sh/perf: Convert the hotplug notifiers to state machine callbacks
[cascardo/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES      5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account         0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98         return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102         "cache",
103         "rss",
104         "rss_huge",
105         "mapped_file",
106         "dirty",
107         "writeback",
108         "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112         "pgpgin",
113         "pgpgout",
114         "pgfault",
115         "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119         "inactive_anon",
120         "active_anon",
121         "inactive_file",
122         "active_file",
123         "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET  1024
129
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134
135 struct mem_cgroup_tree_per_zone {
136         struct rb_root rb_root;
137         spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152         struct list_head list;
153         struct eventfd_ctx *eventfd;
154 };
155
156 /*
157  * cgroup_event represents events which userspace want to receive.
158  */
159 struct mem_cgroup_event {
160         /*
161          * memcg which the event belongs to.
162          */
163         struct mem_cgroup *memcg;
164         /*
165          * eventfd to signal userspace about the event.
166          */
167         struct eventfd_ctx *eventfd;
168         /*
169          * Each of these stored in a list by the cgroup.
170          */
171         struct list_head list;
172         /*
173          * register_event() callback will be used to add new userspace
174          * waiter for changes related to this event.  Use eventfd_signal()
175          * on eventfd to send notification to userspace.
176          */
177         int (*register_event)(struct mem_cgroup *memcg,
178                               struct eventfd_ctx *eventfd, const char *args);
179         /*
180          * unregister_event() callback will be called when userspace closes
181          * the eventfd or on cgroup removing.  This callback must be set,
182          * if you want provide notification functionality.
183          */
184         void (*unregister_event)(struct mem_cgroup *memcg,
185                                  struct eventfd_ctx *eventfd);
186         /*
187          * All fields below needed to unregister event when
188          * userspace closes eventfd.
189          */
190         poll_table pt;
191         wait_queue_head_t *wqh;
192         wait_queue_t wait;
193         struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201  * Types of charges to be moved.
202  */
203 #define MOVE_ANON       0x1U
204 #define MOVE_FILE       0x2U
205 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209         spinlock_t        lock; /* for from, to */
210         struct mm_struct  *mm;
211         struct mem_cgroup *from;
212         struct mem_cgroup *to;
213         unsigned long flags;
214         unsigned long precharge;
215         unsigned long moved_charge;
216         unsigned long moved_swap;
217         struct task_struct *moving_task;        /* a task moving charges */
218         wait_queue_head_t waitq;                /* a waitq for other context */
219 } mc = {
220         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222 };
223
224 /*
225  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226  * limit reclaim to prevent infinite loops, if they ever occur.
227  */
228 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
229 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
230
231 enum charge_type {
232         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233         MEM_CGROUP_CHARGE_TYPE_ANON,
234         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
235         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
236         NR_CHARGE_TYPE,
237 };
238
239 /* for encoding cft->private value on file */
240 enum res_type {
241         _MEM,
242         _MEMSWAP,
243         _OOM_TYPE,
244         _KMEM,
245         _TCP,
246 };
247
248 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
250 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
251 /* Used for OOM nofiier */
252 #define OOM_CONTROL             (0)
253
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256 {
257         if (!memcg)
258                 memcg = root_mem_cgroup;
259         return &memcg->vmpressure;
260 }
261
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263 {
264         return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265 }
266
267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268 {
269         return (memcg == root_mem_cgroup);
270 }
271
272 #ifndef CONFIG_SLOB
273 /*
274  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275  * The main reason for not using cgroup id for this:
276  *  this works better in sparse environments, where we have a lot of memcgs,
277  *  but only a few kmem-limited. Or also, if we have, for instance, 200
278  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
279  *  200 entry array for that.
280  *
281  * The current size of the caches array is stored in memcg_nr_cache_ids. It
282  * will double each time we have to increase it.
283  */
284 static DEFINE_IDA(memcg_cache_ida);
285 int memcg_nr_cache_ids;
286
287 /* Protects memcg_nr_cache_ids */
288 static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290 void memcg_get_cache_ids(void)
291 {
292         down_read(&memcg_cache_ids_sem);
293 }
294
295 void memcg_put_cache_ids(void)
296 {
297         up_read(&memcg_cache_ids_sem);
298 }
299
300 /*
301  * MIN_SIZE is different than 1, because we would like to avoid going through
302  * the alloc/free process all the time. In a small machine, 4 kmem-limited
303  * cgroups is a reasonable guess. In the future, it could be a parameter or
304  * tunable, but that is strictly not necessary.
305  *
306  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307  * this constant directly from cgroup, but it is understandable that this is
308  * better kept as an internal representation in cgroup.c. In any case, the
309  * cgrp_id space is not getting any smaller, and we don't have to necessarily
310  * increase ours as well if it increases.
311  */
312 #define MEMCG_CACHES_MIN_SIZE 4
313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314
315 /*
316  * A lot of the calls to the cache allocation functions are expected to be
317  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318  * conditional to this static branch, we'll have to allow modules that does
319  * kmem_cache_alloc and the such to see this symbol as well
320  */
321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322 EXPORT_SYMBOL(memcg_kmem_enabled_key);
323
324 #endif /* !CONFIG_SLOB */
325
326 static struct mem_cgroup_per_zone *
327 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328 {
329         int nid = zone_to_nid(zone);
330         int zid = zone_idx(zone);
331
332         return &memcg->nodeinfo[nid]->zoneinfo[zid];
333 }
334
335 /**
336  * mem_cgroup_css_from_page - css of the memcg associated with a page
337  * @page: page of interest
338  *
339  * If memcg is bound to the default hierarchy, css of the memcg associated
340  * with @page is returned.  The returned css remains associated with @page
341  * until it is released.
342  *
343  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344  * is returned.
345  */
346 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347 {
348         struct mem_cgroup *memcg;
349
350         memcg = page->mem_cgroup;
351
352         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353                 memcg = root_mem_cgroup;
354
355         return &memcg->css;
356 }
357
358 /**
359  * page_cgroup_ino - return inode number of the memcg a page is charged to
360  * @page: the page
361  *
362  * Look up the closest online ancestor of the memory cgroup @page is charged to
363  * and return its inode number or 0 if @page is not charged to any cgroup. It
364  * is safe to call this function without holding a reference to @page.
365  *
366  * Note, this function is inherently racy, because there is nothing to prevent
367  * the cgroup inode from getting torn down and potentially reallocated a moment
368  * after page_cgroup_ino() returns, so it only should be used by callers that
369  * do not care (such as procfs interfaces).
370  */
371 ino_t page_cgroup_ino(struct page *page)
372 {
373         struct mem_cgroup *memcg;
374         unsigned long ino = 0;
375
376         rcu_read_lock();
377         memcg = READ_ONCE(page->mem_cgroup);
378         while (memcg && !(memcg->css.flags & CSS_ONLINE))
379                 memcg = parent_mem_cgroup(memcg);
380         if (memcg)
381                 ino = cgroup_ino(memcg->css.cgroup);
382         rcu_read_unlock();
383         return ino;
384 }
385
386 static struct mem_cgroup_per_zone *
387 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388 {
389         int nid = page_to_nid(page);
390         int zid = page_zonenum(page);
391
392         return &memcg->nodeinfo[nid]->zoneinfo[zid];
393 }
394
395 static struct mem_cgroup_tree_per_zone *
396 soft_limit_tree_node_zone(int nid, int zid)
397 {
398         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400
401 static struct mem_cgroup_tree_per_zone *
402 soft_limit_tree_from_page(struct page *page)
403 {
404         int nid = page_to_nid(page);
405         int zid = page_zonenum(page);
406
407         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408 }
409
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411                                          struct mem_cgroup_tree_per_zone *mctz,
412                                          unsigned long new_usage_in_excess)
413 {
414         struct rb_node **p = &mctz->rb_root.rb_node;
415         struct rb_node *parent = NULL;
416         struct mem_cgroup_per_zone *mz_node;
417
418         if (mz->on_tree)
419                 return;
420
421         mz->usage_in_excess = new_usage_in_excess;
422         if (!mz->usage_in_excess)
423                 return;
424         while (*p) {
425                 parent = *p;
426                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427                                         tree_node);
428                 if (mz->usage_in_excess < mz_node->usage_in_excess)
429                         p = &(*p)->rb_left;
430                 /*
431                  * We can't avoid mem cgroups that are over their soft
432                  * limit by the same amount
433                  */
434                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435                         p = &(*p)->rb_right;
436         }
437         rb_link_node(&mz->tree_node, parent, p);
438         rb_insert_color(&mz->tree_node, &mctz->rb_root);
439         mz->on_tree = true;
440 }
441
442 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443                                          struct mem_cgroup_tree_per_zone *mctz)
444 {
445         if (!mz->on_tree)
446                 return;
447         rb_erase(&mz->tree_node, &mctz->rb_root);
448         mz->on_tree = false;
449 }
450
451 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452                                        struct mem_cgroup_tree_per_zone *mctz)
453 {
454         unsigned long flags;
455
456         spin_lock_irqsave(&mctz->lock, flags);
457         __mem_cgroup_remove_exceeded(mz, mctz);
458         spin_unlock_irqrestore(&mctz->lock, flags);
459 }
460
461 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462 {
463         unsigned long nr_pages = page_counter_read(&memcg->memory);
464         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465         unsigned long excess = 0;
466
467         if (nr_pages > soft_limit)
468                 excess = nr_pages - soft_limit;
469
470         return excess;
471 }
472
473 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474 {
475         unsigned long excess;
476         struct mem_cgroup_per_zone *mz;
477         struct mem_cgroup_tree_per_zone *mctz;
478
479         mctz = soft_limit_tree_from_page(page);
480         /*
481          * Necessary to update all ancestors when hierarchy is used.
482          * because their event counter is not touched.
483          */
484         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485                 mz = mem_cgroup_page_zoneinfo(memcg, page);
486                 excess = soft_limit_excess(memcg);
487                 /*
488                  * We have to update the tree if mz is on RB-tree or
489                  * mem is over its softlimit.
490                  */
491                 if (excess || mz->on_tree) {
492                         unsigned long flags;
493
494                         spin_lock_irqsave(&mctz->lock, flags);
495                         /* if on-tree, remove it */
496                         if (mz->on_tree)
497                                 __mem_cgroup_remove_exceeded(mz, mctz);
498                         /*
499                          * Insert again. mz->usage_in_excess will be updated.
500                          * If excess is 0, no tree ops.
501                          */
502                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
503                         spin_unlock_irqrestore(&mctz->lock, flags);
504                 }
505         }
506 }
507
508 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509 {
510         struct mem_cgroup_tree_per_zone *mctz;
511         struct mem_cgroup_per_zone *mz;
512         int nid, zid;
513
514         for_each_node(nid) {
515                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516                         mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517                         mctz = soft_limit_tree_node_zone(nid, zid);
518                         mem_cgroup_remove_exceeded(mz, mctz);
519                 }
520         }
521 }
522
523 static struct mem_cgroup_per_zone *
524 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525 {
526         struct rb_node *rightmost = NULL;
527         struct mem_cgroup_per_zone *mz;
528
529 retry:
530         mz = NULL;
531         rightmost = rb_last(&mctz->rb_root);
532         if (!rightmost)
533                 goto done;              /* Nothing to reclaim from */
534
535         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536         /*
537          * Remove the node now but someone else can add it back,
538          * we will to add it back at the end of reclaim to its correct
539          * position in the tree.
540          */
541         __mem_cgroup_remove_exceeded(mz, mctz);
542         if (!soft_limit_excess(mz->memcg) ||
543             !css_tryget_online(&mz->memcg->css))
544                 goto retry;
545 done:
546         return mz;
547 }
548
549 static struct mem_cgroup_per_zone *
550 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551 {
552         struct mem_cgroup_per_zone *mz;
553
554         spin_lock_irq(&mctz->lock);
555         mz = __mem_cgroup_largest_soft_limit_node(mctz);
556         spin_unlock_irq(&mctz->lock);
557         return mz;
558 }
559
560 /*
561  * Return page count for single (non recursive) @memcg.
562  *
563  * Implementation Note: reading percpu statistics for memcg.
564  *
565  * Both of vmstat[] and percpu_counter has threshold and do periodic
566  * synchronization to implement "quick" read. There are trade-off between
567  * reading cost and precision of value. Then, we may have a chance to implement
568  * a periodic synchronization of counter in memcg's counter.
569  *
570  * But this _read() function is used for user interface now. The user accounts
571  * memory usage by memory cgroup and he _always_ requires exact value because
572  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573  * have to visit all online cpus and make sum. So, for now, unnecessary
574  * synchronization is not implemented. (just implemented for cpu hotplug)
575  *
576  * If there are kernel internal actions which can make use of some not-exact
577  * value, and reading all cpu value can be performance bottleneck in some
578  * common workload, threshold and synchronization as vmstat[] should be
579  * implemented.
580  */
581 static unsigned long
582 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583 {
584         long val = 0;
585         int cpu;
586
587         /* Per-cpu values can be negative, use a signed accumulator */
588         for_each_possible_cpu(cpu)
589                 val += per_cpu(memcg->stat->count[idx], cpu);
590         /*
591          * Summing races with updates, so val may be negative.  Avoid exposing
592          * transient negative values.
593          */
594         if (val < 0)
595                 val = 0;
596         return val;
597 }
598
599 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600                                             enum mem_cgroup_events_index idx)
601 {
602         unsigned long val = 0;
603         int cpu;
604
605         for_each_possible_cpu(cpu)
606                 val += per_cpu(memcg->stat->events[idx], cpu);
607         return val;
608 }
609
610 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611                                          struct page *page,
612                                          bool compound, int nr_pages)
613 {
614         /*
615          * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616          * counted as CACHE even if it's on ANON LRU.
617          */
618         if (PageAnon(page))
619                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620                                 nr_pages);
621         else
622                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623                                 nr_pages);
624
625         if (compound) {
626                 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628                                 nr_pages);
629         }
630
631         /* pagein of a big page is an event. So, ignore page size */
632         if (nr_pages > 0)
633                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634         else {
635                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636                 nr_pages = -nr_pages; /* for event */
637         }
638
639         __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640 }
641
642 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643                                            int nid, unsigned int lru_mask)
644 {
645         unsigned long nr = 0;
646         int zid;
647
648         VM_BUG_ON((unsigned)nid >= nr_node_ids);
649
650         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651                 struct mem_cgroup_per_zone *mz;
652                 enum lru_list lru;
653
654                 for_each_lru(lru) {
655                         if (!(BIT(lru) & lru_mask))
656                                 continue;
657                         mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658                         nr += mz->lru_size[lru];
659                 }
660         }
661         return nr;
662 }
663
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665                         unsigned int lru_mask)
666 {
667         unsigned long nr = 0;
668         int nid;
669
670         for_each_node_state(nid, N_MEMORY)
671                 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672         return nr;
673 }
674
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676                                        enum mem_cgroup_events_target target)
677 {
678         unsigned long val, next;
679
680         val = __this_cpu_read(memcg->stat->nr_page_events);
681         next = __this_cpu_read(memcg->stat->targets[target]);
682         /* from time_after() in jiffies.h */
683         if ((long)next - (long)val < 0) {
684                 switch (target) {
685                 case MEM_CGROUP_TARGET_THRESH:
686                         next = val + THRESHOLDS_EVENTS_TARGET;
687                         break;
688                 case MEM_CGROUP_TARGET_SOFTLIMIT:
689                         next = val + SOFTLIMIT_EVENTS_TARGET;
690                         break;
691                 case MEM_CGROUP_TARGET_NUMAINFO:
692                         next = val + NUMAINFO_EVENTS_TARGET;
693                         break;
694                 default:
695                         break;
696                 }
697                 __this_cpu_write(memcg->stat->targets[target], next);
698                 return true;
699         }
700         return false;
701 }
702
703 /*
704  * Check events in order.
705  *
706  */
707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 {
709         /* threshold event is triggered in finer grain than soft limit */
710         if (unlikely(mem_cgroup_event_ratelimit(memcg,
711                                                 MEM_CGROUP_TARGET_THRESH))) {
712                 bool do_softlimit;
713                 bool do_numainfo __maybe_unused;
714
715                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
717 #if MAX_NUMNODES > 1
718                 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719                                                 MEM_CGROUP_TARGET_NUMAINFO);
720 #endif
721                 mem_cgroup_threshold(memcg);
722                 if (unlikely(do_softlimit))
723                         mem_cgroup_update_tree(memcg, page);
724 #if MAX_NUMNODES > 1
725                 if (unlikely(do_numainfo))
726                         atomic_inc(&memcg->numainfo_events);
727 #endif
728         }
729 }
730
731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732 {
733         /*
734          * mm_update_next_owner() may clear mm->owner to NULL
735          * if it races with swapoff, page migration, etc.
736          * So this can be called with p == NULL.
737          */
738         if (unlikely(!p))
739                 return NULL;
740
741         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742 }
743 EXPORT_SYMBOL(mem_cgroup_from_task);
744
745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746 {
747         struct mem_cgroup *memcg = NULL;
748
749         rcu_read_lock();
750         do {
751                 /*
752                  * Page cache insertions can happen withou an
753                  * actual mm context, e.g. during disk probing
754                  * on boot, loopback IO, acct() writes etc.
755                  */
756                 if (unlikely(!mm))
757                         memcg = root_mem_cgroup;
758                 else {
759                         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760                         if (unlikely(!memcg))
761                                 memcg = root_mem_cgroup;
762                 }
763         } while (!css_tryget_online(&memcg->css));
764         rcu_read_unlock();
765         return memcg;
766 }
767
768 /**
769  * mem_cgroup_iter - iterate over memory cgroup hierarchy
770  * @root: hierarchy root
771  * @prev: previously returned memcg, NULL on first invocation
772  * @reclaim: cookie for shared reclaim walks, NULL for full walks
773  *
774  * Returns references to children of the hierarchy below @root, or
775  * @root itself, or %NULL after a full round-trip.
776  *
777  * Caller must pass the return value in @prev on subsequent
778  * invocations for reference counting, or use mem_cgroup_iter_break()
779  * to cancel a hierarchy walk before the round-trip is complete.
780  *
781  * Reclaimers can specify a zone and a priority level in @reclaim to
782  * divide up the memcgs in the hierarchy among all concurrent
783  * reclaimers operating on the same zone and priority.
784  */
785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786                                    struct mem_cgroup *prev,
787                                    struct mem_cgroup_reclaim_cookie *reclaim)
788 {
789         struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790         struct cgroup_subsys_state *css = NULL;
791         struct mem_cgroup *memcg = NULL;
792         struct mem_cgroup *pos = NULL;
793
794         if (mem_cgroup_disabled())
795                 return NULL;
796
797         if (!root)
798                 root = root_mem_cgroup;
799
800         if (prev && !reclaim)
801                 pos = prev;
802
803         if (!root->use_hierarchy && root != root_mem_cgroup) {
804                 if (prev)
805                         goto out;
806                 return root;
807         }
808
809         rcu_read_lock();
810
811         if (reclaim) {
812                 struct mem_cgroup_per_zone *mz;
813
814                 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815                 iter = &mz->iter[reclaim->priority];
816
817                 if (prev && reclaim->generation != iter->generation)
818                         goto out_unlock;
819
820                 while (1) {
821                         pos = READ_ONCE(iter->position);
822                         if (!pos || css_tryget(&pos->css))
823                                 break;
824                         /*
825                          * css reference reached zero, so iter->position will
826                          * be cleared by ->css_released. However, we should not
827                          * rely on this happening soon, because ->css_released
828                          * is called from a work queue, and by busy-waiting we
829                          * might block it. So we clear iter->position right
830                          * away.
831                          */
832                         (void)cmpxchg(&iter->position, pos, NULL);
833                 }
834         }
835
836         if (pos)
837                 css = &pos->css;
838
839         for (;;) {
840                 css = css_next_descendant_pre(css, &root->css);
841                 if (!css) {
842                         /*
843                          * Reclaimers share the hierarchy walk, and a
844                          * new one might jump in right at the end of
845                          * the hierarchy - make sure they see at least
846                          * one group and restart from the beginning.
847                          */
848                         if (!prev)
849                                 continue;
850                         break;
851                 }
852
853                 /*
854                  * Verify the css and acquire a reference.  The root
855                  * is provided by the caller, so we know it's alive
856                  * and kicking, and don't take an extra reference.
857                  */
858                 memcg = mem_cgroup_from_css(css);
859
860                 if (css == &root->css)
861                         break;
862
863                 if (css_tryget(css))
864                         break;
865
866                 memcg = NULL;
867         }
868
869         if (reclaim) {
870                 /*
871                  * The position could have already been updated by a competing
872                  * thread, so check that the value hasn't changed since we read
873                  * it to avoid reclaiming from the same cgroup twice.
874                  */
875                 (void)cmpxchg(&iter->position, pos, memcg);
876
877                 if (pos)
878                         css_put(&pos->css);
879
880                 if (!memcg)
881                         iter->generation++;
882                 else if (!prev)
883                         reclaim->generation = iter->generation;
884         }
885
886 out_unlock:
887         rcu_read_unlock();
888 out:
889         if (prev && prev != root)
890                 css_put(&prev->css);
891
892         return memcg;
893 }
894
895 /**
896  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897  * @root: hierarchy root
898  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899  */
900 void mem_cgroup_iter_break(struct mem_cgroup *root,
901                            struct mem_cgroup *prev)
902 {
903         if (!root)
904                 root = root_mem_cgroup;
905         if (prev && prev != root)
906                 css_put(&prev->css);
907 }
908
909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910 {
911         struct mem_cgroup *memcg = dead_memcg;
912         struct mem_cgroup_reclaim_iter *iter;
913         struct mem_cgroup_per_zone *mz;
914         int nid, zid;
915         int i;
916
917         while ((memcg = parent_mem_cgroup(memcg))) {
918                 for_each_node(nid) {
919                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920                                 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921                                 for (i = 0; i <= DEF_PRIORITY; i++) {
922                                         iter = &mz->iter[i];
923                                         cmpxchg(&iter->position,
924                                                 dead_memcg, NULL);
925                                 }
926                         }
927                 }
928         }
929 }
930
931 /*
932  * Iteration constructs for visiting all cgroups (under a tree).  If
933  * loops are exited prematurely (break), mem_cgroup_iter_break() must
934  * be used for reference counting.
935  */
936 #define for_each_mem_cgroup_tree(iter, root)            \
937         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
938              iter != NULL;                              \
939              iter = mem_cgroup_iter(root, iter, NULL))
940
941 #define for_each_mem_cgroup(iter)                       \
942         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
943              iter != NULL;                              \
944              iter = mem_cgroup_iter(NULL, iter, NULL))
945
946 /**
947  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948  * @zone: zone of the wanted lruvec
949  * @memcg: memcg of the wanted lruvec
950  *
951  * Returns the lru list vector holding pages for the given @zone and
952  * @mem.  This can be the global zone lruvec, if the memory controller
953  * is disabled.
954  */
955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956                                       struct mem_cgroup *memcg)
957 {
958         struct mem_cgroup_per_zone *mz;
959         struct lruvec *lruvec;
960
961         if (mem_cgroup_disabled()) {
962                 lruvec = &zone->lruvec;
963                 goto out;
964         }
965
966         mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967         lruvec = &mz->lruvec;
968 out:
969         /*
970          * Since a node can be onlined after the mem_cgroup was created,
971          * we have to be prepared to initialize lruvec->zone here;
972          * and if offlined then reonlined, we need to reinitialize it.
973          */
974         if (unlikely(lruvec->zone != zone))
975                 lruvec->zone = zone;
976         return lruvec;
977 }
978
979 /**
980  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981  * @page: the page
982  * @zone: zone of the page
983  *
984  * This function is only safe when following the LRU page isolation
985  * and putback protocol: the LRU lock must be held, and the page must
986  * either be PageLRU() or the caller must have isolated/allocated it.
987  */
988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989 {
990         struct mem_cgroup_per_zone *mz;
991         struct mem_cgroup *memcg;
992         struct lruvec *lruvec;
993
994         if (mem_cgroup_disabled()) {
995                 lruvec = &zone->lruvec;
996                 goto out;
997         }
998
999         memcg = page->mem_cgroup;
1000         /*
1001          * Swapcache readahead pages are added to the LRU - and
1002          * possibly migrated - before they are charged.
1003          */
1004         if (!memcg)
1005                 memcg = root_mem_cgroup;
1006
1007         mz = mem_cgroup_page_zoneinfo(memcg, page);
1008         lruvec = &mz->lruvec;
1009 out:
1010         /*
1011          * Since a node can be onlined after the mem_cgroup was created,
1012          * we have to be prepared to initialize lruvec->zone here;
1013          * and if offlined then reonlined, we need to reinitialize it.
1014          */
1015         if (unlikely(lruvec->zone != zone))
1016                 lruvec->zone = zone;
1017         return lruvec;
1018 }
1019
1020 /**
1021  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022  * @lruvec: mem_cgroup per zone lru vector
1023  * @lru: index of lru list the page is sitting on
1024  * @nr_pages: positive when adding or negative when removing
1025  *
1026  * This function must be called under lru_lock, just before a page is added
1027  * to or just after a page is removed from an lru list (that ordering being
1028  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1029  */
1030 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1031                                 int nr_pages)
1032 {
1033         struct mem_cgroup_per_zone *mz;
1034         unsigned long *lru_size;
1035         long size;
1036         bool empty;
1037
1038         __update_lru_size(lruvec, lru, nr_pages);
1039
1040         if (mem_cgroup_disabled())
1041                 return;
1042
1043         mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1044         lru_size = mz->lru_size + lru;
1045         empty = list_empty(lruvec->lists + lru);
1046
1047         if (nr_pages < 0)
1048                 *lru_size += nr_pages;
1049
1050         size = *lru_size;
1051         if (WARN_ONCE(size < 0 || empty != !size,
1052                 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1053                 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1054                 VM_BUG_ON(1);
1055                 *lru_size = 0;
1056         }
1057
1058         if (nr_pages > 0)
1059                 *lru_size += nr_pages;
1060 }
1061
1062 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1063 {
1064         struct mem_cgroup *task_memcg;
1065         struct task_struct *p;
1066         bool ret;
1067
1068         p = find_lock_task_mm(task);
1069         if (p) {
1070                 task_memcg = get_mem_cgroup_from_mm(p->mm);
1071                 task_unlock(p);
1072         } else {
1073                 /*
1074                  * All threads may have already detached their mm's, but the oom
1075                  * killer still needs to detect if they have already been oom
1076                  * killed to prevent needlessly killing additional tasks.
1077                  */
1078                 rcu_read_lock();
1079                 task_memcg = mem_cgroup_from_task(task);
1080                 css_get(&task_memcg->css);
1081                 rcu_read_unlock();
1082         }
1083         ret = mem_cgroup_is_descendant(task_memcg, memcg);
1084         css_put(&task_memcg->css);
1085         return ret;
1086 }
1087
1088 /**
1089  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1090  * @memcg: the memory cgroup
1091  *
1092  * Returns the maximum amount of memory @mem can be charged with, in
1093  * pages.
1094  */
1095 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1096 {
1097         unsigned long margin = 0;
1098         unsigned long count;
1099         unsigned long limit;
1100
1101         count = page_counter_read(&memcg->memory);
1102         limit = READ_ONCE(memcg->memory.limit);
1103         if (count < limit)
1104                 margin = limit - count;
1105
1106         if (do_memsw_account()) {
1107                 count = page_counter_read(&memcg->memsw);
1108                 limit = READ_ONCE(memcg->memsw.limit);
1109                 if (count <= limit)
1110                         margin = min(margin, limit - count);
1111                 else
1112                         margin = 0;
1113         }
1114
1115         return margin;
1116 }
1117
1118 /*
1119  * A routine for checking "mem" is under move_account() or not.
1120  *
1121  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1122  * moving cgroups. This is for waiting at high-memory pressure
1123  * caused by "move".
1124  */
1125 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1126 {
1127         struct mem_cgroup *from;
1128         struct mem_cgroup *to;
1129         bool ret = false;
1130         /*
1131          * Unlike task_move routines, we access mc.to, mc.from not under
1132          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1133          */
1134         spin_lock(&mc.lock);
1135         from = mc.from;
1136         to = mc.to;
1137         if (!from)
1138                 goto unlock;
1139
1140         ret = mem_cgroup_is_descendant(from, memcg) ||
1141                 mem_cgroup_is_descendant(to, memcg);
1142 unlock:
1143         spin_unlock(&mc.lock);
1144         return ret;
1145 }
1146
1147 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1148 {
1149         if (mc.moving_task && current != mc.moving_task) {
1150                 if (mem_cgroup_under_move(memcg)) {
1151                         DEFINE_WAIT(wait);
1152                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1153                         /* moving charge context might have finished. */
1154                         if (mc.moving_task)
1155                                 schedule();
1156                         finish_wait(&mc.waitq, &wait);
1157                         return true;
1158                 }
1159         }
1160         return false;
1161 }
1162
1163 #define K(x) ((x) << (PAGE_SHIFT-10))
1164 /**
1165  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1166  * @memcg: The memory cgroup that went over limit
1167  * @p: Task that is going to be killed
1168  *
1169  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1170  * enabled
1171  */
1172 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1173 {
1174         struct mem_cgroup *iter;
1175         unsigned int i;
1176
1177         rcu_read_lock();
1178
1179         if (p) {
1180                 pr_info("Task in ");
1181                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1182                 pr_cont(" killed as a result of limit of ");
1183         } else {
1184                 pr_info("Memory limit reached of cgroup ");
1185         }
1186
1187         pr_cont_cgroup_path(memcg->css.cgroup);
1188         pr_cont("\n");
1189
1190         rcu_read_unlock();
1191
1192         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1193                 K((u64)page_counter_read(&memcg->memory)),
1194                 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1195         pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1196                 K((u64)page_counter_read(&memcg->memsw)),
1197                 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1198         pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1199                 K((u64)page_counter_read(&memcg->kmem)),
1200                 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1201
1202         for_each_mem_cgroup_tree(iter, memcg) {
1203                 pr_info("Memory cgroup stats for ");
1204                 pr_cont_cgroup_path(iter->css.cgroup);
1205                 pr_cont(":");
1206
1207                 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1208                         if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1209                                 continue;
1210                         pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1211                                 K(mem_cgroup_read_stat(iter, i)));
1212                 }
1213
1214                 for (i = 0; i < NR_LRU_LISTS; i++)
1215                         pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1216                                 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1217
1218                 pr_cont("\n");
1219         }
1220 }
1221
1222 /*
1223  * This function returns the number of memcg under hierarchy tree. Returns
1224  * 1(self count) if no children.
1225  */
1226 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1227 {
1228         int num = 0;
1229         struct mem_cgroup *iter;
1230
1231         for_each_mem_cgroup_tree(iter, memcg)
1232                 num++;
1233         return num;
1234 }
1235
1236 /*
1237  * Return the memory (and swap, if configured) limit for a memcg.
1238  */
1239 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1240 {
1241         unsigned long limit;
1242
1243         limit = memcg->memory.limit;
1244         if (mem_cgroup_swappiness(memcg)) {
1245                 unsigned long memsw_limit;
1246                 unsigned long swap_limit;
1247
1248                 memsw_limit = memcg->memsw.limit;
1249                 swap_limit = memcg->swap.limit;
1250                 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1251                 limit = min(limit + swap_limit, memsw_limit);
1252         }
1253         return limit;
1254 }
1255
1256 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1257                                      int order)
1258 {
1259         struct oom_control oc = {
1260                 .zonelist = NULL,
1261                 .nodemask = NULL,
1262                 .gfp_mask = gfp_mask,
1263                 .order = order,
1264         };
1265         struct mem_cgroup *iter;
1266         unsigned long chosen_points = 0;
1267         unsigned long totalpages;
1268         unsigned int points = 0;
1269         struct task_struct *chosen = NULL;
1270
1271         mutex_lock(&oom_lock);
1272
1273         /*
1274          * If current has a pending SIGKILL or is exiting, then automatically
1275          * select it.  The goal is to allow it to allocate so that it may
1276          * quickly exit and free its memory.
1277          */
1278         if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1279                 mark_oom_victim(current);
1280                 try_oom_reaper(current);
1281                 goto unlock;
1282         }
1283
1284         check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1285         totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1286         for_each_mem_cgroup_tree(iter, memcg) {
1287                 struct css_task_iter it;
1288                 struct task_struct *task;
1289
1290                 css_task_iter_start(&iter->css, &it);
1291                 while ((task = css_task_iter_next(&it))) {
1292                         switch (oom_scan_process_thread(&oc, task, totalpages)) {
1293                         case OOM_SCAN_SELECT:
1294                                 if (chosen)
1295                                         put_task_struct(chosen);
1296                                 chosen = task;
1297                                 chosen_points = ULONG_MAX;
1298                                 get_task_struct(chosen);
1299                                 /* fall through */
1300                         case OOM_SCAN_CONTINUE:
1301                                 continue;
1302                         case OOM_SCAN_ABORT:
1303                                 css_task_iter_end(&it);
1304                                 mem_cgroup_iter_break(memcg, iter);
1305                                 if (chosen)
1306                                         put_task_struct(chosen);
1307                                 /* Set a dummy value to return "true". */
1308                                 chosen = (void *) 1;
1309                                 goto unlock;
1310                         case OOM_SCAN_OK:
1311                                 break;
1312                         };
1313                         points = oom_badness(task, memcg, NULL, totalpages);
1314                         if (!points || points < chosen_points)
1315                                 continue;
1316                         /* Prefer thread group leaders for display purposes */
1317                         if (points == chosen_points &&
1318                             thread_group_leader(chosen))
1319                                 continue;
1320
1321                         if (chosen)
1322                                 put_task_struct(chosen);
1323                         chosen = task;
1324                         chosen_points = points;
1325                         get_task_struct(chosen);
1326                 }
1327                 css_task_iter_end(&it);
1328         }
1329
1330         if (chosen) {
1331                 points = chosen_points * 1000 / totalpages;
1332                 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1333                                  "Memory cgroup out of memory");
1334         }
1335 unlock:
1336         mutex_unlock(&oom_lock);
1337         return chosen;
1338 }
1339
1340 #if MAX_NUMNODES > 1
1341
1342 /**
1343  * test_mem_cgroup_node_reclaimable
1344  * @memcg: the target memcg
1345  * @nid: the node ID to be checked.
1346  * @noswap : specify true here if the user wants flle only information.
1347  *
1348  * This function returns whether the specified memcg contains any
1349  * reclaimable pages on a node. Returns true if there are any reclaimable
1350  * pages in the node.
1351  */
1352 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1353                 int nid, bool noswap)
1354 {
1355         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1356                 return true;
1357         if (noswap || !total_swap_pages)
1358                 return false;
1359         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1360                 return true;
1361         return false;
1362
1363 }
1364
1365 /*
1366  * Always updating the nodemask is not very good - even if we have an empty
1367  * list or the wrong list here, we can start from some node and traverse all
1368  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1369  *
1370  */
1371 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1372 {
1373         int nid;
1374         /*
1375          * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1376          * pagein/pageout changes since the last update.
1377          */
1378         if (!atomic_read(&memcg->numainfo_events))
1379                 return;
1380         if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1381                 return;
1382
1383         /* make a nodemask where this memcg uses memory from */
1384         memcg->scan_nodes = node_states[N_MEMORY];
1385
1386         for_each_node_mask(nid, node_states[N_MEMORY]) {
1387
1388                 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1389                         node_clear(nid, memcg->scan_nodes);
1390         }
1391
1392         atomic_set(&memcg->numainfo_events, 0);
1393         atomic_set(&memcg->numainfo_updating, 0);
1394 }
1395
1396 /*
1397  * Selecting a node where we start reclaim from. Because what we need is just
1398  * reducing usage counter, start from anywhere is O,K. Considering
1399  * memory reclaim from current node, there are pros. and cons.
1400  *
1401  * Freeing memory from current node means freeing memory from a node which
1402  * we'll use or we've used. So, it may make LRU bad. And if several threads
1403  * hit limits, it will see a contention on a node. But freeing from remote
1404  * node means more costs for memory reclaim because of memory latency.
1405  *
1406  * Now, we use round-robin. Better algorithm is welcomed.
1407  */
1408 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1409 {
1410         int node;
1411
1412         mem_cgroup_may_update_nodemask(memcg);
1413         node = memcg->last_scanned_node;
1414
1415         node = next_node_in(node, memcg->scan_nodes);
1416         /*
1417          * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1418          * last time it really checked all the LRUs due to rate limiting.
1419          * Fallback to the current node in that case for simplicity.
1420          */
1421         if (unlikely(node == MAX_NUMNODES))
1422                 node = numa_node_id();
1423
1424         memcg->last_scanned_node = node;
1425         return node;
1426 }
1427 #else
1428 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1429 {
1430         return 0;
1431 }
1432 #endif
1433
1434 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1435                                    struct zone *zone,
1436                                    gfp_t gfp_mask,
1437                                    unsigned long *total_scanned)
1438 {
1439         struct mem_cgroup *victim = NULL;
1440         int total = 0;
1441         int loop = 0;
1442         unsigned long excess;
1443         unsigned long nr_scanned;
1444         struct mem_cgroup_reclaim_cookie reclaim = {
1445                 .zone = zone,
1446                 .priority = 0,
1447         };
1448
1449         excess = soft_limit_excess(root_memcg);
1450
1451         while (1) {
1452                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1453                 if (!victim) {
1454                         loop++;
1455                         if (loop >= 2) {
1456                                 /*
1457                                  * If we have not been able to reclaim
1458                                  * anything, it might because there are
1459                                  * no reclaimable pages under this hierarchy
1460                                  */
1461                                 if (!total)
1462                                         break;
1463                                 /*
1464                                  * We want to do more targeted reclaim.
1465                                  * excess >> 2 is not to excessive so as to
1466                                  * reclaim too much, nor too less that we keep
1467                                  * coming back to reclaim from this cgroup
1468                                  */
1469                                 if (total >= (excess >> 2) ||
1470                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1471                                         break;
1472                         }
1473                         continue;
1474                 }
1475                 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1476                                                      zone, &nr_scanned);
1477                 *total_scanned += nr_scanned;
1478                 if (!soft_limit_excess(root_memcg))
1479                         break;
1480         }
1481         mem_cgroup_iter_break(root_memcg, victim);
1482         return total;
1483 }
1484
1485 #ifdef CONFIG_LOCKDEP
1486 static struct lockdep_map memcg_oom_lock_dep_map = {
1487         .name = "memcg_oom_lock",
1488 };
1489 #endif
1490
1491 static DEFINE_SPINLOCK(memcg_oom_lock);
1492
1493 /*
1494  * Check OOM-Killer is already running under our hierarchy.
1495  * If someone is running, return false.
1496  */
1497 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1498 {
1499         struct mem_cgroup *iter, *failed = NULL;
1500
1501         spin_lock(&memcg_oom_lock);
1502
1503         for_each_mem_cgroup_tree(iter, memcg) {
1504                 if (iter->oom_lock) {
1505                         /*
1506                          * this subtree of our hierarchy is already locked
1507                          * so we cannot give a lock.
1508                          */
1509                         failed = iter;
1510                         mem_cgroup_iter_break(memcg, iter);
1511                         break;
1512                 } else
1513                         iter->oom_lock = true;
1514         }
1515
1516         if (failed) {
1517                 /*
1518                  * OK, we failed to lock the whole subtree so we have
1519                  * to clean up what we set up to the failing subtree
1520                  */
1521                 for_each_mem_cgroup_tree(iter, memcg) {
1522                         if (iter == failed) {
1523                                 mem_cgroup_iter_break(memcg, iter);
1524                                 break;
1525                         }
1526                         iter->oom_lock = false;
1527                 }
1528         } else
1529                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1530
1531         spin_unlock(&memcg_oom_lock);
1532
1533         return !failed;
1534 }
1535
1536 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1537 {
1538         struct mem_cgroup *iter;
1539
1540         spin_lock(&memcg_oom_lock);
1541         mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1542         for_each_mem_cgroup_tree(iter, memcg)
1543                 iter->oom_lock = false;
1544         spin_unlock(&memcg_oom_lock);
1545 }
1546
1547 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1548 {
1549         struct mem_cgroup *iter;
1550
1551         spin_lock(&memcg_oom_lock);
1552         for_each_mem_cgroup_tree(iter, memcg)
1553                 iter->under_oom++;
1554         spin_unlock(&memcg_oom_lock);
1555 }
1556
1557 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1558 {
1559         struct mem_cgroup *iter;
1560
1561         /*
1562          * When a new child is created while the hierarchy is under oom,
1563          * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1564          */
1565         spin_lock(&memcg_oom_lock);
1566         for_each_mem_cgroup_tree(iter, memcg)
1567                 if (iter->under_oom > 0)
1568                         iter->under_oom--;
1569         spin_unlock(&memcg_oom_lock);
1570 }
1571
1572 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1573
1574 struct oom_wait_info {
1575         struct mem_cgroup *memcg;
1576         wait_queue_t    wait;
1577 };
1578
1579 static int memcg_oom_wake_function(wait_queue_t *wait,
1580         unsigned mode, int sync, void *arg)
1581 {
1582         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1583         struct mem_cgroup *oom_wait_memcg;
1584         struct oom_wait_info *oom_wait_info;
1585
1586         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1587         oom_wait_memcg = oom_wait_info->memcg;
1588
1589         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1590             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1591                 return 0;
1592         return autoremove_wake_function(wait, mode, sync, arg);
1593 }
1594
1595 static void memcg_oom_recover(struct mem_cgroup *memcg)
1596 {
1597         /*
1598          * For the following lockless ->under_oom test, the only required
1599          * guarantee is that it must see the state asserted by an OOM when
1600          * this function is called as a result of userland actions
1601          * triggered by the notification of the OOM.  This is trivially
1602          * achieved by invoking mem_cgroup_mark_under_oom() before
1603          * triggering notification.
1604          */
1605         if (memcg && memcg->under_oom)
1606                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1607 }
1608
1609 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1610 {
1611         if (!current->memcg_may_oom)
1612                 return;
1613         /*
1614          * We are in the middle of the charge context here, so we
1615          * don't want to block when potentially sitting on a callstack
1616          * that holds all kinds of filesystem and mm locks.
1617          *
1618          * Also, the caller may handle a failed allocation gracefully
1619          * (like optional page cache readahead) and so an OOM killer
1620          * invocation might not even be necessary.
1621          *
1622          * That's why we don't do anything here except remember the
1623          * OOM context and then deal with it at the end of the page
1624          * fault when the stack is unwound, the locks are released,
1625          * and when we know whether the fault was overall successful.
1626          */
1627         css_get(&memcg->css);
1628         current->memcg_in_oom = memcg;
1629         current->memcg_oom_gfp_mask = mask;
1630         current->memcg_oom_order = order;
1631 }
1632
1633 /**
1634  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1635  * @handle: actually kill/wait or just clean up the OOM state
1636  *
1637  * This has to be called at the end of a page fault if the memcg OOM
1638  * handler was enabled.
1639  *
1640  * Memcg supports userspace OOM handling where failed allocations must
1641  * sleep on a waitqueue until the userspace task resolves the
1642  * situation.  Sleeping directly in the charge context with all kinds
1643  * of locks held is not a good idea, instead we remember an OOM state
1644  * in the task and mem_cgroup_oom_synchronize() has to be called at
1645  * the end of the page fault to complete the OOM handling.
1646  *
1647  * Returns %true if an ongoing memcg OOM situation was detected and
1648  * completed, %false otherwise.
1649  */
1650 bool mem_cgroup_oom_synchronize(bool handle)
1651 {
1652         struct mem_cgroup *memcg = current->memcg_in_oom;
1653         struct oom_wait_info owait;
1654         bool locked;
1655
1656         /* OOM is global, do not handle */
1657         if (!memcg)
1658                 return false;
1659
1660         if (!handle || oom_killer_disabled)
1661                 goto cleanup;
1662
1663         owait.memcg = memcg;
1664         owait.wait.flags = 0;
1665         owait.wait.func = memcg_oom_wake_function;
1666         owait.wait.private = current;
1667         INIT_LIST_HEAD(&owait.wait.task_list);
1668
1669         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1670         mem_cgroup_mark_under_oom(memcg);
1671
1672         locked = mem_cgroup_oom_trylock(memcg);
1673
1674         if (locked)
1675                 mem_cgroup_oom_notify(memcg);
1676
1677         if (locked && !memcg->oom_kill_disable) {
1678                 mem_cgroup_unmark_under_oom(memcg);
1679                 finish_wait(&memcg_oom_waitq, &owait.wait);
1680                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1681                                          current->memcg_oom_order);
1682         } else {
1683                 schedule();
1684                 mem_cgroup_unmark_under_oom(memcg);
1685                 finish_wait(&memcg_oom_waitq, &owait.wait);
1686         }
1687
1688         if (locked) {
1689                 mem_cgroup_oom_unlock(memcg);
1690                 /*
1691                  * There is no guarantee that an OOM-lock contender
1692                  * sees the wakeups triggered by the OOM kill
1693                  * uncharges.  Wake any sleepers explicitely.
1694                  */
1695                 memcg_oom_recover(memcg);
1696         }
1697 cleanup:
1698         current->memcg_in_oom = NULL;
1699         css_put(&memcg->css);
1700         return true;
1701 }
1702
1703 /**
1704  * lock_page_memcg - lock a page->mem_cgroup binding
1705  * @page: the page
1706  *
1707  * This function protects unlocked LRU pages from being moved to
1708  * another cgroup and stabilizes their page->mem_cgroup binding.
1709  */
1710 void lock_page_memcg(struct page *page)
1711 {
1712         struct mem_cgroup *memcg;
1713         unsigned long flags;
1714
1715         /*
1716          * The RCU lock is held throughout the transaction.  The fast
1717          * path can get away without acquiring the memcg->move_lock
1718          * because page moving starts with an RCU grace period.
1719          */
1720         rcu_read_lock();
1721
1722         if (mem_cgroup_disabled())
1723                 return;
1724 again:
1725         memcg = page->mem_cgroup;
1726         if (unlikely(!memcg))
1727                 return;
1728
1729         if (atomic_read(&memcg->moving_account) <= 0)
1730                 return;
1731
1732         spin_lock_irqsave(&memcg->move_lock, flags);
1733         if (memcg != page->mem_cgroup) {
1734                 spin_unlock_irqrestore(&memcg->move_lock, flags);
1735                 goto again;
1736         }
1737
1738         /*
1739          * When charge migration first begins, we can have locked and
1740          * unlocked page stat updates happening concurrently.  Track
1741          * the task who has the lock for unlock_page_memcg().
1742          */
1743         memcg->move_lock_task = current;
1744         memcg->move_lock_flags = flags;
1745
1746         return;
1747 }
1748 EXPORT_SYMBOL(lock_page_memcg);
1749
1750 /**
1751  * unlock_page_memcg - unlock a page->mem_cgroup binding
1752  * @page: the page
1753  */
1754 void unlock_page_memcg(struct page *page)
1755 {
1756         struct mem_cgroup *memcg = page->mem_cgroup;
1757
1758         if (memcg && memcg->move_lock_task == current) {
1759                 unsigned long flags = memcg->move_lock_flags;
1760
1761                 memcg->move_lock_task = NULL;
1762                 memcg->move_lock_flags = 0;
1763
1764                 spin_unlock_irqrestore(&memcg->move_lock, flags);
1765         }
1766
1767         rcu_read_unlock();
1768 }
1769 EXPORT_SYMBOL(unlock_page_memcg);
1770
1771 /*
1772  * size of first charge trial. "32" comes from vmscan.c's magic value.
1773  * TODO: maybe necessary to use big numbers in big irons.
1774  */
1775 #define CHARGE_BATCH    32U
1776 struct memcg_stock_pcp {
1777         struct mem_cgroup *cached; /* this never be root cgroup */
1778         unsigned int nr_pages;
1779         struct work_struct work;
1780         unsigned long flags;
1781 #define FLUSHING_CACHED_CHARGE  0
1782 };
1783 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1784 static DEFINE_MUTEX(percpu_charge_mutex);
1785
1786 /**
1787  * consume_stock: Try to consume stocked charge on this cpu.
1788  * @memcg: memcg to consume from.
1789  * @nr_pages: how many pages to charge.
1790  *
1791  * The charges will only happen if @memcg matches the current cpu's memcg
1792  * stock, and at least @nr_pages are available in that stock.  Failure to
1793  * service an allocation will refill the stock.
1794  *
1795  * returns true if successful, false otherwise.
1796  */
1797 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1798 {
1799         struct memcg_stock_pcp *stock;
1800         bool ret = false;
1801
1802         if (nr_pages > CHARGE_BATCH)
1803                 return ret;
1804
1805         stock = &get_cpu_var(memcg_stock);
1806         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1807                 stock->nr_pages -= nr_pages;
1808                 ret = true;
1809         }
1810         put_cpu_var(memcg_stock);
1811         return ret;
1812 }
1813
1814 /*
1815  * Returns stocks cached in percpu and reset cached information.
1816  */
1817 static void drain_stock(struct memcg_stock_pcp *stock)
1818 {
1819         struct mem_cgroup *old = stock->cached;
1820
1821         if (stock->nr_pages) {
1822                 page_counter_uncharge(&old->memory, stock->nr_pages);
1823                 if (do_memsw_account())
1824                         page_counter_uncharge(&old->memsw, stock->nr_pages);
1825                 css_put_many(&old->css, stock->nr_pages);
1826                 stock->nr_pages = 0;
1827         }
1828         stock->cached = NULL;
1829 }
1830
1831 /*
1832  * This must be called under preempt disabled or must be called by
1833  * a thread which is pinned to local cpu.
1834  */
1835 static void drain_local_stock(struct work_struct *dummy)
1836 {
1837         struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1838         drain_stock(stock);
1839         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1840 }
1841
1842 /*
1843  * Cache charges(val) to local per_cpu area.
1844  * This will be consumed by consume_stock() function, later.
1845  */
1846 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1847 {
1848         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1849
1850         if (stock->cached != memcg) { /* reset if necessary */
1851                 drain_stock(stock);
1852                 stock->cached = memcg;
1853         }
1854         stock->nr_pages += nr_pages;
1855         put_cpu_var(memcg_stock);
1856 }
1857
1858 /*
1859  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1860  * of the hierarchy under it.
1861  */
1862 static void drain_all_stock(struct mem_cgroup *root_memcg)
1863 {
1864         int cpu, curcpu;
1865
1866         /* If someone's already draining, avoid adding running more workers. */
1867         if (!mutex_trylock(&percpu_charge_mutex))
1868                 return;
1869         /* Notify other cpus that system-wide "drain" is running */
1870         get_online_cpus();
1871         curcpu = get_cpu();
1872         for_each_online_cpu(cpu) {
1873                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1874                 struct mem_cgroup *memcg;
1875
1876                 memcg = stock->cached;
1877                 if (!memcg || !stock->nr_pages)
1878                         continue;
1879                 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1880                         continue;
1881                 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1882                         if (cpu == curcpu)
1883                                 drain_local_stock(&stock->work);
1884                         else
1885                                 schedule_work_on(cpu, &stock->work);
1886                 }
1887         }
1888         put_cpu();
1889         put_online_cpus();
1890         mutex_unlock(&percpu_charge_mutex);
1891 }
1892
1893 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1894                                         unsigned long action,
1895                                         void *hcpu)
1896 {
1897         int cpu = (unsigned long)hcpu;
1898         struct memcg_stock_pcp *stock;
1899
1900         if (action == CPU_ONLINE)
1901                 return NOTIFY_OK;
1902
1903         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1904                 return NOTIFY_OK;
1905
1906         stock = &per_cpu(memcg_stock, cpu);
1907         drain_stock(stock);
1908         return NOTIFY_OK;
1909 }
1910
1911 static void reclaim_high(struct mem_cgroup *memcg,
1912                          unsigned int nr_pages,
1913                          gfp_t gfp_mask)
1914 {
1915         do {
1916                 if (page_counter_read(&memcg->memory) <= memcg->high)
1917                         continue;
1918                 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1919                 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1920         } while ((memcg = parent_mem_cgroup(memcg)));
1921 }
1922
1923 static void high_work_func(struct work_struct *work)
1924 {
1925         struct mem_cgroup *memcg;
1926
1927         memcg = container_of(work, struct mem_cgroup, high_work);
1928         reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1929 }
1930
1931 /*
1932  * Scheduled by try_charge() to be executed from the userland return path
1933  * and reclaims memory over the high limit.
1934  */
1935 void mem_cgroup_handle_over_high(void)
1936 {
1937         unsigned int nr_pages = current->memcg_nr_pages_over_high;
1938         struct mem_cgroup *memcg;
1939
1940         if (likely(!nr_pages))
1941                 return;
1942
1943         memcg = get_mem_cgroup_from_mm(current->mm);
1944         reclaim_high(memcg, nr_pages, GFP_KERNEL);
1945         css_put(&memcg->css);
1946         current->memcg_nr_pages_over_high = 0;
1947 }
1948
1949 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1950                       unsigned int nr_pages)
1951 {
1952         unsigned int batch = max(CHARGE_BATCH, nr_pages);
1953         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1954         struct mem_cgroup *mem_over_limit;
1955         struct page_counter *counter;
1956         unsigned long nr_reclaimed;
1957         bool may_swap = true;
1958         bool drained = false;
1959
1960         if (mem_cgroup_is_root(memcg))
1961                 return 0;
1962 retry:
1963         if (consume_stock(memcg, nr_pages))
1964                 return 0;
1965
1966         if (!do_memsw_account() ||
1967             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1968                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1969                         goto done_restock;
1970                 if (do_memsw_account())
1971                         page_counter_uncharge(&memcg->memsw, batch);
1972                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1973         } else {
1974                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1975                 may_swap = false;
1976         }
1977
1978         if (batch > nr_pages) {
1979                 batch = nr_pages;
1980                 goto retry;
1981         }
1982
1983         /*
1984          * Unlike in global OOM situations, memcg is not in a physical
1985          * memory shortage.  Allow dying and OOM-killed tasks to
1986          * bypass the last charges so that they can exit quickly and
1987          * free their memory.
1988          */
1989         if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1990                      fatal_signal_pending(current) ||
1991                      current->flags & PF_EXITING))
1992                 goto force;
1993
1994         if (unlikely(task_in_memcg_oom(current)))
1995                 goto nomem;
1996
1997         if (!gfpflags_allow_blocking(gfp_mask))
1998                 goto nomem;
1999
2000         mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2001
2002         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2003                                                     gfp_mask, may_swap);
2004
2005         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2006                 goto retry;
2007
2008         if (!drained) {
2009                 drain_all_stock(mem_over_limit);
2010                 drained = true;
2011                 goto retry;
2012         }
2013
2014         if (gfp_mask & __GFP_NORETRY)
2015                 goto nomem;
2016         /*
2017          * Even though the limit is exceeded at this point, reclaim
2018          * may have been able to free some pages.  Retry the charge
2019          * before killing the task.
2020          *
2021          * Only for regular pages, though: huge pages are rather
2022          * unlikely to succeed so close to the limit, and we fall back
2023          * to regular pages anyway in case of failure.
2024          */
2025         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2026                 goto retry;
2027         /*
2028          * At task move, charge accounts can be doubly counted. So, it's
2029          * better to wait until the end of task_move if something is going on.
2030          */
2031         if (mem_cgroup_wait_acct_move(mem_over_limit))
2032                 goto retry;
2033
2034         if (nr_retries--)
2035                 goto retry;
2036
2037         if (gfp_mask & __GFP_NOFAIL)
2038                 goto force;
2039
2040         if (fatal_signal_pending(current))
2041                 goto force;
2042
2043         mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2044
2045         mem_cgroup_oom(mem_over_limit, gfp_mask,
2046                        get_order(nr_pages * PAGE_SIZE));
2047 nomem:
2048         if (!(gfp_mask & __GFP_NOFAIL))
2049                 return -ENOMEM;
2050 force:
2051         /*
2052          * The allocation either can't fail or will lead to more memory
2053          * being freed very soon.  Allow memory usage go over the limit
2054          * temporarily by force charging it.
2055          */
2056         page_counter_charge(&memcg->memory, nr_pages);
2057         if (do_memsw_account())
2058                 page_counter_charge(&memcg->memsw, nr_pages);
2059         css_get_many(&memcg->css, nr_pages);
2060
2061         return 0;
2062
2063 done_restock:
2064         css_get_many(&memcg->css, batch);
2065         if (batch > nr_pages)
2066                 refill_stock(memcg, batch - nr_pages);
2067
2068         /*
2069          * If the hierarchy is above the normal consumption range, schedule
2070          * reclaim on returning to userland.  We can perform reclaim here
2071          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2072          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2073          * not recorded as it most likely matches current's and won't
2074          * change in the meantime.  As high limit is checked again before
2075          * reclaim, the cost of mismatch is negligible.
2076          */
2077         do {
2078                 if (page_counter_read(&memcg->memory) > memcg->high) {
2079                         /* Don't bother a random interrupted task */
2080                         if (in_interrupt()) {
2081                                 schedule_work(&memcg->high_work);
2082                                 break;
2083                         }
2084                         current->memcg_nr_pages_over_high += batch;
2085                         set_notify_resume(current);
2086                         break;
2087                 }
2088         } while ((memcg = parent_mem_cgroup(memcg)));
2089
2090         return 0;
2091 }
2092
2093 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2094 {
2095         if (mem_cgroup_is_root(memcg))
2096                 return;
2097
2098         page_counter_uncharge(&memcg->memory, nr_pages);
2099         if (do_memsw_account())
2100                 page_counter_uncharge(&memcg->memsw, nr_pages);
2101
2102         css_put_many(&memcg->css, nr_pages);
2103 }
2104
2105 static void lock_page_lru(struct page *page, int *isolated)
2106 {
2107         struct zone *zone = page_zone(page);
2108
2109         spin_lock_irq(&zone->lru_lock);
2110         if (PageLRU(page)) {
2111                 struct lruvec *lruvec;
2112
2113                 lruvec = mem_cgroup_page_lruvec(page, zone);
2114                 ClearPageLRU(page);
2115                 del_page_from_lru_list(page, lruvec, page_lru(page));
2116                 *isolated = 1;
2117         } else
2118                 *isolated = 0;
2119 }
2120
2121 static void unlock_page_lru(struct page *page, int isolated)
2122 {
2123         struct zone *zone = page_zone(page);
2124
2125         if (isolated) {
2126                 struct lruvec *lruvec;
2127
2128                 lruvec = mem_cgroup_page_lruvec(page, zone);
2129                 VM_BUG_ON_PAGE(PageLRU(page), page);
2130                 SetPageLRU(page);
2131                 add_page_to_lru_list(page, lruvec, page_lru(page));
2132         }
2133         spin_unlock_irq(&zone->lru_lock);
2134 }
2135
2136 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2137                           bool lrucare)
2138 {
2139         int isolated;
2140
2141         VM_BUG_ON_PAGE(page->mem_cgroup, page);
2142
2143         /*
2144          * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2145          * may already be on some other mem_cgroup's LRU.  Take care of it.
2146          */
2147         if (lrucare)
2148                 lock_page_lru(page, &isolated);
2149
2150         /*
2151          * Nobody should be changing or seriously looking at
2152          * page->mem_cgroup at this point:
2153          *
2154          * - the page is uncharged
2155          *
2156          * - the page is off-LRU
2157          *
2158          * - an anonymous fault has exclusive page access, except for
2159          *   a locked page table
2160          *
2161          * - a page cache insertion, a swapin fault, or a migration
2162          *   have the page locked
2163          */
2164         page->mem_cgroup = memcg;
2165
2166         if (lrucare)
2167                 unlock_page_lru(page, isolated);
2168 }
2169
2170 #ifndef CONFIG_SLOB
2171 static int memcg_alloc_cache_id(void)
2172 {
2173         int id, size;
2174         int err;
2175
2176         id = ida_simple_get(&memcg_cache_ida,
2177                             0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2178         if (id < 0)
2179                 return id;
2180
2181         if (id < memcg_nr_cache_ids)
2182                 return id;
2183
2184         /*
2185          * There's no space for the new id in memcg_caches arrays,
2186          * so we have to grow them.
2187          */
2188         down_write(&memcg_cache_ids_sem);
2189
2190         size = 2 * (id + 1);
2191         if (size < MEMCG_CACHES_MIN_SIZE)
2192                 size = MEMCG_CACHES_MIN_SIZE;
2193         else if (size > MEMCG_CACHES_MAX_SIZE)
2194                 size = MEMCG_CACHES_MAX_SIZE;
2195
2196         err = memcg_update_all_caches(size);
2197         if (!err)
2198                 err = memcg_update_all_list_lrus(size);
2199         if (!err)
2200                 memcg_nr_cache_ids = size;
2201
2202         up_write(&memcg_cache_ids_sem);
2203
2204         if (err) {
2205                 ida_simple_remove(&memcg_cache_ida, id);
2206                 return err;
2207         }
2208         return id;
2209 }
2210
2211 static void memcg_free_cache_id(int id)
2212 {
2213         ida_simple_remove(&memcg_cache_ida, id);
2214 }
2215
2216 struct memcg_kmem_cache_create_work {
2217         struct mem_cgroup *memcg;
2218         struct kmem_cache *cachep;
2219         struct work_struct work;
2220 };
2221
2222 static void memcg_kmem_cache_create_func(struct work_struct *w)
2223 {
2224         struct memcg_kmem_cache_create_work *cw =
2225                 container_of(w, struct memcg_kmem_cache_create_work, work);
2226         struct mem_cgroup *memcg = cw->memcg;
2227         struct kmem_cache *cachep = cw->cachep;
2228
2229         memcg_create_kmem_cache(memcg, cachep);
2230
2231         css_put(&memcg->css);
2232         kfree(cw);
2233 }
2234
2235 /*
2236  * Enqueue the creation of a per-memcg kmem_cache.
2237  */
2238 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2239                                                struct kmem_cache *cachep)
2240 {
2241         struct memcg_kmem_cache_create_work *cw;
2242
2243         cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2244         if (!cw)
2245                 return;
2246
2247         css_get(&memcg->css);
2248
2249         cw->memcg = memcg;
2250         cw->cachep = cachep;
2251         INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2252
2253         schedule_work(&cw->work);
2254 }
2255
2256 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2257                                              struct kmem_cache *cachep)
2258 {
2259         /*
2260          * We need to stop accounting when we kmalloc, because if the
2261          * corresponding kmalloc cache is not yet created, the first allocation
2262          * in __memcg_schedule_kmem_cache_create will recurse.
2263          *
2264          * However, it is better to enclose the whole function. Depending on
2265          * the debugging options enabled, INIT_WORK(), for instance, can
2266          * trigger an allocation. This too, will make us recurse. Because at
2267          * this point we can't allow ourselves back into memcg_kmem_get_cache,
2268          * the safest choice is to do it like this, wrapping the whole function.
2269          */
2270         current->memcg_kmem_skip_account = 1;
2271         __memcg_schedule_kmem_cache_create(memcg, cachep);
2272         current->memcg_kmem_skip_account = 0;
2273 }
2274
2275 /*
2276  * Return the kmem_cache we're supposed to use for a slab allocation.
2277  * We try to use the current memcg's version of the cache.
2278  *
2279  * If the cache does not exist yet, if we are the first user of it,
2280  * we either create it immediately, if possible, or create it asynchronously
2281  * in a workqueue.
2282  * In the latter case, we will let the current allocation go through with
2283  * the original cache.
2284  *
2285  * Can't be called in interrupt context or from kernel threads.
2286  * This function needs to be called with rcu_read_lock() held.
2287  */
2288 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2289 {
2290         struct mem_cgroup *memcg;
2291         struct kmem_cache *memcg_cachep;
2292         int kmemcg_id;
2293
2294         VM_BUG_ON(!is_root_cache(cachep));
2295
2296         if (cachep->flags & SLAB_ACCOUNT)
2297                 gfp |= __GFP_ACCOUNT;
2298
2299         if (!(gfp & __GFP_ACCOUNT))
2300                 return cachep;
2301
2302         if (current->memcg_kmem_skip_account)
2303                 return cachep;
2304
2305         memcg = get_mem_cgroup_from_mm(current->mm);
2306         kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2307         if (kmemcg_id < 0)
2308                 goto out;
2309
2310         memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2311         if (likely(memcg_cachep))
2312                 return memcg_cachep;
2313
2314         /*
2315          * If we are in a safe context (can wait, and not in interrupt
2316          * context), we could be be predictable and return right away.
2317          * This would guarantee that the allocation being performed
2318          * already belongs in the new cache.
2319          *
2320          * However, there are some clashes that can arrive from locking.
2321          * For instance, because we acquire the slab_mutex while doing
2322          * memcg_create_kmem_cache, this means no further allocation
2323          * could happen with the slab_mutex held. So it's better to
2324          * defer everything.
2325          */
2326         memcg_schedule_kmem_cache_create(memcg, cachep);
2327 out:
2328         css_put(&memcg->css);
2329         return cachep;
2330 }
2331
2332 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2333 {
2334         if (!is_root_cache(cachep))
2335                 css_put(&cachep->memcg_params.memcg->css);
2336 }
2337
2338 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2339                               struct mem_cgroup *memcg)
2340 {
2341         unsigned int nr_pages = 1 << order;
2342         struct page_counter *counter;
2343         int ret;
2344
2345         ret = try_charge(memcg, gfp, nr_pages);
2346         if (ret)
2347                 return ret;
2348
2349         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2350             !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2351                 cancel_charge(memcg, nr_pages);
2352                 return -ENOMEM;
2353         }
2354
2355         page->mem_cgroup = memcg;
2356
2357         return 0;
2358 }
2359
2360 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2361 {
2362         struct mem_cgroup *memcg;
2363         int ret = 0;
2364
2365         memcg = get_mem_cgroup_from_mm(current->mm);
2366         if (!mem_cgroup_is_root(memcg))
2367                 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2368         css_put(&memcg->css);
2369         return ret;
2370 }
2371
2372 void __memcg_kmem_uncharge(struct page *page, int order)
2373 {
2374         struct mem_cgroup *memcg = page->mem_cgroup;
2375         unsigned int nr_pages = 1 << order;
2376
2377         if (!memcg)
2378                 return;
2379
2380         VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2381
2382         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2383                 page_counter_uncharge(&memcg->kmem, nr_pages);
2384
2385         page_counter_uncharge(&memcg->memory, nr_pages);
2386         if (do_memsw_account())
2387                 page_counter_uncharge(&memcg->memsw, nr_pages);
2388
2389         page->mem_cgroup = NULL;
2390         css_put_many(&memcg->css, nr_pages);
2391 }
2392 #endif /* !CONFIG_SLOB */
2393
2394 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2395
2396 /*
2397  * Because tail pages are not marked as "used", set it. We're under
2398  * zone->lru_lock and migration entries setup in all page mappings.
2399  */
2400 void mem_cgroup_split_huge_fixup(struct page *head)
2401 {
2402         int i;
2403
2404         if (mem_cgroup_disabled())
2405                 return;
2406
2407         for (i = 1; i < HPAGE_PMD_NR; i++)
2408                 head[i].mem_cgroup = head->mem_cgroup;
2409
2410         __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2411                        HPAGE_PMD_NR);
2412 }
2413 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2414
2415 #ifdef CONFIG_MEMCG_SWAP
2416 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2417                                          bool charge)
2418 {
2419         int val = (charge) ? 1 : -1;
2420         this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2421 }
2422
2423 /**
2424  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2425  * @entry: swap entry to be moved
2426  * @from:  mem_cgroup which the entry is moved from
2427  * @to:  mem_cgroup which the entry is moved to
2428  *
2429  * It succeeds only when the swap_cgroup's record for this entry is the same
2430  * as the mem_cgroup's id of @from.
2431  *
2432  * Returns 0 on success, -EINVAL on failure.
2433  *
2434  * The caller must have charged to @to, IOW, called page_counter_charge() about
2435  * both res and memsw, and called css_get().
2436  */
2437 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2438                                 struct mem_cgroup *from, struct mem_cgroup *to)
2439 {
2440         unsigned short old_id, new_id;
2441
2442         old_id = mem_cgroup_id(from);
2443         new_id = mem_cgroup_id(to);
2444
2445         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2446                 mem_cgroup_swap_statistics(from, false);
2447                 mem_cgroup_swap_statistics(to, true);
2448                 return 0;
2449         }
2450         return -EINVAL;
2451 }
2452 #else
2453 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2454                                 struct mem_cgroup *from, struct mem_cgroup *to)
2455 {
2456         return -EINVAL;
2457 }
2458 #endif
2459
2460 static DEFINE_MUTEX(memcg_limit_mutex);
2461
2462 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2463                                    unsigned long limit)
2464 {
2465         unsigned long curusage;
2466         unsigned long oldusage;
2467         bool enlarge = false;
2468         int retry_count;
2469         int ret;
2470
2471         /*
2472          * For keeping hierarchical_reclaim simple, how long we should retry
2473          * is depends on callers. We set our retry-count to be function
2474          * of # of children which we should visit in this loop.
2475          */
2476         retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2477                       mem_cgroup_count_children(memcg);
2478
2479         oldusage = page_counter_read(&memcg->memory);
2480
2481         do {
2482                 if (signal_pending(current)) {
2483                         ret = -EINTR;
2484                         break;
2485                 }
2486
2487                 mutex_lock(&memcg_limit_mutex);
2488                 if (limit > memcg->memsw.limit) {
2489                         mutex_unlock(&memcg_limit_mutex);
2490                         ret = -EINVAL;
2491                         break;
2492                 }
2493                 if (limit > memcg->memory.limit)
2494                         enlarge = true;
2495                 ret = page_counter_limit(&memcg->memory, limit);
2496                 mutex_unlock(&memcg_limit_mutex);
2497
2498                 if (!ret)
2499                         break;
2500
2501                 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2502
2503                 curusage = page_counter_read(&memcg->memory);
2504                 /* Usage is reduced ? */
2505                 if (curusage >= oldusage)
2506                         retry_count--;
2507                 else
2508                         oldusage = curusage;
2509         } while (retry_count);
2510
2511         if (!ret && enlarge)
2512                 memcg_oom_recover(memcg);
2513
2514         return ret;
2515 }
2516
2517 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2518                                          unsigned long limit)
2519 {
2520         unsigned long curusage;
2521         unsigned long oldusage;
2522         bool enlarge = false;
2523         int retry_count;
2524         int ret;
2525
2526         /* see mem_cgroup_resize_res_limit */
2527         retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2528                       mem_cgroup_count_children(memcg);
2529
2530         oldusage = page_counter_read(&memcg->memsw);
2531
2532         do {
2533                 if (signal_pending(current)) {
2534                         ret = -EINTR;
2535                         break;
2536                 }
2537
2538                 mutex_lock(&memcg_limit_mutex);
2539                 if (limit < memcg->memory.limit) {
2540                         mutex_unlock(&memcg_limit_mutex);
2541                         ret = -EINVAL;
2542                         break;
2543                 }
2544                 if (limit > memcg->memsw.limit)
2545                         enlarge = true;
2546                 ret = page_counter_limit(&memcg->memsw, limit);
2547                 mutex_unlock(&memcg_limit_mutex);
2548
2549                 if (!ret)
2550                         break;
2551
2552                 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2553
2554                 curusage = page_counter_read(&memcg->memsw);
2555                 /* Usage is reduced ? */
2556                 if (curusage >= oldusage)
2557                         retry_count--;
2558                 else
2559                         oldusage = curusage;
2560         } while (retry_count);
2561
2562         if (!ret && enlarge)
2563                 memcg_oom_recover(memcg);
2564
2565         return ret;
2566 }
2567
2568 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2569                                             gfp_t gfp_mask,
2570                                             unsigned long *total_scanned)
2571 {
2572         unsigned long nr_reclaimed = 0;
2573         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2574         unsigned long reclaimed;
2575         int loop = 0;
2576         struct mem_cgroup_tree_per_zone *mctz;
2577         unsigned long excess;
2578         unsigned long nr_scanned;
2579
2580         if (order > 0)
2581                 return 0;
2582
2583         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2584         /*
2585          * This loop can run a while, specially if mem_cgroup's continuously
2586          * keep exceeding their soft limit and putting the system under
2587          * pressure
2588          */
2589         do {
2590                 if (next_mz)
2591                         mz = next_mz;
2592                 else
2593                         mz = mem_cgroup_largest_soft_limit_node(mctz);
2594                 if (!mz)
2595                         break;
2596
2597                 nr_scanned = 0;
2598                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2599                                                     gfp_mask, &nr_scanned);
2600                 nr_reclaimed += reclaimed;
2601                 *total_scanned += nr_scanned;
2602                 spin_lock_irq(&mctz->lock);
2603                 __mem_cgroup_remove_exceeded(mz, mctz);
2604
2605                 /*
2606                  * If we failed to reclaim anything from this memory cgroup
2607                  * it is time to move on to the next cgroup
2608                  */
2609                 next_mz = NULL;
2610                 if (!reclaimed)
2611                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2612
2613                 excess = soft_limit_excess(mz->memcg);
2614                 /*
2615                  * One school of thought says that we should not add
2616                  * back the node to the tree if reclaim returns 0.
2617                  * But our reclaim could return 0, simply because due
2618                  * to priority we are exposing a smaller subset of
2619                  * memory to reclaim from. Consider this as a longer
2620                  * term TODO.
2621                  */
2622                 /* If excess == 0, no tree ops */
2623                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2624                 spin_unlock_irq(&mctz->lock);
2625                 css_put(&mz->memcg->css);
2626                 loop++;
2627                 /*
2628                  * Could not reclaim anything and there are no more
2629                  * mem cgroups to try or we seem to be looping without
2630                  * reclaiming anything.
2631                  */
2632                 if (!nr_reclaimed &&
2633                         (next_mz == NULL ||
2634                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2635                         break;
2636         } while (!nr_reclaimed);
2637         if (next_mz)
2638                 css_put(&next_mz->memcg->css);
2639         return nr_reclaimed;
2640 }
2641
2642 /*
2643  * Test whether @memcg has children, dead or alive.  Note that this
2644  * function doesn't care whether @memcg has use_hierarchy enabled and
2645  * returns %true if there are child csses according to the cgroup
2646  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2647  */
2648 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2649 {
2650         bool ret;
2651
2652         rcu_read_lock();
2653         ret = css_next_child(NULL, &memcg->css);
2654         rcu_read_unlock();
2655         return ret;
2656 }
2657
2658 /*
2659  * Reclaims as many pages from the given memcg as possible.
2660  *
2661  * Caller is responsible for holding css reference for memcg.
2662  */
2663 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2664 {
2665         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2666
2667         /* we call try-to-free pages for make this cgroup empty */
2668         lru_add_drain_all();
2669         /* try to free all pages in this cgroup */
2670         while (nr_retries && page_counter_read(&memcg->memory)) {
2671                 int progress;
2672
2673                 if (signal_pending(current))
2674                         return -EINTR;
2675
2676                 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2677                                                         GFP_KERNEL, true);
2678                 if (!progress) {
2679                         nr_retries--;
2680                         /* maybe some writeback is necessary */
2681                         congestion_wait(BLK_RW_ASYNC, HZ/10);
2682                 }
2683
2684         }
2685
2686         return 0;
2687 }
2688
2689 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2690                                             char *buf, size_t nbytes,
2691                                             loff_t off)
2692 {
2693         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2694
2695         if (mem_cgroup_is_root(memcg))
2696                 return -EINVAL;
2697         return mem_cgroup_force_empty(memcg) ?: nbytes;
2698 }
2699
2700 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2701                                      struct cftype *cft)
2702 {
2703         return mem_cgroup_from_css(css)->use_hierarchy;
2704 }
2705
2706 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2707                                       struct cftype *cft, u64 val)
2708 {
2709         int retval = 0;
2710         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2711         struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2712
2713         if (memcg->use_hierarchy == val)
2714                 return 0;
2715
2716         /*
2717          * If parent's use_hierarchy is set, we can't make any modifications
2718          * in the child subtrees. If it is unset, then the change can
2719          * occur, provided the current cgroup has no children.
2720          *
2721          * For the root cgroup, parent_mem is NULL, we allow value to be
2722          * set if there are no children.
2723          */
2724         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2725                                 (val == 1 || val == 0)) {
2726                 if (!memcg_has_children(memcg))
2727                         memcg->use_hierarchy = val;
2728                 else
2729                         retval = -EBUSY;
2730         } else
2731                 retval = -EINVAL;
2732
2733         return retval;
2734 }
2735
2736 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2737 {
2738         struct mem_cgroup *iter;
2739         int i;
2740
2741         memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2742
2743         for_each_mem_cgroup_tree(iter, memcg) {
2744                 for (i = 0; i < MEMCG_NR_STAT; i++)
2745                         stat[i] += mem_cgroup_read_stat(iter, i);
2746         }
2747 }
2748
2749 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2750 {
2751         struct mem_cgroup *iter;
2752         int i;
2753
2754         memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2755
2756         for_each_mem_cgroup_tree(iter, memcg) {
2757                 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2758                         events[i] += mem_cgroup_read_events(iter, i);
2759         }
2760 }
2761
2762 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2763 {
2764         unsigned long val = 0;
2765
2766         if (mem_cgroup_is_root(memcg)) {
2767                 struct mem_cgroup *iter;
2768
2769                 for_each_mem_cgroup_tree(iter, memcg) {
2770                         val += mem_cgroup_read_stat(iter,
2771                                         MEM_CGROUP_STAT_CACHE);
2772                         val += mem_cgroup_read_stat(iter,
2773                                         MEM_CGROUP_STAT_RSS);
2774                         if (swap)
2775                                 val += mem_cgroup_read_stat(iter,
2776                                                 MEM_CGROUP_STAT_SWAP);
2777                 }
2778         } else {
2779                 if (!swap)
2780                         val = page_counter_read(&memcg->memory);
2781                 else
2782                         val = page_counter_read(&memcg->memsw);
2783         }
2784         return val;
2785 }
2786
2787 enum {
2788         RES_USAGE,
2789         RES_LIMIT,
2790         RES_MAX_USAGE,
2791         RES_FAILCNT,
2792         RES_SOFT_LIMIT,
2793 };
2794
2795 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2796                                struct cftype *cft)
2797 {
2798         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2799         struct page_counter *counter;
2800
2801         switch (MEMFILE_TYPE(cft->private)) {
2802         case _MEM:
2803                 counter = &memcg->memory;
2804                 break;
2805         case _MEMSWAP:
2806                 counter = &memcg->memsw;
2807                 break;
2808         case _KMEM:
2809                 counter = &memcg->kmem;
2810                 break;
2811         case _TCP:
2812                 counter = &memcg->tcpmem;
2813                 break;
2814         default:
2815                 BUG();
2816         }
2817
2818         switch (MEMFILE_ATTR(cft->private)) {
2819         case RES_USAGE:
2820                 if (counter == &memcg->memory)
2821                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2822                 if (counter == &memcg->memsw)
2823                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2824                 return (u64)page_counter_read(counter) * PAGE_SIZE;
2825         case RES_LIMIT:
2826                 return (u64)counter->limit * PAGE_SIZE;
2827         case RES_MAX_USAGE:
2828                 return (u64)counter->watermark * PAGE_SIZE;
2829         case RES_FAILCNT:
2830                 return counter->failcnt;
2831         case RES_SOFT_LIMIT:
2832                 return (u64)memcg->soft_limit * PAGE_SIZE;
2833         default:
2834                 BUG();
2835         }
2836 }
2837
2838 #ifndef CONFIG_SLOB
2839 static int memcg_online_kmem(struct mem_cgroup *memcg)
2840 {
2841         int memcg_id;
2842
2843         if (cgroup_memory_nokmem)
2844                 return 0;
2845
2846         BUG_ON(memcg->kmemcg_id >= 0);
2847         BUG_ON(memcg->kmem_state);
2848
2849         memcg_id = memcg_alloc_cache_id();
2850         if (memcg_id < 0)
2851                 return memcg_id;
2852
2853         static_branch_inc(&memcg_kmem_enabled_key);
2854         /*
2855          * A memory cgroup is considered kmem-online as soon as it gets
2856          * kmemcg_id. Setting the id after enabling static branching will
2857          * guarantee no one starts accounting before all call sites are
2858          * patched.
2859          */
2860         memcg->kmemcg_id = memcg_id;
2861         memcg->kmem_state = KMEM_ONLINE;
2862
2863         return 0;
2864 }
2865
2866 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2867 {
2868         struct cgroup_subsys_state *css;
2869         struct mem_cgroup *parent, *child;
2870         int kmemcg_id;
2871
2872         if (memcg->kmem_state != KMEM_ONLINE)
2873                 return;
2874         /*
2875          * Clear the online state before clearing memcg_caches array
2876          * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2877          * guarantees that no cache will be created for this cgroup
2878          * after we are done (see memcg_create_kmem_cache()).
2879          */
2880         memcg->kmem_state = KMEM_ALLOCATED;
2881
2882         memcg_deactivate_kmem_caches(memcg);
2883
2884         kmemcg_id = memcg->kmemcg_id;
2885         BUG_ON(kmemcg_id < 0);
2886
2887         parent = parent_mem_cgroup(memcg);
2888         if (!parent)
2889                 parent = root_mem_cgroup;
2890
2891         /*
2892          * Change kmemcg_id of this cgroup and all its descendants to the
2893          * parent's id, and then move all entries from this cgroup's list_lrus
2894          * to ones of the parent. After we have finished, all list_lrus
2895          * corresponding to this cgroup are guaranteed to remain empty. The
2896          * ordering is imposed by list_lru_node->lock taken by
2897          * memcg_drain_all_list_lrus().
2898          */
2899         rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2900         css_for_each_descendant_pre(css, &memcg->css) {
2901                 child = mem_cgroup_from_css(css);
2902                 BUG_ON(child->kmemcg_id != kmemcg_id);
2903                 child->kmemcg_id = parent->kmemcg_id;
2904                 if (!memcg->use_hierarchy)
2905                         break;
2906         }
2907         rcu_read_unlock();
2908
2909         memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2910
2911         memcg_free_cache_id(kmemcg_id);
2912 }
2913
2914 static void memcg_free_kmem(struct mem_cgroup *memcg)
2915 {
2916         /* css_alloc() failed, offlining didn't happen */
2917         if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2918                 memcg_offline_kmem(memcg);
2919
2920         if (memcg->kmem_state == KMEM_ALLOCATED) {
2921                 memcg_destroy_kmem_caches(memcg);
2922                 static_branch_dec(&memcg_kmem_enabled_key);
2923                 WARN_ON(page_counter_read(&memcg->kmem));
2924         }
2925 }
2926 #else
2927 static int memcg_online_kmem(struct mem_cgroup *memcg)
2928 {
2929         return 0;
2930 }
2931 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2932 {
2933 }
2934 static void memcg_free_kmem(struct mem_cgroup *memcg)
2935 {
2936 }
2937 #endif /* !CONFIG_SLOB */
2938
2939 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2940                                    unsigned long limit)
2941 {
2942         int ret;
2943
2944         mutex_lock(&memcg_limit_mutex);
2945         ret = page_counter_limit(&memcg->kmem, limit);
2946         mutex_unlock(&memcg_limit_mutex);
2947         return ret;
2948 }
2949
2950 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2951 {
2952         int ret;
2953
2954         mutex_lock(&memcg_limit_mutex);
2955
2956         ret = page_counter_limit(&memcg->tcpmem, limit);
2957         if (ret)
2958                 goto out;
2959
2960         if (!memcg->tcpmem_active) {
2961                 /*
2962                  * The active flag needs to be written after the static_key
2963                  * update. This is what guarantees that the socket activation
2964                  * function is the last one to run. See sock_update_memcg() for
2965                  * details, and note that we don't mark any socket as belonging
2966                  * to this memcg until that flag is up.
2967                  *
2968                  * We need to do this, because static_keys will span multiple
2969                  * sites, but we can't control their order. If we mark a socket
2970                  * as accounted, but the accounting functions are not patched in
2971                  * yet, we'll lose accounting.
2972                  *
2973                  * We never race with the readers in sock_update_memcg(),
2974                  * because when this value change, the code to process it is not
2975                  * patched in yet.
2976                  */
2977                 static_branch_inc(&memcg_sockets_enabled_key);
2978                 memcg->tcpmem_active = true;
2979         }
2980 out:
2981         mutex_unlock(&memcg_limit_mutex);
2982         return ret;
2983 }
2984
2985 /*
2986  * The user of this function is...
2987  * RES_LIMIT.
2988  */
2989 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2990                                 char *buf, size_t nbytes, loff_t off)
2991 {
2992         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2993         unsigned long nr_pages;
2994         int ret;
2995
2996         buf = strstrip(buf);
2997         ret = page_counter_memparse(buf, "-1", &nr_pages);
2998         if (ret)
2999                 return ret;
3000
3001         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3002         case RES_LIMIT:
3003                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3004                         ret = -EINVAL;
3005                         break;
3006                 }
3007                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3008                 case _MEM:
3009                         ret = mem_cgroup_resize_limit(memcg, nr_pages);
3010                         break;
3011                 case _MEMSWAP:
3012                         ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3013                         break;
3014                 case _KMEM:
3015                         ret = memcg_update_kmem_limit(memcg, nr_pages);
3016                         break;
3017                 case _TCP:
3018                         ret = memcg_update_tcp_limit(memcg, nr_pages);
3019                         break;
3020                 }
3021                 break;
3022         case RES_SOFT_LIMIT:
3023                 memcg->soft_limit = nr_pages;
3024                 ret = 0;
3025                 break;
3026         }
3027         return ret ?: nbytes;
3028 }
3029
3030 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3031                                 size_t nbytes, loff_t off)
3032 {
3033         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3034         struct page_counter *counter;
3035
3036         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3037         case _MEM:
3038                 counter = &memcg->memory;
3039                 break;
3040         case _MEMSWAP:
3041                 counter = &memcg->memsw;
3042                 break;
3043         case _KMEM:
3044                 counter = &memcg->kmem;
3045                 break;
3046         case _TCP:
3047                 counter = &memcg->tcpmem;
3048                 break;
3049         default:
3050                 BUG();
3051         }
3052
3053         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3054         case RES_MAX_USAGE:
3055                 page_counter_reset_watermark(counter);
3056                 break;
3057         case RES_FAILCNT:
3058                 counter->failcnt = 0;
3059                 break;
3060         default:
3061                 BUG();
3062         }
3063
3064         return nbytes;
3065 }
3066
3067 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3068                                         struct cftype *cft)
3069 {
3070         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3071 }
3072
3073 #ifdef CONFIG_MMU
3074 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3075                                         struct cftype *cft, u64 val)
3076 {
3077         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3078
3079         if (val & ~MOVE_MASK)
3080                 return -EINVAL;
3081
3082         /*
3083          * No kind of locking is needed in here, because ->can_attach() will
3084          * check this value once in the beginning of the process, and then carry
3085          * on with stale data. This means that changes to this value will only
3086          * affect task migrations starting after the change.
3087          */
3088         memcg->move_charge_at_immigrate = val;
3089         return 0;
3090 }
3091 #else
3092 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3093                                         struct cftype *cft, u64 val)
3094 {
3095         return -ENOSYS;
3096 }
3097 #endif
3098
3099 #ifdef CONFIG_NUMA
3100 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3101 {
3102         struct numa_stat {
3103                 const char *name;
3104                 unsigned int lru_mask;
3105         };
3106
3107         static const struct numa_stat stats[] = {
3108                 { "total", LRU_ALL },
3109                 { "file", LRU_ALL_FILE },
3110                 { "anon", LRU_ALL_ANON },
3111                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3112         };
3113         const struct numa_stat *stat;
3114         int nid;
3115         unsigned long nr;
3116         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3117
3118         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3119                 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3120                 seq_printf(m, "%s=%lu", stat->name, nr);
3121                 for_each_node_state(nid, N_MEMORY) {
3122                         nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3123                                                           stat->lru_mask);
3124                         seq_printf(m, " N%d=%lu", nid, nr);
3125                 }
3126                 seq_putc(m, '\n');
3127         }
3128
3129         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3130                 struct mem_cgroup *iter;
3131
3132                 nr = 0;
3133                 for_each_mem_cgroup_tree(iter, memcg)
3134                         nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3135                 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3136                 for_each_node_state(nid, N_MEMORY) {
3137                         nr = 0;
3138                         for_each_mem_cgroup_tree(iter, memcg)
3139                                 nr += mem_cgroup_node_nr_lru_pages(
3140                                         iter, nid, stat->lru_mask);
3141                         seq_printf(m, " N%d=%lu", nid, nr);
3142                 }
3143                 seq_putc(m, '\n');
3144         }
3145
3146         return 0;
3147 }
3148 #endif /* CONFIG_NUMA */
3149
3150 static int memcg_stat_show(struct seq_file *m, void *v)
3151 {
3152         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3153         unsigned long memory, memsw;
3154         struct mem_cgroup *mi;
3155         unsigned int i;
3156
3157         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3158                      MEM_CGROUP_STAT_NSTATS);
3159         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3160                      MEM_CGROUP_EVENTS_NSTATS);
3161         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3162
3163         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3164                 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3165                         continue;
3166                 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3167                            mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3168         }
3169
3170         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3171                 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3172                            mem_cgroup_read_events(memcg, i));
3173
3174         for (i = 0; i < NR_LRU_LISTS; i++)
3175                 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3176                            mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3177
3178         /* Hierarchical information */
3179         memory = memsw = PAGE_COUNTER_MAX;
3180         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3181                 memory = min(memory, mi->memory.limit);
3182                 memsw = min(memsw, mi->memsw.limit);
3183         }
3184         seq_printf(m, "hierarchical_memory_limit %llu\n",
3185                    (u64)memory * PAGE_SIZE);
3186         if (do_memsw_account())
3187                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3188                            (u64)memsw * PAGE_SIZE);
3189
3190         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3191                 unsigned long long val = 0;
3192
3193                 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3194                         continue;
3195                 for_each_mem_cgroup_tree(mi, memcg)
3196                         val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3197                 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3198         }
3199
3200         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3201                 unsigned long long val = 0;
3202
3203                 for_each_mem_cgroup_tree(mi, memcg)
3204                         val += mem_cgroup_read_events(mi, i);
3205                 seq_printf(m, "total_%s %llu\n",
3206                            mem_cgroup_events_names[i], val);
3207         }
3208
3209         for (i = 0; i < NR_LRU_LISTS; i++) {
3210                 unsigned long long val = 0;
3211
3212                 for_each_mem_cgroup_tree(mi, memcg)
3213                         val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3214                 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3215         }
3216
3217 #ifdef CONFIG_DEBUG_VM
3218         {
3219                 int nid, zid;
3220                 struct mem_cgroup_per_zone *mz;
3221                 struct zone_reclaim_stat *rstat;
3222                 unsigned long recent_rotated[2] = {0, 0};
3223                 unsigned long recent_scanned[2] = {0, 0};
3224
3225                 for_each_online_node(nid)
3226                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3227                                 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3228                                 rstat = &mz->lruvec.reclaim_stat;
3229
3230                                 recent_rotated[0] += rstat->recent_rotated[0];
3231                                 recent_rotated[1] += rstat->recent_rotated[1];
3232                                 recent_scanned[0] += rstat->recent_scanned[0];
3233                                 recent_scanned[1] += rstat->recent_scanned[1];
3234                         }
3235                 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3236                 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3237                 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3238                 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3239         }
3240 #endif
3241
3242         return 0;
3243 }
3244
3245 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3246                                       struct cftype *cft)
3247 {
3248         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3249
3250         return mem_cgroup_swappiness(memcg);
3251 }
3252
3253 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3254                                        struct cftype *cft, u64 val)
3255 {
3256         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3257
3258         if (val > 100)
3259                 return -EINVAL;
3260
3261         if (css->parent)
3262                 memcg->swappiness = val;
3263         else
3264                 vm_swappiness = val;
3265
3266         return 0;
3267 }
3268
3269 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3270 {
3271         struct mem_cgroup_threshold_ary *t;
3272         unsigned long usage;
3273         int i;
3274
3275         rcu_read_lock();
3276         if (!swap)
3277                 t = rcu_dereference(memcg->thresholds.primary);
3278         else
3279                 t = rcu_dereference(memcg->memsw_thresholds.primary);
3280
3281         if (!t)
3282                 goto unlock;
3283
3284         usage = mem_cgroup_usage(memcg, swap);
3285
3286         /*
3287          * current_threshold points to threshold just below or equal to usage.
3288          * If it's not true, a threshold was crossed after last
3289          * call of __mem_cgroup_threshold().
3290          */
3291         i = t->current_threshold;
3292
3293         /*
3294          * Iterate backward over array of thresholds starting from
3295          * current_threshold and check if a threshold is crossed.
3296          * If none of thresholds below usage is crossed, we read
3297          * only one element of the array here.
3298          */
3299         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3300                 eventfd_signal(t->entries[i].eventfd, 1);
3301
3302         /* i = current_threshold + 1 */
3303         i++;
3304
3305         /*
3306          * Iterate forward over array of thresholds starting from
3307          * current_threshold+1 and check if a threshold is crossed.
3308          * If none of thresholds above usage is crossed, we read
3309          * only one element of the array here.
3310          */
3311         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3312                 eventfd_signal(t->entries[i].eventfd, 1);
3313
3314         /* Update current_threshold */
3315         t->current_threshold = i - 1;
3316 unlock:
3317         rcu_read_unlock();
3318 }
3319
3320 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3321 {
3322         while (memcg) {
3323                 __mem_cgroup_threshold(memcg, false);
3324                 if (do_memsw_account())
3325                         __mem_cgroup_threshold(memcg, true);
3326
3327                 memcg = parent_mem_cgroup(memcg);
3328         }
3329 }
3330
3331 static int compare_thresholds(const void *a, const void *b)
3332 {
3333         const struct mem_cgroup_threshold *_a = a;
3334         const struct mem_cgroup_threshold *_b = b;
3335
3336         if (_a->threshold > _b->threshold)
3337                 return 1;
3338
3339         if (_a->threshold < _b->threshold)
3340                 return -1;
3341
3342         return 0;
3343 }
3344
3345 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3346 {
3347         struct mem_cgroup_eventfd_list *ev;
3348
3349         spin_lock(&memcg_oom_lock);
3350
3351         list_for_each_entry(ev, &memcg->oom_notify, list)
3352                 eventfd_signal(ev->eventfd, 1);
3353
3354         spin_unlock(&memcg_oom_lock);
3355         return 0;
3356 }
3357
3358 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3359 {
3360         struct mem_cgroup *iter;
3361
3362         for_each_mem_cgroup_tree(iter, memcg)
3363                 mem_cgroup_oom_notify_cb(iter);
3364 }
3365
3366 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3367         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3368 {
3369         struct mem_cgroup_thresholds *thresholds;
3370         struct mem_cgroup_threshold_ary *new;
3371         unsigned long threshold;
3372         unsigned long usage;
3373         int i, size, ret;
3374
3375         ret = page_counter_memparse(args, "-1", &threshold);
3376         if (ret)
3377                 return ret;
3378
3379         mutex_lock(&memcg->thresholds_lock);
3380
3381         if (type == _MEM) {
3382                 thresholds = &memcg->thresholds;
3383                 usage = mem_cgroup_usage(memcg, false);
3384         } else if (type == _MEMSWAP) {
3385                 thresholds = &memcg->memsw_thresholds;
3386                 usage = mem_cgroup_usage(memcg, true);
3387         } else
3388                 BUG();
3389
3390         /* Check if a threshold crossed before adding a new one */
3391         if (thresholds->primary)
3392                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3393
3394         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3395
3396         /* Allocate memory for new array of thresholds */
3397         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3398                         GFP_KERNEL);
3399         if (!new) {
3400                 ret = -ENOMEM;
3401                 goto unlock;
3402         }
3403         new->size = size;
3404
3405         /* Copy thresholds (if any) to new array */
3406         if (thresholds->primary) {
3407                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3408                                 sizeof(struct mem_cgroup_threshold));
3409         }
3410
3411         /* Add new threshold */
3412         new->entries[size - 1].eventfd = eventfd;
3413         new->entries[size - 1].threshold = threshold;
3414
3415         /* Sort thresholds. Registering of new threshold isn't time-critical */
3416         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3417                         compare_thresholds, NULL);
3418
3419         /* Find current threshold */
3420         new->current_threshold = -1;
3421         for (i = 0; i < size; i++) {
3422                 if (new->entries[i].threshold <= usage) {
3423                         /*
3424                          * new->current_threshold will not be used until
3425                          * rcu_assign_pointer(), so it's safe to increment
3426                          * it here.
3427                          */
3428                         ++new->current_threshold;
3429                 } else
3430                         break;
3431         }
3432
3433         /* Free old spare buffer and save old primary buffer as spare */
3434         kfree(thresholds->spare);
3435         thresholds->spare = thresholds->primary;
3436
3437         rcu_assign_pointer(thresholds->primary, new);
3438
3439         /* To be sure that nobody uses thresholds */
3440         synchronize_rcu();
3441
3442 unlock:
3443         mutex_unlock(&memcg->thresholds_lock);
3444
3445         return ret;
3446 }
3447
3448 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3449         struct eventfd_ctx *eventfd, const char *args)
3450 {
3451         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3452 }
3453
3454 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3455         struct eventfd_ctx *eventfd, const char *args)
3456 {
3457         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3458 }
3459
3460 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3461         struct eventfd_ctx *eventfd, enum res_type type)
3462 {
3463         struct mem_cgroup_thresholds *thresholds;
3464         struct mem_cgroup_threshold_ary *new;
3465         unsigned long usage;
3466         int i, j, size;
3467
3468         mutex_lock(&memcg->thresholds_lock);
3469
3470         if (type == _MEM) {
3471                 thresholds = &memcg->thresholds;
3472                 usage = mem_cgroup_usage(memcg, false);
3473         } else if (type == _MEMSWAP) {
3474                 thresholds = &memcg->memsw_thresholds;
3475                 usage = mem_cgroup_usage(memcg, true);
3476         } else
3477                 BUG();
3478
3479         if (!thresholds->primary)
3480                 goto unlock;
3481
3482         /* Check if a threshold crossed before removing */
3483         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3484
3485         /* Calculate new number of threshold */
3486         size = 0;
3487         for (i = 0; i < thresholds->primary->size; i++) {
3488                 if (thresholds->primary->entries[i].eventfd != eventfd)
3489                         size++;
3490         }
3491
3492         new = thresholds->spare;
3493
3494         /* Set thresholds array to NULL if we don't have thresholds */
3495         if (!size) {
3496                 kfree(new);
3497                 new = NULL;
3498                 goto swap_buffers;
3499         }
3500
3501         new->size = size;
3502
3503         /* Copy thresholds and find current threshold */
3504         new->current_threshold = -1;
3505         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3506                 if (thresholds->primary->entries[i].eventfd == eventfd)
3507                         continue;
3508
3509                 new->entries[j] = thresholds->primary->entries[i];
3510                 if (new->entries[j].threshold <= usage) {
3511                         /*
3512                          * new->current_threshold will not be used
3513                          * until rcu_assign_pointer(), so it's safe to increment
3514                          * it here.
3515                          */
3516                         ++new->current_threshold;
3517                 }
3518                 j++;
3519         }
3520
3521 swap_buffers:
3522         /* Swap primary and spare array */
3523         thresholds->spare = thresholds->primary;
3524
3525         rcu_assign_pointer(thresholds->primary, new);
3526
3527         /* To be sure that nobody uses thresholds */
3528         synchronize_rcu();
3529
3530         /* If all events are unregistered, free the spare array */
3531         if (!new) {
3532                 kfree(thresholds->spare);
3533                 thresholds->spare = NULL;
3534         }
3535 unlock:
3536         mutex_unlock(&memcg->thresholds_lock);
3537 }
3538
3539 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3540         struct eventfd_ctx *eventfd)
3541 {
3542         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3543 }
3544
3545 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3546         struct eventfd_ctx *eventfd)
3547 {
3548         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3549 }
3550
3551 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3552         struct eventfd_ctx *eventfd, const char *args)
3553 {
3554         struct mem_cgroup_eventfd_list *event;
3555
3556         event = kmalloc(sizeof(*event), GFP_KERNEL);
3557         if (!event)
3558                 return -ENOMEM;
3559
3560         spin_lock(&memcg_oom_lock);
3561
3562         event->eventfd = eventfd;
3563         list_add(&event->list, &memcg->oom_notify);
3564
3565         /* already in OOM ? */
3566         if (memcg->under_oom)
3567                 eventfd_signal(eventfd, 1);
3568         spin_unlock(&memcg_oom_lock);
3569
3570         return 0;
3571 }
3572
3573 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3574         struct eventfd_ctx *eventfd)
3575 {
3576         struct mem_cgroup_eventfd_list *ev, *tmp;
3577
3578         spin_lock(&memcg_oom_lock);
3579
3580         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3581                 if (ev->eventfd == eventfd) {
3582                         list_del(&ev->list);
3583                         kfree(ev);
3584                 }
3585         }
3586
3587         spin_unlock(&memcg_oom_lock);
3588 }
3589
3590 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3591 {
3592         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3593
3594         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3595         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3596         return 0;
3597 }
3598
3599 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3600         struct cftype *cft, u64 val)
3601 {
3602         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3603
3604         /* cannot set to root cgroup and only 0 and 1 are allowed */
3605         if (!css->parent || !((val == 0) || (val == 1)))
3606                 return -EINVAL;
3607
3608         memcg->oom_kill_disable = val;
3609         if (!val)
3610                 memcg_oom_recover(memcg);
3611
3612         return 0;
3613 }
3614
3615 #ifdef CONFIG_CGROUP_WRITEBACK
3616
3617 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3618 {
3619         return &memcg->cgwb_list;
3620 }
3621
3622 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3623 {
3624         return wb_domain_init(&memcg->cgwb_domain, gfp);
3625 }
3626
3627 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3628 {
3629         wb_domain_exit(&memcg->cgwb_domain);
3630 }
3631
3632 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3633 {
3634         wb_domain_size_changed(&memcg->cgwb_domain);
3635 }
3636
3637 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3638 {
3639         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3640
3641         if (!memcg->css.parent)
3642                 return NULL;
3643
3644         return &memcg->cgwb_domain;
3645 }
3646
3647 /**
3648  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3649  * @wb: bdi_writeback in question
3650  * @pfilepages: out parameter for number of file pages
3651  * @pheadroom: out parameter for number of allocatable pages according to memcg
3652  * @pdirty: out parameter for number of dirty pages
3653  * @pwriteback: out parameter for number of pages under writeback
3654  *
3655  * Determine the numbers of file, headroom, dirty, and writeback pages in
3656  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3657  * is a bit more involved.
3658  *
3659  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3660  * headroom is calculated as the lowest headroom of itself and the
3661  * ancestors.  Note that this doesn't consider the actual amount of
3662  * available memory in the system.  The caller should further cap
3663  * *@pheadroom accordingly.
3664  */
3665 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3666                          unsigned long *pheadroom, unsigned long *pdirty,
3667                          unsigned long *pwriteback)
3668 {
3669         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3670         struct mem_cgroup *parent;
3671
3672         *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3673
3674         /* this should eventually include NR_UNSTABLE_NFS */
3675         *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3676         *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3677                                                      (1 << LRU_ACTIVE_FILE));
3678         *pheadroom = PAGE_COUNTER_MAX;
3679
3680         while ((parent = parent_mem_cgroup(memcg))) {
3681                 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3682                 unsigned long used = page_counter_read(&memcg->memory);
3683
3684                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3685                 memcg = parent;
3686         }
3687 }
3688
3689 #else   /* CONFIG_CGROUP_WRITEBACK */
3690
3691 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3692 {
3693         return 0;
3694 }
3695
3696 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3697 {
3698 }
3699
3700 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3701 {
3702 }
3703
3704 #endif  /* CONFIG_CGROUP_WRITEBACK */
3705
3706 /*
3707  * DO NOT USE IN NEW FILES.
3708  *
3709  * "cgroup.event_control" implementation.
3710  *
3711  * This is way over-engineered.  It tries to support fully configurable
3712  * events for each user.  Such level of flexibility is completely
3713  * unnecessary especially in the light of the planned unified hierarchy.
3714  *
3715  * Please deprecate this and replace with something simpler if at all
3716  * possible.
3717  */
3718
3719 /*
3720  * Unregister event and free resources.
3721  *
3722  * Gets called from workqueue.
3723  */
3724 static void memcg_event_remove(struct work_struct *work)
3725 {
3726         struct mem_cgroup_event *event =
3727                 container_of(work, struct mem_cgroup_event, remove);
3728         struct mem_cgroup *memcg = event->memcg;
3729
3730         remove_wait_queue(event->wqh, &event->wait);
3731
3732         event->unregister_event(memcg, event->eventfd);
3733
3734         /* Notify userspace the event is going away. */
3735         eventfd_signal(event->eventfd, 1);
3736
3737         eventfd_ctx_put(event->eventfd);
3738         kfree(event);
3739         css_put(&memcg->css);
3740 }
3741
3742 /*
3743  * Gets called on POLLHUP on eventfd when user closes it.
3744  *
3745  * Called with wqh->lock held and interrupts disabled.
3746  */
3747 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3748                             int sync, void *key)
3749 {
3750         struct mem_cgroup_event *event =
3751                 container_of(wait, struct mem_cgroup_event, wait);
3752         struct mem_cgroup *memcg = event->memcg;
3753         unsigned long flags = (unsigned long)key;
3754
3755         if (flags & POLLHUP) {
3756                 /*
3757                  * If the event has been detached at cgroup removal, we
3758                  * can simply return knowing the other side will cleanup
3759                  * for us.
3760                  *
3761                  * We can't race against event freeing since the other
3762                  * side will require wqh->lock via remove_wait_queue(),
3763                  * which we hold.
3764                  */
3765                 spin_lock(&memcg->event_list_lock);
3766                 if (!list_empty(&event->list)) {
3767                         list_del_init(&event->list);
3768                         /*
3769                          * We are in atomic context, but cgroup_event_remove()
3770                          * may sleep, so we have to call it in workqueue.
3771                          */
3772                         schedule_work(&event->remove);
3773                 }
3774                 spin_unlock(&memcg->event_list_lock);
3775         }
3776
3777         return 0;
3778 }
3779
3780 static void memcg_event_ptable_queue_proc(struct file *file,
3781                 wait_queue_head_t *wqh, poll_table *pt)
3782 {
3783         struct mem_cgroup_event *event =
3784                 container_of(pt, struct mem_cgroup_event, pt);
3785
3786         event->wqh = wqh;
3787         add_wait_queue(wqh, &event->wait);
3788 }
3789
3790 /*
3791  * DO NOT USE IN NEW FILES.
3792  *
3793  * Parse input and register new cgroup event handler.
3794  *
3795  * Input must be in format '<event_fd> <control_fd> <args>'.
3796  * Interpretation of args is defined by control file implementation.
3797  */
3798 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3799                                          char *buf, size_t nbytes, loff_t off)
3800 {
3801         struct cgroup_subsys_state *css = of_css(of);
3802         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3803         struct mem_cgroup_event *event;
3804         struct cgroup_subsys_state *cfile_css;
3805         unsigned int efd, cfd;
3806         struct fd efile;
3807         struct fd cfile;
3808         const char *name;
3809         char *endp;
3810         int ret;
3811
3812         buf = strstrip(buf);
3813
3814         efd = simple_strtoul(buf, &endp, 10);
3815         if (*endp != ' ')
3816                 return -EINVAL;
3817         buf = endp + 1;
3818
3819         cfd = simple_strtoul(buf, &endp, 10);
3820         if ((*endp != ' ') && (*endp != '\0'))
3821                 return -EINVAL;
3822         buf = endp + 1;
3823
3824         event = kzalloc(sizeof(*event), GFP_KERNEL);
3825         if (!event)
3826                 return -ENOMEM;
3827
3828         event->memcg = memcg;
3829         INIT_LIST_HEAD(&event->list);
3830         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3831         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3832         INIT_WORK(&event->remove, memcg_event_remove);
3833
3834         efile = fdget(efd);
3835         if (!efile.file) {
3836                 ret = -EBADF;
3837                 goto out_kfree;
3838         }
3839
3840         event->eventfd = eventfd_ctx_fileget(efile.file);
3841         if (IS_ERR(event->eventfd)) {
3842                 ret = PTR_ERR(event->eventfd);
3843                 goto out_put_efile;
3844         }
3845
3846         cfile = fdget(cfd);
3847         if (!cfile.file) {
3848                 ret = -EBADF;
3849                 goto out_put_eventfd;
3850         }
3851
3852         /* the process need read permission on control file */
3853         /* AV: shouldn't we check that it's been opened for read instead? */
3854         ret = inode_permission(file_inode(cfile.file), MAY_READ);
3855         if (ret < 0)
3856                 goto out_put_cfile;
3857
3858         /*
3859          * Determine the event callbacks and set them in @event.  This used
3860          * to be done via struct cftype but cgroup core no longer knows
3861          * about these events.  The following is crude but the whole thing
3862          * is for compatibility anyway.
3863          *
3864          * DO NOT ADD NEW FILES.
3865          */
3866         name = cfile.file->f_path.dentry->d_name.name;
3867
3868         if (!strcmp(name, "memory.usage_in_bytes")) {
3869                 event->register_event = mem_cgroup_usage_register_event;
3870                 event->unregister_event = mem_cgroup_usage_unregister_event;
3871         } else if (!strcmp(name, "memory.oom_control")) {
3872                 event->register_event = mem_cgroup_oom_register_event;
3873                 event->unregister_event = mem_cgroup_oom_unregister_event;
3874         } else if (!strcmp(name, "memory.pressure_level")) {
3875                 event->register_event = vmpressure_register_event;
3876                 event->unregister_event = vmpressure_unregister_event;
3877         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3878                 event->register_event = memsw_cgroup_usage_register_event;
3879                 event->unregister_event = memsw_cgroup_usage_unregister_event;
3880         } else {
3881                 ret = -EINVAL;
3882                 goto out_put_cfile;
3883         }
3884
3885         /*
3886          * Verify @cfile should belong to @css.  Also, remaining events are
3887          * automatically removed on cgroup destruction but the removal is
3888          * asynchronous, so take an extra ref on @css.
3889          */
3890         cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3891                                                &memory_cgrp_subsys);
3892         ret = -EINVAL;
3893         if (IS_ERR(cfile_css))
3894                 goto out_put_cfile;
3895         if (cfile_css != css) {
3896                 css_put(cfile_css);
3897                 goto out_put_cfile;
3898         }
3899
3900         ret = event->register_event(memcg, event->eventfd, buf);
3901         if (ret)
3902                 goto out_put_css;
3903
3904         efile.file->f_op->poll(efile.file, &event->pt);
3905
3906         spin_lock(&memcg->event_list_lock);
3907         list_add(&event->list, &memcg->event_list);
3908         spin_unlock(&memcg->event_list_lock);
3909
3910         fdput(cfile);
3911         fdput(efile);
3912
3913         return nbytes;
3914
3915 out_put_css:
3916         css_put(css);
3917 out_put_cfile:
3918         fdput(cfile);
3919 out_put_eventfd:
3920         eventfd_ctx_put(event->eventfd);
3921 out_put_efile:
3922         fdput(efile);
3923 out_kfree:
3924         kfree(event);
3925
3926         return ret;
3927 }
3928
3929 static struct cftype mem_cgroup_legacy_files[] = {
3930         {
3931                 .name = "usage_in_bytes",
3932                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3933                 .read_u64 = mem_cgroup_read_u64,
3934         },
3935         {
3936                 .name = "max_usage_in_bytes",
3937                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3938                 .write = mem_cgroup_reset,
3939                 .read_u64 = mem_cgroup_read_u64,
3940         },
3941         {
3942                 .name = "limit_in_bytes",
3943                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3944                 .write = mem_cgroup_write,
3945                 .read_u64 = mem_cgroup_read_u64,
3946         },
3947         {
3948                 .name = "soft_limit_in_bytes",
3949                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3950                 .write = mem_cgroup_write,
3951                 .read_u64 = mem_cgroup_read_u64,
3952         },
3953         {
3954                 .name = "failcnt",
3955                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3956                 .write = mem_cgroup_reset,
3957                 .read_u64 = mem_cgroup_read_u64,
3958         },
3959         {
3960                 .name = "stat",
3961                 .seq_show = memcg_stat_show,
3962         },
3963         {
3964                 .name = "force_empty",
3965                 .write = mem_cgroup_force_empty_write,
3966         },
3967         {
3968                 .name = "use_hierarchy",
3969                 .write_u64 = mem_cgroup_hierarchy_write,
3970                 .read_u64 = mem_cgroup_hierarchy_read,
3971         },
3972         {
3973                 .name = "cgroup.event_control",         /* XXX: for compat */
3974                 .write = memcg_write_event_control,
3975                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3976         },
3977         {
3978                 .name = "swappiness",
3979                 .read_u64 = mem_cgroup_swappiness_read,
3980                 .write_u64 = mem_cgroup_swappiness_write,
3981         },
3982         {
3983                 .name = "move_charge_at_immigrate",
3984                 .read_u64 = mem_cgroup_move_charge_read,
3985                 .write_u64 = mem_cgroup_move_charge_write,
3986         },
3987         {
3988                 .name = "oom_control",
3989                 .seq_show = mem_cgroup_oom_control_read,
3990                 .write_u64 = mem_cgroup_oom_control_write,
3991                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3992         },
3993         {
3994                 .name = "pressure_level",
3995         },
3996 #ifdef CONFIG_NUMA
3997         {
3998                 .name = "numa_stat",
3999                 .seq_show = memcg_numa_stat_show,
4000         },
4001 #endif
4002         {
4003                 .name = "kmem.limit_in_bytes",
4004                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4005                 .write = mem_cgroup_write,
4006                 .read_u64 = mem_cgroup_read_u64,
4007         },
4008         {
4009                 .name = "kmem.usage_in_bytes",
4010                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4011                 .read_u64 = mem_cgroup_read_u64,
4012         },
4013         {
4014                 .name = "kmem.failcnt",
4015                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4016                 .write = mem_cgroup_reset,
4017                 .read_u64 = mem_cgroup_read_u64,
4018         },
4019         {
4020                 .name = "kmem.max_usage_in_bytes",
4021                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4022                 .write = mem_cgroup_reset,
4023                 .read_u64 = mem_cgroup_read_u64,
4024         },
4025 #ifdef CONFIG_SLABINFO
4026         {
4027                 .name = "kmem.slabinfo",
4028                 .seq_start = slab_start,
4029                 .seq_next = slab_next,
4030                 .seq_stop = slab_stop,
4031                 .seq_show = memcg_slab_show,
4032         },
4033 #endif
4034         {
4035                 .name = "kmem.tcp.limit_in_bytes",
4036                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4037                 .write = mem_cgroup_write,
4038                 .read_u64 = mem_cgroup_read_u64,
4039         },
4040         {
4041                 .name = "kmem.tcp.usage_in_bytes",
4042                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4043                 .read_u64 = mem_cgroup_read_u64,
4044         },
4045         {
4046                 .name = "kmem.tcp.failcnt",
4047                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4048                 .write = mem_cgroup_reset,
4049                 .read_u64 = mem_cgroup_read_u64,
4050         },
4051         {
4052                 .name = "kmem.tcp.max_usage_in_bytes",
4053                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4054                 .write = mem_cgroup_reset,
4055                 .read_u64 = mem_cgroup_read_u64,
4056         },
4057         { },    /* terminate */
4058 };
4059
4060 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4061 {
4062         struct mem_cgroup_per_node *pn;
4063         struct mem_cgroup_per_zone *mz;
4064         int zone, tmp = node;
4065         /*
4066          * This routine is called against possible nodes.
4067          * But it's BUG to call kmalloc() against offline node.
4068          *
4069          * TODO: this routine can waste much memory for nodes which will
4070          *       never be onlined. It's better to use memory hotplug callback
4071          *       function.
4072          */
4073         if (!node_state(node, N_NORMAL_MEMORY))
4074                 tmp = -1;
4075         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4076         if (!pn)
4077                 return 1;
4078
4079         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4080                 mz = &pn->zoneinfo[zone];
4081                 lruvec_init(&mz->lruvec);
4082                 mz->usage_in_excess = 0;
4083                 mz->on_tree = false;
4084                 mz->memcg = memcg;
4085         }
4086         memcg->nodeinfo[node] = pn;
4087         return 0;
4088 }
4089
4090 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4091 {
4092         kfree(memcg->nodeinfo[node]);
4093 }
4094
4095 static void mem_cgroup_free(struct mem_cgroup *memcg)
4096 {
4097         int node;
4098
4099         memcg_wb_domain_exit(memcg);
4100         for_each_node(node)
4101                 free_mem_cgroup_per_zone_info(memcg, node);
4102         free_percpu(memcg->stat);
4103         kfree(memcg);
4104 }
4105
4106 static struct mem_cgroup *mem_cgroup_alloc(void)
4107 {
4108         struct mem_cgroup *memcg;
4109         size_t size;
4110         int node;
4111
4112         size = sizeof(struct mem_cgroup);
4113         size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4114
4115         memcg = kzalloc(size, GFP_KERNEL);
4116         if (!memcg)
4117                 return NULL;
4118
4119         memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4120         if (!memcg->stat)
4121                 goto fail;
4122
4123         for_each_node(node)
4124                 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4125                         goto fail;
4126
4127         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4128                 goto fail;
4129
4130         INIT_WORK(&memcg->high_work, high_work_func);
4131         memcg->last_scanned_node = MAX_NUMNODES;
4132         INIT_LIST_HEAD(&memcg->oom_notify);
4133         mutex_init(&memcg->thresholds_lock);
4134         spin_lock_init(&memcg->move_lock);
4135         vmpressure_init(&memcg->vmpressure);
4136         INIT_LIST_HEAD(&memcg->event_list);
4137         spin_lock_init(&memcg->event_list_lock);
4138         memcg->socket_pressure = jiffies;
4139 #ifndef CONFIG_SLOB
4140         memcg->kmemcg_id = -1;
4141 #endif
4142 #ifdef CONFIG_CGROUP_WRITEBACK
4143         INIT_LIST_HEAD(&memcg->cgwb_list);
4144 #endif
4145         return memcg;
4146 fail:
4147         mem_cgroup_free(memcg);
4148         return NULL;
4149 }
4150
4151 static struct cgroup_subsys_state * __ref
4152 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4153 {
4154         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4155         struct mem_cgroup *memcg;
4156         long error = -ENOMEM;
4157
4158         memcg = mem_cgroup_alloc();
4159         if (!memcg)
4160                 return ERR_PTR(error);
4161
4162         memcg->high = PAGE_COUNTER_MAX;
4163         memcg->soft_limit = PAGE_COUNTER_MAX;
4164         if (parent) {
4165                 memcg->swappiness = mem_cgroup_swappiness(parent);
4166                 memcg->oom_kill_disable = parent->oom_kill_disable;
4167         }
4168         if (parent && parent->use_hierarchy) {
4169                 memcg->use_hierarchy = true;
4170                 page_counter_init(&memcg->memory, &parent->memory);
4171                 page_counter_init(&memcg->swap, &parent->swap);
4172                 page_counter_init(&memcg->memsw, &parent->memsw);
4173                 page_counter_init(&memcg->kmem, &parent->kmem);
4174                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4175         } else {
4176                 page_counter_init(&memcg->memory, NULL);
4177                 page_counter_init(&memcg->swap, NULL);
4178                 page_counter_init(&memcg->memsw, NULL);
4179                 page_counter_init(&memcg->kmem, NULL);
4180                 page_counter_init(&memcg->tcpmem, NULL);
4181                 /*
4182                  * Deeper hierachy with use_hierarchy == false doesn't make
4183                  * much sense so let cgroup subsystem know about this
4184                  * unfortunate state in our controller.
4185                  */
4186                 if (parent != root_mem_cgroup)
4187                         memory_cgrp_subsys.broken_hierarchy = true;
4188         }
4189
4190         /* The following stuff does not apply to the root */
4191         if (!parent) {
4192                 root_mem_cgroup = memcg;
4193                 return &memcg->css;
4194         }
4195
4196         error = memcg_online_kmem(memcg);
4197         if (error)
4198                 goto fail;
4199
4200         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4201                 static_branch_inc(&memcg_sockets_enabled_key);
4202
4203         return &memcg->css;
4204 fail:
4205         mem_cgroup_free(memcg);
4206         return ERR_PTR(-ENOMEM);
4207 }
4208
4209 static int
4210 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4211 {
4212         if (css->id > MEM_CGROUP_ID_MAX)
4213                 return -ENOSPC;
4214
4215         return 0;
4216 }
4217
4218 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4219 {
4220         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4221         struct mem_cgroup_event *event, *tmp;
4222
4223         /*
4224          * Unregister events and notify userspace.
4225          * Notify userspace about cgroup removing only after rmdir of cgroup
4226          * directory to avoid race between userspace and kernelspace.
4227          */
4228         spin_lock(&memcg->event_list_lock);
4229         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4230                 list_del_init(&event->list);
4231                 schedule_work(&event->remove);
4232         }
4233         spin_unlock(&memcg->event_list_lock);
4234
4235         memcg_offline_kmem(memcg);
4236         wb_memcg_offline(memcg);
4237 }
4238
4239 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4240 {
4241         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4242
4243         invalidate_reclaim_iterators(memcg);
4244 }
4245
4246 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4247 {
4248         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4249
4250         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4251                 static_branch_dec(&memcg_sockets_enabled_key);
4252
4253         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4254                 static_branch_dec(&memcg_sockets_enabled_key);
4255
4256         vmpressure_cleanup(&memcg->vmpressure);
4257         cancel_work_sync(&memcg->high_work);
4258         mem_cgroup_remove_from_trees(memcg);
4259         memcg_free_kmem(memcg);
4260         mem_cgroup_free(memcg);
4261 }
4262
4263 /**
4264  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4265  * @css: the target css
4266  *
4267  * Reset the states of the mem_cgroup associated with @css.  This is
4268  * invoked when the userland requests disabling on the default hierarchy
4269  * but the memcg is pinned through dependency.  The memcg should stop
4270  * applying policies and should revert to the vanilla state as it may be
4271  * made visible again.
4272  *
4273  * The current implementation only resets the essential configurations.
4274  * This needs to be expanded to cover all the visible parts.
4275  */
4276 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4277 {
4278         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4279
4280         page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4281         page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4282         page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4283         page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4284         page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4285         memcg->low = 0;
4286         memcg->high = PAGE_COUNTER_MAX;
4287         memcg->soft_limit = PAGE_COUNTER_MAX;
4288         memcg_wb_domain_size_changed(memcg);
4289 }
4290
4291 #ifdef CONFIG_MMU
4292 /* Handlers for move charge at task migration. */
4293 static int mem_cgroup_do_precharge(unsigned long count)
4294 {
4295         int ret;
4296
4297         /* Try a single bulk charge without reclaim first, kswapd may wake */
4298         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4299         if (!ret) {
4300                 mc.precharge += count;
4301                 return ret;
4302         }
4303
4304         /* Try charges one by one with reclaim */
4305         while (count--) {
4306                 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4307                 if (ret)
4308                         return ret;
4309                 mc.precharge++;
4310                 cond_resched();
4311         }
4312         return 0;
4313 }
4314
4315 union mc_target {
4316         struct page     *page;
4317         swp_entry_t     ent;
4318 };
4319
4320 enum mc_target_type {
4321         MC_TARGET_NONE = 0,
4322         MC_TARGET_PAGE,
4323         MC_TARGET_SWAP,
4324 };
4325
4326 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4327                                                 unsigned long addr, pte_t ptent)
4328 {
4329         struct page *page = vm_normal_page(vma, addr, ptent);
4330
4331         if (!page || !page_mapped(page))
4332                 return NULL;
4333         if (PageAnon(page)) {
4334                 if (!(mc.flags & MOVE_ANON))
4335                         return NULL;
4336         } else {
4337                 if (!(mc.flags & MOVE_FILE))
4338                         return NULL;
4339         }
4340         if (!get_page_unless_zero(page))
4341                 return NULL;
4342
4343         return page;
4344 }
4345
4346 #ifdef CONFIG_SWAP
4347 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4348                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4349 {
4350         struct page *page = NULL;
4351         swp_entry_t ent = pte_to_swp_entry(ptent);
4352
4353         if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4354                 return NULL;
4355         /*
4356          * Because lookup_swap_cache() updates some statistics counter,
4357          * we call find_get_page() with swapper_space directly.
4358          */
4359         page = find_get_page(swap_address_space(ent), ent.val);
4360         if (do_memsw_account())
4361                 entry->val = ent.val;
4362
4363         return page;
4364 }
4365 #else
4366 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4367                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4368 {
4369         return NULL;
4370 }
4371 #endif
4372
4373 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4374                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4375 {
4376         struct page *page = NULL;
4377         struct address_space *mapping;
4378         pgoff_t pgoff;
4379
4380         if (!vma->vm_file) /* anonymous vma */
4381                 return NULL;
4382         if (!(mc.flags & MOVE_FILE))
4383                 return NULL;
4384
4385         mapping = vma->vm_file->f_mapping;
4386         pgoff = linear_page_index(vma, addr);
4387
4388         /* page is moved even if it's not RSS of this task(page-faulted). */
4389 #ifdef CONFIG_SWAP
4390         /* shmem/tmpfs may report page out on swap: account for that too. */
4391         if (shmem_mapping(mapping)) {
4392                 page = find_get_entry(mapping, pgoff);
4393                 if (radix_tree_exceptional_entry(page)) {
4394                         swp_entry_t swp = radix_to_swp_entry(page);
4395                         if (do_memsw_account())
4396                                 *entry = swp;
4397                         page = find_get_page(swap_address_space(swp), swp.val);
4398                 }
4399         } else
4400                 page = find_get_page(mapping, pgoff);
4401 #else
4402         page = find_get_page(mapping, pgoff);
4403 #endif
4404         return page;
4405 }
4406
4407 /**
4408  * mem_cgroup_move_account - move account of the page
4409  * @page: the page
4410  * @nr_pages: number of regular pages (>1 for huge pages)
4411  * @from: mem_cgroup which the page is moved from.
4412  * @to: mem_cgroup which the page is moved to. @from != @to.
4413  *
4414  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4415  *
4416  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4417  * from old cgroup.
4418  */
4419 static int mem_cgroup_move_account(struct page *page,
4420                                    bool compound,
4421                                    struct mem_cgroup *from,
4422                                    struct mem_cgroup *to)
4423 {
4424         unsigned long flags;
4425         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4426         int ret;
4427         bool anon;
4428
4429         VM_BUG_ON(from == to);
4430         VM_BUG_ON_PAGE(PageLRU(page), page);
4431         VM_BUG_ON(compound && !PageTransHuge(page));
4432
4433         /*
4434          * Prevent mem_cgroup_migrate() from looking at
4435          * page->mem_cgroup of its source page while we change it.
4436          */
4437         ret = -EBUSY;
4438         if (!trylock_page(page))
4439                 goto out;
4440
4441         ret = -EINVAL;
4442         if (page->mem_cgroup != from)
4443                 goto out_unlock;
4444
4445         anon = PageAnon(page);
4446
4447         spin_lock_irqsave(&from->move_lock, flags);
4448
4449         if (!anon && page_mapped(page)) {
4450                 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4451                                nr_pages);
4452                 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4453                                nr_pages);
4454         }
4455
4456         /*
4457          * move_lock grabbed above and caller set from->moving_account, so
4458          * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4459          * So mapping should be stable for dirty pages.
4460          */
4461         if (!anon && PageDirty(page)) {
4462                 struct address_space *mapping = page_mapping(page);
4463
4464                 if (mapping_cap_account_dirty(mapping)) {
4465                         __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4466                                        nr_pages);
4467                         __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4468                                        nr_pages);
4469                 }
4470         }
4471
4472         if (PageWriteback(page)) {
4473                 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4474                                nr_pages);
4475                 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4476                                nr_pages);
4477         }
4478
4479         /*
4480          * It is safe to change page->mem_cgroup here because the page
4481          * is referenced, charged, and isolated - we can't race with
4482          * uncharging, charging, migration, or LRU putback.
4483          */
4484
4485         /* caller should have done css_get */
4486         page->mem_cgroup = to;
4487         spin_unlock_irqrestore(&from->move_lock, flags);
4488
4489         ret = 0;
4490
4491         local_irq_disable();
4492         mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4493         memcg_check_events(to, page);
4494         mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4495         memcg_check_events(from, page);
4496         local_irq_enable();
4497 out_unlock:
4498         unlock_page(page);
4499 out:
4500         return ret;
4501 }
4502
4503 /**
4504  * get_mctgt_type - get target type of moving charge
4505  * @vma: the vma the pte to be checked belongs
4506  * @addr: the address corresponding to the pte to be checked
4507  * @ptent: the pte to be checked
4508  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4509  *
4510  * Returns
4511  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4512  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4513  *     move charge. if @target is not NULL, the page is stored in target->page
4514  *     with extra refcnt got(Callers should handle it).
4515  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4516  *     target for charge migration. if @target is not NULL, the entry is stored
4517  *     in target->ent.
4518  *
4519  * Called with pte lock held.
4520  */
4521
4522 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4523                 unsigned long addr, pte_t ptent, union mc_target *target)
4524 {
4525         struct page *page = NULL;
4526         enum mc_target_type ret = MC_TARGET_NONE;
4527         swp_entry_t ent = { .val = 0 };
4528
4529         if (pte_present(ptent))
4530                 page = mc_handle_present_pte(vma, addr, ptent);
4531         else if (is_swap_pte(ptent))
4532                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4533         else if (pte_none(ptent))
4534                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4535
4536         if (!page && !ent.val)
4537                 return ret;
4538         if (page) {
4539                 /*
4540                  * Do only loose check w/o serialization.
4541                  * mem_cgroup_move_account() checks the page is valid or
4542                  * not under LRU exclusion.
4543                  */
4544                 if (page->mem_cgroup == mc.from) {
4545                         ret = MC_TARGET_PAGE;
4546                         if (target)
4547                                 target->page = page;
4548                 }
4549                 if (!ret || !target)
4550                         put_page(page);
4551         }
4552         /* There is a swap entry and a page doesn't exist or isn't charged */
4553         if (ent.val && !ret &&
4554             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4555                 ret = MC_TARGET_SWAP;
4556                 if (target)
4557                         target->ent = ent;
4558         }
4559         return ret;
4560 }
4561
4562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4563 /*
4564  * We don't consider swapping or file mapped pages because THP does not
4565  * support them for now.
4566  * Caller should make sure that pmd_trans_huge(pmd) is true.
4567  */
4568 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4569                 unsigned long addr, pmd_t pmd, union mc_target *target)
4570 {
4571         struct page *page = NULL;
4572         enum mc_target_type ret = MC_TARGET_NONE;
4573
4574         page = pmd_page(pmd);
4575         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4576         if (!(mc.flags & MOVE_ANON))
4577                 return ret;
4578         if (page->mem_cgroup == mc.from) {
4579                 ret = MC_TARGET_PAGE;
4580                 if (target) {
4581                         get_page(page);
4582                         target->page = page;
4583                 }
4584         }
4585         return ret;
4586 }
4587 #else
4588 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4589                 unsigned long addr, pmd_t pmd, union mc_target *target)
4590 {
4591         return MC_TARGET_NONE;
4592 }
4593 #endif
4594
4595 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4596                                         unsigned long addr, unsigned long end,
4597                                         struct mm_walk *walk)
4598 {
4599         struct vm_area_struct *vma = walk->vma;
4600         pte_t *pte;
4601         spinlock_t *ptl;
4602
4603         ptl = pmd_trans_huge_lock(pmd, vma);
4604         if (ptl) {
4605                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4606                         mc.precharge += HPAGE_PMD_NR;
4607                 spin_unlock(ptl);
4608                 return 0;
4609         }
4610
4611         if (pmd_trans_unstable(pmd))
4612                 return 0;
4613         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4614         for (; addr != end; pte++, addr += PAGE_SIZE)
4615                 if (get_mctgt_type(vma, addr, *pte, NULL))
4616                         mc.precharge++; /* increment precharge temporarily */
4617         pte_unmap_unlock(pte - 1, ptl);
4618         cond_resched();
4619
4620         return 0;
4621 }
4622
4623 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4624 {
4625         unsigned long precharge;
4626
4627         struct mm_walk mem_cgroup_count_precharge_walk = {
4628                 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4629                 .mm = mm,
4630         };
4631         down_read(&mm->mmap_sem);
4632         walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4633         up_read(&mm->mmap_sem);
4634
4635         precharge = mc.precharge;
4636         mc.precharge = 0;
4637
4638         return precharge;
4639 }
4640
4641 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4642 {
4643         unsigned long precharge = mem_cgroup_count_precharge(mm);
4644
4645         VM_BUG_ON(mc.moving_task);
4646         mc.moving_task = current;
4647         return mem_cgroup_do_precharge(precharge);
4648 }
4649
4650 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4651 static void __mem_cgroup_clear_mc(void)
4652 {
4653         struct mem_cgroup *from = mc.from;
4654         struct mem_cgroup *to = mc.to;
4655
4656         /* we must uncharge all the leftover precharges from mc.to */
4657         if (mc.precharge) {
4658                 cancel_charge(mc.to, mc.precharge);
4659                 mc.precharge = 0;
4660         }
4661         /*
4662          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4663          * we must uncharge here.
4664          */
4665         if (mc.moved_charge) {
4666                 cancel_charge(mc.from, mc.moved_charge);
4667                 mc.moved_charge = 0;
4668         }
4669         /* we must fixup refcnts and charges */
4670         if (mc.moved_swap) {
4671                 /* uncharge swap account from the old cgroup */
4672                 if (!mem_cgroup_is_root(mc.from))
4673                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4674
4675                 /*
4676                  * we charged both to->memory and to->memsw, so we
4677                  * should uncharge to->memory.
4678                  */
4679                 if (!mem_cgroup_is_root(mc.to))
4680                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4681
4682                 css_put_many(&mc.from->css, mc.moved_swap);
4683
4684                 /* we've already done css_get(mc.to) */
4685                 mc.moved_swap = 0;
4686         }
4687         memcg_oom_recover(from);
4688         memcg_oom_recover(to);
4689         wake_up_all(&mc.waitq);
4690 }
4691
4692 static void mem_cgroup_clear_mc(void)
4693 {
4694         struct mm_struct *mm = mc.mm;
4695
4696         /*
4697          * we must clear moving_task before waking up waiters at the end of
4698          * task migration.
4699          */
4700         mc.moving_task = NULL;
4701         __mem_cgroup_clear_mc();
4702         spin_lock(&mc.lock);
4703         mc.from = NULL;
4704         mc.to = NULL;
4705         mc.mm = NULL;
4706         spin_unlock(&mc.lock);
4707
4708         mmput(mm);
4709 }
4710
4711 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4712 {
4713         struct cgroup_subsys_state *css;
4714         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4715         struct mem_cgroup *from;
4716         struct task_struct *leader, *p;
4717         struct mm_struct *mm;
4718         unsigned long move_flags;
4719         int ret = 0;
4720
4721         /* charge immigration isn't supported on the default hierarchy */
4722         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4723                 return 0;
4724
4725         /*
4726          * Multi-process migrations only happen on the default hierarchy
4727          * where charge immigration is not used.  Perform charge
4728          * immigration if @tset contains a leader and whine if there are
4729          * multiple.
4730          */
4731         p = NULL;
4732         cgroup_taskset_for_each_leader(leader, css, tset) {
4733                 WARN_ON_ONCE(p);
4734                 p = leader;
4735                 memcg = mem_cgroup_from_css(css);
4736         }
4737         if (!p)
4738                 return 0;
4739
4740         /*
4741          * We are now commited to this value whatever it is. Changes in this
4742          * tunable will only affect upcoming migrations, not the current one.
4743          * So we need to save it, and keep it going.
4744          */
4745         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4746         if (!move_flags)
4747                 return 0;
4748
4749         from = mem_cgroup_from_task(p);
4750
4751         VM_BUG_ON(from == memcg);
4752
4753         mm = get_task_mm(p);
4754         if (!mm)
4755                 return 0;
4756         /* We move charges only when we move a owner of the mm */
4757         if (mm->owner == p) {
4758                 VM_BUG_ON(mc.from);
4759                 VM_BUG_ON(mc.to);
4760                 VM_BUG_ON(mc.precharge);
4761                 VM_BUG_ON(mc.moved_charge);
4762                 VM_BUG_ON(mc.moved_swap);
4763
4764                 spin_lock(&mc.lock);
4765                 mc.mm = mm;
4766                 mc.from = from;
4767                 mc.to = memcg;
4768                 mc.flags = move_flags;
4769                 spin_unlock(&mc.lock);
4770                 /* We set mc.moving_task later */
4771
4772                 ret = mem_cgroup_precharge_mc(mm);
4773                 if (ret)
4774                         mem_cgroup_clear_mc();
4775         } else {
4776                 mmput(mm);
4777         }
4778         return ret;
4779 }
4780
4781 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4782 {
4783         if (mc.to)
4784                 mem_cgroup_clear_mc();
4785 }
4786
4787 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4788                                 unsigned long addr, unsigned long end,
4789                                 struct mm_walk *walk)
4790 {
4791         int ret = 0;
4792         struct vm_area_struct *vma = walk->vma;
4793         pte_t *pte;
4794         spinlock_t *ptl;
4795         enum mc_target_type target_type;
4796         union mc_target target;
4797         struct page *page;
4798
4799         ptl = pmd_trans_huge_lock(pmd, vma);
4800         if (ptl) {
4801                 if (mc.precharge < HPAGE_PMD_NR) {
4802                         spin_unlock(ptl);
4803                         return 0;
4804                 }
4805                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4806                 if (target_type == MC_TARGET_PAGE) {
4807                         page = target.page;
4808                         if (!isolate_lru_page(page)) {
4809                                 if (!mem_cgroup_move_account(page, true,
4810                                                              mc.from, mc.to)) {
4811                                         mc.precharge -= HPAGE_PMD_NR;
4812                                         mc.moved_charge += HPAGE_PMD_NR;
4813                                 }
4814                                 putback_lru_page(page);
4815                         }
4816                         put_page(page);
4817                 }
4818                 spin_unlock(ptl);
4819                 return 0;
4820         }
4821
4822         if (pmd_trans_unstable(pmd))
4823                 return 0;
4824 retry:
4825         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4826         for (; addr != end; addr += PAGE_SIZE) {
4827                 pte_t ptent = *(pte++);
4828                 swp_entry_t ent;
4829
4830                 if (!mc.precharge)
4831                         break;
4832
4833                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4834                 case MC_TARGET_PAGE:
4835                         page = target.page;
4836                         /*
4837                          * We can have a part of the split pmd here. Moving it
4838                          * can be done but it would be too convoluted so simply
4839                          * ignore such a partial THP and keep it in original
4840                          * memcg. There should be somebody mapping the head.
4841                          */
4842                         if (PageTransCompound(page))
4843                                 goto put;
4844                         if (isolate_lru_page(page))
4845                                 goto put;
4846                         if (!mem_cgroup_move_account(page, false,
4847                                                 mc.from, mc.to)) {
4848                                 mc.precharge--;
4849                                 /* we uncharge from mc.from later. */
4850                                 mc.moved_charge++;
4851                         }
4852                         putback_lru_page(page);
4853 put:                    /* get_mctgt_type() gets the page */
4854                         put_page(page);
4855                         break;
4856                 case MC_TARGET_SWAP:
4857                         ent = target.ent;
4858                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4859                                 mc.precharge--;
4860                                 /* we fixup refcnts and charges later. */
4861                                 mc.moved_swap++;
4862                         }
4863                         break;
4864                 default:
4865                         break;
4866                 }
4867         }
4868         pte_unmap_unlock(pte - 1, ptl);
4869         cond_resched();
4870
4871         if (addr != end) {
4872                 /*
4873                  * We have consumed all precharges we got in can_attach().
4874                  * We try charge one by one, but don't do any additional
4875                  * charges to mc.to if we have failed in charge once in attach()
4876                  * phase.
4877                  */
4878                 ret = mem_cgroup_do_precharge(1);
4879                 if (!ret)
4880                         goto retry;
4881         }
4882
4883         return ret;
4884 }
4885
4886 static void mem_cgroup_move_charge(void)
4887 {
4888         struct mm_walk mem_cgroup_move_charge_walk = {
4889                 .pmd_entry = mem_cgroup_move_charge_pte_range,
4890                 .mm = mc.mm,
4891         };
4892
4893         lru_add_drain_all();
4894         /*
4895          * Signal lock_page_memcg() to take the memcg's move_lock
4896          * while we're moving its pages to another memcg. Then wait
4897          * for already started RCU-only updates to finish.
4898          */
4899         atomic_inc(&mc.from->moving_account);
4900         synchronize_rcu();
4901 retry:
4902         if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4903                 /*
4904                  * Someone who are holding the mmap_sem might be waiting in
4905                  * waitq. So we cancel all extra charges, wake up all waiters,
4906                  * and retry. Because we cancel precharges, we might not be able
4907                  * to move enough charges, but moving charge is a best-effort
4908                  * feature anyway, so it wouldn't be a big problem.
4909                  */
4910                 __mem_cgroup_clear_mc();
4911                 cond_resched();
4912                 goto retry;
4913         }
4914         /*
4915          * When we have consumed all precharges and failed in doing
4916          * additional charge, the page walk just aborts.
4917          */
4918         walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4919         up_read(&mc.mm->mmap_sem);
4920         atomic_dec(&mc.from->moving_account);
4921 }
4922
4923 static void mem_cgroup_move_task(void)
4924 {
4925         if (mc.to) {
4926                 mem_cgroup_move_charge();
4927                 mem_cgroup_clear_mc();
4928         }
4929 }
4930 #else   /* !CONFIG_MMU */
4931 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4932 {
4933         return 0;
4934 }
4935 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4936 {
4937 }
4938 static void mem_cgroup_move_task(void)
4939 {
4940 }
4941 #endif
4942
4943 /*
4944  * Cgroup retains root cgroups across [un]mount cycles making it necessary
4945  * to verify whether we're attached to the default hierarchy on each mount
4946  * attempt.
4947  */
4948 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4949 {
4950         /*
4951          * use_hierarchy is forced on the default hierarchy.  cgroup core
4952          * guarantees that @root doesn't have any children, so turning it
4953          * on for the root memcg is enough.
4954          */
4955         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4956                 root_mem_cgroup->use_hierarchy = true;
4957         else
4958                 root_mem_cgroup->use_hierarchy = false;
4959 }
4960
4961 static u64 memory_current_read(struct cgroup_subsys_state *css,
4962                                struct cftype *cft)
4963 {
4964         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4965
4966         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4967 }
4968
4969 static int memory_low_show(struct seq_file *m, void *v)
4970 {
4971         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4972         unsigned long low = READ_ONCE(memcg->low);
4973
4974         if (low == PAGE_COUNTER_MAX)
4975                 seq_puts(m, "max\n");
4976         else
4977                 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4978
4979         return 0;
4980 }
4981
4982 static ssize_t memory_low_write(struct kernfs_open_file *of,
4983                                 char *buf, size_t nbytes, loff_t off)
4984 {
4985         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4986         unsigned long low;
4987         int err;
4988
4989         buf = strstrip(buf);
4990         err = page_counter_memparse(buf, "max", &low);
4991         if (err)
4992                 return err;
4993
4994         memcg->low = low;
4995
4996         return nbytes;
4997 }
4998
4999 static int memory_high_show(struct seq_file *m, void *v)
5000 {
5001         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5002         unsigned long high = READ_ONCE(memcg->high);
5003
5004         if (high == PAGE_COUNTER_MAX)
5005                 seq_puts(m, "max\n");
5006         else
5007                 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5008
5009         return 0;
5010 }
5011
5012 static ssize_t memory_high_write(struct kernfs_open_file *of,
5013                                  char *buf, size_t nbytes, loff_t off)
5014 {
5015         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5016         unsigned long nr_pages;
5017         unsigned long high;
5018         int err;
5019
5020         buf = strstrip(buf);
5021         err = page_counter_memparse(buf, "max", &high);
5022         if (err)
5023                 return err;
5024
5025         memcg->high = high;
5026
5027         nr_pages = page_counter_read(&memcg->memory);
5028         if (nr_pages > high)
5029                 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5030                                              GFP_KERNEL, true);
5031
5032         memcg_wb_domain_size_changed(memcg);
5033         return nbytes;
5034 }
5035
5036 static int memory_max_show(struct seq_file *m, void *v)
5037 {
5038         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5039         unsigned long max = READ_ONCE(memcg->memory.limit);
5040
5041         if (max == PAGE_COUNTER_MAX)
5042                 seq_puts(m, "max\n");
5043         else
5044                 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5045
5046         return 0;
5047 }
5048
5049 static ssize_t memory_max_write(struct kernfs_open_file *of,
5050                                 char *buf, size_t nbytes, loff_t off)
5051 {
5052         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5053         unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5054         bool drained = false;
5055         unsigned long max;
5056         int err;
5057
5058         buf = strstrip(buf);
5059         err = page_counter_memparse(buf, "max", &max);
5060         if (err)
5061                 return err;
5062
5063         xchg(&memcg->memory.limit, max);
5064
5065         for (;;) {
5066                 unsigned long nr_pages = page_counter_read(&memcg->memory);
5067
5068                 if (nr_pages <= max)
5069                         break;
5070
5071                 if (signal_pending(current)) {
5072                         err = -EINTR;
5073                         break;
5074                 }
5075
5076                 if (!drained) {
5077                         drain_all_stock(memcg);
5078                         drained = true;
5079                         continue;
5080                 }
5081
5082                 if (nr_reclaims) {
5083                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5084                                                           GFP_KERNEL, true))
5085                                 nr_reclaims--;
5086                         continue;
5087                 }
5088
5089                 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5090                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5091                         break;
5092         }
5093
5094         memcg_wb_domain_size_changed(memcg);
5095         return nbytes;
5096 }
5097
5098 static int memory_events_show(struct seq_file *m, void *v)
5099 {
5100         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5101
5102         seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5103         seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5104         seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5105         seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5106
5107         return 0;
5108 }
5109
5110 static int memory_stat_show(struct seq_file *m, void *v)
5111 {
5112         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5113         unsigned long stat[MEMCG_NR_STAT];
5114         unsigned long events[MEMCG_NR_EVENTS];
5115         int i;
5116
5117         /*
5118          * Provide statistics on the state of the memory subsystem as
5119          * well as cumulative event counters that show past behavior.
5120          *
5121          * This list is ordered following a combination of these gradients:
5122          * 1) generic big picture -> specifics and details
5123          * 2) reflecting userspace activity -> reflecting kernel heuristics
5124          *
5125          * Current memory state:
5126          */
5127
5128         tree_stat(memcg, stat);
5129         tree_events(memcg, events);
5130
5131         seq_printf(m, "anon %llu\n",
5132                    (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5133         seq_printf(m, "file %llu\n",
5134                    (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5135         seq_printf(m, "kernel_stack %llu\n",
5136                    (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5137         seq_printf(m, "slab %llu\n",
5138                    (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5139                          stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5140         seq_printf(m, "sock %llu\n",
5141                    (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5142
5143         seq_printf(m, "file_mapped %llu\n",
5144                    (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5145         seq_printf(m, "file_dirty %llu\n",
5146                    (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5147         seq_printf(m, "file_writeback %llu\n",
5148                    (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5149
5150         for (i = 0; i < NR_LRU_LISTS; i++) {
5151                 struct mem_cgroup *mi;
5152                 unsigned long val = 0;
5153
5154                 for_each_mem_cgroup_tree(mi, memcg)
5155                         val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5156                 seq_printf(m, "%s %llu\n",
5157                            mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5158         }
5159
5160         seq_printf(m, "slab_reclaimable %llu\n",
5161                    (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5162         seq_printf(m, "slab_unreclaimable %llu\n",
5163                    (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5164
5165         /* Accumulated memory events */
5166
5167         seq_printf(m, "pgfault %lu\n",
5168                    events[MEM_CGROUP_EVENTS_PGFAULT]);
5169         seq_printf(m, "pgmajfault %lu\n",
5170                    events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5171
5172         return 0;
5173 }
5174
5175 static struct cftype memory_files[] = {
5176         {
5177                 .name = "current",
5178                 .flags = CFTYPE_NOT_ON_ROOT,
5179                 .read_u64 = memory_current_read,
5180         },
5181         {
5182                 .name = "low",
5183                 .flags = CFTYPE_NOT_ON_ROOT,
5184                 .seq_show = memory_low_show,
5185                 .write = memory_low_write,
5186         },
5187         {
5188                 .name = "high",
5189                 .flags = CFTYPE_NOT_ON_ROOT,
5190                 .seq_show = memory_high_show,
5191                 .write = memory_high_write,
5192         },
5193         {
5194                 .name = "max",
5195                 .flags = CFTYPE_NOT_ON_ROOT,
5196                 .seq_show = memory_max_show,
5197                 .write = memory_max_write,
5198         },
5199         {
5200                 .name = "events",
5201                 .flags = CFTYPE_NOT_ON_ROOT,
5202                 .file_offset = offsetof(struct mem_cgroup, events_file),
5203                 .seq_show = memory_events_show,
5204         },
5205         {
5206                 .name = "stat",
5207                 .flags = CFTYPE_NOT_ON_ROOT,
5208                 .seq_show = memory_stat_show,
5209         },
5210         { }     /* terminate */
5211 };
5212
5213 struct cgroup_subsys memory_cgrp_subsys = {
5214         .css_alloc = mem_cgroup_css_alloc,
5215         .css_online = mem_cgroup_css_online,
5216         .css_offline = mem_cgroup_css_offline,
5217         .css_released = mem_cgroup_css_released,
5218         .css_free = mem_cgroup_css_free,
5219         .css_reset = mem_cgroup_css_reset,
5220         .can_attach = mem_cgroup_can_attach,
5221         .cancel_attach = mem_cgroup_cancel_attach,
5222         .post_attach = mem_cgroup_move_task,
5223         .bind = mem_cgroup_bind,
5224         .dfl_cftypes = memory_files,
5225         .legacy_cftypes = mem_cgroup_legacy_files,
5226         .early_init = 0,
5227 };
5228
5229 /**
5230  * mem_cgroup_low - check if memory consumption is below the normal range
5231  * @root: the highest ancestor to consider
5232  * @memcg: the memory cgroup to check
5233  *
5234  * Returns %true if memory consumption of @memcg, and that of all
5235  * configurable ancestors up to @root, is below the normal range.
5236  */
5237 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5238 {
5239         if (mem_cgroup_disabled())
5240                 return false;
5241
5242         /*
5243          * The toplevel group doesn't have a configurable range, so
5244          * it's never low when looked at directly, and it is not
5245          * considered an ancestor when assessing the hierarchy.
5246          */
5247
5248         if (memcg == root_mem_cgroup)
5249                 return false;
5250
5251         if (page_counter_read(&memcg->memory) >= memcg->low)
5252                 return false;
5253
5254         while (memcg != root) {
5255                 memcg = parent_mem_cgroup(memcg);
5256
5257                 if (memcg == root_mem_cgroup)
5258                         break;
5259
5260                 if (page_counter_read(&memcg->memory) >= memcg->low)
5261                         return false;
5262         }
5263         return true;
5264 }
5265
5266 /**
5267  * mem_cgroup_try_charge - try charging a page
5268  * @page: page to charge
5269  * @mm: mm context of the victim
5270  * @gfp_mask: reclaim mode
5271  * @memcgp: charged memcg return
5272  *
5273  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5274  * pages according to @gfp_mask if necessary.
5275  *
5276  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5277  * Otherwise, an error code is returned.
5278  *
5279  * After page->mapping has been set up, the caller must finalize the
5280  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5281  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5282  */
5283 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5284                           gfp_t gfp_mask, struct mem_cgroup **memcgp,
5285                           bool compound)
5286 {
5287         struct mem_cgroup *memcg = NULL;
5288         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5289         int ret = 0;
5290
5291         if (mem_cgroup_disabled())
5292                 goto out;
5293
5294         if (PageSwapCache(page)) {
5295                 /*
5296                  * Every swap fault against a single page tries to charge the
5297                  * page, bail as early as possible.  shmem_unuse() encounters
5298                  * already charged pages, too.  The USED bit is protected by
5299                  * the page lock, which serializes swap cache removal, which
5300                  * in turn serializes uncharging.
5301                  */
5302                 VM_BUG_ON_PAGE(!PageLocked(page), page);
5303                 if (page->mem_cgroup)
5304                         goto out;
5305
5306                 if (do_swap_account) {
5307                         swp_entry_t ent = { .val = page_private(page), };
5308                         unsigned short id = lookup_swap_cgroup_id(ent);
5309
5310                         rcu_read_lock();
5311                         memcg = mem_cgroup_from_id(id);
5312                         if (memcg && !css_tryget_online(&memcg->css))
5313                                 memcg = NULL;
5314                         rcu_read_unlock();
5315                 }
5316         }
5317
5318         if (!memcg)
5319                 memcg = get_mem_cgroup_from_mm(mm);
5320
5321         ret = try_charge(memcg, gfp_mask, nr_pages);
5322
5323         css_put(&memcg->css);
5324 out:
5325         *memcgp = memcg;
5326         return ret;
5327 }
5328
5329 /**
5330  * mem_cgroup_commit_charge - commit a page charge
5331  * @page: page to charge
5332  * @memcg: memcg to charge the page to
5333  * @lrucare: page might be on LRU already
5334  *
5335  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5336  * after page->mapping has been set up.  This must happen atomically
5337  * as part of the page instantiation, i.e. under the page table lock
5338  * for anonymous pages, under the page lock for page and swap cache.
5339  *
5340  * In addition, the page must not be on the LRU during the commit, to
5341  * prevent racing with task migration.  If it might be, use @lrucare.
5342  *
5343  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5344  */
5345 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5346                               bool lrucare, bool compound)
5347 {
5348         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5349
5350         VM_BUG_ON_PAGE(!page->mapping, page);
5351         VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5352
5353         if (mem_cgroup_disabled())
5354                 return;
5355         /*
5356          * Swap faults will attempt to charge the same page multiple
5357          * times.  But reuse_swap_page() might have removed the page
5358          * from swapcache already, so we can't check PageSwapCache().
5359          */
5360         if (!memcg)
5361                 return;
5362
5363         commit_charge(page, memcg, lrucare);
5364
5365         local_irq_disable();
5366         mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5367         memcg_check_events(memcg, page);
5368         local_irq_enable();
5369
5370         if (do_memsw_account() && PageSwapCache(page)) {
5371                 swp_entry_t entry = { .val = page_private(page) };
5372                 /*
5373                  * The swap entry might not get freed for a long time,
5374                  * let's not wait for it.  The page already received a
5375                  * memory+swap charge, drop the swap entry duplicate.
5376                  */
5377                 mem_cgroup_uncharge_swap(entry);
5378         }
5379 }
5380
5381 /**
5382  * mem_cgroup_cancel_charge - cancel a page charge
5383  * @page: page to charge
5384  * @memcg: memcg to charge the page to
5385  *
5386  * Cancel a charge transaction started by mem_cgroup_try_charge().
5387  */
5388 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5389                 bool compound)
5390 {
5391         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5392
5393         if (mem_cgroup_disabled())
5394                 return;
5395         /*
5396          * Swap faults will attempt to charge the same page multiple
5397          * times.  But reuse_swap_page() might have removed the page
5398          * from swapcache already, so we can't check PageSwapCache().
5399          */
5400         if (!memcg)
5401                 return;
5402
5403         cancel_charge(memcg, nr_pages);
5404 }
5405
5406 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5407                            unsigned long nr_anon, unsigned long nr_file,
5408                            unsigned long nr_huge, struct page *dummy_page)
5409 {
5410         unsigned long nr_pages = nr_anon + nr_file;
5411         unsigned long flags;
5412
5413         if (!mem_cgroup_is_root(memcg)) {
5414                 page_counter_uncharge(&memcg->memory, nr_pages);
5415                 if (do_memsw_account())
5416                         page_counter_uncharge(&memcg->memsw, nr_pages);
5417                 memcg_oom_recover(memcg);
5418         }
5419
5420         local_irq_save(flags);
5421         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5422         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5423         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5424         __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5425         __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5426         memcg_check_events(memcg, dummy_page);
5427         local_irq_restore(flags);
5428
5429         if (!mem_cgroup_is_root(memcg))
5430                 css_put_many(&memcg->css, nr_pages);
5431 }
5432
5433 static void uncharge_list(struct list_head *page_list)
5434 {
5435         struct mem_cgroup *memcg = NULL;
5436         unsigned long nr_anon = 0;
5437         unsigned long nr_file = 0;
5438         unsigned long nr_huge = 0;
5439         unsigned long pgpgout = 0;
5440         struct list_head *next;
5441         struct page *page;
5442
5443         /*
5444          * Note that the list can be a single page->lru; hence the
5445          * do-while loop instead of a simple list_for_each_entry().
5446          */
5447         next = page_list->next;
5448         do {
5449                 unsigned int nr_pages = 1;
5450
5451                 page = list_entry(next, struct page, lru);
5452                 next = page->lru.next;
5453
5454                 VM_BUG_ON_PAGE(PageLRU(page), page);
5455                 VM_BUG_ON_PAGE(page_count(page), page);
5456
5457                 if (!page->mem_cgroup)
5458                         continue;
5459
5460                 /*
5461                  * Nobody should be changing or seriously looking at
5462                  * page->mem_cgroup at this point, we have fully
5463                  * exclusive access to the page.
5464                  */
5465
5466                 if (memcg != page->mem_cgroup) {
5467                         if (memcg) {
5468                                 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5469                                                nr_huge, page);
5470                                 pgpgout = nr_anon = nr_file = nr_huge = 0;
5471                         }
5472                         memcg = page->mem_cgroup;
5473                 }
5474
5475                 if (PageTransHuge(page)) {
5476                         nr_pages <<= compound_order(page);
5477                         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5478                         nr_huge += nr_pages;
5479                 }
5480
5481                 if (PageAnon(page))
5482                         nr_anon += nr_pages;
5483                 else
5484                         nr_file += nr_pages;
5485
5486                 page->mem_cgroup = NULL;
5487
5488                 pgpgout++;
5489         } while (next != page_list);
5490
5491         if (memcg)
5492                 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5493                                nr_huge, page);
5494 }
5495
5496 /**
5497  * mem_cgroup_uncharge - uncharge a page
5498  * @page: page to uncharge
5499  *
5500  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5501  * mem_cgroup_commit_charge().
5502  */
5503 void mem_cgroup_uncharge(struct page *page)
5504 {
5505         if (mem_cgroup_disabled())
5506                 return;
5507
5508         /* Don't touch page->lru of any random page, pre-check: */
5509         if (!page->mem_cgroup)
5510                 return;
5511
5512         INIT_LIST_HEAD(&page->lru);
5513         uncharge_list(&page->lru);
5514 }
5515
5516 /**
5517  * mem_cgroup_uncharge_list - uncharge a list of page
5518  * @page_list: list of pages to uncharge
5519  *
5520  * Uncharge a list of pages previously charged with
5521  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5522  */
5523 void mem_cgroup_uncharge_list(struct list_head *page_list)
5524 {
5525         if (mem_cgroup_disabled())
5526                 return;
5527
5528         if (!list_empty(page_list))
5529                 uncharge_list(page_list);
5530 }
5531
5532 /**
5533  * mem_cgroup_migrate - charge a page's replacement
5534  * @oldpage: currently circulating page
5535  * @newpage: replacement page
5536  *
5537  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5538  * be uncharged upon free.
5539  *
5540  * Both pages must be locked, @newpage->mapping must be set up.
5541  */
5542 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5543 {
5544         struct mem_cgroup *memcg;
5545         unsigned int nr_pages;
5546         bool compound;
5547         unsigned long flags;
5548
5549         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5550         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5551         VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5552         VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5553                        newpage);
5554
5555         if (mem_cgroup_disabled())
5556                 return;
5557
5558         /* Page cache replacement: new page already charged? */
5559         if (newpage->mem_cgroup)
5560                 return;
5561
5562         /* Swapcache readahead pages can get replaced before being charged */
5563         memcg = oldpage->mem_cgroup;
5564         if (!memcg)
5565                 return;
5566
5567         /* Force-charge the new page. The old one will be freed soon */
5568         compound = PageTransHuge(newpage);
5569         nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5570
5571         page_counter_charge(&memcg->memory, nr_pages);
5572         if (do_memsw_account())
5573                 page_counter_charge(&memcg->memsw, nr_pages);
5574         css_get_many(&memcg->css, nr_pages);
5575
5576         commit_charge(newpage, memcg, false);
5577
5578         local_irq_save(flags);
5579         mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5580         memcg_check_events(memcg, newpage);
5581         local_irq_restore(flags);
5582 }
5583
5584 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5585 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5586
5587 void sock_update_memcg(struct sock *sk)
5588 {
5589         struct mem_cgroup *memcg;
5590
5591         /* Socket cloning can throw us here with sk_cgrp already
5592          * filled. It won't however, necessarily happen from
5593          * process context. So the test for root memcg given
5594          * the current task's memcg won't help us in this case.
5595          *
5596          * Respecting the original socket's memcg is a better
5597          * decision in this case.
5598          */
5599         if (sk->sk_memcg) {
5600                 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5601                 css_get(&sk->sk_memcg->css);
5602                 return;
5603         }
5604
5605         rcu_read_lock();
5606         memcg = mem_cgroup_from_task(current);
5607         if (memcg == root_mem_cgroup)
5608                 goto out;
5609         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5610                 goto out;
5611         if (css_tryget_online(&memcg->css))
5612                 sk->sk_memcg = memcg;
5613 out:
5614         rcu_read_unlock();
5615 }
5616 EXPORT_SYMBOL(sock_update_memcg);
5617
5618 void sock_release_memcg(struct sock *sk)
5619 {
5620         WARN_ON(!sk->sk_memcg);
5621         css_put(&sk->sk_memcg->css);
5622 }
5623
5624 /**
5625  * mem_cgroup_charge_skmem - charge socket memory
5626  * @memcg: memcg to charge
5627  * @nr_pages: number of pages to charge
5628  *
5629  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5630  * @memcg's configured limit, %false if the charge had to be forced.
5631  */
5632 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5633 {
5634         gfp_t gfp_mask = GFP_KERNEL;
5635
5636         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5637                 struct page_counter *fail;
5638
5639                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5640                         memcg->tcpmem_pressure = 0;
5641                         return true;
5642                 }
5643                 page_counter_charge(&memcg->tcpmem, nr_pages);
5644                 memcg->tcpmem_pressure = 1;
5645                 return false;
5646         }
5647
5648         /* Don't block in the packet receive path */
5649         if (in_softirq())
5650                 gfp_mask = GFP_NOWAIT;
5651
5652         this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5653
5654         if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5655                 return true;
5656
5657         try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5658         return false;
5659 }
5660
5661 /**
5662  * mem_cgroup_uncharge_skmem - uncharge socket memory
5663  * @memcg - memcg to uncharge
5664  * @nr_pages - number of pages to uncharge
5665  */
5666 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5667 {
5668         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5669                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5670                 return;
5671         }
5672
5673         this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5674
5675         page_counter_uncharge(&memcg->memory, nr_pages);
5676         css_put_many(&memcg->css, nr_pages);
5677 }
5678
5679 static int __init cgroup_memory(char *s)
5680 {
5681         char *token;
5682
5683         while ((token = strsep(&s, ",")) != NULL) {
5684                 if (!*token)
5685                         continue;
5686                 if (!strcmp(token, "nosocket"))
5687                         cgroup_memory_nosocket = true;
5688                 if (!strcmp(token, "nokmem"))
5689                         cgroup_memory_nokmem = true;
5690         }
5691         return 0;
5692 }
5693 __setup("cgroup.memory=", cgroup_memory);
5694
5695 /*
5696  * subsys_initcall() for memory controller.
5697  *
5698  * Some parts like hotcpu_notifier() have to be initialized from this context
5699  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5700  * everything that doesn't depend on a specific mem_cgroup structure should
5701  * be initialized from here.
5702  */
5703 static int __init mem_cgroup_init(void)
5704 {
5705         int cpu, node;
5706
5707         hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5708
5709         for_each_possible_cpu(cpu)
5710                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5711                           drain_local_stock);
5712
5713         for_each_node(node) {
5714                 struct mem_cgroup_tree_per_node *rtpn;
5715                 int zone;
5716
5717                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5718                                     node_online(node) ? node : NUMA_NO_NODE);
5719
5720                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5721                         struct mem_cgroup_tree_per_zone *rtpz;
5722
5723                         rtpz = &rtpn->rb_tree_per_zone[zone];
5724                         rtpz->rb_root = RB_ROOT;
5725                         spin_lock_init(&rtpz->lock);
5726                 }
5727                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5728         }
5729
5730         return 0;
5731 }
5732 subsys_initcall(mem_cgroup_init);
5733
5734 #ifdef CONFIG_MEMCG_SWAP
5735 /**
5736  * mem_cgroup_swapout - transfer a memsw charge to swap
5737  * @page: page whose memsw charge to transfer
5738  * @entry: swap entry to move the charge to
5739  *
5740  * Transfer the memsw charge of @page to @entry.
5741  */
5742 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5743 {
5744         struct mem_cgroup *memcg;
5745         unsigned short oldid;
5746
5747         VM_BUG_ON_PAGE(PageLRU(page), page);
5748         VM_BUG_ON_PAGE(page_count(page), page);
5749
5750         if (!do_memsw_account())
5751                 return;
5752
5753         memcg = page->mem_cgroup;
5754
5755         /* Readahead page, never charged */
5756         if (!memcg)
5757                 return;
5758
5759         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5760         VM_BUG_ON_PAGE(oldid, page);
5761         mem_cgroup_swap_statistics(memcg, true);
5762
5763         page->mem_cgroup = NULL;
5764
5765         if (!mem_cgroup_is_root(memcg))
5766                 page_counter_uncharge(&memcg->memory, 1);
5767
5768         /*
5769          * Interrupts should be disabled here because the caller holds the
5770          * mapping->tree_lock lock which is taken with interrupts-off. It is
5771          * important here to have the interrupts disabled because it is the
5772          * only synchronisation we have for udpating the per-CPU variables.
5773          */
5774         VM_BUG_ON(!irqs_disabled());
5775         mem_cgroup_charge_statistics(memcg, page, false, -1);
5776         memcg_check_events(memcg, page);
5777 }
5778
5779 /*
5780  * mem_cgroup_try_charge_swap - try charging a swap entry
5781  * @page: page being added to swap
5782  * @entry: swap entry to charge
5783  *
5784  * Try to charge @entry to the memcg that @page belongs to.
5785  *
5786  * Returns 0 on success, -ENOMEM on failure.
5787  */
5788 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5789 {
5790         struct mem_cgroup *memcg;
5791         struct page_counter *counter;
5792         unsigned short oldid;
5793
5794         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5795                 return 0;
5796
5797         memcg = page->mem_cgroup;
5798
5799         /* Readahead page, never charged */
5800         if (!memcg)
5801                 return 0;
5802
5803         if (!mem_cgroup_is_root(memcg) &&
5804             !page_counter_try_charge(&memcg->swap, 1, &counter))
5805                 return -ENOMEM;
5806
5807         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5808         VM_BUG_ON_PAGE(oldid, page);
5809         mem_cgroup_swap_statistics(memcg, true);
5810
5811         css_get(&memcg->css);
5812         return 0;
5813 }
5814
5815 /**
5816  * mem_cgroup_uncharge_swap - uncharge a swap entry
5817  * @entry: swap entry to uncharge
5818  *
5819  * Drop the swap charge associated with @entry.
5820  */
5821 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5822 {
5823         struct mem_cgroup *memcg;
5824         unsigned short id;
5825
5826         if (!do_swap_account)
5827                 return;
5828
5829         id = swap_cgroup_record(entry, 0);
5830         rcu_read_lock();
5831         memcg = mem_cgroup_from_id(id);
5832         if (memcg) {
5833                 if (!mem_cgroup_is_root(memcg)) {
5834                         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5835                                 page_counter_uncharge(&memcg->swap, 1);
5836                         else
5837                                 page_counter_uncharge(&memcg->memsw, 1);
5838                 }
5839                 mem_cgroup_swap_statistics(memcg, false);
5840                 css_put(&memcg->css);
5841         }
5842         rcu_read_unlock();
5843 }
5844
5845 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5846 {
5847         long nr_swap_pages = get_nr_swap_pages();
5848
5849         if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5850                 return nr_swap_pages;
5851         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5852                 nr_swap_pages = min_t(long, nr_swap_pages,
5853                                       READ_ONCE(memcg->swap.limit) -
5854                                       page_counter_read(&memcg->swap));
5855         return nr_swap_pages;
5856 }
5857
5858 bool mem_cgroup_swap_full(struct page *page)
5859 {
5860         struct mem_cgroup *memcg;
5861
5862         VM_BUG_ON_PAGE(!PageLocked(page), page);
5863
5864         if (vm_swap_full())
5865                 return true;
5866         if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5867                 return false;
5868
5869         memcg = page->mem_cgroup;
5870         if (!memcg)
5871                 return false;
5872
5873         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5874                 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5875                         return true;
5876
5877         return false;
5878 }
5879
5880 /* for remember boot option*/
5881 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5882 static int really_do_swap_account __initdata = 1;
5883 #else
5884 static int really_do_swap_account __initdata;
5885 #endif
5886
5887 static int __init enable_swap_account(char *s)
5888 {
5889         if (!strcmp(s, "1"))
5890                 really_do_swap_account = 1;
5891         else if (!strcmp(s, "0"))
5892                 really_do_swap_account = 0;
5893         return 1;
5894 }
5895 __setup("swapaccount=", enable_swap_account);
5896
5897 static u64 swap_current_read(struct cgroup_subsys_state *css,
5898                              struct cftype *cft)
5899 {
5900         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5901
5902         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5903 }
5904
5905 static int swap_max_show(struct seq_file *m, void *v)
5906 {
5907         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5908         unsigned long max = READ_ONCE(memcg->swap.limit);
5909
5910         if (max == PAGE_COUNTER_MAX)
5911                 seq_puts(m, "max\n");
5912         else
5913                 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5914
5915         return 0;
5916 }
5917
5918 static ssize_t swap_max_write(struct kernfs_open_file *of,
5919                               char *buf, size_t nbytes, loff_t off)
5920 {
5921         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5922         unsigned long max;
5923         int err;
5924
5925         buf = strstrip(buf);
5926         err = page_counter_memparse(buf, "max", &max);
5927         if (err)
5928                 return err;
5929
5930         mutex_lock(&memcg_limit_mutex);
5931         err = page_counter_limit(&memcg->swap, max);
5932         mutex_unlock(&memcg_limit_mutex);
5933         if (err)
5934                 return err;
5935
5936         return nbytes;
5937 }
5938
5939 static struct cftype swap_files[] = {
5940         {
5941                 .name = "swap.current",
5942                 .flags = CFTYPE_NOT_ON_ROOT,
5943                 .read_u64 = swap_current_read,
5944         },
5945         {
5946                 .name = "swap.max",
5947                 .flags = CFTYPE_NOT_ON_ROOT,
5948                 .seq_show = swap_max_show,
5949                 .write = swap_max_write,
5950         },
5951         { }     /* terminate */
5952 };
5953
5954 static struct cftype memsw_cgroup_files[] = {
5955         {
5956                 .name = "memsw.usage_in_bytes",
5957                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5958                 .read_u64 = mem_cgroup_read_u64,
5959         },
5960         {
5961                 .name = "memsw.max_usage_in_bytes",
5962                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5963                 .write = mem_cgroup_reset,
5964                 .read_u64 = mem_cgroup_read_u64,
5965         },
5966         {
5967                 .name = "memsw.limit_in_bytes",
5968                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5969                 .write = mem_cgroup_write,
5970                 .read_u64 = mem_cgroup_read_u64,
5971         },
5972         {
5973                 .name = "memsw.failcnt",
5974                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5975                 .write = mem_cgroup_reset,
5976                 .read_u64 = mem_cgroup_read_u64,
5977         },
5978         { },    /* terminate */
5979 };
5980
5981 static int __init mem_cgroup_swap_init(void)
5982 {
5983         if (!mem_cgroup_disabled() && really_do_swap_account) {
5984                 do_swap_account = 1;
5985                 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5986                                                swap_files));
5987                 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5988                                                   memsw_cgroup_files));
5989         }
5990         return 0;
5991 }
5992 subsys_initcall(mem_cgroup_swap_init);
5993
5994 #endif /* CONFIG_MEMCG_SWAP */