nbytes;
5933 }
5934
5935 static struct cftype swap_files[] = {
5936         {
5937                 .name = "swap.current",
5938                 .flags = CFTYPE_NOT_ON_ROOT,
5939                 .read_u64 = swap_current_read,
5940         },
5941         {
5942                 .name = "swap.max",
5943                 .flags = CFTYPE_NOT_ON_ROOT,
5944                 .seq_show = swap_max_show,
5945                 .write = swap_max_write,
5946         },
5947         { }     /* terminate */
5948 };
5949
5950 static struct cftype memsw_cgroup_files[] = {
5951         {
5952                 .name = "memsw.usage_in_bytes",
5953                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5954                 .read_u64 = mem_cgroup_read_u64,
5955         },
5956         {
5957                 .name = "memsw.max_usage_in_bytes",
5958                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5959                 .write = mem_cgroup_reset,
5960                 .read_u64 = mem_cgroup_read_u64,
5961         },
5962         {
5963                 .name = "memsw.limit_in_bytes",
5964                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5965                 .write = mem_cgroup_write,
5966                 .read_u64 = mem_cgroup_read_u64,
5967         },
5968         {
5969                 .name = "memsw.failcnt",
5970                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5971                 .write = mem_cgroup_reset,
5972                 .read_u64 = mem_cgroup_read_u64,
5973         },
5974         { },    /* terminate */
5975 };
5976
5977 static int __init mem_cgroup_swap_init(void)
5978 {
5979         if (!mem_cgroup_disabled() && really_do_swap_account) {
5980                 do_swap_account = 1;
5981                 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5982                                                swap_files));
5983                 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5984                                                   memsw_cgroup_files));
5985         }
5986         return 0;
5987 }
5988 subsys_initcall(mem_cgroup_swap_init);
5989
5990 #endif /* CONFIG_MEMCG_SWAP */